Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
  4 *
  5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
  6 *
  7 * Limitations:
  8 * - When outputing the source clock directly, the PWM logic will be bypassed
  9 *   and the currently running period is not guaranteed to be completed
 10 */
 11
 12#include <linux/bitops.h>
 13#include <linux/clk.h>
 14#include <linux/delay.h>
 15#include <linux/err.h>
 16#include <linux/io.h>
 17#include <linux/jiffies.h>
 18#include <linux/module.h>
 19#include <linux/of.h>
 20#include <linux/of_device.h>
 21#include <linux/platform_device.h>
 22#include <linux/pwm.h>
 23#include <linux/reset.h>
 24#include <linux/slab.h>
 25#include <linux/spinlock.h>
 26#include <linux/time.h>
 27
 28#define PWM_CTRL_REG		0x0
 29
 30#define PWM_CH_PRD_BASE		0x4
 31#define PWM_CH_PRD_OFFSET	0x4
 32#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 33
 34#define PWMCH_OFFSET		15
 35#define PWM_PRESCAL_MASK	GENMASK(3, 0)
 36#define PWM_PRESCAL_OFF		0
 37#define PWM_EN			BIT(4)
 38#define PWM_ACT_STATE		BIT(5)
 39#define PWM_CLK_GATING		BIT(6)
 40#define PWM_MODE		BIT(7)
 41#define PWM_PULSE		BIT(8)
 42#define PWM_BYPASS		BIT(9)
 43
 44#define PWM_RDY_BASE		28
 45#define PWM_RDY_OFFSET		1
 46#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 47
 48#define PWM_PRD(prd)		(((prd) - 1) << 16)
 49#define PWM_PRD_MASK		GENMASK(15, 0)
 50
 51#define PWM_DTY_MASK		GENMASK(15, 0)
 52
 53#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
 54#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
 55#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
 56
 57#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 58
 59static const u32 prescaler_table[] = {
 60	120,
 61	180,
 62	240,
 63	360,
 64	480,
 65	0,
 66	0,
 67	0,
 68	12000,
 69	24000,
 70	36000,
 71	48000,
 72	72000,
 73	0,
 74	0,
 75	0, /* Actually 1 but tested separately */
 76};
 77
 78struct sun4i_pwm_data {
 79	bool has_prescaler_bypass;
 80	bool has_direct_mod_clk_output;
 81	unsigned int npwm;
 82};
 83
 84struct sun4i_pwm_chip {
 85	struct pwm_chip chip;
 86	struct clk *bus_clk;
 87	struct clk *clk;
 88	struct reset_control *rst;
 89	void __iomem *base;
 90	spinlock_t ctrl_lock;
 91	const struct sun4i_pwm_data *data;
 92};
 93
 94static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 95{
 96	return container_of(chip, struct sun4i_pwm_chip, chip);
 97}
 98
 99static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
100				  unsigned long offset)
101{
102	return readl(chip->base + offset);
103}
104
105static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
106				    u32 val, unsigned long offset)
107{
108	writel(val, chip->base + offset);
109}
110
111static int sun4i_pwm_get_state(struct pwm_chip *chip,
112			       struct pwm_device *pwm,
113			       struct pwm_state *state)
114{
115	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
116	u64 clk_rate, tmp;
117	u32 val;
118	unsigned int prescaler;
119
120	clk_rate = clk_get_rate(sun4i_pwm->clk);
121	if (!clk_rate)
122		return -EINVAL;
123
124	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
125
126	/*
127	 * PWM chapter in H6 manual has a diagram which explains that if bypass
128	 * bit is set, no other setting has any meaning. Even more, experiment
129	 * proved that also enable bit is ignored in this case.
