Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
  4 *
  5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
  6 *
  7 * Limitations:
  8 * - When outputing the source clock directly, the PWM logic will be bypassed
  9 *   and the currently running period is not guaranteed to be completed
 10 */
 11
 12#include <linux/bitops.h>
 13#include <linux/clk.h>
 14#include <linux/delay.h>
 15#include <linux/err.h>
 16#include <linux/io.h>
 17#include <linux/jiffies.h>
 18#include <linux/module.h>
 19#include <linux/of.h>
 20#include <linux/of_device.h>
 21#include <linux/platform_device.h>
 22#include <linux/pwm.h>
 23#include <linux/reset.h>
 24#include <linux/slab.h>
 25#include <linux/spinlock.h>
 26#include <linux/time.h>
 27
 28#define PWM_CTRL_REG		0x0
 29
 30#define PWM_CH_PRD_BASE		0x4
 31#define PWM_CH_PRD_OFFSET	0x4
 32#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 33
 34#define PWMCH_OFFSET		15
 35#define PWM_PRESCAL_MASK	GENMASK(3, 0)
 36#define PWM_PRESCAL_OFF		0
 37#define PWM_EN			BIT(4)
 38#define PWM_ACT_STATE		BIT(5)
 39#define PWM_CLK_GATING		BIT(6)
 40#define PWM_MODE		BIT(7)
 41#define PWM_PULSE		BIT(8)
 42#define PWM_BYPASS		BIT(9)
 43
 44#define PWM_RDY_BASE		28
 45#define PWM_RDY_OFFSET		1
 46#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 47
 48#define PWM_PRD(prd)		(((prd) - 1) << 16)
 49#define PWM_PRD_MASK		GENMASK(15, 0)
 50
 51#define PWM_DTY_MASK		GENMASK(15, 0)
 52
 53#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
 54#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
 55#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
 56
 57#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 58
 59static const u32 prescaler_table[] = {
 60	120,
 61	180,
 62	240,
 63	360,
 64	480,
 65	0,
 66	0,
 67	0,
 68	12000,
 69	24000,
 70	36000,
 71	48000,
 72	72000,
 73	0,
 74	0,
 75	0, /* Actually 1 but tested separately */
 76};
 77
 78struct sun4i_pwm_data {
 79	bool has_prescaler_bypass;
 80	bool has_direct_mod_clk_output;
 81	unsigned int npwm;
 82};
 83
 84struct sun4i_pwm_chip {
 85	struct pwm_chip chip;
 86	struct clk *bus_clk;
 87	struct clk *clk;
 88	struct reset_control *rst;
 89	void __iomem *base;
 90	spinlock_t ctrl_lock;
 91	const struct sun4i_pwm_data *data;
 92};
 93
 94static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 95{
 96	return container_of(chip, struct sun4i_pwm_chip, chip);
 97}
 98
 99static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
100				  unsigned long offset)
101{
102	return readl(chip->base + offset);
103}
104
105static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
106				    u32 val, unsigned long offset)
107{
108	writel(val, chip->base + offset);
109}
110
111static int sun4i_pwm_get_state(struct pwm_chip *chip,
112			       struct pwm_device *pwm,
113			       struct pwm_state *state)
114{
115	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
116	u64 clk_rate, tmp;
117	u32 val;
118	unsigned int prescaler;
119
120	clk_rate = clk_get_rate(sun4i_pwm->clk);
121	if (!clk_rate)
122		return -EINVAL;
123
124	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
125
126	/*
127	 * PWM chapter in H6 manual has a diagram which explains that if bypass
128	 * bit is set, no other setting has any meaning. Even more, experiment
129	 * proved that also enable bit is ignored in this case.
