Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/writeback.h>
11#include <linux/pagemap.h>
12#include <linux/blkdev.h>
13#include <linux/uuid.h>
14#include <linux/timekeeping.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "locking.h"
20#include "tree-log.h"
21#include "volumes.h"
22#include "dev-replace.h"
23#include "qgroup.h"
24#include "block-group.h"
25#include "space-info.h"
26#include "zoned.h"
27#include "fs.h"
28#include "accessors.h"
29#include "extent-tree.h"
30#include "root-tree.h"
31#include "defrag.h"
32#include "dir-item.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
40#define BTRFS_ROOT_TRANS_TAG 0
41
42/*
43 * Transaction states and transitions
44 *
45 * No running transaction (fs tree blocks are not modified)
46 * |
47 * | To next stage:
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49 * V
50 * Transaction N [[TRANS_STATE_RUNNING]]
51 * |
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
54 * |
55 * | To next stage:
56 * | Call btrfs_commit_transaction() on any trans handle attached to
57 * | transaction N
58 * V
59 * Transaction N [[TRANS_STATE_COMMIT_START]]
60 * |
61 * | Will wait for previous running transaction to completely finish if there
62 * | is one
63 * |
64 * | Then one of the following happes:
65 * | - Wait for all other trans handle holders to release.
66 * | The btrfs_commit_transaction() caller will do the commit work.
67 * | - Wait for current transaction to be committed by others.
68 * | Other btrfs_commit_transaction() caller will do the commit work.
69 * |
70 * | At this stage, only btrfs_join_transaction*() variants can attach
71 * | to this running transaction.
72 * | All other variants will wait for current one to finish and attach to
73 * | transaction N+1.
74 * |
75 * | To next stage:
76 * | Caller is chosen to commit transaction N, and all other trans handle
77 * | haven been released.
78 * V
79 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
80 * |
81 * | The heavy lifting transaction work is started.
82 * | From running delayed refs (modifying extent tree) to creating pending
83 * | snapshots, running qgroups.
84 * | In short, modify supporting trees to reflect modifications of subvolume
85 * | trees.
86 * |
87 * | At this stage, all start_transaction() calls will wait for this
88 * | transaction to finish and attach to transaction N+1.
89 * |
90 * | To next stage:
91 * | Until all supporting trees are updated.
92 * V
93 * Transaction N [[TRANS_STATE_UNBLOCKED]]
94 * | Transaction N+1
95 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
96 * | need to write them back to disk and update |
97 * | super blocks. |
98 * | |
99 * | At this stage, new transaction is allowed to |
100 * | start. |
101 * | All new start_transaction() calls will be |
102 * | attached to transid N+1. |
103 * | |
104 * | To next stage: |
105 * | Until all tree blocks are super blocks are |
106 * | written to block devices |
107 * V |
108 * Transaction N [[TRANS_STATE_COMPLETED]] V
109 * All tree blocks and super blocks are written. Transaction N+1
110 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
111 * data structures will be cleaned up. | Life goes on
112 */
113static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114 [TRANS_STATE_RUNNING] = 0U,
115 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
116 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
119 __TRANS_JOIN_NOSTART),
120 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOLOCK |
124 __TRANS_JOIN_NOSTART),
125 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
126 __TRANS_ATTACH |
127 __TRANS_JOIN |
128 __TRANS_JOIN_NOLOCK |
129 __TRANS_JOIN_NOSTART),
130 [TRANS_STATE_COMPLETED] = (__TRANS_START |
131 __TRANS_ATTACH |
132 __TRANS_JOIN |
133 __TRANS_JOIN_NOLOCK |
134 __TRANS_JOIN_NOSTART),
135};
136
137void btrfs_put_transaction(struct btrfs_transaction *transaction)
138{
139 WARN_ON(refcount_read(&transaction->use_count) == 0);
140 if (refcount_dec_and_test(&transaction->use_count)) {
141 BUG_ON(!list_empty(&transaction->list));
142 WARN_ON(!RB_EMPTY_ROOT(
143 &transaction->delayed_refs.href_root.rb_root));
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.dirty_extent_root));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
150 /*
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
156 */
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
159
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
162 bg_list);
163 list_del_init(&cache->bg_list);
164 btrfs_unfreeze_block_group(cache);
165 btrfs_put_block_group(cache);
166 }
167 WARN_ON(!list_empty(&transaction->dev_update_list));
168 kfree(transaction);
169 }
170}
171
172static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173{
174 struct btrfs_transaction *cur_trans = trans->transaction;
175 struct btrfs_fs_info *fs_info = trans->fs_info;
176 struct btrfs_root *root, *tmp;
177
178 /*
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
181 */
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
184 down_write(&fs_info->commit_root_sem);
185
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
188
189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190 dirty_list) {
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
194 extent_io_tree_release(&root->dirty_log_pages);
195 btrfs_qgroup_clean_swapped_blocks(root);
196 }
197
198 /* We can free old roots now. */
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
206 btrfs_drop_and_free_fs_root(fs_info, root);
207 spin_lock(&cur_trans->dropped_roots_lock);
208 }
209 spin_unlock(&cur_trans->dropped_roots_lock);
210
211 up_write(&fs_info->commit_root_sem);
212}
213
214static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 unsigned int type)
216{
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
219}
220
221static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 unsigned int type)
223{
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
226}
227
228static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 unsigned int type)
230{
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232}
233
234static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235{
236 return atomic_read(&trans->num_extwriters);
237}
238
239/*
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
245 */
246void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247{
248 struct btrfs_fs_info *fs_info = trans->fs_info;
249
250 if (!trans->chunk_bytes_reserved)
251 return;
252
253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 trans->chunk_bytes_reserved, NULL);
255 trans->chunk_bytes_reserved = 0;
256}
257
258/*
259 * either allocate a new transaction or hop into the existing one
260 */
261static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 unsigned int type)
263{
264 struct btrfs_transaction *cur_trans;
265
266 spin_lock(&fs_info->trans_lock);
267loop:
268 /* The file system has been taken offline. No new transactions. */
269 if (BTRFS_FS_ERROR(fs_info)) {
270 spin_unlock(&fs_info->trans_lock);
271 return -EROFS;
272 }
273
274 cur_trans = fs_info->running_transaction;
275 if (cur_trans) {
276 if (TRANS_ABORTED(cur_trans)) {
277 spin_unlock(&fs_info->trans_lock);
278 return cur_trans->aborted;
279 }
280 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281 spin_unlock(&fs_info->trans_lock);
282 return -EBUSY;
283 }
284 refcount_inc(&cur_trans->use_count);
285 atomic_inc(&cur_trans->num_writers);
286 extwriter_counter_inc(cur_trans, type);
287 spin_unlock(&fs_info->trans_lock);
288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
290 return 0;
291 }
292 spin_unlock(&fs_info->trans_lock);
293
294 /*
295 * If we are ATTACH, we just want to catch the current transaction,
296 * and commit it. If there is no transaction, just return ENOENT.
297 */
298 if (type == TRANS_ATTACH)
299 return -ENOENT;
300
301 /*
302 * JOIN_NOLOCK only happens during the transaction commit, so
303 * it is impossible that ->running_transaction is NULL
304 */
305 BUG_ON(type == TRANS_JOIN_NOLOCK);
306
307 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
308 if (!cur_trans)
309 return -ENOMEM;
310
311 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
312 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
313
314 spin_lock(&fs_info->trans_lock);
315 if (fs_info->running_transaction) {
316 /*
317 * someone started a transaction after we unlocked. Make sure
318 * to redo the checks above
319 */
320 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
321 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
322 kfree(cur_trans);
323 goto loop;
324 } else if (BTRFS_FS_ERROR(fs_info)) {
325 spin_unlock(&fs_info->trans_lock);
326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
327 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
328 kfree(cur_trans);
329 return -EROFS;
330 }
331
332 cur_trans->fs_info = fs_info;
333 atomic_set(&cur_trans->pending_ordered, 0);
334 init_waitqueue_head(&cur_trans->pending_wait);
335 atomic_set(&cur_trans->num_writers, 1);
336 extwriter_counter_init(cur_trans, type);
337 init_waitqueue_head(&cur_trans->writer_wait);
338 init_waitqueue_head(&cur_trans->commit_wait);
339 cur_trans->state = TRANS_STATE_RUNNING;
340 /*
341 * One for this trans handle, one so it will live on until we
342 * commit the transaction.
343 */
344 refcount_set(&cur_trans->use_count, 2);
345 cur_trans->flags = 0;
346 cur_trans->start_time = ktime_get_seconds();
347
348 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
349
350 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
351 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
352 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
353
354 /*
355 * although the tree mod log is per file system and not per transaction,
356 * the log must never go across transaction boundaries.
357 */
358 smp_mb();
359 if (!list_empty(&fs_info->tree_mod_seq_list))
360 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
361 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
362 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
363 atomic64_set(&fs_info->tree_mod_seq, 0);
364
365 spin_lock_init(&cur_trans->delayed_refs.lock);
366
367 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
368 INIT_LIST_HEAD(&cur_trans->dev_update_list);
369 INIT_LIST_HEAD(&cur_trans->switch_commits);
370 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
371 INIT_LIST_HEAD(&cur_trans->io_bgs);
372 INIT_LIST_HEAD(&cur_trans->dropped_roots);
373 mutex_init(&cur_trans->cache_write_mutex);
374 spin_lock_init(&cur_trans->dirty_bgs_lock);
375 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
376 spin_lock_init(&cur_trans->dropped_roots_lock);
377 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
378 spin_lock_init(&cur_trans->releasing_ebs_lock);
379 list_add_tail(&cur_trans->list, &fs_info->trans_list);
380 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381 IO_TREE_TRANS_DIRTY_PAGES);
382 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383 IO_TREE_FS_PINNED_EXTENTS);
384 fs_info->generation++;
385 cur_trans->transid = fs_info->generation;
386 fs_info->running_transaction = cur_trans;
387 cur_trans->aborted = 0;
388 spin_unlock(&fs_info->trans_lock);
389
390 return 0;
391}
392
393/*
394 * This does all the record keeping required to make sure that a shareable root
395 * is properly recorded in a given transaction. This is required to make sure
396 * the old root from before we joined the transaction is deleted when the
397 * transaction commits.
398 */
399static int record_root_in_trans(struct btrfs_trans_handle *trans,
400 struct btrfs_root *root,
401 int force)
402{
403 struct btrfs_fs_info *fs_info = root->fs_info;
404 int ret = 0;
405
406 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407 root->last_trans < trans->transid) || force) {
408 WARN_ON(!force && root->commit_root != root->node);
409
410 /*
411 * see below for IN_TRANS_SETUP usage rules
412 * we have the reloc mutex held now, so there
413 * is only one writer in this function
414 */
415 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416
417 /* make sure readers find IN_TRANS_SETUP before
418 * they find our root->last_trans update
419 */
420 smp_wmb();
421
422 spin_lock(&fs_info->fs_roots_radix_lock);
423 if (root->last_trans == trans->transid && !force) {
424 spin_unlock(&fs_info->fs_roots_radix_lock);
425 return 0;
426 }
427 radix_tree_tag_set(&fs_info->fs_roots_radix,
428 (unsigned long)root->root_key.objectid,
429 BTRFS_ROOT_TRANS_TAG);
430 spin_unlock(&fs_info->fs_roots_radix_lock);
431 root->last_trans = trans->transid;
432
433 /* this is pretty tricky. We don't want to
434 * take the relocation lock in btrfs_record_root_in_trans
435 * unless we're really doing the first setup for this root in
436 * this transaction.
437 *
438 * Normally we'd use root->last_trans as a flag to decide
439 * if we want to take the expensive mutex.
440 *
441 * But, we have to set root->last_trans before we
442 * init the relocation root, otherwise, we trip over warnings
443 * in ctree.c. The solution used here is to flag ourselves
444 * with root IN_TRANS_SETUP. When this is 1, we're still
445 * fixing up the reloc trees and everyone must wait.
446 *
447 * When this is zero, they can trust root->last_trans and fly
448 * through btrfs_record_root_in_trans without having to take the
449 * lock. smp_wmb() makes sure that all the writes above are
450 * done before we pop in the zero below
451 */
452 ret = btrfs_init_reloc_root(trans, root);
453 smp_mb__before_atomic();
454 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455 }
456 return ret;
457}
458
459
460void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 struct btrfs_root *root)
462{
463 struct btrfs_fs_info *fs_info = root->fs_info;
464 struct btrfs_transaction *cur_trans = trans->transaction;
465
466 /* Add ourselves to the transaction dropped list */
467 spin_lock(&cur_trans->dropped_roots_lock);
468 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 spin_unlock(&cur_trans->dropped_roots_lock);
470
471 /* Make sure we don't try to update the root at commit time */
472 spin_lock(&fs_info->fs_roots_radix_lock);
473 radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 (unsigned long)root->root_key.objectid,
475 BTRFS_ROOT_TRANS_TAG);
476 spin_unlock(&fs_info->fs_roots_radix_lock);
477}
478
479int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root)
481{
482 struct btrfs_fs_info *fs_info = root->fs_info;
483 int ret;
484
485 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486 return 0;
487
488 /*
489 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490 * and barriers
491 */
492 smp_rmb();
493 if (root->last_trans == trans->transid &&
494 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 return 0;
496
497 mutex_lock(&fs_info->reloc_mutex);
498 ret = record_root_in_trans(trans, root, 0);
499 mutex_unlock(&fs_info->reloc_mutex);
500
501 return ret;
502}
503
504static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505{
506 return (trans->state >= TRANS_STATE_COMMIT_START &&
507 trans->state < TRANS_STATE_UNBLOCKED &&
508 !TRANS_ABORTED(trans));
509}
510
511/* wait for commit against the current transaction to become unblocked
512 * when this is done, it is safe to start a new transaction, but the current
513 * transaction might not be fully on disk.
514 */
515static void wait_current_trans(struct btrfs_fs_info *fs_info)
516{
517 struct btrfs_transaction *cur_trans;
518
519 spin_lock(&fs_info->trans_lock);
520 cur_trans = fs_info->running_transaction;
521 if (cur_trans && is_transaction_blocked(cur_trans)) {
522 refcount_inc(&cur_trans->use_count);
523 spin_unlock(&fs_info->trans_lock);
524
525 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526 wait_event(fs_info->transaction_wait,
527 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528 TRANS_ABORTED(cur_trans));
529 btrfs_put_transaction(cur_trans);
530 } else {
531 spin_unlock(&fs_info->trans_lock);
532 }
533}
534
535static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536{
537 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538 return 0;
539
540 if (type == TRANS_START)
541 return 1;
542
543 return 0;
544}
545
546static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547{
548 struct btrfs_fs_info *fs_info = root->fs_info;
549
550 if (!fs_info->reloc_ctl ||
551 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
553 root->reloc_root)
554 return false;
555
556 return true;
557}
558
559static struct btrfs_trans_handle *
560start_transaction(struct btrfs_root *root, unsigned int num_items,
561 unsigned int type, enum btrfs_reserve_flush_enum flush,
562 bool enforce_qgroups)
563{
564 struct btrfs_fs_info *fs_info = root->fs_info;
565 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
566 struct btrfs_trans_handle *h;
567 struct btrfs_transaction *cur_trans;
568 u64 num_bytes = 0;
569 u64 qgroup_reserved = 0;
570 bool reloc_reserved = false;
571 bool do_chunk_alloc = false;
572 int ret;
573
574 if (BTRFS_FS_ERROR(fs_info))
575 return ERR_PTR(-EROFS);
576
577 if (current->journal_info) {
578 WARN_ON(type & TRANS_EXTWRITERS);
579 h = current->journal_info;
580 refcount_inc(&h->use_count);
581 WARN_ON(refcount_read(&h->use_count) > 2);
582 h->orig_rsv = h->block_rsv;
583 h->block_rsv = NULL;
584 goto got_it;
585 }
586
587 /*
588 * Do the reservation before we join the transaction so we can do all
589 * the appropriate flushing if need be.
590 */
591 if (num_items && root != fs_info->chunk_root) {
592 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
593 u64 delayed_refs_bytes = 0;
594
595 qgroup_reserved = num_items * fs_info->nodesize;
596 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
597 enforce_qgroups);
598 if (ret)
599 return ERR_PTR(ret);
600
601 /*
602 * We want to reserve all the bytes we may need all at once, so
603 * we only do 1 enospc flushing cycle per transaction start. We
604 * accomplish this by simply assuming we'll do 2 x num_items
605 * worth of delayed refs updates in this trans handle, and
606 * refill that amount for whatever is missing in the reserve.
607 */
608 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
609 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
610 btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
611 delayed_refs_bytes = num_bytes;
612 num_bytes <<= 1;
613 }
614
615 /*
616 * Do the reservation for the relocation root creation
617 */
618 if (need_reserve_reloc_root(root)) {
619 num_bytes += fs_info->nodesize;
620 reloc_reserved = true;
621 }
622
623 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
624 if (ret)
625 goto reserve_fail;
626 if (delayed_refs_bytes) {
627 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
628 delayed_refs_bytes);
629 num_bytes -= delayed_refs_bytes;
630 }
631
632 if (rsv->space_info->force_alloc)
633 do_chunk_alloc = true;
634 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
635 !btrfs_block_rsv_full(delayed_refs_rsv)) {
636 /*
637 * Some people call with btrfs_start_transaction(root, 0)
638 * because they can be throttled, but have some other mechanism
639 * for reserving space. We still want these guys to refill the
640 * delayed block_rsv so just add 1 items worth of reservation
641 * here.
642 */
643 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
644 if (ret)
645 goto reserve_fail;
646 }
647again:
648 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
649 if (!h) {
650 ret = -ENOMEM;
651 goto alloc_fail;
652 }
653
654 /*
655 * If we are JOIN_NOLOCK we're already committing a transaction and
656 * waiting on this guy, so we don't need to do the sb_start_intwrite
657 * because we're already holding a ref. We need this because we could
658 * have raced in and did an fsync() on a file which can kick a commit
659 * and then we deadlock with somebody doing a freeze.
660 *
661 * If we are ATTACH, it means we just want to catch the current
662 * transaction and commit it, so we needn't do sb_start_intwrite().
663 */
664 if (type & __TRANS_FREEZABLE)
665 sb_start_intwrite(fs_info->sb);
666
667 if (may_wait_transaction(fs_info, type))
668 wait_current_trans(fs_info);
669
670 do {
671 ret = join_transaction(fs_info, type);
672 if (ret == -EBUSY) {
673 wait_current_trans(fs_info);
674 if (unlikely(type == TRANS_ATTACH ||
675 type == TRANS_JOIN_NOSTART))
676 ret = -ENOENT;
677 }
678 } while (ret == -EBUSY);
679
680 if (ret < 0)
681 goto join_fail;
682
683 cur_trans = fs_info->running_transaction;
684
685 h->transid = cur_trans->transid;
686 h->transaction = cur_trans;
687 refcount_set(&h->use_count, 1);
688 h->fs_info = root->fs_info;
689
690 h->type = type;
691 INIT_LIST_HEAD(&h->new_bgs);
692
693 smp_mb();
694 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
695 may_wait_transaction(fs_info, type)) {
696 current->journal_info = h;
697 btrfs_commit_transaction(h);
698 goto again;
699 }
700
701 if (num_bytes) {
702 trace_btrfs_space_reservation(fs_info, "transaction",
703 h->transid, num_bytes, 1);
704 h->block_rsv = &fs_info->trans_block_rsv;
705 h->bytes_reserved = num_bytes;
706 h->reloc_reserved = reloc_reserved;
707 }
708
709got_it:
710 if (!current->journal_info)
711 current->journal_info = h;
712
713 /*
714 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
715 * ALLOC_FORCE the first run through, and then we won't allocate for
716 * anybody else who races in later. We don't care about the return
717 * value here.