130	 */
131	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
132	    sun4i_pwm->data->has_direct_mod_clk_output) {
133		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
134		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
135		state->polarity = PWM_POLARITY_NORMAL;
136		state->enabled = true;
137		return 0;
138	}
139
140	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
141	    sun4i_pwm->data->has_prescaler_bypass)
142		prescaler = 1;
143	else
144		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
145
146	if (prescaler == 0)
147		return -EINVAL;
148
149	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
150		state->polarity = PWM_POLARITY_NORMAL;
151	else
152		state->polarity = PWM_POLARITY_INVERSED;
153
154	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
155	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
156		state->enabled = true;
157	else
158		state->enabled = false;
159
160	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
161
162	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
163	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
164
165	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
166	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
167
168	return 0;
169}
170
171static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
172			       const struct pwm_state *state,
173			       u32 *dty, u32 *prd, unsigned int *prsclr,
174			       bool *bypass)
175{
176	u64 clk_rate, div = 0;
177	unsigned int prescaler = 0;
178
179	clk_rate = clk_get_rate(sun4i_pwm->clk);
180
181	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
182		  state->enabled &&
183		  (state->period * clk_rate >= NSEC_PER_SEC) &&
184		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
185		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
186
187	/* Skip calculation of other parameters if we bypass them */
188	if (*bypass)
189		return 0;
190
191	if (sun4i_pwm->data->has_prescaler_bypass) {
192		/* First, test without any prescaler when available */
193		prescaler = PWM_PRESCAL_MASK;
194		/*
195		 * When not using any prescaler, the clock period in nanoseconds
196		 * is not an integer so round it half up instead of
197		 * truncating to get less surprising values.
198		 */
199		div = clk_rate * state->period + NSEC_PER_SEC / 2;
200		do_div(div, NSEC_PER_SEC);
201		if (div - 1 > PWM_PRD_MASK)
202			prescaler = 0;
203	}
204
205	if (prescaler == 0) {
206		/* Go up from the first divider */
207		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
208			unsigned int pval = prescaler_table[prescaler];
209
210			if (!pval)
211				continue;
212
213			div = clk_rate;
214			do_div(div, pval);
215			div = div * state->period;
216			do_div(div, NSEC_PER_SEC);
217			if (div - 1 <= PWM_PRD_MASK)
218				break;
219		}
220
221		if (div - 1 > PWM_PRD_MASK)
222			return -EINVAL;
223	}
224
225	*prd = div;
226	div *= state->duty_cycle;
227	do_div(div, state->period);
228	*dty = div;
229	*prsclr = prescaler;
230
231	return 0;
232}
233
234static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
235			   const struct pwm_state *state)
236{
237	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
238	struct pwm_state cstate;
239	u32 ctrl, duty = 0, period = 0, val;
240	int ret;
241	unsigned int delay_us, prescaler = 0;
242	bool bypass;
243
244	pwm_get_state(pwm, &cstate);
245
246	if (!cstate.enabled) {
247		ret = clk_prepare_enable(sun4i_pwm->clk);
248		if (ret) {
249			dev_err(chip->dev, "failed to enable PWM clock\n");
250			return ret;
251		}
252	}
253
254	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
255				  &bypass);
256	if (ret) {
257		dev_err(chip->dev, "period exceeds the maximum value\n");
258		if (!cstate.enabled)
259			clk_disable_unprepare(sun4i_pwm->clk);
260		return ret;
261	}
262
263	spin_lock(&sun4i_pwm->ctrl_lock);
264	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
265
266	if (sun4i_pwm->data->has_direct_mod_clk_output) {
267		if (bypass) {
268			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
269			/* We can skip other parameter */
270			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
271			spin_unlock(&sun4i_pwm->ctrl_lock);
272			return 0;
273		}
274
275		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
276	}
277
278	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
279		/* Prescaler changed, the clock has to be gated */
280		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
281		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
282
283		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
284		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
285	}
286
287	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
288	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
289
290	if (state->polarity != PWM_POLARITY_NORMAL)
291		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292	else