130	 */
131	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
132	    sun4i_pwm->data->has_direct_mod_clk_output) {
133		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
134		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
135		state->polarity = PWM_POLARITY_NORMAL;
136		state->enabled = true;
137		return 0;
138	}
139
140	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
141	    sun4i_pwm->data->has_prescaler_bypass)
142		prescaler = 1;
143	else
144		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
145
146	if (prescaler == 0)
147		return -EINVAL;
148
149	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
150		state->polarity = PWM_POLARITY_NORMAL;
151	else
152		state->polarity = PWM_POLARITY_INVERSED;
153
154	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
155	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
156		state->enabled = true;
157	else
158		state->enabled = false;
159
160	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
161
162	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
163	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
164
165	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
166	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
167
168	return 0;
169}
170
171static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
172			       const struct pwm_state *state,
173			       u32 *dty, u32 *prd, unsigned int *prsclr,
174			       bool *bypass)
175{
176	u64 clk_rate, div = 0;
177	unsigned int prescaler = 0;
178
179	clk_rate = clk_get_rate(sun4i_pwm->clk);
180
181	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
182		  state->enabled &&
183		  (state->period * clk_rate >= NSEC_PER_SEC) &&
184		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
185		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
186
187	/* Skip calculation of other parameters if we bypass them */
188	if (*bypass)
189		return 0;
190
191	if (sun4i_pwm->data->has_prescaler_bypass) {
192		/* First, test without any prescaler when available */
193		prescaler = PWM_PRESCAL_MASK;
194		/*
195		 * When not using any prescaler, the clock period in nanoseconds
196		 * is not an integer so round it half up instead of
197		 * truncating to get less surprising values.
198		 */
199		div = clk_rate * state->period + NSEC_PER_SEC / 2;
200		do_div(div, NSEC_PER_SEC);
201		if (div - 1 > PWM_PRD_MASK)
202			prescaler = 0;
203	}
204
205	if (prescaler == 0) {
206		/* Go up from the first divider */
207		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
208			unsigned int pval = prescaler_table[prescaler];
209
210			if (!pval)
211				continue;
212
213			div = clk_rate;
214			do_div(div, pval);
215			div = div * state->period;
216			do_div(div, NSEC_PER_SEC);
217			if (div - 1 <= PWM_PRD_MASK)
218				break;
219		}
220
221		if (div - 1 > PWM_PRD_MASK)
222			return -EINVAL;
223	}
224
225	*prd = div;
226	div *= state->duty_cycle;
227	do_div(div, state->period);
228	*dty = div;
229	*prsclr = prescaler;
230
231	return 0;
232}
233
234static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
235			   const struct pwm_state *state)
236{
237	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
238	struct pwm_state cstate;
239	u32 ctrl, duty = 0, period = 0, val;
240	int ret;
241	unsigned int delay_us, prescaler = 0;
242	bool bypass;
243
244	pwm_get_state(pwm, &cstate);
245
246	if (!cstate.enabled) {
247		ret = clk_prepare_enable(sun4i_pwm->clk);
248		if (ret) {
249			dev_err(chip->dev, "failed to enable PWM clock\n");
250			return ret;
251		}
252	}
253
254	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
255				  &bypass);
256	if (ret) {
257		dev_err(chip->dev, "period exceeds the maximum value\n");
258		if (!cstate.enabled)
259			clk_disable_unprepare(sun4i_pwm->clk);
260		return ret;
261	}
262
263	spin_lock(&sun4i_pwm->ctrl_lock);
264	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
265
266	if (sun4i_pwm->data->has_direct_mod_clk_output) {
267		if (bypass) {
268			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
269			/* We can skip other parameter */
270			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
271			spin_unlock(&sun4i_pwm->ctrl_lock);
272			return 0;
273		}
274
275		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
276	}
277
278	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
279		/* Prescaler changed, the clock has to be gated */
280		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
281		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
282
283		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
284		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
285	}
286
287	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
288	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
289
290	if (state->polarity != PWM_POLARITY_NORMAL)
291		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292	else
