Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
  4 *
  5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
  6 *
  7 * Limitations:
  8 * - When outputing the source clock directly, the PWM logic will be bypassed
  9 *   and the currently running period is not guaranteed to be completed
 10 */
 11
 12#include <linux/bitops.h>
 13#include <linux/clk.h>
 14#include <linux/delay.h>
 15#include <linux/err.h>
 16#include <linux/io.h>
 17#include <linux/jiffies.h>
 18#include <linux/module.h>
 19#include <linux/of.h>
 20#include <linux/of_device.h>
 21#include <linux/platform_device.h>
 22#include <linux/pwm.h>
 23#include <linux/reset.h>
 24#include <linux/slab.h>
 25#include <linux/spinlock.h>
 26#include <linux/time.h>
 27
 28#define PWM_CTRL_REG		0x0
 29
 30#define PWM_CH_PRD_BASE		0x4
 31#define PWM_CH_PRD_OFFSET	0x4
 32#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 33
 34#define PWMCH_OFFSET		15
 35#define PWM_PRESCAL_MASK	GENMASK(3, 0)
 36#define PWM_PRESCAL_OFF		0
 37#define PWM_EN			BIT(4)
 38#define PWM_ACT_STATE		BIT(5)
 39#define PWM_CLK_GATING		BIT(6)
 40#define PWM_MODE		BIT(7)
 41#define PWM_PULSE		BIT(8)
 42#define PWM_BYPASS		BIT(9)
 43
 44#define PWM_RDY_BASE		28
 45#define PWM_RDY_OFFSET		1
 46#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 47
 48#define PWM_PRD(prd)		(((prd) - 1) << 16)
 49#define PWM_PRD_MASK		GENMASK(15, 0)
 50
 51#define PWM_DTY_MASK		GENMASK(15, 0)
 52
 53#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
 54#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
 55#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
 56
 57#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 58
 59static const u32 prescaler_table[] = {
 60	120,
 61	180,
 62	240,
 63	360,
 64	480,
 65	0,
 66	0,
 67	0,
 68	12000,
 69	24000,
 70	36000,
 71	48000,
 72	72000,
 73	0,
 74	0,
 75	0, /* Actually 1 but tested separately */
 76};
 77
 78struct sun4i_pwm_data {
 79	bool has_prescaler_bypass;
 80	bool has_direct_mod_clk_output;
 81	unsigned int npwm;
 82};
 83
 84struct sun4i_pwm_chip {
 85	struct pwm_chip chip;
 86	struct clk *bus_clk;
 87	struct clk *clk;
 88	struct reset_control *rst;
 89	void __iomem *base;
 90	spinlock_t ctrl_lock;
 91	const struct sun4i_pwm_data *data;
 
 
 92};
 93
 94static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 95{
 96	return container_of(chip, struct sun4i_pwm_chip, chip);
 97}
 98
 99static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
100				  unsigned long offset)
101{
102	return readl(chip->base + offset);
103}
104
105static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
106				    u32 val, unsigned long offset)
107{
108	writel(val, chip->base + offset);
109}
110
111static int sun4i_pwm_get_state(struct pwm_chip *chip,
112			       struct pwm_device *pwm,
113			       struct pwm_state *state)
114{
115	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
116	u64 clk_rate, tmp;
117	u32 val;
118	unsigned int prescaler;
119
120	clk_rate = clk_get_rate(sun4i_pwm->clk);
121	if (!clk_rate)
122		return -EINVAL;
123
124	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
125
126	/*
127	 * PWM chapter in H6 manual has a diagram which explains that if bypass
128	 * bit is set, no other setting has any meaning. Even more, experiment
129	 * proved that also enable bit is ignored in this case.
130	 */
131	if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
132	    sun4i_pwm->data->has_direct_mod_clk_output) {
133		state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
134		state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
135		state->polarity = PWM_POLARITY_NORMAL;
136		state->enabled = true;
137		return 0;
138	}
139
140	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
141	    sun4i_pwm->data->has_prescaler_bypass)
142		prescaler = 1;
143	else
144		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
145
146	if (prescaler == 0)
147		return -EINVAL;
148
149	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
150		state->polarity = PWM_POLARITY_NORMAL;
151	else
152		state->polarity = PWM_POLARITY_INVERSED;
153
154	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
155	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
156		state->enabled = true;
157	else
158		state->enabled = false;
159
160	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
161
162	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
163	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
164
165	tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
166	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
167
168	return 0;
169}
170
171static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
172			       const struct pwm_state *state,
173			       u32 *dty, u32 *prd, unsigned int *prsclr,
174			       bool *bypass)
175{
176	u64 clk_rate, div = 0;
177	unsigned int prescaler = 0;
178
179	clk_rate = clk_get_rate(sun4i_pwm->clk);
180
181	*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
182		  state->enabled &&
183		  (state->period * clk_rate >= NSEC_PER_SEC) &&
184		  (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
185		  (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
186
187	/* Skip calculation of other parameters if we bypass them */
188	if (*bypass)
189		return 0;
190
191	if (sun4i_pwm->data->has_prescaler_bypass) {
192		/* First, test without any prescaler when available */
193		prescaler = PWM_PRESCAL_MASK;
 
