Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/writeback.h>
11#include <linux/pagemap.h>
12#include <linux/blkdev.h>
13#include <linux/uuid.h>
14#include <linux/timekeeping.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "locking.h"
20#include "tree-log.h"
21#include "volumes.h"
22#include "dev-replace.h"
23#include "qgroup.h"
24#include "block-group.h"
25#include "space-info.h"
26#include "zoned.h"
27#include "fs.h"
28#include "accessors.h"
29#include "extent-tree.h"
30#include "root-tree.h"
31#include "defrag.h"
32#include "dir-item.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
40#define BTRFS_ROOT_TRANS_TAG 0
41
42/*
43 * Transaction states and transitions
44 *
45 * No running transaction (fs tree blocks are not modified)
46 * |
47 * | To next stage:
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49 * V
50 * Transaction N [[TRANS_STATE_RUNNING]]
51 * |
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
54 * |
55 * | To next stage:
56 * | Call btrfs_commit_transaction() on any trans handle attached to
57 * | transaction N
58 * V
59 * Transaction N [[TRANS_STATE_COMMIT_START]]
60 * |
61 * | Will wait for previous running transaction to completely finish if there
62 * | is one
63 * |
64 * | Then one of the following happes:
65 * | - Wait for all other trans handle holders to release.
66 * | The btrfs_commit_transaction() caller will do the commit work.
67 * | - Wait for current transaction to be committed by others.
68 * | Other btrfs_commit_transaction() caller will do the commit work.
69 * |
70 * | At this stage, only btrfs_join_transaction*() variants can attach
71 * | to this running transaction.
72 * | All other variants will wait for current one to finish and attach to
73 * | transaction N+1.
74 * |
75 * | To next stage:
76 * | Caller is chosen to commit transaction N, and all other trans handle
77 * | haven been released.
78 * V
79 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
80 * |
81 * | The heavy lifting transaction work is started.
82 * | From running delayed refs (modifying extent tree) to creating pending
83 * | snapshots, running qgroups.
84 * | In short, modify supporting trees to reflect modifications of subvolume
85 * | trees.
86 * |
87 * | At this stage, all start_transaction() calls will wait for this
88 * | transaction to finish and attach to transaction N+1.
89 * |
90 * | To next stage:
91 * | Until all supporting trees are updated.
92 * V
93 * Transaction N [[TRANS_STATE_UNBLOCKED]]
94 * | Transaction N+1
95 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
96 * | need to write them back to disk and update |
97 * | super blocks. |
98 * | |
99 * | At this stage, new transaction is allowed to |
100 * | start. |
101 * | All new start_transaction() calls will be |
102 * | attached to transid N+1. |
103 * | |
104 * | To next stage: |
105 * | Until all tree blocks are super blocks are |
106 * | written to block devices |
107 * V |
108 * Transaction N [[TRANS_STATE_COMPLETED]] V
109 * All tree blocks and super blocks are written. Transaction N+1
110 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
111 * data structures will be cleaned up. | Life goes on
112 */
113static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114 [TRANS_STATE_RUNNING] = 0U,
115 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
116 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
119 __TRANS_JOIN_NOSTART),
120 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOLOCK |
124 __TRANS_JOIN_NOSTART),
125 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
126 __TRANS_ATTACH |
127 __TRANS_JOIN |
128 __TRANS_JOIN_NOLOCK |
129 __TRANS_JOIN_NOSTART),
130 [TRANS_STATE_COMPLETED] = (__TRANS_START |
131 __TRANS_ATTACH |
132 __TRANS_JOIN |
133 __TRANS_JOIN_NOLOCK |
134 __TRANS_JOIN_NOSTART),
135};
136
137void btrfs_put_transaction(struct btrfs_transaction *transaction)
138{
139 WARN_ON(refcount_read(&transaction->use_count) == 0);
140 if (refcount_dec_and_test(&transaction->use_count)) {
141 BUG_ON(!list_empty(&transaction->list));
142 WARN_ON(!RB_EMPTY_ROOT(
143 &transaction->delayed_refs.href_root.rb_root));
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.dirty_extent_root));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
150 /*
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
156 */
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
159
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
162 bg_list);
163 list_del_init(&cache->bg_list);
164 btrfs_unfreeze_block_group(cache);
165 btrfs_put_block_group(cache);
166 }
167 WARN_ON(!list_empty(&transaction->dev_update_list));
168 kfree(transaction);
169 }
170}
171
172static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173{
174 struct btrfs_transaction *cur_trans = trans->transaction;
175 struct btrfs_fs_info *fs_info = trans->fs_info;
176 struct btrfs_root *root, *tmp;
177
178 /*
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
181 */
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
184 down_write(&fs_info->commit_root_sem);
185
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
188
189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190 dirty_list) {
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
194 extent_io_tree_release(&root->dirty_log_pages);
195 btrfs_qgroup_clean_swapped_blocks(root);
196 }
197
198 /* We can free old roots now. */
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
206 btrfs_drop_and_free_fs_root(fs_info, root);
207 spin_lock(&cur_trans->dropped_roots_lock);
208 }
209 spin_unlock(&cur_trans->dropped_roots_lock);
210
211 up_write(&fs_info->commit_root_sem);
212}
213
214static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 unsigned int type)
216{
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
219}
220
221static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 unsigned int type)
223{
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
226}
227
228static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 unsigned int type)
230{
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232}
233
234static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235{
236 return atomic_read(&trans->num_extwriters);
237}
238
239/*
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
245 */
246void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247{
248 struct btrfs_fs_info *fs_info = trans->fs_info;
249
250 if (!trans->chunk_bytes_reserved)
251 return;
252
253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 trans->chunk_bytes_reserved, NULL);
255 trans->chunk_bytes_reserved = 0;
256}
257
258/*
259 * either allocate a new transaction or hop into the existing one
260 */
261static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 unsigned int type)
263{
264 struct btrfs_transaction *cur_trans;
265
266 spin_lock(&fs_info->trans_lock);
267loop:
268 /* The file system has been taken offline. No new transactions. */
269 if (BTRFS_FS_ERROR(fs_info)) {
270 spin_unlock(&fs_info->trans_lock);
271 return -EROFS;
272 }
273
274 cur_trans = fs_info->running_transaction;
275 if (cur_trans) {
276 if (TRANS_ABORTED(cur_trans)) {
277 spin_unlock(&fs_info->trans_lock);
278 return cur_trans->aborted;
279 }
280 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281 spin_unlock(&fs_info->trans_lock);
282 return -EBUSY;
283 }
284 refcount_inc(&cur_trans->use_count);
285 atomic_inc(&cur_trans->num_writers);
286 extwriter_counter_inc(cur_trans, type);
287 spin_unlock(&fs_info->trans_lock);
288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
290 return 0;
291 }
292 spin_unlock(&fs_info->trans_lock);
293
294 /*
295 * If we are ATTACH, we just want to catch the current transaction,
296 * and commit it. If there is no transaction, just return ENOENT.
297 */
298 if (type == TRANS_ATTACH)
299 return -ENOENT;
300
301 /*
302 * JOIN_NOLOCK only happens during the transaction commit, so
303 * it is impossible that ->running_transaction is NULL
304 */
305 BUG_ON(type == TRANS_JOIN_NOLOCK);
306
307 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
308 if (!cur_trans)
309 return -ENOMEM;
310
311 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
312 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
313
314 spin_lock(&fs_info->trans_lock);
315 if (fs_info->running_transaction) {
316 /*
317 * someone started a transaction after we unlocked. Make sure
318 * to redo the checks above
319 */
320 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
321 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
322 kfree(cur_trans);
323 goto loop;
324 } else if (BTRFS_FS_ERROR(fs_info)) {
325 spin_unlock(&fs_info->trans_lock);
326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
327 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
328 kfree(cur_trans);
329 return -EROFS;
330 }
331
332 cur_trans->fs_info = fs_info;
333 atomic_set(&cur_trans->pending_ordered, 0);
334 init_waitqueue_head(&cur_trans->pending_wait);
335 atomic_set(&cur_trans->num_writers, 1);
336 extwriter_counter_init(cur_trans, type);
337 init_waitqueue_head(&cur_trans->writer_wait);
338 init_waitqueue_head(&cur_trans->commit_wait);
339 cur_trans->state = TRANS_STATE_RUNNING;
340 /*
341 * One for this trans handle, one so it will live on until we
342 * commit the transaction.
343 */
344 refcount_set(&cur_trans->use_count, 2);
345 cur_trans->flags = 0;
346 cur_trans->start_time = ktime_get_seconds();
347
348 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
349
350 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
351 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
352 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
353
354 /*
355 * although the tree mod log is per file system and not per transaction,
356 * the log must never go across transaction boundaries.
357 */
358 smp_mb();
359 if (!list_empty(&fs_info->tree_mod_seq_list))
360 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
361 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
362 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
363 atomic64_set(&fs_info->tree_mod_seq, 0);
364
365 spin_lock_init(&cur_trans->delayed_refs.lock);
366
367 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
368 INIT_LIST_HEAD(&cur_trans->dev_update_list);
369 INIT_LIST_HEAD(&cur_trans->switch_commits);
370 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
371 INIT_LIST_HEAD(&cur_trans->io_bgs);
372 INIT_LIST_HEAD(&cur_trans->dropped_roots);
373 mutex_init(&cur_trans->cache_write_mutex);
374 spin_lock_init(&cur_trans->dirty_bgs_lock);
375 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
376 spin_lock_init(&cur_trans->dropped_roots_lock);
377 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
378 spin_lock_init(&cur_trans->releasing_ebs_lock);
379 list_add_tail(&cur_trans->list, &fs_info->trans_list);
380 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381 IO_TREE_TRANS_DIRTY_PAGES);
382 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383 IO_TREE_FS_PINNED_EXTENTS);
384 fs_info->generation++;
385 cur_trans->transid = fs_info->generation;
386 fs_info->running_transaction = cur_trans;
387 cur_trans->aborted = 0;
388 spin_unlock(&fs_info->trans_lock);
389
390 return 0;
391}
392
393/*
394 * This does all the record keeping required to make sure that a shareable root
395 * is properly recorded in a given transaction. This is required to make sure
396 * the old root from before we joined the transaction is deleted when the
397 * transaction commits.
398 */
399static int record_root_in_trans(struct btrfs_trans_handle *trans,
400 struct btrfs_root *root,
401 int force)
402{
403 struct btrfs_fs_info *fs_info = root->fs_info;
404 int ret = 0;
405
406 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407 root->last_trans < trans->transid) || force) {
408 WARN_ON(!force && root->commit_root != root->node);
409
410 /*
411 * see below for IN_TRANS_SETUP usage rules
412 * we have the reloc mutex held now, so there
413 * is only one writer in this function
414 */
415 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416
417 /* make sure readers find IN_TRANS_SETUP before
418 * they find our root->last_trans update
419 */
420 smp_wmb();
421
422 spin_lock(&fs_info->fs_roots_radix_lock);
423 if (root->last_trans == trans->transid && !force) {
424 spin_unlock(&fs_info->fs_roots_radix_lock);
425 return 0;
426 }
427 radix_tree_tag_set(&fs_info->fs_roots_radix,
428 (unsigned long)root->root_key.objectid,
429 BTRFS_ROOT_TRANS_TAG);
430 spin_unlock(&fs_info->fs_roots_radix_lock);
431 root->last_trans = trans->transid;
432
433 /* this is pretty tricky. We don't want to
434 * take the relocation lock in btrfs_record_root_in_trans
435 * unless we're really doing the first setup for this root in
436 * this transaction.
437 *
438 * Normally we'd use root->last_trans as a flag to decide
439 * if we want to take the expensive mutex.
440 *
441 * But, we have to set root->last_trans before we
442 * init the relocation root, otherwise, we trip over warnings
443 * in ctree.c. The solution used here is to flag ourselves
444 * with root IN_TRANS_SETUP. When this is 1, we're still
445 * fixing up the reloc trees and everyone must wait.
446 *
447 * When this is zero, they can trust root->last_trans and fly
448 * through btrfs_record_root_in_trans without having to take the
449 * lock. smp_wmb() makes sure that all the writes above are
450 * done before we pop in the zero below
451 */
452 ret = btrfs_init_reloc_root(trans, root);
453 smp_mb__before_atomic();
454 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455 }
456 return ret;
457}
458
459
460void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 struct btrfs_root *root)
462{
463 struct btrfs_fs_info *fs_info = root->fs_info;
464 struct btrfs_transaction *cur_trans = trans->transaction;
465
466 /* Add ourselves to the transaction dropped list */
467 spin_lock(&cur_trans->dropped_roots_lock);
468 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 spin_unlock(&cur_trans->dropped_roots_lock);
470
471 /* Make sure we don't try to update the root at commit time */
472 spin_lock(&fs_info->fs_roots_radix_lock);
473 radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 (unsigned long)root->root_key.objectid,
475 BTRFS_ROOT_TRANS_TAG);
476 spin_unlock(&fs_info->fs_roots_radix_lock);
477}
478
479int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root)
481{
482 struct btrfs_fs_info *fs_info = root->fs_info;
483 int ret;
484
485 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486 return 0;
487
488 /*
489 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490 * and barriers
491 */
492 smp_rmb();
493 if (root->last_trans == trans->transid &&
494 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 return 0;
496
497 mutex_lock(&fs_info->reloc_mutex);
498 ret = record_root_in_trans(trans, root, 0);
499 mutex_unlock(&fs_info->reloc_mutex);
500
501 return ret;
502}
503
504static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505{
506 return (trans->state >= TRANS_STATE_COMMIT_START &&
507 trans->state < TRANS_STATE_UNBLOCKED &&
508 !TRANS_ABORTED(trans));
509}
510
511/* wait for commit against the current transaction to become unblocked
512 * when this is done, it is safe to start a new transaction, but the current
513 * transaction might not be fully on disk.
514 */
515static void wait_current_trans(struct btrfs_fs_info *fs_info)
516{
517 struct btrfs_transaction *cur_trans;
518
519 spin_lock(&fs_info->trans_lock);
520 cur_trans = fs_info->running_transaction;
521 if (cur_trans && is_transaction_blocked(cur_trans)) {
522 refcount_inc(&cur_trans->use_count);
523 spin_unlock(&fs_info->trans_lock);
524
525 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526 wait_event(fs_info->transaction_wait,
527 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528 TRANS_ABORTED(cur_trans));
529 btrfs_put_transaction(cur_trans);
530 } else {
531 spin_unlock(&fs_info->trans_lock);
532 }
533}
534
535static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536{
537 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538 return 0;
539
540 if (type == TRANS_START)
541 return 1;
542
543 return 0;
544}
545
546static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547{
548 struct btrfs_fs_info *fs_info = root->fs_info;
549
550 if (!fs_info->reloc_ctl ||
551 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
553 root->reloc_root)
554 return false;
555
556 return true;
557}
558
559static struct btrfs_trans_handle *
560start_transaction(struct btrfs_root *root, unsigned int num_items,
561 unsigned int type, enum btrfs_reserve_flush_enum flush,
562 bool enforce_qgroups)
563{
564 struct btrfs_fs_info *fs_info = root->fs_info;
565 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
566 struct btrfs_trans_handle *h;
567 struct btrfs_transaction *cur_trans;
568 u64 num_bytes = 0;
569 u64 qgroup_reserved = 0;
570 bool reloc_reserved = false;
571 bool do_chunk_alloc = false;
572 int ret;
573
574 if (BTRFS_FS_ERROR(fs_info))
575 return ERR_PTR(-EROFS);
576
577 if (current->journal_info) {
578 WARN_ON(type & TRANS_EXTWRITERS);
579 h = current->journal_info;
580 refcount_inc(&h->use_count);
581 WARN_ON(refcount_read(&h->use_count) > 2);
582 h->orig_rsv = h->block_rsv;
583 h->block_rsv = NULL;
584 goto got_it;
585 }
586
587 /*
588 * Do the reservation before we join the transaction so we can do all
589 * the appropriate flushing if need be.
590 */
591 if (num_items && root != fs_info->chunk_root) {
592 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
593 u64 delayed_refs_bytes = 0;
594
595 qgroup_reserved = num_items * fs_info->nodesize;
596 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
597 enforce_qgroups);
598 if (ret)
599 return ERR_PTR(ret);
600
601 /*
602 * We want to reserve all the bytes we may need all at once, so
603 * we only do 1 enospc flushing cycle per transaction start. We
604 * accomplish this by simply assuming we'll do 2 x num_items
605 * worth of delayed refs updates in this trans handle, and
606 * refill that amount for whatever is missing in the reserve.
607 */
608 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
609 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
610 btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
611 delayed_refs_bytes = num_bytes;
612 num_bytes <<= 1;
613 }
614
615 /*
616 * Do the reservation for the relocation root creation
617 */
618 if (need_reserve_reloc_root(root)) {
619 num_bytes += fs_info->nodesize;
620 reloc_reserved = true;
621 }
622
623 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
624 if (ret)
625 goto reserve_fail;
626 if (delayed_refs_bytes) {
627 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
628 delayed_refs_bytes);
629 num_bytes -= delayed_refs_bytes;
630 }
631
632 if (rsv->space_info->force_alloc)
633 do_chunk_alloc = true;
634 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
635 !btrfs_block_rsv_full(delayed_refs_rsv)) {
636 /*
637 * Some people call with btrfs_start_transaction(root, 0)
638 * because they can be throttled, but have some other mechanism
639 * for reserving space. We still want these guys to refill the
640 * delayed block_rsv so just add 1 items worth of reservation
641 * here.