293		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
294
295	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
296
297	if (state->enabled)
298		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
299
300	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
301
302	spin_unlock(&sun4i_pwm->ctrl_lock);
303
304	if (state->enabled)
305		return 0;
306
307	/* We need a full period to elapse before disabling the channel. */
308	delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
309	if ((delay_us / 500) > MAX_UDELAY_MS)
310		msleep(delay_us / 1000 + 1);
311	else
312		usleep_range(delay_us, delay_us * 2);
313
314	spin_lock(&sun4i_pwm->ctrl_lock);
315	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
316	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
317	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
318	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
319	spin_unlock(&sun4i_pwm->ctrl_lock);
320
321	clk_disable_unprepare(sun4i_pwm->clk);
322
323	return 0;
324}
325
326static const struct pwm_ops sun4i_pwm_ops = {
327	.apply = sun4i_pwm_apply,
328	.get_state = sun4i_pwm_get_state,
329	.owner = THIS_MODULE,
330};
331
332static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
333	.has_prescaler_bypass = false,
334	.npwm = 2,
335};
336
337static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
338	.has_prescaler_bypass = true,
339	.npwm = 2,
340};
341
342static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
343	.has_prescaler_bypass = true,
344	.npwm = 1,
345};
346
347static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
348	.has_prescaler_bypass = true,
349	.has_direct_mod_clk_output = true,
350	.npwm = 1,
351};
352
353static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
354	.has_prescaler_bypass = true,
355	.has_direct_mod_clk_output = true,
356	.npwm = 2,
357};
358
359static const struct of_device_id sun4i_pwm_dt_ids[] = {
360	{
361		.compatible = "allwinner,sun4i-a10-pwm",
362		.data = &sun4i_pwm_dual_nobypass,
363	}, {
364		.compatible = "allwinner,sun5i-a10s-pwm",
365		.data = &sun4i_pwm_dual_bypass,
366	}, {
367		.compatible = "allwinner,sun5i-a13-pwm",
368		.data = &sun4i_pwm_single_bypass,
369	}, {
370		.compatible = "allwinner,sun7i-a20-pwm",
371		.data = &sun4i_pwm_dual_bypass,
372	}, {
373		.compatible = "allwinner,sun8i-h3-pwm",
374		.data = &sun4i_pwm_single_bypass,
375	}, {
376		.compatible = "allwinner,sun50i-a64-pwm",
377		.data = &sun50i_a64_pwm_data,
378	}, {
379		.compatible = "allwinner,sun50i-h6-pwm",
380		.data = &sun50i_h6_pwm_data,
381	}, {
382		/* sentinel */
383	},
384};
385MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
386
387static int sun4i_pwm_probe(struct platform_device *pdev)
388{
 
 
389	struct sun4i_pwm_chip *sun4ichip;
390	int ret;
391
392	sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
393	if (!sun4ichip)
394		return -ENOMEM;
395
396	sun4ichip->data = of_device_get_match_data(&pdev->dev);
397	if (!sun4ichip->data)
398		return -ENODEV;
399
 
 
 
 
 
 
400	sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
401	if (IS_ERR(sun4ichip->base))
402		return PTR_ERR(sun4ichip->base);
403
404	/*
405	 * All hardware variants need a source clock that is divided and
406	 * then feeds the counter that defines the output wave form. In the
407	 * device tree this clock is either unnamed or called "mod".
408	 * Some variants (e.g. H6) need another clock to access the
409	 * hardware registers; this is called "bus".
410	 * So we request "mod" first (and ignore the corner case that a
411	 * parent provides a "mod" clock while the right one would be the
412	 * unnamed one of the PWM device) and if this is not found we fall
413	 * back to the first clock of the PWM.
414	 */
415	sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
416	if (IS_ERR(sun4ichip->clk))
417		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
418				     "get mod clock failed\n");
419
420	if (!sun4ichip->clk) {
421		sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
422		if (IS_ERR(sun4ichip->clk))
423			return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
424					     "get unnamed clock failed\n");
425	}
426
427	sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
428	if (IS_ERR(sun4ichip->bus_clk))
429		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
430				     "get bus clock failed\n");
431
432	sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
433	if (IS_ERR(sun4ichip->rst))
434		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
435				     "get reset failed\n");
436
437	/* Deassert reset */
438	ret = reset_control_deassert(sun4ichip->rst);
439	if (ret) {
440		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
441			ERR_PTR(ret));
442		return ret;
443	}
444
445	/*
446	 * We're keeping the bus clock on for the sake of simplicity.