718 */
719 if (do_chunk_alloc && num_bytes) {
720 u64 flags = h->block_rsv->space_info->flags;
721
722 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
723 CHUNK_ALLOC_NO_FORCE);
724 }
725
726 /*
727 * btrfs_record_root_in_trans() needs to alloc new extents, and may
728 * call btrfs_join_transaction() while we're also starting a
729 * transaction.
730 *
731 * Thus it need to be called after current->journal_info initialized,
732 * or we can deadlock.
733 */
734 ret = btrfs_record_root_in_trans(h, root);
735 if (ret) {
736 /*
737 * The transaction handle is fully initialized and linked with
738 * other structures so it needs to be ended in case of errors,
739 * not just freed.
740 */
741 btrfs_end_transaction(h);
742 return ERR_PTR(ret);
743 }
744
745 return h;
746
747join_fail:
748 if (type & __TRANS_FREEZABLE)
749 sb_end_intwrite(fs_info->sb);
750 kmem_cache_free(btrfs_trans_handle_cachep, h);
751alloc_fail:
752 if (num_bytes)
753 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
754 num_bytes, NULL);
755reserve_fail:
756 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
757 return ERR_PTR(ret);
758}
759
760struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
761 unsigned int num_items)
762{
763 return start_transaction(root, num_items, TRANS_START,
764 BTRFS_RESERVE_FLUSH_ALL, true);
765}
766
767struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
768 struct btrfs_root *root,
769 unsigned int num_items)
770{
771 return start_transaction(root, num_items, TRANS_START,
772 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
773}
774
775struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
776{
777 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
778 true);
779}
780
781struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
782{
783 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
784 BTRFS_RESERVE_NO_FLUSH, true);
785}
786
787/*
788 * Similar to regular join but it never starts a transaction when none is
789 * running or after waiting for the current one to finish.
790 */
791struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
792{
793 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
794 BTRFS_RESERVE_NO_FLUSH, true);
795}
796
797/*
798 * btrfs_attach_transaction() - catch the running transaction
799 *
800 * It is used when we want to commit the current the transaction, but
801 * don't want to start a new one.
802 *
803 * Note: If this function return -ENOENT, it just means there is no
804 * running transaction. But it is possible that the inactive transaction
805 * is still in the memory, not fully on disk. If you hope there is no
806 * inactive transaction in the fs when -ENOENT is returned, you should
807 * invoke
808 * btrfs_attach_transaction_barrier()
809 */
810struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
811{
812 return start_transaction(root, 0, TRANS_ATTACH,
813 BTRFS_RESERVE_NO_FLUSH, true);
814}
815
816/*
817 * btrfs_attach_transaction_barrier() - catch the running transaction
818 *
819 * It is similar to the above function, the difference is this one
820 * will wait for all the inactive transactions until they fully
821 * complete.
822 */
823struct btrfs_trans_handle *
824btrfs_attach_transaction_barrier(struct btrfs_root *root)
825{
826 struct btrfs_trans_handle *trans;
827
828 trans = start_transaction(root, 0, TRANS_ATTACH,
829 BTRFS_RESERVE_NO_FLUSH, true);
830 if (trans == ERR_PTR(-ENOENT))
831 btrfs_wait_for_commit(root->fs_info, 0);
832
833 return trans;
834}
835
836/* Wait for a transaction commit to reach at least the given state. */
837static noinline void wait_for_commit(struct btrfs_transaction *commit,
838 const enum btrfs_trans_state min_state)
839{
840 struct btrfs_fs_info *fs_info = commit->fs_info;
841 u64 transid = commit->transid;
842 bool put = false;
843
844 /*
845 * At the moment this function is called with min_state either being
846 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
847 */
848 if (min_state == TRANS_STATE_COMPLETED)
849 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
850 else
851 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
852
853 while (1) {
854 wait_event(commit->commit_wait, commit->state >= min_state);
855 if (put)
856 btrfs_put_transaction(commit);
857
858 if (min_state < TRANS_STATE_COMPLETED)
859 break;
860
861 /*
862 * A transaction isn't really completed until all of the
863 * previous transactions are completed, but with fsync we can
864 * end up with SUPER_COMMITTED transactions before a COMPLETED
865 * transaction. Wait for those.
866 */
867
868 spin_lock(&fs_info->trans_lock);
869 commit = list_first_entry_or_null(&fs_info->trans_list,
870 struct btrfs_transaction,
871 list);
872 if (!commit || commit->transid > transid) {
873 spin_unlock(&fs_info->trans_lock);
874 break;
875 }
876 refcount_inc(&commit->use_count);
877 put = true;
878 spin_unlock(&fs_info->trans_lock);
879 }
880}
881
882int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
883{
884 struct btrfs_transaction *cur_trans = NULL, *t;
885 int ret = 0;
886
887 if (transid) {
888 if (transid <= fs_info->last_trans_committed)
889 goto out;
890
891 /* find specified transaction */
892 spin_lock(&fs_info->trans_lock);
893 list_for_each_entry(t, &fs_info->trans_list, list) {
894 if (t->transid == transid) {
895 cur_trans = t;
896 refcount_inc(&cur_trans->use_count);
897 ret = 0;
898 break;
899 }
900 if (t->transid > transid) {
901 ret = 0;
902 break;
903 }
904 }
905 spin_unlock(&fs_info->trans_lock);
906
907 /*
908 * The specified transaction doesn't exist, or we
909 * raced with btrfs_commit_transaction
910 */
911 if (!cur_trans) {
912 if (transid > fs_info->last_trans_committed)
913 ret = -EINVAL;
914 goto out;
915 }
916 } else {
917 /* find newest transaction that is committing | committed */
918 spin_lock(&fs_info->trans_lock);
919 list_for_each_entry_reverse(t, &fs_info->trans_list,
920 list) {
921 if (t->state >= TRANS_STATE_COMMIT_START) {
922 if (t->state == TRANS_STATE_COMPLETED)
923 break;
924 cur_trans = t;
925 refcount_inc(&cur_trans->use_count);
926 break;
927 }
928 }
929 spin_unlock(&fs_info->trans_lock);
930 if (!cur_trans)
931 goto out; /* nothing committing|committed */
932 }
933
934 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
935 btrfs_put_transaction(cur_trans);
936out:
937 return ret;
938}
939
940void btrfs_throttle(struct btrfs_fs_info *fs_info)
941{
942 wait_current_trans(fs_info);
943}
944
945static bool should_end_transaction(struct btrfs_trans_handle *trans)
946{
947 struct btrfs_fs_info *fs_info = trans->fs_info;
948
949 if (btrfs_check_space_for_delayed_refs(fs_info))
950 return true;
951
952 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 50);
953}
954
955bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
956{
957 struct btrfs_transaction *cur_trans = trans->transaction;
958
959 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
960 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
961 return true;
962
963 return should_end_transaction(trans);
964}
965
966static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
967
968{
969 struct btrfs_fs_info *fs_info = trans->fs_info;
970
971 if (!trans->block_rsv) {
972 ASSERT(!trans->bytes_reserved);
973 return;
974 }
975
976 if (!trans->bytes_reserved)
977 return;
978
979 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
980 trace_btrfs_space_reservation(fs_info, "transaction",
981 trans->transid, trans->bytes_reserved, 0);
982 btrfs_block_rsv_release(fs_info, trans->block_rsv,
983 trans->bytes_reserved, NULL);
984 trans->bytes_reserved = 0;
985}
986
987static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
988 int throttle)
989{
990 struct btrfs_fs_info *info = trans->fs_info;
991 struct btrfs_transaction *cur_trans = trans->transaction;
992 int err = 0;
993
994 if (refcount_read(&trans->use_count) > 1) {
995 refcount_dec(&trans->use_count);
996 trans->block_rsv = trans->orig_rsv;
997 return 0;
998 }
999
1000 btrfs_trans_release_metadata(trans);
1001 trans->block_rsv = NULL;
1002
1003 btrfs_create_pending_block_groups(trans);
1004
1005 btrfs_trans_release_chunk_metadata(trans);
1006
1007 if (trans->type & __TRANS_FREEZABLE)
1008 sb_end_intwrite(info->sb);
1009
1010 WARN_ON(cur_trans != info->running_transaction);
1011 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1012 atomic_dec(&cur_trans->num_writers);
1013 extwriter_counter_dec(cur_trans, trans->type);
1014
1015 cond_wake_up(&cur_trans->writer_wait);
1016
1017 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1018 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1019
1020 btrfs_put_transaction(cur_trans);
1021
1022 if (current->journal_info == trans)
1023 current->journal_info = NULL;
1024
1025 if (throttle)
1026 btrfs_run_delayed_iputs(info);
1027
1028 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1029 wake_up_process(info->transaction_kthread);
1030 if (TRANS_ABORTED(trans))
1031 err = trans->aborted;
1032 else
1033 err = -EROFS;
1034 }
1035
1036 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1037 return err;
1038}
1039
1040int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1041{
1042 return __btrfs_end_transaction(trans, 0);
1043}
1044
1045int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1046{
1047 return __btrfs_end_transaction(trans, 1);
1048}
1049
1050/*
1051 * when btree blocks are allocated, they have some corresponding bits set for
1052 * them in one of two extent_io trees. This is used to make sure all of
1053 * those extents are sent to disk but does not wait on them
1054 */
1055int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1056 struct extent_io_tree *dirty_pages, int mark)
1057{
1058 int err = 0;
1059 int werr = 0;
1060 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1061 struct extent_state *cached_state = NULL;
1062 u64 start = 0;
1063 u64 end;
1064
1065 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1066 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1067 mark, &cached_state)) {
1068 bool wait_writeback = false;
1069
1070 err = convert_extent_bit(dirty_pages, start, end,
1071 EXTENT_NEED_WAIT,
1072 mark, &cached_state);
1073 /*
1074 * convert_extent_bit can return -ENOMEM, which is most of the
1075 * time a temporary error. So when it happens, ignore the error
1076 * and wait for writeback of this range to finish - because we
1077 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1078 * to __btrfs_wait_marked_extents() would not know that
1079 * writeback for this range started and therefore wouldn't
1080 * wait for it to finish - we don't want to commit a
1081 * superblock that points to btree nodes/leafs for which
1082 * writeback hasn't finished yet (and without errors).
1083 * We cleanup any entries left in the io tree when committing
1084 * the transaction (through extent_io_tree_release()).
1085 */
1086 if (err == -ENOMEM) {
1087 err = 0;
1088 wait_writeback = true;
1089 }
1090 if (!err)
1091 err = filemap_fdatawrite_range(mapping, start, end);
1092 if (err)
1093 werr = err;
1094 else if (wait_writeback)
1095 werr = filemap_fdatawait_range(mapping, start, end);
1096 free_extent_state(cached_state);
1097 cached_state = NULL;
1098 cond_resched();
1099 start = end + 1;
1100 }
1101 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1102 return werr;
1103}
1104
1105/*
1106 * when btree blocks are allocated, they have some corresponding bits set for
1107 * them in one of two extent_io trees. This is used to make sure all of
1108 * those extents are on disk for transaction or log commit. We wait
1109 * on all the pages and clear them from the dirty pages state tree
1110 */
1111static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1112 struct extent_io_tree *dirty_pages)
1113{
1114 int err = 0;
1115 int werr = 0;
1116 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1117 struct extent_state *cached_state = NULL;
1118 u64 start = 0;
1119 u64 end;
1120
1121 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1122 EXTENT_NEED_WAIT, &cached_state)) {
1123 /*
1124 * Ignore -ENOMEM errors returned by clear_extent_bit().
1125 * When committing the transaction, we'll remove any entries
1126 * left in the io tree. For a log commit, we don't remove them
1127 * after committing the log because the tree can be accessed
1128 * concurrently - we do it only at transaction commit time when
1129 * it's safe to do it (through extent_io_tree_release()).
1130 */
1131 err = clear_extent_bit(dirty_pages, start, end,
1132 EXTENT_NEED_WAIT, &cached_state);
1133 if (err == -ENOMEM)
1134 err = 0;
1135 if (!err)
1136 err = filemap_fdatawait_range(mapping, start, end);
1137 if (err)
1138 werr = err;
1139 free_extent_state(cached_state);
1140 cached_state = NULL;
1141 cond_resched();
1142 start = end + 1;
1143 }
1144 if (err)
1145 werr = err;
1146 return werr;
1147}
1148
1149static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1150 struct extent_io_tree *dirty_pages)
1151{
1152 bool errors = false;
1153 int err;
1154
1155 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1156 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1157 errors = true;
1158
1159 if (errors && !err)
1160 err = -EIO;
1161 return err;
1162}
1163
1164int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1165{
1166 struct btrfs_fs_info *fs_info = log_root->fs_info;
1167 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1168 bool errors = false;
1169 int err;
1170
1171 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1172
1173 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1174 if ((mark & EXTENT_DIRTY) &&
1175 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1176 errors = true;
1177
1178 if ((mark & EXTENT_NEW) &&
1179 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1180 errors = true;
1181
1182 if (errors && !err)
1183 err = -EIO;
1184 return err;
1185}
1186
1187/*
1188 * When btree blocks are allocated the corresponding extents are marked dirty.
1189 * This function ensures such extents are persisted on disk for transaction or
1190 * log commit.
1191 *
1192 * @trans: transaction whose dirty pages we'd like to write
1193 */
1194static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1195{
1196 int ret;
1197 int ret2;
1198 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1199 struct btrfs_fs_info *fs_info = trans->fs_info;
1200 struct blk_plug plug;
1201
1202 blk_start_plug(&plug);
1203 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1204 blk_finish_plug(&plug);
1205 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1206
1207 extent_io_tree_release(&trans->transaction->dirty_pages);
1208
1209 if (ret)
1210 return ret;
1211 else if (ret2)
1212 return ret2;
1213 else
1214 return 0;
1215}
1216
1217/*
1218 * this is used to update the root pointer in the tree of tree roots.
1219 *
1220 * But, in the case of the extent allocation tree, updating the root
1221 * pointer may allocate blocks which may change the root of the extent
1222 * allocation tree.
1223 *
1224 * So, this loops and repeats and makes sure the cowonly root didn't
1225 * change while the root pointer was being updated in the metadata.
1226 */
1227static int update_cowonly_root(struct btrfs_trans_handle *trans,
1228 struct btrfs_root *root)
1229{
1230 int ret;
1231 u64 old_root_bytenr;
1232 u64 old_root_used;
1233 struct btrfs_fs_info *fs_info = root->fs_info;
1234 struct btrfs_root *tree_root = fs_info->tree_root;
1235
1236 old_root_used = btrfs_root_used(&root->root_item);
1237
1238 while (1) {
1239 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1240 if (old_root_bytenr == root->node->start &&
1241 old_root_used == btrfs_root_used(&root->root_item))
1242 break;
1243
1244 btrfs_set_root_node(&root->root_item, root->node);
1245 ret = btrfs_update_root(trans, tree_root,
1246 &root->root_key,
1247 &root->root_item);
1248 if (ret)
1249 return ret;
1250
1251 old_root_used = btrfs_root_used(&root->root_item);
1252 }
1253
1254 return 0;
1255}
1256
1257/*
1258 * update all the cowonly tree roots on disk
1259 *
1260 * The error handling in this function may not be obvious. Any of the
1261 * failures will cause the file system to go offline. We still need
1262 * to clean up the delayed refs.
1263 */
1264static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1265{
1266 struct btrfs_fs_info *fs_info = trans->fs_info;
1267 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1268 struct list_head *io_bgs = &trans->transaction->io_bgs;
1269 struct list_head *next;
1270 struct extent_buffer *eb;
1271 int ret;
1272
1273 /*
1274 * At this point no one can be using this transaction to modify any tree
1275 * and no one can start another transaction to modify any tree either.
1276 */
1277 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1278
1279 eb = btrfs_lock_root_node(fs_info->tree_root);
1280 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1281 0, &eb, BTRFS_NESTING_COW);
1282 btrfs_tree_unlock(eb);
1283 free_extent_buffer(eb);
1284
1285 if (ret)
1286 return ret;
1287
1288 ret = btrfs_run_dev_stats(trans);
1289 if (ret)
1290 return ret;
1291 ret = btrfs_run_dev_replace(trans);
1292 if (ret)
1293 return ret;
1294 ret = btrfs_run_qgroups(trans);
1295 if (ret)
1296 return ret;
1297
1298 ret = btrfs_setup_space_cache(trans);
1299 if (ret)
1300 return ret;
1301
1302again:
1303 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1304 struct btrfs_root *root;
1305 next = fs_info->dirty_cowonly_roots.next;
1306 list_del_init(next);
1307 root = list_entry(next, struct btrfs_root, dirty_list);
1308 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1309
1310 list_add_tail(&root->dirty_list,
1311 &trans->transaction->switch_commits);
1312 ret = update_cowonly_root(trans, root);
1313 if (ret)
1314 return ret;
1315 }
1316
1317 /* Now flush any delayed refs generated by updating all of the roots */
1318 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1319 if (ret)
1320 return ret;
1321
1322 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1323 ret = btrfs_write_dirty_block_groups(trans);
1324 if (ret)
1325 return ret;
1326
1327 /*
1328 * We're writing the dirty block groups, which could generate
1329 * delayed refs, which could generate more dirty block groups,
1330 * so we want to keep this flushing in this loop to make sure
1331 * everything gets run.
1332 */
1333 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1334 if (ret)
1335 return ret;
1336 }
1337
1338 if (!list_empty(&fs_info->dirty_cowonly_roots))
1339 goto again;
1340
1341 /* Update dev-replace pointer once everything is committed */
1342 fs_info->dev_replace.committed_cursor_left =
1343 fs_info->dev_replace.cursor_left_last_write_of_item;
1344
1345 return 0;
1346}
1347
1348/*
1349 * If we had a pending drop we need to see if there are any others left in our
1350 * dead roots list, and if not clear our bit and wake any waiters.
1351 */
1352void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1353{
1354 /*
1355 * We put the drop in progress roots at the front of the list, so if the
1356 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1357 * up.
1358 */
1359 spin_lock(&fs_info->trans_lock);
1360 if (!list_empty(&fs_info->dead_roots)) {
1361 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1362 struct btrfs_root,
1363 root_list);
1364 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1365 spin_unlock(&fs_info->trans_lock);
1366 return;
1367 }
1368 }
1369 spin_unlock(&fs_info->trans_lock);
1370
1371 btrfs_wake_unfinished_drop(fs_info);
1372}
1373
1374/*
1375 * dead roots are old snapshots that need to be deleted. This allocates
1376 * a dirty root struct and adds it into the list of dead roots that need to
1377 * be deleted
1378 */
1379void btrfs_add_dead_root(struct btrfs_root *root)
1380{
1381 struct btrfs_fs_info *fs_info = root->fs_info;
1382
1383 spin_lock(&fs_info->trans_lock);
1384 if (list_empty(&root->root_list)) {
1385 btrfs_grab_root(root);
1386
1387 /* We want to process the partially complete drops first. */
1388 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1389 list_add(&root->root_list, &fs_info->dead_roots);
1390 else
1391 list_add_tail(&root->root_list, &fs_info->dead_roots);
1392 }
1393 spin_unlock(&fs_info->trans_lock);
1394}
1395
1396/*
1397 * Update each subvolume root and its relocation root, if it exists, in the tree
1398 * of tree roots. Also free log roots if they exist.
1399 */
1400static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1401{
1402 struct btrfs_fs_info *fs_info = trans->fs_info;
1403 struct btrfs_root *gang[8];
1404 int i;
1405 int ret;
1406
1407 /*
1408 * At this point no one can be using this transaction to modify any tree
1409 * and no one can start another transaction to modify any tree either.