642 */
643 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
644 if (ret)
645 goto reserve_fail;
646 }
647again:
648 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
649 if (!h) {
650 ret = -ENOMEM;
651 goto alloc_fail;
652 }
653
654 /*
655 * If we are JOIN_NOLOCK we're already committing a transaction and
656 * waiting on this guy, so we don't need to do the sb_start_intwrite
657 * because we're already holding a ref. We need this because we could
658 * have raced in and did an fsync() on a file which can kick a commit
659 * and then we deadlock with somebody doing a freeze.
660 *
661 * If we are ATTACH, it means we just want to catch the current
662 * transaction and commit it, so we needn't do sb_start_intwrite().
663 */
664 if (type & __TRANS_FREEZABLE)
665 sb_start_intwrite(fs_info->sb);
666
667 if (may_wait_transaction(fs_info, type))
668 wait_current_trans(fs_info);
669
670 do {
671 ret = join_transaction(fs_info, type);
672 if (ret == -EBUSY) {
673 wait_current_trans(fs_info);
674 if (unlikely(type == TRANS_ATTACH ||
675 type == TRANS_JOIN_NOSTART))
676 ret = -ENOENT;
677 }
678 } while (ret == -EBUSY);
679
680 if (ret < 0)
681 goto join_fail;
682
683 cur_trans = fs_info->running_transaction;
684
685 h->transid = cur_trans->transid;
686 h->transaction = cur_trans;
687 refcount_set(&h->use_count, 1);
688 h->fs_info = root->fs_info;
689
690 h->type = type;
691 INIT_LIST_HEAD(&h->new_bgs);
692
693 smp_mb();
694 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
695 may_wait_transaction(fs_info, type)) {
696 current->journal_info = h;
697 btrfs_commit_transaction(h);
698 goto again;
699 }
700
701 if (num_bytes) {
702 trace_btrfs_space_reservation(fs_info, "transaction",
703 h->transid, num_bytes, 1);
704 h->block_rsv = &fs_info->trans_block_rsv;
705 h->bytes_reserved = num_bytes;
706 h->reloc_reserved = reloc_reserved;
707 }
708
709got_it:
710 if (!current->journal_info)
711 current->journal_info = h;
712
713 /*
714 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
715 * ALLOC_FORCE the first run through, and then we won't allocate for
716 * anybody else who races in later. We don't care about the return
717 * value here.
718 */
719 if (do_chunk_alloc && num_bytes) {
720 u64 flags = h->block_rsv->space_info->flags;
721
722 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
723 CHUNK_ALLOC_NO_FORCE);
724 }
725
726 /*
727 * btrfs_record_root_in_trans() needs to alloc new extents, and may
728 * call btrfs_join_transaction() while we're also starting a
729 * transaction.
730 *
731 * Thus it need to be called after current->journal_info initialized,
732 * or we can deadlock.
733 */
734 ret = btrfs_record_root_in_trans(h, root);
735 if (ret) {
736 /*
737 * The transaction handle is fully initialized and linked with
738 * other structures so it needs to be ended in case of errors,
739 * not just freed.
740 */
741 btrfs_end_transaction(h);
742 return ERR_PTR(ret);
743 }
744
745 return h;
746
747join_fail:
748 if (type & __TRANS_FREEZABLE)
749 sb_end_intwrite(fs_info->sb);
750 kmem_cache_free(btrfs_trans_handle_cachep, h);
751alloc_fail:
752 if (num_bytes)
753 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
754 num_bytes, NULL);
755reserve_fail:
756 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
757 return ERR_PTR(ret);
758}
759
760struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
761 unsigned int num_items)
762{
763 return start_transaction(root, num_items, TRANS_START,
764 BTRFS_RESERVE_FLUSH_ALL, true);
765}
766
767struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
768 struct btrfs_root *root,
769 unsigned int num_items)
770{
771 return start_transaction(root, num_items, TRANS_START,
772 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
773}
774
775struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
776{
777 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
778 true);
779}
780
781struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
782{
783 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
784 BTRFS_RESERVE_NO_FLUSH, true);
785}
786
787/*
788 * Similar to regular join but it never starts a transaction when none is
789 * running or after waiting for the current one to finish.
790 */
791struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
792{
793 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
794 BTRFS_RESERVE_NO_FLUSH, true);
795}
796
797/*
798 * btrfs_attach_transaction() - catch the running transaction
799 *
800 * It is used when we want to commit the current the transaction, but
801 * don't want to start a new one.
802 *
803 * Note: If this function return -ENOENT, it just means there is no
804 * running transaction. But it is possible that the inactive transaction
805 * is still in the memory, not fully on disk. If you hope there is no
806 * inactive transaction in the fs when -ENOENT is returned, you should
807 * invoke
808 * btrfs_attach_transaction_barrier()
809 */
810struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
811{
812 return start_transaction(root, 0, TRANS_ATTACH,
813 BTRFS_RESERVE_NO_FLUSH, true);
814}
815
816/*
817 * btrfs_attach_transaction_barrier() - catch the running transaction
818 *
819 * It is similar to the above function, the difference is this one
820 * will wait for all the inactive transactions until they fully
821 * complete.
822 */
823struct btrfs_trans_handle *
824btrfs_attach_transaction_barrier(struct btrfs_root *root)
825{
826 struct btrfs_trans_handle *trans;
827
828 trans = start_transaction(root, 0, TRANS_ATTACH,
829 BTRFS_RESERVE_NO_FLUSH, true);
830 if (trans == ERR_PTR(-ENOENT))
831 btrfs_wait_for_commit(root->fs_info, 0);
832
833 return trans;
834}
835
836/* Wait for a transaction commit to reach at least the given state. */
837static noinline void wait_for_commit(struct btrfs_transaction *commit,
838 const enum btrfs_trans_state min_state)
839{
840 struct btrfs_fs_info *fs_info = commit->fs_info;
841 u64 transid = commit->transid;
842 bool put = false;
843
844 /*
845 * At the moment this function is called with min_state either being
846 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
847 */
848 if (min_state == TRANS_STATE_COMPLETED)
849 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
850 else
851 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
852
853 while (1) {
854 wait_event(commit->commit_wait, commit->state >= min_state);
855 if (put)
856 btrfs_put_transaction(commit);
857
858 if (min_state < TRANS_STATE_COMPLETED)
859 break;
860
861 /*
862 * A transaction isn't really completed until all of the
863 * previous transactions are completed, but with fsync we can
864 * end up with SUPER_COMMITTED transactions before a COMPLETED
865 * transaction. Wait for those.
866 */
867
868 spin_lock(&fs_info->trans_lock);
869 commit = list_first_entry_or_null(&fs_info->trans_list,
870 struct btrfs_transaction,
871 list);
872 if (!commit || commit->transid > transid) {
873 spin_unlock(&fs_info->trans_lock);
874 break;
875 }
876 refcount_inc(&commit->use_count);
877 put = true;
878 spin_unlock(&fs_info->trans_lock);
879 }
880}
881
882int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
883{
884 struct btrfs_transaction *cur_trans = NULL, *t;
885 int ret = 0;
886
887 if (transid) {
888 if (transid <= fs_info->last_trans_committed)
889 goto out;
890
891 /* find specified transaction */
892 spin_lock(&fs_info->trans_lock);
893 list_for_each_entry(t, &fs_info->trans_list, list) {
894 if (t->transid == transid) {
895 cur_trans = t;
896 refcount_inc(&cur_trans->use_count);
897 ret = 0;
898 break;
899 }
900 if (t->transid > transid) {
901 ret = 0;
902 break;
903 }
904 }
905 spin_unlock(&fs_info->trans_lock);
906
907 /*
908 * The specified transaction doesn't exist, or we
909 * raced with btrfs_commit_transaction
910 */
911 if (!cur_trans) {
912 if (transid > fs_info->last_trans_committed)
913 ret = -EINVAL;
914 goto out;
915 }
916 } else {
917 /* find newest transaction that is committing | committed */
918 spin_lock(&fs_info->trans_lock);
919 list_for_each_entry_reverse(t, &fs_info->trans_list,
920 list) {
921 if (t->state >= TRANS_STATE_COMMIT_START) {
922 if (t->state == TRANS_STATE_COMPLETED)
923 break;
924 cur_trans = t;
925 refcount_inc(&cur_trans->use_count);
926 break;
927 }
928 }
929 spin_unlock(&fs_info->trans_lock);
930 if (!cur_trans)
931 goto out; /* nothing committing|committed */
932 }
933
934 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
935 btrfs_put_transaction(cur_trans);
936out:
937 return ret;
938}
939
940void btrfs_throttle(struct btrfs_fs_info *fs_info)
941{
942 wait_current_trans(fs_info);
943}
944
945static bool should_end_transaction(struct btrfs_trans_handle *trans)
946{
947 struct btrfs_fs_info *fs_info = trans->fs_info;
948
949 if (btrfs_check_space_for_delayed_refs(fs_info))
950 return true;
951
952 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 50);
953}
954
955bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
956{
957 struct btrfs_transaction *cur_trans = trans->transaction;
958
959 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
960 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
961 return true;
962
963 return should_end_transaction(trans);
964}
965
966static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
967
968{
969 struct btrfs_fs_info *fs_info = trans->fs_info;
970
971 if (!trans->block_rsv) {
972 ASSERT(!trans->bytes_reserved);
973 return;
974 }
975
976 if (!trans->bytes_reserved)
977 return;
978
979 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
980 trace_btrfs_space_reservation(fs_info, "transaction",
981 trans->transid, trans->bytes_reserved, 0);
982 btrfs_block_rsv_release(fs_info, trans->block_rsv,
983 trans->bytes_reserved, NULL);
984 trans->bytes_reserved = 0;
985}
986
987static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
988 int throttle)
989{
990 struct btrfs_fs_info *info = trans->fs_info;
991 struct btrfs_transaction *cur_trans = trans->transaction;
992 int err = 0;
993
994 if (refcount_read(&trans->use_count) > 1) {
995 refcount_dec(&trans->use_count);
996 trans->block_rsv = trans->orig_rsv;
997 return 0;
998 }
999
1000 btrfs_trans_release_metadata(trans);
1001 trans->block_rsv = NULL;
1002
1003 btrfs_create_pending_block_groups(trans);
1004
1005 btrfs_trans_release_chunk_metadata(trans);
1006
1007 if (trans->type & __TRANS_FREEZABLE)
1008 sb_end_intwrite(info->sb);
1009
1010 WARN_ON(cur_trans != info->running_transaction);
1011 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1012 atomic_dec(&cur_trans->num_writers);
1013 extwriter_counter_dec(cur_trans, trans->type);
1014
1015 cond_wake_up(&cur_trans->writer_wait);
1016
1017 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1018 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1019
1020 btrfs_put_transaction(cur_trans);
1021
1022 if (current->journal_info == trans)
1023 current->journal_info = NULL;
1024
1025 if (throttle)
1026 btrfs_run_delayed_iputs(info);
1027
1028 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1029 wake_up_process(info->transaction_kthread);
1030 if (TRANS_ABORTED(trans))
1031 err = trans->aborted;
1032 else
1033 err = -EROFS;
1034 }
1035
1036 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1037 return err;
1038}
1039
1040int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1041{
1042 return __btrfs_end_transaction(trans, 0);
1043}
1044
1045int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1046{
1047 return __btrfs_end_transaction(trans, 1);
1048}
1049
1050/*
1051 * when btree blocks are allocated, they have some corresponding bits set for
1052 * them in one of two extent_io trees. This is used to make sure all of
1053 * those extents are sent to disk but does not wait on them
1054 */
1055int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1056 struct extent_io_tree *dirty_pages, int mark)
1057{
1058 int err = 0;
1059 int werr = 0;
1060 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1061 struct extent_state *cached_state = NULL;
1062 u64 start = 0;
1063 u64 end;
1064
1065 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1066 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1067 mark, &cached_state)) {
1068 bool wait_writeback = false;
1069
1070 err = convert_extent_bit(dirty_pages, start, end,
1071 EXTENT_NEED_WAIT,
1072 mark, &cached_state);
1073 /*
1074 * convert_extent_bit can return -ENOMEM, which is most of the
1075 * time a temporary error. So when it happens, ignore the error
1076 * and wait for writeback of this range to finish - because we
1077 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1078 * to __btrfs_wait_marked_extents() would not know that
1079 * writeback for this range started and therefore wouldn't
1080 * wait for it to finish - we don't want to commit a
1081 * superblock that points to btree nodes/leafs for which
1082 * writeback hasn't finished yet (and without errors).
1083 * We cleanup any entries left in the io tree when committing
1084 * the transaction (through extent_io_tree_release()).
1085 */
1086 if (err == -ENOMEM) {
1087 err = 0;
1088 wait_writeback = true;
1089 }
1090 if (!err)
1091 err = filemap_fdatawrite_range(mapping, start, end);
1092 if (err)
1093 werr = err;
1094 else if (wait_writeback)
1095 werr = filemap_fdatawait_range(mapping, start, end);
1096 free_extent_state(cached_state);
1097 cached_state = NULL;
1098 cond_resched();
1099 start = end + 1;
1100 }
1101 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1102 return werr;
1103}
1104
1105/*
1106 * when btree blocks are allocated, they have some corresponding bits set for
1107 * them in one of two extent_io trees. This is used to make sure all of
1108 * those extents are on disk for transaction or log commit. We wait
1109 * on all the pages and clear them from the dirty pages state tree
1110 */
1111static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1112 struct extent_io_tree *dirty_pages)
1113{
1114 int err = 0;
1115 int werr = 0;
1116 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1117 struct extent_state *cached_state = NULL;
1118 u64 start = 0;
1119 u64 end;
1120
1121 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1122 EXTENT_NEED_WAIT, &cached_state)) {
1123 /*
1124 * Ignore -ENOMEM errors returned by clear_extent_bit().
1125 * When committing the transaction, we'll remove any entries
1126 * left in the io tree. For a log commit, we don't remove them
1127 * after committing the log because the tree can be accessed
1128 * concurrently - we do it only at transaction commit time when
1129 * it's safe to do it (through extent_io_tree_release()).
1130 */
1131 err = clear_extent_bit(dirty_pages, start, end,
1132 EXTENT_NEED_WAIT, &cached_state);
1133 if (err == -ENOMEM)
1134 err = 0;
1135 if (!err)
1136 err = filemap_fdatawait_range(mapping, start, end);
1137 if (err)
1138 werr = err;
1139 free_extent_state(cached_state);
1140 cached_state = NULL;
1141 cond_resched();
1142 start = end + 1;
1143 }
1144 if (err)
1145 werr = err;
1146 return werr;
1147}
1148
1149static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1150 struct extent_io_tree *dirty_pages)
1151{
1152 bool errors = false;
1153 int err;
1154
1155 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1156 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1157 errors = true;
1158
1159 if (errors && !err)
1160 err = -EIO;
1161 return err;
1162}
1163
1164int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1165{
1166 struct btrfs_fs_info *fs_info = log_root->fs_info;
1167 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1168 bool errors = false;
1169 int err;
1170
1171 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1172
1173 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1174 if ((mark & EXTENT_DIRTY) &&
1175 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1176 errors = true;
1177
1178 if ((mark & EXTENT_NEW) &&
1179 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1180 errors = true;
1181
1182 if (errors && !err)
1183 err = -EIO;
1184 return err;
1185}
1186
1187/*
1188 * When btree blocks are allocated the corresponding extents are marked dirty.
1189 * This function ensures such extents are persisted on disk for transaction or
1190 * log commit.
1191 *
1192 * @trans: transaction whose dirty pages we'd like to write
1193 */
1194static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1195{
1196 int ret;
1197 int ret2;
1198 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1199 struct btrfs_fs_info *fs_info = trans->fs_info;
1200 struct blk_plug plug;
1201
1202 blk_start_plug(&plug);
1203 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1204 blk_finish_plug(&plug);
1205 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1206
1207 extent_io_tree_release(&trans->transaction->dirty_pages);
1208
1209 if (ret)
1210 return ret;
1211 else if (ret2)
1212 return ret2;
1213 else
1214 return 0;
1215}
1216
1217/*
1218 * this is used to update the root pointer in the tree of tree roots.
1219 *
1220 * But, in the case of the extent allocation tree, updating the root
1221 * pointer may allocate blocks which may change the root of the extent
1222 * allocation tree.
1223 *
1224 * So, this loops and repeats and makes sure the cowonly root didn't
1225 * change while the root pointer was being updated in the metadata.
1226 */
1227static int update_cowonly_root(struct btrfs_trans_handle *trans,
1228 struct btrfs_root *root)
1229{
1230 int ret;
1231 u64 old_root_bytenr;
1232 u64 old_root_used;
1233 struct btrfs_fs_info *fs_info = root->fs_info;
1234 struct btrfs_root *tree_root = fs_info->tree_root;
1235
1236 old_root_used = btrfs_root_used(&root->root_item);
1237
1238 while (1) {
1239 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1240 if (old_root_bytenr == root->node->start &&
1241 old_root_used == btrfs_root_used(&root->root_item))
1242 break;
1243
1244 btrfs_set_root_node(&root->root_item, root->node);
1245 ret = btrfs_update_root(trans, tree_root,
1246 &root->root_key,
1247 &root->root_item);
1248 if (ret)
1249 return ret;
1250
1251 old_root_used = btrfs_root_used(&root->root_item);
1252 }
1253
1254 return 0;
1255}
1256
1257/*
1258 * update all the cowonly tree roots on disk
1259 *
1260 * The error handling in this function may not be obvious. Any of the
1261 * failures will cause the file system to go offline. We still need
1262 * to clean up the delayed refs.