293		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
294
295	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
296
297	if (state->enabled)
298		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
299
300	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
301
302	spin_unlock(&sun4i_pwm->ctrl_lock);
303
304	if (state->enabled)
305		return 0;
306
307	/* We need a full period to elapse before disabling the channel. */
308	delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
309	if ((delay_us / 500) > MAX_UDELAY_MS)
310		msleep(delay_us / 1000 + 1);
311	else
312		usleep_range(delay_us, delay_us * 2);
313
314	spin_lock(&sun4i_pwm->ctrl_lock);
315	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
316	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
317	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
318	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
319	spin_unlock(&sun4i_pwm->ctrl_lock);
320
321	clk_disable_unprepare(sun4i_pwm->clk);
322
323	return 0;
324}
325
326static const struct pwm_ops sun4i_pwm_ops = {
327	.apply = sun4i_pwm_apply,
328	.get_state = sun4i_pwm_get_state,
329	.owner = THIS_MODULE,
330};
331
332static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
333	.has_prescaler_bypass = false,
334	.npwm = 2,
335};
336
337static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
338	.has_prescaler_bypass = true,
339	.npwm = 2,
340};
341
342static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
343	.has_prescaler_bypass = true,
344	.npwm = 1,
345};
346
347static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
348	.has_prescaler_bypass = true,
349	.has_direct_mod_clk_output = true,
350	.npwm = 1,
351};
352
353static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
354	.has_prescaler_bypass = true,
355	.has_direct_mod_clk_output = true,
356	.npwm = 2,
357};
358
359static const struct of_device_id sun4i_pwm_dt_ids[] = {
360	{
361		.compatible = "allwinner,sun4i-a10-pwm",
362		.data = &sun4i_pwm_dual_nobypass,
363	}, {
364		.compatible = "allwinner,sun5i-a10s-pwm",
365		.data = &sun4i_pwm_dual_bypass,
366	}, {
367		.compatible = "allwinner,sun5i-a13-pwm",
368		.data = &sun4i_pwm_single_bypass,
369	}, {
370		.compatible = "allwinner,sun7i-a20-pwm",
371		.data = &sun4i_pwm_dual_bypass,
372	}, {
373		.compatible = "allwinner,sun8i-h3-pwm",
374		.data = &sun4i_pwm_single_bypass,
375	}, {
376		.compatible = "allwinner,sun50i-a64-pwm",
377		.data = &sun50i_a64_pwm_data,
378	}, {
379		.compatible = "allwinner,sun50i-h6-pwm",
380		.data = &sun50i_h6_pwm_data,
381	}, {
382		/* sentinel */
383	},
384};
385MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
386
387static int sun4i_pwm_probe(struct platform_device *pdev)
388{
389	struct sun4i_pwm_chip *sun4ichip;
390	int ret;
391
392	sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
393	if (!sun4ichip)
394		return -ENOMEM;
395
396	sun4ichip->data = of_device_get_match_data(&pdev->dev);
397	if (!sun4ichip->data)
398		return -ENODEV;
399
400	sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
401	if (IS_ERR(sun4ichip->base))
402		return PTR_ERR(sun4ichip->base);
403
404	/*
405	 * All hardware variants need a source clock that is divided and
406	 * then feeds the counter that defines the output wave form. In the
407	 * device tree this clock is either unnamed or called "mod".
408	 * Some variants (e.g. H6) need another clock to access the
409	 * hardware registers; this is called "bus".
410	 * So we request "mod" first (and ignore the corner case that a
411	 * parent provides a "mod" clock while the right one would be the
412	 * unnamed one of the PWM device) and if this is not found we fall
413	 * back to the first clock of the PWM.
414	 */
415	sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
416	if (IS_ERR(sun4ichip->clk))
417		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
418				     "get mod clock failed\n");
419
420	if (!sun4ichip->clk) {
421		sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
422		if (IS_ERR(sun4ichip->clk))
423			return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
424					     "get unnamed clock failed\n");
425	}
426
427	sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
428	if (IS_ERR(sun4ichip->bus_clk))
429		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
430				     "get bus clock failed\n");
431
432	sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
433	if (IS_ERR(sun4ichip->rst))
434		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
435				     "get reset failed\n");
436
437	/* Deassert reset */
438	ret = reset_control_deassert(sun4ichip->rst);
439	if (ret) {
440		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
441			ERR_PTR(ret));
442		return ret;
443	}
444
445	/*
446	 * We're keeping the bus clock on for the sake of simplicity.