447	 * Actually it only needs to be on for hardware register accesses.
448	 */
449	ret = clk_prepare_enable(sun4ichip->bus_clk);
450	if (ret) {
451		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
452			ERR_PTR(ret));
453		goto err_bus;
454	}
455
456	sun4ichip->chip.dev = &pdev->dev;
457	sun4ichip->chip.ops = &sun4i_pwm_ops;
458	sun4ichip->chip.npwm = sun4ichip->data->npwm;
459
460	spin_lock_init(&sun4ichip->ctrl_lock);
461
462	ret = pwmchip_add(&sun4ichip->chip);
463	if (ret < 0) {
464		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
465		goto err_pwm_add;
466	}
467
468	platform_set_drvdata(pdev, sun4ichip);
469
470	return 0;
471
472err_pwm_add:
473	clk_disable_unprepare(sun4ichip->bus_clk);
474err_bus:
475	reset_control_assert(sun4ichip->rst);
476
477	return ret;
478}
479
480static int sun4i_pwm_remove(struct platform_device *pdev)
481{
482	struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
 
483
484	pwmchip_remove(&sun4ichip->chip);
485
486	clk_disable_unprepare(sun4ichip->bus_clk);
487	reset_control_assert(sun4ichip->rst);
488
489	return 0;
490}
491
492static struct platform_driver sun4i_pwm_driver = {
493	.driver = {
494		.name = "sun4i-pwm",
495		.of_match_table = sun4i_pwm_dt_ids,
496	},
497	.probe = sun4i_pwm_probe,
498	.remove = sun4i_pwm_remove,
499};
500module_platform_driver(sun4i_pwm_driver);
501
502MODULE_ALIAS("platform:sun4i-pwm");
503MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
504MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
505MODULE_LICENSE("GPL v2");
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
  4 *
  5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
  6 *
  7 * Limitations:
  8 * - When outputing the source clock directly, the PWM logic will be bypassed
  9 *   and the currently running period is not guaranteed to be completed
 10 */
 11
 12#include <linux/bitops.h>
 13#include <linux/clk.h>
 14#include <linux/delay.h>
 15#include <linux/err.h>
 16#include <linux/io.h>
 17#include <linux/jiffies.h>
 18#include <linux/module.h>
 19#include <linux/of.h>
 
 20#include <linux/platform_device.h>
 21#include <linux/pwm.h>
 22#include <linux/reset.h>
 23#include <linux/slab.h>
 24#include <linux/spinlock.h>
 25#include <linux/time.h>
 26
 27#define PWM_CTRL_REG		0x0
 28
 29#define PWM_CH_PRD_BASE		0x4
 30#define PWM_CH_PRD_OFFSET	0x4
 31#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 32
 33#define PWMCH_OFFSET		15
 34#define PWM_PRESCAL_MASK	GENMASK(3, 0)
 35#define PWM_PRESCAL_OFF		0
 36#define PWM_EN			BIT(4)
 37#define PWM_ACT_STATE		BIT(5)
 38#define PWM_CLK_GATING		BIT(6)
 39#define PWM_MODE		BIT(7)
 40#define PWM_PULSE		BIT(8)
 41#define PWM_BYPASS		BIT(9)
 42
 43#define PWM_RDY_BASE		28
 44#define PWM_RDY_OFFSET		1
 45#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 46
 47#define PWM_PRD(prd)		(((prd) - 1) << 16)
 48#define PWM_PRD_MASK		GENMASK(15, 0)
 49
 50#define PWM_DTY_MASK		GENMASK(15, 0)
 51
 52#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
 53#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
 54#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
 55
 56#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 57
 58static const u32 prescaler_table[] = {
 59	120,
 60	180,
 61	240,
 62	360,
 63	480,
 64	0,
 65	0,
 66	0,
 67	12000,
 68	24000,
 69	36000,
 70	48000,
 71	72000,
 72	0,
 73	0,
 74	0, /* Actually 1 but tested separately */
 75};
 76
 77struct sun4i_pwm_data {
 78	bool has_prescaler_bypass;
 79	bool has_direct_mod_clk_output;
 80	unsigned int npwm;
 81};
 82