1263 */
1264static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1265{
1266 struct btrfs_fs_info *fs_info = trans->fs_info;
1267 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1268 struct list_head *io_bgs = &trans->transaction->io_bgs;
1269 struct list_head *next;
1270 struct extent_buffer *eb;
1271 int ret;
1272
1273 /*
1274 * At this point no one can be using this transaction to modify any tree
1275 * and no one can start another transaction to modify any tree either.
1276 */
1277 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1278
1279 eb = btrfs_lock_root_node(fs_info->tree_root);
1280 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1281 0, &eb, BTRFS_NESTING_COW);
1282 btrfs_tree_unlock(eb);
1283 free_extent_buffer(eb);
1284
1285 if (ret)
1286 return ret;
1287
1288 ret = btrfs_run_dev_stats(trans);
1289 if (ret)
1290 return ret;
1291 ret = btrfs_run_dev_replace(trans);
1292 if (ret)
1293 return ret;
1294 ret = btrfs_run_qgroups(trans);
1295 if (ret)
1296 return ret;
1297
1298 ret = btrfs_setup_space_cache(trans);
1299 if (ret)
1300 return ret;
1301
1302again:
1303 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1304 struct btrfs_root *root;
1305 next = fs_info->dirty_cowonly_roots.next;
1306 list_del_init(next);
1307 root = list_entry(next, struct btrfs_root, dirty_list);
1308 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1309
1310 list_add_tail(&root->dirty_list,
1311 &trans->transaction->switch_commits);
1312 ret = update_cowonly_root(trans, root);
1313 if (ret)
1314 return ret;
1315 }
1316
1317 /* Now flush any delayed refs generated by updating all of the roots */
1318 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1319 if (ret)
1320 return ret;
1321
1322 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1323 ret = btrfs_write_dirty_block_groups(trans);
1324 if (ret)
1325 return ret;
1326
1327 /*
1328 * We're writing the dirty block groups, which could generate
1329 * delayed refs, which could generate more dirty block groups,
1330 * so we want to keep this flushing in this loop to make sure
1331 * everything gets run.
1332 */
1333 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1334 if (ret)
1335 return ret;
1336 }
1337
1338 if (!list_empty(&fs_info->dirty_cowonly_roots))
1339 goto again;
1340
1341 /* Update dev-replace pointer once everything is committed */
1342 fs_info->dev_replace.committed_cursor_left =
1343 fs_info->dev_replace.cursor_left_last_write_of_item;
1344
1345 return 0;
1346}
1347
1348/*
1349 * If we had a pending drop we need to see if there are any others left in our
1350 * dead roots list, and if not clear our bit and wake any waiters.
1351 */
1352void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1353{
1354 /*
1355 * We put the drop in progress roots at the front of the list, so if the
1356 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1357 * up.
1358 */
1359 spin_lock(&fs_info->trans_lock);
1360 if (!list_empty(&fs_info->dead_roots)) {
1361 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1362 struct btrfs_root,
1363 root_list);
1364 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1365 spin_unlock(&fs_info->trans_lock);
1366 return;
1367 }
1368 }
1369 spin_unlock(&fs_info->trans_lock);
1370
1371 btrfs_wake_unfinished_drop(fs_info);
1372}
1373
1374/*
1375 * dead roots are old snapshots that need to be deleted. This allocates
1376 * a dirty root struct and adds it into the list of dead roots that need to
1377 * be deleted
1378 */
1379void btrfs_add_dead_root(struct btrfs_root *root)
1380{
1381 struct btrfs_fs_info *fs_info = root->fs_info;
1382
1383 spin_lock(&fs_info->trans_lock);
1384 if (list_empty(&root->root_list)) {
1385 btrfs_grab_root(root);
1386
1387 /* We want to process the partially complete drops first. */
1388 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1389 list_add(&root->root_list, &fs_info->dead_roots);
1390 else
1391 list_add_tail(&root->root_list, &fs_info->dead_roots);
1392 }
1393 spin_unlock(&fs_info->trans_lock);
1394}
1395
1396/*
1397 * Update each subvolume root and its relocation root, if it exists, in the tree
1398 * of tree roots. Also free log roots if they exist.
1399 */
1400static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1401{
1402 struct btrfs_fs_info *fs_info = trans->fs_info;
1403 struct btrfs_root *gang[8];
1404 int i;
1405 int ret;
1406
1407 /*
1408 * At this point no one can be using this transaction to modify any tree
1409 * and no one can start another transaction to modify any tree either.
1410 */
1411 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1412
1413 spin_lock(&fs_info->fs_roots_radix_lock);
1414 while (1) {
1415 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1416 (void **)gang, 0,
1417 ARRAY_SIZE(gang),
1418 BTRFS_ROOT_TRANS_TAG);
1419 if (ret == 0)
1420 break;
1421 for (i = 0; i < ret; i++) {
1422 struct btrfs_root *root = gang[i];
1423 int ret2;
1424
1425 /*
1426 * At this point we can neither have tasks logging inodes
1427 * from a root nor trying to commit a log tree.
1428 */
1429 ASSERT(atomic_read(&root->log_writers) == 0);
1430 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1431 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1432
1433 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1434 (unsigned long)root->root_key.objectid,
1435 BTRFS_ROOT_TRANS_TAG);
1436 spin_unlock(&fs_info->fs_roots_radix_lock);
1437
1438 btrfs_free_log(trans, root);
1439 ret2 = btrfs_update_reloc_root(trans, root);
1440 if (ret2)
1441 return ret2;
1442
1443 /* see comments in should_cow_block() */
1444 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1445 smp_mb__after_atomic();
1446
1447 if (root->commit_root != root->node) {
1448 list_add_tail(&root->dirty_list,
1449 &trans->transaction->switch_commits);
1450 btrfs_set_root_node(&root->root_item,
1451 root->node);
1452 }
1453
1454 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1455 &root->root_key,
1456 &root->root_item);
1457 if (ret2)
1458 return ret2;
1459 spin_lock(&fs_info->fs_roots_radix_lock);
1460 btrfs_qgroup_free_meta_all_pertrans(root);
1461 }
1462 }
1463 spin_unlock(&fs_info->fs_roots_radix_lock);
1464 return 0;
1465}
1466
1467/*
1468 * defrag a given btree.
1469 * Every leaf in the btree is read and defragged.
1470 */
1471int btrfs_defrag_root(struct btrfs_root *root)
1472{
1473 struct btrfs_fs_info *info = root->fs_info;
1474 struct btrfs_trans_handle *trans;
1475 int ret;
1476
1477 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1478 return 0;
1479
1480 while (1) {
1481 trans = btrfs_start_transaction(root, 0);
1482 if (IS_ERR(trans)) {
1483 ret = PTR_ERR(trans);
1484 break;
1485 }
1486
1487 ret = btrfs_defrag_leaves(trans, root);
1488
1489 btrfs_end_transaction(trans);
1490 btrfs_btree_balance_dirty(info);
1491 cond_resched();
1492
1493 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1494 break;
1495
1496 if (btrfs_defrag_cancelled(info)) {
1497 btrfs_debug(info, "defrag_root cancelled");
1498 ret = -EAGAIN;
1499 break;
1500 }
1501 }
1502 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1503 return ret;
1504}
1505
1506/*
1507 * Do all special snapshot related qgroup dirty hack.
1508 *
1509 * Will do all needed qgroup inherit and dirty hack like switch commit
1510 * roots inside one transaction and write all btree into disk, to make
1511 * qgroup works.
1512 */
1513static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *src,
1515 struct btrfs_root *parent,
1516 struct btrfs_qgroup_inherit *inherit,
1517 u64 dst_objectid)
1518{
1519 struct btrfs_fs_info *fs_info = src->fs_info;
1520 int ret;
1521
1522 /*
1523 * Save some performance in the case that qgroups are not
1524 * enabled. If this check races with the ioctl, rescan will
1525 * kick in anyway.
1526 */
1527 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1528 return 0;
1529
1530 /*
1531 * Ensure dirty @src will be committed. Or, after coming
1532 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1533 * recorded root will never be updated again, causing an outdated root
1534 * item.
1535 */
1536 ret = record_root_in_trans(trans, src, 1);
1537 if (ret)
1538 return ret;
1539
1540 /*
1541 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1542 * src root, so we must run the delayed refs here.
1543 *
1544 * However this isn't particularly fool proof, because there's no
1545 * synchronization keeping us from changing the tree after this point
1546 * before we do the qgroup_inherit, or even from making changes while
1547 * we're doing the qgroup_inherit. But that's a problem for the future,
1548 * for now flush the delayed refs to narrow the race window where the
1549 * qgroup counters could end up wrong.
1550 */
1551 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1552 if (ret) {
1553 btrfs_abort_transaction(trans, ret);
1554 return ret;
1555 }
1556
1557 ret = commit_fs_roots(trans);
1558 if (ret)
1559 goto out;
1560 ret = btrfs_qgroup_account_extents(trans);
1561 if (ret < 0)
1562 goto out;
1563
1564 /* Now qgroup are all updated, we can inherit it to new qgroups */
1565 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1566 inherit);
1567 if (ret < 0)
1568 goto out;
1569
1570 /*
1571 * Now we do a simplified commit transaction, which will:
1572 * 1) commit all subvolume and extent tree
1573 * To ensure all subvolume and extent tree have a valid
1574 * commit_root to accounting later insert_dir_item()
1575 * 2) write all btree blocks onto disk
1576 * This is to make sure later btree modification will be cowed
1577 * Or commit_root can be populated and cause wrong qgroup numbers
1578 * In this simplified commit, we don't really care about other trees
1579 * like chunk and root tree, as they won't affect qgroup.
1580 * And we don't write super to avoid half committed status.
1581 */
1582 ret = commit_cowonly_roots(trans);
1583 if (ret)
1584 goto out;
1585 switch_commit_roots(trans);
1586 ret = btrfs_write_and_wait_transaction(trans);
1587 if (ret)
1588 btrfs_handle_fs_error(fs_info, ret,
1589 "Error while writing out transaction for qgroup");
1590
1591out:
1592 /*
1593 * Force parent root to be updated, as we recorded it before so its
1594 * last_trans == cur_transid.
1595 * Or it won't be committed again onto disk after later
1596 * insert_dir_item()
1597 */
1598 if (!ret)
1599 ret = record_root_in_trans(trans, parent, 1);
1600 return ret;
1601}
1602
1603/*
1604 * new snapshots need to be created at a very specific time in the
1605 * transaction commit. This does the actual creation.
1606 *
1607 * Note:
1608 * If the error which may affect the commitment of the current transaction
1609 * happens, we should return the error number. If the error which just affect
1610 * the creation of the pending snapshots, just return 0.
1611 */
1612static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1613 struct btrfs_pending_snapshot *pending)
1614{
1615
1616 struct btrfs_fs_info *fs_info = trans->fs_info;
1617 struct btrfs_key key;
1618 struct btrfs_root_item *new_root_item;
1619 struct btrfs_root *tree_root = fs_info->tree_root;
1620 struct btrfs_root *root = pending->root;
1621 struct btrfs_root *parent_root;
1622 struct btrfs_block_rsv *rsv;
1623 struct inode *parent_inode = pending->dir;
1624 struct btrfs_path *path;
1625 struct btrfs_dir_item *dir_item;
1626 struct extent_buffer *tmp;
1627 struct extent_buffer *old;
1628 struct timespec64 cur_time;
1629 int ret = 0;
1630 u64 to_reserve = 0;
1631 u64 index = 0;
1632 u64 objectid;
1633 u64 root_flags;
1634 unsigned int nofs_flags;
1635 struct fscrypt_name fname;
1636
1637 ASSERT(pending->path);
1638 path = pending->path;
1639
1640 ASSERT(pending->root_item);
1641 new_root_item = pending->root_item;
1642
1643 /*
1644 * We're inside a transaction and must make sure that any potential
1645 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1646 * filesystem.
1647 */
1648 nofs_flags = memalloc_nofs_save();
1649 pending->error = fscrypt_setup_filename(parent_inode,
1650 &pending->dentry->d_name, 0,
1651 &fname);
1652 memalloc_nofs_restore(nofs_flags);
1653 if (pending->error)
1654 goto free_pending;
1655
1656 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1657 if (pending->error)
1658 goto free_fname;
1659
1660 /*
1661 * Make qgroup to skip current new snapshot's qgroupid, as it is
1662 * accounted by later btrfs_qgroup_inherit().
1663 */
1664 btrfs_set_skip_qgroup(trans, objectid);
1665
1666 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1667
1668 if (to_reserve > 0) {
1669 pending->error = btrfs_block_rsv_add(fs_info,
1670 &pending->block_rsv,
1671 to_reserve,
1672 BTRFS_RESERVE_NO_FLUSH);
1673 if (pending->error)
1674 goto clear_skip_qgroup;
1675 }
1676
1677 key.objectid = objectid;
1678 key.offset = (u64)-1;
1679 key.type = BTRFS_ROOT_ITEM_KEY;
1680
1681 rsv = trans->block_rsv;
1682 trans->block_rsv = &pending->block_rsv;
1683 trans->bytes_reserved = trans->block_rsv->reserved;
1684 trace_btrfs_space_reservation(fs_info, "transaction",
1685 trans->transid,
1686 trans->bytes_reserved, 1);
1687 parent_root = BTRFS_I(parent_inode)->root;
1688 ret = record_root_in_trans(trans, parent_root, 0);
1689 if (ret)
1690 goto fail;
1691 cur_time = current_time(parent_inode);
1692
1693 /*
1694 * insert the directory item
1695 */
1696 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1697 BUG_ON(ret); /* -ENOMEM */
1698
1699 /* check if there is a file/dir which has the same name. */
1700 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1701 btrfs_ino(BTRFS_I(parent_inode)),
1702 &fname.disk_name, 0);
1703 if (dir_item != NULL && !IS_ERR(dir_item)) {
1704 pending->error = -EEXIST;
1705 goto dir_item_existed;
1706 } else if (IS_ERR(dir_item)) {
1707 ret = PTR_ERR(dir_item);
1708 btrfs_abort_transaction(trans, ret);
1709 goto fail;
1710 }
1711 btrfs_release_path(path);
1712
1713 /*
1714 * pull in the delayed directory update
1715 * and the delayed inode item
1716 * otherwise we corrupt the FS during
1717 * snapshot
1718 */
1719 ret = btrfs_run_delayed_items(trans);
1720 if (ret) { /* Transaction aborted */
1721 btrfs_abort_transaction(trans, ret);
1722 goto fail;
1723 }
1724
1725 ret = record_root_in_trans(trans, root, 0);
1726 if (ret) {
1727 btrfs_abort_transaction(trans, ret);
1728 goto fail;
1729 }
1730 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1731 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1732 btrfs_check_and_init_root_item(new_root_item);
1733
1734 root_flags = btrfs_root_flags(new_root_item);
1735 if (pending->readonly)
1736 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1737 else
1738 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1739 btrfs_set_root_flags(new_root_item, root_flags);
1740
1741 btrfs_set_root_generation_v2(new_root_item,
1742 trans->transid);
1743 generate_random_guid(new_root_item->uuid);
1744 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1745 BTRFS_UUID_SIZE);
1746 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1747 memset(new_root_item->received_uuid, 0,
1748 sizeof(new_root_item->received_uuid));
1749 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1750 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1751 btrfs_set_root_stransid(new_root_item, 0);
1752 btrfs_set_root_rtransid(new_root_item, 0);
1753 }
1754 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1755 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1756 btrfs_set_root_otransid(new_root_item, trans->transid);
1757
1758 old = btrfs_lock_root_node(root);
1759 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1760 BTRFS_NESTING_COW);
1761 if (ret) {
1762 btrfs_tree_unlock(old);
1763 free_extent_buffer(old);
1764 btrfs_abort_transaction(trans, ret);
1765 goto fail;
1766 }
1767
1768 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1769 /* clean up in any case */
1770 btrfs_tree_unlock(old);
1771 free_extent_buffer(old);
1772 if (ret) {
1773 btrfs_abort_transaction(trans, ret);
1774 goto fail;
1775 }
1776 /* see comments in should_cow_block() */
1777 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1778 smp_wmb();
1779
1780 btrfs_set_root_node(new_root_item, tmp);
1781 /* record when the snapshot was created in key.offset */
1782 key.offset = trans->transid;
1783 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1784 btrfs_tree_unlock(tmp);
1785 free_extent_buffer(tmp);
1786 if (ret) {
1787 btrfs_abort_transaction(trans, ret);
1788 goto fail;
1789 }
1790
1791 /*
1792 * insert root back/forward references
1793 */
1794 ret = btrfs_add_root_ref(trans, objectid,
1795 parent_root->root_key.objectid,
1796 btrfs_ino(BTRFS_I(parent_inode)), index,
1797 &fname.disk_name);
1798 if (ret) {
1799 btrfs_abort_transaction(trans, ret);
1800 goto fail;
1801 }
1802
1803 key.offset = (u64)-1;
1804 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1805 if (IS_ERR(pending->snap)) {
1806 ret = PTR_ERR(pending->snap);
1807 pending->snap = NULL;
1808 btrfs_abort_transaction(trans, ret);
1809 goto fail;
1810 }
1811
1812 ret = btrfs_reloc_post_snapshot(trans, pending);
1813 if (ret) {
1814 btrfs_abort_transaction(trans, ret);
1815 goto fail;
1816 }
1817
1818 /*
1819 * Do special qgroup accounting for snapshot, as we do some qgroup
1820 * snapshot hack to do fast snapshot.