1410 */
1411 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1412
1413 spin_lock(&fs_info->fs_roots_radix_lock);
1414 while (1) {
1415 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1416 (void **)gang, 0,
1417 ARRAY_SIZE(gang),
1418 BTRFS_ROOT_TRANS_TAG);
1419 if (ret == 0)
1420 break;
1421 for (i = 0; i < ret; i++) {
1422 struct btrfs_root *root = gang[i];
1423 int ret2;
1424
1425 /*
1426 * At this point we can neither have tasks logging inodes
1427 * from a root nor trying to commit a log tree.
1428 */
1429 ASSERT(atomic_read(&root->log_writers) == 0);
1430 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1431 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1432
1433 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1434 (unsigned long)root->root_key.objectid,
1435 BTRFS_ROOT_TRANS_TAG);
1436 spin_unlock(&fs_info->fs_roots_radix_lock);
1437
1438 btrfs_free_log(trans, root);
1439 ret2 = btrfs_update_reloc_root(trans, root);
1440 if (ret2)
1441 return ret2;
1442
1443 /* see comments in should_cow_block() */
1444 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1445 smp_mb__after_atomic();
1446
1447 if (root->commit_root != root->node) {
1448 list_add_tail(&root->dirty_list,
1449 &trans->transaction->switch_commits);
1450 btrfs_set_root_node(&root->root_item,
1451 root->node);
1452 }
1453
1454 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1455 &root->root_key,
1456 &root->root_item);
1457 if (ret2)
1458 return ret2;
1459 spin_lock(&fs_info->fs_roots_radix_lock);
1460 btrfs_qgroup_free_meta_all_pertrans(root);
1461 }
1462 }
1463 spin_unlock(&fs_info->fs_roots_radix_lock);
1464 return 0;
1465}
1466
1467/*
1468 * defrag a given btree.
1469 * Every leaf in the btree is read and defragged.
1470 */
1471int btrfs_defrag_root(struct btrfs_root *root)
1472{
1473 struct btrfs_fs_info *info = root->fs_info;
1474 struct btrfs_trans_handle *trans;
1475 int ret;
1476
1477 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1478 return 0;
1479
1480 while (1) {
1481 trans = btrfs_start_transaction(root, 0);
1482 if (IS_ERR(trans)) {
1483 ret = PTR_ERR(trans);
1484 break;
1485 }
1486
1487 ret = btrfs_defrag_leaves(trans, root);
1488
1489 btrfs_end_transaction(trans);
1490 btrfs_btree_balance_dirty(info);
1491 cond_resched();
1492
1493 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1494 break;
1495
1496 if (btrfs_defrag_cancelled(info)) {
1497 btrfs_debug(info, "defrag_root cancelled");
1498 ret = -EAGAIN;
1499 break;
1500 }
1501 }
1502 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1503 return ret;
1504}
1505
1506/*
1507 * Do all special snapshot related qgroup dirty hack.
1508 *
1509 * Will do all needed qgroup inherit and dirty hack like switch commit
1510 * roots inside one transaction and write all btree into disk, to make
1511 * qgroup works.
1512 */
1513static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *src,
1515 struct btrfs_root *parent,
1516 struct btrfs_qgroup_inherit *inherit,
1517 u64 dst_objectid)
1518{
1519 struct btrfs_fs_info *fs_info = src->fs_info;
1520 int ret;
1521
1522 /*
1523 * Save some performance in the case that qgroups are not
1524 * enabled. If this check races with the ioctl, rescan will
1525 * kick in anyway.
1526 */
1527 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1528 return 0;
1529
1530 /*
1531 * Ensure dirty @src will be committed. Or, after coming
1532 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1533 * recorded root will never be updated again, causing an outdated root
1534 * item.
1535 */
1536 ret = record_root_in_trans(trans, src, 1);
1537 if (ret)
1538 return ret;
1539
1540 /*
1541 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1542 * src root, so we must run the delayed refs here.
1543 *
1544 * However this isn't particularly fool proof, because there's no
1545 * synchronization keeping us from changing the tree after this point
1546 * before we do the qgroup_inherit, or even from making changes while
1547 * we're doing the qgroup_inherit. But that's a problem for the future,
1548 * for now flush the delayed refs to narrow the race window where the
1549 * qgroup counters could end up wrong.
1550 */
1551 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1552 if (ret) {
1553 btrfs_abort_transaction(trans, ret);
1554 return ret;
1555 }
1556
1557 ret = commit_fs_roots(trans);
1558 if (ret)
1559 goto out;
1560 ret = btrfs_qgroup_account_extents(trans);
1561 if (ret < 0)
1562 goto out;
1563
1564 /* Now qgroup are all updated, we can inherit it to new qgroups */
1565 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1566 inherit);
1567 if (ret < 0)
1568 goto out;
1569
1570 /*
1571 * Now we do a simplified commit transaction, which will:
1572 * 1) commit all subvolume and extent tree
1573 * To ensure all subvolume and extent tree have a valid
1574 * commit_root to accounting later insert_dir_item()
1575 * 2) write all btree blocks onto disk
1576 * This is to make sure later btree modification will be cowed
1577 * Or commit_root can be populated and cause wrong qgroup numbers
1578 * In this simplified commit, we don't really care about other trees
1579 * like chunk and root tree, as they won't affect qgroup.
1580 * And we don't write super to avoid half committed status.
1581 */
1582 ret = commit_cowonly_roots(trans);
1583 if (ret)
1584 goto out;
1585 switch_commit_roots(trans);
1586 ret = btrfs_write_and_wait_transaction(trans);
1587 if (ret)
1588 btrfs_handle_fs_error(fs_info, ret,
1589 "Error while writing out transaction for qgroup");
1590
1591out:
1592 /*
1593 * Force parent root to be updated, as we recorded it before so its
1594 * last_trans == cur_transid.
1595 * Or it won't be committed again onto disk after later
1596 * insert_dir_item()
1597 */
1598 if (!ret)
1599 ret = record_root_in_trans(trans, parent, 1);
1600 return ret;
1601}
1602
1603/*
1604 * new snapshots need to be created at a very specific time in the
1605 * transaction commit. This does the actual creation.
1606 *
1607 * Note:
1608 * If the error which may affect the commitment of the current transaction
1609 * happens, we should return the error number. If the error which just affect
1610 * the creation of the pending snapshots, just return 0.
1611 */
1612static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1613 struct btrfs_pending_snapshot *pending)
1614{
1615
1616 struct btrfs_fs_info *fs_info = trans->fs_info;
1617 struct btrfs_key key;
1618 struct btrfs_root_item *new_root_item;
1619 struct btrfs_root *tree_root = fs_info->tree_root;
1620 struct btrfs_root *root = pending->root;
1621 struct btrfs_root *parent_root;
1622 struct btrfs_block_rsv *rsv;
1623 struct inode *parent_inode = pending->dir;
1624 struct btrfs_path *path;
1625 struct btrfs_dir_item *dir_item;
1626 struct extent_buffer *tmp;
1627 struct extent_buffer *old;
1628 struct timespec64 cur_time;
1629 int ret = 0;
1630 u64 to_reserve = 0;
1631 u64 index = 0;
1632 u64 objectid;
1633 u64 root_flags;
1634 unsigned int nofs_flags;
1635 struct fscrypt_name fname;
1636
1637 ASSERT(pending->path);
1638 path = pending->path;
1639
1640 ASSERT(pending->root_item);
1641 new_root_item = pending->root_item;
1642
1643 /*
1644 * We're inside a transaction and must make sure that any potential
1645 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1646 * filesystem.
1647 */
1648 nofs_flags = memalloc_nofs_save();
1649 pending->error = fscrypt_setup_filename(parent_inode,
1650 &pending->dentry->d_name, 0,
1651 &fname);
1652 memalloc_nofs_restore(nofs_flags);
1653 if (pending->error)
1654 goto free_pending;
1655
1656 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1657 if (pending->error)
1658 goto free_fname;
1659
1660 /*
1661 * Make qgroup to skip current new snapshot's qgroupid, as it is
1662 * accounted by later btrfs_qgroup_inherit().
1663 */
1664 btrfs_set_skip_qgroup(trans, objectid);
1665
1666 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1667
1668 if (to_reserve > 0) {
1669 pending->error = btrfs_block_rsv_add(fs_info,
1670 &pending->block_rsv,
1671 to_reserve,
1672 BTRFS_RESERVE_NO_FLUSH);
1673 if (pending->error)
1674 goto clear_skip_qgroup;
1675 }
1676
1677 key.objectid = objectid;
1678 key.offset = (u64)-1;
1679 key.type = BTRFS_ROOT_ITEM_KEY;
1680
1681 rsv = trans->block_rsv;
1682 trans->block_rsv = &pending->block_rsv;
1683 trans->bytes_reserved = trans->block_rsv->reserved;
1684 trace_btrfs_space_reservation(fs_info, "transaction",
1685 trans->transid,
1686 trans->bytes_reserved, 1);
1687 parent_root = BTRFS_I(parent_inode)->root;
1688 ret = record_root_in_trans(trans, parent_root, 0);
1689 if (ret)
1690 goto fail;
1691 cur_time = current_time(parent_inode);
1692
1693 /*
1694 * insert the directory item
1695 */
1696 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1697 BUG_ON(ret); /* -ENOMEM */
1698
1699 /* check if there is a file/dir which has the same name. */
1700 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1701 btrfs_ino(BTRFS_I(parent_inode)),
1702 &fname.disk_name, 0);
1703 if (dir_item != NULL && !IS_ERR(dir_item)) {
1704 pending->error = -EEXIST;
1705 goto dir_item_existed;
1706 } else if (IS_ERR(dir_item)) {
1707 ret = PTR_ERR(dir_item);
1708 btrfs_abort_transaction(trans, ret);
1709 goto fail;
1710 }
1711 btrfs_release_path(path);
1712
1713 /*
1714 * pull in the delayed directory update
1715 * and the delayed inode item
1716 * otherwise we corrupt the FS during
1717 * snapshot
1718 */
1719 ret = btrfs_run_delayed_items(trans);
1720 if (ret) { /* Transaction aborted */
1721 btrfs_abort_transaction(trans, ret);
1722 goto fail;
1723 }
1724
1725 ret = record_root_in_trans(trans, root, 0);
1726 if (ret) {
1727 btrfs_abort_transaction(trans, ret);
1728 goto fail;
1729 }
1730 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1731 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1732 btrfs_check_and_init_root_item(new_root_item);
1733
1734 root_flags = btrfs_root_flags(new_root_item);
1735 if (pending->readonly)
1736 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1737 else
1738 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1739 btrfs_set_root_flags(new_root_item, root_flags);
1740
1741 btrfs_set_root_generation_v2(new_root_item,
1742 trans->transid);
1743 generate_random_guid(new_root_item->uuid);
1744 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1745 BTRFS_UUID_SIZE);
1746 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1747 memset(new_root_item->received_uuid, 0,
1748 sizeof(new_root_item->received_uuid));
1749 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1750 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1751 btrfs_set_root_stransid(new_root_item, 0);
1752 btrfs_set_root_rtransid(new_root_item, 0);
1753 }
1754 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1755 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1756 btrfs_set_root_otransid(new_root_item, trans->transid);
1757
1758 old = btrfs_lock_root_node(root);
1759 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1760 BTRFS_NESTING_COW);
1761 if (ret) {
1762 btrfs_tree_unlock(old);
1763 free_extent_buffer(old);
1764 btrfs_abort_transaction(trans, ret);
1765 goto fail;
1766 }
1767
1768 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1769 /* clean up in any case */
1770 btrfs_tree_unlock(old);
1771 free_extent_buffer(old);
1772 if (ret) {
1773 btrfs_abort_transaction(trans, ret);
1774 goto fail;
1775 }
1776 /* see comments in should_cow_block() */
1777 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1778 smp_wmb();
1779
1780 btrfs_set_root_node(new_root_item, tmp);
1781 /* record when the snapshot was created in key.offset */
1782 key.offset = trans->transid;
1783 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1784 btrfs_tree_unlock(tmp);
1785 free_extent_buffer(tmp);
1786 if (ret) {
1787 btrfs_abort_transaction(trans, ret);
1788 goto fail;
1789 }
1790
1791 /*
1792 * insert root back/forward references
1793 */
1794 ret = btrfs_add_root_ref(trans, objectid,
1795 parent_root->root_key.objectid,
1796 btrfs_ino(BTRFS_I(parent_inode)), index,
1797 &fname.disk_name);
1798 if (ret) {
1799 btrfs_abort_transaction(trans, ret);
1800 goto fail;
1801 }
1802
1803 key.offset = (u64)-1;
1804 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1805 if (IS_ERR(pending->snap)) {
1806 ret = PTR_ERR(pending->snap);
1807 pending->snap = NULL;
1808 btrfs_abort_transaction(trans, ret);
1809 goto fail;
1810 }
1811
1812 ret = btrfs_reloc_post_snapshot(trans, pending);
1813 if (ret) {
1814 btrfs_abort_transaction(trans, ret);
1815 goto fail;
1816 }
1817
1818 /*
1819 * Do special qgroup accounting for snapshot, as we do some qgroup
1820 * snapshot hack to do fast snapshot.
1821 * To co-operate with that hack, we do hack again.
1822 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1823 */
1824 ret = qgroup_account_snapshot(trans, root, parent_root,
1825 pending->inherit, objectid);
1826 if (ret < 0)
1827 goto fail;
1828
1829 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1830 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1831 index);
1832 /* We have check then name at the beginning, so it is impossible. */
1833 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1834 if (ret) {
1835 btrfs_abort_transaction(trans, ret);
1836 goto fail;
1837 }
1838
1839 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1840 fname.disk_name.len * 2);
1841 parent_inode->i_mtime = current_time(parent_inode);
1842 parent_inode->i_ctime = parent_inode->i_mtime;
1843 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1844 if (ret) {
1845 btrfs_abort_transaction(trans, ret);
1846 goto fail;
1847 }
1848 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1849 BTRFS_UUID_KEY_SUBVOL,
1850 objectid);
1851 if (ret) {
1852 btrfs_abort_transaction(trans, ret);
1853 goto fail;
1854 }
1855 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1856 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1857 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1858 objectid);
1859 if (ret && ret != -EEXIST) {
1860 btrfs_abort_transaction(trans, ret);
1861 goto fail;
1862 }
1863 }
1864
1865fail:
1866 pending->error = ret;
1867dir_item_existed:
1868 trans->block_rsv = rsv;
1869 trans->bytes_reserved = 0;
1870clear_skip_qgroup:
1871 btrfs_clear_skip_qgroup(trans);
1872free_fname:
1873 fscrypt_free_filename(&fname);
1874free_pending:
1875 kfree(new_root_item);
1876 pending->root_item = NULL;
1877 btrfs_free_path(path);
1878 pending->path = NULL;
1879
1880 return ret;
1881}
1882
1883/*
1884 * create all the snapshots we've scheduled for creation
1885 */
1886static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1887{
1888 struct btrfs_pending_snapshot *pending, *next;
1889 struct list_head *head = &trans->transaction->pending_snapshots;
1890 int ret = 0;
1891
1892 list_for_each_entry_safe(pending, next, head, list) {
1893 list_del(&pending->list);
1894 ret = create_pending_snapshot(trans, pending);
1895 if (ret)
1896 break;
1897 }
1898 return ret;
1899}
1900
1901static void update_super_roots(struct btrfs_fs_info *fs_info)
1902{
1903 struct btrfs_root_item *root_item;
1904 struct btrfs_super_block *super;
1905
1906 super = fs_info->super_copy;
1907
1908 root_item = &fs_info->chunk_root->root_item;
1909 super->chunk_root = root_item->bytenr;
1910 super->chunk_root_generation = root_item->generation;
1911 super->chunk_root_level = root_item->level;
1912
1913 root_item = &fs_info->tree_root->root_item;
1914 super->root = root_item->bytenr;
1915 super->generation = root_item->generation;
1916 super->root_level = root_item->level;
1917 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1918 super->cache_generation = root_item->generation;
1919 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1920 super->cache_generation = 0;
1921 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1922 super->uuid_tree_generation = root_item->generation;
1923}
1924
1925int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1926{
1927 struct btrfs_transaction *trans;
1928 int ret = 0;
1929
1930 spin_lock(&info->trans_lock);
1931 trans = info->running_transaction;
1932 if (trans)
1933 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1934 spin_unlock(&info->trans_lock);
1935 return ret;
1936}
1937
1938int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1939{
1940 struct btrfs_transaction *trans;
1941 int ret = 0;
1942
1943 spin_lock(&info->trans_lock);
1944 trans = info->running_transaction;
1945 if (trans)
1946 ret = is_transaction_blocked(trans);
1947 spin_unlock(&info->trans_lock);
1948 return ret;
1949}
1950
1951void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1952{
1953 struct btrfs_fs_info *fs_info = trans->fs_info;
1954 struct btrfs_transaction *cur_trans;
1955
1956 /* Kick the transaction kthread. */
1957 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1958 wake_up_process(fs_info->transaction_kthread);
1959
1960 /* take transaction reference */
1961 cur_trans = trans->transaction;
1962 refcount_inc(&cur_trans->use_count);
1963
1964 btrfs_end_transaction(trans);
1965
1966 /*
1967 * Wait for the current transaction commit to start and block
1968 * subsequent transaction joins
1969 */
1970 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1971 wait_event(fs_info->transaction_blocked_wait,
1972 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1973 TRANS_ABORTED(cur_trans));
1974 btrfs_put_transaction(cur_trans);
1975}
1976
1977static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1978{
1979 struct btrfs_fs_info *fs_info = trans->fs_info;
1980 struct btrfs_transaction *cur_trans = trans->transaction;
1981
1982 WARN_ON(refcount_read(&trans->use_count) > 1);
1983
1984 btrfs_abort_transaction(trans, err);
1985
1986 spin_lock(&fs_info->trans_lock);
1987
1988 /*
1989 * If the transaction is removed from the list, it means this
1990 * transaction has been committed successfully, so it is impossible
1991 * to call the cleanup function.
1992 */
1993 BUG_ON(list_empty(&cur_trans->list));
1994
1995 if (cur_trans == fs_info->running_transaction) {
1996 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1997 spin_unlock(&fs_info->trans_lock);
1998
1999 /*
2000 * The thread has already released the lockdep map as reader
2001 * already in btrfs_commit_transaction().
2002 */
2003 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2004 wait_event(cur_trans->writer_wait,
2005 atomic_read(&cur_trans->num_writers) == 1);
2006
2007 spin_lock(&fs_info->trans_lock);
2008 }
2009
2010 /*
2011 * Now that we know no one else is still using the transaction we can
2012 * remove the transaction from the list of transactions. This avoids
2013 * the transaction kthread from cleaning up the transaction while some
2014 * other task is still using it, which could result in a use-after-free
2015 * on things like log trees, as it forces the transaction kthread to
2016 * wait for this transaction to be cleaned up by us.
2017 */
2018 list_del_init(&cur_trans->list);
2019
2020 spin_unlock(&fs_info->trans_lock);
2021
2022 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2023
2024 spin_lock(&fs_info->trans_lock);
2025 if (cur_trans == fs_info->running_transaction)
2026 fs_info->running_transaction = NULL;
2027 spin_unlock(&fs_info->trans_lock);
2028
2029 if (trans->type & __TRANS_FREEZABLE)
2030 sb_end_intwrite(fs_info->sb);
2031 btrfs_put_transaction(cur_trans);
2032 btrfs_put_transaction(cur_trans);
2033
2034 trace_btrfs_transaction_commit(fs_info);
2035
2036 if (current->journal_info == trans)
2037 current->journal_info = NULL;
2038 btrfs_scrub_cancel(fs_info);
2039
2040 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2041}
2042
2043/*
2044 * Release reserved delayed ref space of all pending block groups of the
2045 * transaction and remove them from the list
2046 */
2047static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2048{
2049 struct btrfs_fs_info *fs_info = trans->fs_info;
2050 struct btrfs_block_group *block_group, *tmp;
2051
2052 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2053 btrfs_delayed_refs_rsv_release(fs_info, 1);
2054 list_del_init(&block_group->bg_list);
2055 }
2056}
2057
2058static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2059{
2060 /*
2061 * We use try_to_writeback_inodes_sb() here because if we used
2062 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2063 * Currently are holding the fs freeze lock, if we do an async flush
2064 * we'll do btrfs_join_transaction() and deadlock because we need to
2065 * wait for the fs freeze lock. Using the direct flushing we benefit
2066 * from already being in a transaction and our join_transaction doesn't
2067 * have to re-take the fs freeze lock.
