Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "transaction.h"
  13#include "qgroup.h"
  14#include "space-info.h"
  15#include "tree-mod-log.h"
  16#include "fs.h"
  17
  18struct kmem_cache *btrfs_delayed_ref_head_cachep;
  19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  20struct kmem_cache *btrfs_delayed_data_ref_cachep;
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
  56int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  57{
  58	u64 num_entries =
  59		atomic_read(&trans->transaction->delayed_refs.num_entries);
  60	u64 avg_runtime;
  61	u64 val;
  62
  63	smp_mb();
  64	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  65	val = num_entries * avg_runtime;
  66	if (val >= NSEC_PER_SEC)
  67		return 1;
  68	if (val >= NSEC_PER_SEC / 2)
  69		return 2;
  70
  71	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  72}
  73
  74/*
  75 * Release a ref head's reservation.
  76 *
  77 * @fs_info:  the filesystem
  78 * @nr:       number of items to drop
  79 *
  80 * Drops the delayed ref head's count from the delayed refs rsv and free any
  81 * excess reservation we had.
  82 */
  83void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  84{
  85	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  86	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  87	u64 released = 0;
  88
  89	/*
  90	 * We have to check the mount option here because we could be enabling
  91	 * the free space tree for the first time and don't have the compat_ro
  92	 * option set yet.
  93	 *
  94	 * We need extra reservations if we have the free space tree because
  95	 * we'll have to modify that tree as well.
  96	 */
  97	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
  98		num_bytes *= 2;
  99
 100	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
 101	if (released)
 102		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 103					      0, released, 0);
 104}
 105
 106/*
 107 * Adjust the size of the delayed refs rsv.
 108 *
 109 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
 110 * it'll calculate the additional size and add it to the delayed_refs_rsv.
 111 */
 112void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 113{
 114	struct btrfs_fs_info *fs_info = trans->fs_info;
 115	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 116	u64 num_bytes;
 117
 118	if (!trans->delayed_ref_updates)
 119		return;
 120
 121	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 122						    trans->delayed_ref_updates);
 123	/*
 124	 * We have to check the mount option here because we could be enabling
 125	 * the free space tree for the first time and don't have the compat_ro
 126	 * option set yet.
 127	 *
 128	 * We need extra reservations if we have the free space tree because
 129	 * we'll have to modify that tree as well.
 130	 */
 131	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 132		num_bytes *= 2;
 133
 134	spin_lock(&delayed_rsv->lock);
 135	delayed_rsv->size += num_bytes;
 136	delayed_rsv->full = false;
 137	spin_unlock(&delayed_rsv->lock);
 138	trans->delayed_ref_updates = 0;
 139}
 140
 141/*
 142 * Transfer bytes to our delayed refs rsv.
 143 *
 144 * @fs_info:   the filesystem
 145 * @src:       source block rsv to transfer from
 146 * @num_bytes: number of bytes to transfer
 147 *
 148 * This transfers up to the num_bytes amount from the src rsv to the
 149 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 150 */
 151void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 152				       struct btrfs_block_rsv *src,
 153				       u64 num_bytes)
 154{
 155	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 156	u64 to_free = 0;
 157
 158	spin_lock(&src->lock);
 159	src->reserved -= num_bytes;
 160	src->size -= num_bytes;
 161	spin_unlock(&src->lock);
 162
 163	spin_lock(&delayed_refs_rsv->lock);
 164	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 165		u64 delta = delayed_refs_rsv->size -
 166			delayed_refs_rsv->reserved;
 167		if (num_bytes > delta) {
 168			to_free = num_bytes - delta;
 169			num_bytes = delta;
 170		}
 171	} else {
 172		to_free = num_bytes;
 173		num_bytes = 0;
 174	}
 175
 176	if (num_bytes)
 177		delayed_refs_rsv->reserved += num_bytes;
 178	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 179		delayed_refs_rsv->full = true;
 180	spin_unlock(&delayed_refs_rsv->lock);
 181
 182	if (num_bytes)
 183		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 184					      0, num_bytes, 1);
 185	if (to_free)
 186		btrfs_space_info_free_bytes_may_use(fs_info,
 187				delayed_refs_rsv->space_info, to_free);
 188}
 189
 190/*
 191 * Refill based on our delayed refs usage.
 192 *
 193 * @fs_info: the filesystem
 194 * @flush:   control how we can flush for this reservation.
 195 *
 196 * This will refill the delayed block_rsv up to 1 items size worth of space and
 197 * will return -ENOSPC if we can't make the reservation.
 198 */
 199int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 200				  enum btrfs_reserve_flush_enum flush)
 201{
 202	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 203	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 204	u64 num_bytes = 0;
 205	int ret = -ENOSPC;
 206
 207	spin_lock(&block_rsv->lock);
 208	if (block_rsv->reserved < block_rsv->size) {
 209		num_bytes = block_rsv->size - block_rsv->reserved;
 210		num_bytes = min(num_bytes, limit);
 211	}
 212	spin_unlock(&block_rsv->lock);
 213
 214	if (!num_bytes)
 215		return 0;
 216
 217	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
 218	if (ret)
 219		return ret;
 220	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 221	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 222				      0, num_bytes, 1);
 223	return 0;
 224}
 225
 226/*
 227 * compare two delayed tree backrefs with same bytenr and type
 228 */
 229static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 230			  struct btrfs_delayed_tree_ref *ref2)
 231{
 232	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 233		if (ref1->root < ref2->root)
 234			return -1;
 235		if (ref1->root > ref2->root)
 236			return 1;
 237	} else {
 238		if (ref1->parent < ref2->parent)
 239			return -1;
 240		if (ref1->parent > ref2->parent)
 241			return 1;
 242	}
 243	return 0;
 244}
 245
 246/*
 247 * compare two delayed data backrefs with same bytenr and type
 248 */
 249static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 250			  struct btrfs_delayed_data_ref *ref2)
 251{
 252	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 253		if (ref1->root < ref2->root)
 254			return -1;
 255		if (ref1->root > ref2->root)
 256			return 1;
 257		if (ref1->objectid < ref2->objectid)
 258			return -1;
 259		if (ref1->objectid > ref2->objectid)
 260			return 1;
 261		if (ref1->offset < ref2->offset)
 262			return -1;
 263		if (ref1->offset > ref2->offset)
 264			return 1;
 265	} else {
 266		if (ref1->parent < ref2->parent)
 267			return -1;
 268		if (ref1->parent > ref2->parent)
 269			return 1;
 270	}
 271	return 0;
 272}
 273
 274static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 275		     struct btrfs_delayed_ref_node *ref2,
 276		     bool check_seq)
 277{
 278	int ret = 0;
 279
 280	if (ref1->type < ref2->type)
 281		return -1;
 282	if (ref1->type > ref2->type)
 283		return 1;
 284	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 285	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 286		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 287				     btrfs_delayed_node_to_tree_ref(ref2));
 288	else
 289		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 290				     btrfs_delayed_node_to_data_ref(ref2));
 291	if (ret)
 292		return ret;
 293	if (check_seq) {
 294		if (ref1->seq < ref2->seq)
 295			return -1;
 296		if (ref1->seq > ref2->seq)
 297			return 1;
 298	}
 299	return 0;
 300}
 301
 302/* insert a new ref to head ref rbtree */
 303static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 304						   struct rb_node *node)
 305{
 306	struct rb_node **p = &root->rb_root.rb_node;
 307	struct rb_node *parent_node = NULL;
 308	struct btrfs_delayed_ref_head *entry;
 309	struct btrfs_delayed_ref_head *ins;
 310	u64 bytenr;
 311	bool leftmost = true;
 312
 313	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 314	bytenr = ins->bytenr;
 315	while (*p) {
 316		parent_node = *p;
 317		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 318				 href_node);
 319
 320		if (bytenr < entry->bytenr) {
 321			p = &(*p)->rb_left;
 322		} else if (bytenr > entry->bytenr) {
 323			p = &(*p)->rb_right;
 324			leftmost = false;
 325		} else {
 326			return entry;
 327		}
 328	}
 329
 330	rb_link_node(node, parent_node, p);
 331	rb_insert_color_cached(node, root, leftmost);
 332	return NULL;
 333}
 334
 335static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 336		struct btrfs_delayed_ref_node *ins)
 337{
 338	struct rb_node **p = &root->rb_root.rb_node;
 339	struct rb_node *node = &ins->ref_node;
 340	struct rb_node *parent_node = NULL;
 341	struct btrfs_delayed_ref_node *entry;
 342	bool leftmost = true;
 343
 344	while (*p) {
 345		int comp;
 346
 347		parent_node = *p;
 348		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 349				 ref_node);
 350		comp = comp_refs(ins, entry, true);
 351		if (comp < 0) {
 352			p = &(*p)->rb_left;
 353		} else if (comp > 0) {
 354			p = &(*p)->rb_right;
 355			leftmost = false;
 356		} else {
 357			return entry;
 358		}
 359	}
 360
 361	rb_link_node(node, parent_node, p);
 362	rb_insert_color_cached(node, root, leftmost);
 363	return NULL;
 364}
 365
 366static struct btrfs_delayed_ref_head *find_first_ref_head(
 367		struct btrfs_delayed_ref_root *dr)
 368{
 369	struct rb_node *n;
 370	struct btrfs_delayed_ref_head *entry;
 371
 372	n = rb_first_cached(&dr->href_root);
 373	if (!n)
 374		return NULL;
 375
 376	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 377
 378	return entry;
 379}
 380
 381/*
 382 * Find a head entry based on bytenr. This returns the delayed ref head if it
 383 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 384 * is given, the next bigger entry is returned if no exact match is found.
 385 */
 386static struct btrfs_delayed_ref_head *find_ref_head(
 387		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 388		bool return_bigger)
 