1821 * To co-operate with that hack, we do hack again.
1822 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1823 */
1824 ret = qgroup_account_snapshot(trans, root, parent_root,
1825 pending->inherit, objectid);
1826 if (ret < 0)
1827 goto fail;
1828
1829 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1830 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1831 index);
1832 /* We have check then name at the beginning, so it is impossible. */
1833 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1834 if (ret) {
1835 btrfs_abort_transaction(trans, ret);
1836 goto fail;
1837 }
1838
1839 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1840 fname.disk_name.len * 2);
1841 parent_inode->i_mtime = current_time(parent_inode);
1842 parent_inode->i_ctime = parent_inode->i_mtime;
1843 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1844 if (ret) {
1845 btrfs_abort_transaction(trans, ret);
1846 goto fail;
1847 }
1848 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1849 BTRFS_UUID_KEY_SUBVOL,
1850 objectid);
1851 if (ret) {
1852 btrfs_abort_transaction(trans, ret);
1853 goto fail;
1854 }
1855 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1856 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1857 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1858 objectid);
1859 if (ret && ret != -EEXIST) {
1860 btrfs_abort_transaction(trans, ret);
1861 goto fail;
1862 }
1863 }
1864
1865fail:
1866 pending->error = ret;
1867dir_item_existed:
1868 trans->block_rsv = rsv;
1869 trans->bytes_reserved = 0;
1870clear_skip_qgroup:
1871 btrfs_clear_skip_qgroup(trans);
1872free_fname:
1873 fscrypt_free_filename(&fname);
1874free_pending:
1875 kfree(new_root_item);
1876 pending->root_item = NULL;
1877 btrfs_free_path(path);
1878 pending->path = NULL;
1879
1880 return ret;
1881}
1882
1883/*
1884 * create all the snapshots we've scheduled for creation
1885 */
1886static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1887{
1888 struct btrfs_pending_snapshot *pending, *next;
1889 struct list_head *head = &trans->transaction->pending_snapshots;
1890 int ret = 0;
1891
1892 list_for_each_entry_safe(pending, next, head, list) {
1893 list_del(&pending->list);
1894 ret = create_pending_snapshot(trans, pending);
1895 if (ret)
1896 break;
1897 }
1898 return ret;
1899}
1900
1901static void update_super_roots(struct btrfs_fs_info *fs_info)
1902{
1903 struct btrfs_root_item *root_item;
1904 struct btrfs_super_block *super;
1905
1906 super = fs_info->super_copy;
1907
1908 root_item = &fs_info->chunk_root->root_item;
1909 super->chunk_root = root_item->bytenr;
1910 super->chunk_root_generation = root_item->generation;
1911 super->chunk_root_level = root_item->level;
1912
1913 root_item = &fs_info->tree_root->root_item;
1914 super->root = root_item->bytenr;
1915 super->generation = root_item->generation;
1916 super->root_level = root_item->level;
1917 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1918 super->cache_generation = root_item->generation;
1919 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1920 super->cache_generation = 0;
1921 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1922 super->uuid_tree_generation = root_item->generation;
1923}
1924
1925int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1926{
1927 struct btrfs_transaction *trans;
1928 int ret = 0;
1929
1930 spin_lock(&info->trans_lock);
1931 trans = info->running_transaction;
1932 if (trans)
1933 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1934 spin_unlock(&info->trans_lock);
1935 return ret;
1936}
1937
1938int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1939{
1940 struct btrfs_transaction *trans;
1941 int ret = 0;
1942
1943 spin_lock(&info->trans_lock);
1944 trans = info->running_transaction;
1945 if (trans)
1946 ret = is_transaction_blocked(trans);
1947 spin_unlock(&info->trans_lock);
1948 return ret;
1949}
1950
1951void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1952{
1953 struct btrfs_fs_info *fs_info = trans->fs_info;
1954 struct btrfs_transaction *cur_trans;
1955
1956 /* Kick the transaction kthread. */
1957 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1958 wake_up_process(fs_info->transaction_kthread);
1959
1960 /* take transaction reference */
1961 cur_trans = trans->transaction;
1962 refcount_inc(&cur_trans->use_count);
1963
1964 btrfs_end_transaction(trans);
1965
1966 /*
1967 * Wait for the current transaction commit to start and block
1968 * subsequent transaction joins
1969 */
1970 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1971 wait_event(fs_info->transaction_blocked_wait,
1972 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1973 TRANS_ABORTED(cur_trans));
1974 btrfs_put_transaction(cur_trans);
1975}
1976
1977static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1978{
1979 struct btrfs_fs_info *fs_info = trans->fs_info;
1980 struct btrfs_transaction *cur_trans = trans->transaction;
1981
1982 WARN_ON(refcount_read(&trans->use_count) > 1);
1983
1984 btrfs_abort_transaction(trans, err);
1985
1986 spin_lock(&fs_info->trans_lock);
1987
1988 /*
1989 * If the transaction is removed from the list, it means this
1990 * transaction has been committed successfully, so it is impossible
1991 * to call the cleanup function.
1992 */
1993 BUG_ON(list_empty(&cur_trans->list));
1994
1995 if (cur_trans == fs_info->running_transaction) {
1996 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1997 spin_unlock(&fs_info->trans_lock);
1998
1999 /*
2000 * The thread has already released the lockdep map as reader
2001 * already in btrfs_commit_transaction().
2002 */
2003 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2004 wait_event(cur_trans->writer_wait,
2005 atomic_read(&cur_trans->num_writers) == 1);
2006
2007 spin_lock(&fs_info->trans_lock);
2008 }
2009
2010 /*
2011 * Now that we know no one else is still using the transaction we can
2012 * remove the transaction from the list of transactions. This avoids
2013 * the transaction kthread from cleaning up the transaction while some
2014 * other task is still using it, which could result in a use-after-free
2015 * on things like log trees, as it forces the transaction kthread to
2016 * wait for this transaction to be cleaned up by us.
2017 */
2018 list_del_init(&cur_trans->list);
2019
2020 spin_unlock(&fs_info->trans_lock);
2021
2022 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2023
2024 spin_lock(&fs_info->trans_lock);
2025 if (cur_trans == fs_info->running_transaction)
2026 fs_info->running_transaction = NULL;
2027 spin_unlock(&fs_info->trans_lock);
2028
2029 if (trans->type & __TRANS_FREEZABLE)
2030 sb_end_intwrite(fs_info->sb);
2031 btrfs_put_transaction(cur_trans);
2032 btrfs_put_transaction(cur_trans);
2033
2034 trace_btrfs_transaction_commit(fs_info);
2035
2036 if (current->journal_info == trans)
2037 current->journal_info = NULL;
2038 btrfs_scrub_cancel(fs_info);
2039
2040 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2041}
2042
2043/*
2044 * Release reserved delayed ref space of all pending block groups of the
2045 * transaction and remove them from the list
2046 */
2047static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2048{
2049 struct btrfs_fs_info *fs_info = trans->fs_info;
2050 struct btrfs_block_group *block_group, *tmp;
2051
2052 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2053 btrfs_delayed_refs_rsv_release(fs_info, 1);
2054 list_del_init(&block_group->bg_list);
2055 }
2056}
2057
2058static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2059{
2060 /*
2061 * We use try_to_writeback_inodes_sb() here because if we used
2062 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2063 * Currently are holding the fs freeze lock, if we do an async flush
2064 * we'll do btrfs_join_transaction() and deadlock because we need to
2065 * wait for the fs freeze lock. Using the direct flushing we benefit
2066 * from already being in a transaction and our join_transaction doesn't
2067 * have to re-take the fs freeze lock.
2068 *
2069 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2070 * if it can read lock sb->s_umount. It will always be able to lock it,
2071 * except when the filesystem is being unmounted or being frozen, but in
2072 * those cases sync_filesystem() is called, which results in calling
2073 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2074 * Note that we don't call writeback_inodes_sb() directly, because it
2075 * will emit a warning if sb->s_umount is not locked.
2076 */
2077 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2078 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2079 return 0;
2080}
2081
2082static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2083{
2084 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2085 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2086}
2087
2088/*
2089 * Add a pending snapshot associated with the given transaction handle to the
2090 * respective handle. This must be called after the transaction commit started
2091 * and while holding fs_info->trans_lock.
2092 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2093 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2094 * returns an error.
2095 */
2096static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2097{
2098 struct btrfs_transaction *cur_trans = trans->transaction;
2099
2100 if (!trans->pending_snapshot)
2101 return;
2102
2103 lockdep_assert_held(&trans->fs_info->trans_lock);
2104 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2105
2106 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2107}
2108
2109static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2110{
2111 fs_info->commit_stats.commit_count++;
2112 fs_info->commit_stats.last_commit_dur = interval;
2113 fs_info->commit_stats.max_commit_dur =
2114 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2115 fs_info->commit_stats.total_commit_dur += interval;
2116}
2117
2118int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2119{
2120 struct btrfs_fs_info *fs_info = trans->fs_info;
2121 struct btrfs_transaction *cur_trans = trans->transaction;
2122 struct btrfs_transaction *prev_trans = NULL;
2123 int ret;
2124 ktime_t start_time;
2125 ktime_t interval;
2126
2127 ASSERT(refcount_read(&trans->use_count) == 1);
2128 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2129
2130 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2131
2132 /* Stop the commit early if ->aborted is set */
2133 if (TRANS_ABORTED(cur_trans)) {
2134 ret = cur_trans->aborted;
2135 goto lockdep_trans_commit_start_release;
2136 }
2137
2138 btrfs_trans_release_metadata(trans);
2139 trans->block_rsv = NULL;
2140
2141 /*
2142 * We only want one transaction commit doing the flushing so we do not
2143 * waste a bunch of time on lock contention on the extent root node.
2144 */
2145 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2146 &cur_trans->delayed_refs.flags)) {
2147 /*
2148 * Make a pass through all the delayed refs we have so far.
2149 * Any running threads may add more while we are here.
2150 */
2151 ret = btrfs_run_delayed_refs(trans, 0);
2152 if (ret)
2153 goto lockdep_trans_commit_start_release;
2154 }
2155
2156 btrfs_create_pending_block_groups(trans);
2157
2158 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2159 int run_it = 0;
2160
2161 /* this mutex is also taken before trying to set
2162 * block groups readonly. We need to make sure
2163 * that nobody has set a block group readonly
2164 * after a extents from that block group have been
2165 * allocated for cache files. btrfs_set_block_group_ro
2166 * will wait for the transaction to commit if it
2167 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2168 *
2169 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2170 * only one process starts all the block group IO. It wouldn't
2171 * hurt to have more than one go through, but there's no
2172 * real advantage to it either.
2173 */
2174 mutex_lock(&fs_info->ro_block_group_mutex);
2175 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2176 &cur_trans->flags))
2177 run_it = 1;
2178 mutex_unlock(&fs_info->ro_block_group_mutex);
2179
2180 if (run_it) {
2181 ret = btrfs_start_dirty_block_groups(trans);
2182 if (ret)
2183 goto lockdep_trans_commit_start_release;
2184 }
2185 }
2186
2187 spin_lock(&fs_info->trans_lock);
2188 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2189 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2190
2191 add_pending_snapshot(trans);
2192
2193 spin_unlock(&fs_info->trans_lock);
2194 refcount_inc(&cur_trans->use_count);
2195
2196 if (trans->in_fsync)
2197 want_state = TRANS_STATE_SUPER_COMMITTED;
2198
2199 btrfs_trans_state_lockdep_release(fs_info,
2200 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2201 ret = btrfs_end_transaction(trans);
2202 wait_for_commit(cur_trans, want_state);
2203
2204 if (TRANS_ABORTED(cur_trans))
2205 ret = cur_trans->aborted;
2206
2207 btrfs_put_transaction(cur_trans);
2208
2209 return ret;
2210 }
2211
2212 cur_trans->state = TRANS_STATE_COMMIT_START;
2213 wake_up(&fs_info->transaction_blocked_wait);
2214 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2215
2216 if (cur_trans->list.prev != &fs_info->trans_list) {
2217 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2218
2219 if (trans->in_fsync)
2220 want_state = TRANS_STATE_SUPER_COMMITTED;
2221
2222 prev_trans = list_entry(cur_trans->list.prev,
2223 struct btrfs_transaction, list);
2224 if (prev_trans->state < want_state) {
2225 refcount_inc(&prev_trans->use_count);
2226 spin_unlock(&fs_info->trans_lock);
2227
2228 wait_for_commit(prev_trans, want_state);
2229
2230 ret = READ_ONCE(prev_trans->aborted);
2231
2232 btrfs_put_transaction(prev_trans);
2233 if (ret)
2234 goto lockdep_release;
2235 } else {
2236 spin_unlock(&fs_info->trans_lock);
2237 }
2238 } else {
2239 spin_unlock(&fs_info->trans_lock);
2240 /*
2241 * The previous transaction was aborted and was already removed
2242 * from the list of transactions at fs_info->trans_list. So we
2243 * abort to prevent writing a new superblock that reflects a
2244 * corrupt state (pointing to trees with unwritten nodes/leafs).
2245 */
2246 if (BTRFS_FS_ERROR(fs_info)) {
2247 ret = -EROFS;
2248 goto lockdep_release;
2249 }
2250 }
2251
2252 /*
2253 * Get the time spent on the work done by the commit thread and not
2254 * the time spent waiting on a previous commit
2255 */
2256 start_time = ktime_get_ns();
2257
2258 extwriter_counter_dec(cur_trans, trans->type);
2259
2260 ret = btrfs_start_delalloc_flush(fs_info);
2261 if (ret)
2262 goto lockdep_release;
2263
2264 ret = btrfs_run_delayed_items(trans);
2265 if (ret)
2266 goto lockdep_release;
2267
2268 /*
2269 * The thread has started/joined the transaction thus it holds the
2270 * lockdep map as a reader. It has to release it before acquiring the
2271 * lockdep map as a writer.
2272 */
2273 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2274 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2275 wait_event(cur_trans->writer_wait,
2276 extwriter_counter_read(cur_trans) == 0);
2277
2278 /* some pending stuffs might be added after the previous flush. */
2279 ret = btrfs_run_delayed_items(trans);
2280 if (ret) {
2281 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2282 goto cleanup_transaction;
2283 }
2284
2285 btrfs_wait_delalloc_flush(fs_info);
2286
2287 /*
2288 * Wait for all ordered extents started by a fast fsync that joined this
2289 * transaction. Otherwise if this transaction commits before the ordered
2290 * extents complete we lose logged data after a power failure.
2291 */
2292 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2293 wait_event(cur_trans->pending_wait,
2294 atomic_read(&cur_trans->pending_ordered) == 0);
2295
2296 btrfs_scrub_pause(fs_info);
2297 /*
2298 * Ok now we need to make sure to block out any other joins while we
2299 * commit the transaction. We could have started a join before setting
2300 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2301 */
2302 spin_lock(&fs_info->trans_lock);
2303 add_pending_snapshot(trans);
2304 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2305 spin_unlock(&fs_info->trans_lock);
2306
2307 /*
2308 * The thread has started/joined the transaction thus it holds the
2309 * lockdep map as a reader. It has to release it before acquiring the
2310 * lockdep map as a writer.
2311 */
2312 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2313 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2314 wait_event(cur_trans->writer_wait,
2315 atomic_read(&cur_trans->num_writers) == 1);
2316
2317 /*
2318 * Make lockdep happy by acquiring the state locks after
2319 * btrfs_trans_num_writers is released. If we acquired the state locks
2320 * before releasing the btrfs_trans_num_writers lock then lockdep would
2321 * complain because we did not follow the reverse order unlocking rule.
2322 */
2323 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2324 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2325 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2326
2327 /*
2328 * We've started the commit, clear the flag in case we were triggered to
2329 * do an async commit but somebody else started before the transaction
2330 * kthread could do the work.
2331 */
2332 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2333
2334 if (TRANS_ABORTED(cur_trans)) {
2335 ret = cur_trans->aborted;
2336 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2337 goto scrub_continue;
2338 }
2339 /*
2340 * the reloc mutex makes sure that we stop
2341 * the balancing code from coming in and moving
2342 * extents around in the middle of the commit
2343 */
2344 mutex_lock(&fs_info->reloc_mutex);
2345
2346 /*
2347 * We needn't worry about the delayed items because we will
2348 * deal with them in create_pending_snapshot(), which is the
2349 * core function of the snapshot creation.
2350 */
2351 ret = create_pending_snapshots(trans);
2352 if (ret)
2353 goto unlock_reloc;
2354
2355 /*
2356 * We insert the dir indexes of the snapshots and update the inode
2357 * of the snapshots' parents after the snapshot creation, so there
2358 * are some delayed items which are not dealt with. Now deal with
2359 * them.
