Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "transaction.h"
  13#include "qgroup.h"
  14#include "space-info.h"
  15#include "tree-mod-log.h"
  16#include "fs.h"
  17
  18struct kmem_cache *btrfs_delayed_ref_head_cachep;
  19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  20struct kmem_cache *btrfs_delayed_data_ref_cachep;
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
  56int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  57{
  58	u64 num_entries =
  59		atomic_read(&trans->transaction->delayed_refs.num_entries);
  60	u64 avg_runtime;
  61	u64 val;
  62
  63	smp_mb();
  64	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  65	val = num_entries * avg_runtime;
  66	if (val >= NSEC_PER_SEC)
  67		return 1;
  68	if (val >= NSEC_PER_SEC / 2)
  69		return 2;
  70
  71	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  72}
  73
  74/*
  75 * Release a ref head's reservation.
  76 *
  77 * @fs_info:  the filesystem
  78 * @nr:       number of items to drop
  79 *
  80 * Drops the delayed ref head's count from the delayed refs rsv and free any
  81 * excess reservation we had.
  82 */
  83void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  84{
  85	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  86	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  87	u64 released = 0;
  88
  89	/*
  90	 * We have to check the mount option here because we could be enabling
  91	 * the free space tree for the first time and don't have the compat_ro
  92	 * option set yet.
  93	 *
  94	 * We need extra reservations if we have the free space tree because
  95	 * we'll have to modify that tree as well.
  96	 */
  97	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
  98		num_bytes *= 2;
  99
 100	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
 101	if (released)
 102		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 103					      0, released, 0);
 104}
 105
 106/*
 107 * Adjust the size of the delayed refs rsv.
 108 *
 109 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
 110 * it'll calculate the additional size and add it to the delayed_refs_rsv.
 111 */
 112void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 113{
 114	struct btrfs_fs_info *fs_info = trans->fs_info;
 115	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 116	u64 num_bytes;
 117
 118	if (!trans->delayed_ref_updates)
 119		return;
 120
 121	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 122						    trans->delayed_ref_updates);
 123	/*
 124	 * We have to check the mount option here because we could be enabling
 125	 * the free space tree for the first time and don't have the compat_ro
 126	 * option set yet.
 127	 *
 128	 * We need extra reservations if we have the free space tree because
 129	 * we'll have to modify that tree as well.
 130	 */
 131	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 132		num_bytes *= 2;
 133
 134	spin_lock(&delayed_rsv->lock);
 135	delayed_rsv->size += num_bytes;
 136	delayed_rsv->full = false;
 137	spin_unlock(&delayed_rsv->lock);
 138	trans->delayed_ref_updates = 0;
 139}
 140
 141/*
 142 * Transfer bytes to our delayed refs rsv.
 143 *
 144 * @fs_info:   the filesystem
 145 * @src:       source block rsv to transfer from
 146 * @num_bytes: number of bytes to transfer
 147 *
 148 * This transfers up to the num_bytes amount from the src rsv to the
 149 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 150 */
 151void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 152				       struct btrfs_block_rsv *src,
 153				       u64 num_bytes)
 154{
 155	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 156	u64 to_free = 0;
 157
 158	spin_lock(&src->lock);
 159	src->reserved -= num_bytes;
 160	src->size -= num_bytes;
 161	spin_unlock(&src->lock);
 162
 163	spin_lock(&delayed_refs_rsv->lock);
 164	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 165		u64 delta = delayed_refs_rsv->size -
 166			delayed_refs_rsv->reserved;
 167		if (num_bytes > delta) {
 168			to_free = num_bytes - delta;
 169			num_bytes = delta;
 170		}
 171	} else {
 172		to_free = num_bytes;
 173		num_bytes = 0;
 174	}
 175
 176	if (num_bytes)
 177		delayed_refs_rsv->reserved += num_bytes;
 178	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 179		delayed_refs_rsv->full = true;
 180	spin_unlock(&delayed_refs_rsv->lock);
 181
 182	if (num_bytes)
 183		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 184					      0, num_bytes, 1);
 185	if (to_free)
 186		btrfs_space_info_free_bytes_may_use(fs_info,
 187				delayed_refs_rsv->space_info, to_free);
 188}
 189
 190/*
 191 * Refill based on our delayed refs usage.
 192 *
 193 * @fs_info: the filesystem
 194 * @flush:   control how we can flush for this reservation.
 195 *
 196 * This will refill the delayed block_rsv up to 1 items size worth of space and
 197 * will return -ENOSPC if we can't make the reservation.
 198 */
 199int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 200				  enum btrfs_reserve_flush_enum flush)
 201{
 202	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 203	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 204	u64 num_bytes = 0;
 205	int ret = -ENOSPC;
 206
 207	spin_lock(&block_rsv->lock);
 208	if (block_rsv->reserved < block_rsv->size) {
 209		num_bytes = block_rsv->size - block_rsv->reserved;
 210		num_bytes = min(num_bytes, limit);
 211	}
 212	spin_unlock(&block_rsv->lock);
 213
 214	if (!num_bytes)
 215		return 0;
 216
 217	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
 218	if (ret)
 219		return ret;
 220	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 221	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 222				      0, num_bytes, 1);
 223	return 0;
 224}
 225
 226/*
 227 * compare two delayed tree backrefs with same bytenr and type
 228 */
 229static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 230			  struct btrfs_delayed_tree_ref *ref2)
 231{
 232	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 233		if (ref1->root < ref2->root)
 234			return -1;
 235		if (ref1->root > ref2->root)
 236			return 1;
 237	} else {
 238		if (ref1->parent < ref2->parent)
 239			return -1;
 240		if (ref1->parent > ref2->parent)
 241			return 1;
 242	}
 243	return 0;
 244}
 245
 246/*
 247 * compare two delayed data backrefs with same bytenr and type
 248 */
 249static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 250			  struct btrfs_delayed_data_ref *ref2)
 251{
 252	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 253		if (ref1->root < ref2->root)
 254			return -1;
 255		if (ref1->root > ref2->root)
 256			return 1;
 257		if (ref1->objectid < ref2->objectid)
 258			return -1;
 259		if (ref1->objectid > ref2->objectid)
 260			return 1;
 261		if (ref1->offset < ref2->offset)
 262			return -1;
 263		if (ref1->offset > ref2->offset)
 264			return 1;
 265	} else {
 266		if (ref1->parent < ref2->parent)
 267			return -1;
 268		if (ref1->parent > ref2->parent)
 269			return 1;
 270	}
 271	return 0;
 272}
 273
 274static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 275		     struct btrfs_delayed_ref_node *ref2,
 276		     bool check_seq)
 
 
 
 
 277{
 278	int ret = 0;
 279
 
 
 
 
 
 
 
 
 280	if (ref1->type < ref2->type)
 281		return -1;
 282	if (ref1->type > ref2->type)
 283		return 1;
 284	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 285	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 286		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 287				     btrfs_delayed_node_to_tree_ref(ref2));
 288	else
 289		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 290				     btrfs_delayed_node_to_data_ref(ref2));
 291	if (ret)
 292		return ret;
 293	if (check_seq) {
 294		if (ref1->seq < ref2->seq)
 295			return -1;
 296		if (ref1->seq > ref2->seq)
 297			return 1;
 298	}
 
 
 
 
 
 
 
 
 
 
 
 299	return 0;
 300}
 301
 302/* insert a new ref to head ref rbtree */
 303static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 304						   struct rb_node *node)
 
 
 
 
 305{
 306	struct rb_node **p = &root->rb_root.rb_node;
 307	struct rb_node *parent_node = NULL;
 308	struct btrfs_delayed_ref_head *entry;
 309	struct btrfs_delayed_ref_head *ins;
 310	u64 bytenr;
 311	bool leftmost = true;
 312
 313	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 314	bytenr = ins->bytenr;
 315	while (*p) {
 316		parent_node = *p;
 317		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 318				 href_node);
 319
 320		if (bytenr < entry->bytenr) {
 
 321			p = &(*p)->rb_left;
 322		} else if (bytenr > entry->bytenr) {
 323			p = &(*p)->rb_right;
 324			leftmost = false;
 325		} else {
 326			return entry;
 327		}
 328	}
 329
 330	rb_link_node(node, parent_node, p);
 331	rb_insert_color_cached(node, root, leftmost);
 332	return NULL;
 333}
 334
 335static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 336		struct btrfs_delayed_ref_node *ins)
 