2068 *
2069 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2070 * if it can read lock sb->s_umount. It will always be able to lock it,
2071 * except when the filesystem is being unmounted or being frozen, but in
2072 * those cases sync_filesystem() is called, which results in calling
2073 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2074 * Note that we don't call writeback_inodes_sb() directly, because it
2075 * will emit a warning if sb->s_umount is not locked.
2076 */
2077 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2078 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2079 return 0;
2080}
2081
2082static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2083{
2084 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2085 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2086}
2087
2088/*
2089 * Add a pending snapshot associated with the given transaction handle to the
2090 * respective handle. This must be called after the transaction commit started
2091 * and while holding fs_info->trans_lock.
2092 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2093 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2094 * returns an error.
2095 */
2096static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2097{
2098 struct btrfs_transaction *cur_trans = trans->transaction;
2099
2100 if (!trans->pending_snapshot)
2101 return;
2102
2103 lockdep_assert_held(&trans->fs_info->trans_lock);
2104 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2105
2106 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2107}
2108
2109static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2110{
2111 fs_info->commit_stats.commit_count++;
2112 fs_info->commit_stats.last_commit_dur = interval;
2113 fs_info->commit_stats.max_commit_dur =
2114 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2115 fs_info->commit_stats.total_commit_dur += interval;
2116}
2117
2118int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2119{
2120 struct btrfs_fs_info *fs_info = trans->fs_info;
2121 struct btrfs_transaction *cur_trans = trans->transaction;
2122 struct btrfs_transaction *prev_trans = NULL;
2123 int ret;
2124 ktime_t start_time;
2125 ktime_t interval;
2126
2127 ASSERT(refcount_read(&trans->use_count) == 1);
2128 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2129
2130 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2131
2132 /* Stop the commit early if ->aborted is set */
2133 if (TRANS_ABORTED(cur_trans)) {
2134 ret = cur_trans->aborted;
2135 goto lockdep_trans_commit_start_release;
2136 }
2137
2138 btrfs_trans_release_metadata(trans);
2139 trans->block_rsv = NULL;
2140
2141 /*
2142 * We only want one transaction commit doing the flushing so we do not
2143 * waste a bunch of time on lock contention on the extent root node.
2144 */
2145 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2146 &cur_trans->delayed_refs.flags)) {
2147 /*
2148 * Make a pass through all the delayed refs we have so far.
2149 * Any running threads may add more while we are here.
2150 */
2151 ret = btrfs_run_delayed_refs(trans, 0);
2152 if (ret)
2153 goto lockdep_trans_commit_start_release;
2154 }
2155
2156 btrfs_create_pending_block_groups(trans);
2157
2158 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2159 int run_it = 0;
2160
2161 /* this mutex is also taken before trying to set
2162 * block groups readonly. We need to make sure
2163 * that nobody has set a block group readonly
2164 * after a extents from that block group have been
2165 * allocated for cache files. btrfs_set_block_group_ro
2166 * will wait for the transaction to commit if it
2167 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2168 *
2169 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2170 * only one process starts all the block group IO. It wouldn't
2171 * hurt to have more than one go through, but there's no
2172 * real advantage to it either.
2173 */
2174 mutex_lock(&fs_info->ro_block_group_mutex);
2175 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2176 &cur_trans->flags))
2177 run_it = 1;
2178 mutex_unlock(&fs_info->ro_block_group_mutex);
2179
2180 if (run_it) {
2181 ret = btrfs_start_dirty_block_groups(trans);
2182 if (ret)
2183 goto lockdep_trans_commit_start_release;
2184 }
2185 }
2186
2187 spin_lock(&fs_info->trans_lock);
2188 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2189 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2190
2191 add_pending_snapshot(trans);
2192
2193 spin_unlock(&fs_info->trans_lock);
2194 refcount_inc(&cur_trans->use_count);
2195
2196 if (trans->in_fsync)
2197 want_state = TRANS_STATE_SUPER_COMMITTED;
2198
2199 btrfs_trans_state_lockdep_release(fs_info,
2200 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2201 ret = btrfs_end_transaction(trans);
2202 wait_for_commit(cur_trans, want_state);
2203
2204 if (TRANS_ABORTED(cur_trans))
2205 ret = cur_trans->aborted;
2206
2207 btrfs_put_transaction(cur_trans);
2208
2209 return ret;
2210 }
2211
2212 cur_trans->state = TRANS_STATE_COMMIT_START;
2213 wake_up(&fs_info->transaction_blocked_wait);
2214 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2215
2216 if (cur_trans->list.prev != &fs_info->trans_list) {
2217 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2218
2219 if (trans->in_fsync)
2220 want_state = TRANS_STATE_SUPER_COMMITTED;
2221
2222 prev_trans = list_entry(cur_trans->list.prev,
2223 struct btrfs_transaction, list);
2224 if (prev_trans->state < want_state) {
2225 refcount_inc(&prev_trans->use_count);
2226 spin_unlock(&fs_info->trans_lock);
2227
2228 wait_for_commit(prev_trans, want_state);
2229
2230 ret = READ_ONCE(prev_trans->aborted);
2231
2232 btrfs_put_transaction(prev_trans);
2233 if (ret)
2234 goto lockdep_release;
2235 } else {
2236 spin_unlock(&fs_info->trans_lock);
2237 }
2238 } else {
2239 spin_unlock(&fs_info->trans_lock);
2240 /*
2241 * The previous transaction was aborted and was already removed
2242 * from the list of transactions at fs_info->trans_list. So we
2243 * abort to prevent writing a new superblock that reflects a
2244 * corrupt state (pointing to trees with unwritten nodes/leafs).
2245 */
2246 if (BTRFS_FS_ERROR(fs_info)) {
2247 ret = -EROFS;
2248 goto lockdep_release;
2249 }
2250 }
2251
2252 /*
2253 * Get the time spent on the work done by the commit thread and not
2254 * the time spent waiting on a previous commit
2255 */
2256 start_time = ktime_get_ns();
2257
2258 extwriter_counter_dec(cur_trans, trans->type);
2259
2260 ret = btrfs_start_delalloc_flush(fs_info);
2261 if (ret)
2262 goto lockdep_release;
2263
2264 ret = btrfs_run_delayed_items(trans);
2265 if (ret)
2266 goto lockdep_release;
2267
2268 /*
2269 * The thread has started/joined the transaction thus it holds the
2270 * lockdep map as a reader. It has to release it before acquiring the
2271 * lockdep map as a writer.
2272 */
2273 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2274 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2275 wait_event(cur_trans->writer_wait,
2276 extwriter_counter_read(cur_trans) == 0);
2277
2278 /* some pending stuffs might be added after the previous flush. */
2279 ret = btrfs_run_delayed_items(trans);
2280 if (ret) {
2281 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2282 goto cleanup_transaction;
2283 }
2284
2285 btrfs_wait_delalloc_flush(fs_info);
2286
2287 /*
2288 * Wait for all ordered extents started by a fast fsync that joined this
2289 * transaction. Otherwise if this transaction commits before the ordered
2290 * extents complete we lose logged data after a power failure.
2291 */
2292 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2293 wait_event(cur_trans->pending_wait,
2294 atomic_read(&cur_trans->pending_ordered) == 0);
2295
2296 btrfs_scrub_pause(fs_info);
2297 /*
2298 * Ok now we need to make sure to block out any other joins while we
2299 * commit the transaction. We could have started a join before setting
2300 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2301 */
2302 spin_lock(&fs_info->trans_lock);
2303 add_pending_snapshot(trans);
2304 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2305 spin_unlock(&fs_info->trans_lock);
2306
2307 /*
2308 * The thread has started/joined the transaction thus it holds the
2309 * lockdep map as a reader. It has to release it before acquiring the
2310 * lockdep map as a writer.
2311 */
2312 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2313 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2314 wait_event(cur_trans->writer_wait,
2315 atomic_read(&cur_trans->num_writers) == 1);
2316
2317 /*
2318 * Make lockdep happy by acquiring the state locks after
2319 * btrfs_trans_num_writers is released. If we acquired the state locks
2320 * before releasing the btrfs_trans_num_writers lock then lockdep would
2321 * complain because we did not follow the reverse order unlocking rule.
2322 */
2323 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2324 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2325 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2326
2327 /*
2328 * We've started the commit, clear the flag in case we were triggered to
2329 * do an async commit but somebody else started before the transaction
2330 * kthread could do the work.
2331 */
2332 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2333
2334 if (TRANS_ABORTED(cur_trans)) {
2335 ret = cur_trans->aborted;
2336 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2337 goto scrub_continue;
2338 }
2339 /*
2340 * the reloc mutex makes sure that we stop
2341 * the balancing code from coming in and moving
2342 * extents around in the middle of the commit
2343 */
2344 mutex_lock(&fs_info->reloc_mutex);
2345
2346 /*
2347 * We needn't worry about the delayed items because we will
2348 * deal with them in create_pending_snapshot(), which is the
2349 * core function of the snapshot creation.
2350 */
2351 ret = create_pending_snapshots(trans);
2352 if (ret)
2353 goto unlock_reloc;
2354
2355 /*
2356 * We insert the dir indexes of the snapshots and update the inode
2357 * of the snapshots' parents after the snapshot creation, so there
2358 * are some delayed items which are not dealt with. Now deal with
2359 * them.
2360 *
2361 * We needn't worry that this operation will corrupt the snapshots,
2362 * because all the tree which are snapshoted will be forced to COW
2363 * the nodes and leaves.
2364 */
2365 ret = btrfs_run_delayed_items(trans);
2366 if (ret)
2367 goto unlock_reloc;
2368
2369 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2370 if (ret)
2371 goto unlock_reloc;
2372
2373 /*
2374 * make sure none of the code above managed to slip in a
2375 * delayed item
2376 */
2377 btrfs_assert_delayed_root_empty(fs_info);
2378
2379 WARN_ON(cur_trans != trans->transaction);
2380
2381 ret = commit_fs_roots(trans);
2382 if (ret)
2383 goto unlock_reloc;
2384
2385 /* commit_fs_roots gets rid of all the tree log roots, it is now
2386 * safe to free the root of tree log roots
2387 */
2388 btrfs_free_log_root_tree(trans, fs_info);
2389
2390 /*
2391 * Since fs roots are all committed, we can get a quite accurate
2392 * new_roots. So let's do quota accounting.
2393 */
2394 ret = btrfs_qgroup_account_extents(trans);
2395 if (ret < 0)
2396 goto unlock_reloc;
2397
2398 ret = commit_cowonly_roots(trans);
2399 if (ret)
2400 goto unlock_reloc;
2401
2402 /*
2403 * The tasks which save the space cache and inode cache may also
2404 * update ->aborted, check it.
2405 */
2406 if (TRANS_ABORTED(cur_trans)) {
2407 ret = cur_trans->aborted;
2408 goto unlock_reloc;
2409 }
2410
2411 cur_trans = fs_info->running_transaction;
2412
2413 btrfs_set_root_node(&fs_info->tree_root->root_item,
2414 fs_info->tree_root->node);
2415 list_add_tail(&fs_info->tree_root->dirty_list,
2416 &cur_trans->switch_commits);
2417
2418 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2419 fs_info->chunk_root->node);
2420 list_add_tail(&fs_info->chunk_root->dirty_list,
2421 &cur_trans->switch_commits);
2422
2423 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2424 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2425 fs_info->block_group_root->node);
2426 list_add_tail(&fs_info->block_group_root->dirty_list,
2427 &cur_trans->switch_commits);
2428 }
2429
2430 switch_commit_roots(trans);
2431
2432 ASSERT(list_empty(&cur_trans->dirty_bgs));
2433 ASSERT(list_empty(&cur_trans->io_bgs));
2434 update_super_roots(fs_info);
2435
2436 btrfs_set_super_log_root(fs_info->super_copy, 0);
2437 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2438 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2439 sizeof(*fs_info->super_copy));
2440
2441 btrfs_commit_device_sizes(cur_trans);
2442
2443 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2444 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2445
2446 btrfs_trans_release_chunk_metadata(trans);
2447
2448 /*
2449 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2450 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2451 * make sure that before we commit our superblock, no other task can
2452 * start a new transaction and commit a log tree before we commit our
2453 * superblock. Anyone trying to commit a log tree locks this mutex before
2454 * writing its superblock.
2455 */
2456 mutex_lock(&fs_info->tree_log_mutex);
2457
2458 spin_lock(&fs_info->trans_lock);
2459 cur_trans->state = TRANS_STATE_UNBLOCKED;
2460 fs_info->running_transaction = NULL;
2461 spin_unlock(&fs_info->trans_lock);
2462 mutex_unlock(&fs_info->reloc_mutex);
2463
2464 wake_up(&fs_info->transaction_wait);
2465 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2466
2467 ret = btrfs_write_and_wait_transaction(trans);
2468 if (ret) {
2469 btrfs_handle_fs_error(fs_info, ret,
2470 "Error while writing out transaction");
2471 mutex_unlock(&fs_info->tree_log_mutex);
2472 goto scrub_continue;
2473 }
2474
2475 /*
2476 * At this point, we should have written all the tree blocks allocated
2477 * in this transaction. So it's now safe to free the redirtyied extent
2478 * buffers.
2479 */
2480 btrfs_free_redirty_list(cur_trans);
2481
2482 ret = write_all_supers(fs_info, 0);
2483 /*
2484 * the super is written, we can safely allow the tree-loggers
2485 * to go about their business
2486 */
2487 mutex_unlock(&fs_info->tree_log_mutex);
2488 if (ret)
2489 goto scrub_continue;
2490
2491 /*
2492 * We needn't acquire the lock here because there is no other task
2493 * which can change it.
2494 */
2495 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2496 wake_up(&cur_trans->commit_wait);
2497 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2498
2499 btrfs_finish_extent_commit(trans);
2500
2501 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2502 btrfs_clear_space_info_full(fs_info);
2503
2504 fs_info->last_trans_committed = cur_trans->transid;
2505 /*
2506 * We needn't acquire the lock here because there is no other task
2507 * which can change it.
2508 */
2509 cur_trans->state = TRANS_STATE_COMPLETED;
2510 wake_up(&cur_trans->commit_wait);
2511 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2512
2513 spin_lock(&fs_info->trans_lock);
2514 list_del_init(&cur_trans->list);
2515 spin_unlock(&fs_info->trans_lock);
2516
2517 btrfs_put_transaction(cur_trans);
2518 btrfs_put_transaction(cur_trans);
2519
2520 if (trans->type & __TRANS_FREEZABLE)
2521 sb_end_intwrite(fs_info->sb);
2522
2523 trace_btrfs_transaction_commit(fs_info);
2524
2525 interval = ktime_get_ns() - start_time;
2526
2527 btrfs_scrub_continue(fs_info);
2528
2529 if (current->journal_info == trans)
2530 current->journal_info = NULL;
2531
2532 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2533
2534 update_commit_stats(fs_info, interval);
2535
2536 return ret;
2537
2538unlock_reloc:
2539 mutex_unlock(&fs_info->reloc_mutex);
2540 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2541scrub_continue:
2542 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2543 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2544 btrfs_scrub_continue(fs_info);
2545cleanup_transaction:
2546 btrfs_trans_release_metadata(trans);
2547 btrfs_cleanup_pending_block_groups(trans);
2548 btrfs_trans_release_chunk_metadata(trans);
2549 trans->block_rsv = NULL;
2550 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2551 if (current->journal_info == trans)
2552 current->journal_info = NULL;
2553 cleanup_transaction(trans, ret);
2554
2555 return ret;
2556
2557lockdep_release:
2558 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2559 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2560 goto cleanup_transaction;
2561
2562lockdep_trans_commit_start_release:
2563 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2564 btrfs_end_transaction(trans);
2565 return ret;
2566}
2567
2568/*
2569 * return < 0 if error
2570 * 0 if there are no more dead_roots at the time of call
2571 * 1 there are more to be processed, call me again
2572 *
2573 * The return value indicates there are certainly more snapshots to delete, but
2574 * if there comes a new one during processing, it may return 0. We don't mind,
2575 * because btrfs_commit_super will poke cleaner thread and it will process it a
2576 * few seconds later.
2577 */
2578int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2579{
2580 struct btrfs_root *root;
2581 int ret;
2582
2583 spin_lock(&fs_info->trans_lock);
2584 if (list_empty(&fs_info->dead_roots)) {
2585 spin_unlock(&fs_info->trans_lock);
2586 return 0;
2587 }
2588 root = list_first_entry(&fs_info->dead_roots,
2589 struct btrfs_root, root_list);
2590 list_del_init(&root->root_list);
2591 spin_unlock(&fs_info->trans_lock);
2592
2593 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2594
2595 btrfs_kill_all_delayed_nodes(root);
2596
2597 if (btrfs_header_backref_rev(root->node) <
2598 BTRFS_MIXED_BACKREF_REV)
2599 ret = btrfs_drop_snapshot(root, 0, 0);
2600 else
2601 ret = btrfs_drop_snapshot(root, 1, 0);
2602
2603 btrfs_put_root(root);
2604 return (ret < 0) ? 0 : 1;
2605}
2606
2607int __init btrfs_transaction_init(void)
2608{
2609 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2610 sizeof(struct btrfs_trans_handle), 0,
2611 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2612 if (!btrfs_trans_handle_cachep)
2613 return -ENOMEM;
2614 return 0;
2615}
2616
2617void __cold btrfs_transaction_exit(void)
2618{
2619 kmem_cache_destroy(btrfs_trans_handle_cachep);
2620}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/writeback.h>
11#include <linux/pagemap.h>
12#include <linux/blkdev.h>
13#include <linux/uuid.h>
14#include <linux/timekeeping.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "locking.h"
20#include "tree-log.h"
21#include "volumes.h"
22#include "dev-replace.h"
23#include "qgroup.h"
24#include "block-group.h"
25#include "space-info.h"
26#include "fs.h"
27#include "accessors.h"
28#include "extent-tree.h"
29#include "root-tree.h"
30#include "dir-item.h"
31#include "uuid-tree.h"
32#include "ioctl.h"
33#include "relocation.h"
34#include "scrub.h"
35
36static struct kmem_cache *btrfs_trans_handle_cachep;
37
38/*
39 * Transaction states and transitions
40 *
41 * No running transaction (fs tree blocks are not modified)
42 * |
43 * | To next stage:
44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45 * V
46 * Transaction N [[TRANS_STATE_RUNNING]]
47 * |
48 * | New trans handles can be attached to transaction N by calling all
49 * | start_transaction() variants.
50 * |
51 * | To next stage:
52 * | Call btrfs_commit_transaction() on any trans handle attached to
53 * | transaction N
54 * V
55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56 * |
57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58 * | the race and the rest will wait for the winner to commit the transaction.
59 * |
60 * | The winner will wait for previous running transaction to completely finish
61 * | if there is one.
62 * |
63 * Transaction N [[TRANS_STATE_COMMIT_START]]
64 * |
65 * | Then one of the following happens:
66 * | - Wait for all other trans handle holders to release.