2360 *
2361 * We needn't worry that this operation will corrupt the snapshots,
2362 * because all the tree which are snapshoted will be forced to COW
2363 * the nodes and leaves.
2364 */
2365 ret = btrfs_run_delayed_items(trans);
2366 if (ret)
2367 goto unlock_reloc;
2368
2369 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2370 if (ret)
2371 goto unlock_reloc;
2372
2373 /*
2374 * make sure none of the code above managed to slip in a
2375 * delayed item
2376 */
2377 btrfs_assert_delayed_root_empty(fs_info);
2378
2379 WARN_ON(cur_trans != trans->transaction);
2380
2381 ret = commit_fs_roots(trans);
2382 if (ret)
2383 goto unlock_reloc;
2384
2385 /* commit_fs_roots gets rid of all the tree log roots, it is now
2386 * safe to free the root of tree log roots
2387 */
2388 btrfs_free_log_root_tree(trans, fs_info);
2389
2390 /*
2391 * Since fs roots are all committed, we can get a quite accurate
2392 * new_roots. So let's do quota accounting.
2393 */
2394 ret = btrfs_qgroup_account_extents(trans);
2395 if (ret < 0)
2396 goto unlock_reloc;
2397
2398 ret = commit_cowonly_roots(trans);
2399 if (ret)
2400 goto unlock_reloc;
2401
2402 /*
2403 * The tasks which save the space cache and inode cache may also
2404 * update ->aborted, check it.
2405 */
2406 if (TRANS_ABORTED(cur_trans)) {
2407 ret = cur_trans->aborted;
2408 goto unlock_reloc;
2409 }
2410
2411 cur_trans = fs_info->running_transaction;
2412
2413 btrfs_set_root_node(&fs_info->tree_root->root_item,
2414 fs_info->tree_root->node);
2415 list_add_tail(&fs_info->tree_root->dirty_list,
2416 &cur_trans->switch_commits);
2417
2418 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2419 fs_info->chunk_root->node);
2420 list_add_tail(&fs_info->chunk_root->dirty_list,
2421 &cur_trans->switch_commits);
2422
2423 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2424 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2425 fs_info->block_group_root->node);
2426 list_add_tail(&fs_info->block_group_root->dirty_list,
2427 &cur_trans->switch_commits);
2428 }
2429
2430 switch_commit_roots(trans);
2431
2432 ASSERT(list_empty(&cur_trans->dirty_bgs));
2433 ASSERT(list_empty(&cur_trans->io_bgs));
2434 update_super_roots(fs_info);
2435
2436 btrfs_set_super_log_root(fs_info->super_copy, 0);
2437 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2438 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2439 sizeof(*fs_info->super_copy));
2440
2441 btrfs_commit_device_sizes(cur_trans);
2442
2443 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2444 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2445
2446 btrfs_trans_release_chunk_metadata(trans);
2447
2448 /*
2449 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2450 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2451 * make sure that before we commit our superblock, no other task can
2452 * start a new transaction and commit a log tree before we commit our
2453 * superblock. Anyone trying to commit a log tree locks this mutex before
2454 * writing its superblock.
2455 */
2456 mutex_lock(&fs_info->tree_log_mutex);
2457
2458 spin_lock(&fs_info->trans_lock);
2459 cur_trans->state = TRANS_STATE_UNBLOCKED;
2460 fs_info->running_transaction = NULL;
2461 spin_unlock(&fs_info->trans_lock);
2462 mutex_unlock(&fs_info->reloc_mutex);
2463
2464 wake_up(&fs_info->transaction_wait);
2465 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2466
2467 ret = btrfs_write_and_wait_transaction(trans);
2468 if (ret) {
2469 btrfs_handle_fs_error(fs_info, ret,
2470 "Error while writing out transaction");
2471 mutex_unlock(&fs_info->tree_log_mutex);
2472 goto scrub_continue;
2473 }
2474
2475 /*
2476 * At this point, we should have written all the tree blocks allocated
2477 * in this transaction. So it's now safe to free the redirtyied extent
2478 * buffers.
2479 */
2480 btrfs_free_redirty_list(cur_trans);
2481
2482 ret = write_all_supers(fs_info, 0);
2483 /*
2484 * the super is written, we can safely allow the tree-loggers
2485 * to go about their business
2486 */
2487 mutex_unlock(&fs_info->tree_log_mutex);
2488 if (ret)
2489 goto scrub_continue;
2490
2491 /*
2492 * We needn't acquire the lock here because there is no other task
2493 * which can change it.
2494 */
2495 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2496 wake_up(&cur_trans->commit_wait);
2497 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2498
2499 btrfs_finish_extent_commit(trans);
2500
2501 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2502 btrfs_clear_space_info_full(fs_info);
2503
2504 fs_info->last_trans_committed = cur_trans->transid;
2505 /*
2506 * We needn't acquire the lock here because there is no other task
2507 * which can change it.
2508 */
2509 cur_trans->state = TRANS_STATE_COMPLETED;
2510 wake_up(&cur_trans->commit_wait);
2511 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2512
2513 spin_lock(&fs_info->trans_lock);
2514 list_del_init(&cur_trans->list);
2515 spin_unlock(&fs_info->trans_lock);
2516
2517 btrfs_put_transaction(cur_trans);
2518 btrfs_put_transaction(cur_trans);
2519
2520 if (trans->type & __TRANS_FREEZABLE)
2521 sb_end_intwrite(fs_info->sb);
2522
2523 trace_btrfs_transaction_commit(fs_info);
2524
2525 interval = ktime_get_ns() - start_time;
2526
2527 btrfs_scrub_continue(fs_info);
2528
2529 if (current->journal_info == trans)
2530 current->journal_info = NULL;
2531
2532 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2533
2534 update_commit_stats(fs_info, interval);
2535
2536 return ret;
2537
2538unlock_reloc:
2539 mutex_unlock(&fs_info->reloc_mutex);
2540 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2541scrub_continue:
2542 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2543 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2544 btrfs_scrub_continue(fs_info);
2545cleanup_transaction:
2546 btrfs_trans_release_metadata(trans);
2547 btrfs_cleanup_pending_block_groups(trans);
2548 btrfs_trans_release_chunk_metadata(trans);
2549 trans->block_rsv = NULL;
2550 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2551 if (current->journal_info == trans)
2552 current->journal_info = NULL;
2553 cleanup_transaction(trans, ret);
2554
2555 return ret;
2556
2557lockdep_release:
2558 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2559 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2560 goto cleanup_transaction;
2561
2562lockdep_trans_commit_start_release:
2563 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2564 btrfs_end_transaction(trans);
2565 return ret;
2566}
2567
2568/*
2569 * return < 0 if error
2570 * 0 if there are no more dead_roots at the time of call
2571 * 1 there are more to be processed, call me again
2572 *
2573 * The return value indicates there are certainly more snapshots to delete, but
2574 * if there comes a new one during processing, it may return 0. We don't mind,
2575 * because btrfs_commit_super will poke cleaner thread and it will process it a
2576 * few seconds later.
2577 */
2578int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2579{
2580 struct btrfs_root *root;
2581 int ret;
2582
2583 spin_lock(&fs_info->trans_lock);
2584 if (list_empty(&fs_info->dead_roots)) {
2585 spin_unlock(&fs_info->trans_lock);
2586 return 0;
2587 }
2588 root = list_first_entry(&fs_info->dead_roots,
2589 struct btrfs_root, root_list);
2590 list_del_init(&root->root_list);
2591 spin_unlock(&fs_info->trans_lock);
2592
2593 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2594
2595 btrfs_kill_all_delayed_nodes(root);
2596
2597 if (btrfs_header_backref_rev(root->node) <
2598 BTRFS_MIXED_BACKREF_REV)
2599 ret = btrfs_drop_snapshot(root, 0, 0);
2600 else
2601 ret = btrfs_drop_snapshot(root, 1, 0);
2602
2603 btrfs_put_root(root);
2604 return (ret < 0) ? 0 : 1;
2605}
2606
2607int __init btrfs_transaction_init(void)
2608{
2609 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2610 sizeof(struct btrfs_trans_handle), 0,
2611 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2612 if (!btrfs_trans_handle_cachep)
2613 return -ENOMEM;
2614 return 0;
2615}
2616
2617void __cold btrfs_transaction_exit(void)
2618{
2619 kmem_cache_destroy(btrfs_trans_handle_cachep);
2620}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34
35#define BTRFS_ROOT_TRANS_TAG 0
36
37static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
40 __TRANS_START),
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
42 __TRANS_START |
43 __TRANS_ATTACH),
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
45 __TRANS_START |
46 __TRANS_ATTACH |
47 __TRANS_JOIN),
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
49 __TRANS_START |
50 __TRANS_ATTACH |
51 __TRANS_JOIN |
52 __TRANS_JOIN_NOLOCK),
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
54 __TRANS_START |
55 __TRANS_ATTACH |
56 __TRANS_JOIN |
57 __TRANS_JOIN_NOLOCK),
58};
59
60void btrfs_put_transaction(struct btrfs_transaction *transaction)
61{
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
66 while (!list_empty(&transaction->pending_chunks)) {
67 struct extent_map *em;
68
69 em = list_first_entry(&transaction->pending_chunks,
70 struct extent_map, list);
71 list_del_init(&em->list);
72 free_extent_map(em);
73 }
74 kmem_cache_free(btrfs_transaction_cachep, transaction);
75 }
76}
77
78static noinline void switch_commit_roots(struct btrfs_transaction *trans,
79 struct btrfs_fs_info *fs_info)
80{
81 struct btrfs_root *root, *tmp;
82
83 down_write(&fs_info->commit_root_sem);
84 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
85 dirty_list) {
86 list_del_init(&root->dirty_list);
87 free_extent_buffer(root->commit_root);
88 root->commit_root = btrfs_root_node(root);
89 if (is_fstree(root->objectid))
90 btrfs_unpin_free_ino(root);
91 }
92 up_write(&fs_info->commit_root_sem);
93}
94
95static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
96 unsigned int type)
97{
98 if (type & TRANS_EXTWRITERS)
99 atomic_inc(&trans->num_extwriters);
100}
101
102static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
103 unsigned int type)
104{
105 if (type & TRANS_EXTWRITERS)
106 atomic_dec(&trans->num_extwriters);
107}
108
109static inline void extwriter_counter_init(struct btrfs_transaction *trans,
110 unsigned int type)
111{
112 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
113}
114
115static inline int extwriter_counter_read(struct btrfs_transaction *trans)
116{
117 return atomic_read(&trans->num_extwriters);
118}
119
120/*
121 * either allocate a new transaction or hop into the existing one
122 */
123static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
124{
125 struct btrfs_transaction *cur_trans;
126 struct btrfs_fs_info *fs_info = root->fs_info;
127
128 spin_lock(&fs_info->trans_lock);
129loop:
130 /* The file system has been taken offline. No new transactions. */
131 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
132 spin_unlock(&fs_info->trans_lock);
133 return -EROFS;
134 }
135
136 cur_trans = fs_info->running_transaction;
137 if (cur_trans) {
138 if (cur_trans->aborted) {
139 spin_unlock(&fs_info->trans_lock);
140 return cur_trans->aborted;
141 }
142 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
143 spin_unlock(&fs_info->trans_lock);
144 return -EBUSY;
145 }
146 atomic_inc(&cur_trans->use_count);
147 atomic_inc(&cur_trans->num_writers);
148 extwriter_counter_inc(cur_trans, type);
149 spin_unlock(&fs_info->trans_lock);
150 return 0;
151 }
152 spin_unlock(&fs_info->trans_lock);
153
154 /*
155 * If we are ATTACH, we just want to catch the current transaction,
156 * and commit it. If there is no transaction, just return ENOENT.
157 */
158 if (type == TRANS_ATTACH)
159 return -ENOENT;
160
161 /*
162 * JOIN_NOLOCK only happens during the transaction commit, so
163 * it is impossible that ->running_transaction is NULL
164 */
165 BUG_ON(type == TRANS_JOIN_NOLOCK);
166
167 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
168 if (!cur_trans)
169 return -ENOMEM;
170
171 spin_lock(&fs_info->trans_lock);
172 if (fs_info->running_transaction) {
173 /*
174 * someone started a transaction after we unlocked. Make sure
175 * to redo the checks above
176 */
177 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
178 goto loop;
179 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
180 spin_unlock(&fs_info->trans_lock);
181 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
182 return -EROFS;
183 }
184
185 atomic_set(&cur_trans->num_writers, 1);
186 extwriter_counter_init(cur_trans, type);
187 init_waitqueue_head(&cur_trans->writer_wait);
188 init_waitqueue_head(&cur_trans->commit_wait);
189 cur_trans->state = TRANS_STATE_RUNNING;
190 /*
191 * One for this trans handle, one so it will live on until we
192 * commit the transaction.
193 */
194 atomic_set(&cur_trans->use_count, 2);
195 cur_trans->start_time = get_seconds();
196
197 cur_trans->delayed_refs.href_root = RB_ROOT;
198 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
199 cur_trans->delayed_refs.num_heads_ready = 0;
200 cur_trans->delayed_refs.num_heads = 0;
201 cur_trans->delayed_refs.flushing = 0;
202 cur_trans->delayed_refs.run_delayed_start = 0;
203
204 /*
205 * although the tree mod log is per file system and not per transaction,
206 * the log must never go across transaction boundaries.
207 */
208 smp_mb();
209 if (!list_empty(&fs_info->tree_mod_seq_list))
210 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
211 "creating a fresh transaction\n");
212 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
213 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
214 "creating a fresh transaction\n");
215 atomic64_set(&fs_info->tree_mod_seq, 0);
216
217 spin_lock_init(&cur_trans->delayed_refs.lock);
218
219 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
220 INIT_LIST_HEAD(&cur_trans->ordered_operations);
221 INIT_LIST_HEAD(&cur_trans->pending_chunks);
222 INIT_LIST_HEAD(&cur_trans->switch_commits);
223 list_add_tail(&cur_trans->list, &fs_info->trans_list);
224 extent_io_tree_init(&cur_trans->dirty_pages,
225 fs_info->btree_inode->i_mapping);
226 fs_info->generation++;
227 cur_trans->transid = fs_info->generation;
228 fs_info->running_transaction = cur_trans;
229 cur_trans->aborted = 0;
230 spin_unlock(&fs_info->trans_lock);
231
232 return 0;
233}
234
235/*
236 * this does all the record keeping required to make sure that a reference
237 * counted root is properly recorded in a given transaction. This is required
238 * to make sure the old root from before we joined the transaction is deleted
239 * when the transaction commits
240 */
241static int record_root_in_trans(struct btrfs_trans_handle *trans,
242 struct btrfs_root *root)
243{
244 if (root->ref_cows && root->last_trans < trans->transid) {
245 WARN_ON(root == root->fs_info->extent_root);
246 WARN_ON(root->commit_root != root->node);
247
248 /*
249 * see below for in_trans_setup usage rules
250 * we have the reloc mutex held now, so there
251 * is only one writer in this function
252 */
253 root->in_trans_setup = 1;
254
255 /* make sure readers find in_trans_setup before
256 * they find our root->last_trans update
257 */
258 smp_wmb();
259
260 spin_lock(&root->fs_info->fs_roots_radix_lock);
261 if (root->last_trans == trans->transid) {
262 spin_unlock(&root->fs_info->fs_roots_radix_lock);
263 return 0;
264 }
265 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
266 (unsigned long)root->root_key.objectid,
267 BTRFS_ROOT_TRANS_TAG);
268 spin_unlock(&root->fs_info->fs_roots_radix_lock);
269 root->last_trans = trans->transid;
270
271 /* this is pretty tricky. We don't want to
272 * take the relocation lock in btrfs_record_root_in_trans
273 * unless we're really doing the first setup for this root in
274 * this transaction.
275 *
276 * Normally we'd use root->last_trans as a flag to decide
277 * if we want to take the expensive mutex.
278 *
279 * But, we have to set root->last_trans before we
280 * init the relocation root, otherwise, we trip over warnings
281 * in ctree.c. The solution used here is to flag ourselves
282 * with root->in_trans_setup. When this is 1, we're still
283 * fixing up the reloc trees and everyone must wait.
284 *
285 * When this is zero, they can trust root->last_trans and fly
286 * through btrfs_record_root_in_trans without having to take the
287 * lock. smp_wmb() makes sure that all the writes above are
288 * done before we pop in the zero below
289 */
290 btrfs_init_reloc_root(trans, root);
291 smp_wmb();
292 root->in_trans_setup = 0;
293 }
294 return 0;
295}
296
297
298int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
299 struct btrfs_root *root)
300{
301 if (!root->ref_cows)
302 return 0;
303
304 /*
305 * see record_root_in_trans for comments about in_trans_setup usage
306 * and barriers
307 */
308 smp_rmb();
309 if (root->last_trans == trans->transid &&
310 !root->in_trans_setup)
311 return 0;
312
313 mutex_lock(&root->fs_info->reloc_mutex);
314 record_root_in_trans(trans, root);
315 mutex_unlock(&root->fs_info->reloc_mutex);
316
317 return 0;
318}
319
320static inline int is_transaction_blocked(struct btrfs_transaction *trans)
321{
322 return (trans->state >= TRANS_STATE_BLOCKED &&
323 trans->state < TRANS_STATE_UNBLOCKED &&
324 !trans->aborted);
325}
326
327/* wait for commit against the current transaction to become unblocked
328 * when this is done, it is safe to start a new transaction, but the current
329 * transaction might not be fully on disk.