 337{
 338	struct rb_node **p = &root->rb_root.rb_node;
 339	struct rb_node *node = &ins->ref_node;
 340	struct rb_node *parent_node = NULL;
 341	struct btrfs_delayed_ref_node *entry;
 342	bool leftmost = true;
 
 343
 
 
 344	while (*p) {
 345		int comp;
 346
 347		parent_node = *p;
 348		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 349				 ref_node);
 350		comp = comp_refs(ins, entry, true);
 351		if (comp < 0) {
 352			p = &(*p)->rb_left;
 353		} else if (comp > 0) {
 354			p = &(*p)->rb_right;
 355			leftmost = false;
 356		} else {
 357			return entry;
 358		}
 359	}
 360
 361	rb_link_node(node, parent_node, p);
 362	rb_insert_color_cached(node, root, leftmost);
 363	return NULL;
 364}
 365
 366static struct btrfs_delayed_ref_head *find_first_ref_head(
 367		struct btrfs_delayed_ref_root *dr)
 368{
 369	struct rb_node *n;
 370	struct btrfs_delayed_ref_head *entry;
 371
 372	n = rb_first_cached(&dr->href_root);
 373	if (!n)
 374		return NULL;
 375
 376	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 377
 378	return entry;
 379}
 380
 381/*
 382 * Find a head entry based on bytenr. This returns the delayed ref head if it
 383 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 384 * is given, the next bigger entry is returned if no exact match is found.
 385 */
 386static struct btrfs_delayed_ref_head *find_ref_head(
 387		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 388		bool return_bigger)
 
 389{
 390	struct rb_root *root = &dr->href_root.rb_root;
 391	struct rb_node *n;
 392	struct btrfs_delayed_ref_head *entry;
 393
 394	n = root->rb_node;
 395	entry = NULL;
 396	while (n) {
 397		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 398
 399		if (bytenr < entry->bytenr)
 400			n = n->rb_left;
 401		else if (bytenr > entry->bytenr)
 402			n = n->rb_right;
 403		else
 404			return entry;
 405	}
 406	if (entry && return_bigger) {
 407		if (bytenr > entry->bytenr) {
 408			n = rb_next(&entry->href_node);
 409			if (!n)
 410				return NULL;
 411			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 412					 href_node);
 
 413		}
 414		return entry;
 415	}
 416	return NULL;
 417}
 418
 419int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 420			   struct btrfs_delayed_ref_head *head)
 421{
 422	lockdep_assert_held(&delayed_refs->lock);
 
 
 
 423	if (mutex_trylock(&head->mutex))
 424		return 0;
 425
 426	refcount_inc(&head->refs);
 427	spin_unlock(&delayed_refs->lock);
 428
 429	mutex_lock(&head->mutex);
 430	spin_lock(&delayed_refs->lock);
 431	if (RB_EMPTY_NODE(&head->href_node)) {
 432		mutex_unlock(&head->mutex);
 433		btrfs_put_delayed_ref_head(head);
 434		return -EAGAIN;
 435	}
 436	btrfs_put_delayed_ref_head(head);
 437	return 0;
 438}
 439
 440static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 441				    struct btrfs_delayed_ref_root *delayed_refs,
 442				    struct btrfs_delayed_ref_head *head,
 443				    struct btrfs_delayed_ref_node *ref)
 444{
 445	lockdep_assert_held(&head->lock);
 446	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 447	RB_CLEAR_NODE(&ref->ref_node);
 448	if (!list_empty(&ref->add_list))
 449		list_del(&ref->add_list);
 
 
 450	ref->in_tree = 0;
 451	btrfs_put_delayed_ref(ref);
 452	atomic_dec(&delayed_refs->num_entries);
 
 
 453}
 454
 455static bool merge_ref(struct btrfs_trans_handle *trans,
 456		      struct btrfs_delayed_ref_root *delayed_refs,
 457		      struct btrfs_delayed_ref_head *head,
 458		      struct btrfs_delayed_ref_node *ref,
 459		      u64 seq)
 460{
 461	struct btrfs_delayed_ref_node *next;
 462	struct rb_node *node = rb_next(&ref->ref_node);
 463	bool done = false;
 464
 
 465	while (!done && node) {
 466		int mod;
 467
 468		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 469		node = rb_next(node);
 470		if (seq && next->seq >= seq)
 471			break;
 472		if (comp_refs(ref, next, false))
 473			break;
 474
 475		if (ref->action == next->action) {
 476			mod = next->ref_mod;
 477		} else {
 478			if (ref->ref_mod < next->ref_mod) {
 479				swap(ref, next);
 480				done = true;
 
 
 
 
 481			}
 482			mod = -next->ref_mod;
 483		}
 484
 485		drop_delayed_ref(trans, delayed_refs, head, next);
 486		ref->ref_mod += mod;
 487		if (ref->ref_mod == 0) {
 488			drop_delayed_ref(trans, delayed_refs, head, ref);
 489			done = true;
 490		} else {
 491			/*
 492			 * Can't have multiples of the same ref on a tree block.
 
 493			 */
 494			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 495				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 496		}
 497	}
 498
 499	return done;
 500}
 501
 502void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 
 503			      struct btrfs_delayed_ref_root *delayed_refs,
 504			      struct btrfs_delayed_ref_head *head)
 505{
 506	struct btrfs_fs_info *fs_info = trans->fs_info;
 507	struct btrfs_delayed_ref_node *ref;
 508	struct rb_node *node;
 509	u64 seq = 0;
 510
 511	lockdep_assert_held(&head->lock);
 512
 513	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 514		return;
 515
 516	/* We don't have too many refs to merge for data. */
 517	if (head->is_data)
 518		return;
 519
 520	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 521again:
 522	for (node = rb_first_cached(&head->ref_tree); node;
 523	     node = rb_next(node)) {
 524		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 
 
 
 
 
 
 
 
 
 
 
 
 525		if (seq && ref->seq >= seq)
 526			continue;
 527		if (merge_ref(trans, delayed_refs, head, ref, seq))
 528			goto again;
 
 
 529	}
 530}
 531
 532int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 
 
 533{
 
 534	int ret = 0;
 535	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 536
 537	if (min_seq != 0 && seq >= min_seq) {
 538		btrfs_debug(fs_info,
 539			    "holding back delayed_ref %llu, lowest is %llu",
 540			    seq, min_seq);
 541		ret = 1;
 
 
 
 
 
 
 542	}
 543
 
 544	return ret;
 545}
 546
 547struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 548		struct btrfs_delayed_ref_root *delayed_refs)
 549{
 
 550	struct btrfs_delayed_ref_head *head;
 
 
 
 
 551
 552again:
 553	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 554			     true);
 555	if (!head && delayed_refs->run_delayed_start != 0) {
 556		delayed_refs->run_delayed_start = 0;
 557		head = find_first_ref_head(delayed_refs);
 558	}
 559	if (!head)
 
 
 
 560		return NULL;
 
 561
 562	while (head->processing) {
 563		struct rb_node *node;
 564
 565		node = rb_next(&head->href_node);
 566		if (!node) {
 567			if (delayed_refs->run_delayed_start == 0)
 568				return NULL;
 569			delayed_refs->run_delayed_start = 0;
 
 
 570			goto again;
 571		}
 572		head = rb_entry(node, struct btrfs_delayed_ref_head,
 573				href_node);
 574	}
 575
 576	head->processing = 1;
 577	WARN_ON(delayed_refs->num_heads_ready == 0);
 578	delayed_refs->num_heads_ready--;
 579	delayed_refs->run_delayed_start = head->bytenr +
 580		head->num_bytes;
 581	return head;
 582}
 583
 584void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 585			   struct btrfs_delayed_ref_head *head)
 586{
 587	lockdep_assert_held(&delayed_refs->lock);
 588	lockdep_assert_held(&head->lock);
 589
 590	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 591	RB_CLEAR_NODE(&head->href_node);
 592	atomic_dec(&delayed_refs->num_entries);
 593	delayed_refs->num_heads--;
 594	if (head->processing == 0)
 595		delayed_refs->num_heads_ready--;
 596}
 597
 598/*
 599 * Helper to insert the ref_node to the tail or merge with tail.
 600 *
 601 * Return 0 for insert.
 602 * Return >0 for merge.
 603 */
 604static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 605			      struct btrfs_delayed_ref_root *root,
 606			      struct btrfs_delayed_ref_head *href,
 607			      struct btrfs_delayed_ref_node *ref)
 