194		/*
195		 * When not using any prescaler, the clock period in nanoseconds
196		 * is not an integer so round it half up instead of
197		 * truncating to get less surprising values.
198		 */
199		div = clk_rate * state->period + NSEC_PER_SEC / 2;
200		do_div(div, NSEC_PER_SEC);
201		if (div - 1 > PWM_PRD_MASK)
202			prescaler = 0;
203	}
204
205	if (prescaler == 0) {
206		/* Go up from the first divider */
207		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
208			unsigned int pval = prescaler_table[prescaler];
209
210			if (!pval)
211				continue;
212
213			div = clk_rate;
214			do_div(div, pval);
215			div = div * state->period;
216			do_div(div, NSEC_PER_SEC);
217			if (div - 1 <= PWM_PRD_MASK)
218				break;
219		}
220
221		if (div - 1 > PWM_PRD_MASK)
222			return -EINVAL;
223	}
224
225	*prd = div;
226	div *= state->duty_cycle;
227	do_div(div, state->period);
228	*dty = div;
229	*prsclr = prescaler;
230
231	return 0;
232}
233
234static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
235			   const struct pwm_state *state)
236{
237	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
238	struct pwm_state cstate;
239	u32 ctrl, duty = 0, period = 0, val;
240	int ret;
241	unsigned int delay_us, prescaler = 0;
242	bool bypass;
243
244	pwm_get_state(pwm, &cstate);
245
246	if (!cstate.enabled) {
247		ret = clk_prepare_enable(sun4i_pwm->clk);
248		if (ret) {
249			dev_err(chip->dev, "failed to enable PWM clock\n");
250			return ret;
251		}
252	}
253
254	ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
255				  &bypass);
256	if (ret) {
257		dev_err(chip->dev, "period exceeds the maximum value\n");
258		if (!cstate.enabled)
259			clk_disable_unprepare(sun4i_pwm->clk);
260		return ret;
261	}
262
263	spin_lock(&sun4i_pwm->ctrl_lock);
264	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
265
266	if (sun4i_pwm->data->has_direct_mod_clk_output) {
267		if (bypass) {
268			ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
269			/* We can skip other parameter */
270			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
 
 
 
 
271			spin_unlock(&sun4i_pwm->ctrl_lock);
272			return 0;
 
 
273		}
274
275		ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
276	}
 
 
277
278	if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
279		/* Prescaler changed, the clock has to be gated */
280		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
281		sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
282
283		ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
284		ctrl |= BIT_CH(prescaler, pwm->hwpwm);
 
 
 
285	}
286
287	val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
288	sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
289
290	if (state->polarity != PWM_POLARITY_NORMAL)
291		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
292	else
293		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
294
295	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
296
297	if (state->enabled)
298		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
 
 
 
 
299
300	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
301
302	spin_unlock(&sun4i_pwm->ctrl_lock);
303
304	if (state->enabled)
305		return 0;
306
 
 
 
 
 
307	/* We need a full period to elapse before disabling the channel. */
308	delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
309	if ((delay_us / 500) > MAX_UDELAY_MS)
310		msleep(delay_us / 1000 + 1);
311	else
312		usleep_range(delay_us, delay_us * 2);
 
 
 
 
 