 83struct sun4i_pwm_chip {
 
 84	struct clk *bus_clk;
 85	struct clk *clk;
 86	struct reset_control *rst;
 87	void __iomem *base;
 88	spinlock_t ctrl_lock;
 89	const struct sun4i_pwm_data *data;
 90};
 91
 92static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 93{
 94	return pwmchip_get_drvdata(chip);
 95}
 96
 97static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *sun4ichip,
 98				  unsigned long offset)
 99{
100	return readl(sun4ichip->base + offset);
101}
102
103static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *sun4ichip,
104				    u32 val, unsigned long offset)
105{
106	writel(val, sun4ichip->base + offset);
107}
108
109static int sun4i_pwm_get_state(struct pwm_chip *chip,
110			       struct pwm_device *pwm,
111			       struct pwm_state *state)
112{
113	struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
114	u64 clk_rate, tmp;
115	u32 val;
116	unsigned int prescaler;
117
118	clk_rate = clk_get_rate(sun4ichip->clk);
119	if (!clk_rate)
120		return -EINVAL;
121
122	val = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
123
124	/*
125	 * PWM chapter in H6 manual has a diagram which explains that if bypass
126	 * bit is set, no other setting has any meaning. Even more, experiment
127	 * proved that also enable bit is ignored in this case.
128	 */
129	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
130	    sun4ichip->data->has_direct_mod_clk_output) {
131		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
132		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
133		state->polarity = PWM_POLARITY_NORMAL;
134		state->enabled = true;
135		return 0;
136	}
137
138	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
139	    sun4ichip->data->has_prescaler_bypass)
140		prescaler = 1;
141	else
142		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
143
144	if (prescaler == 0)
145		return -EINVAL;
146
147	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
148		state->polarity = PWM_POLARITY_NORMAL;
149	else
150		state->polarity = PWM_POLARITY_INVERSED;
151
152	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
153	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
154		state->enabled = true;
155	else
156		state->enabled = false;
157
158	val = sun4i_pwm_readl(sun4ichip, PWM_CH_PRD(pwm->hwpwm));
159
160	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
161	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
162
163	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
164	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
165
166	return 0;
167}
168
169static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4ichip,
170			       const struct pwm_state *state,
171			       u32 *dty, u32 *prd, unsigned int *prsclr,
172			       bool *bypass)
173{
174	u64 clk_rate, div = 0;
175	unsigned int prescaler = 0;
176
177	clk_rate = clk_get_rate(sun4ichip->clk);
178
179	*bypass = sun4ichip->data->has_direct_mod_clk_output &&
180		  state->enabled &&
181		  (state->period * clk_rate >= NSEC_PER_SEC) &&
182		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
183		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
184
185	/* Skip calculation of other parameters if we bypass them */
186	if (*bypass)
187		return 0;
188
189	if (sun4ichip->data->has_prescaler_bypass) {
190		/* First, test without any prescaler when available */
191		prescaler = PWM_PRESCAL_MASK;
192		/*
193		 * When not using any prescaler, the clock period in nanoseconds
194		 * is not an integer so round it half up instead of
195		 * truncating to get less surprising values.