 389{
 390	struct rb_root *root = &dr->href_root.rb_root;
 391	struct rb_node *n;
 392	struct btrfs_delayed_ref_head *entry;
 393
 394	n = root->rb_node;
 395	entry = NULL;
 396	while (n) {
 397		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 398
 399		if (bytenr < entry->bytenr)
 400			n = n->rb_left;
 401		else if (bytenr > entry->bytenr)
 402			n = n->rb_right;
 403		else
 404			return entry;
 405	}
 406	if (entry && return_bigger) {
 407		if (bytenr > entry->bytenr) {
 408			n = rb_next(&entry->href_node);
 409			if (!n)
 410				return NULL;
 411			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 412					 href_node);
 
 413		}
 414		return entry;
 415	}
 416	return NULL;
 417}
 418
 419int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 420			   struct btrfs_delayed_ref_head *head)
 421{
 422	lockdep_assert_held(&delayed_refs->lock);
 
 
 
 423	if (mutex_trylock(&head->mutex))
 424		return 0;
 425
 426	refcount_inc(&head->refs);
 427	spin_unlock(&delayed_refs->lock);
 428
 429	mutex_lock(&head->mutex);
 430	spin_lock(&delayed_refs->lock);
 431	if (RB_EMPTY_NODE(&head->href_node)) {
 432		mutex_unlock(&head->mutex);
 433		btrfs_put_delayed_ref_head(head);
 434		return -EAGAIN;
 435	}
 436	btrfs_put_delayed_ref_head(head);
 437	return 0;
 438}
 439
 440static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 441				    struct btrfs_delayed_ref_root *delayed_refs,
 442				    struct btrfs_delayed_ref_head *head,
 443				    struct btrfs_delayed_ref_node *ref)
 444{
 445	lockdep_assert_held(&head->lock);
 446	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 447	RB_CLEAR_NODE(&ref->ref_node);
 448	if (!list_empty(&ref->add_list))
 449		list_del(&ref->add_list);
 
 
 
 
 450	ref->in_tree = 0;
 451	btrfs_put_delayed_ref(ref);
 452	atomic_dec(&delayed_refs->num_entries);
 
 
 453}
 454
 455static bool merge_ref(struct btrfs_trans_handle *trans,
 456		      struct btrfs_delayed_ref_root *delayed_refs,
 457		      struct btrfs_delayed_ref_head *head,
 458		      struct btrfs_delayed_ref_node *ref,
 459		      u64 seq)
 460{
 461	struct btrfs_delayed_ref_node *next;
 462	struct rb_node *node = rb_next(&ref->ref_node);
 463	bool done = false;
 464
 465	while (!done && node) {
 
 
 466		int mod;
 
 
 
 
 
 
 467
 468		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 469		node = rb_next(node);
 470		if (seq && next->seq >= seq)
 471			break;
 472		if (comp_refs(ref, next, false))
 473			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 474
 475		if (ref->action == next->action) {
 476			mod = next->ref_mod;
 477		} else {
 478			if (ref->ref_mod < next->ref_mod) {
 479				swap(ref, next);
 480				done = true;
 481			}
 482			mod = -next->ref_mod;
 483		}
 484
 485		drop_delayed_ref(trans, delayed_refs, head, next);
 486		ref->ref_mod += mod;
 487		if (ref->ref_mod == 0) {
 488			drop_delayed_ref(trans, delayed_refs, head, ref);
 489			done = true;
 490		} else {
 491			/*
 492			 * Can't have multiples of the same ref on a tree block.
 493			 */
 494			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 495				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 496		}
 
 
 497	}
 498
 499	return done;
 500}
 501
 502void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 
 503			      struct btrfs_delayed_ref_root *delayed_refs,
 504			      struct btrfs_delayed_ref_head *head)
 505{
 506	struct btrfs_fs_info *fs_info = trans->fs_info;
 507	struct btrfs_delayed_ref_node *ref;
 508	struct rb_node *node;
 509	u64 seq = 0;
 510
 511	lockdep_assert_held(&head->lock);
 512
 513	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 514		return;
 515
 516	/* We don't have too many refs to merge for data. */
 517	if (head->is_data)
 518		return;
 519
 520	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 521again:
 522	for (node = rb_first_cached(&head->ref_tree); node;
 523	     node = rb_next(node)) {
 524		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 
 
 
 
 
 
 
 
 525		if (seq && ref->seq >= seq)
 
 
 
 
 
 
 
 
 526			continue;
 527		if (merge_ref(trans, delayed_refs, head, ref, seq))
 528			goto again;
 
 529	}
 530}
 531
 532int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 
 
 533{
 
 534	int ret = 0;
 535	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 536
 537	if (min_seq != 0 && seq >= min_seq) {
 538		btrfs_debug(fs_info,
 539			    "holding back delayed_ref %llu, lowest is %llu",
 540			    seq, min_seq);
 541		ret = 1;
 
 
 
 
 
 
 
 542	}
 543
 
 544	return ret;
 545}
 546
 547struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 548		struct btrfs_delayed_ref_root *delayed_refs)
 549{
 
 550	struct btrfs_delayed_ref_head *head;
 
 
 
 
 551
 552again:
 553	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 554			     true);
 555	if (!head && delayed_refs->run_delayed_start != 0) {
 556		delayed_refs->run_delayed_start = 0;
 557		head = find_first_ref_head(delayed_refs);
 558	}
 559	if (!head)
 
 
 
 560		return NULL;
 
 561
 562	while (head->processing) {
 563		struct rb_node *node;
 564
 565		node = rb_next(&head->href_node);
 566		if (!node) {
 567			if (delayed_refs->run_delayed_start == 0)
 568				return NULL;
 569			delayed_refs->run_delayed_start = 0;
 
 
 570			goto again;
 571		}
 572		head = rb_entry(node, struct btrfs_delayed_ref_head,
 573				href_node);
 574	}
 575
 576	head->processing = 1;
 577	WARN_ON(delayed_refs->num_heads_ready == 0);
 578	delayed_refs->num_heads_ready--;
 579	delayed_refs->run_delayed_start = head->bytenr +
 580		head->num_bytes;
 581	return head;
 582}
 583
 584void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 585			   struct btrfs_delayed_ref_head *head)
 586{
 587	lockdep_assert_held(&delayed_refs->lock);
 588	lockdep_assert_held(&head->lock);
 589
 590	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 591	RB_CLEAR_NODE(&head->href_node);
 592	atomic_dec(&delayed_refs->num_entries);
 593	delayed_refs->num_heads--;
 594	if (head->processing == 0)
 595		delayed_refs->num_heads_ready--;
 596}
 597
 598/*
 599 * Helper to insert the ref_node to the tail or merge with tail.
 600 *
 601 * Return 0 for insert.
 602 * Return >0 for merge.
 603 */
 604static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 605			      struct btrfs_delayed_ref_root *root,
 606			      struct btrfs_delayed_ref_head *href,
 607			      struct btrfs_delayed_ref_node *ref)
 