447	 * Actually it only needs to be on for hardware register accesses.
448	 */
449	ret = clk_prepare_enable(sun4ichip->bus_clk);
450	if (ret) {
451		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
452			ERR_PTR(ret));
453		goto err_bus;
454	}
455
456	sun4ichip->chip.dev = &pdev->dev;
457	sun4ichip->chip.ops = &sun4i_pwm_ops;
458	sun4ichip->chip.npwm = sun4ichip->data->npwm;
459
460	spin_lock_init(&sun4ichip->ctrl_lock);
461
462	ret = pwmchip_add(&sun4ichip->chip);
463	if (ret < 0) {
464		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
465		goto err_pwm_add;
466	}
467
468	platform_set_drvdata(pdev, sun4ichip);
469
470	return 0;
471
472err_pwm_add:
473	clk_disable_unprepare(sun4ichip->bus_clk);
474err_bus:
475	reset_control_assert(sun4ichip->rst);
476
477	return ret;
478}
479
480static int sun4i_pwm_remove(struct platform_device *pdev)
481{
482	struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
483
484	pwmchip_remove(&sun4ichip->chip);
485
486	clk_disable_unprepare(sun4ichip->bus_clk);
487	reset_control_assert(sun4ichip->rst);
488
489	return 0;
490}
491
492static struct platform_driver sun4i_pwm_driver = {
493	.driver = {
494		.name = "sun4i-pwm",
495		.of_match_table = sun4i_pwm_dt_ids,
496	},
497	.probe = sun4i_pwm_probe,
498	.remove = sun4i_pwm_remove,
499};
500module_platform_driver(sun4i_pwm_driver);
501
502MODULE_ALIAS("platform:sun4i-pwm");
503MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
504MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
505MODULE_LICENSE("GPL v2");
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
  4 *
  5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
  6 *
  7 * Limitations:
  8 * - When outputing the source clock directly, the PWM logic will be bypassed
  9 *   and the currently running period is not guaranteed to be completed
 10 */
 11
 12#include <linux/bitops.h>
 13#include <linux/clk.h>
 14#include <linux/delay.h>
 15#include <linux/err.h>
 16#include <linux/io.h>
 17#include <linux/jiffies.h>
 18#include <linux/module.h>
 19#include <linux/of.h>
 
 20#include <linux/platform_device.h>
 21#include <linux/pwm.h>
 22#include <linux/reset.h>
 23#include <linux/slab.h>
 24#include <linux/spinlock.h>
 25#include <linux/time.h>
 26
 27#define PWM_CTRL_REG		0x0
 28
 29#define PWM_CH_PRD_BASE		0x4
 30#define PWM_CH_PRD_OFFSET	0x4
 31#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 32
 33#define PWMCH_OFFSET		15
 34#define PWM_PRESCAL_MASK	GENMASK(3, 0)
 35#define PWM_PRESCAL_OFF		0
 36#define PWM_EN			BIT(4)
 37#define PWM_ACT_STATE		BIT(5)
 38#define PWM_CLK_GATING		BIT(6)
 39#define PWM_MODE		BIT(7)
 40#define PWM_PULSE		BIT(8)
 41#define PWM_BYPASS		BIT(9)
 42
 43#define PWM_RDY_BASE		28
 44#define PWM_RDY_OFFSET		1
 45#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 46
 47#define PWM_PRD(prd)		(((prd) - 1) << 16)
 48#define PWM_PRD_MASK		GENMASK(15, 0)
 49
 50#define PWM_DTY_MASK		GENMASK(15, 0)
 51
 52#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
 53#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
 54#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
 55
 56#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 57
 58static const u32 prescaler_table[] = {
 59	120,
 60	180,
 61	240,
 62	360,
 63	480,
 64	0,
 65	0,
 66	0,
 67	12000,
 68	24000,
 69	36000,
 70	48000,
 71	72000,
 72	0,
 73	0,
 74	0, /* Actually 1 but tested separately */
 75};
 76
 77struct sun4i_pwm_data {
 78	bool has_prescaler_bypass;
 79	bool has_direct_mod_clk_output;
 80	unsigned int npwm;
 81};
 82