330 */
331static void wait_current_trans(struct btrfs_root *root)
332{
333 struct btrfs_transaction *cur_trans;
334
335 spin_lock(&root->fs_info->trans_lock);
336 cur_trans = root->fs_info->running_transaction;
337 if (cur_trans && is_transaction_blocked(cur_trans)) {
338 atomic_inc(&cur_trans->use_count);
339 spin_unlock(&root->fs_info->trans_lock);
340
341 wait_event(root->fs_info->transaction_wait,
342 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
343 cur_trans->aborted);
344 btrfs_put_transaction(cur_trans);
345 } else {
346 spin_unlock(&root->fs_info->trans_lock);
347 }
348}
349
350static int may_wait_transaction(struct btrfs_root *root, int type)
351{
352 if (root->fs_info->log_root_recovering)
353 return 0;
354
355 if (type == TRANS_USERSPACE)
356 return 1;
357
358 if (type == TRANS_START &&
359 !atomic_read(&root->fs_info->open_ioctl_trans))
360 return 1;
361
362 return 0;
363}
364
365static inline bool need_reserve_reloc_root(struct btrfs_root *root)
366{
367 if (!root->fs_info->reloc_ctl ||
368 !root->ref_cows ||
369 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
370 root->reloc_root)
371 return false;
372
373 return true;
374}
375
376static struct btrfs_trans_handle *
377start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
378 enum btrfs_reserve_flush_enum flush)
379{
380 struct btrfs_trans_handle *h;
381 struct btrfs_transaction *cur_trans;
382 u64 num_bytes = 0;
383 u64 qgroup_reserved = 0;
384 bool reloc_reserved = false;
385 int ret;
386
387 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
388 return ERR_PTR(-EROFS);
389
390 if (current->journal_info &&
391 current->journal_info != (void *)BTRFS_SEND_TRANS_STUB) {
392 WARN_ON(type & TRANS_EXTWRITERS);
393 h = current->journal_info;
394 h->use_count++;
395 WARN_ON(h->use_count > 2);
396 h->orig_rsv = h->block_rsv;
397 h->block_rsv = NULL;
398 goto got_it;
399 }
400
401 /*
402 * Do the reservation before we join the transaction so we can do all
403 * the appropriate flushing if need be.
404 */
405 if (num_items > 0 && root != root->fs_info->chunk_root) {
406 if (root->fs_info->quota_enabled &&
407 is_fstree(root->root_key.objectid)) {
408 qgroup_reserved = num_items * root->leafsize;
409 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
410 if (ret)
411 return ERR_PTR(ret);
412 }
413
414 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
415 /*
416 * Do the reservation for the relocation root creation
417 */
418 if (unlikely(need_reserve_reloc_root(root))) {
419 num_bytes += root->nodesize;
420 reloc_reserved = true;
421 }
422
423 ret = btrfs_block_rsv_add(root,
424 &root->fs_info->trans_block_rsv,
425 num_bytes, flush);
426 if (ret)
427 goto reserve_fail;
428 }
429again:
430 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
431 if (!h) {
432 ret = -ENOMEM;
433 goto alloc_fail;
434 }
435
436 /*
437 * If we are JOIN_NOLOCK we're already committing a transaction and
438 * waiting on this guy, so we don't need to do the sb_start_intwrite
439 * because we're already holding a ref. We need this because we could
440 * have raced in and did an fsync() on a file which can kick a commit
441 * and then we deadlock with somebody doing a freeze.
442 *
443 * If we are ATTACH, it means we just want to catch the current
444 * transaction and commit it, so we needn't do sb_start_intwrite().
445 */
446 if (type & __TRANS_FREEZABLE)
447 sb_start_intwrite(root->fs_info->sb);
448
449 if (may_wait_transaction(root, type))
450 wait_current_trans(root);
451
452 do {
453 ret = join_transaction(root, type);
454 if (ret == -EBUSY) {
455 wait_current_trans(root);
456 if (unlikely(type == TRANS_ATTACH))
457 ret = -ENOENT;
458 }
459 } while (ret == -EBUSY);
460
461 if (ret < 0) {
462 /* We must get the transaction if we are JOIN_NOLOCK. */
463 BUG_ON(type == TRANS_JOIN_NOLOCK);
464 goto join_fail;
465 }
466
467 cur_trans = root->fs_info->running_transaction;
468
469 h->transid = cur_trans->transid;
470 h->transaction = cur_trans;
471 h->blocks_used = 0;
472 h->bytes_reserved = 0;
473 h->root = root;
474 h->delayed_ref_updates = 0;
475 h->use_count = 1;
476 h->adding_csums = 0;
477 h->block_rsv = NULL;
478 h->orig_rsv = NULL;
479 h->aborted = 0;
480 h->qgroup_reserved = 0;
481 h->delayed_ref_elem.seq = 0;
482 h->type = type;
483 h->allocating_chunk = false;
484 h->reloc_reserved = false;
485 h->sync = false;
486 INIT_LIST_HEAD(&h->qgroup_ref_list);
487 INIT_LIST_HEAD(&h->new_bgs);
488
489 smp_mb();
490 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
491 may_wait_transaction(root, type)) {
492 btrfs_commit_transaction(h, root);
493 goto again;
494 }
495
496 if (num_bytes) {
497 trace_btrfs_space_reservation(root->fs_info, "transaction",
498 h->transid, num_bytes, 1);
499 h->block_rsv = &root->fs_info->trans_block_rsv;
500 h->bytes_reserved = num_bytes;
501 h->reloc_reserved = reloc_reserved;
502 }
503 h->qgroup_reserved = qgroup_reserved;
504
505got_it:
506 btrfs_record_root_in_trans(h, root);
507
508 if (!current->journal_info && type != TRANS_USERSPACE)
509 current->journal_info = h;
510 return h;
511
512join_fail:
513 if (type & __TRANS_FREEZABLE)
514 sb_end_intwrite(root->fs_info->sb);
515 kmem_cache_free(btrfs_trans_handle_cachep, h);
516alloc_fail:
517 if (num_bytes)
518 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
519 num_bytes);
520reserve_fail:
521 if (qgroup_reserved)
522 btrfs_qgroup_free(root, qgroup_reserved);
523 return ERR_PTR(ret);
524}
525
526struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
527 int num_items)
528{
529 return start_transaction(root, num_items, TRANS_START,
530 BTRFS_RESERVE_FLUSH_ALL);
531}
532
533struct btrfs_trans_handle *btrfs_start_transaction_lflush(
534 struct btrfs_root *root, int num_items)
535{
536 return start_transaction(root, num_items, TRANS_START,
537 BTRFS_RESERVE_FLUSH_LIMIT);
538}
539
540struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
541{
542 return start_transaction(root, 0, TRANS_JOIN, 0);
543}
544
545struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
546{
547 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
548}
549
550struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
551{
552 return start_transaction(root, 0, TRANS_USERSPACE, 0);
553}
554
555/*
556 * btrfs_attach_transaction() - catch the running transaction
557 *
558 * It is used when we want to commit the current the transaction, but
559 * don't want to start a new one.
560 *
561 * Note: If this function return -ENOENT, it just means there is no
562 * running transaction. But it is possible that the inactive transaction
563 * is still in the memory, not fully on disk. If you hope there is no
564 * inactive transaction in the fs when -ENOENT is returned, you should
565 * invoke
566 * btrfs_attach_transaction_barrier()
567 */
568struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
569{
570 return start_transaction(root, 0, TRANS_ATTACH, 0);
571}
572
573/*
574 * btrfs_attach_transaction_barrier() - catch the running transaction
575 *
576 * It is similar to the above function, the differentia is this one
577 * will wait for all the inactive transactions until they fully
578 * complete.
579 */
580struct btrfs_trans_handle *
581btrfs_attach_transaction_barrier(struct btrfs_root *root)
582{
583 struct btrfs_trans_handle *trans;
584
585 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
586 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
587 btrfs_wait_for_commit(root, 0);
588
589 return trans;
590}
591
592/* wait for a transaction commit to be fully complete */
593static noinline void wait_for_commit(struct btrfs_root *root,
594 struct btrfs_transaction *commit)
595{
596 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
597}
598
599int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
600{
601 struct btrfs_transaction *cur_trans = NULL, *t;
602 int ret = 0;
603
604 if (transid) {
605 if (transid <= root->fs_info->last_trans_committed)
606 goto out;
607
608 ret = -EINVAL;
609 /* find specified transaction */
610 spin_lock(&root->fs_info->trans_lock);
611 list_for_each_entry(t, &root->fs_info->trans_list, list) {
612 if (t->transid == transid) {
613 cur_trans = t;
614 atomic_inc(&cur_trans->use_count);
615 ret = 0;
616 break;
617 }
618 if (t->transid > transid) {
619 ret = 0;
620 break;
621 }
622 }
623 spin_unlock(&root->fs_info->trans_lock);
624 /* The specified transaction doesn't exist */
625 if (!cur_trans)
626 goto out;
627 } else {
628 /* find newest transaction that is committing | committed */
629 spin_lock(&root->fs_info->trans_lock);
630 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
631 list) {
632 if (t->state >= TRANS_STATE_COMMIT_START) {
633 if (t->state == TRANS_STATE_COMPLETED)
634 break;
635 cur_trans = t;
636 atomic_inc(&cur_trans->use_count);
637 break;
638 }
639 }
640 spin_unlock(&root->fs_info->trans_lock);
641 if (!cur_trans)
642 goto out; /* nothing committing|committed */
643 }
644
645 wait_for_commit(root, cur_trans);
646 btrfs_put_transaction(cur_trans);
647out:
648 return ret;
649}
650
651void btrfs_throttle(struct btrfs_root *root)
652{
653 if (!atomic_read(&root->fs_info->open_ioctl_trans))
654 wait_current_trans(root);
655}
656
657static int should_end_transaction(struct btrfs_trans_handle *trans,
658 struct btrfs_root *root)
659{
660 if (root->fs_info->global_block_rsv.space_info->full &&
661 btrfs_check_space_for_delayed_refs(trans, root))
662 return 1;
663
664 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
665}
666
667int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
668 struct btrfs_root *root)
669{
670 struct btrfs_transaction *cur_trans = trans->transaction;
671 int updates;
672 int err;
673
674 smp_mb();
675 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
676 cur_trans->delayed_refs.flushing)
677 return 1;
678
679 updates = trans->delayed_ref_updates;
680 trans->delayed_ref_updates = 0;
681 if (updates) {
682 err = btrfs_run_delayed_refs(trans, root, updates);
683 if (err) /* Error code will also eval true */
684 return err;
685 }
686
687 return should_end_transaction(trans, root);
688}
689
690static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
691 struct btrfs_root *root, int throttle)
692{
693 struct btrfs_transaction *cur_trans = trans->transaction;
694 struct btrfs_fs_info *info = root->fs_info;
695 unsigned long cur = trans->delayed_ref_updates;
696 int lock = (trans->type != TRANS_JOIN_NOLOCK);
697 int err = 0;
698
699 if (trans->use_count > 1) {
700 trans->use_count--;
701 trans->block_rsv = trans->orig_rsv;
702 return 0;
703 }
704
705 /*
706 * do the qgroup accounting as early as possible
707 */
708 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
709
710 btrfs_trans_release_metadata(trans, root);
711 trans->block_rsv = NULL;
712
713 if (trans->qgroup_reserved) {
714 /*
715 * the same root has to be passed here between start_transaction
716 * and end_transaction. Subvolume quota depends on this.
717 */
718 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
719 trans->qgroup_reserved = 0;
720 }
721
722 if (!list_empty(&trans->new_bgs))
723 btrfs_create_pending_block_groups(trans, root);
724
725 trans->delayed_ref_updates = 0;
726 if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
727 cur = max_t(unsigned long, cur, 32);
728 trans->delayed_ref_updates = 0;
729 btrfs_run_delayed_refs(trans, root, cur);
730 }
731
732 btrfs_trans_release_metadata(trans, root);
733 trans->block_rsv = NULL;
734
735 if (!list_empty(&trans->new_bgs))
736 btrfs_create_pending_block_groups(trans, root);
737
738 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
739 should_end_transaction(trans, root) &&
740 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
741 spin_lock(&info->trans_lock);
742 if (cur_trans->state == TRANS_STATE_RUNNING)
743 cur_trans->state = TRANS_STATE_BLOCKED;
744 spin_unlock(&info->trans_lock);
745 }
746
747 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
748 if (throttle)
749 return btrfs_commit_transaction(trans, root);
750 else
751 wake_up_process(info->transaction_kthread);
752 }
753
754 if (trans->type & __TRANS_FREEZABLE)
755 sb_end_intwrite(root->fs_info->sb);
756
757 WARN_ON(cur_trans != info->running_transaction);
758 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
759 atomic_dec(&cur_trans->num_writers);
760 extwriter_counter_dec(cur_trans, trans->type);
761
762 smp_mb();
763 if (waitqueue_active(&cur_trans->writer_wait))
764 wake_up(&cur_trans->writer_wait);
765 btrfs_put_transaction(cur_trans);
766
767 if (current->journal_info == trans)
768 current->journal_info = NULL;
769
770 if (throttle)
771 btrfs_run_delayed_iputs(root);
772
773 if (trans->aborted ||
774 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
775 wake_up_process(info->transaction_kthread);
776 err = -EIO;
777 }
778 assert_qgroups_uptodate(trans);
779
780 kmem_cache_free(btrfs_trans_handle_cachep, trans);
781 return err;
782}
783
784int btrfs_end_transaction(struct btrfs_trans_handle *trans,
785 struct btrfs_root *root)
786{
787 return __btrfs_end_transaction(trans, root, 0);
788}
789
790int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
791 struct btrfs_root *root)
792{
793 return __btrfs_end_transaction(trans, root, 1);
794}
795
796/*
797 * when btree blocks are allocated, they have some corresponding bits set for
798 * them in one of two extent_io trees. This is used to make sure all of
799 * those extents are sent to disk but does not wait on them
800 */
801int btrfs_write_marked_extents(struct btrfs_root *root,
802 struct extent_io_tree *dirty_pages, int mark)
803{
804 int err = 0;
805 int werr = 0;
806 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
807 struct extent_state *cached_state = NULL;
808 u64 start = 0;
809 u64 end;
810
811 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
812 mark, &cached_state)) {
813 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
814 mark, &cached_state, GFP_NOFS);
815 cached_state = NULL;
816 err = filemap_fdatawrite_range(mapping, start, end);
817 if (err)
818 werr = err;
819 cond_resched();
820 start = end + 1;
821 }
822 if (err)
823 werr = err;
824 return werr;
825}
826
827/*
828 * when btree blocks are allocated, they have some corresponding bits set for
829 * them in one of two extent_io trees. This is used to make sure all of
830 * those extents are on disk for transaction or log commit. We wait
831 * on all the pages and clear them from the dirty pages state tree
832 */
833int btrfs_wait_marked_extents(struct btrfs_root *root,
834 struct extent_io_tree *dirty_pages, int mark)
835{
836 int err = 0;
837 int werr = 0;
838 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
839 struct extent_state *cached_state = NULL;
840 u64 start = 0;
841 u64 end;
842
843 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
844 EXTENT_NEED_WAIT, &cached_state)) {
845 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
846 0, 0, &cached_state, GFP_NOFS);
847 err = filemap_fdatawait_range(mapping, start, end);
848 if (err)
849 werr = err;
850 cond_resched();
851 start = end + 1;
852 }
853 if (err)
854 werr = err;
855 return werr;
856}
857
858/*
859 * when btree blocks are allocated, they have some corresponding bits set for
860 * them in one of two extent_io trees. This is used to make sure all of
861 * those extents are on disk for transaction or log commit
862 */
863static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
864 struct extent_io_tree *dirty_pages, int mark)
865{
866 int ret;
867 int ret2;
868 struct blk_plug plug;
869
870 blk_start_plug(&plug);
871 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
872 blk_finish_plug(&plug);
873 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
874
875 if (ret)
876 return ret;
877 if (ret2)
878 return ret2;
879 return 0;
880}
881
882int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
883 struct btrfs_root *root)
884{
885 if (!trans || !trans->transaction) {
886 struct inode *btree_inode;
887 btree_inode = root->fs_info->btree_inode;
888 return filemap_write_and_wait(btree_inode->i_mapping);
889 }
890 return btrfs_write_and_wait_marked_extents(root,
891 &trans->transaction->dirty_pages,
892 EXTENT_DIRTY);
893}
894
895/*
896 * this is used to update the root pointer in the tree of tree roots.
897 *
898 * But, in the case of the extent allocation tree, updating the root
899 * pointer may allocate blocks which may change the root of the extent
900 * allocation tree.
901 *
902 * So, this loops and repeats and makes sure the cowonly root didn't
903 * change while the root pointer was being updated in the metadata.
