Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
   9#include <linux/sched/mm.h>
  10#include <linux/writeback.h>
  11#include <linux/pagemap.h>
  12#include <linux/blkdev.h>
  13#include <linux/uuid.h>
  14#include <linux/timekeeping.h>
  15#include "misc.h"
  16#include "ctree.h"
  17#include "disk-io.h"
  18#include "transaction.h"
  19#include "locking.h"
  20#include "tree-log.h"
 
  21#include "volumes.h"
  22#include "dev-replace.h"
  23#include "qgroup.h"
  24#include "block-group.h"
  25#include "space-info.h"
  26#include "zoned.h"
  27#include "fs.h"
  28#include "accessors.h"
  29#include "extent-tree.h"
  30#include "root-tree.h"
  31#include "defrag.h"
  32#include "dir-item.h"
  33#include "uuid-tree.h"
  34#include "ioctl.h"
  35#include "relocation.h"
  36#include "scrub.h"
  37
  38static struct kmem_cache *btrfs_trans_handle_cachep;
  39
  40#define BTRFS_ROOT_TRANS_TAG 0
  41
  42/*
  43 * Transaction states and transitions
  44 *
  45 * No running transaction (fs tree blocks are not modified)
  46 * |
  47 * | To next stage:
  48 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
  49 * V
  50 * Transaction N [[TRANS_STATE_RUNNING]]
  51 * |
  52 * | New trans handles can be attached to transaction N by calling all
  53 * | start_transaction() variants.
  54 * |
  55 * | To next stage:
  56 * |  Call btrfs_commit_transaction() on any trans handle attached to
  57 * |  transaction N
  58 * V
  59 * Transaction N [[TRANS_STATE_COMMIT_START]]
  60 * |
  61 * | Will wait for previous running transaction to completely finish if there
  62 * | is one
  63 * |
  64 * | Then one of the following happes:
  65 * | - Wait for all other trans handle holders to release.
  66 * |   The btrfs_commit_transaction() caller will do the commit work.
  67 * | - Wait for current transaction to be committed by others.
  68 * |   Other btrfs_commit_transaction() caller will do the commit work.
  69 * |
  70 * | At this stage, only btrfs_join_transaction*() variants can attach
  71 * | to this running transaction.
  72 * | All other variants will wait for current one to finish and attach to
  73 * | transaction N+1.
  74 * |
  75 * | To next stage:
  76 * |  Caller is chosen to commit transaction N, and all other trans handle
  77 * |  haven been released.
  78 * V
  79 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
  80 * |
  81 * | The heavy lifting transaction work is started.
  82 * | From running delayed refs (modifying extent tree) to creating pending
  83 * | snapshots, running qgroups.
  84 * | In short, modify supporting trees to reflect modifications of subvolume
  85 * | trees.
  86 * |
  87 * | At this stage, all start_transaction() calls will wait for this
  88 * | transaction to finish and attach to transaction N+1.
  89 * |
  90 * | To next stage:
  91 * |  Until all supporting trees are updated.