196		 */
197		div = clk_rate * state->period + NSEC_PER_SEC / 2;
198		do_div(div, NSEC_PER_SEC);
199		if (div - 1 > PWM_PRD_MASK)
200			prescaler = 0;
201	}
202
203	if (prescaler == 0) {
204		/* Go up from the first divider */
205		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
206			unsigned int pval = prescaler_table[prescaler];
207
208			if (!pval)
209				continue;
210
211			div = clk_rate;
212			do_div(div, pval);
213			div = div * state->period;
214			do_div(div, NSEC_PER_SEC);
215			if (div - 1 <= PWM_PRD_MASK)
216				break;
217		}
218
219		if (div - 1 > PWM_PRD_MASK)
220			return -EINVAL;
221	}
222
223	*prd = div;
224	div *= state->duty_cycle;
225	do_div(div, state->period);
226	*dty = div;
227	*prsclr = prescaler;
228
229	return 0;
230}
231
232static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
233			   const struct pwm_state *state)
234{
235	struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
236	struct pwm_state cstate;
237	u32 ctrl, duty = 0, period = 0, val;
238	int ret;
239	unsigned int delay_us, prescaler = 0;
240	bool bypass;
241
242	pwm_get_state(pwm, &cstate);
243
244	if (!cstate.enabled) {
245		ret = clk_prepare_enable(sun4ichip->clk);
246		if (ret) {
247			dev_err(pwmchip_parent(chip), "failed to enable PWM clock\n");
248			return ret;
249		}
250	}
251
252	ret = sun4i_pwm_calculate(sun4ichip, state, &duty, &period, &prescaler,
253				  &bypass);
254	if (ret) {
255		dev_err(pwmchip_parent(chip), "period exceeds the maximum value\n");
256		if (!cstate.enabled)
257			clk_disable_unprepare(sun4ichip->clk);
258		return ret;
259	}
260
261	spin_lock(&sun4ichip->ctrl_lock);
262	ctrl = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
263
264	if (sun4ichip->data->has_direct_mod_clk_output) {
265		if (bypass) {
266			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
267			/* We can skip other parameter */
268			sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
269			spin_unlock(&sun4ichip->ctrl_lock);
270			return 0;
271		}
272
273		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
274	}
275
276	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
277		/* Prescaler changed, the clock has to be gated */
278		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
279		sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
280
281		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
282		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
283	}
284
285	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
286	sun4i_pwm_writel(sun4ichip, val, PWM_CH_PRD(pwm->hwpwm));
287
288	if (state->polarity != PWM_POLARITY_NORMAL)
289		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
290	else
291		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292
293	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
294
295	if (state->enabled)
296		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
297
298	sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
299
300	spin_unlock(&sun4ichip->ctrl_lock);
301
302	if (state->enabled)
303		return 0;
304
305	/* We need a full period to elapse before disabling the channel. */
306	delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
307	if ((delay_us / 500) > MAX_UDELAY_MS)
308		msleep(delay_us / 1000 + 1);
309	else
310		usleep_range(delay_us, delay_us * 2);
311
312	spin_lock(&sun4ichip->ctrl_lock);
313	ctrl = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG);
314	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
315	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
316	sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG);
317	spin_unlock(&sun4ichip->ctrl_lock);
318
319	clk_disable_unprepare(sun4ichip->clk);
320
321	return 0;
322}
323
324static const struct pwm_ops sun4i_pwm_ops = {
325	.apply = sun4i_pwm_apply,
326	.get_state = sun4i_pwm_get_state,
 
327};
328
329static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
330	.has_prescaler_bypass = false,
331	.npwm = 2,
332};
333
334static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
335	.has_prescaler_bypass = true,
336	.npwm = 2,
337};
338
339static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
340	.has_prescaler_bypass = true,
341	.npwm = 1,
342};
343
344static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
345	.has_prescaler_bypass = true,
346	.has_direct_mod_clk_output = true,
347	.npwm = 1,
348};
349
350static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
351	.has_prescaler_bypass = true,
352	.has_direct_mod_clk_output = true,
353	.npwm = 2,
354};
355