 608{
 609	struct btrfs_delayed_ref_node *exist;
 610	int mod;
 611	int ret = 0;
 612
 613	spin_lock(&href->lock);
 614	exist = tree_insert(&href->ref_tree, ref);
 615	if (!exist)
 616		goto inserted;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617
 618	/* Now we are sure we can merge */
 619	ret = 1;
 620	if (exist->action == ref->action) {
 621		mod = ref->ref_mod;
 622	} else {
 623		/* Need to change action */
 624		if (exist->ref_mod < ref->ref_mod) {
 625			exist->action = ref->action;
 626			mod = -exist->ref_mod;
 627			exist->ref_mod = ref->ref_mod;
 628			if (ref->action == BTRFS_ADD_DELAYED_REF)
 629				list_add_tail(&exist->add_list,
 630					      &href->ref_add_list);
 631			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 632				ASSERT(!list_empty(&exist->add_list));
 633				list_del(&exist->add_list);
 634			} else {
 635				ASSERT(0);
 636			}
 637		} else
 638			mod = -ref->ref_mod;
 639	}
 640	exist->ref_mod += mod;
 641
 642	/* remove existing tail if its ref_mod is zero */
 643	if (exist->ref_mod == 0)
 644		drop_delayed_ref(trans, root, href, exist);
 645	spin_unlock(&href->lock);
 646	return ret;
 647inserted:
 
 
 648	if (ref->action == BTRFS_ADD_DELAYED_REF)
 649		list_add_tail(&ref->add_list, &href->ref_add_list);
 650	atomic_inc(&root->num_entries);
 
 651	spin_unlock(&href->lock);
 652	return ret;
 653}
 654
 655/*
 656 * helper function to update the accounting in the head ref
 657 * existing and update must have the same bytenr
 658 */
 659static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 660			 struct btrfs_delayed_ref_head *existing,
 661			 struct btrfs_delayed_ref_head *update)
 
 662{
 663	struct btrfs_delayed_ref_root *delayed_refs =
 664		&trans->transaction->delayed_refs;
 665	struct btrfs_fs_info *fs_info = trans->fs_info;
 666	int old_ref_mod;
 667
 668	BUG_ON(existing->is_data != update->is_data);
 
 
 669
 670	spin_lock(&existing->lock);
 671	if (update->must_insert_reserved) {
 672		/* if the extent was freed and then
 673		 * reallocated before the delayed ref
 674		 * entries were processed, we can end up
 675		 * with an existing head ref without
 676		 * the must_insert_reserved flag set.
 677		 * Set it again here
 678		 */
 679		existing->must_insert_reserved = update->must_insert_reserved;
 680
 681		/*
 682		 * update the num_bytes so we make sure the accounting
 683		 * is done correctly
 684		 */
 685		existing->num_bytes = update->num_bytes;
 686
 687	}
 688
 689	if (update->extent_op) {
 690		if (!existing->extent_op) {
 691			existing->extent_op = update->extent_op;
 692		} else {
 693			if (update->extent_op->update_key) {
 694				memcpy(&existing->extent_op->key,
 695				       &update->extent_op->key,
 696				       sizeof(update->extent_op->key));
 697				existing->extent_op->update_key = true;
 698			}
 699			if (update->extent_op->update_flags) {
 700				existing->extent_op->flags_to_set |=
 701					update->extent_op->flags_to_set;
 702				existing->extent_op->update_flags = true;
 703			}
 704			btrfs_free_delayed_extent_op(update->extent_op);
 705		}
 706	}
 707	/*
 708	 * update the reference mod on the head to reflect this new operation,
 709	 * only need the lock for this case cause we could be processing it
 710	 * currently, for refs we just added we know we're a-ok.
 711	 */
 712	old_ref_mod = existing->total_ref_mod;
 713	existing->ref_mod += update->ref_mod;
 714	existing->total_ref_mod += update->ref_mod;
 715
 716	/*
 717	 * If we are going to from a positive ref mod to a negative or vice
 718	 * versa we need to make sure to adjust pending_csums accordingly.
 719	 */
 720	if (existing->is_data) {
 721		u64 csum_leaves =
 722			btrfs_csum_bytes_to_leaves(fs_info,
 723						   existing->num_bytes);
 724
 725		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 726			delayed_refs->pending_csums -= existing->num_bytes;
 727			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 728		}
 729		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 730			delayed_refs->pending_csums += existing->num_bytes;
 731			trans->delayed_ref_updates += csum_leaves;
 732		}
 733	}
 734
 735	spin_unlock(&existing->lock);
 736}
 737
 738static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 739				  struct btrfs_qgroup_extent_record *qrecord,
 740				  u64 bytenr, u64 num_bytes, u64 ref_root,
 741				  u64 reserved, int action, bool is_data,
 742				  bool is_system)
 
 
 
 
 
 
 
 743{
 
 
 
 744	int count_mod = 1;
 745	int must_insert_reserved = 0;
 746
 747	/* If reserved is provided, it must be a data extent. */
 748	BUG_ON(!is_data && reserved);
 749
 750	/*
 751	 * The head node stores the sum of all the mods, so dropping a ref
 752	 * should drop the sum in the head node by one.
 753	 */
 754	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 755		count_mod = 0;
 756	else if (action == BTRFS_DROP_DELAYED_REF)
 757		count_mod = -1;
 758
 759	/*
 760	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 761	 * accounting when the extent is finally added, or if a later
 762	 * modification deletes the delayed ref without ever inserting the
 763	 * extent into the extent allocation tree.  ref->must_insert_reserved
 764	 * is the flag used to record that accounting mods are required.
 
 765	 *
 766	 * Once we record must_insert_reserved, switch the action to
 767	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 768	 */
 769	if (action == BTRFS_ADD_DELAYED_EXTENT)
 770		must_insert_reserved = 1;
 771	else
 772		must_insert_reserved = 0;
 773
 774	refcount_set(&head_ref->refs, 1);
 775	head_ref->bytenr = bytenr;
 776	head_ref->num_bytes = num_bytes;
 777	head_ref->ref_mod = count_mod;
 
 
 
 
 
 
 
 
 
 
 778	head_ref->must_insert_reserved = must_insert_reserved;
 779	head_ref->is_data = is_data;
 780	head_ref->is_system = is_system;
 781	head_ref->ref_tree = RB_ROOT_CACHED;
 782	INIT_LIST_HEAD(&head_ref->ref_add_list);
 783	RB_CLEAR_NODE(&head_ref->href_node);
 784	head_ref->processing = 0;
 785	head_ref->total_ref_mod = count_mod;
 786	spin_lock_init(&head_ref->lock);
 787	mutex_init(&head_ref->mutex);
 788
 
 789	if (qrecord) {
 790		if (ref_root && reserved) {
 791			qrecord->data_rsv = reserved;
 792			qrecord->data_rsv_refroot = ref_root;
 793		}
 
 794		qrecord->bytenr = bytenr;
 795		qrecord->num_bytes = num_bytes;
 796		qrecord->old_roots = NULL;
 797	}
 798}
 799
 800/*
 801 * helper function to actually insert a head node into the rbtree.
 802 * this does all the dirty work in terms of maintaining the correct
 803 * overall modification count.
 804 */
 805static noinline struct btrfs_delayed_ref_head *
 806add_delayed_ref_head(struct btrfs_trans_handle *trans,
 807		     struct btrfs_delayed_ref_head *head_ref,
 808		     struct btrfs_qgroup_extent_record *qrecord,
 809		     int action, int *qrecord_inserted_ret)
 810{
 811	struct btrfs_delayed_ref_head *existing;
 812	struct btrfs_delayed_ref_root *delayed_refs;
 813	int qrecord_inserted = 0;
 814
 815	delayed_refs = &trans->transaction->delayed_refs;
 816
 817	/* Record qgroup extent info if provided */
 818	if (qrecord) {
 819		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 820					delayed_refs, qrecord))
 821			kfree(qrecord);
 822		else
 823			qrecord_inserted = 1;
 824	}
 825
 826	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 
 
 
 827
 828	existing = htree_insert(&delayed_refs->href_root,
 829				&head_ref->href_node);
 830	if (existing) {
 831		update_existing_head_ref(trans, existing, head_ref);
 