67 * | The btrfs_commit_transaction() caller will do the commit work.
68 * | - Wait for current transaction to be committed by others.
69 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * |
71 * | At this stage, only btrfs_join_transaction*() variants can attach
72 * | to this running transaction.
73 * | All other variants will wait for current one to finish and attach to
74 * | transaction N+1.
75 * |
76 * | To next stage:
77 * | Caller is chosen to commit transaction N, and all other trans handle
78 * | haven been released.
79 * V
80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * |
82 * | The heavy lifting transaction work is started.
83 * | From running delayed refs (modifying extent tree) to creating pending
84 * | snapshots, running qgroups.
85 * | In short, modify supporting trees to reflect modifications of subvolume
86 * | trees.
87 * |
88 * | At this stage, all start_transaction() calls will wait for this
89 * | transaction to finish and attach to transaction N+1.
90 * |
91 * | To next stage:
92 * | Until all supporting trees are updated.
93 * V
94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | Transaction N+1
96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
97 * | need to write them back to disk and update |
98 * | super blocks. |
99 * | |
100 * | At this stage, new transaction is allowed to |
101 * | start. |
102 * | All new start_transaction() calls will be |
103 * | attached to transid N+1. |
104 * | |
105 * | To next stage: |
106 * | Until all tree blocks are super blocks are |
107 * | written to block devices |
108 * V |
109 * Transaction N [[TRANS_STATE_COMPLETED]] V
110 * All tree blocks and super blocks are written. Transaction N+1
111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
112 * data structures will be cleaned up. | Life goes on
113 */
114static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 [TRANS_STATE_RUNNING] = 0U,
116 [TRANS_STATE_COMMIT_PREP] = 0U,
117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
119 __TRANS_ATTACH |
120 __TRANS_JOIN |
121 __TRANS_JOIN_NOSTART),
122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOLOCK |
126 __TRANS_JOIN_NOSTART),
127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_ATTACH |
129 __TRANS_JOIN |
130 __TRANS_JOIN_NOLOCK |
131 __TRANS_JOIN_NOSTART),
132 [TRANS_STATE_COMPLETED] = (__TRANS_START |
133 __TRANS_ATTACH |
134 __TRANS_JOIN |
135 __TRANS_JOIN_NOLOCK |
136 __TRANS_JOIN_NOSTART),
137};
138
139void btrfs_put_transaction(struct btrfs_transaction *transaction)
140{
141 WARN_ON(refcount_read(&transaction->use_count) == 0);
142 if (refcount_dec_and_test(&transaction->use_count)) {
143 BUG_ON(!list_empty(&transaction->list));
144 WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
145 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
150 /*
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
156 */
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
159
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
162 bg_list);
163 list_del_init(&cache->bg_list);
164 btrfs_unfreeze_block_group(cache);
165 btrfs_put_block_group(cache);
166 }
167 WARN_ON(!list_empty(&transaction->dev_update_list));
168 kfree(transaction);
169 }
170}
171
172static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173{
174 struct btrfs_transaction *cur_trans = trans->transaction;
175 struct btrfs_fs_info *fs_info = trans->fs_info;
176 struct btrfs_root *root, *tmp;
177
178 /*
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
181 */
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
184 down_write(&fs_info->commit_root_sem);
185
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
188
189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190 dirty_list) {
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
194 extent_io_tree_release(&root->dirty_log_pages);
195 btrfs_qgroup_clean_swapped_blocks(root);
196 }
197
198 /* We can free old roots now. */
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
206 btrfs_drop_and_free_fs_root(fs_info, root);
207 spin_lock(&cur_trans->dropped_roots_lock);
208 }
209 spin_unlock(&cur_trans->dropped_roots_lock);
210
211 up_write(&fs_info->commit_root_sem);
212}
213
214static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 unsigned int type)
216{
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
219}
220
221static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 unsigned int type)
223{
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
226}
227
228static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 unsigned int type)
230{
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232}
233
234static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235{
236 return atomic_read(&trans->num_extwriters);
237}
238
239/*
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
245 */
246void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247{
248 struct btrfs_fs_info *fs_info = trans->fs_info;
249
250 if (!trans->chunk_bytes_reserved)
251 return;
252
253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 trans->chunk_bytes_reserved, NULL);
255 trans->chunk_bytes_reserved = 0;
256}
257
258/*
259 * either allocate a new transaction or hop into the existing one
260 */
261static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 unsigned int type)
263{
264 struct btrfs_transaction *cur_trans;
265
266 spin_lock(&fs_info->trans_lock);
267loop:
268 /* The file system has been taken offline. No new transactions. */
269 if (BTRFS_FS_ERROR(fs_info)) {
270 spin_unlock(&fs_info->trans_lock);
271 return -EROFS;
272 }
273
274 cur_trans = fs_info->running_transaction;
275 if (cur_trans) {
276 if (TRANS_ABORTED(cur_trans)) {
277 const int abort_error = cur_trans->aborted;
278
279 spin_unlock(&fs_info->trans_lock);
280 return abort_error;
281 }
282 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
283 spin_unlock(&fs_info->trans_lock);
284 return -EBUSY;
285 }
286 refcount_inc(&cur_trans->use_count);
287 atomic_inc(&cur_trans->num_writers);
288 extwriter_counter_inc(cur_trans, type);
289 spin_unlock(&fs_info->trans_lock);
290 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
291 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292 return 0;
293 }
294 spin_unlock(&fs_info->trans_lock);
295
296 /*
297 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298 * current transaction, and commit it. If there is no transaction, just
299 * return ENOENT.
300 */
301 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
302 return -ENOENT;
303
304 /*
305 * JOIN_NOLOCK only happens during the transaction commit, so
306 * it is impossible that ->running_transaction is NULL
307 */
308 BUG_ON(type == TRANS_JOIN_NOLOCK);
309
310 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
311 if (!cur_trans)
312 return -ENOMEM;
313
314 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
315 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
316
317 spin_lock(&fs_info->trans_lock);
318 if (fs_info->running_transaction) {
319 /*
320 * someone started a transaction after we unlocked. Make sure
321 * to redo the checks above
322 */
323 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
324 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
325 kfree(cur_trans);
326 goto loop;
327 } else if (BTRFS_FS_ERROR(fs_info)) {
328 spin_unlock(&fs_info->trans_lock);
329 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331 kfree(cur_trans);
332 return -EROFS;
333 }
334
335 cur_trans->fs_info = fs_info;
336 atomic_set(&cur_trans->pending_ordered, 0);
337 init_waitqueue_head(&cur_trans->pending_wait);
338 atomic_set(&cur_trans->num_writers, 1);
339 extwriter_counter_init(cur_trans, type);
340 init_waitqueue_head(&cur_trans->writer_wait);
341 init_waitqueue_head(&cur_trans->commit_wait);
342 cur_trans->state = TRANS_STATE_RUNNING;
343 /*
344 * One for this trans handle, one so it will live on until we
345 * commit the transaction.
346 */
347 refcount_set(&cur_trans->use_count, 2);
348 cur_trans->flags = 0;
349 cur_trans->start_time = ktime_get_seconds();
350
351 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352
353 xa_init(&cur_trans->delayed_refs.head_refs);
354 xa_init(&cur_trans->delayed_refs.dirty_extents);
355
356 /*
357 * although the tree mod log is per file system and not per transaction,
358 * the log must never go across transaction boundaries.
359 */
360 smp_mb();
361 if (!list_empty(&fs_info->tree_mod_seq_list))
362 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
363 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
364 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
365 atomic64_set(&fs_info->tree_mod_seq, 0);
366
367 spin_lock_init(&cur_trans->delayed_refs.lock);
368
369 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
370 INIT_LIST_HEAD(&cur_trans->dev_update_list);
371 INIT_LIST_HEAD(&cur_trans->switch_commits);
372 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
373 INIT_LIST_HEAD(&cur_trans->io_bgs);
374 INIT_LIST_HEAD(&cur_trans->dropped_roots);
375 mutex_init(&cur_trans->cache_write_mutex);
376 spin_lock_init(&cur_trans->dirty_bgs_lock);
377 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
378 spin_lock_init(&cur_trans->dropped_roots_lock);
379 list_add_tail(&cur_trans->list, &fs_info->trans_list);
380 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381 IO_TREE_TRANS_DIRTY_PAGES);
382 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383 IO_TREE_FS_PINNED_EXTENTS);
384 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
385 cur_trans->transid = fs_info->generation;
386 fs_info->running_transaction = cur_trans;
387 cur_trans->aborted = 0;
388 spin_unlock(&fs_info->trans_lock);
389
390 return 0;
391}
392
393/*
394 * This does all the record keeping required to make sure that a shareable root
395 * is properly recorded in a given transaction. This is required to make sure
396 * the old root from before we joined the transaction is deleted when the
397 * transaction commits.
398 */
399static int record_root_in_trans(struct btrfs_trans_handle *trans,
400 struct btrfs_root *root,
401 int force)
402{
403 struct btrfs_fs_info *fs_info = root->fs_info;
404 int ret = 0;
405
406 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407 btrfs_get_root_last_trans(root) < trans->transid) || force) {
408 WARN_ON(!force && root->commit_root != root->node);
409
410 /*
411 * see below for IN_TRANS_SETUP usage rules
412 * we have the reloc mutex held now, so there
413 * is only one writer in this function
414 */
415 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416
417 /* make sure readers find IN_TRANS_SETUP before
418 * they find our root->last_trans update
419 */
420 smp_wmb();
421
422 spin_lock(&fs_info->fs_roots_radix_lock);
423 if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
424 spin_unlock(&fs_info->fs_roots_radix_lock);
425 return 0;
426 }
427 radix_tree_tag_set(&fs_info->fs_roots_radix,
428 (unsigned long)btrfs_root_id(root),
429 BTRFS_ROOT_TRANS_TAG);
430 spin_unlock(&fs_info->fs_roots_radix_lock);
431 btrfs_set_root_last_trans(root, trans->transid);
432
433 /* this is pretty tricky. We don't want to
434 * take the relocation lock in btrfs_record_root_in_trans
435 * unless we're really doing the first setup for this root in
436 * this transaction.
437 *
438 * Normally we'd use root->last_trans as a flag to decide
439 * if we want to take the expensive mutex.
440 *
441 * But, we have to set root->last_trans before we
442 * init the relocation root, otherwise, we trip over warnings
443 * in ctree.c. The solution used here is to flag ourselves
444 * with root IN_TRANS_SETUP. When this is 1, we're still
445 * fixing up the reloc trees and everyone must wait.
446 *
447 * When this is zero, they can trust root->last_trans and fly
448 * through btrfs_record_root_in_trans without having to take the
449 * lock. smp_wmb() makes sure that all the writes above are
450 * done before we pop in the zero below
451 */
452 ret = btrfs_init_reloc_root(trans, root);
453 smp_mb__before_atomic();
454 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455 }
456 return ret;
457}
458
459
460void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 struct btrfs_root *root)
462{
463 struct btrfs_fs_info *fs_info = root->fs_info;
464 struct btrfs_transaction *cur_trans = trans->transaction;
465
466 /* Add ourselves to the transaction dropped list */
467 spin_lock(&cur_trans->dropped_roots_lock);
468 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 spin_unlock(&cur_trans->dropped_roots_lock);
470
471 /* Make sure we don't try to update the root at commit time */
472 spin_lock(&fs_info->fs_roots_radix_lock);
473 radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 (unsigned long)btrfs_root_id(root),
475 BTRFS_ROOT_TRANS_TAG);
476 spin_unlock(&fs_info->fs_roots_radix_lock);
477}
478
479int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root)
481{
482 struct btrfs_fs_info *fs_info = root->fs_info;
483 int ret;
484
485 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486 return 0;
487
488 /*
489 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490 * and barriers
491 */
492 smp_rmb();
493 if (btrfs_get_root_last_trans(root) == trans->transid &&
494 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 return 0;
496
497 mutex_lock(&fs_info->reloc_mutex);
498 ret = record_root_in_trans(trans, root, 0);
499 mutex_unlock(&fs_info->reloc_mutex);
500
501 return ret;
502}
503
504static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505{
506 return (trans->state >= TRANS_STATE_COMMIT_START &&
507 trans->state < TRANS_STATE_UNBLOCKED &&
508 !TRANS_ABORTED(trans));
509}
510
511/* wait for commit against the current transaction to become unblocked
512 * when this is done, it is safe to start a new transaction, but the current
513 * transaction might not be fully on disk.
514 */
515static void wait_current_trans(struct btrfs_fs_info *fs_info)
516{
517 struct btrfs_transaction *cur_trans;
518
519 spin_lock(&fs_info->trans_lock);
520 cur_trans = fs_info->running_transaction;
521 if (cur_trans && is_transaction_blocked(cur_trans)) {
522 refcount_inc(&cur_trans->use_count);
523 spin_unlock(&fs_info->trans_lock);
524
525 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526 wait_event(fs_info->transaction_wait,
527 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528 TRANS_ABORTED(cur_trans));
529 btrfs_put_transaction(cur_trans);
530 } else {
531 spin_unlock(&fs_info->trans_lock);
532 }
533}
534
535static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536{
537 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538 return 0;
539
540 if (type == TRANS_START)
541 return 1;
542
543 return 0;
544}
545
546static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547{
548 struct btrfs_fs_info *fs_info = root->fs_info;
549
550 if (!fs_info->reloc_ctl ||
551 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
553 root->reloc_root)
554 return false;
555
556 return true;
557}
558
559static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
560 enum btrfs_reserve_flush_enum flush,
561 u64 num_bytes,
562 u64 *delayed_refs_bytes)
563{
564 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
565 u64 bytes = num_bytes + *delayed_refs_bytes;
566 int ret;
567
568 /*
569 * We want to reserve all the bytes we may need all at once, so we only
570 * do 1 enospc flushing cycle per transaction start.
571 */
572 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
573
574 /*
575 * If we are an emergency flush, which can steal from the global block
576 * reserve, then attempt to not reserve space for the delayed refs, as
577 * we will consume space for them from the global block reserve.
578 */
579 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
580 bytes -= *delayed_refs_bytes;
581 *delayed_refs_bytes = 0;
582 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
583 }
584
585 return ret;
586}
587
588static struct btrfs_trans_handle *
589start_transaction(struct btrfs_root *root, unsigned int num_items,
590 unsigned int type, enum btrfs_reserve_flush_enum flush,
591 bool enforce_qgroups)
592{
593 struct btrfs_fs_info *fs_info = root->fs_info;
594 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
595 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
596 struct btrfs_trans_handle *h;
597 struct btrfs_transaction *cur_trans;
598 u64 num_bytes = 0;
599 u64 qgroup_reserved = 0;
600 u64 delayed_refs_bytes = 0;
601 bool reloc_reserved = false;
602 bool do_chunk_alloc = false;
603 int ret;
604
605 if (BTRFS_FS_ERROR(fs_info))
606 return ERR_PTR(-EROFS);
607
608 if (current->journal_info) {
609 WARN_ON(type & TRANS_EXTWRITERS);
610 h = current->journal_info;
611 refcount_inc(&h->use_count);
612 WARN_ON(refcount_read(&h->use_count) > 2);
613 h->orig_rsv = h->block_rsv;
614 h->block_rsv = NULL;
615 goto got_it;
616 }
617
618 /*
619 * Do the reservation before we join the transaction so we can do all
620 * the appropriate flushing if need be.
621 */
622 if (num_items && root != fs_info->chunk_root) {
623 qgroup_reserved = num_items * fs_info->nodesize;
624 /*
625 * Use prealloc for now, as there might be a currently running
626 * transaction that could free this reserved space prematurely
627 * by committing.
628 */
629 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
630 enforce_qgroups, false);
631 if (ret)
632 return ERR_PTR(ret);
633
634 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
635 /*
636 * If we plan to insert/update/delete "num_items" from a btree,
637 * we will also generate delayed refs for extent buffers in the
638 * respective btree paths, so reserve space for the delayed refs
639 * that will be generated by the caller as it modifies btrees.
640 * Try to reserve them to avoid excessive use of the global
641 * block reserve.
642 */
643 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
644
645 /*
646 * Do the reservation for the relocation root creation
647 */
648 if (need_reserve_reloc_root(root)) {
649 num_bytes += fs_info->nodesize;
650 reloc_reserved = true;
651 }
652
653 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
654 &delayed_refs_bytes);
655 if (ret)
656 goto reserve_fail;
657
658 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
659
660 if (trans_rsv->space_info->force_alloc)
661 do_chunk_alloc = true;
662 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
663 !btrfs_block_rsv_full(delayed_refs_rsv)) {
664 /*
665 * Some people call with btrfs_start_transaction(root, 0)
666 * because they can be throttled, but have some other mechanism
667 * for reserving space. We still want these guys to refill the
668 * delayed block_rsv so just add 1 items worth of reservation
669 * here.
670 */
671 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
672 if (ret)
673 goto reserve_fail;
674 }
675again:
676 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
677 if (!h) {
678 ret = -ENOMEM;
679 goto alloc_fail;
680 }
681
682 /*
683 * If we are JOIN_NOLOCK we're already committing a transaction and
684 * waiting on this guy, so we don't need to do the sb_start_intwrite
685 * because we're already holding a ref. We need this because we could
686 * have raced in and did an fsync() on a file which can kick a commit
687 * and then we deadlock with somebody doing a freeze.
688 *
689 * If we are ATTACH, it means we just want to catch the current
690 * transaction and commit it, so we needn't do sb_start_intwrite().
691 */
692 if (type & __TRANS_FREEZABLE)
693 sb_start_intwrite(fs_info->sb);
694
695 if (may_wait_transaction(fs_info, type))
696 wait_current_trans(fs_info);
697
698 do {
699 ret = join_transaction(fs_info, type);
700 if (ret == -EBUSY) {
701 wait_current_trans(fs_info);
702 if (unlikely(type == TRANS_ATTACH ||
703 type == TRANS_JOIN_NOSTART))
704 ret = -ENOENT;
705 }
706 } while (ret == -EBUSY);
707
708 if (ret < 0)
709 goto join_fail;
710
711 cur_trans = fs_info->running_transaction;
712
713 h->transid = cur_trans->transid;
714 h->transaction = cur_trans;
715 refcount_set(&h->use_count, 1);
716 h->fs_info = root->fs_info;
717
718 h->type = type;
719 INIT_LIST_HEAD(&h->new_bgs);
720 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
721
722 smp_mb();
723 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
724 may_wait_transaction(fs_info, type)) {
725 current->journal_info = h;
726 btrfs_commit_transaction(h);
727 goto again;
728 }
729
730 if (num_bytes) {
731 trace_btrfs_space_reservation(fs_info, "transaction",
732 h->transid, num_bytes, 1);
733 h->block_rsv = trans_rsv;
734 h->bytes_reserved = num_bytes;
735 if (delayed_refs_bytes > 0) {
736 trace_btrfs_space_reservation(fs_info,
737 "local_delayed_refs_rsv",
738 h->transid,
739 delayed_refs_bytes, 1);
740 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
741 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
742 delayed_refs_bytes = 0;
743 }
744 h->reloc_reserved = reloc_reserved;
745 }
746
747got_it:
748 if (!current->journal_info)
749 current->journal_info = h;
750
751 /*
752 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
753 * ALLOC_FORCE the first run through, and then we won't allocate for
754 * anybody else who races in later. We don't care about the return
755 * value here.
756 */
757 if (do_chunk_alloc && num_bytes) {
758 u64 flags = h->block_rsv->space_info->flags;
759
760 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
761 CHUNK_ALLOC_NO_FORCE);
762 }
763
764 /*
765 * btrfs_record_root_in_trans() needs to alloc new extents, and may
766 * call btrfs_join_transaction() while we're also starting a
767 * transaction.