356static const struct of_device_id sun4i_pwm_dt_ids[] = {
357	{
358		.compatible = "allwinner,sun4i-a10-pwm",
359		.data = &sun4i_pwm_dual_nobypass,
360	}, {
361		.compatible = "allwinner,sun5i-a10s-pwm",
362		.data = &sun4i_pwm_dual_bypass,
363	}, {
364		.compatible = "allwinner,sun5i-a13-pwm",
365		.data = &sun4i_pwm_single_bypass,
366	}, {
367		.compatible = "allwinner,sun7i-a20-pwm",
368		.data = &sun4i_pwm_dual_bypass,
369	}, {
370		.compatible = "allwinner,sun8i-h3-pwm",
371		.data = &sun4i_pwm_single_bypass,
372	}, {
373		.compatible = "allwinner,sun50i-a64-pwm",
374		.data = &sun50i_a64_pwm_data,
375	}, {
376		.compatible = "allwinner,sun50i-h6-pwm",
377		.data = &sun50i_h6_pwm_data,
378	}, {
379		/* sentinel */
380	},
381};
382MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
383
384static int sun4i_pwm_probe(struct platform_device *pdev)
385{
386	struct pwm_chip *chip;
387	const struct sun4i_pwm_data *data;
388	struct sun4i_pwm_chip *sun4ichip;
389	int ret;
390
391	data = of_device_get_match_data(&pdev->dev);
392	if (!data)
 
 
 
 
393		return -ENODEV;
394
395	chip = devm_pwmchip_alloc(&pdev->dev, data->npwm, sizeof(*sun4ichip));
396	if (IS_ERR(chip))
397		return PTR_ERR(chip);
398	sun4ichip = to_sun4i_pwm_chip(chip);
399
400	sun4ichip->data = data;
401	sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
402	if (IS_ERR(sun4ichip->base))
403		return PTR_ERR(sun4ichip->base);
404
405	/*
406	 * All hardware variants need a source clock that is divided and
407	 * then feeds the counter that defines the output wave form. In the
408	 * device tree this clock is either unnamed or called "mod".
409	 * Some variants (e.g. H6) need another clock to access the
410	 * hardware registers; this is called "bus".
411	 * So we request "mod" first (and ignore the corner case that a
412	 * parent provides a "mod" clock while the right one would be the
413	 * unnamed one of the PWM device) and if this is not found we fall
414	 * back to the first clock of the PWM.
415	 */
416	sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
417	if (IS_ERR(sun4ichip->clk))
418		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
419				     "get mod clock failed\n");
420
421	if (!sun4ichip->clk) {
422		sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
423		if (IS_ERR(sun4ichip->clk))
424			return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
425					     "get unnamed clock failed\n");
426	}
427
428	sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
429	if (IS_ERR(sun4ichip->bus_clk))
430		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
431				     "get bus clock failed\n");
432
433	sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
434	if (IS_ERR(sun4ichip->rst))
435		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
436				     "get reset failed\n");
437
438	/* Deassert reset */
439	ret = reset_control_deassert(sun4ichip->rst);
440	if (ret) {
441		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
442			ERR_PTR(ret));
443		return ret;
444	}
445
446	/*
447	 * We're keeping the bus clock on for the sake of simplicity.
448	 * Actually it only needs to be on for hardware register accesses.
449	 */
450	ret = clk_prepare_enable(sun4ichip->bus_clk);
451	if (ret) {
452		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
453			ERR_PTR(ret));
454		goto err_bus;
455	}
456
457	chip->ops = &sun4i_pwm_ops;
 
 
458
459	spin_lock_init(&sun4ichip->ctrl_lock);
460
461	ret = pwmchip_add(chip);
462	if (ret < 0) {
463		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
464		goto err_pwm_add;
465	}
466
467	platform_set_drvdata(pdev, chip);
468
469	return 0;
470
471err_pwm_add:
472	clk_disable_unprepare(sun4ichip->bus_clk);
473err_bus:
474	reset_control_assert(sun4ichip->rst);
475
476	return ret;
477}
478
479static void sun4i_pwm_remove(struct platform_device *pdev)
480{
481	struct pwm_chip *chip = platform_get_drvdata(pdev);
482	struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip);
483
484	pwmchip_remove(chip);
485
486	clk_disable_unprepare(sun4ichip->bus_clk);
487	reset_control_assert(sun4ichip->rst);
 
 
488}
489
490static struct platform_driver sun4i_pwm_driver = {
491	.driver = {
492		.name = "sun4i-pwm",
493		.of_match_table = sun4i_pwm_dt_ids,
494	},
495	.probe = sun4i_pwm_probe,
496	.remove = sun4i_pwm_remove,
497};
498module_platform_driver(sun4i_pwm_driver);
499
500MODULE_ALIAS("platform:sun4i-pwm");
501MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
502MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
503MODULE_LICENSE("GPL v2");