 
 832		/*
 833		 * we've updated the existing ref, free the newly
 834		 * allocated ref
 835		 */
 836		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 837		head_ref = existing;
 838	} else {
 839		if (head_ref->is_data && head_ref->ref_mod < 0) {
 840			delayed_refs->pending_csums += head_ref->num_bytes;
 841			trans->delayed_ref_updates +=
 842				btrfs_csum_bytes_to_leaves(trans->fs_info,
 843							   head_ref->num_bytes);
 844		}
 845		delayed_refs->num_heads++;
 846		delayed_refs->num_heads_ready++;
 847		atomic_inc(&delayed_refs->num_entries);
 848		trans->delayed_ref_updates++;
 849	}
 850	if (qrecord_inserted_ret)
 851		*qrecord_inserted_ret = qrecord_inserted;
 852
 853	return head_ref;
 854}
 855
 856/*
 857 * init_delayed_ref_common - Initialize the structure which represents a
 858 *			     modification to a an extent.
 859 *
 860 * @fs_info:    Internal to the mounted filesystem mount structure.
 861 *
 862 * @ref:	The structure which is going to be initialized.
 863 *
 864 * @bytenr:	The logical address of the extent for which a modification is
 865 *		going to be recorded.
 866 *
 867 * @num_bytes:  Size of the extent whose modification is being recorded.
 868 *
 869 * @ref_root:	The id of the root where this modification has originated, this
 870 *		can be either one of the well-known metadata trees or the
 871 *		subvolume id which references this extent.
 872 *
 873 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 874 *		BTRFS_ADD_DELAYED_EXTENT
 875 *
 876 * @ref_type:	Holds the type of the extent which is being recorded, can be
 877 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 878 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 879 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880 */
 881static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 882				    struct btrfs_delayed_ref_node *ref,
 883				    u64 bytenr, u64 num_bytes, u64 ref_root,
 884				    int action, u8 ref_type)
 
 
 
 885{
 
 
 886	u64 seq = 0;
 
 887
 888	if (action == BTRFS_ADD_DELAYED_EXTENT)
 889		action = BTRFS_ADD_DELAYED_REF;
 890
 
 
 891	if (is_fstree(ref_root))
 892		seq = atomic64_read(&fs_info->tree_mod_seq);
 893
 894	refcount_set(&ref->refs, 1);
 
 895	ref->bytenr = bytenr;
 896	ref->num_bytes = num_bytes;
 897	ref->ref_mod = 1;
 898	ref->action = action;
 899	ref->is_head = 0;
 900	ref->in_tree = 1;
 901	ref->seq = seq;
 902	ref->type = ref_type;
 903	RB_CLEAR_NODE(&ref->ref_node);
 904	INIT_LIST_HEAD(&ref->add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905}
 906
 907/*
 908 * add a delayed tree ref.  This does all of the accounting required
 909 * to make sure the delayed ref is eventually processed before this
 910 * transaction commits.
 911 */
 912int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 913			       struct btrfs_ref *generic_ref,
 
 
 914			       struct btrfs_delayed_extent_op *extent_op)
 915{
 916	struct btrfs_fs_info *fs_info = trans->fs_info;
 917	struct btrfs_delayed_tree_ref *ref;
 918	struct btrfs_delayed_ref_head *head_ref;
 919	struct btrfs_delayed_ref_root *delayed_refs;
 920	struct btrfs_qgroup_extent_record *record = NULL;
 921	int qrecord_inserted;
 922	bool is_system;
 923	int action = generic_ref->action;
 924	int level = generic_ref->tree_ref.level;
 925	int ret;
 926	u64 bytenr = generic_ref->bytenr;
 927	u64 num_bytes = generic_ref->len;
 928	u64 parent = generic_ref->parent;
 929	u8 ref_type;
 930
 931	is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
 932
 933	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 934	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 935	if (!ref)
 936		return -ENOMEM;
 937
 938	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 939	if (!head_ref) {
 940		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 941		return -ENOMEM;
 942	}
 943
 944	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 945	    !generic_ref->skip_qgroup) {
 946		record = kzalloc(sizeof(*record), GFP_NOFS);
 947		if (!record) {
 948			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 949			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 950			return -ENOMEM;
 951		}
 952	}
 953
 954	if (parent)
 955		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 956	else
 957		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 958
 959	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 960				generic_ref->tree_ref.owning_root, action,
 961				ref_type);
 962	ref->root = generic_ref->tree_ref.owning_root;
 963	ref->parent = parent;
 964	ref->level = level;
 965
 966	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 967			      generic_ref->tree_ref.owning_root, 0, action,
 968			      false, is_system);
 969	head_ref->extent_op = extent_op;
 970
 971	delayed_refs = &trans->transaction->delayed_refs;
 972	spin_lock(&delayed_refs->lock);
 973
 974	/*
 975	 * insert both the head node and the new ref without dropping
 976	 * the spin lock
 977	 */
 978	head_ref = add_delayed_ref_head(trans, head_ref, record,
 979					action, &qrecord_inserted);
 980
 981	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 
 982	spin_unlock(&delayed_refs->lock);
 983
 984	/*
 985	 * Need to update the delayed_refs_rsv with any changes we may have
 986	 * made.
 987	 */
 988	btrfs_update_delayed_refs_rsv(trans);
 989
 990	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 991				   action == BTRFS_ADD_DELAYED_EXTENT ?
 992				   BTRFS_ADD_DELAYED_REF : action);
 993	if (ret > 0)
 994		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 995
 996	if (qrecord_inserted)
 997		btrfs_qgroup_trace_extent_post(trans, record);
 
 
 998
 999	return 0;
1000}
1001
1002/*
1003 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1004 */
1005int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1006			       struct btrfs_ref *generic_ref,
1007			       u64 reserved)
 
 
 
1008{
1009	struct btrfs_fs_info *fs_info = trans->fs_info;
1010	struct btrfs_delayed_data_ref *ref;
1011	struct btrfs_delayed_ref_head *head_ref;
1012	struct btrfs_delayed_ref_root *delayed_refs;
1013	struct btrfs_qgroup_extent_record *record = NULL;
1014	int qrecord_inserted;
1015	int action = generic_ref->action;
1016	int ret;
1017	u64 bytenr = generic_ref->bytenr;
1018	u64 num_bytes = generic_ref->len;
1019	u64 parent = generic_ref->parent;
1020	u64 ref_root = generic_ref->data_ref.owning_root;
1021	u64 owner = generic_ref->data_ref.ino;
1022	u64 offset = generic_ref->data_ref.offset;
1023	u8 ref_type;
1024
1025	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1026	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1027	if (!ref)
1028		return -ENOMEM;
1029
1030	if (parent)
1031	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1032	else
1033	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1034	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1035				ref_root, action, ref_type);
1036	ref->root = ref_root;
1037	ref->parent = parent;
1038	ref->objectid = owner;
1039	ref->offset = offset;
1040
1041
1042	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1043	if (!head_ref) {
1044		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1045		return -ENOMEM;
1046	}
1047
1048	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1049	    !generic_ref->skip_qgroup) {
1050		record = kzalloc(sizeof(*record), GFP_NOFS);
1051		if (!record) {
1052			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1053			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1054					head_ref);
1055			return -ENOMEM;
1056		}
1057	}
1058
1059	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1060			      reserved, action, true, false);
1061	head_ref->extent_op = NULL;
1062
1063	delayed_refs = &trans->transaction->delayed_refs;
1064	spin_lock(&delayed_refs->lock);
1065
1066	/*
1067	 * insert both the head node and the new ref without dropping
1068	 * the spin lock
1069	 */
1070	head_ref = add_delayed_ref_head(trans, head_ref, record,
1071					action, &qrecord_inserted);
1072
1073	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 
 
 
1074	spin_unlock(&delayed_refs->lock);
1075
1076	/*
1077	 * Need to update the delayed_refs_rsv with any changes we may have
1078	 * made.
1079	 */
1080	btrfs_update_delayed_refs_rsv(trans);
1081
1082	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1083				   action == BTRFS_ADD_DELAYED_EXTENT ?
1084				   BTRFS_ADD_DELAYED_REF : action);
1085	if (ret > 0)
1086		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1087
1088
1089	if (qrecord_inserted)
1090		return btrfs_qgroup_trace_extent_post(trans, record);
1091	return 0;
1092}
1093
1094int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
 
1095				u64 bytenr, u64 num_bytes,
1096				struct btrfs_delayed_extent_op *extent_op)
1097{
1098	struct btrfs_delayed_ref_head *head_ref;
1099	struct btrfs_delayed_ref_root *delayed_refs;
1100
1101	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1102	if (!head_ref)
1103		return -ENOMEM;
1104
1105	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1106			      BTRFS_UPDATE_DELAYED_HEAD, false, false);
1107	head_ref->extent_op = extent_op;
1108
1109	delayed_refs = &trans->transaction->delayed_refs;
1110	spin_lock(&delayed_refs->lock);
1111
1112	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1113			     NULL);
 
1114
1115	spin_unlock(&delayed_refs->lock);
1116
1117	/*
1118	 * Need to update the delayed_refs_rsv with any changes we may have
1119	 * made.
1120	 */
1121	btrfs_update_delayed_refs_rsv(trans);
1122	return 0;
1123}
1124
1125/*
1126 * This does a simple search for the head node for a given extent.  Returns the
1127 * head node if found, or NULL if not.
 