 
 
 
 608{
 609	struct btrfs_delayed_ref_node *exist;
 610	int mod;
 611	int ret = 0;
 612
 613	spin_lock(&href->lock);
 614	exist = tree_insert(&href->ref_tree, ref);
 615	if (!exist)
 616		goto inserted;
 617
 618	/* Now we are sure we can merge */
 619	ret = 1;
 620	if (exist->action == ref->action) {
 621		mod = ref->ref_mod;
 622	} else {
 623		/* Need to change action */
 624		if (exist->ref_mod < ref->ref_mod) {
 625			exist->action = ref->action;
 626			mod = -exist->ref_mod;
 627			exist->ref_mod = ref->ref_mod;
 628			if (ref->action == BTRFS_ADD_DELAYED_REF)
 629				list_add_tail(&exist->add_list,
 630					      &href->ref_add_list);
 631			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 632				ASSERT(!list_empty(&exist->add_list));
 633				list_del(&exist->add_list);
 634			} else {
 635				ASSERT(0);
 636			}
 637		} else
 638			mod = -ref->ref_mod;
 639	}
 640	exist->ref_mod += mod;
 641
 642	/* remove existing tail if its ref_mod is zero */
 643	if (exist->ref_mod == 0)
 644		drop_delayed_ref(trans, root, href, exist);
 645	spin_unlock(&href->lock);
 646	return ret;
 647inserted:
 648	if (ref->action == BTRFS_ADD_DELAYED_REF)
 649		list_add_tail(&ref->add_list, &href->ref_add_list);
 650	atomic_inc(&root->num_entries);
 651	spin_unlock(&href->lock);
 652	return ret;
 653}
 654
 655/*
 656 * helper function to update the accounting in the head ref
 657 * existing and update must have the same bytenr
 658 */
 659static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 660			 struct btrfs_delayed_ref_head *existing,
 661			 struct btrfs_delayed_ref_head *update)
 662{
 663	struct btrfs_delayed_ref_root *delayed_refs =
 664		&trans->transaction->delayed_refs;
 665	struct btrfs_fs_info *fs_info = trans->fs_info;
 666	int old_ref_mod;
 667
 668	BUG_ON(existing->is_data != update->is_data);
 669
 670	spin_lock(&existing->lock);
 671	if (update->must_insert_reserved) {
 672		/* if the extent was freed and then
 673		 * reallocated before the delayed ref
 674		 * entries were processed, we can end up
 675		 * with an existing head ref without
 676		 * the must_insert_reserved flag set.
 677		 * Set it again here
 678		 */
 679		existing->must_insert_reserved = update->must_insert_reserved;
 680
 681		/*
 682		 * update the num_bytes so we make sure the accounting
 683		 * is done correctly
 684		 */
 685		existing->num_bytes = update->num_bytes;
 686
 687	}
 688
 689	if (update->extent_op) {
 690		if (!existing->extent_op) {
 691			existing->extent_op = update->extent_op;
 692		} else {
 693			if (update->extent_op->update_key) {
 694				memcpy(&existing->extent_op->key,
 695				       &update->extent_op->key,
 696				       sizeof(update->extent_op->key));
 697				existing->extent_op->update_key = true;
 698			}
 699			if (update->extent_op->update_flags) {
 700				existing->extent_op->flags_to_set |=
 701					update->extent_op->flags_to_set;
 702				existing->extent_op->update_flags = true;
 703			}
 704			btrfs_free_delayed_extent_op(update->extent_op);
 705		}
 706	}
 707	/*
 708	 * update the reference mod on the head to reflect this new operation,
 709	 * only need the lock for this case cause we could be processing it
 710	 * currently, for refs we just added we know we're a-ok.
 711	 */
 712	old_ref_mod = existing->total_ref_mod;
 713	existing->ref_mod += update->ref_mod;
 714	existing->total_ref_mod += update->ref_mod;
 715
 716	/*
 717	 * If we are going to from a positive ref mod to a negative or vice
 718	 * versa we need to make sure to adjust pending_csums accordingly.
 719	 */
 720	if (existing->is_data) {
 721		u64 csum_leaves =
 722			btrfs_csum_bytes_to_leaves(fs_info,
 723						   existing->num_bytes);
 724
 725		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 726			delayed_refs->pending_csums -= existing->num_bytes;
 727			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 728		}
 729		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 730			delayed_refs->pending_csums += existing->num_bytes;
 731			trans->delayed_ref_updates += csum_leaves;
 732		}
 733	}
 734
 735	spin_unlock(&existing->lock);
 736}
 737
 738static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 739				  struct btrfs_qgroup_extent_record *qrecord,
 740				  u64 bytenr, u64 num_bytes, u64 ref_root,
 741				  u64 reserved, int action, bool is_data,
 742				  bool is_system)
 
 
 
 
 
 743{
 
 
 
 744	int count_mod = 1;
 745	int must_insert_reserved = 0;
 746
 747	/* If reserved is provided, it must be a data extent. */
 748	BUG_ON(!is_data && reserved);
 749
 750	/*
 751	 * The head node stores the sum of all the mods, so dropping a ref
 752	 * should drop the sum in the head node by one.
 753	 */
 754	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 755		count_mod = 0;
 756	else if (action == BTRFS_DROP_DELAYED_REF)
 757		count_mod = -1;
 758
 759	/*
 760	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 761	 * accounting when the extent is finally added, or if a later
 762	 * modification deletes the delayed ref without ever inserting the
 763	 * extent into the extent allocation tree.  ref->must_insert_reserved
 764	 * is the flag used to record that accounting mods are required.
 
 765	 *
 766	 * Once we record must_insert_reserved, switch the action to
 767	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 768	 */
 769	if (action == BTRFS_ADD_DELAYED_EXTENT)
 770		must_insert_reserved = 1;
 771	else
 772		must_insert_reserved = 0;
 773
 774	refcount_set(&head_ref->refs, 1);
 775	head_ref->bytenr = bytenr;
 776	head_ref->num_bytes = num_bytes;
 777	head_ref->ref_mod = count_mod;
 
 
 
 
 
 
 
 
 
 
 778	head_ref->must_insert_reserved = must_insert_reserved;
 779	head_ref->is_data = is_data;
 780	head_ref->is_system = is_system;
 781	head_ref->ref_tree = RB_ROOT_CACHED;
 782	INIT_LIST_HEAD(&head_ref->ref_add_list);
 783	RB_CLEAR_NODE(&head_ref->href_node);
 784	head_ref->processing = 0;
 785	head_ref->total_ref_mod = count_mod;
 786	spin_lock_init(&head_ref->lock);
 787	mutex_init(&head_ref->mutex);
 788
 789	if (qrecord) {
 790		if (ref_root && reserved) {
 791			qrecord->data_rsv = reserved;
 792			qrecord->data_rsv_refroot = ref_root;
 793		}
 794		qrecord->bytenr = bytenr;
 795		qrecord->num_bytes = num_bytes;
 796		qrecord->old_roots = NULL;
 
 
 
 
 
 
 
 
 
 797	}
 
 798}
 799
 800/*
 801 * helper function to actually insert a head node into the rbtree.
 802 * this does all the dirty work in terms of maintaining the correct
 803 * overall modification count.
 804 */
 805static noinline struct btrfs_delayed_ref_head *
 806add_delayed_ref_head(struct btrfs_trans_handle *trans,
 
 807		     struct btrfs_delayed_ref_head *head_ref,
 808		     struct btrfs_qgroup_extent_record *qrecord,
 809		     int action, int *qrecord_inserted_ret)
 
 810{
 811	struct btrfs_delayed_ref_head *existing;
 
 812	struct btrfs_delayed_ref_root *delayed_refs;
 813	int qrecord_inserted = 0;
 
 
 