 83struct sun4i_pwm_chip {
 84	struct pwm_chip chip;
 85	struct clk *bus_clk;
 86	struct clk *clk;
 87	struct reset_control *rst;
 88	void __iomem *base;
 89	spinlock_t ctrl_lock;
 90	const struct sun4i_pwm_data *data;
 91};
 92
 93static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 94{
 95	return container_of(chip, struct sun4i_pwm_chip, chip);
 96}
 97
 98static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
 99				  unsigned long offset)
100{
101	return readl(chip->base + offset);
102}
103
104static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
105				    u32 val, unsigned long offset)
106{
107	writel(val, chip->base + offset);
108}
109
110static int sun4i_pwm_get_state(struct pwm_chip *chip,
111			       struct pwm_device *pwm,
112			       struct pwm_state *state)
113{
114	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
115	u64 clk_rate, tmp;
116	u32 val;
117	unsigned int prescaler;
118
119	clk_rate = clk_get_rate(sun4i_pwm->clk);
120	if (!clk_rate)
121		return -EINVAL;
122
123	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
124
125	/*
126	 * PWM chapter in H6 manual has a diagram which explains that if bypass
127	 * bit is set, no other setting has any meaning. Even more, experiment
128	 * proved that also enable bit is ignored in this case.
129	 */
130	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
131	    sun4i_pwm->data->has_direct_mod_clk_output) {
132		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
133		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
134		state->polarity = PWM_POLARITY_NORMAL;
135		state->enabled = true;
136		return 0;
137	}
138
139	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
140	    sun4i_pwm->data->has_prescaler_bypass)
141		prescaler = 1;
142	else
143		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
144
145	if (prescaler == 0)
146		return -EINVAL;
147
148	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
149		state->polarity = PWM_POLARITY_NORMAL;
150	else
151		state->polarity = PWM_POLARITY_INVERSED;
152
153	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
154	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
155		state->enabled = true;
156	else
157		state->enabled = false;
158
159	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
160
161	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
162	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
163
164	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
165	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
166
167	return 0;
168}
169
170static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
171			       const struct pwm_state *state,
172			       u32 *dty, u32 *prd, unsigned int *prsclr,
173			       bool *bypass)
174{
175	u64 clk_rate, div = 0;
176	unsigned int prescaler = 0;
177
178	clk_rate = clk_get_rate(sun4i_pwm->clk);
179
180	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
181		  state->enabled &&
182		  (state->period * clk_rate >= NSEC_PER_SEC) &&
183		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
184		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
185
186	/* Skip calculation of other parameters if we bypass them */
187	if (*bypass)
188		return 0;
189
190	if (sun4i_pwm->data->has_prescaler_bypass) {
191		/* First, test without any prescaler when available */
192		prescaler = PWM_PRESCAL_MASK;
193		/*
194		 * When not using any prescaler, the clock period in nanoseconds
195		 * is not an integer so round it half up instead of
196		 * truncating to get less surprising values.