1128 */
1129struct btrfs_delayed_ref_head *
1130btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1131{
1132	lockdep_assert_held(&delayed_refs->lock);
1133
1134	return find_ref_head(delayed_refs, bytenr, false);
 
1135}
1136
1137void __cold btrfs_delayed_ref_exit(void)
1138{
1139	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1140	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1141	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1142	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1143}
1144
1145int __init btrfs_delayed_ref_init(void)
1146{
1147	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1148				"btrfs_delayed_ref_head",
1149				sizeof(struct btrfs_delayed_ref_head), 0,
1150				SLAB_MEM_SPREAD, NULL);
1151	if (!btrfs_delayed_ref_head_cachep)
1152		goto fail;
1153
1154	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1155				"btrfs_delayed_tree_ref",
1156				sizeof(struct btrfs_delayed_tree_ref), 0,
1157				SLAB_MEM_SPREAD, NULL);
1158	if (!btrfs_delayed_tree_ref_cachep)
1159		goto fail;
1160
1161	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1162				"btrfs_delayed_data_ref",
1163				sizeof(struct btrfs_delayed_data_ref), 0,
1164				SLAB_MEM_SPREAD, NULL);
1165	if (!btrfs_delayed_data_ref_cachep)
1166		goto fail;
1167
1168	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1169				"btrfs_delayed_extent_op",
1170				sizeof(struct btrfs_delayed_extent_op), 0,
1171				SLAB_MEM_SPREAD, NULL);
1172	if (!btrfs_delayed_extent_op_cachep)
1173		goto fail;
1174
1175	return 0;
1176fail:
1177	btrfs_delayed_ref_exit();
1178	return -ENOMEM;
1179}
v4.10.11
 
  1/*
  2 * Copyright (C) 2009 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/slab.h>
 21#include <linux/sort.h>
 
 22#include "ctree.h"
 23#include "delayed-ref.h"
 24#include "transaction.h"
 25#include "qgroup.h"
 
 
 
 26
 27struct kmem_cache *btrfs_delayed_ref_head_cachep;
 28struct kmem_cache *btrfs_delayed_tree_ref_cachep;
 29struct kmem_cache *btrfs_delayed_data_ref_cachep;
 30struct kmem_cache *btrfs_delayed_extent_op_cachep;
 31/*
 32 * delayed back reference update tracking.  For subvolume trees
 33 * we queue up extent allocations and backref maintenance for
 34 * delayed processing.   This avoids deep call chains where we
 35 * add extents in the middle of btrfs_search_slot, and it allows
 36 * us to buffer up frequently modified backrefs in an rb tree instead
 37 * of hammering updates on the extent allocation tree.
 38 */
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40/*
 41 * compare two delayed tree backrefs with same bytenr and type
 42 */
 43static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
 44			  struct btrfs_delayed_tree_ref *ref1, int type)
 45{
 46	if (type == BTRFS_TREE_BLOCK_REF_KEY) {
 47		if (ref1->root < ref2->root)
 48			return -1;
 49		if (ref1->root > ref2->root)
 50			return 1;
 51	} else {
 52		if (ref1->parent < ref2->parent)
 53			return -1;
 54		if (ref1->parent > ref2->parent)
 55			return 1;
 56	}
 57	return 0;
 58}
 59
 60/*
 61 * compare two delayed data backrefs with same bytenr and type
 62 */
 63static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
 64			  struct btrfs_delayed_data_ref *ref1)
 65{
 66	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 67		if (ref1->root < ref2->root)
 68			return -1;
 69		if (ref1->root > ref2->root)
 70			return 1;
 71		if (ref1->objectid < ref2->objectid)
 72			return -1;
 73		if (ref1->objectid > ref2->objectid)
 74			return 1;
 75		if (ref1->offset < ref2->offset)
 76			return -1;
 77		if (ref1->offset > ref2->offset)
 78			return 1;
 79	} else {
 80		if (ref1->parent < ref2->parent)
 81			return -1;
 82		if (ref1->parent > ref2->parent)
 83			return 1;
 84	}
 85	return 0;
 86}
 87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88/* insert a new ref to head ref rbtree */
 89static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root,
 90						   struct rb_node *node)
 91{
 92	struct rb_node **p = &root->rb_node;
 93	struct rb_node *parent_node = NULL;
 94	struct btrfs_delayed_ref_head *entry;
 95	struct btrfs_delayed_ref_head *ins;
 96	u64 bytenr;
 
 97
 98	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 99	bytenr = ins->node.bytenr;
100	while (*p) {
101		parent_node = *p;
102		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
103				 href_node);
104
105		if (bytenr < entry->node.bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106			p = &(*p)->rb_left;
107		else if (bytenr > entry->node.bytenr)
108			p = &(*p)->rb_right;
109		else
 
110			return entry;
 
111	}
112
113	rb_link_node(node, parent_node, p);
114	rb_insert_color(node, root);
115	return NULL;
116}
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118/*
119 * find an head entry based on bytenr. This returns the delayed ref
120 * head if it was able to find one, or NULL if nothing was in that spot.
121 * If return_bigger is given, the next bigger entry is returned if no exact
122 * match is found.
123 */
124static struct btrfs_delayed_ref_head *
125find_ref_head(struct rb_root *root, u64 bytenr,
126	      int return_bigger)
127{
 
128	struct rb_node *n;
129	struct btrfs_delayed_ref_head *entry;
130
131	n = root->rb_node;
132	entry = NULL;
133	while (n) {
134		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
135
136		if (bytenr < entry->node.bytenr)
137			n = n->rb_left;
138		else if (bytenr > entry->node.bytenr)
139			n = n->rb_right;
140		else
141			return entry;
142	}
143	if (entry && return_bigger) {
144		if (bytenr > entry->node.bytenr) {
145			n = rb_next(&entry->href_node);
146			if (!n)
147				n = rb_first(root);
148			entry = rb_entry(n, struct btrfs_delayed_ref_head,
149					 href_node);
150			return entry;
151		}
152		return entry;
153	}
154	return NULL;
155}
156
157int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
158			   struct btrfs_delayed_ref_head *head)
159{
160	struct btrfs_delayed_ref_root *delayed_refs;
161
162	delayed_refs = &trans->transaction->delayed_refs;
163	assert_spin_locked(&delayed_refs->lock);
164	if (mutex_trylock(&head->mutex))
165		return 0;
166
167	atomic_inc(&head->node.refs);
168	spin_unlock(&delayed_refs->lock);
169
170	mutex_lock(&head->mutex);
171	spin_lock(&delayed_refs->lock);
172	if (!head->node.in_tree) {
173		mutex_unlock(&head->mutex);
174		btrfs_put_delayed_ref(&head->node);
175		return -EAGAIN;
176	}
177	btrfs_put_delayed_ref(&head->node);
178	return 0;
179}
180
181static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
182				    struct btrfs_delayed_ref_root *delayed_refs,
183				    struct btrfs_delayed_ref_head *head,
184				    struct btrfs_delayed_ref_node *ref)
185{
186	if (btrfs_delayed_ref_is_head(ref)) {
187		head = btrfs_delayed_node_to_head(ref);
188		rb_erase(&head->href_node, &delayed_refs->href_root);
189	} else {
190		assert_spin_locked(&head->lock);
191		list_del(&ref->list);
192		if (!list_empty(&ref->add_list))
193			list_del(&ref->add_list);
194	}
195	ref->in_tree = 0;
196	btrfs_put_delayed_ref(ref);
197	atomic_dec(&delayed_refs->num_entries);
198	if (trans->delayed_ref_updates)
199		trans->delayed_ref_updates--;
200}
201
202static bool merge_ref(struct btrfs_trans_handle *trans,
203		      struct btrfs_delayed_ref_root *delayed_refs,
204		      struct btrfs_delayed_ref_head *head,
205		      struct btrfs_delayed_ref_node *ref,
206		      u64 seq)
207{
208	struct btrfs_delayed_ref_node *next;
 
209	bool done = false;
210
211	next = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
212				list);
213	while (!done && &next->list != &head->ref_list) {
214		int mod;
215		struct btrfs_delayed_ref_node *next2;
216
217		next2 = list_next_entry(next, list);
218
219		if (next == ref)
220			goto next;
221
 