904 */
905static int update_cowonly_root(struct btrfs_trans_handle *trans,
906 struct btrfs_root *root)
907{
908 int ret;
909 u64 old_root_bytenr;
910 u64 old_root_used;
911 struct btrfs_root *tree_root = root->fs_info->tree_root;
912
913 old_root_used = btrfs_root_used(&root->root_item);
914 btrfs_write_dirty_block_groups(trans, root);
915
916 while (1) {
917 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
918 if (old_root_bytenr == root->node->start &&
919 old_root_used == btrfs_root_used(&root->root_item))
920 break;
921
922 btrfs_set_root_node(&root->root_item, root->node);
923 ret = btrfs_update_root(trans, tree_root,
924 &root->root_key,
925 &root->root_item);
926 if (ret)
927 return ret;
928
929 old_root_used = btrfs_root_used(&root->root_item);
930 ret = btrfs_write_dirty_block_groups(trans, root);
931 if (ret)
932 return ret;
933 }
934
935 return 0;
936}
937
938/*
939 * update all the cowonly tree roots on disk
940 *
941 * The error handling in this function may not be obvious. Any of the
942 * failures will cause the file system to go offline. We still need
943 * to clean up the delayed refs.
944 */
945static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
946 struct btrfs_root *root)
947{
948 struct btrfs_fs_info *fs_info = root->fs_info;
949 struct list_head *next;
950 struct extent_buffer *eb;
951 int ret;
952
953 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
954 if (ret)
955 return ret;
956
957 eb = btrfs_lock_root_node(fs_info->tree_root);
958 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
959 0, &eb);
960 btrfs_tree_unlock(eb);
961 free_extent_buffer(eb);
962
963 if (ret)
964 return ret;
965
966 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
967 if (ret)
968 return ret;
969
970 ret = btrfs_run_dev_stats(trans, root->fs_info);
971 if (ret)
972 return ret;
973 ret = btrfs_run_dev_replace(trans, root->fs_info);
974 if (ret)
975 return ret;
976 ret = btrfs_run_qgroups(trans, root->fs_info);
977 if (ret)
978 return ret;
979
980 /* run_qgroups might have added some more refs */
981 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
982 if (ret)
983 return ret;
984
985 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
986 next = fs_info->dirty_cowonly_roots.next;
987 list_del_init(next);
988 root = list_entry(next, struct btrfs_root, dirty_list);
989
990 if (root != fs_info->extent_root)
991 list_add_tail(&root->dirty_list,
992 &trans->transaction->switch_commits);
993 ret = update_cowonly_root(trans, root);
994 if (ret)
995 return ret;
996 }
997
998 list_add_tail(&fs_info->extent_root->dirty_list,
999 &trans->transaction->switch_commits);
1000 btrfs_after_dev_replace_commit(fs_info);
1001
1002 return 0;
1003}
1004
1005/*
1006 * dead roots are old snapshots that need to be deleted. This allocates
1007 * a dirty root struct and adds it into the list of dead roots that need to
1008 * be deleted
1009 */
1010void btrfs_add_dead_root(struct btrfs_root *root)
1011{
1012 spin_lock(&root->fs_info->trans_lock);
1013 if (list_empty(&root->root_list))
1014 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1015 spin_unlock(&root->fs_info->trans_lock);
1016}
1017
1018/*
1019 * update all the cowonly tree roots on disk
1020 */
1021static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1022 struct btrfs_root *root)
1023{
1024 struct btrfs_root *gang[8];
1025 struct btrfs_fs_info *fs_info = root->fs_info;
1026 int i;
1027 int ret;
1028 int err = 0;
1029
1030 spin_lock(&fs_info->fs_roots_radix_lock);
1031 while (1) {
1032 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1033 (void **)gang, 0,
1034 ARRAY_SIZE(gang),
1035 BTRFS_ROOT_TRANS_TAG);
1036 if (ret == 0)
1037 break;
1038 for (i = 0; i < ret; i++) {
1039 root = gang[i];
1040 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1041 (unsigned long)root->root_key.objectid,
1042 BTRFS_ROOT_TRANS_TAG);
1043 spin_unlock(&fs_info->fs_roots_radix_lock);
1044
1045 btrfs_free_log(trans, root);
1046 btrfs_update_reloc_root(trans, root);
1047 btrfs_orphan_commit_root(trans, root);
1048
1049 btrfs_save_ino_cache(root, trans);
1050
1051 /* see comments in should_cow_block() */
1052 root->force_cow = 0;
1053 smp_wmb();
1054
1055 if (root->commit_root != root->node) {
1056 list_add_tail(&root->dirty_list,
1057 &trans->transaction->switch_commits);
1058 btrfs_set_root_node(&root->root_item,
1059 root->node);
1060 }
1061
1062 err = btrfs_update_root(trans, fs_info->tree_root,
1063 &root->root_key,
1064 &root->root_item);
1065 spin_lock(&fs_info->fs_roots_radix_lock);
1066 if (err)
1067 break;
1068 }
1069 }
1070 spin_unlock(&fs_info->fs_roots_radix_lock);
1071 return err;
1072}
1073
1074/*
1075 * defrag a given btree.
1076 * Every leaf in the btree is read and defragged.
1077 */
1078int btrfs_defrag_root(struct btrfs_root *root)
1079{
1080 struct btrfs_fs_info *info = root->fs_info;
1081 struct btrfs_trans_handle *trans;
1082 int ret;
1083
1084 if (xchg(&root->defrag_running, 1))
1085 return 0;
1086
1087 while (1) {
1088 trans = btrfs_start_transaction(root, 0);
1089 if (IS_ERR(trans))
1090 return PTR_ERR(trans);
1091
1092 ret = btrfs_defrag_leaves(trans, root);
1093
1094 btrfs_end_transaction(trans, root);
1095 btrfs_btree_balance_dirty(info->tree_root);
1096 cond_resched();
1097
1098 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1099 break;
1100
1101 if (btrfs_defrag_cancelled(root->fs_info)) {
1102 pr_debug("BTRFS: defrag_root cancelled\n");
1103 ret = -EAGAIN;
1104 break;
1105 }
1106 }
1107 root->defrag_running = 0;
1108 return ret;
1109}
1110
1111/*
1112 * new snapshots need to be created at a very specific time in the
1113 * transaction commit. This does the actual creation.
1114 *
1115 * Note:
1116 * If the error which may affect the commitment of the current transaction
1117 * happens, we should return the error number. If the error which just affect
1118 * the creation of the pending snapshots, just return 0.
1119 */
1120static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1121 struct btrfs_fs_info *fs_info,
1122 struct btrfs_pending_snapshot *pending)
1123{
1124 struct btrfs_key key;
1125 struct btrfs_root_item *new_root_item;
1126 struct btrfs_root *tree_root = fs_info->tree_root;
1127 struct btrfs_root *root = pending->root;
1128 struct btrfs_root *parent_root;
1129 struct btrfs_block_rsv *rsv;
1130 struct inode *parent_inode;
1131 struct btrfs_path *path;
1132 struct btrfs_dir_item *dir_item;
1133 struct dentry *dentry;
1134 struct extent_buffer *tmp;
1135 struct extent_buffer *old;
1136 struct timespec cur_time = CURRENT_TIME;
1137 int ret = 0;
1138 u64 to_reserve = 0;
1139 u64 index = 0;
1140 u64 objectid;
1141 u64 root_flags;
1142 uuid_le new_uuid;
1143
1144 path = btrfs_alloc_path();
1145 if (!path) {
1146 pending->error = -ENOMEM;
1147 return 0;
1148 }
1149
1150 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1151 if (!new_root_item) {
1152 pending->error = -ENOMEM;
1153 goto root_item_alloc_fail;
1154 }
1155
1156 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1157 if (pending->error)
1158 goto no_free_objectid;
1159
1160 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1161
1162 if (to_reserve > 0) {
1163 pending->error = btrfs_block_rsv_add(root,
1164 &pending->block_rsv,
1165 to_reserve,
1166 BTRFS_RESERVE_NO_FLUSH);
1167 if (pending->error)
1168 goto no_free_objectid;
1169 }
1170
1171 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1172 root->root_key.objectid,
1173 objectid, pending->inherit);
1174 if (pending->error)
1175 goto no_free_objectid;
1176
1177 key.objectid = objectid;
1178 key.offset = (u64)-1;
1179 key.type = BTRFS_ROOT_ITEM_KEY;
1180
1181 rsv = trans->block_rsv;
1182 trans->block_rsv = &pending->block_rsv;
1183 trans->bytes_reserved = trans->block_rsv->reserved;
1184
1185 dentry = pending->dentry;
1186 parent_inode = pending->dir;
1187 parent_root = BTRFS_I(parent_inode)->root;
1188 record_root_in_trans(trans, parent_root);
1189
1190 /*
1191 * insert the directory item
1192 */
1193 ret = btrfs_set_inode_index(parent_inode, &index);
1194 BUG_ON(ret); /* -ENOMEM */
1195
1196 /* check if there is a file/dir which has the same name. */
1197 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1198 btrfs_ino(parent_inode),
1199 dentry->d_name.name,
1200 dentry->d_name.len, 0);
1201 if (dir_item != NULL && !IS_ERR(dir_item)) {
1202 pending->error = -EEXIST;
1203 goto dir_item_existed;
1204 } else if (IS_ERR(dir_item)) {
1205 ret = PTR_ERR(dir_item);
1206 btrfs_abort_transaction(trans, root, ret);
1207 goto fail;
1208 }
1209 btrfs_release_path(path);
1210
1211 /*
1212 * pull in the delayed directory update
1213 * and the delayed inode item
1214 * otherwise we corrupt the FS during
1215 * snapshot
1216 */
1217 ret = btrfs_run_delayed_items(trans, root);
1218 if (ret) { /* Transaction aborted */
1219 btrfs_abort_transaction(trans, root, ret);
1220 goto fail;
1221 }
1222
1223 record_root_in_trans(trans, root);
1224 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1225 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1226 btrfs_check_and_init_root_item(new_root_item);
1227
1228 root_flags = btrfs_root_flags(new_root_item);
1229 if (pending->readonly)
1230 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1231 else
1232 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1233 btrfs_set_root_flags(new_root_item, root_flags);
1234
1235 btrfs_set_root_generation_v2(new_root_item,
1236 trans->transid);
1237 uuid_le_gen(&new_uuid);
1238 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1239 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1240 BTRFS_UUID_SIZE);
1241 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1242 memset(new_root_item->received_uuid, 0,
1243 sizeof(new_root_item->received_uuid));
1244 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1245 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1246 btrfs_set_root_stransid(new_root_item, 0);
1247 btrfs_set_root_rtransid(new_root_item, 0);
1248 }
1249 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1250 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1251 btrfs_set_root_otransid(new_root_item, trans->transid);
1252
1253 old = btrfs_lock_root_node(root);
1254 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1255 if (ret) {
1256 btrfs_tree_unlock(old);
1257 free_extent_buffer(old);
1258 btrfs_abort_transaction(trans, root, ret);
1259 goto fail;
1260 }
1261
1262 btrfs_set_lock_blocking(old);
1263
1264 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1265 /* clean up in any case */
1266 btrfs_tree_unlock(old);
1267 free_extent_buffer(old);
1268 if (ret) {
1269 btrfs_abort_transaction(trans, root, ret);
1270 goto fail;
1271 }
1272
1273 /* see comments in should_cow_block() */
1274 root->force_cow = 1;
1275 smp_wmb();
1276
1277 btrfs_set_root_node(new_root_item, tmp);
1278 /* record when the snapshot was created in key.offset */
1279 key.offset = trans->transid;
1280 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1281 btrfs_tree_unlock(tmp);
1282 free_extent_buffer(tmp);
1283 if (ret) {
1284 btrfs_abort_transaction(trans, root, ret);
1285 goto fail;
1286 }
1287
1288 /*
1289 * insert root back/forward references
1290 */
1291 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1292 parent_root->root_key.objectid,
1293 btrfs_ino(parent_inode), index,
1294 dentry->d_name.name, dentry->d_name.len);
1295 if (ret) {
1296 btrfs_abort_transaction(trans, root, ret);
1297 goto fail;
1298 }
1299
1300 key.offset = (u64)-1;
1301 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1302 if (IS_ERR(pending->snap)) {
1303 ret = PTR_ERR(pending->snap);
1304 btrfs_abort_transaction(trans, root, ret);
1305 goto fail;
1306 }
1307
1308 ret = btrfs_reloc_post_snapshot(trans, pending);
1309 if (ret) {
1310 btrfs_abort_transaction(trans, root, ret);
1311 goto fail;
1312 }
1313
1314 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1315 if (ret) {
1316 btrfs_abort_transaction(trans, root, ret);
1317 goto fail;
1318 }
1319
1320 ret = btrfs_insert_dir_item(trans, parent_root,
1321 dentry->d_name.name, dentry->d_name.len,
1322 parent_inode, &key,
1323 BTRFS_FT_DIR, index);
1324 /* We have check then name at the beginning, so it is impossible. */
1325 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1326 if (ret) {
1327 btrfs_abort_transaction(trans, root, ret);
1328 goto fail;
1329 }
1330
1331 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1332 dentry->d_name.len * 2);
1333 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1334 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1335 if (ret) {
1336 btrfs_abort_transaction(trans, root, ret);
1337 goto fail;
1338 }
1339 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1340 BTRFS_UUID_KEY_SUBVOL, objectid);
1341 if (ret) {
1342 btrfs_abort_transaction(trans, root, ret);
1343 goto fail;
1344 }
1345 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1346 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1347 new_root_item->received_uuid,
1348 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1349 objectid);
1350 if (ret && ret != -EEXIST) {
1351 btrfs_abort_transaction(trans, root, ret);
1352 goto fail;
1353 }
1354 }
1355fail:
1356 pending->error = ret;
1357dir_item_existed:
1358 trans->block_rsv = rsv;
1359 trans->bytes_reserved = 0;
1360no_free_objectid:
1361 kfree(new_root_item);
1362root_item_alloc_fail:
1363 btrfs_free_path(path);
1364 return ret;
1365}
1366
1367/*
1368 * create all the snapshots we've scheduled for creation
1369 */
1370static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1371 struct btrfs_fs_info *fs_info)
1372{
1373 struct btrfs_pending_snapshot *pending, *next;
1374 struct list_head *head = &trans->transaction->pending_snapshots;
1375 int ret = 0;
1376
1377 list_for_each_entry_safe(pending, next, head, list) {
1378 list_del(&pending->list);
1379 ret = create_pending_snapshot(trans, fs_info, pending);
1380 if (ret)
1381 break;
1382 }
1383 return ret;
1384}
1385
1386static void update_super_roots(struct btrfs_root *root)
1387{
1388 struct btrfs_root_item *root_item;
1389 struct btrfs_super_block *super;
1390
1391 super = root->fs_info->super_copy;
1392
1393 root_item = &root->fs_info->chunk_root->root_item;
1394 super->chunk_root = root_item->bytenr;
1395 super->chunk_root_generation = root_item->generation;
1396 super->chunk_root_level = root_item->level;
1397
1398 root_item = &root->fs_info->tree_root->root_item;
1399 super->root = root_item->bytenr;
1400 super->generation = root_item->generation;
1401 super->root_level = root_item->level;
1402 if (btrfs_test_opt(root, SPACE_CACHE))
1403 super->cache_generation = root_item->generation;
1404 if (root->fs_info->update_uuid_tree_gen)
1405 super->uuid_tree_generation = root_item->generation;
1406}
1407
1408int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1409{
1410 struct btrfs_transaction *trans;
1411 int ret = 0;
1412
1413 spin_lock(&info->trans_lock);
1414 trans = info->running_transaction;
1415 if (trans)
1416 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1417 spin_unlock(&info->trans_lock);
1418 return ret;
1419}
1420
1421int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1422{
1423 struct btrfs_transaction *trans;
1424 int ret = 0;
1425
1426 spin_lock(&info->trans_lock);
1427 trans = info->running_transaction;
1428 if (trans)
1429 ret = is_transaction_blocked(trans);
1430 spin_unlock(&info->trans_lock);
1431 return ret;
1432}
1433
1434/*
1435 * wait for the current transaction commit to start and block subsequent
1436 * transaction joins
1437 */
1438static void wait_current_trans_commit_start(struct btrfs_root *root,
1439 struct btrfs_transaction *trans)
1440{
1441 wait_event(root->fs_info->transaction_blocked_wait,
1442 trans->state >= TRANS_STATE_COMMIT_START ||
1443 trans->aborted);
1444}
1445
1446/*
1447 * wait for the current transaction to start and then become unblocked.
1448 * caller holds ref.
1449 */
1450static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1451 struct btrfs_transaction *trans)
1452{
1453 wait_event(root->fs_info->transaction_wait,
1454 trans->state >= TRANS_STATE_UNBLOCKED ||
1455 trans->aborted);
1456}
1457
1458/*
1459 * commit transactions asynchronously. once btrfs_commit_transaction_async
1460 * returns, any subsequent transaction will not be allowed to join.
1461 */
1462struct btrfs_async_commit {
1463 struct btrfs_trans_handle *newtrans;
1464 struct btrfs_root *root;
1465 struct work_struct work;
1466};
1467
1468static void do_async_commit(struct work_struct *work)
1469{
1470 struct btrfs_async_commit *ac =
1471 container_of(work, struct btrfs_async_commit, work);
1472
1473 /*
1474 * We've got freeze protection passed with the transaction.
1475 * Tell lockdep about it.