 814
 815	delayed_refs = &trans->transaction->delayed_refs;
 816
 817	/* Record qgroup extent info if provided */
 818	if (qrecord) {
 819		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 820					delayed_refs, qrecord))
 821			kfree(qrecord);
 822		else
 823			qrecord_inserted = 1;
 824	}
 825
 826	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 
 
 827
 828	existing = htree_insert(&delayed_refs->href_root,
 829				&head_ref->href_node);
 
 
 
 
 
 
 
 
 
 
 
 830	if (existing) {
 831		update_existing_head_ref(trans, existing, head_ref);
 
 832		/*
 833		 * we've updated the existing ref, free the newly
 834		 * allocated ref
 835		 */
 836		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 837		head_ref = existing;
 838	} else {
 839		if (head_ref->is_data && head_ref->ref_mod < 0) {
 840			delayed_refs->pending_csums += head_ref->num_bytes;
 841			trans->delayed_ref_updates +=
 842				btrfs_csum_bytes_to_leaves(trans->fs_info,
 843							   head_ref->num_bytes);
 844		}
 845		delayed_refs->num_heads++;
 846		delayed_refs->num_heads_ready++;
 847		atomic_inc(&delayed_refs->num_entries);
 848		trans->delayed_ref_updates++;
 849	}
 850	if (qrecord_inserted_ret)
 851		*qrecord_inserted_ret = qrecord_inserted;
 852
 853	return head_ref;
 854}
 855
 856/*
 857 * init_delayed_ref_common - Initialize the structure which represents a
 858 *			     modification to a an extent.
 859 *
 860 * @fs_info:    Internal to the mounted filesystem mount structure.
 861 *
 862 * @ref:	The structure which is going to be initialized.
 863 *
 864 * @bytenr:	The logical address of the extent for which a modification is
 865 *		going to be recorded.
 866 *
 867 * @num_bytes:  Size of the extent whose modification is being recorded.
 868 *
 869 * @ref_root:	The id of the root where this modification has originated, this
 870 *		can be either one of the well-known metadata trees or the
 871 *		subvolume id which references this extent.
 872 *
 873 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 874 *		BTRFS_ADD_DELAYED_EXTENT
 875 *
 876 * @ref_type:	Holds the type of the extent which is being recorded, can be
 877 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 878 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 879 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 880 */
 881static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 882				    struct btrfs_delayed_ref_node *ref,
 883				    u64 bytenr, u64 num_bytes, u64 ref_root,
 884				    int action, u8 ref_type)
 
 
 
 885{
 
 
 
 886	u64 seq = 0;
 887
 888	if (action == BTRFS_ADD_DELAYED_EXTENT)
 889		action = BTRFS_ADD_DELAYED_REF;
 890
 891	if (is_fstree(ref_root))
 892		seq = atomic64_read(&fs_info->tree_mod_seq);
 893
 894	refcount_set(&ref->refs, 1);
 
 895	ref->bytenr = bytenr;
 896	ref->num_bytes = num_bytes;
 897	ref->ref_mod = 1;
 898	ref->action = action;
 899	ref->is_head = 0;
 900	ref->in_tree = 1;
 
 
 
 901	ref->seq = seq;
 902	ref->type = ref_type;
 903	RB_CLEAR_NODE(&ref->ref_node);
 904	INIT_LIST_HEAD(&ref->add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905}
 906
 907/*
 908 * add a delayed tree ref.  This does all of the accounting required
 909 * to make sure the delayed ref is eventually processed before this
 910 * transaction commits.
 911 */
 912int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 913			       struct btrfs_ref *generic_ref,
 914			       struct btrfs_delayed_extent_op *extent_op)
 
 
 
 915{
 916	struct btrfs_fs_info *fs_info = trans->fs_info;
 917	struct btrfs_delayed_tree_ref *ref;
 918	struct btrfs_delayed_ref_head *head_ref;
 919	struct btrfs_delayed_ref_root *delayed_refs;
 920	struct btrfs_qgroup_extent_record *record = NULL;
 921	int qrecord_inserted;
 922	bool is_system;
 923	int action = generic_ref->action;
 924	int level = generic_ref->tree_ref.level;
 925	int ret;
 926	u64 bytenr = generic_ref->bytenr;
 927	u64 num_bytes = generic_ref->len;
 928	u64 parent = generic_ref->parent;
 929	u8 ref_type;
 930
 931	is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
 932
 933	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 934	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 935	if (!ref)
 936		return -ENOMEM;
 937
 938	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 939	if (!head_ref) {
 940		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 941		return -ENOMEM;
 942	}
 943
 944	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 945	    !generic_ref->skip_qgroup) {
 946		record = kzalloc(sizeof(*record), GFP_NOFS);
 947		if (!record) {
 948			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 949			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 950			return -ENOMEM;
 951		}
 952	}
 953
 954	if (parent)
 955		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 956	else
 957		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 958
 959	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 960				generic_ref->tree_ref.owning_root, action,
 961				ref_type);
 962	ref->root = generic_ref->tree_ref.owning_root;
 963	ref->parent = parent;
 964	ref->level = level;
 965
 966	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 967			      generic_ref->tree_ref.owning_root, 0, action,
 968			      false, is_system);
 969	head_ref->extent_op = extent_op;
 970
 971	delayed_refs = &trans->transaction->delayed_refs;
 972	spin_lock(&delayed_refs->lock);
 973
 974	/*
 975	 * insert both the head node and the new ref without dropping
 976	 * the spin lock
 977	 */
 978	head_ref = add_delayed_ref_head(trans, head_ref, record,
 979					action, &qrecord_inserted);
 980
 981	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 
 
 982	spin_unlock(&delayed_refs->lock);
 983
 984	/*
 985	 * Need to update the delayed_refs_rsv with any changes we may have
 986	 * made.
 987	 */
 988	btrfs_update_delayed_refs_rsv(trans);
 989
 990	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 991				   action == BTRFS_ADD_DELAYED_EXTENT ?
 992				   BTRFS_ADD_DELAYED_REF : action);
 993	if (ret > 0)
 994		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 995
 996	if (qrecord_inserted)
 997		btrfs_qgroup_trace_extent_post(trans, record);
 998
 999	return 0;
1000}
1001
1002/*
1003 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1004 */
1005int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1006			       struct btrfs_ref *generic_ref,
1007			       u64 reserved)
 
 
 
 
1008{
1009	struct btrfs_fs_info *fs_info = trans->fs_info;
1010	struct btrfs_delayed_data_ref *ref;
1011	struct btrfs_delayed_ref_head *head_ref;
1012	struct btrfs_delayed_ref_root *delayed_refs;
1013	struct btrfs_qgroup_extent_record *record = NULL;
1014	int qrecord_inserted;
1015	int action = generic_ref->action;
1016	int ret;
1017	u64 bytenr = generic_ref->bytenr;
1018	u64 num_bytes = generic_ref->len;
1019	u64 parent = generic_ref->parent;
1020	u64 ref_root = generic_ref->data_ref.owning_root;
1021	u64 owner = generic_ref->data_ref.ino;
1022	u64 offset = generic_ref->data_ref.offset;
1023	u8 ref_type;
1024
1025	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1026	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1027	if (!ref)
1028		return -ENOMEM;
1029
1030	if (parent)
1031	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1032	else
1033	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1034	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1035				ref_root, action, ref_type);
1036	ref->root = ref_root;
1037	ref->parent = parent;
1038	ref->objectid = owner;
1039	ref->offset = offset;
1040
1041
1042	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1043	if (!head_ref) {
1044		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1045		return -ENOMEM;
1046	}
1047
1048	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1049	    !generic_ref->skip_qgroup) {
1050		record = kzalloc(sizeof(*record), GFP_NOFS);
1051		if (!record) {
1052			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1053			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1054					head_ref);
1055			return -ENOMEM;
1056		}
1057	}
1058
1059	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1060			      reserved, action, true, false);
1061	head_ref->extent_op = NULL;
1062
1063	delayed_refs = &trans->transaction->delayed_refs;
1064	spin_lock(&delayed_refs->lock);
1065
1066	/*
1067	 * insert both the head node and the new ref without dropping
1068	 * the spin lock
1069	 */
1070	head_ref = add_delayed_ref_head(trans, head_ref, record,
1071					action, &qrecord_inserted);
1072
1073	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 
 