768 *
769 * Thus it need to be called after current->journal_info initialized,
770 * or we can deadlock.
771 */
772 ret = btrfs_record_root_in_trans(h, root);
773 if (ret) {
774 /*
775 * The transaction handle is fully initialized and linked with
776 * other structures so it needs to be ended in case of errors,
777 * not just freed.
778 */
779 btrfs_end_transaction(h);
780 goto reserve_fail;
781 }
782 /*
783 * Now that we have found a transaction to be a part of, convert the
784 * qgroup reservation from prealloc to pertrans. A different transaction
785 * can't race in and free our pertrans out from under us.
786 */
787 if (qgroup_reserved)
788 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
789
790 return h;
791
792join_fail:
793 if (type & __TRANS_FREEZABLE)
794 sb_end_intwrite(fs_info->sb);
795 kmem_cache_free(btrfs_trans_handle_cachep, h);
796alloc_fail:
797 if (num_bytes)
798 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
799 if (delayed_refs_bytes)
800 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
801 delayed_refs_bytes);
802reserve_fail:
803 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
804 return ERR_PTR(ret);
805}
806
807struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
808 unsigned int num_items)
809{
810 return start_transaction(root, num_items, TRANS_START,
811 BTRFS_RESERVE_FLUSH_ALL, true);
812}
813
814struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
815 struct btrfs_root *root,
816 unsigned int num_items)
817{
818 return start_transaction(root, num_items, TRANS_START,
819 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
820}
821
822struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
823{
824 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
825 true);
826}
827
828struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
829{
830 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
831 BTRFS_RESERVE_NO_FLUSH, true);
832}
833
834/*
835 * Similar to regular join but it never starts a transaction when none is
836 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
837 * This is similar to btrfs_attach_transaction() but it allows the join to
838 * happen if the transaction commit already started but it's not yet in the
839 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
840 */
841struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
842{
843 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
844 BTRFS_RESERVE_NO_FLUSH, true);
845}
846
847/*
848 * Catch the running transaction.
849 *
850 * It is used when we want to commit the current the transaction, but
851 * don't want to start a new one.
852 *
853 * Note: If this function return -ENOENT, it just means there is no
854 * running transaction. But it is possible that the inactive transaction
855 * is still in the memory, not fully on disk. If you hope there is no
856 * inactive transaction in the fs when -ENOENT is returned, you should
857 * invoke
858 * btrfs_attach_transaction_barrier()
859 */
860struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
861{
862 return start_transaction(root, 0, TRANS_ATTACH,
863 BTRFS_RESERVE_NO_FLUSH, true);
864}
865
866/*
867 * Catch the running transaction.
868 *
869 * It is similar to the above function, the difference is this one
870 * will wait for all the inactive transactions until they fully
871 * complete.
872 */
873struct btrfs_trans_handle *
874btrfs_attach_transaction_barrier(struct btrfs_root *root)
875{
876 struct btrfs_trans_handle *trans;
877
878 trans = start_transaction(root, 0, TRANS_ATTACH,
879 BTRFS_RESERVE_NO_FLUSH, true);
880 if (trans == ERR_PTR(-ENOENT)) {
881 int ret;
882
883 ret = btrfs_wait_for_commit(root->fs_info, 0);
884 if (ret)
885 return ERR_PTR(ret);
886 }
887
888 return trans;
889}
890
891/* Wait for a transaction commit to reach at least the given state. */
892static noinline void wait_for_commit(struct btrfs_transaction *commit,
893 const enum btrfs_trans_state min_state)
894{
895 struct btrfs_fs_info *fs_info = commit->fs_info;
896 u64 transid = commit->transid;
897 bool put = false;
898
899 /*
900 * At the moment this function is called with min_state either being
901 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
902 */
903 if (min_state == TRANS_STATE_COMPLETED)
904 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
905 else
906 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
907
908 while (1) {
909 wait_event(commit->commit_wait, commit->state >= min_state);
910 if (put)
911 btrfs_put_transaction(commit);
912
913 if (min_state < TRANS_STATE_COMPLETED)
914 break;
915
916 /*
917 * A transaction isn't really completed until all of the
918 * previous transactions are completed, but with fsync we can
919 * end up with SUPER_COMMITTED transactions before a COMPLETED
920 * transaction. Wait for those.
921 */
922
923 spin_lock(&fs_info->trans_lock);
924 commit = list_first_entry_or_null(&fs_info->trans_list,
925 struct btrfs_transaction,
926 list);
927 if (!commit || commit->transid > transid) {
928 spin_unlock(&fs_info->trans_lock);
929 break;
930 }
931 refcount_inc(&commit->use_count);
932 put = true;
933 spin_unlock(&fs_info->trans_lock);
934 }
935}
936
937int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
938{
939 struct btrfs_transaction *cur_trans = NULL, *t;
940 int ret = 0;
941
942 if (transid) {
943 if (transid <= btrfs_get_last_trans_committed(fs_info))
944 goto out;
945
946 /* find specified transaction */
947 spin_lock(&fs_info->trans_lock);
948 list_for_each_entry(t, &fs_info->trans_list, list) {
949 if (t->transid == transid) {
950 cur_trans = t;
951 refcount_inc(&cur_trans->use_count);
952 ret = 0;
953 break;
954 }
955 if (t->transid > transid) {
956 ret = 0;
957 break;
958 }
959 }
960 spin_unlock(&fs_info->trans_lock);
961
962 /*
963 * The specified transaction doesn't exist, or we
964 * raced with btrfs_commit_transaction
965 */
966 if (!cur_trans) {
967 if (transid > btrfs_get_last_trans_committed(fs_info))
968 ret = -EINVAL;
969 goto out;
970 }
971 } else {
972 /* find newest transaction that is committing | committed */
973 spin_lock(&fs_info->trans_lock);
974 list_for_each_entry_reverse(t, &fs_info->trans_list,
975 list) {
976 if (t->state >= TRANS_STATE_COMMIT_START) {
977 if (t->state == TRANS_STATE_COMPLETED)
978 break;
979 cur_trans = t;
980 refcount_inc(&cur_trans->use_count);
981 break;
982 }
983 }
984 spin_unlock(&fs_info->trans_lock);
985 if (!cur_trans)
986 goto out; /* nothing committing|committed */
987 }
988
989 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
990 ret = cur_trans->aborted;
991 btrfs_put_transaction(cur_trans);
992out:
993 return ret;
994}
995
996void btrfs_throttle(struct btrfs_fs_info *fs_info)
997{
998 wait_current_trans(fs_info);
999}
1000
1001bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1002{
1003 struct btrfs_transaction *cur_trans = trans->transaction;
1004
1005 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1006 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1007 return true;
1008
1009 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1010 return true;
1011
1012 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1013}
1014
1015static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1016
1017{
1018 struct btrfs_fs_info *fs_info = trans->fs_info;
1019
1020 if (!trans->block_rsv) {
1021 ASSERT(!trans->bytes_reserved);
1022 ASSERT(!trans->delayed_refs_bytes_reserved);
1023 return;
1024 }
1025
1026 if (!trans->bytes_reserved) {
1027 ASSERT(!trans->delayed_refs_bytes_reserved);
1028 return;
1029 }
1030
1031 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1032 trace_btrfs_space_reservation(fs_info, "transaction",
1033 trans->transid, trans->bytes_reserved, 0);
1034 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1035 trans->bytes_reserved, NULL);
1036 trans->bytes_reserved = 0;
1037
1038 if (!trans->delayed_refs_bytes_reserved)
1039 return;
1040
1041 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1042 trans->transid,
1043 trans->delayed_refs_bytes_reserved, 0);
1044 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1045 trans->delayed_refs_bytes_reserved, NULL);
1046 trans->delayed_refs_bytes_reserved = 0;
1047}
1048
1049static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1050 int throttle)
1051{
1052 struct btrfs_fs_info *info = trans->fs_info;
1053 struct btrfs_transaction *cur_trans = trans->transaction;
1054 int ret = 0;
1055
1056 if (refcount_read(&trans->use_count) > 1) {
1057 refcount_dec(&trans->use_count);
1058 trans->block_rsv = trans->orig_rsv;
1059 return 0;
1060 }
1061
1062 btrfs_trans_release_metadata(trans);
1063 trans->block_rsv = NULL;
1064
1065 btrfs_create_pending_block_groups(trans);
1066
1067 btrfs_trans_release_chunk_metadata(trans);
1068
1069 if (trans->type & __TRANS_FREEZABLE)
1070 sb_end_intwrite(info->sb);
1071
1072 WARN_ON(cur_trans != info->running_transaction);
1073 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1074 atomic_dec(&cur_trans->num_writers);
1075 extwriter_counter_dec(cur_trans, trans->type);
1076
1077 cond_wake_up(&cur_trans->writer_wait);
1078
1079 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1080 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1081
1082 btrfs_put_transaction(cur_trans);
1083
1084 if (current->journal_info == trans)
1085 current->journal_info = NULL;
1086
1087 if (throttle)
1088 btrfs_run_delayed_iputs(info);
1089
1090 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1091 wake_up_process(info->transaction_kthread);
1092 if (TRANS_ABORTED(trans))
1093 ret = trans->aborted;
1094 else
1095 ret = -EROFS;
1096 }
1097
1098 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1099 return ret;
1100}
1101
1102int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1103{
1104 return __btrfs_end_transaction(trans, 0);
1105}
1106
1107int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1108{
1109 return __btrfs_end_transaction(trans, 1);
1110}
1111
1112/*
1113 * when btree blocks are allocated, they have some corresponding bits set for
1114 * them in one of two extent_io trees. This is used to make sure all of
1115 * those extents are sent to disk but does not wait on them
1116 */
1117int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1118 struct extent_io_tree *dirty_pages, int mark)
1119{
1120 int ret = 0;
1121 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1122 struct extent_state *cached_state = NULL;
1123 u64 start = 0;
1124 u64 end;
1125
1126 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1127 mark, &cached_state)) {
1128 bool wait_writeback = false;
1129
1130 ret = convert_extent_bit(dirty_pages, start, end,
1131 EXTENT_NEED_WAIT,
1132 mark, &cached_state);
1133 /*
1134 * convert_extent_bit can return -ENOMEM, which is most of the
1135 * time a temporary error. So when it happens, ignore the error
1136 * and wait for writeback of this range to finish - because we
1137 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1138 * to __btrfs_wait_marked_extents() would not know that
1139 * writeback for this range started and therefore wouldn't
1140 * wait for it to finish - we don't want to commit a
1141 * superblock that points to btree nodes/leafs for which
1142 * writeback hasn't finished yet (and without errors).
1143 * We cleanup any entries left in the io tree when committing
1144 * the transaction (through extent_io_tree_release()).
1145 */
1146 if (ret == -ENOMEM) {
1147 ret = 0;
1148 wait_writeback = true;
1149 }
1150 if (!ret)
1151 ret = filemap_fdatawrite_range(mapping, start, end);
1152 if (!ret && wait_writeback)
1153 ret = filemap_fdatawait_range(mapping, start, end);
1154 free_extent_state(cached_state);
1155 if (ret)
1156 break;
1157 cached_state = NULL;
1158 cond_resched();
1159 start = end + 1;
1160 }
1161 return ret;
1162}
1163
1164/*
1165 * when btree blocks are allocated, they have some corresponding bits set for
1166 * them in one of two extent_io trees. This is used to make sure all of
1167 * those extents are on disk for transaction or log commit. We wait
1168 * on all the pages and clear them from the dirty pages state tree
1169 */
1170static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1171 struct extent_io_tree *dirty_pages)
1172{
1173 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1174 struct extent_state *cached_state = NULL;
1175 u64 start = 0;
1176 u64 end;
1177 int ret = 0;
1178
1179 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1180 EXTENT_NEED_WAIT, &cached_state)) {
1181 /*
1182 * Ignore -ENOMEM errors returned by clear_extent_bit().
1183 * When committing the transaction, we'll remove any entries
1184 * left in the io tree. For a log commit, we don't remove them
1185 * after committing the log because the tree can be accessed
1186 * concurrently - we do it only at transaction commit time when
1187 * it's safe to do it (through extent_io_tree_release()).
1188 */
1189 ret = clear_extent_bit(dirty_pages, start, end,
1190 EXTENT_NEED_WAIT, &cached_state);
1191 if (ret == -ENOMEM)
1192 ret = 0;
1193 if (!ret)
1194 ret = filemap_fdatawait_range(mapping, start, end);
1195 free_extent_state(cached_state);
1196 if (ret)
1197 break;
1198 cached_state = NULL;
1199 cond_resched();
1200 start = end + 1;
1201 }
1202 return ret;
1203}
1204
1205static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1206 struct extent_io_tree *dirty_pages)
1207{
1208 bool errors = false;
1209 int err;
1210
1211 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1212 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1213 errors = true;
1214
1215 if (errors && !err)
1216 err = -EIO;
1217 return err;
1218}
1219
1220int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1221{
1222 struct btrfs_fs_info *fs_info = log_root->fs_info;
1223 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1224 bool errors = false;
1225 int err;
1226
1227 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1228
1229 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1230 if ((mark & EXTENT_DIRTY) &&
1231 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1232 errors = true;
1233
1234 if ((mark & EXTENT_NEW) &&
1235 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1236 errors = true;
1237
1238 if (errors && !err)
1239 err = -EIO;
1240 return err;
1241}
1242
1243/*
1244 * When btree blocks are allocated the corresponding extents are marked dirty.
1245 * This function ensures such extents are persisted on disk for transaction or
1246 * log commit.
1247 *
1248 * @trans: transaction whose dirty pages we'd like to write
1249 */
1250static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1251{
1252 int ret;
1253 int ret2;
1254 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1255 struct btrfs_fs_info *fs_info = trans->fs_info;
1256 struct blk_plug plug;
1257
1258 blk_start_plug(&plug);
1259 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1260 blk_finish_plug(&plug);
1261 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1262
1263 extent_io_tree_release(&trans->transaction->dirty_pages);
1264
1265 if (ret)
1266 return ret;
1267 else if (ret2)
1268 return ret2;
1269 else
1270 return 0;
1271}
1272
1273/*
1274 * this is used to update the root pointer in the tree of tree roots.
1275 *
1276 * But, in the case of the extent allocation tree, updating the root
1277 * pointer may allocate blocks which may change the root of the extent
1278 * allocation tree.
1279 *
1280 * So, this loops and repeats and makes sure the cowonly root didn't
1281 * change while the root pointer was being updated in the metadata.
1282 */
1283static int update_cowonly_root(struct btrfs_trans_handle *trans,
1284 struct btrfs_root *root)
1285{
1286 int ret;
1287 u64 old_root_bytenr;
1288 u64 old_root_used;
1289 struct btrfs_fs_info *fs_info = root->fs_info;
1290 struct btrfs_root *tree_root = fs_info->tree_root;
1291
1292 old_root_used = btrfs_root_used(&root->root_item);
1293
1294 while (1) {
1295 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1296 if (old_root_bytenr == root->node->start &&
1297 old_root_used == btrfs_root_used(&root->root_item))
1298 break;
1299
1300 btrfs_set_root_node(&root->root_item, root->node);
1301 ret = btrfs_update_root(trans, tree_root,
1302 &root->root_key,
1303 &root->root_item);
1304 if (ret)
1305 return ret;
1306
1307 old_root_used = btrfs_root_used(&root->root_item);
1308 }
1309
1310 return 0;
1311}
1312
1313/*
1314 * update all the cowonly tree roots on disk
1315 *
1316 * The error handling in this function may not be obvious. Any of the
1317 * failures will cause the file system to go offline. We still need
1318 * to clean up the delayed refs.
1319 */
1320static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1321{
1322 struct btrfs_fs_info *fs_info = trans->fs_info;
1323 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1324 struct list_head *io_bgs = &trans->transaction->io_bgs;
1325 struct list_head *next;
1326 struct extent_buffer *eb;
1327 int ret;
1328
1329 /*
1330 * At this point no one can be using this transaction to modify any tree
1331 * and no one can start another transaction to modify any tree either.
1332 */
1333 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1334
1335 eb = btrfs_lock_root_node(fs_info->tree_root);
1336 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1337 0, &eb, BTRFS_NESTING_COW);
1338 btrfs_tree_unlock(eb);
1339 free_extent_buffer(eb);
1340
1341 if (ret)
1342 return ret;
1343
1344 ret = btrfs_run_dev_stats(trans);
1345 if (ret)
1346 return ret;
1347 ret = btrfs_run_dev_replace(trans);
1348 if (ret)
1349 return ret;
1350 ret = btrfs_run_qgroups(trans);
1351 if (ret)
1352 return ret;
1353
1354 ret = btrfs_setup_space_cache(trans);
1355 if (ret)
1356 return ret;
1357
1358again:
1359 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1360 struct btrfs_root *root;
1361 next = fs_info->dirty_cowonly_roots.next;
1362 list_del_init(next);
1363 root = list_entry(next, struct btrfs_root, dirty_list);
1364 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1365
1366 list_add_tail(&root->dirty_list,
1367 &trans->transaction->switch_commits);
1368 ret = update_cowonly_root(trans, root);
1369 if (ret)
1370 return ret;
1371 }
1372
1373 /* Now flush any delayed refs generated by updating all of the roots */
1374 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1375 if (ret)
1376 return ret;
1377
1378 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1379 ret = btrfs_write_dirty_block_groups(trans);
1380 if (ret)
1381 return ret;
1382
1383 /*
1384 * We're writing the dirty block groups, which could generate
1385 * delayed refs, which could generate more dirty block groups,
1386 * so we want to keep this flushing in this loop to make sure
1387 * everything gets run.
1388 */
1389 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1390 if (ret)
1391 return ret;
1392 }
1393
1394 if (!list_empty(&fs_info->dirty_cowonly_roots))
1395 goto again;
1396
1397 /* Update dev-replace pointer once everything is committed */
1398 fs_info->dev_replace.committed_cursor_left =
1399 fs_info->dev_replace.cursor_left_last_write_of_item;
1400
1401 return 0;
1402}
1403
1404/*
1405 * If we had a pending drop we need to see if there are any others left in our
1406 * dead roots list, and if not clear our bit and wake any waiters.
1407 */
1408void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1409{
1410 /*
1411 * We put the drop in progress roots at the front of the list, so if the
1412 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1413 * up.
1414 */
1415 spin_lock(&fs_info->trans_lock);
1416 if (!list_empty(&fs_info->dead_roots)) {
1417 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1418 struct btrfs_root,
1419 root_list);
1420 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1421 spin_unlock(&fs_info->trans_lock);
1422 return;
1423 }
1424 }
1425 spin_unlock(&fs_info->trans_lock);
1426
1427 btrfs_wake_unfinished_drop(fs_info);
1428}
1429
1430/*
1431 * dead roots are old snapshots that need to be deleted. This allocates
1432 * a dirty root struct and adds it into the list of dead roots that need to
1433 * be deleted
1434 */
1435void btrfs_add_dead_root(struct btrfs_root *root)
1436{
1437 struct btrfs_fs_info *fs_info = root->fs_info;
1438
1439 spin_lock(&fs_info->trans_lock);
1440 if (list_empty(&root->root_list)) {
1441 btrfs_grab_root(root);
1442
1443 /* We want to process the partially complete drops first. */
1444 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1445 list_add(&root->root_list, &fs_info->dead_roots);
1446 else
1447 list_add_tail(&root->root_list, &fs_info->dead_roots);
1448 }
1449 spin_unlock(&fs_info->trans_lock);
1450}
1451
1452/*
1453 * Update each subvolume root and its relocation root, if it exists, in the tree
1454 * of tree roots. Also free log roots if they exist.