 
222		if (seq && next->seq >= seq)
223			goto next;
224
225		if (next->type != ref->type)
226			goto next;
227
228		if ((ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
229		     ref->type == BTRFS_SHARED_BLOCK_REF_KEY) &&
230		    comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref),
231				   btrfs_delayed_node_to_tree_ref(next),
232				   ref->type))
233			goto next;
234		if ((ref->type == BTRFS_EXTENT_DATA_REF_KEY ||
235		     ref->type == BTRFS_SHARED_DATA_REF_KEY) &&
236		    comp_data_refs(btrfs_delayed_node_to_data_ref(ref),
237				   btrfs_delayed_node_to_data_ref(next)))
238			goto next;
239
240		if (ref->action == next->action) {
241			mod = next->ref_mod;
242		} else {
243			if (ref->ref_mod < next->ref_mod) {
244				swap(ref, next);
245				done = true;
246			}
247			mod = -next->ref_mod;
248		}
249
250		drop_delayed_ref(trans, delayed_refs, head, next);
251		ref->ref_mod += mod;
252		if (ref->ref_mod == 0) {
253			drop_delayed_ref(trans, delayed_refs, head, ref);
254			done = true;
255		} else {
256			/*
257			 * Can't have multiples of the same ref on a tree block.
258			 */
259			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
260				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
261		}
262next:
263		next = next2;
264	}
265
266	return done;
267}
268
269void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
270			      struct btrfs_fs_info *fs_info,
271			      struct btrfs_delayed_ref_root *delayed_refs,
272			      struct btrfs_delayed_ref_head *head)
273{
 
274	struct btrfs_delayed_ref_node *ref;
 
275	u64 seq = 0;
276
277	assert_spin_locked(&head->lock);
278
279	if (list_empty(&head->ref_list))
280		return;
281
282	/* We don't have too many refs to merge for data. */
283	if (head->is_data)
284		return;
285
286	spin_lock(&fs_info->tree_mod_seq_lock);
287	if (!list_empty(&fs_info->tree_mod_seq_list)) {
288		struct seq_list *elem;
289
290		elem = list_first_entry(&fs_info->tree_mod_seq_list,
291					struct seq_list, list);
292		seq = elem->seq;
293	}
294	spin_unlock(&fs_info->tree_mod_seq_lock);
295
296	ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
297			       list);
298	while (&ref->list != &head->ref_list) {
299		if (seq && ref->seq >= seq)
300			goto next;
301
302		if (merge_ref(trans, delayed_refs, head, ref, seq)) {
303			if (list_empty(&head->ref_list))
304				break;
305			ref = list_first_entry(&head->ref_list,
306					       struct btrfs_delayed_ref_node,
307					       list);
308			continue;
309		}
310next:
311		ref = list_next_entry(ref, list);
312	}
313}
314
315int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
316			    struct btrfs_delayed_ref_root *delayed_refs,
317			    u64 seq)
318{
319	struct seq_list *elem;
320	int ret = 0;
 
321
322	spin_lock(&fs_info->tree_mod_seq_lock);
323	if (!list_empty(&fs_info->tree_mod_seq_list)) {
324		elem = list_first_entry(&fs_info->tree_mod_seq_list,
325					struct seq_list, list);
326		if (seq >= elem->seq) {
327			btrfs_debug(fs_info,
328				"holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)",
329				(u32)(seq >> 32), (u32)seq,
330				(u32)(elem->seq >> 32), (u32)elem->seq,
331				delayed_refs);
332			ret = 1;
333		}
334	}
335
336	spin_unlock(&fs_info->tree_mod_seq_lock);
337	return ret;
338}
339
340struct btrfs_delayed_ref_head *
341btrfs_select_ref_head(struct btrfs_trans_handle *trans)
342{
343	struct btrfs_delayed_ref_root *delayed_refs;
344	struct btrfs_delayed_ref_head *head;
345	u64 start;
346	bool loop = false;
347
348	delayed_refs = &trans->transaction->delayed_refs;
349
350again:
351	start = delayed_refs->run_delayed_start;
352	head = find_ref_head(&delayed_refs->href_root, start, 1);
353	if (!head && !loop) {
354		delayed_refs->run_delayed_start = 0;
355		start = 0;
356		loop = true;
357		head = find_ref_head(&delayed_refs->href_root, start, 1);
358		if (!head)
359			return NULL;
360	} else if (!head && loop) {
361		return NULL;
362	}
363
364	while (head->processing) {
365		struct rb_node *node;
366
367		node = rb_next(&head->href_node);
368		if (!node) {
369			if (loop)
370				return NULL;
371			delayed_refs->run_delayed_start = 0;
372			start = 0;
373			loop = true;
374			goto again;
375		}
376		head = rb_entry(node, struct btrfs_delayed_ref_head,
377				href_node);
378	}
379
380	head->processing = 1;
381	WARN_ON(delayed_refs->num_heads_ready == 0);
382	delayed_refs->num_heads_ready--;
383	delayed_refs->run_delayed_start = head->node.bytenr +
384		head->node.num_bytes;
385	return head;
386}
387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388/*
389 * Helper to insert the ref_node to the tail or merge with tail.
390 *
391 * Return 0 for insert.
392 * Return >0 for merge.
393 */
394static int
395add_delayed_ref_tail_merge(struct btrfs_trans_handle *trans,
396			   struct btrfs_delayed_ref_root *root,
397			   struct btrfs_delayed_ref_head *href,
398			   struct btrfs_delayed_ref_node *ref)
399{
400	struct btrfs_delayed_ref_node *exist;
401	int mod;
402	int ret = 0;
403
404	spin_lock(&href->lock);
405	/* Check whether we can merge the tail node with ref */
406	if (list_empty(&href->ref_list))
407		goto add_tail;
408	exist = list_entry(href->ref_list.prev, struct btrfs_delayed_ref_node,
409			   list);
410	/* No need to compare bytenr nor is_head */
411	if (exist->type != ref->type || exist->seq != ref->seq)
412		goto add_tail;
413
414	if ((exist->type == BTRFS_TREE_BLOCK_REF_KEY ||
415	     exist->type == BTRFS_SHARED_BLOCK_REF_KEY) &&
416	    comp_tree_refs(btrfs_delayed_node_to_tree_ref(exist),
417			   btrfs_delayed_node_to_tree_ref(ref),
418			   ref->type))
419		goto add_tail;
420	if ((exist->type == BTRFS_EXTENT_DATA_REF_KEY ||
421	     exist->type == BTRFS_SHARED_DATA_REF_KEY) &&
422	    comp_data_refs(btrfs_delayed_node_to_data_ref(exist),
423			   btrfs_delayed_node_to_data_ref(ref)))
424		goto add_tail;
425
426	/* Now we are sure we can merge */
427	ret = 1;
428	if (exist->action == ref->action) {
429		mod = ref->ref_mod;
430	} else {
431		/* Need to change action */
432		if (exist->ref_mod < ref->ref_mod) {
433			exist->action = ref->action;
434			mod = -exist->ref_mod;
435			exist->ref_mod = ref->ref_mod;
436			if (ref->action == BTRFS_ADD_DELAYED_REF)
437				list_add_tail(&exist->add_list,
438					      &href->ref_add_list);
439			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
440				ASSERT(!list_empty(&exist->add_list));
441				list_del(&exist->add_list);
442			} else {
443				ASSERT(0);
444			}
445		} else
446			mod = -ref->ref_mod;
447	}
448	exist->ref_mod += mod;
449
450	/* remove existing tail if its ref_mod is zero */
451	if (exist->ref_mod == 0)
452		drop_delayed_ref(trans, root, href, exist);
453	spin_unlock(&href->lock);
454	return ret;
455
456add_tail:
457	list_add_tail(&ref->list, &href->ref_list);
458	if (ref->action == BTRFS_ADD_DELAYED_REF)
459		list_add_tail(&ref->add_list, &href->ref_add_list);
460	atomic_inc(&root->num_entries);
461	trans->delayed_ref_updates++;
462	spin_unlock(&href->lock);
463	return ret;
464}
465
466/*
467 * helper function to update the accounting in the head ref
468 * existing and update must have the same bytenr
469 */
470static noinline void
471update_existing_head_ref(struct btrfs_delayed_ref_root *delayed_refs,
472			 struct btrfs_delayed_ref_node *existing,
473			 struct btrfs_delayed_ref_node *update)
474{
475	struct btrfs_delayed_ref_head *existing_ref;
476	struct btrfs_delayed_ref_head *ref;
 