 
313
314	spin_lock(&sun4i_pwm->ctrl_lock);
315	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
316	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
317	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
318	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
319	spin_unlock(&sun4i_pwm->ctrl_lock);
320
321	clk_disable_unprepare(sun4i_pwm->clk);
322
323	return 0;
324}
325
326static const struct pwm_ops sun4i_pwm_ops = {
327	.apply = sun4i_pwm_apply,
328	.get_state = sun4i_pwm_get_state,
329	.owner = THIS_MODULE,
330};
331
332static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
333	.has_prescaler_bypass = false,
334	.npwm = 2,
335};
336
337static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
338	.has_prescaler_bypass = true,
339	.npwm = 2,
340};
341
342static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
343	.has_prescaler_bypass = true,
344	.npwm = 1,
345};
346
347static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
348	.has_prescaler_bypass = true,
349	.has_direct_mod_clk_output = true,
350	.npwm = 1,
351};
352
353static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
354	.has_prescaler_bypass = true,
355	.has_direct_mod_clk_output = true,
356	.npwm = 2,
357};
358
359static const struct of_device_id sun4i_pwm_dt_ids[] = {
360	{
361		.compatible = "allwinner,sun4i-a10-pwm",
362		.data = &sun4i_pwm_dual_nobypass,
363	}, {
364		.compatible = "allwinner,sun5i-a10s-pwm",
365		.data = &sun4i_pwm_dual_bypass,
366	}, {
367		.compatible = "allwinner,sun5i-a13-pwm",
368		.data = &sun4i_pwm_single_bypass,
369	}, {
370		.compatible = "allwinner,sun7i-a20-pwm",
371		.data = &sun4i_pwm_dual_bypass,
372	}, {
373		.compatible = "allwinner,sun8i-h3-pwm",
374		.data = &sun4i_pwm_single_bypass,
375	}, {
376		.compatible = "allwinner,sun50i-a64-pwm",
377		.data = &sun50i_a64_pwm_data,
378	}, {
379		.compatible = "allwinner,sun50i-h6-pwm",
380		.data = &sun50i_h6_pwm_data,
381	}, {
382		/* sentinel */
383	},
384};
385MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
386
387static int sun4i_pwm_probe(struct platform_device *pdev)
388{
389	struct sun4i_pwm_chip *sun4ichip;
 
390	int ret;
391
392	sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
393	if (!sun4ichip)
394		return -ENOMEM;
395
396	sun4ichip->data = of_device_get_match_data(&pdev->dev);
397	if (!sun4ichip->data)
398		return -ENODEV;
399
400	sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
401	if (IS_ERR(sun4ichip->base))
402		return PTR_ERR(sun4ichip->base);
403
404	/*
405	 * All hardware variants need a source clock that is divided and
406	 * then feeds the counter that defines the output wave form. In the
407	 * device tree this clock is either unnamed or called "mod".
408	 * Some variants (e.g. H6) need another clock to access the
409	 * hardware registers; this is called "bus".
410	 * So we request "mod" first (and ignore the corner case that a
411	 * parent provides a "mod" clock while the right one would be the
412	 * unnamed one of the PWM device) and if this is not found we fall
413	 * back to the first clock of the PWM.
414	 */
415	sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
416	if (IS_ERR(sun4ichip->clk))
417		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
418				     "get mod clock failed\n");
419
420	if (!sun4ichip->clk) {
421		sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
422		if (IS_ERR(sun4ichip->clk))
423			return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
424					     "get unnamed clock failed\n");
425	}
426
427	sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
428	if (IS_ERR(sun4ichip->bus_clk))
429		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
430				     "get bus clock failed\n");
431
432	sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
433	if (IS_ERR(sun4ichip->rst))
434		return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
435				     "get reset failed\n");
436
437	/* Deassert reset */
438	ret = reset_control_deassert(sun4ichip->rst);
439	if (ret) {
440		dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
441			ERR_PTR(ret));
442		return ret;
443	}
444
445	/*
446	 * We're keeping the bus clock on for the sake of simplicity.
447	 * Actually it only needs to be on for hardware register accesses.
448	 */
449	ret = clk_prepare_enable(sun4ichip->bus_clk);
450	if (ret) {
451		dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
452			ERR_PTR(ret));
453		goto err_bus;
454	}
455
456	sun4ichip->chip.dev = &pdev->dev;
457	sun4ichip->chip.ops = &sun4i_pwm_ops;
458	sun4ichip->chip.npwm = sun4ichip->data->npwm;
459
460	spin_lock_init(&sun4ichip->ctrl_lock);
461
462	ret = pwmchip_add(&sun4ichip->chip);
463	if (ret < 0) {
464		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
465		goto err_pwm_add;
466	}
467
468	platform_set_drvdata(pdev, sun4ichip);
469
470	return 0;
471
472err_pwm_add:
473	clk_disable_unprepare(sun4ichip->bus_clk);
474err_bus:
475	reset_control_assert(sun4ichip->rst);
476
477	return ret;
478}
479
480static int sun4i_pwm_remove(struct platform_device *pdev)
481{
482	struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
483
484	pwmchip_remove(&sun4ichip->chip);
485
486	clk_disable_unprepare(sun4ichip->bus_clk);
487	reset_control_assert(sun4ichip->rst);
488
489	return 0;
490}
491
492static struct platform_driver sun4i_pwm_driver = {
493	.driver = {
494		.name = "sun4i-pwm",
495		.of_match_table = sun4i_pwm_dt_ids,
496	},
497	.probe = sun4i_pwm_probe,
498	.remove = sun4i_pwm_remove,
499};
500module_platform_driver(sun4i_pwm_driver);
501
502MODULE_ALIAS("platform:sun4i-pwm");
503MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
504MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
505MODULE_LICENSE("GPL v2");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
  4 *
  5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
 