1476 */
1477 if (ac->newtrans->type & __TRANS_FREEZABLE)
1478 rwsem_acquire_read(
1479 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1480 0, 1, _THIS_IP_);
1481
1482 current->journal_info = ac->newtrans;
1483
1484 btrfs_commit_transaction(ac->newtrans, ac->root);
1485 kfree(ac);
1486}
1487
1488int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1489 struct btrfs_root *root,
1490 int wait_for_unblock)
1491{
1492 struct btrfs_async_commit *ac;
1493 struct btrfs_transaction *cur_trans;
1494
1495 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1496 if (!ac)
1497 return -ENOMEM;
1498
1499 INIT_WORK(&ac->work, do_async_commit);
1500 ac->root = root;
1501 ac->newtrans = btrfs_join_transaction(root);
1502 if (IS_ERR(ac->newtrans)) {
1503 int err = PTR_ERR(ac->newtrans);
1504 kfree(ac);
1505 return err;
1506 }
1507
1508 /* take transaction reference */
1509 cur_trans = trans->transaction;
1510 atomic_inc(&cur_trans->use_count);
1511
1512 btrfs_end_transaction(trans, root);
1513
1514 /*
1515 * Tell lockdep we've released the freeze rwsem, since the
1516 * async commit thread will be the one to unlock it.
1517 */
1518 if (ac->newtrans->type & __TRANS_FREEZABLE)
1519 rwsem_release(
1520 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1521 1, _THIS_IP_);
1522
1523 schedule_work(&ac->work);
1524
1525 /* wait for transaction to start and unblock */
1526 if (wait_for_unblock)
1527 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1528 else
1529 wait_current_trans_commit_start(root, cur_trans);
1530
1531 if (current->journal_info == trans)
1532 current->journal_info = NULL;
1533
1534 btrfs_put_transaction(cur_trans);
1535 return 0;
1536}
1537
1538
1539static void cleanup_transaction(struct btrfs_trans_handle *trans,
1540 struct btrfs_root *root, int err)
1541{
1542 struct btrfs_transaction *cur_trans = trans->transaction;
1543 DEFINE_WAIT(wait);
1544
1545 WARN_ON(trans->use_count > 1);
1546
1547 btrfs_abort_transaction(trans, root, err);
1548
1549 spin_lock(&root->fs_info->trans_lock);
1550
1551 /*
1552 * If the transaction is removed from the list, it means this
1553 * transaction has been committed successfully, so it is impossible
1554 * to call the cleanup function.
1555 */
1556 BUG_ON(list_empty(&cur_trans->list));
1557
1558 list_del_init(&cur_trans->list);
1559 if (cur_trans == root->fs_info->running_transaction) {
1560 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1561 spin_unlock(&root->fs_info->trans_lock);
1562 wait_event(cur_trans->writer_wait,
1563 atomic_read(&cur_trans->num_writers) == 1);
1564
1565 spin_lock(&root->fs_info->trans_lock);
1566 }
1567 spin_unlock(&root->fs_info->trans_lock);
1568
1569 btrfs_cleanup_one_transaction(trans->transaction, root);
1570
1571 spin_lock(&root->fs_info->trans_lock);
1572 if (cur_trans == root->fs_info->running_transaction)
1573 root->fs_info->running_transaction = NULL;
1574 spin_unlock(&root->fs_info->trans_lock);
1575
1576 if (trans->type & __TRANS_FREEZABLE)
1577 sb_end_intwrite(root->fs_info->sb);
1578 btrfs_put_transaction(cur_trans);
1579 btrfs_put_transaction(cur_trans);
1580
1581 trace_btrfs_transaction_commit(root);
1582
1583 if (current->journal_info == trans)
1584 current->journal_info = NULL;
1585 btrfs_scrub_cancel(root->fs_info);
1586
1587 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1588}
1589
1590static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1591 struct btrfs_root *root)
1592{
1593 int ret;
1594
1595 ret = btrfs_run_delayed_items(trans, root);
1596 /*
1597 * running the delayed items may have added new refs. account
1598 * them now so that they hinder processing of more delayed refs
1599 * as little as possible.
1600 */
1601 if (ret) {
1602 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1603 return ret;
1604 }
1605
1606 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1607 if (ret)
1608 return ret;
1609
1610 /*
1611 * rename don't use btrfs_join_transaction, so, once we
1612 * set the transaction to blocked above, we aren't going
1613 * to get any new ordered operations. We can safely run
1614 * it here and no for sure that nothing new will be added
1615 * to the list
1616 */
1617 ret = btrfs_run_ordered_operations(trans, root, 1);
1618
1619 return ret;
1620}
1621
1622static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1623{
1624 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1625 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1626 return 0;
1627}
1628
1629static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1630{
1631 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1632 btrfs_wait_ordered_roots(fs_info, -1);
1633}
1634
1635int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1636 struct btrfs_root *root)
1637{
1638 struct btrfs_transaction *cur_trans = trans->transaction;
1639 struct btrfs_transaction *prev_trans = NULL;
1640 int ret;
1641
1642 ret = btrfs_run_ordered_operations(trans, root, 0);
1643 if (ret) {
1644 btrfs_abort_transaction(trans, root, ret);
1645 btrfs_end_transaction(trans, root);
1646 return ret;
1647 }
1648
1649 /* Stop the commit early if ->aborted is set */
1650 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1651 ret = cur_trans->aborted;
1652 btrfs_end_transaction(trans, root);
1653 return ret;
1654 }
1655
1656 /* make a pass through all the delayed refs we have so far
1657 * any runnings procs may add more while we are here
1658 */
1659 ret = btrfs_run_delayed_refs(trans, root, 0);
1660 if (ret) {
1661 btrfs_end_transaction(trans, root);
1662 return ret;
1663 }
1664
1665 btrfs_trans_release_metadata(trans, root);
1666 trans->block_rsv = NULL;
1667 if (trans->qgroup_reserved) {
1668 btrfs_qgroup_free(root, trans->qgroup_reserved);
1669 trans->qgroup_reserved = 0;
1670 }
1671
1672 cur_trans = trans->transaction;
1673
1674 /*
1675 * set the flushing flag so procs in this transaction have to
1676 * start sending their work down.
1677 */
1678 cur_trans->delayed_refs.flushing = 1;
1679 smp_wmb();
1680
1681 if (!list_empty(&trans->new_bgs))
1682 btrfs_create_pending_block_groups(trans, root);
1683
1684 ret = btrfs_run_delayed_refs(trans, root, 0);
1685 if (ret) {
1686 btrfs_end_transaction(trans, root);
1687 return ret;
1688 }
1689
1690 spin_lock(&root->fs_info->trans_lock);
1691 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1692 spin_unlock(&root->fs_info->trans_lock);
1693 atomic_inc(&cur_trans->use_count);
1694 ret = btrfs_end_transaction(trans, root);
1695
1696 wait_for_commit(root, cur_trans);
1697
1698 btrfs_put_transaction(cur_trans);
1699
1700 return ret;
1701 }
1702
1703 cur_trans->state = TRANS_STATE_COMMIT_START;
1704 wake_up(&root->fs_info->transaction_blocked_wait);
1705
1706 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1707 prev_trans = list_entry(cur_trans->list.prev,
1708 struct btrfs_transaction, list);
1709 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1710 atomic_inc(&prev_trans->use_count);
1711 spin_unlock(&root->fs_info->trans_lock);
1712
1713 wait_for_commit(root, prev_trans);
1714
1715 btrfs_put_transaction(prev_trans);
1716 } else {
1717 spin_unlock(&root->fs_info->trans_lock);
1718 }
1719 } else {
1720 spin_unlock(&root->fs_info->trans_lock);
1721 }
1722
1723 extwriter_counter_dec(cur_trans, trans->type);
1724
1725 ret = btrfs_start_delalloc_flush(root->fs_info);
1726 if (ret)
1727 goto cleanup_transaction;
1728
1729 ret = btrfs_flush_all_pending_stuffs(trans, root);
1730 if (ret)
1731 goto cleanup_transaction;
1732
1733 wait_event(cur_trans->writer_wait,
1734 extwriter_counter_read(cur_trans) == 0);
1735
1736 /* some pending stuffs might be added after the previous flush. */
1737 ret = btrfs_flush_all_pending_stuffs(trans, root);
1738 if (ret)
1739 goto cleanup_transaction;
1740
1741 btrfs_wait_delalloc_flush(root->fs_info);
1742
1743 btrfs_scrub_pause(root);
1744 /*
1745 * Ok now we need to make sure to block out any other joins while we
1746 * commit the transaction. We could have started a join before setting
1747 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1748 */
1749 spin_lock(&root->fs_info->trans_lock);
1750 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1751 spin_unlock(&root->fs_info->trans_lock);
1752 wait_event(cur_trans->writer_wait,
1753 atomic_read(&cur_trans->num_writers) == 1);
1754
1755 /* ->aborted might be set after the previous check, so check it */
1756 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1757 ret = cur_trans->aborted;
1758 goto scrub_continue;
1759 }
1760 /*
1761 * the reloc mutex makes sure that we stop
1762 * the balancing code from coming in and moving
1763 * extents around in the middle of the commit
1764 */
1765 mutex_lock(&root->fs_info->reloc_mutex);
1766
1767 /*
1768 * We needn't worry about the delayed items because we will
1769 * deal with them in create_pending_snapshot(), which is the
1770 * core function of the snapshot creation.
1771 */
1772 ret = create_pending_snapshots(trans, root->fs_info);
1773 if (ret) {
1774 mutex_unlock(&root->fs_info->reloc_mutex);
1775 goto scrub_continue;
1776 }
1777
1778 /*
1779 * We insert the dir indexes of the snapshots and update the inode
1780 * of the snapshots' parents after the snapshot creation, so there
1781 * are some delayed items which are not dealt with. Now deal with
1782 * them.
1783 *
1784 * We needn't worry that this operation will corrupt the snapshots,
1785 * because all the tree which are snapshoted will be forced to COW
1786 * the nodes and leaves.
1787 */
1788 ret = btrfs_run_delayed_items(trans, root);
1789 if (ret) {
1790 mutex_unlock(&root->fs_info->reloc_mutex);
1791 goto scrub_continue;
1792 }
1793
1794 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1795 if (ret) {
1796 mutex_unlock(&root->fs_info->reloc_mutex);
1797 goto scrub_continue;
1798 }
1799
1800 /*
1801 * make sure none of the code above managed to slip in a
1802 * delayed item
1803 */
1804 btrfs_assert_delayed_root_empty(root);
1805
1806 WARN_ON(cur_trans != trans->transaction);
1807
1808 /* btrfs_commit_tree_roots is responsible for getting the
1809 * various roots consistent with each other. Every pointer
1810 * in the tree of tree roots has to point to the most up to date
1811 * root for every subvolume and other tree. So, we have to keep
1812 * the tree logging code from jumping in and changing any
1813 * of the trees.
1814 *
1815 * At this point in the commit, there can't be any tree-log
1816 * writers, but a little lower down we drop the trans mutex
1817 * and let new people in. By holding the tree_log_mutex
1818 * from now until after the super is written, we avoid races
1819 * with the tree-log code.
1820 */
1821 mutex_lock(&root->fs_info->tree_log_mutex);
1822
1823 ret = commit_fs_roots(trans, root);
1824 if (ret) {
1825 mutex_unlock(&root->fs_info->tree_log_mutex);
1826 mutex_unlock(&root->fs_info->reloc_mutex);
1827 goto scrub_continue;
1828 }
1829
1830 /*
1831 * Since the transaction is done, we should set the inode map cache flag
1832 * before any other comming transaction.
1833 */
1834 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1835 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1836 else
1837 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1838
1839 /* commit_fs_roots gets rid of all the tree log roots, it is now
1840 * safe to free the root of tree log roots
1841 */
1842 btrfs_free_log_root_tree(trans, root->fs_info);
1843
1844 ret = commit_cowonly_roots(trans, root);
1845 if (ret) {
1846 mutex_unlock(&root->fs_info->tree_log_mutex);
1847 mutex_unlock(&root->fs_info->reloc_mutex);
1848 goto scrub_continue;
1849 }
1850
1851 /*
1852 * The tasks which save the space cache and inode cache may also
1853 * update ->aborted, check it.
1854 */
1855 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1856 ret = cur_trans->aborted;
1857 mutex_unlock(&root->fs_info->tree_log_mutex);
1858 mutex_unlock(&root->fs_info->reloc_mutex);
1859 goto scrub_continue;
1860 }
1861
1862 btrfs_prepare_extent_commit(trans, root);
1863
1864 cur_trans = root->fs_info->running_transaction;
1865
1866 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1867 root->fs_info->tree_root->node);
1868 list_add_tail(&root->fs_info->tree_root->dirty_list,
1869 &cur_trans->switch_commits);
1870
1871 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1872 root->fs_info->chunk_root->node);
1873 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1874 &cur_trans->switch_commits);
1875
1876 switch_commit_roots(cur_trans, root->fs_info);
1877
1878 assert_qgroups_uptodate(trans);
1879 update_super_roots(root);
1880
1881 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1882 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1883 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1884 sizeof(*root->fs_info->super_copy));
1885
1886 spin_lock(&root->fs_info->trans_lock);
1887 cur_trans->state = TRANS_STATE_UNBLOCKED;
1888 root->fs_info->running_transaction = NULL;
1889 spin_unlock(&root->fs_info->trans_lock);
1890 mutex_unlock(&root->fs_info->reloc_mutex);
1891
1892 wake_up(&root->fs_info->transaction_wait);
1893
1894 ret = btrfs_write_and_wait_transaction(trans, root);
1895 if (ret) {
1896 btrfs_error(root->fs_info, ret,
1897 "Error while writing out transaction");
1898 mutex_unlock(&root->fs_info->tree_log_mutex);
1899 goto scrub_continue;
1900 }
1901
1902 ret = write_ctree_super(trans, root, 0);
1903 if (ret) {
1904 mutex_unlock(&root->fs_info->tree_log_mutex);
1905 goto scrub_continue;
1906 }
1907
1908 /*
1909 * the super is written, we can safely allow the tree-loggers
1910 * to go about their business
1911 */
1912 mutex_unlock(&root->fs_info->tree_log_mutex);
1913
1914 btrfs_finish_extent_commit(trans, root);
1915
1916 root->fs_info->last_trans_committed = cur_trans->transid;
1917 /*
1918 * We needn't acquire the lock here because there is no other task
1919 * which can change it.
1920 */
1921 cur_trans->state = TRANS_STATE_COMPLETED;
1922 wake_up(&cur_trans->commit_wait);
1923
1924 spin_lock(&root->fs_info->trans_lock);
1925 list_del_init(&cur_trans->list);
1926 spin_unlock(&root->fs_info->trans_lock);
1927
1928 btrfs_put_transaction(cur_trans);
1929 btrfs_put_transaction(cur_trans);
1930
1931 if (trans->type & __TRANS_FREEZABLE)
1932 sb_end_intwrite(root->fs_info->sb);
1933
1934 trace_btrfs_transaction_commit(root);
1935
1936 btrfs_scrub_continue(root);
1937
1938 if (current->journal_info == trans)
1939 current->journal_info = NULL;
1940
1941 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1942
1943 if (current != root->fs_info->transaction_kthread)
1944 btrfs_run_delayed_iputs(root);
1945
1946 return ret;
1947
1948scrub_continue:
1949 btrfs_scrub_continue(root);
1950cleanup_transaction:
1951 btrfs_trans_release_metadata(trans, root);
1952 trans->block_rsv = NULL;
1953 if (trans->qgroup_reserved) {
1954 btrfs_qgroup_free(root, trans->qgroup_reserved);
1955 trans->qgroup_reserved = 0;
1956 }
1957 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1958 if (current->journal_info == trans)
1959 current->journal_info = NULL;
1960 cleanup_transaction(trans, root, ret);
1961
1962 return ret;
1963}
1964
1965/*
1966 * return < 0 if error
1967 * 0 if there are no more dead_roots at the time of call
1968 * 1 there are more to be processed, call me again
1969 *
1970 * The return value indicates there are certainly more snapshots to delete, but
1971 * if there comes a new one during processing, it may return 0. We don't mind,
1972 * because btrfs_commit_super will poke cleaner thread and it will process it a
1973 * few seconds later.
1974 */
1975int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1976{
1977 int ret;
1978 struct btrfs_fs_info *fs_info = root->fs_info;
1979
1980 spin_lock(&fs_info->trans_lock);
1981 if (list_empty(&fs_info->dead_roots)) {
1982 spin_unlock(&fs_info->trans_lock);
1983 return 0;
1984 }
1985 root = list_first_entry(&fs_info->dead_roots,
1986 struct btrfs_root, root_list);
1987 /*
1988 * Make sure root is not involved in send,
1989 * if we fail with first root, we return
1990 * directly rather than continue.
1991 */
1992 spin_lock(&root->root_item_lock);
1993 if (root->send_in_progress) {
1994 spin_unlock(&fs_info->trans_lock);
1995 spin_unlock(&root->root_item_lock);
1996 return 0;
1997 }
1998 spin_unlock(&root->root_item_lock);
1999
2000 list_del_init(&root->root_list);
2001 spin_unlock(&fs_info->trans_lock);
2002
2003 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2004
2005 btrfs_kill_all_delayed_nodes(root);
2006
2007 if (btrfs_header_backref_rev(root->node) <
2008 BTRFS_MIXED_BACKREF_REV)
2009 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2010 else
2011 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2012 /*
2013 * If we encounter a transaction abort during snapshot cleaning, we
2014 * don't want to crash here
2015 */
2016 return (ret < 0) ? 0 : 1;
2017}