477	int old_ref_mod;
478
479	existing_ref = btrfs_delayed_node_to_head(existing);
480	ref = btrfs_delayed_node_to_head(update);
481	BUG_ON(existing_ref->is_data != ref->is_data);
482
483	spin_lock(&existing_ref->lock);
484	if (ref->must_insert_reserved) {
485		/* if the extent was freed and then
486		 * reallocated before the delayed ref
487		 * entries were processed, we can end up
488		 * with an existing head ref without
489		 * the must_insert_reserved flag set.
490		 * Set it again here
491		 */
492		existing_ref->must_insert_reserved = ref->must_insert_reserved;
493
494		/*
495		 * update the num_bytes so we make sure the accounting
496		 * is done correctly
497		 */
498		existing->num_bytes = update->num_bytes;
499
500	}
501
502	if (ref->extent_op) {
503		if (!existing_ref->extent_op) {
504			existing_ref->extent_op = ref->extent_op;
505		} else {
506			if (ref->extent_op->update_key) {
507				memcpy(&existing_ref->extent_op->key,
508				       &ref->extent_op->key,
509				       sizeof(ref->extent_op->key));
510				existing_ref->extent_op->update_key = true;
511			}
512			if (ref->extent_op->update_flags) {
513				existing_ref->extent_op->flags_to_set |=
514					ref->extent_op->flags_to_set;
515				existing_ref->extent_op->update_flags = true;
516			}
517			btrfs_free_delayed_extent_op(ref->extent_op);
518		}
519	}
520	/*
521	 * update the reference mod on the head to reflect this new operation,
522	 * only need the lock for this case cause we could be processing it
523	 * currently, for refs we just added we know we're a-ok.
524	 */
525	old_ref_mod = existing_ref->total_ref_mod;
526	existing->ref_mod += update->ref_mod;
527	existing_ref->total_ref_mod += update->ref_mod;
528
529	/*
530	 * If we are going to from a positive ref mod to a negative or vice
531	 * versa we need to make sure to adjust pending_csums accordingly.
532	 */
533	if (existing_ref->is_data) {
534		if (existing_ref->total_ref_mod >= 0 && old_ref_mod < 0)
 
 
 
 
535			delayed_refs->pending_csums -= existing->num_bytes;
536		if (existing_ref->total_ref_mod < 0 && old_ref_mod >= 0)
 
 
537			delayed_refs->pending_csums += existing->num_bytes;
 
 
538	}
539	spin_unlock(&existing_ref->lock);
 
540}
541
542/*
543 * helper function to actually insert a head node into the rbtree.
544 * this does all the dirty work in terms of maintaining the correct
545 * overall modification count.
546 */
547static noinline struct btrfs_delayed_ref_head *
548add_delayed_ref_head(struct btrfs_fs_info *fs_info,
549		     struct btrfs_trans_handle *trans,
550		     struct btrfs_delayed_ref_node *ref,
551		     struct btrfs_qgroup_extent_record *qrecord,
552		     u64 bytenr, u64 num_bytes, u64 ref_root, u64 reserved,
553		     int action, int is_data)
554{
555	struct btrfs_delayed_ref_head *existing;
556	struct btrfs_delayed_ref_head *head_ref = NULL;
557	struct btrfs_delayed_ref_root *delayed_refs;
558	int count_mod = 1;
559	int must_insert_reserved = 0;
560
561	/* If reserved is provided, it must be a data extent. */
562	BUG_ON(!is_data && reserved);
563
564	/*
565	 * the head node stores the sum of all the mods, so dropping a ref
566	 * should drop the sum in the head node by one.
567	 */
568	if (action == BTRFS_UPDATE_DELAYED_HEAD)
569		count_mod = 0;
570	else if (action == BTRFS_DROP_DELAYED_REF)
571		count_mod = -1;
572
573	/*
574	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
575	 * the reserved accounting when the extent is finally added, or
576	 * if a later modification deletes the delayed ref without ever
577	 * inserting the extent into the extent allocation tree.
578	 * ref->must_insert_reserved is the flag used to record
579	 * that accounting mods are required.
580	 *
581	 * Once we record must_insert_reserved, switch the action to
582	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
583	 */
584	if (action == BTRFS_ADD_DELAYED_EXTENT)
585		must_insert_reserved = 1;
586	else
587		must_insert_reserved = 0;
588
589	delayed_refs = &trans->transaction->delayed_refs;
590
591	/* first set the basic ref node struct up */
592	atomic_set(&ref->refs, 1);
593	ref->bytenr = bytenr;
594	ref->num_bytes = num_bytes;
595	ref->ref_mod = count_mod;
596	ref->type  = 0;
597	ref->action  = 0;
598	ref->is_head = 1;
599	ref->in_tree = 1;
600	ref->seq = 0;
601
602	head_ref = btrfs_delayed_node_to_head(ref);
603	head_ref->must_insert_reserved = must_insert_reserved;
604	head_ref->is_data = is_data;
605	INIT_LIST_HEAD(&head_ref->ref_list);
 
606	INIT_LIST_HEAD(&head_ref->ref_add_list);
 
607	head_ref->processing = 0;
608	head_ref->total_ref_mod = count_mod;
609	head_ref->qgroup_reserved = 0;
610	head_ref->qgroup_ref_root = 0;
611
612	/* Record qgroup extent info if provided */
613	if (qrecord) {
614		if (ref_root && reserved) {
615			head_ref->qgroup_ref_root = ref_root;
616			head_ref->qgroup_reserved = reserved;
617		}
618
619		qrecord->bytenr = bytenr;
620		qrecord->num_bytes = num_bytes;
621		qrecord->old_roots = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622
623		if(btrfs_qgroup_trace_extent_nolock(fs_info,
 
 
624					delayed_refs, qrecord))
625			kfree(qrecord);
 
 
626	}
627
628	spin_lock_init(&head_ref->lock);
629	mutex_init(&head_ref->mutex);
630
631	trace_add_delayed_ref_head(fs_info, ref, head_ref, action);
632
633	existing = htree_insert(&delayed_refs->href_root,
634				&head_ref->href_node);
635	if (existing) {
636		WARN_ON(ref_root && reserved && existing->qgroup_ref_root
637			&& existing->qgroup_reserved);
638		update_existing_head_ref(delayed_refs, &existing->node, ref);
639		/*
640		 * we've updated the existing ref, free the newly
641		 * allocated ref
642		 */
643		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
644		head_ref = existing;
645	} else {
646		if (is_data && count_mod < 0)
647			delayed_refs->pending_csums += num_bytes;
 
 
 
 
648		delayed_refs->num_heads++;
649		delayed_refs->num_heads_ready++;
650		atomic_inc(&delayed_refs->num_entries);
651		trans->delayed_ref_updates++;
652	}
 
 
 
653	return head_ref;
654}
655
656/*
657 * helper to insert a delayed tree ref into the rbtree.
658 */
659static noinline void
660add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
661		     struct btrfs_trans_handle *trans,
662		     struct btrfs_delayed_ref_head *head_ref,
663		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
664		     u64 num_bytes, u64 parent, u64 ref_root, int level,
665		     int action)
666{
667	struct btrfs_delayed_tree_ref *full_ref;
668	struct btrfs_delayed_ref_root *delayed_refs;
669	u64 seq = 0;
670	int ret;
671
672	if (action == BTRFS_ADD_DELAYED_EXTENT)
673		action = BTRFS_ADD_DELAYED_REF;
674
675	if (is_fstree(ref_root))
676		seq = atomic64_read(&fs_info->tree_mod_seq);
677	delayed_refs = &trans->transaction->delayed_refs;
678
679	/* first set the basic ref node struct up */
680	atomic_set(&ref->refs, 1);
681	ref->bytenr = bytenr;
682	ref->num_bytes = num_bytes;
683	ref->ref_mod = 1;
684	ref->action = action;
685	ref->is_head = 0;
686	ref->in_tree = 1;
687	ref->seq = seq;
688	INIT_LIST_HEAD(&ref->list);
689	INIT_LIST_HEAD(&ref->add_list);
690
691	full_ref = btrfs_delayed_node_to_tree_ref(ref);
692	full_ref->parent = parent;
693	full_ref->root = ref_root;
694	if (parent)
695		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
696	else
697		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
698	full_ref->level = level;
699
700	trace_add_delayed_tree_ref(fs_info, ref, full_ref, action);
701
702	ret = add_delayed_ref_tail_merge(trans, delayed_refs, head_ref, ref);
703
704	/*
705	 * XXX: memory should be freed at the same level allocated.
706	 * But bad practice is anywhere... Follow it now. Need cleanup.
707	 */
708	if (ret > 0)
709		kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
710}
711
712/*
713 * helper to insert a delayed data ref into the rbtree.
714 */
715static noinline void
716add_delayed_data_ref(struct btrfs_fs_info *fs_info,
717		     struct btrfs_trans_handle *trans,
718		     struct btrfs_delayed_ref_head *head_ref,
719		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
720		     u64 num_bytes, u64 parent, u64 ref_root, u64 owner,
721		     u64 offset, int action)
722{
723	struct btrfs_delayed_data_ref *full_ref;
724	struct btrfs_delayed_ref_root *delayed_refs;
725	u64 seq = 0;
726	int ret;
727
728	if (action == BTRFS_ADD_DELAYED_EXTENT)
729		action = BTRFS_ADD_DELAYED_REF;
730
731	delayed_refs = &trans->transaction->delayed_refs;
732
733	if (is_fstree(ref_root))
734		seq = atomic64_read(&fs_info->tree_mod_seq);
735
736	/* first set the basic ref node struct up */
737	atomic_set(&ref->refs, 1);
738	ref->bytenr = bytenr;
739	ref->num_bytes = num_bytes;
740	ref->ref_mod = 1;
741	ref->action = action;
742	ref->is_head = 0;
743	ref->in_tree = 1;
744	ref->seq = seq;
745	INIT_LIST_HEAD(&ref->list);
 