1074	spin_unlock(&delayed_refs->lock);
 
 
1075
1076	/*
1077	 * Need to update the delayed_refs_rsv with any changes we may have
1078	 * made.
1079	 */
1080	btrfs_update_delayed_refs_rsv(trans);
1081
1082	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1083				   action == BTRFS_ADD_DELAYED_EXTENT ?
1084				   BTRFS_ADD_DELAYED_REF : action);
1085	if (ret > 0)
1086		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1087
1088
1089	if (qrecord_inserted)
1090		return btrfs_qgroup_trace_extent_post(trans, record);
1091	return 0;
1092}
1093
1094int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
 
1095				u64 bytenr, u64 num_bytes,
1096				struct btrfs_delayed_extent_op *extent_op)
1097{
1098	struct btrfs_delayed_ref_head *head_ref;
1099	struct btrfs_delayed_ref_root *delayed_refs;
1100
1101	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1102	if (!head_ref)
1103		return -ENOMEM;
1104
1105	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1106			      BTRFS_UPDATE_DELAYED_HEAD, false, false);
1107	head_ref->extent_op = extent_op;
1108
1109	delayed_refs = &trans->transaction->delayed_refs;
1110	spin_lock(&delayed_refs->lock);
1111
1112	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1113			     NULL);
 
1114
1115	spin_unlock(&delayed_refs->lock);
1116
1117	/*
1118	 * Need to update the delayed_refs_rsv with any changes we may have
1119	 * made.
1120	 */
1121	btrfs_update_delayed_refs_rsv(trans);
1122	return 0;
1123}
1124
1125/*
1126 * This does a simple search for the head node for a given extent.  Returns the
1127 * head node if found, or NULL if not.
 
1128 */
1129struct btrfs_delayed_ref_head *
1130btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1131{
1132	lockdep_assert_held(&delayed_refs->lock);
1133
1134	return find_ref_head(delayed_refs, bytenr, false);
 
1135}
1136
1137void __cold btrfs_delayed_ref_exit(void)
1138{
1139	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1140	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1141	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1142	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
 
 
 
 
1143}
1144
1145int __init btrfs_delayed_ref_init(void)
1146{
1147	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1148				"btrfs_delayed_ref_head",
1149				sizeof(struct btrfs_delayed_ref_head), 0,
1150				SLAB_MEM_SPREAD, NULL);
1151	if (!btrfs_delayed_ref_head_cachep)
1152		goto fail;
1153
1154	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1155				"btrfs_delayed_tree_ref",
1156				sizeof(struct btrfs_delayed_tree_ref), 0,
1157				SLAB_MEM_SPREAD, NULL);
1158	if (!btrfs_delayed_tree_ref_cachep)
1159		goto fail;
1160
1161	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1162				"btrfs_delayed_data_ref",
1163				sizeof(struct btrfs_delayed_data_ref), 0,
1164				SLAB_MEM_SPREAD, NULL);
1165	if (!btrfs_delayed_data_ref_cachep)
1166		goto fail;
1167
1168	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1169				"btrfs_delayed_extent_op",
1170				sizeof(struct btrfs_delayed_extent_op), 0,
1171				SLAB_MEM_SPREAD, NULL);
1172	if (!btrfs_delayed_extent_op_cachep)
1173		goto fail;
1174
1175	return 0;
1176fail:
1177	btrfs_delayed_ref_exit();
1178	return -ENOMEM;
1179}
v3.15
 
  1/*
  2 * Copyright (C) 2009 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/slab.h>
 21#include <linux/sort.h>
 
 22#include "ctree.h"
 23#include "delayed-ref.h"
 24#include "transaction.h"
 
 
 
 
 25
 26struct kmem_cache *btrfs_delayed_ref_head_cachep;
 27struct kmem_cache *btrfs_delayed_tree_ref_cachep;
 28struct kmem_cache *btrfs_delayed_data_ref_cachep;
 29struct kmem_cache *btrfs_delayed_extent_op_cachep;
 30/*
 31 * delayed back reference update tracking.  For subvolume trees
 32 * we queue up extent allocations and backref maintenance for
 33 * delayed processing.   This avoids deep call chains where we
 34 * add extents in the middle of btrfs_search_slot, and it allows
 35 * us to buffer up frequently modified backrefs in an rb tree instead
 36 * of hammering updates on the extent allocation tree.
 37 */
 38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39/*
 40 * compare two delayed tree backrefs with same bytenr and type
 41 */
 42static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
 43			  struct btrfs_delayed_tree_ref *ref1, int type)
 44{
 45	if (type == BTRFS_TREE_BLOCK_REF_KEY) {
 46		if (ref1->root < ref2->root)
 47			return -1;
 48		if (ref1->root > ref2->root)
 49			return 1;
 50	} else {
 51		if (ref1->parent < ref2->parent)
 52			return -1;
 53		if (ref1->parent > ref2->parent)
 54			return 1;
 55	}
 56	return 0;
 57}
 58
 59/*
 60 * compare two delayed data backrefs with same bytenr and type
 61 */
 62static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
 63			  struct btrfs_delayed_data_ref *ref1)
 64{
 65	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 66		if (ref1->root < ref2->root)
 67			return -1;
 68		if (ref1->root > ref2->root)
 69			return 1;
 70		if (ref1->objectid < ref2->objectid)
 71			return -1;
 72		if (ref1->objectid > ref2->objectid)
 73			return 1;
 74		if (ref1->offset < ref2->offset)
 75			return -1;
 76		if (ref1->offset > ref2->offset)
 77			return 1;
 78	} else {
 79		if (ref1->parent < ref2->parent)
 80			return -1;
 81		if (ref1->parent > ref2->parent)
 82			return 1;
 83	}
 84	return 0;
 85}
 86
 87/*
 88 * entries in the rb tree are ordered by the byte number of the extent,
 89 * type of the delayed backrefs and content of delayed backrefs.
 90 */
 91static int comp_entry(struct btrfs_delayed_ref_node *ref2,
 92		      struct btrfs_delayed_ref_node *ref1,
 93		      bool compare_seq)
 94{
 95	if (ref1->bytenr < ref2->bytenr)
 96		return -1;
 97	if (ref1->bytenr > ref2->bytenr)
 98		return 1;
 99	if (ref1->is_head && ref2->is_head)
100		return 0;
101	if (ref2->is_head)
102		return -1;
103	if (ref1->is_head)
104		return 1;
105	if (ref1->type < ref2->type)
106		return -1;
107	if (ref1->type > ref2->type)
108		return 1;
109	/* merging of sequenced refs is not allowed */
110	if (compare_seq) {
 
 
 
 
 
 
 
 
111		if (ref1->seq < ref2->seq)
112			return -1;
113		if (ref1->seq > ref2->seq)
114			return 1;
115	}
116	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
117	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
118		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
119				      btrfs_delayed_node_to_tree_ref(ref1),
120				      ref1->type);
121	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
122		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
123		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
124				      btrfs_delayed_node_to_data_ref(ref1));
125	}
126	BUG();
127	return 0;
128}
129
130/*
131 * insert a new ref into the rbtree.  This returns any existing refs
132 * for the same (bytenr,parent) tuple, or NULL if the new node was properly
133 * inserted.
134 */
135static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
136						  struct rb_node *node)
137{
138	struct rb_node **p = &root->rb_node;
139	struct rb_node *parent_node = NULL;
140	struct btrfs_delayed_ref_node *entry;
141	struct btrfs_delayed_ref_node *ins;
142	int cmp;
 
143
144	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
 
145	while (*p) {
146		parent_node = *p;
147		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
148				 rb_node);
149
150		cmp = comp_entry(entry, ins, 1);
151		if (cmp < 0)
152			p = &(*p)->rb_left;
153		else if (cmp > 0)
154			p = &(*p)->rb_right;
155		else
 
156			return entry;
 
157	}
158
159	rb_link_node(node, parent_node, p);
160	rb_insert_color(node, root);
161	return NULL;
162}
163
164/* insert a new ref to head ref rbtree */
165static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root,
166						   struct rb_node *node)
167{
168	struct rb_node **p = &root->rb_node;
 