  92 * V
  93 * Transaction N [[TRANS_STATE_UNBLOCKED]]
  94 * |						    Transaction N+1
  95 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
  96 * | need to write them back to disk and update	    |
  97 * | super blocks.				    |
  98 * |						    |
  99 * | At this stage, new transaction is allowed to   |
 100 * | start.					    |
 101 * | All new start_transaction() calls will be	    |
 102 * | attached to transid N+1.			    |
 103 * |						    |
 104 * | To next stage:				    |
 105 * |  Until all tree blocks are super blocks are    |
 106 * |  written to block devices			    |
 107 * V						    |
 108 * Transaction N [[TRANS_STATE_COMPLETED]]	    V
 109 *   All tree blocks and super blocks are written.  Transaction N+1
 110 *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
 111 *   data structures will be cleaned up.	    | Life goes on
 112 */
 113static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
 114	[TRANS_STATE_RUNNING]		= 0U,
 115	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
 116	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
 117					   __TRANS_ATTACH |
 118					   __TRANS_JOIN |
 119					   __TRANS_JOIN_NOSTART),
 120	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
 121					   __TRANS_ATTACH |
 122					   __TRANS_JOIN |
 123					   __TRANS_JOIN_NOLOCK |
 124					   __TRANS_JOIN_NOSTART),
 125	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
 126					   __TRANS_ATTACH |
 127					   __TRANS_JOIN |
 128					   __TRANS_JOIN_NOLOCK |
 129					   __TRANS_JOIN_NOSTART),
 130	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
 131					   __TRANS_ATTACH |
 132					   __TRANS_JOIN |
 133					   __TRANS_JOIN_NOLOCK |
 134					   __TRANS_JOIN_NOSTART),
 135};
 136
 137void btrfs_put_transaction(struct btrfs_transaction *transaction)
 138{
 139	WARN_ON(refcount_read(&transaction->use_count) == 0);
 140	if (refcount_dec_and_test(&transaction->use_count)) {
 141		BUG_ON(!list_empty(&transaction->list));
 142		WARN_ON(!RB_EMPTY_ROOT(
 143				&transaction->delayed_refs.href_root.rb_root));
 144		WARN_ON(!RB_EMPTY_ROOT(
 145				&transaction->delayed_refs.dirty_extent_root));
 146		if (transaction->delayed_refs.pending_csums)
 147			btrfs_err(transaction->fs_info,
 148				  "pending csums is %llu",
 149				  transaction->delayed_refs.pending_csums);
 150		/*
 151		 * If any block groups are found in ->deleted_bgs then it's
 152		 * because the transaction was aborted and a commit did not
 153		 * happen (things failed before writing the new superblock
 154		 * and calling btrfs_finish_extent_commit()), so we can not
 155		 * discard the physical locations of the block groups.
 156		 */
 157		while (!list_empty(&transaction->deleted_bgs)) {
 158			struct btrfs_block_group *cache;
 159
 160			cache = list_first_entry(&transaction->deleted_bgs,
 161						 struct btrfs_block_group,
 162						 bg_list);
 163			list_del_init(&cache->bg_list);
 164			btrfs_unfreeze_block_group(cache);
 165			btrfs_put_block_group(cache);
 166		}
 167		WARN_ON(!list_empty(&transaction->dev_update_list));
 168		kfree(transaction);
 169	}
 170}
 171
 172static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
 173{
 174	struct btrfs_transaction *cur_trans = trans->transaction;
 175	struct btrfs_fs_info *fs_info = trans->fs_info;
 176	struct btrfs_root *root, *tmp;
 177
 178	/*
 179	 * At this point no one can be using this transaction to modify any tree
 180	 * and no one can start another transaction to modify any tree either.
 181	 */
 182	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
 183
 184	down_write(&fs_info->commit_root_sem);
 185
 186	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
 187		fs_info->last_reloc_trans = trans->transid;
 188
 189	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
 190				 dirty_list) {
 191		list_del_init(&root->dirty_list);
 192		free_extent_buffer(root->commit_root);
 193		root->commit_root = btrfs_root_node(root);
 
 
 194		extent_io_tree_release(&root->dirty_log_pages);
 195		btrfs_qgroup_clean_swapped_blocks(root);
 196	}
 197
 198	/* We can free old roots now. */
 199	spin_lock(&cur_trans->dropped_roots_lock);
 200	while (!list_empty(&cur_trans->dropped_roots)) {
 201		root = list_first_entry(&cur_trans->dropped_roots,
 202					struct btrfs_root, root_list);
 203		list_del_init(&root->root_list);
 204		spin_unlock(&cur_trans->dropped_roots_lock);
 205		btrfs_free_log(trans, root);
 206		btrfs_drop_and_free_fs_root(fs_info, root);
 207		spin_lock(&cur_trans->dropped_roots_lock);
 208	}
 209	spin_unlock(&cur_trans->dropped_roots_lock);
 210
 211	up_write(&fs_info->commit_root_sem);
 212}
 213
 214static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 215					 unsigned int type)
 216{
 217	if (type & TRANS_EXTWRITERS)
 218		atomic_inc(&trans->num_extwriters);
 219}
 220
 221static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 222					 unsigned int type)
 223{
 224	if (type & TRANS_EXTWRITERS)
 225		atomic_dec(&trans->num_extwriters);
 226}
 227
 228static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 229					  unsigned int type)
 230{
 231	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 232}
 233
 234static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 235{
 236	return atomic_read(&trans->num_extwriters);
 237}
 238
 239/*
 240 * To be called after doing the chunk btree updates right after allocating a new
 241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
 242 * chunk after all chunk btree updates and after finishing the second phase of
 243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
 244 * group had its chunk item insertion delayed to the second phase.