1455 */
1456static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1457{
1458 struct btrfs_fs_info *fs_info = trans->fs_info;
1459 struct btrfs_root *gang[8];
1460 int i;
1461 int ret;
1462
1463 /*
1464 * At this point no one can be using this transaction to modify any tree
1465 * and no one can start another transaction to modify any tree either.
1466 */
1467 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1468
1469 spin_lock(&fs_info->fs_roots_radix_lock);
1470 while (1) {
1471 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1472 (void **)gang, 0,
1473 ARRAY_SIZE(gang),
1474 BTRFS_ROOT_TRANS_TAG);
1475 if (ret == 0)
1476 break;
1477 for (i = 0; i < ret; i++) {
1478 struct btrfs_root *root = gang[i];
1479 int ret2;
1480
1481 /*
1482 * At this point we can neither have tasks logging inodes
1483 * from a root nor trying to commit a log tree.
1484 */
1485 ASSERT(atomic_read(&root->log_writers) == 0);
1486 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1487 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1488
1489 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1490 (unsigned long)btrfs_root_id(root),
1491 BTRFS_ROOT_TRANS_TAG);
1492 btrfs_qgroup_free_meta_all_pertrans(root);
1493 spin_unlock(&fs_info->fs_roots_radix_lock);
1494
1495 btrfs_free_log(trans, root);
1496 ret2 = btrfs_update_reloc_root(trans, root);
1497 if (ret2)
1498 return ret2;
1499
1500 /* see comments in should_cow_block() */
1501 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1502 smp_mb__after_atomic();
1503
1504 if (root->commit_root != root->node) {
1505 list_add_tail(&root->dirty_list,
1506 &trans->transaction->switch_commits);
1507 btrfs_set_root_node(&root->root_item,
1508 root->node);
1509 }
1510
1511 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1512 &root->root_key,
1513 &root->root_item);
1514 if (ret2)
1515 return ret2;
1516 spin_lock(&fs_info->fs_roots_radix_lock);
1517 }
1518 }
1519 spin_unlock(&fs_info->fs_roots_radix_lock);
1520 return 0;
1521}
1522
1523/*
1524 * Do all special snapshot related qgroup dirty hack.
1525 *
1526 * Will do all needed qgroup inherit and dirty hack like switch commit
1527 * roots inside one transaction and write all btree into disk, to make
1528 * qgroup works.
1529 */
1530static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1531 struct btrfs_root *src,
1532 struct btrfs_root *parent,
1533 struct btrfs_qgroup_inherit *inherit,
1534 u64 dst_objectid)
1535{
1536 struct btrfs_fs_info *fs_info = src->fs_info;
1537 int ret;
1538
1539 /*
1540 * Save some performance in the case that qgroups are not enabled. If
1541 * this check races with the ioctl, rescan will kick in anyway.
1542 */
1543 if (!btrfs_qgroup_full_accounting(fs_info))
1544 return 0;
1545
1546 /*
1547 * Ensure dirty @src will be committed. Or, after coming
1548 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1549 * recorded root will never be updated again, causing an outdated root
1550 * item.
1551 */
1552 ret = record_root_in_trans(trans, src, 1);
1553 if (ret)
1554 return ret;
1555
1556 /*
1557 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1558 * src root, so we must run the delayed refs here.
1559 *
1560 * However this isn't particularly fool proof, because there's no
1561 * synchronization keeping us from changing the tree after this point
1562 * before we do the qgroup_inherit, or even from making changes while
1563 * we're doing the qgroup_inherit. But that's a problem for the future,
1564 * for now flush the delayed refs to narrow the race window where the
1565 * qgroup counters could end up wrong.
1566 */
1567 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1568 if (ret) {
1569 btrfs_abort_transaction(trans, ret);
1570 return ret;
1571 }
1572
1573 ret = commit_fs_roots(trans);
1574 if (ret)
1575 goto out;
1576 ret = btrfs_qgroup_account_extents(trans);
1577 if (ret < 0)
1578 goto out;
1579
1580 /* Now qgroup are all updated, we can inherit it to new qgroups */
1581 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1582 btrfs_root_id(parent), inherit);
1583 if (ret < 0)
1584 goto out;
1585
1586 /*
1587 * Now we do a simplified commit transaction, which will:
1588 * 1) commit all subvolume and extent tree
1589 * To ensure all subvolume and extent tree have a valid
1590 * commit_root to accounting later insert_dir_item()
1591 * 2) write all btree blocks onto disk
1592 * This is to make sure later btree modification will be cowed
1593 * Or commit_root can be populated and cause wrong qgroup numbers
1594 * In this simplified commit, we don't really care about other trees
1595 * like chunk and root tree, as they won't affect qgroup.
1596 * And we don't write super to avoid half committed status.
1597 */
1598 ret = commit_cowonly_roots(trans);
1599 if (ret)
1600 goto out;
1601 switch_commit_roots(trans);
1602 ret = btrfs_write_and_wait_transaction(trans);
1603 if (ret)
1604 btrfs_handle_fs_error(fs_info, ret,
1605 "Error while writing out transaction for qgroup");
1606
1607out:
1608 /*
1609 * Force parent root to be updated, as we recorded it before so its
1610 * last_trans == cur_transid.
1611 * Or it won't be committed again onto disk after later
1612 * insert_dir_item()
1613 */
1614 if (!ret)
1615 ret = record_root_in_trans(trans, parent, 1);
1616 return ret;
1617}
1618
1619/*
1620 * new snapshots need to be created at a very specific time in the
1621 * transaction commit. This does the actual creation.
1622 *
1623 * Note:
1624 * If the error which may affect the commitment of the current transaction
1625 * happens, we should return the error number. If the error which just affect
1626 * the creation of the pending snapshots, just return 0.
1627 */
1628static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1629 struct btrfs_pending_snapshot *pending)
1630{
1631
1632 struct btrfs_fs_info *fs_info = trans->fs_info;
1633 struct btrfs_key key;
1634 struct btrfs_root_item *new_root_item;
1635 struct btrfs_root *tree_root = fs_info->tree_root;
1636 struct btrfs_root *root = pending->root;
1637 struct btrfs_root *parent_root;
1638 struct btrfs_block_rsv *rsv;
1639 struct inode *parent_inode = &pending->dir->vfs_inode;
1640 struct btrfs_path *path;
1641 struct btrfs_dir_item *dir_item;
1642 struct extent_buffer *tmp;
1643 struct extent_buffer *old;
1644 struct timespec64 cur_time;
1645 int ret = 0;
1646 u64 to_reserve = 0;
1647 u64 index = 0;
1648 u64 objectid;
1649 u64 root_flags;
1650 unsigned int nofs_flags;
1651 struct fscrypt_name fname;
1652
1653 ASSERT(pending->path);
1654 path = pending->path;
1655
1656 ASSERT(pending->root_item);
1657 new_root_item = pending->root_item;
1658
1659 /*
1660 * We're inside a transaction and must make sure that any potential
1661 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1662 * filesystem.
1663 */
1664 nofs_flags = memalloc_nofs_save();
1665 pending->error = fscrypt_setup_filename(parent_inode,
1666 &pending->dentry->d_name, 0,
1667 &fname);
1668 memalloc_nofs_restore(nofs_flags);
1669 if (pending->error)
1670 goto free_pending;
1671
1672 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1673 if (pending->error)
1674 goto free_fname;
1675
1676 /*
1677 * Make qgroup to skip current new snapshot's qgroupid, as it is
1678 * accounted by later btrfs_qgroup_inherit().
1679 */
1680 btrfs_set_skip_qgroup(trans, objectid);
1681
1682 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1683
1684 if (to_reserve > 0) {
1685 pending->error = btrfs_block_rsv_add(fs_info,
1686 &pending->block_rsv,
1687 to_reserve,
1688 BTRFS_RESERVE_NO_FLUSH);
1689 if (pending->error)
1690 goto clear_skip_qgroup;
1691 }
1692
1693 key.objectid = objectid;
1694 key.offset = (u64)-1;
1695 key.type = BTRFS_ROOT_ITEM_KEY;
1696
1697 rsv = trans->block_rsv;
1698 trans->block_rsv = &pending->block_rsv;
1699 trans->bytes_reserved = trans->block_rsv->reserved;
1700 trace_btrfs_space_reservation(fs_info, "transaction",
1701 trans->transid,
1702 trans->bytes_reserved, 1);
1703 parent_root = BTRFS_I(parent_inode)->root;
1704 ret = record_root_in_trans(trans, parent_root, 0);
1705 if (ret)
1706 goto fail;
1707 cur_time = current_time(parent_inode);
1708
1709 /*
1710 * insert the directory item
1711 */
1712 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1713 if (ret) {
1714 btrfs_abort_transaction(trans, ret);
1715 goto fail;
1716 }
1717
1718 /* check if there is a file/dir which has the same name. */
1719 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1720 btrfs_ino(BTRFS_I(parent_inode)),
1721 &fname.disk_name, 0);
1722 if (dir_item != NULL && !IS_ERR(dir_item)) {
1723 pending->error = -EEXIST;
1724 goto dir_item_existed;
1725 } else if (IS_ERR(dir_item)) {
1726 ret = PTR_ERR(dir_item);
1727 btrfs_abort_transaction(trans, ret);
1728 goto fail;
1729 }
1730 btrfs_release_path(path);
1731
1732 ret = btrfs_create_qgroup(trans, objectid);
1733 if (ret && ret != -EEXIST) {
1734 btrfs_abort_transaction(trans, ret);
1735 goto fail;
1736 }
1737
1738 /*
1739 * pull in the delayed directory update
1740 * and the delayed inode item
1741 * otherwise we corrupt the FS during
1742 * snapshot
1743 */
1744 ret = btrfs_run_delayed_items(trans);
1745 if (ret) { /* Transaction aborted */
1746 btrfs_abort_transaction(trans, ret);
1747 goto fail;
1748 }
1749
1750 ret = record_root_in_trans(trans, root, 0);
1751 if (ret) {
1752 btrfs_abort_transaction(trans, ret);
1753 goto fail;
1754 }
1755 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1756 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1757 btrfs_check_and_init_root_item(new_root_item);
1758
1759 root_flags = btrfs_root_flags(new_root_item);
1760 if (pending->readonly)
1761 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1762 else
1763 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1764 btrfs_set_root_flags(new_root_item, root_flags);
1765
1766 btrfs_set_root_generation_v2(new_root_item,
1767 trans->transid);
1768 generate_random_guid(new_root_item->uuid);
1769 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1770 BTRFS_UUID_SIZE);
1771 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1772 memset(new_root_item->received_uuid, 0,
1773 sizeof(new_root_item->received_uuid));
1774 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1775 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1776 btrfs_set_root_stransid(new_root_item, 0);
1777 btrfs_set_root_rtransid(new_root_item, 0);
1778 }
1779 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1780 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1781 btrfs_set_root_otransid(new_root_item, trans->transid);
1782
1783 old = btrfs_lock_root_node(root);
1784 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1785 BTRFS_NESTING_COW);
1786 if (ret) {
1787 btrfs_tree_unlock(old);
1788 free_extent_buffer(old);
1789 btrfs_abort_transaction(trans, ret);
1790 goto fail;
1791 }
1792
1793 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1794 /* clean up in any case */
1795 btrfs_tree_unlock(old);
1796 free_extent_buffer(old);
1797 if (ret) {
1798 btrfs_abort_transaction(trans, ret);
1799 goto fail;
1800 }
1801 /* see comments in should_cow_block() */
1802 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1803 smp_wmb();
1804
1805 btrfs_set_root_node(new_root_item, tmp);
1806 /* record when the snapshot was created in key.offset */
1807 key.offset = trans->transid;
1808 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1809 btrfs_tree_unlock(tmp);
1810 free_extent_buffer(tmp);
1811 if (ret) {
1812 btrfs_abort_transaction(trans, ret);
1813 goto fail;
1814 }
1815
1816 /*
1817 * insert root back/forward references
1818 */
1819 ret = btrfs_add_root_ref(trans, objectid,
1820 btrfs_root_id(parent_root),
1821 btrfs_ino(BTRFS_I(parent_inode)), index,
1822 &fname.disk_name);
1823 if (ret) {
1824 btrfs_abort_transaction(trans, ret);
1825 goto fail;
1826 }
1827
1828 key.offset = (u64)-1;
1829 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1830 if (IS_ERR(pending->snap)) {
1831 ret = PTR_ERR(pending->snap);
1832 pending->snap = NULL;
1833 btrfs_abort_transaction(trans, ret);
1834 goto fail;
1835 }
1836
1837 ret = btrfs_reloc_post_snapshot(trans, pending);
1838 if (ret) {
1839 btrfs_abort_transaction(trans, ret);
1840 goto fail;
1841 }
1842
1843 /*
1844 * Do special qgroup accounting for snapshot, as we do some qgroup
1845 * snapshot hack to do fast snapshot.
1846 * To co-operate with that hack, we do hack again.
1847 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1848 */
1849 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1850 ret = qgroup_account_snapshot(trans, root, parent_root,
1851 pending->inherit, objectid);
1852 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1853 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1854 btrfs_root_id(parent_root), pending->inherit);
1855 if (ret < 0)
1856 goto fail;
1857
1858 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1859 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1860 index);
1861 if (ret) {
1862 btrfs_abort_transaction(trans, ret);
1863 goto fail;
1864 }
1865
1866 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1867 fname.disk_name.len * 2);
1868 inode_set_mtime_to_ts(parent_inode,
1869 inode_set_ctime_current(parent_inode));
1870 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1871 if (ret) {
1872 btrfs_abort_transaction(trans, ret);
1873 goto fail;
1874 }
1875 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1876 BTRFS_UUID_KEY_SUBVOL,
1877 objectid);
1878 if (ret) {
1879 btrfs_abort_transaction(trans, ret);
1880 goto fail;
1881 }
1882 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1883 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1884 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1885 objectid);
1886 if (ret && ret != -EEXIST) {
1887 btrfs_abort_transaction(trans, ret);
1888 goto fail;
1889 }
1890 }
1891
1892fail:
1893 pending->error = ret;
1894dir_item_existed:
1895 trans->block_rsv = rsv;
1896 trans->bytes_reserved = 0;
1897clear_skip_qgroup:
1898 btrfs_clear_skip_qgroup(trans);
1899free_fname:
1900 fscrypt_free_filename(&fname);
1901free_pending:
1902 kfree(new_root_item);
1903 pending->root_item = NULL;
1904 btrfs_free_path(path);
1905 pending->path = NULL;
1906
1907 return ret;
1908}
1909
1910/*
1911 * create all the snapshots we've scheduled for creation
1912 */
1913static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1914{
1915 struct btrfs_pending_snapshot *pending, *next;
1916 struct list_head *head = &trans->transaction->pending_snapshots;
1917 int ret = 0;
1918
1919 list_for_each_entry_safe(pending, next, head, list) {
1920 list_del(&pending->list);
1921 ret = create_pending_snapshot(trans, pending);
1922 if (ret)
1923 break;
1924 }
1925 return ret;
1926}
1927
1928static void update_super_roots(struct btrfs_fs_info *fs_info)
1929{
1930 struct btrfs_root_item *root_item;
1931 struct btrfs_super_block *super;
1932
1933 super = fs_info->super_copy;
1934
1935 root_item = &fs_info->chunk_root->root_item;
1936 super->chunk_root = root_item->bytenr;
1937 super->chunk_root_generation = root_item->generation;
1938 super->chunk_root_level = root_item->level;
1939
1940 root_item = &fs_info->tree_root->root_item;
1941 super->root = root_item->bytenr;
1942 super->generation = root_item->generation;
1943 super->root_level = root_item->level;
1944 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1945 super->cache_generation = root_item->generation;
1946 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1947 super->cache_generation = 0;
1948 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1949 super->uuid_tree_generation = root_item->generation;
1950}
1951
1952int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1953{
1954 struct btrfs_transaction *trans;
1955 int ret = 0;
1956
1957 spin_lock(&info->trans_lock);
1958 trans = info->running_transaction;
1959 if (trans)
1960 ret = is_transaction_blocked(trans);
1961 spin_unlock(&info->trans_lock);
1962 return ret;
1963}
1964
1965void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1966{
1967 struct btrfs_fs_info *fs_info = trans->fs_info;
1968 struct btrfs_transaction *cur_trans;
1969
1970 /* Kick the transaction kthread. */
1971 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1972 wake_up_process(fs_info->transaction_kthread);
1973
1974 /* take transaction reference */
1975 cur_trans = trans->transaction;
1976 refcount_inc(&cur_trans->use_count);
1977
1978 btrfs_end_transaction(trans);
1979
1980 /*
1981 * Wait for the current transaction commit to start and block
1982 * subsequent transaction joins
1983 */
1984 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1985 wait_event(fs_info->transaction_blocked_wait,
1986 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1987 TRANS_ABORTED(cur_trans));
1988 btrfs_put_transaction(cur_trans);
1989}
1990
1991/*
1992 * If there is a running transaction commit it or if it's already committing,
1993 * wait for its commit to complete. Does not start and commit a new transaction
1994 * if there isn't any running.
1995 */
1996int btrfs_commit_current_transaction(struct btrfs_root *root)
1997{
1998 struct btrfs_trans_handle *trans;
1999
2000 trans = btrfs_attach_transaction_barrier(root);
2001 if (IS_ERR(trans)) {
2002 int ret = PTR_ERR(trans);
2003
2004 return (ret == -ENOENT) ? 0 : ret;
2005 }
2006
2007 return btrfs_commit_transaction(trans);
2008}
2009
2010static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2011{
2012 struct btrfs_fs_info *fs_info = trans->fs_info;
2013 struct btrfs_transaction *cur_trans = trans->transaction;
2014
2015 WARN_ON(refcount_read(&trans->use_count) > 1);
2016
2017 btrfs_abort_transaction(trans, err);
2018
2019 spin_lock(&fs_info->trans_lock);
2020
2021 /*
2022 * If the transaction is removed from the list, it means this
2023 * transaction has been committed successfully, so it is impossible
2024 * to call the cleanup function.
2025 */
2026 BUG_ON(list_empty(&cur_trans->list));
2027
2028 if (cur_trans == fs_info->running_transaction) {
2029 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2030 spin_unlock(&fs_info->trans_lock);
2031
2032 /*
2033 * The thread has already released the lockdep map as reader
2034 * already in btrfs_commit_transaction().
2035 */
2036 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2037 wait_event(cur_trans->writer_wait,
2038 atomic_read(&cur_trans->num_writers) == 1);
2039
2040 spin_lock(&fs_info->trans_lock);
2041 }
2042
2043 /*
2044 * Now that we know no one else is still using the transaction we can
2045 * remove the transaction from the list of transactions. This avoids
2046 * the transaction kthread from cleaning up the transaction while some
2047 * other task is still using it, which could result in a use-after-free
2048 * on things like log trees, as it forces the transaction kthread to
2049 * wait for this transaction to be cleaned up by us.
2050 */
2051 list_del_init(&cur_trans->list);
2052
2053 spin_unlock(&fs_info->trans_lock);
2054
2055 btrfs_cleanup_one_transaction(trans->transaction);
2056
2057 spin_lock(&fs_info->trans_lock);
2058 if (cur_trans == fs_info->running_transaction)
2059 fs_info->running_transaction = NULL;
2060 spin_unlock(&fs_info->trans_lock);
2061
2062 if (trans->type & __TRANS_FREEZABLE)
2063 sb_end_intwrite(fs_info->sb);
2064 btrfs_put_transaction(cur_trans);
2065 btrfs_put_transaction(cur_trans);
2066
2067 trace_btrfs_transaction_commit(fs_info);
2068
2069 if (current->journal_info == trans)
2070 current->journal_info = NULL;
2071
2072 /*
2073 * If relocation is running, we can't cancel scrub because that will
2074 * result in a deadlock. Before relocating a block group, relocation
2075 * pauses scrub, then starts and commits a transaction before unpausing
2076 * scrub. If the transaction commit is being done by the relocation
2077 * task or triggered by another task and the relocation task is waiting
2078 * for the commit, and we end up here due to an error in the commit
2079 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2080 * asking for scrub to stop while having it asked to be paused higher
2081 * above in relocation code.