169	struct rb_node *parent_node = NULL;
170	struct btrfs_delayed_ref_head *entry;
171	struct btrfs_delayed_ref_head *ins;
172	u64 bytenr;
173
174	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
175	bytenr = ins->node.bytenr;
176	while (*p) {
 
 
177		parent_node = *p;
178		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
179				 href_node);
180
181		if (bytenr < entry->node.bytenr)
182			p = &(*p)->rb_left;
183		else if (bytenr > entry->node.bytenr)
184			p = &(*p)->rb_right;
185		else
 
186			return entry;
 
187	}
188
189	rb_link_node(node, parent_node, p);
190	rb_insert_color(node, root);
191	return NULL;
192}
193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194/*
195 * find an head entry based on bytenr. This returns the delayed ref
196 * head if it was able to find one, or NULL if nothing was in that spot.
197 * If return_bigger is given, the next bigger entry is returned if no exact
198 * match is found.
199 */
200static struct btrfs_delayed_ref_head *
201find_ref_head(struct rb_root *root, u64 bytenr,
202	      int return_bigger)
203{
 
204	struct rb_node *n;
205	struct btrfs_delayed_ref_head *entry;
206
207	n = root->rb_node;
208	entry = NULL;
209	while (n) {
210		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
211
212		if (bytenr < entry->node.bytenr)
213			n = n->rb_left;
214		else if (bytenr > entry->node.bytenr)
215			n = n->rb_right;
216		else
217			return entry;
218	}
219	if (entry && return_bigger) {
220		if (bytenr > entry->node.bytenr) {
221			n = rb_next(&entry->href_node);
222			if (!n)
223				n = rb_first(root);
224			entry = rb_entry(n, struct btrfs_delayed_ref_head,
225					 href_node);
226			return entry;
227		}
228		return entry;
229	}
230	return NULL;
231}
232
233int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
234			   struct btrfs_delayed_ref_head *head)
235{
236	struct btrfs_delayed_ref_root *delayed_refs;
237
238	delayed_refs = &trans->transaction->delayed_refs;
239	assert_spin_locked(&delayed_refs->lock);
240	if (mutex_trylock(&head->mutex))
241		return 0;
242
243	atomic_inc(&head->node.refs);
244	spin_unlock(&delayed_refs->lock);
245
246	mutex_lock(&head->mutex);
247	spin_lock(&delayed_refs->lock);
248	if (!head->node.in_tree) {
249		mutex_unlock(&head->mutex);
250		btrfs_put_delayed_ref(&head->node);
251		return -EAGAIN;
252	}
253	btrfs_put_delayed_ref(&head->node);
254	return 0;
255}
256
257static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
258				    struct btrfs_delayed_ref_root *delayed_refs,
259				    struct btrfs_delayed_ref_head *head,
260				    struct btrfs_delayed_ref_node *ref)
261{
262	if (btrfs_delayed_ref_is_head(ref)) {
263		head = btrfs_delayed_node_to_head(ref);
264		rb_erase(&head->href_node, &delayed_refs->href_root);
265	} else {
266		assert_spin_locked(&head->lock);
267		rb_erase(&ref->rb_node, &head->ref_root);
268	}
269	ref->in_tree = 0;
270	btrfs_put_delayed_ref(ref);
271	atomic_dec(&delayed_refs->num_entries);
272	if (trans->delayed_ref_updates)
273		trans->delayed_ref_updates--;
274}
275
276static int merge_ref(struct btrfs_trans_handle *trans,
277		     struct btrfs_delayed_ref_root *delayed_refs,
278		     struct btrfs_delayed_ref_head *head,
279		     struct btrfs_delayed_ref_node *ref, u64 seq)
280{
281	struct rb_node *node;
282	int mod = 0;
283	int done = 0;
 
284
285	node = rb_next(&ref->rb_node);
286	while (!done && node) {
287		struct btrfs_delayed_ref_node *next;
288
289		next = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
290		node = rb_next(node);
291		if (seq && next->seq >= seq)
292			break;
293		if (comp_entry(ref, next, 0))
294			continue;
295
296		if (ref->action == next->action) {
297			mod = next->ref_mod;
298		} else {
299			if (ref->ref_mod < next->ref_mod) {
300				struct btrfs_delayed_ref_node *tmp;
301
302				tmp = ref;
303				ref = next;
304				next = tmp;
305				done = 1;
306			}
307			mod = -next->ref_mod;
308		}
309
310		drop_delayed_ref(trans, delayed_refs, head, next);
311		ref->ref_mod += mod;
312		if (ref->ref_mod == 0) {
313			drop_delayed_ref(trans, delayed_refs, head, ref);
314			done = 1;
315		} else {
316			/*
317			 * You can't have multiples of the same ref on a tree
318			 * block.
319			 */
320			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
321				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
322		}
323	}
 
324	return done;
325}
326
327void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
328			      struct btrfs_fs_info *fs_info,
329			      struct btrfs_delayed_ref_root *delayed_refs,
330			      struct btrfs_delayed_ref_head *head)
331{
 
 
332	struct rb_node *node;
333	u64 seq = 0;
334
335	assert_spin_locked(&head->lock);
336	/*
337	 * We don't have too much refs to merge in the case of delayed data
338	 * refs.
339	 */
 
340	if (head->is_data)
341		return;
342
343	spin_lock(&fs_info->tree_mod_seq_lock);
344	if (!list_empty(&fs_info->tree_mod_seq_list)) {
345		struct seq_list *elem;
346
347		elem = list_first_entry(&fs_info->tree_mod_seq_list,
348					struct seq_list, list);
349		seq = elem->seq;
350	}
351	spin_unlock(&fs_info->tree_mod_seq_lock);
352
353	node = rb_first(&head->ref_root);
354	while (node) {
355		struct btrfs_delayed_ref_node *ref;
356
357		ref = rb_entry(node, struct btrfs_delayed_ref_node,
358			       rb_node);
359		/* We can't merge refs that are outside of our seq count */
360		if (seq && ref->seq >= seq)
361			break;
362		if (merge_ref(trans, delayed_refs, head, ref, seq))
363			node = rb_first(&head->ref_root);
364		else
365			node = rb_next(&ref->rb_node);
366	}
367}
368
369int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
370			    struct btrfs_delayed_ref_root *delayed_refs,
371			    u64 seq)
372{
373	struct seq_list *elem;
374	int ret = 0;
 
375
376	spin_lock(&fs_info->tree_mod_seq_lock);
377	if (!list_empty(&fs_info->tree_mod_seq_list)) {
378		elem = list_first_entry(&fs_info->tree_mod_seq_list,
379					struct seq_list, list);
380		if (seq >= elem->seq) {
381			pr_debug("holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)\n",
382				 (u32)(seq >> 32), (u32)seq,
383				 (u32)(elem->seq >> 32), (u32)elem->seq,
384				 delayed_refs);
385			ret = 1;
386		}
387	}
388
389	spin_unlock(&fs_info->tree_mod_seq_lock);
390	return ret;
391}
392
393struct btrfs_delayed_ref_head *
394btrfs_select_ref_head(struct btrfs_trans_handle *trans)
395{
396	struct btrfs_delayed_ref_root *delayed_refs;
397	struct btrfs_delayed_ref_head *head;
398	u64 start;
399	bool loop = false;
400
401	delayed_refs = &trans->transaction->delayed_refs;
402
403again:
404	start = delayed_refs->run_delayed_start;
405	head = find_ref_head(&delayed_refs->href_root, start, 1);
406	if (!head && !loop) {
407		delayed_refs->run_delayed_start = 0;
408		start = 0;
409		loop = true;
410		head = find_ref_head(&delayed_refs->href_root, start, 1);
411		if (!head)
412			return NULL;
413	} else if (!head && loop) {
414		return NULL;
415	}
416
417	while (head->processing) {
418		struct rb_node *node;
419
420		node = rb_next(&head->href_node);
421		if (!node) {
422			if (loop)
423				return NULL;
424			delayed_refs->run_delayed_start = 0;
425			start = 0;
426			loop = true;
427			goto again;
428		}
429		head = rb_entry(node, struct btrfs_delayed_ref_head,
430				href_node);
431	}
432
433	head->processing = 1;
434	WARN_ON(delayed_refs->num_heads_ready == 0);
435	delayed_refs->num_heads_ready--;
436	delayed_refs->run_delayed_start = head->node.bytenr +
437		head->node.num_bytes;
438	return head;
439}
440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441/*
442 * helper function to update an extent delayed ref in the
443 * rbtree.  existing and update must both have the same
444 * bytenr and parent
445 *
446 * This may free existing if the update cancels out whatever
447 * operation it was doing.
448 */
449static noinline void
450update_existing_ref(struct btrfs_trans_handle *trans,
451		    struct btrfs_delayed_ref_root *delayed_refs,
452		    struct btrfs_delayed_ref_head *head,
453		    struct btrfs_delayed_ref_node *existing,
454		    struct btrfs_delayed_ref_node *update)
455{
456	if (update->action != existing->action) {
457		/*
458		 * this is effectively undoing either an add or a
459		 * drop.  We decrement the ref_mod, and if it goes
460		 * down to zero we just delete the entry without
461		 * every changing the extent allocation tree.
462		 */
463		existing->ref_mod--;
464		if (existing->ref_mod == 0)
465			drop_delayed_ref(trans, delayed_refs, head, existing);
466		else
467			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
468				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
469	} else {
470		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
471			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
472		/*
473		 * the action on the existing ref matches
474		 * the action on the ref we're trying to add.
475		 * Bump the ref_mod by one so the backref that
476		 * is eventually added/removed has the correct
477		 * reference count
478		 */
479		existing->ref_mod += update->ref_mod;
 