 
 
 
  6 */
  7
  8#include <linux/bitops.h>
  9#include <linux/clk.h>
 10#include <linux/delay.h>
 11#include <linux/err.h>
 12#include <linux/io.h>
 13#include <linux/jiffies.h>
 14#include <linux/module.h>
 15#include <linux/of.h>
 16#include <linux/of_device.h>
 17#include <linux/platform_device.h>
 18#include <linux/pwm.h>
 
 19#include <linux/slab.h>
 20#include <linux/spinlock.h>
 21#include <linux/time.h>
 22
 23#define PWM_CTRL_REG		0x0
 24
 25#define PWM_CH_PRD_BASE		0x4
 26#define PWM_CH_PRD_OFFSET	0x4
 27#define PWM_CH_PRD(ch)		(PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
 28
 29#define PWMCH_OFFSET		15
 30#define PWM_PRESCAL_MASK	GENMASK(3, 0)
 31#define PWM_PRESCAL_OFF		0
 32#define PWM_EN			BIT(4)
 33#define PWM_ACT_STATE		BIT(5)
 34#define PWM_CLK_GATING		BIT(6)
 35#define PWM_MODE		BIT(7)
 36#define PWM_PULSE		BIT(8)
 37#define PWM_BYPASS		BIT(9)
 38
 39#define PWM_RDY_BASE		28
 40#define PWM_RDY_OFFSET		1
 41#define PWM_RDY(ch)		BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
 42
 43#define PWM_PRD(prd)		(((prd) - 1) << 16)
 44#define PWM_PRD_MASK		GENMASK(15, 0)
 45
 46#define PWM_DTY_MASK		GENMASK(15, 0)
 47
 48#define PWM_REG_PRD(reg)	((((reg) >> 16) & PWM_PRD_MASK) + 1)
 49#define PWM_REG_DTY(reg)	((reg) & PWM_DTY_MASK)
 50#define PWM_REG_PRESCAL(reg, chan)	(((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
 51
 52#define BIT_CH(bit, chan)	((bit) << ((chan) * PWMCH_OFFSET))
 53
 54static const u32 prescaler_table[] = {
 55	120,
 56	180,
 57	240,
 58	360,
 59	480,
 60	0,
 61	0,
 62	0,
 63	12000,
 64	24000,
 65	36000,
 66	48000,
 67	72000,
 68	0,
 69	0,
 70	0, /* Actually 1 but tested separately */
 71};
 72
 73struct sun4i_pwm_data {
 74	bool has_prescaler_bypass;
 
 75	unsigned int npwm;
 76};
 77
 78struct sun4i_pwm_chip {
 79	struct pwm_chip chip;
 
 80	struct clk *clk;
 
 81	void __iomem *base;
 82	spinlock_t ctrl_lock;
 83	const struct sun4i_pwm_data *data;
 84	unsigned long next_period[2];
 85	bool needs_delay[2];
 86};
 87
 88static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
 89{
 90	return container_of(chip, struct sun4i_pwm_chip, chip);
 91}
 92
 93static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
 94				  unsigned long offset)
 95{
 96	return readl(chip->base + offset);
 97}
 98
 99static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
100				    u32 val, unsigned long offset)
101{
102	writel(val, chip->base + offset);
103}
104
105static void sun4i_pwm_get_state(struct pwm_chip *chip,
106				struct pwm_device *pwm,
107				struct pwm_state *state)
108{
109	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
110	u64 clk_rate, tmp;
111	u32 val;
112	unsigned int prescaler;
113
114	clk_rate = clk_get_rate(sun4i_pwm->clk);
 