197		 */
198		div = clk_rate * state->period + NSEC_PER_SEC / 2;
199		do_div(div, NSEC_PER_SEC);
200		if (div - 1 > PWM_PRD_MASK)
201			prescaler = 0;
202	}
203
204	if (prescaler == 0) {
205		/* Go up from the first divider */
206		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
207			unsigned int pval = prescaler_table[prescaler];
208
209			if (!pval)
210				continue;
211
212			div = clk_rate;
213			do_div(div, pval);
214			div = div * state->period;
215			do_div(div, NSEC_PER_SEC);
216			if (div - 1 <= PWM_PRD_MASK)
217				break;
218		}
219
220		if (div - 1 > PWM_PRD_MASK)
221			return -EINVAL;
222	}
223
224	*prd = div;
225	div *= state->duty_cycle;
226	do_div(div, state->period);
227	*dty = div;
228	*prsclr = prescaler;
229
230	return 0;
231}
232
233static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
234			   const struct pwm_state *state)
235{
236	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
237	struct pwm_state cstate;
238	u32 ctrl, duty = 0, period = 0, val;
239	int ret;
240	unsigned int delay_us, prescaler = 0;
241	bool bypass;
242
243	pwm_get_state(pwm, &cstate);
244
245	if (!cstate.enabled) {
246		ret = clk_prepare_enable(sun4i_pwm->clk);
247		if (ret) {
248			dev_err(chip->dev, "failed to enable PWM clock\n");
249			return ret;
250		}
251	}
252
253	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
254				  &bypass);
255	if (ret) {
256		dev_err(chip->dev, "period exceeds the maximum value\n");
257		if (!cstate.enabled)
258			clk_disable_unprepare(sun4i_pwm->clk);
259		return ret;
260	}
261
262	spin_lock(&sun4i_pwm->ctrl_lock);
263	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
264
265	if (sun4i_pwm->data->has_direct_mod_clk_output) {
266		if (bypass) {
267			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
268			/* We can skip other parameter */
269			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
270			spin_unlock(&sun4i_pwm->ctrl_lock);
271			return 0;
272		}
273
274		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
275	}
276
277	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
278		/* Prescaler changed, the clock has to be gated */
279		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
280		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
281
282		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
283		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
284	}
285
286	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
287	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
288
289	if (state->polarity != PWM_POLARITY_NORMAL)
290		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
291	else
292		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
293
294	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
295
296	if (state->enabled)
297		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
298
299	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
300
301	spin_unlock(&sun4i_pwm->ctrl_lock);
302
303	if (state->enabled)
304		return 0;
305
306	/* We need a full period to elapse before disabling the channel. */
307	delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
308	if ((delay_us / 500) > MAX_UDELAY_MS)
309		msleep(delay_us / 1000 + 1);
310	else
311		usleep_range(delay_us, delay_us * 2);
312
313	spin_lock(&sun4i_pwm->ctrl_lock);
314	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
315	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
316	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
317	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
318	spin_unlock(&sun4i_pwm->ctrl_lock);
319
320	clk_disable_unprepare(sun4i_pwm->clk);
321
322	return 0;
323}
324
325static const struct pwm_ops sun4i_pwm_ops = {
326	.apply = sun4i_pwm_apply,
327	.get_state = sun4i_pwm_get_state,
 
328};
329
330static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
331	.has_prescaler_bypass = false,
332	.npwm = 2,
333};
334
335static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
336	.has_prescaler_bypass = true,
337	.npwm = 2,
338};
339
340static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
341	.has_prescaler_bypass = true,
342	.npwm = 1,
343};
344
345static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
346	.has_prescaler_bypass = true,
347	.has_direct_mod_clk_output = true,
348	.npwm = 1,
349};
350
351static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
352	.has_prescaler_bypass = true,
353	.has_direct_mod_clk_output = true,
354	.npwm = 2,
355};
356
357static const struct of_device_id sun4i_pwm_dt_ids[] = {
358	{
359		.compatible = "allwinner,sun4i-a10-pwm",
360		.data = &sun4i_pwm_dual_nobypass,
361	}, {
362		.compatible = "allwinner,sun5i-a10s-pwm",
363		.data = &sun4i_pwm_dual_bypass,
364	}, {
365		.compatible = "allwinner,sun5i-a13-pwm",
366		.data = &sun4i_pwm_single_bypass,
367	}, {
368		.compatible = "allwinner,sun7i-a20-pwm",
369		.data = &sun4i_pwm_dual_bypass,
370	}, {
371		.compatible = "allwinner,sun8i-h3-pwm",
372		.data = &sun4i_pwm_single_bypass,
373	}, {
374		.compatible = "allwinner,sun50i-a64-pwm",
375		.data = &sun50i_a64_pwm_data,
376	}, {
377		.compatible = "allwinner,sun50i-h6-pwm",
378		.data = &sun50i_h6_pwm_data,
379	}, {
380		/* sentinel */
381	},
382};
383MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
384
385static int sun4i_pwm_probe(struct platform_device *pdev)
386{
387	struct sun4i_pwm_chip *sun4ichip;
388	int ret;
389
390	sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
391	if (!sun4ichip)
392		return -ENOMEM;
393
394	sun4ichip->data = of_device_get_match_data(&pdev->dev);
395	if (!sun4ichip->data)
396		return -ENODEV;
397
398	sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
399	if (IS_ERR(sun4ichip->base))
400		return PTR_ERR(sun4ichip->base);
401
402	/*
403	 * All hardware variants need a source clock that is divided and
404	 * then feeds the counter that defines the output wave form. In the
405	 * device tree this clock is either unnamed or called "mod".