 
 
 
 
 
480	}
 
 
 
 
 
 
 
 
 
 
 
 
 
481}
482
483/*
484 * helper function to update the accounting in the head ref
485 * existing and update must have the same bytenr
486 */
487static noinline void
488update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
489			 struct btrfs_delayed_ref_node *update)
490{
491	struct btrfs_delayed_ref_head *existing_ref;
492	struct btrfs_delayed_ref_head *ref;
493
494	existing_ref = btrfs_delayed_node_to_head(existing);
495	ref = btrfs_delayed_node_to_head(update);
496	BUG_ON(existing_ref->is_data != ref->is_data);
497
498	spin_lock(&existing_ref->lock);
499	if (ref->must_insert_reserved) {
500		/* if the extent was freed and then
501		 * reallocated before the delayed ref
502		 * entries were processed, we can end up
503		 * with an existing head ref without
504		 * the must_insert_reserved flag set.
505		 * Set it again here
506		 */
507		existing_ref->must_insert_reserved = ref->must_insert_reserved;
508
509		/*
510		 * update the num_bytes so we make sure the accounting
511		 * is done correctly
512		 */
513		existing->num_bytes = update->num_bytes;
514
515	}
516
517	if (ref->extent_op) {
518		if (!existing_ref->extent_op) {
519			existing_ref->extent_op = ref->extent_op;
520		} else {
521			if (ref->extent_op->update_key) {
522				memcpy(&existing_ref->extent_op->key,
523				       &ref->extent_op->key,
524				       sizeof(ref->extent_op->key));
525				existing_ref->extent_op->update_key = 1;
526			}
527			if (ref->extent_op->update_flags) {
528				existing_ref->extent_op->flags_to_set |=
529					ref->extent_op->flags_to_set;
530				existing_ref->extent_op->update_flags = 1;
531			}
532			btrfs_free_delayed_extent_op(ref->extent_op);
533		}
534	}
535	/*
536	 * update the reference mod on the head to reflect this new operation,
537	 * only need the lock for this case cause we could be processing it
538	 * currently, for refs we just added we know we're a-ok.
539	 */
 
540	existing->ref_mod += update->ref_mod;
541	spin_unlock(&existing_ref->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542}
543
544/*
545 * helper function to actually insert a head node into the rbtree.
546 * this does all the dirty work in terms of maintaining the correct
547 * overall modification count.
548 */
549static noinline struct btrfs_delayed_ref_head *
550add_delayed_ref_head(struct btrfs_fs_info *fs_info,
551		     struct btrfs_trans_handle *trans,
552		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
553		     u64 num_bytes, int action, int is_data)
554{
555	struct btrfs_delayed_ref_head *existing;
556	struct btrfs_delayed_ref_head *head_ref = NULL;
557	struct btrfs_delayed_ref_root *delayed_refs;
558	int count_mod = 1;
559	int must_insert_reserved = 0;
560
 
 
 
561	/*
562	 * the head node stores the sum of all the mods, so dropping a ref
563	 * should drop the sum in the head node by one.
564	 */
565	if (action == BTRFS_UPDATE_DELAYED_HEAD)
566		count_mod = 0;
567	else if (action == BTRFS_DROP_DELAYED_REF)
568		count_mod = -1;
569
570	/*
571	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
572	 * the reserved accounting when the extent is finally added, or
573	 * if a later modification deletes the delayed ref without ever
574	 * inserting the extent into the extent allocation tree.
575	 * ref->must_insert_reserved is the flag used to record
576	 * that accounting mods are required.
577	 *
578	 * Once we record must_insert_reserved, switch the action to
579	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
580	 */
581	if (action == BTRFS_ADD_DELAYED_EXTENT)
582		must_insert_reserved = 1;
583	else
584		must_insert_reserved = 0;
585
586	delayed_refs = &trans->transaction->delayed_refs;
587
588	/* first set the basic ref node struct up */
589	atomic_set(&ref->refs, 1);
590	ref->bytenr = bytenr;
591	ref->num_bytes = num_bytes;
592	ref->ref_mod = count_mod;
593	ref->type  = 0;
594	ref->action  = 0;
595	ref->is_head = 1;
596	ref->in_tree = 1;
597	ref->seq = 0;
598
599	head_ref = btrfs_delayed_node_to_head(ref);
600	head_ref->must_insert_reserved = must_insert_reserved;
601	head_ref->is_data = is_data;
602	head_ref->ref_root = RB_ROOT;
 
 
 
603	head_ref->processing = 0;
604
605	spin_lock_init(&head_ref->lock);
606	mutex_init(&head_ref->mutex);
607
608	trace_add_delayed_ref_head(ref, head_ref, action);
609
610	existing = htree_insert(&delayed_refs->href_root,
611				&head_ref->href_node);
612	if (existing) {
613		update_existing_head_ref(&existing->node, ref);
614		/*
615		 * we've updated the existing ref, free the newly
616		 * allocated ref
617		 */
618		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
619		head_ref = existing;
620	} else {
621		delayed_refs->num_heads++;
622		delayed_refs->num_heads_ready++;
623		atomic_inc(&delayed_refs->num_entries);
624		trans->delayed_ref_updates++;
625	}
626	return head_ref;
627}
628
629/*
630 * helper to insert a delayed tree ref into the rbtree.
 
 
631 */
632static noinline void
633add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
634		     struct btrfs_trans_handle *trans,
635		     struct btrfs_delayed_ref_head *head_ref,
636		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
637		     u64 num_bytes, u64 parent, u64 ref_root, int level,
638		     int action, int for_cow)
639{
640	struct btrfs_delayed_ref_node *existing;
641	struct btrfs_delayed_tree_ref *full_ref;
642	struct btrfs_delayed_ref_root *delayed_refs;
643	u64 seq = 0;
644
645	if (action == BTRFS_ADD_DELAYED_EXTENT)
646		action = BTRFS_ADD_DELAYED_REF;
647
648	delayed_refs = &trans->transaction->delayed_refs;
649
650	/* first set the basic ref node struct up */
651	atomic_set(&ref->refs, 1);
652	ref->bytenr = bytenr;
653	ref->num_bytes = num_bytes;
654	ref->ref_mod = 1;
655	ref->action = action;
656	ref->is_head = 0;
657	ref->in_tree = 1;
658
659	if (need_ref_seq(for_cow, ref_root))
660		seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
661	ref->seq = seq;
662
663	full_ref = btrfs_delayed_node_to_tree_ref(ref);
664	full_ref->parent = parent;
665	full_ref->root = ref_root;
666	if (parent)
667		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
668	else
669		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
670	full_ref->level = level;
671
672	trace_add_delayed_tree_ref(ref, full_ref, action);
673
674	spin_lock(&head_ref->lock);
675	existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
676	if (existing) {
677		update_existing_ref(trans, delayed_refs, head_ref, existing,
678				    ref);
679		/*
680		 * we've updated the existing ref, free the newly
681		 * allocated ref
682		 */
683		kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
 