 
115
116	val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118	if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
119	    sun4i_pwm->data->has_prescaler_bypass)
120		prescaler = 1;
121	else
122		prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
123
124	if (prescaler == 0)
125		return;
126
127	if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
128		state->polarity = PWM_POLARITY_NORMAL;
129	else
130		state->polarity = PWM_POLARITY_INVERSED;
131
132	if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
133	    BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
134		state->enabled = true;
135	else
136		state->enabled = false;
137
138	val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
139
140	tmp = prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
141	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
142
143	tmp = prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
144	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
 
 
145}
146
147static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
148			       const struct pwm_state *state,
149			       u32 *dty, u32 *prd, unsigned int *prsclr)
 
150{
151	u64 clk_rate, div = 0;
152	unsigned int pval, prescaler = 0;
153
154	clk_rate = clk_get_rate(sun4i_pwm->clk);
155
 
 
 
 
 
 
 
 
 
 
156	if (sun4i_pwm->data->has_prescaler_bypass) {
157		/* First, test without any prescaler when available */
158		prescaler = PWM_PRESCAL_MASK;
159		pval = 1;
160		/*
161		 * When not using any prescaler, the clock period in nanoseconds
162		 * is not an integer so round it half up instead of
163		 * truncating to get less surprising values.
164		 */
165		div = clk_rate * state->period + NSEC_PER_SEC / 2;
166		do_div(div, NSEC_PER_SEC);
167		if (div - 1 > PWM_PRD_MASK)
168			prescaler = 0;
169	}
170
171	if (prescaler == 0) {
172		/* Go up from the first divider */
173		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
174			if (!prescaler_table[prescaler])
 
 
175				continue;
176			pval = prescaler_table[prescaler];
177			div = clk_rate;
178			do_div(div, pval);
179			div = div * state->period;
180			do_div(div, NSEC_PER_SEC);
181			if (div - 1 <= PWM_PRD_MASK)
182				break;
183		}
184
185		if (div - 1 > PWM_PRD_MASK)
186			return -EINVAL;
187	}
188
189	*prd = div;
190	div *= state->duty_cycle;
191	do_div(div, state->period);
192	*dty = div;
193	*prsclr = prescaler;
194
195	return 0;
196}
197
198static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
199			   const struct pwm_state *state)
200{
201	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
202	struct pwm_state cstate;
203	u32 ctrl;
204	int ret;
205	unsigned int delay_us;
206	unsigned long now;
207
208	pwm_get_state(pwm, &cstate);
209
210	if (!cstate.enabled) {
211		ret = clk_prepare_enable(sun4i_pwm->clk);
212		if (ret) {
213			dev_err(chip->dev, "failed to enable PWM clock\n");
214			return ret;
215		}
216	}
217
 
 
 
 
 
 
 
 
 
218	spin_lock(&sun4i_pwm->ctrl_lock);
219	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
220
221	if ((cstate.period != state->period) ||
222	    (cstate.duty_cycle != state->duty_cycle)) {
223		u32 period, duty, val;
224		unsigned int prescaler;
225
226		ret = sun4i_pwm_calculate(sun4i_pwm, state,
227					  &duty, &period, &prescaler);
228		if (ret) {
229			dev_err(chip->dev, "period exceeds the maximum value\n");
230			spin_unlock(&sun4i_pwm->ctrl_lock);
231			if (!cstate.enabled)
232				clk_disable_unprepare(sun4i_pwm->clk);
233			return ret;
234		}
235
236		if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
237			/* Prescaler changed, the clock has to be gated */
238			ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
239			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
240
241			ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
242			ctrl |= BIT_CH(prescaler, pwm->hwpwm);
243		}
 
244
245		val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
246		sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
247		sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
248			usecs_to_jiffies(cstate.period / 1000 + 1);
249		sun4i_pwm->needs_delay[pwm->hwpwm] = true;
250	}
251
 
 
 
252	if (state->polarity != PWM_POLARITY_NORMAL)
253		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
254	else
255		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
256
257	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
258	if (state->enabled) {
 