746	INIT_LIST_HEAD(&ref->add_list);
747
748	full_ref = btrfs_delayed_node_to_data_ref(ref);
749	full_ref->parent = parent;
750	full_ref->root = ref_root;
751	if (parent)
752		ref->type = BTRFS_SHARED_DATA_REF_KEY;
753	else
754		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
755
756	full_ref->objectid = owner;
757	full_ref->offset = offset;
758
759	trace_add_delayed_data_ref(fs_info, ref, full_ref, action);
760
761	ret = add_delayed_ref_tail_merge(trans, delayed_refs, head_ref, ref);
762
763	if (ret > 0)
764		kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
765}
766
767/*
768 * add a delayed tree ref.  This does all of the accounting required
769 * to make sure the delayed ref is eventually processed before this
770 * transaction commits.
771 */
772int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
773			       struct btrfs_trans_handle *trans,
774			       u64 bytenr, u64 num_bytes, u64 parent,
775			       u64 ref_root,  int level, int action,
776			       struct btrfs_delayed_extent_op *extent_op)
777{
 
778	struct btrfs_delayed_tree_ref *ref;
779	struct btrfs_delayed_ref_head *head_ref;
780	struct btrfs_delayed_ref_root *delayed_refs;
781	struct btrfs_qgroup_extent_record *record = NULL;
 
 
 
 
 
 
 
 
 
782
783	BUG_ON(extent_op && extent_op->is_data);
 
 
784	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
785	if (!ref)
786		return -ENOMEM;
787
788	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
789	if (!head_ref)
790		goto free_ref;
 
 
791
792	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
793	    is_fstree(ref_root)) {
794		record = kmalloc(sizeof(*record), GFP_NOFS);
795		if (!record)
796			goto free_head_ref;
 
 
 
797	}
798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
799	head_ref->extent_op = extent_op;
800
801	delayed_refs = &trans->transaction->delayed_refs;
802	spin_lock(&delayed_refs->lock);
803
804	/*
805	 * insert both the head node and the new ref without dropping
806	 * the spin lock
807	 */
808	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node, record,
809					bytenr, num_bytes, 0, 0, action, 0);
810
811	add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr,
812			     num_bytes, parent, ref_root, level, action);
813	spin_unlock(&delayed_refs->lock);
814
815	return 0;
 
 
 
 
 
 
 
 
 
 
816
817free_head_ref:
818	kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
819free_ref:
820	kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
821
822	return -ENOMEM;
823}
824
825/*
826 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
827 */
828int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
829			       struct btrfs_trans_handle *trans,
830			       u64 bytenr, u64 num_bytes,
831			       u64 parent, u64 ref_root,
832			       u64 owner, u64 offset, u64 reserved, int action,
833			       struct btrfs_delayed_extent_op *extent_op)
834{
 
835	struct btrfs_delayed_data_ref *ref;
836	struct btrfs_delayed_ref_head *head_ref;
837	struct btrfs_delayed_ref_root *delayed_refs;
838	struct btrfs_qgroup_extent_record *record = NULL;
 
 
 
 
 
 
 
 
 
 
839
840	BUG_ON(extent_op && !extent_op->is_data);
841	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
842	if (!ref)
843		return -ENOMEM;
844
 
 
 
 
 
 
 
 
 
 
 
 
845	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
846	if (!head_ref) {
847		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
848		return -ENOMEM;
849	}
850
851	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
852	    is_fstree(ref_root)) {
853		record = kmalloc(sizeof(*record), GFP_NOFS);
854		if (!record) {
855			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
856			kmem_cache_free(btrfs_delayed_ref_head_cachep,
857					head_ref);
858			return -ENOMEM;
859		}
860	}
861
862	head_ref->extent_op = extent_op;
 
 
863
864	delayed_refs = &trans->transaction->delayed_refs;
865	spin_lock(&delayed_refs->lock);
866
867	/*
868	 * insert both the head node and the new ref without dropping
869	 * the spin lock
870	 */
871	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node, record,
872					bytenr, num_bytes, ref_root, reserved,
873					action, 1);
874
875	add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr,
876				   num_bytes, parent, ref_root, owner, offset,
877				   action);
878	spin_unlock(&delayed_refs->lock);
879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
880	return 0;
881}
882
883int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
884				struct btrfs_trans_handle *trans,
885				u64 bytenr, u64 num_bytes,
886				struct btrfs_delayed_extent_op *extent_op)
887{
888	struct btrfs_delayed_ref_head *head_ref;
889	struct btrfs_delayed_ref_root *delayed_refs;
890
891	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
892	if (!head_ref)
893		return -ENOMEM;
894
 
 
895	head_ref->extent_op = extent_op;
896
897	delayed_refs = &trans->transaction->delayed_refs;
898	spin_lock(&delayed_refs->lock);
899
900	add_delayed_ref_head(fs_info, trans, &head_ref->node, NULL, bytenr,
901			     num_bytes, 0, 0, BTRFS_UPDATE_DELAYED_HEAD,
902			     extent_op->is_data);
903
904	spin_unlock(&delayed_refs->lock);
 
 
 
 
 
 
905	return 0;
906}
907
908/*
909 * this does a simple search for the head node for a given extent.
910 * It must be called with the delayed ref spinlock held, and it returns
911 * the head node if any where found, or NULL if not.
912 */
913struct btrfs_delayed_ref_head *
914btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
915{
916	struct btrfs_delayed_ref_root *delayed_refs;
917
918	delayed_refs = &trans->transaction->delayed_refs;
919	return find_ref_head(&delayed_refs->href_root, bytenr, 0);
920}
921
922void btrfs_delayed_ref_exit(void)
923{
924	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
925	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
926	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
927	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
928}
929
930int btrfs_delayed_ref_init(void)
931{
932	btrfs_delayed_ref_head_cachep = kmem_cache_create(
933				"btrfs_delayed_ref_head",
934				sizeof(struct btrfs_delayed_ref_head), 0,
935				SLAB_MEM_SPREAD, NULL);
936	if (!btrfs_delayed_ref_head_cachep)
937		goto fail;
938
939	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
940				"btrfs_delayed_tree_ref",
941				sizeof(struct btrfs_delayed_tree_ref), 0,
942				SLAB_MEM_SPREAD, NULL);
943	if (!btrfs_delayed_tree_ref_cachep)
944		goto fail;
945
946	btrfs_delayed_data_ref_cachep = kmem_cache_create(
947				"btrfs_delayed_data_ref",
948				sizeof(struct btrfs_delayed_data_ref), 0,
949				SLAB_MEM_SPREAD, NULL);
950	if (!btrfs_delayed_data_ref_cachep)
951		goto fail;
952
953	btrfs_delayed_extent_op_cachep = kmem_cache_create(
954				"btrfs_delayed_extent_op",
955				sizeof(struct btrfs_delayed_extent_op), 0,
956				SLAB_MEM_SPREAD, NULL);
957	if (!btrfs_delayed_extent_op_cachep)
958		goto fail;
959
960	return 0;
961fail:
962	btrfs_delayed_ref_exit();
963	return -ENOMEM;
964}