2082 */
2083 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2084 btrfs_scrub_cancel(fs_info);
2085
2086 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2087}
2088
2089/*
2090 * Release reserved delayed ref space of all pending block groups of the
2091 * transaction and remove them from the list
2092 */
2093static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2094{
2095 struct btrfs_fs_info *fs_info = trans->fs_info;
2096 struct btrfs_block_group *block_group, *tmp;
2097
2098 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2099 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2100 list_del_init(&block_group->bg_list);
2101 }
2102}
2103
2104static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2105{
2106 /*
2107 * We use try_to_writeback_inodes_sb() here because if we used
2108 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2109 * Currently are holding the fs freeze lock, if we do an async flush
2110 * we'll do btrfs_join_transaction() and deadlock because we need to
2111 * wait for the fs freeze lock. Using the direct flushing we benefit
2112 * from already being in a transaction and our join_transaction doesn't
2113 * have to re-take the fs freeze lock.
2114 *
2115 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2116 * if it can read lock sb->s_umount. It will always be able to lock it,
2117 * except when the filesystem is being unmounted or being frozen, but in
2118 * those cases sync_filesystem() is called, which results in calling
2119 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2120 * Note that we don't call writeback_inodes_sb() directly, because it
2121 * will emit a warning if sb->s_umount is not locked.
2122 */
2123 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2124 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2125 return 0;
2126}
2127
2128static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2129{
2130 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2131 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2132}
2133
2134/*
2135 * Add a pending snapshot associated with the given transaction handle to the
2136 * respective handle. This must be called after the transaction commit started
2137 * and while holding fs_info->trans_lock.
2138 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2139 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2140 * returns an error.
2141 */
2142static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2143{
2144 struct btrfs_transaction *cur_trans = trans->transaction;
2145
2146 if (!trans->pending_snapshot)
2147 return;
2148
2149 lockdep_assert_held(&trans->fs_info->trans_lock);
2150 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2151
2152 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2153}
2154
2155static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2156{
2157 fs_info->commit_stats.commit_count++;
2158 fs_info->commit_stats.last_commit_dur = interval;
2159 fs_info->commit_stats.max_commit_dur =
2160 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2161 fs_info->commit_stats.total_commit_dur += interval;
2162}
2163
2164int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2165{
2166 struct btrfs_fs_info *fs_info = trans->fs_info;
2167 struct btrfs_transaction *cur_trans = trans->transaction;
2168 struct btrfs_transaction *prev_trans = NULL;
2169 int ret;
2170 ktime_t start_time;
2171 ktime_t interval;
2172
2173 ASSERT(refcount_read(&trans->use_count) == 1);
2174 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2175
2176 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2177
2178 /* Stop the commit early if ->aborted is set */
2179 if (TRANS_ABORTED(cur_trans)) {
2180 ret = cur_trans->aborted;
2181 goto lockdep_trans_commit_start_release;
2182 }
2183
2184 btrfs_trans_release_metadata(trans);
2185 trans->block_rsv = NULL;
2186
2187 /*
2188 * We only want one transaction commit doing the flushing so we do not
2189 * waste a bunch of time on lock contention on the extent root node.
2190 */
2191 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2192 &cur_trans->delayed_refs.flags)) {
2193 /*
2194 * Make a pass through all the delayed refs we have so far.
2195 * Any running threads may add more while we are here.
2196 */
2197 ret = btrfs_run_delayed_refs(trans, 0);
2198 if (ret)
2199 goto lockdep_trans_commit_start_release;
2200 }
2201
2202 btrfs_create_pending_block_groups(trans);
2203
2204 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2205 int run_it = 0;
2206
2207 /* this mutex is also taken before trying to set
2208 * block groups readonly. We need to make sure
2209 * that nobody has set a block group readonly
2210 * after a extents from that block group have been
2211 * allocated for cache files. btrfs_set_block_group_ro
2212 * will wait for the transaction to commit if it
2213 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2214 *
2215 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2216 * only one process starts all the block group IO. It wouldn't
2217 * hurt to have more than one go through, but there's no
2218 * real advantage to it either.
2219 */
2220 mutex_lock(&fs_info->ro_block_group_mutex);
2221 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2222 &cur_trans->flags))
2223 run_it = 1;
2224 mutex_unlock(&fs_info->ro_block_group_mutex);
2225
2226 if (run_it) {
2227 ret = btrfs_start_dirty_block_groups(trans);
2228 if (ret)
2229 goto lockdep_trans_commit_start_release;
2230 }
2231 }
2232
2233 spin_lock(&fs_info->trans_lock);
2234 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2235 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2236
2237 add_pending_snapshot(trans);
2238
2239 spin_unlock(&fs_info->trans_lock);
2240 refcount_inc(&cur_trans->use_count);
2241
2242 if (trans->in_fsync)
2243 want_state = TRANS_STATE_SUPER_COMMITTED;
2244
2245 btrfs_trans_state_lockdep_release(fs_info,
2246 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2247 ret = btrfs_end_transaction(trans);
2248 wait_for_commit(cur_trans, want_state);
2249
2250 if (TRANS_ABORTED(cur_trans))
2251 ret = cur_trans->aborted;
2252
2253 btrfs_put_transaction(cur_trans);
2254
2255 return ret;
2256 }
2257
2258 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2259 wake_up(&fs_info->transaction_blocked_wait);
2260 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2261
2262 if (cur_trans->list.prev != &fs_info->trans_list) {
2263 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2264
2265 if (trans->in_fsync)
2266 want_state = TRANS_STATE_SUPER_COMMITTED;
2267
2268 prev_trans = list_entry(cur_trans->list.prev,
2269 struct btrfs_transaction, list);
2270 if (prev_trans->state < want_state) {
2271 refcount_inc(&prev_trans->use_count);
2272 spin_unlock(&fs_info->trans_lock);
2273
2274 wait_for_commit(prev_trans, want_state);
2275
2276 ret = READ_ONCE(prev_trans->aborted);
2277
2278 btrfs_put_transaction(prev_trans);
2279 if (ret)
2280 goto lockdep_release;
2281 spin_lock(&fs_info->trans_lock);
2282 }
2283 } else {
2284 /*
2285 * The previous transaction was aborted and was already removed
2286 * from the list of transactions at fs_info->trans_list. So we
2287 * abort to prevent writing a new superblock that reflects a
2288 * corrupt state (pointing to trees with unwritten nodes/leafs).
2289 */
2290 if (BTRFS_FS_ERROR(fs_info)) {
2291 spin_unlock(&fs_info->trans_lock);
2292 ret = -EROFS;
2293 goto lockdep_release;
2294 }
2295 }
2296
2297 cur_trans->state = TRANS_STATE_COMMIT_START;
2298 wake_up(&fs_info->transaction_blocked_wait);
2299 spin_unlock(&fs_info->trans_lock);
2300
2301 /*
2302 * Get the time spent on the work done by the commit thread and not
2303 * the time spent waiting on a previous commit
2304 */
2305 start_time = ktime_get_ns();
2306
2307 extwriter_counter_dec(cur_trans, trans->type);
2308
2309 ret = btrfs_start_delalloc_flush(fs_info);
2310 if (ret)
2311 goto lockdep_release;
2312
2313 ret = btrfs_run_delayed_items(trans);
2314 if (ret)
2315 goto lockdep_release;
2316
2317 /*
2318 * The thread has started/joined the transaction thus it holds the
2319 * lockdep map as a reader. It has to release it before acquiring the
2320 * lockdep map as a writer.
2321 */
2322 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2323 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2324 wait_event(cur_trans->writer_wait,
2325 extwriter_counter_read(cur_trans) == 0);
2326
2327 /* some pending stuffs might be added after the previous flush. */
2328 ret = btrfs_run_delayed_items(trans);
2329 if (ret) {
2330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2331 goto cleanup_transaction;
2332 }
2333
2334 btrfs_wait_delalloc_flush(fs_info);
2335
2336 /*
2337 * Wait for all ordered extents started by a fast fsync that joined this
2338 * transaction. Otherwise if this transaction commits before the ordered
2339 * extents complete we lose logged data after a power failure.
2340 */
2341 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2342 wait_event(cur_trans->pending_wait,
2343 atomic_read(&cur_trans->pending_ordered) == 0);
2344
2345 btrfs_scrub_pause(fs_info);
2346 /*
2347 * Ok now we need to make sure to block out any other joins while we
2348 * commit the transaction. We could have started a join before setting
2349 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2350 */
2351 spin_lock(&fs_info->trans_lock);
2352 add_pending_snapshot(trans);
2353 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2354 spin_unlock(&fs_info->trans_lock);
2355
2356 /*
2357 * The thread has started/joined the transaction thus it holds the
2358 * lockdep map as a reader. It has to release it before acquiring the
2359 * lockdep map as a writer.
2360 */
2361 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2362 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2363 wait_event(cur_trans->writer_wait,
2364 atomic_read(&cur_trans->num_writers) == 1);
2365
2366 /*
2367 * Make lockdep happy by acquiring the state locks after
2368 * btrfs_trans_num_writers is released. If we acquired the state locks
2369 * before releasing the btrfs_trans_num_writers lock then lockdep would
2370 * complain because we did not follow the reverse order unlocking rule.
2371 */
2372 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2373 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2374 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2375
2376 /*
2377 * We've started the commit, clear the flag in case we were triggered to
2378 * do an async commit but somebody else started before the transaction
2379 * kthread could do the work.
2380 */
2381 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2382
2383 if (TRANS_ABORTED(cur_trans)) {
2384 ret = cur_trans->aborted;
2385 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2386 goto scrub_continue;
2387 }
2388 /*
2389 * the reloc mutex makes sure that we stop
2390 * the balancing code from coming in and moving
2391 * extents around in the middle of the commit
2392 */
2393 mutex_lock(&fs_info->reloc_mutex);
2394
2395 /*
2396 * We needn't worry about the delayed items because we will
2397 * deal with them in create_pending_snapshot(), which is the
2398 * core function of the snapshot creation.
2399 */
2400 ret = create_pending_snapshots(trans);
2401 if (ret)
2402 goto unlock_reloc;
2403
2404 /*
2405 * We insert the dir indexes of the snapshots and update the inode
2406 * of the snapshots' parents after the snapshot creation, so there
2407 * are some delayed items which are not dealt with. Now deal with
2408 * them.
2409 *
2410 * We needn't worry that this operation will corrupt the snapshots,
2411 * because all the tree which are snapshoted will be forced to COW
2412 * the nodes and leaves.
2413 */
2414 ret = btrfs_run_delayed_items(trans);
2415 if (ret)
2416 goto unlock_reloc;
2417
2418 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2419 if (ret)
2420 goto unlock_reloc;
2421
2422 /*
2423 * make sure none of the code above managed to slip in a
2424 * delayed item
2425 */
2426 btrfs_assert_delayed_root_empty(fs_info);
2427
2428 WARN_ON(cur_trans != trans->transaction);
2429
2430 ret = commit_fs_roots(trans);
2431 if (ret)
2432 goto unlock_reloc;
2433
2434 /* commit_fs_roots gets rid of all the tree log roots, it is now
2435 * safe to free the root of tree log roots
2436 */
2437 btrfs_free_log_root_tree(trans, fs_info);
2438
2439 /*
2440 * Since fs roots are all committed, we can get a quite accurate
2441 * new_roots. So let's do quota accounting.
2442 */
2443 ret = btrfs_qgroup_account_extents(trans);
2444 if (ret < 0)
2445 goto unlock_reloc;
2446
2447 ret = commit_cowonly_roots(trans);
2448 if (ret)
2449 goto unlock_reloc;
2450
2451 /*
2452 * The tasks which save the space cache and inode cache may also
2453 * update ->aborted, check it.
2454 */
2455 if (TRANS_ABORTED(cur_trans)) {
2456 ret = cur_trans->aborted;
2457 goto unlock_reloc;
2458 }
2459
2460 cur_trans = fs_info->running_transaction;
2461
2462 btrfs_set_root_node(&fs_info->tree_root->root_item,
2463 fs_info->tree_root->node);
2464 list_add_tail(&fs_info->tree_root->dirty_list,
2465 &cur_trans->switch_commits);
2466
2467 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2468 fs_info->chunk_root->node);
2469 list_add_tail(&fs_info->chunk_root->dirty_list,
2470 &cur_trans->switch_commits);
2471
2472 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2473 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2474 fs_info->block_group_root->node);
2475 list_add_tail(&fs_info->block_group_root->dirty_list,
2476 &cur_trans->switch_commits);
2477 }
2478
2479 switch_commit_roots(trans);
2480
2481 ASSERT(list_empty(&cur_trans->dirty_bgs));
2482 ASSERT(list_empty(&cur_trans->io_bgs));
2483 update_super_roots(fs_info);
2484
2485 btrfs_set_super_log_root(fs_info->super_copy, 0);
2486 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2487 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2488 sizeof(*fs_info->super_copy));
2489
2490 btrfs_commit_device_sizes(cur_trans);
2491
2492 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2493 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2494
2495 btrfs_trans_release_chunk_metadata(trans);
2496
2497 /*
2498 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2499 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2500 * make sure that before we commit our superblock, no other task can
2501 * start a new transaction and commit a log tree before we commit our
2502 * superblock. Anyone trying to commit a log tree locks this mutex before
2503 * writing its superblock.
2504 */
2505 mutex_lock(&fs_info->tree_log_mutex);
2506
2507 spin_lock(&fs_info->trans_lock);
2508 cur_trans->state = TRANS_STATE_UNBLOCKED;
2509 fs_info->running_transaction = NULL;
2510 spin_unlock(&fs_info->trans_lock);
2511 mutex_unlock(&fs_info->reloc_mutex);
2512
2513 wake_up(&fs_info->transaction_wait);
2514 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2515
2516 /* If we have features changed, wake up the cleaner to update sysfs. */
2517 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2518 fs_info->cleaner_kthread)
2519 wake_up_process(fs_info->cleaner_kthread);
2520
2521 ret = btrfs_write_and_wait_transaction(trans);
2522 if (ret) {
2523 btrfs_handle_fs_error(fs_info, ret,
2524 "Error while writing out transaction");
2525 mutex_unlock(&fs_info->tree_log_mutex);
2526 goto scrub_continue;
2527 }
2528
2529 ret = write_all_supers(fs_info, 0);
2530 /*
2531 * the super is written, we can safely allow the tree-loggers
2532 * to go about their business
2533 */
2534 mutex_unlock(&fs_info->tree_log_mutex);
2535 if (ret)
2536 goto scrub_continue;
2537
2538 /*
2539 * We needn't acquire the lock here because there is no other task
2540 * which can change it.
2541 */
2542 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2543 wake_up(&cur_trans->commit_wait);
2544 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2545
2546 btrfs_finish_extent_commit(trans);
2547
2548 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2549 btrfs_clear_space_info_full(fs_info);
2550
2551 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2552 /*
2553 * We needn't acquire the lock here because there is no other task
2554 * which can change it.
2555 */
2556 cur_trans->state = TRANS_STATE_COMPLETED;
2557 wake_up(&cur_trans->commit_wait);
2558 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2559
2560 spin_lock(&fs_info->trans_lock);
2561 list_del_init(&cur_trans->list);
2562 spin_unlock(&fs_info->trans_lock);
2563
2564 btrfs_put_transaction(cur_trans);
2565 btrfs_put_transaction(cur_trans);
2566
2567 if (trans->type & __TRANS_FREEZABLE)
2568 sb_end_intwrite(fs_info->sb);
2569
2570 trace_btrfs_transaction_commit(fs_info);
2571
2572 interval = ktime_get_ns() - start_time;
2573
2574 btrfs_scrub_continue(fs_info);
2575
2576 if (current->journal_info == trans)
2577 current->journal_info = NULL;
2578
2579 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2580
2581 update_commit_stats(fs_info, interval);
2582
2583 return ret;
2584
2585unlock_reloc:
2586 mutex_unlock(&fs_info->reloc_mutex);
2587 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2588scrub_continue:
2589 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2590 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2591 btrfs_scrub_continue(fs_info);
2592cleanup_transaction:
2593 btrfs_trans_release_metadata(trans);
2594 btrfs_cleanup_pending_block_groups(trans);
2595 btrfs_trans_release_chunk_metadata(trans);
2596 trans->block_rsv = NULL;
2597 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2598 if (current->journal_info == trans)
2599 current->journal_info = NULL;
2600 cleanup_transaction(trans, ret);
2601
2602 return ret;
2603
2604lockdep_release:
2605 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2606 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2607 goto cleanup_transaction;
2608
2609lockdep_trans_commit_start_release:
2610 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2611 btrfs_end_transaction(trans);
2612 return ret;
2613}
2614
2615/*
2616 * return < 0 if error
2617 * 0 if there are no more dead_roots at the time of call
2618 * 1 there are more to be processed, call me again
2619 *
2620 * The return value indicates there are certainly more snapshots to delete, but
2621 * if there comes a new one during processing, it may return 0. We don't mind,
2622 * because btrfs_commit_super will poke cleaner thread and it will process it a
2623 * few seconds later.
2624 */
2625int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2626{
2627 struct btrfs_root *root;
2628 int ret;
2629
2630 spin_lock(&fs_info->trans_lock);
2631 if (list_empty(&fs_info->dead_roots)) {
2632 spin_unlock(&fs_info->trans_lock);
2633 return 0;
2634 }
2635 root = list_first_entry(&fs_info->dead_roots,
2636 struct btrfs_root, root_list);
2637 list_del_init(&root->root_list);
2638 spin_unlock(&fs_info->trans_lock);
2639
2640 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2641
2642 btrfs_kill_all_delayed_nodes(root);
2643
2644 if (btrfs_header_backref_rev(root->node) <
2645 BTRFS_MIXED_BACKREF_REV)
2646 ret = btrfs_drop_snapshot(root, 0, 0);
2647 else
2648 ret = btrfs_drop_snapshot(root, 1, 0);
2649
2650 btrfs_put_root(root);
2651 return (ret < 0) ? 0 : 1;
2652}
2653
2654/*
2655 * We only mark the transaction aborted and then set the file system read-only.
2656 * This will prevent new transactions from starting or trying to join this
2657 * one.
2658 *
2659 * This means that error recovery at the call site is limited to freeing
2660 * any local memory allocations and passing the error code up without
2661 * further cleanup. The transaction should complete as it normally would
2662 * in the call path but will return -EIO.
2663 *
2664 * We'll complete the cleanup in btrfs_end_transaction and
2665 * btrfs_commit_transaction.
2666 */
2667void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2668 const char *function,
2669 unsigned int line, int error, bool first_hit)
2670{
2671 struct btrfs_fs_info *fs_info = trans->fs_info;
2672
2673 WRITE_ONCE(trans->aborted, error);
2674 WRITE_ONCE(trans->transaction->aborted, error);
2675 if (first_hit && error == -ENOSPC)
2676 btrfs_dump_space_info_for_trans_abort(fs_info);
2677 /* Wake up anybody who may be waiting on this transaction */
2678 wake_up(&fs_info->transaction_wait);
2679 wake_up(&fs_info->transaction_blocked_wait);
2680 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2681}
2682
2683int __init btrfs_transaction_init(void)
2684{
2685 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2686 if (!btrfs_trans_handle_cachep)
2687 return -ENOMEM;
2688 return 0;
2689}
2690
2691void __cold btrfs_transaction_exit(void)
2692{
2693 kmem_cache_destroy(btrfs_trans_handle_cachep);
2694}