259		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
260	} else if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
261		ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
262		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
263	}
264
265	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
266
267	spin_unlock(&sun4i_pwm->ctrl_lock);
268
269	if (state->enabled)
270		return 0;
271
272	if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
273		clk_disable_unprepare(sun4i_pwm->clk);
274		return 0;
275	}
276
277	/* We need a full period to elapse before disabling the channel. */
278	now = jiffies;
279	if (sun4i_pwm->needs_delay[pwm->hwpwm] &&
280	    time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
281		delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
282					   now);
283		if ((delay_us / 500) > MAX_UDELAY_MS)
284			msleep(delay_us / 1000 + 1);
285		else
286			usleep_range(delay_us, delay_us * 2);
287	}
288	sun4i_pwm->needs_delay[pwm->hwpwm] = false;
289
290	spin_lock(&sun4i_pwm->ctrl_lock);
291	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
292	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
293	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
294	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
295	spin_unlock(&sun4i_pwm->ctrl_lock);
296
297	clk_disable_unprepare(sun4i_pwm->clk);
298
299	return 0;
300}
301
302static const struct pwm_ops sun4i_pwm_ops = {
303	.apply = sun4i_pwm_apply,
304	.get_state = sun4i_pwm_get_state,
305	.owner = THIS_MODULE,
306};
307
308static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
309	.has_prescaler_bypass = false,
310	.npwm = 2,
311};
312
313static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
314	.has_prescaler_bypass = true,
315	.npwm = 2,
316};
317
318static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
319	.has_prescaler_bypass = true,
320	.npwm = 1,
321};
322
 
 
 
 
 
 
 
 
 
 
 
 
323static const struct of_device_id sun4i_pwm_dt_ids[] = {
324	{
325		.compatible = "allwinner,sun4i-a10-pwm",
326		.data = &sun4i_pwm_dual_nobypass,
327	}, {
328		.compatible = "allwinner,sun5i-a10s-pwm",
329		.data = &sun4i_pwm_dual_bypass,
330	}, {
331		.compatible = "allwinner,sun5i-a13-pwm",
332		.data = &sun4i_pwm_single_bypass,
333	}, {
334		.compatible = "allwinner,sun7i-a20-pwm",
335		.data = &sun4i_pwm_dual_bypass,
336	}, {
337		.compatible = "allwinner,sun8i-h3-pwm",
338		.data = &sun4i_pwm_single_bypass,
339	}, {
 
 
 
 
 
 
340		/* sentinel */
341	},
342};
343MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
344
345static int sun4i_pwm_probe(struct platform_device *pdev)
346{
347	struct sun4i_pwm_chip *pwm;
348	struct resource *res;
349	int ret;
350
351	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
352	if (!pwm)
353		return -ENOMEM;
354
355	pwm->data = of_device_get_match_data(&pdev->dev);
356	if (!pwm->data)
357		return -ENODEV;
358
359	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
360	pwm->base = devm_ioremap_resource(&pdev->dev, res);
361	if (IS_ERR(pwm->base))
362		return PTR_ERR(pwm->base);
363
364	pwm->clk = devm_clk_get(&pdev->dev, NULL);
365	if (IS_ERR(pwm->clk))
366		return PTR_ERR(pwm->clk);
367
368	pwm->chip.dev = &pdev->dev;
369	pwm->chip.ops = &sun4i_pwm_ops;
370	pwm->chip.base = -1;
371	pwm->chip.npwm = pwm->data->npwm;
372	pwm->chip.of_xlate = of_pwm_xlate_with_flags;
373	pwm->chip.of_pwm_n_cells = 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374
375	spin_lock_init(&pwm->ctrl_lock);
376
377	ret = pwmchip_add(&pwm->chip);
378	if (ret < 0) {
379		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
380		return ret;
381	}
382
383	platform_set_drvdata(pdev, pwm);
384
385	return 0;
 
 
 
 
 
 
 
386}
387
388static int sun4i_pwm_remove(struct platform_device *pdev)
389{
390	struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
391
392	return pwmchip_remove(&pwm->chip);
 
 
 
 
 
393}
394
395static struct platform_driver sun4i_pwm_driver = {
396	.driver = {
397		.name = "sun4i-pwm",
398		.of_match_table = sun4i_pwm_dt_ids,
399	},
400	.probe = sun4i_pwm_probe,
401	.remove = sun4i_pwm_remove,
402};
403module_platform_driver(sun4i_pwm_driver);
404
405MODULE_ALIAS("platform:sun4i-pwm");
406MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
407MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
408MODULE_LICENSE("GPL v2");