406	 * Some variants (e.g. H6) need another clock to access the
407	 * hardware registers; this is called "bus".
408	 * So we request "mod" first (and ignore the corner case that a
409	 * parent provides a "mod" clock while the right one would be the
410	 * unnamed one of the PWM device) and if this is not found we fall
411	 * back to the first clock of the PWM.
412	 */
413	sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
414	if (IS_ERR(sun4ichip->clk))
415		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
416				     "get mod clock failed\n");
417
418	if (!sun4ichip->clk) {
419		sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
420		if (IS_ERR(sun4ichip->clk))
421			return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
422					     "get unnamed clock failed\n");
423	}
424
425	sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
426	if (IS_ERR(sun4ichip->bus_clk))
427		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
428				     "get bus clock failed\n");
429
430	sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
431	if (IS_ERR(sun4ichip->rst))
432		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
433				     "get reset failed\n");
434
435	/* Deassert reset */
436	ret = reset_control_deassert(sun4ichip->rst);
437	if (ret) {
438		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
439			ERR_PTR(ret));
440		return ret;
441	}
442
443	/*
444	 * We're keeping the bus clock on for the sake of simplicity.
445	 * Actually it only needs to be on for hardware register accesses.
446	 */
447	ret = clk_prepare_enable(sun4ichip->bus_clk);
448	if (ret) {
449		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
450			ERR_PTR(ret));
451		goto err_bus;
452	}
453
454	sun4ichip->chip.dev = &pdev->dev;
455	sun4ichip->chip.ops = &sun4i_pwm_ops;
456	sun4ichip->chip.npwm = sun4ichip->data->npwm;
457
458	spin_lock_init(&sun4ichip->ctrl_lock);
459
460	ret = pwmchip_add(&sun4ichip->chip);
461	if (ret < 0) {
462		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
463		goto err_pwm_add;
464	}
465
466	platform_set_drvdata(pdev, sun4ichip);
467
468	return 0;
469
470err_pwm_add:
471	clk_disable_unprepare(sun4ichip->bus_clk);
472err_bus:
473	reset_control_assert(sun4ichip->rst);
474
475	return ret;
476}
477
478static void sun4i_pwm_remove(struct platform_device *pdev)
479{
480	struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
481
482	pwmchip_remove(&sun4ichip->chip);
483
484	clk_disable_unprepare(sun4ichip->bus_clk);
485	reset_control_assert(sun4ichip->rst);
 
 
486}
487
488static struct platform_driver sun4i_pwm_driver = {
489	.driver = {
490		.name = "sun4i-pwm",
491		.of_match_table = sun4i_pwm_dt_ids,
492	},
493	.probe = sun4i_pwm_probe,
494	.remove_new = sun4i_pwm_remove,
495};
496module_platform_driver(sun4i_pwm_driver);
497
498MODULE_ALIAS("platform:sun4i-pwm");
499MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
500MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
501MODULE_LICENSE("GPL v2");