684	} else {
 
 
 
 
 
 
 
 
685		atomic_inc(&delayed_refs->num_entries);
686		trans->delayed_ref_updates++;
687	}
688	spin_unlock(&head_ref->lock);
 
 
 
689}
690
691/*
692 * helper to insert a delayed data ref into the rbtree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693 */
694static noinline void
695add_delayed_data_ref(struct btrfs_fs_info *fs_info,
696		     struct btrfs_trans_handle *trans,
697		     struct btrfs_delayed_ref_head *head_ref,
698		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
699		     u64 num_bytes, u64 parent, u64 ref_root, u64 owner,
700		     u64 offset, int action, int for_cow)
701{
702	struct btrfs_delayed_ref_node *existing;
703	struct btrfs_delayed_data_ref *full_ref;
704	struct btrfs_delayed_ref_root *delayed_refs;
705	u64 seq = 0;
706
707	if (action == BTRFS_ADD_DELAYED_EXTENT)
708		action = BTRFS_ADD_DELAYED_REF;
709
710	delayed_refs = &trans->transaction->delayed_refs;
 
711
712	/* first set the basic ref node struct up */
713	atomic_set(&ref->refs, 1);
714	ref->bytenr = bytenr;
715	ref->num_bytes = num_bytes;
716	ref->ref_mod = 1;
717	ref->action = action;
718	ref->is_head = 0;
719	ref->in_tree = 1;
720
721	if (need_ref_seq(for_cow, ref_root))
722		seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
723	ref->seq = seq;
724
725	full_ref = btrfs_delayed_node_to_data_ref(ref);
726	full_ref->parent = parent;
727	full_ref->root = ref_root;
728	if (parent)
729		ref->type = BTRFS_SHARED_DATA_REF_KEY;
730	else
731		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
732
733	full_ref->objectid = owner;
734	full_ref->offset = offset;
735
736	trace_add_delayed_data_ref(ref, full_ref, action);
737
738	spin_lock(&head_ref->lock);
739	existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
740	if (existing) {
741		update_existing_ref(trans, delayed_refs, head_ref, existing,
742				    ref);
743		/*
744		 * we've updated the existing ref, free the newly
745		 * allocated ref
746		 */
747		kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
748	} else {
749		atomic_inc(&delayed_refs->num_entries);
750		trans->delayed_ref_updates++;
751	}
752	spin_unlock(&head_ref->lock);
753}
754
755/*
756 * add a delayed tree ref.  This does all of the accounting required
757 * to make sure the delayed ref is eventually processed before this
758 * transaction commits.
759 */
760int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
761			       struct btrfs_trans_handle *trans,
762			       u64 bytenr, u64 num_bytes, u64 parent,
763			       u64 ref_root,  int level, int action,
764			       struct btrfs_delayed_extent_op *extent_op,
765			       int for_cow)
766{
 
767	struct btrfs_delayed_tree_ref *ref;
768	struct btrfs_delayed_ref_head *head_ref;
769	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
 
 
 
 
 
 
 
 
 
770
771	BUG_ON(extent_op && extent_op->is_data);
772	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
773	if (!ref)
774		return -ENOMEM;
775
776	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
777	if (!head_ref) {
778		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
779		return -ENOMEM;
780	}
781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
782	head_ref->extent_op = extent_op;
783
784	delayed_refs = &trans->transaction->delayed_refs;
785	spin_lock(&delayed_refs->lock);
786
787	/*
788	 * insert both the head node and the new ref without dropping
789	 * the spin lock
790	 */
791	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
792					bytenr, num_bytes, action, 0);
793
794	add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr,
795				   num_bytes, parent, ref_root, level, action,
796				   for_cow);
797	spin_unlock(&delayed_refs->lock);
798	if (need_ref_seq(for_cow, ref_root))
799		btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
 
 
 
 
 
 
 
 
 
 
 
 
 
800
801	return 0;
802}
803
804/*
805 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
806 */
807int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
808			       struct btrfs_trans_handle *trans,
809			       u64 bytenr, u64 num_bytes,
810			       u64 parent, u64 ref_root,
811			       u64 owner, u64 offset, int action,
812			       struct btrfs_delayed_extent_op *extent_op,
813			       int for_cow)
814{
 
815	struct btrfs_delayed_data_ref *ref;
816	struct btrfs_delayed_ref_head *head_ref;
817	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 
 
 
 
 
 
 
 
 
818
819	BUG_ON(extent_op && !extent_op->is_data);
820	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
821	if (!ref)
822		return -ENOMEM;
823
 
 
 
 
 
 
 
 
 
 
 
 
824	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
825	if (!head_ref) {
826		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
827		return -ENOMEM;
828	}
829
830	head_ref->extent_op = extent_op;
 
 
 
 
 
 
 
 
 
 
 
 
 
831
832	delayed_refs = &trans->transaction->delayed_refs;
833	spin_lock(&delayed_refs->lock);
834
835	/*
836	 * insert both the head node and the new ref without dropping
837	 * the spin lock
838	 */
839	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
840					bytenr, num_bytes, action, 1);
841
842	add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr,
843				   num_bytes, parent, ref_root, owner, offset,
844				   action, for_cow);
845	spin_unlock(&delayed_refs->lock);
846	if (need_ref_seq(for_cow, ref_root))
847		btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
849	return 0;
850}
851
852int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
853				struct btrfs_trans_handle *trans,
854				u64 bytenr, u64 num_bytes,
855				struct btrfs_delayed_extent_op *extent_op)
856{
857	struct btrfs_delayed_ref_head *head_ref;
858	struct btrfs_delayed_ref_root *delayed_refs;
859
860	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
861	if (!head_ref)
862		return -ENOMEM;
863
 
 
864	head_ref->extent_op = extent_op;
865
866	delayed_refs = &trans->transaction->delayed_refs;
867	spin_lock(&delayed_refs->lock);
868
869	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
870				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
871				   extent_op->is_data);
872
873	spin_unlock(&delayed_refs->lock);
 
 
 
 
 
 
874	return 0;
875}
876
877/*
878 * this does a simple search for the head node for a given extent.
879 * It must be called with the delayed ref spinlock held, and it returns
880 * the head node if any where found, or NULL if not.
881 */
882struct btrfs_delayed_ref_head *
883btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
884{
885	struct btrfs_delayed_ref_root *delayed_refs;
886
887	delayed_refs = &trans->transaction->delayed_refs;
888	return find_ref_head(&delayed_refs->href_root, bytenr, 0);
889}
890
891void btrfs_delayed_ref_exit(void)
892{
893	if (btrfs_delayed_ref_head_cachep)
894		kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
895	if (btrfs_delayed_tree_ref_cachep)
896		kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
897	if (btrfs_delayed_data_ref_cachep)
898		kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
899	if (btrfs_delayed_extent_op_cachep)
900		kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
901}
902
903int btrfs_delayed_ref_init(void)
904{
905	btrfs_delayed_ref_head_cachep = kmem_cache_create(
906				"btrfs_delayed_ref_head",
907				sizeof(struct btrfs_delayed_ref_head), 0,
908				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
909	if (!btrfs_delayed_ref_head_cachep)
910		goto fail;
911
912	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
913				"btrfs_delayed_tree_ref",
914				sizeof(struct btrfs_delayed_tree_ref), 0,
915				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
916	if (!btrfs_delayed_tree_ref_cachep)
917		goto fail;
918
919	btrfs_delayed_data_ref_cachep = kmem_cache_create(
920				"btrfs_delayed_data_ref",
921				sizeof(struct btrfs_delayed_data_ref), 0,
922				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
923	if (!btrfs_delayed_data_ref_cachep)
924		goto fail;
925
926	btrfs_delayed_extent_op_cachep = kmem_cache_create(
927				"btrfs_delayed_extent_op",
928				sizeof(struct btrfs_delayed_extent_op), 0,
929				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
930	if (!btrfs_delayed_extent_op_cachep)
931		goto fail;
932
933	return 0;
934fail:
935	btrfs_delayed_ref_exit();
936	return -ENOMEM;
937}