 245 */
 246void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 247{
 248	struct btrfs_fs_info *fs_info = trans->fs_info;
 249
 250	if (!trans->chunk_bytes_reserved)
 251		return;
 252
 
 
 253	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
 254				trans->chunk_bytes_reserved, NULL);
 255	trans->chunk_bytes_reserved = 0;
 256}
 257
 258/*
 259 * either allocate a new transaction or hop into the existing one
 260 */
 261static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 262				     unsigned int type)
 263{
 264	struct btrfs_transaction *cur_trans;
 265
 266	spin_lock(&fs_info->trans_lock);
 267loop:
 268	/* The file system has been taken offline. No new transactions. */
 269	if (BTRFS_FS_ERROR(fs_info)) {
 270		spin_unlock(&fs_info->trans_lock);
 271		return -EROFS;
 272	}
 273
 274	cur_trans = fs_info->running_transaction;
 275	if (cur_trans) {
 276		if (TRANS_ABORTED(cur_trans)) {
 277			spin_unlock(&fs_info->trans_lock);
 278			return cur_trans->aborted;
 279		}
 280		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 281			spin_unlock(&fs_info->trans_lock);
 282			return -EBUSY;
 283		}
 284		refcount_inc(&cur_trans->use_count);
 285		atomic_inc(&cur_trans->num_writers);
 286		extwriter_counter_inc(cur_trans, type);
 287		spin_unlock(&fs_info->trans_lock);
 288		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
 289		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
 290		return 0;
 291	}
 292	spin_unlock(&fs_info->trans_lock);
 293
 294	/*
 295	 * If we are ATTACH, we just want to catch the current transaction,
 296	 * and commit it. If there is no transaction, just return ENOENT.
 297	 */
 298	if (type == TRANS_ATTACH)
 299		return -ENOENT;
 300
 301	/*
 302	 * JOIN_NOLOCK only happens during the transaction commit, so
 303	 * it is impossible that ->running_transaction is NULL
 304	 */
 305	BUG_ON(type == TRANS_JOIN_NOLOCK);
 306
 307	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 308	if (!cur_trans)
 309		return -ENOMEM;
 310
 311	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
 312	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
 313
 314	spin_lock(&fs_info->trans_lock);
 315	if (fs_info->running_transaction) {
 316		/*
 317		 * someone started a transaction after we unlocked.  Make sure
 318		 * to redo the checks above
 319		 */
 320		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
 321		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
 322		kfree(cur_trans);
 323		goto loop;
 324	} else if (BTRFS_FS_ERROR(fs_info)) {
 325		spin_unlock(&fs_info->trans_lock);
 326		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
 327		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
 328		kfree(cur_trans);
 329		return -EROFS;
 330	}
 331
 332	cur_trans->fs_info = fs_info;
 333	atomic_set(&cur_trans->pending_ordered, 0);
 334	init_waitqueue_head(&cur_trans->pending_wait);
 335	atomic_set(&cur_trans->num_writers, 1);
 336	extwriter_counter_init(cur_trans, type);
 337	init_waitqueue_head(&cur_trans->writer_wait);
 338	init_waitqueue_head(&cur_trans->commit_wait);
 339	cur_trans->state = TRANS_STATE_RUNNING;
 340	/*
 341	 * One for this trans handle, one so it will live on until we
 342	 * commit the transaction.
 343	 */
 344	refcount_set(&cur_trans->use_count, 2);
 345	cur_trans->flags = 0;
 346	cur_trans->start_time = ktime_get_seconds();
 347
 348	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 349
 350	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
 351	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 352	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 353
 354	/*
 355	 * although the tree mod log is per file system and not per transaction,
 356	 * the log must never go across transaction boundaries.
 357	 */
 358	smp_mb();
 359	if (!list_empty(&fs_info->tree_mod_seq_list))
 360		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 361	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 362		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 363	atomic64_set(&fs_info->tree_mod_seq, 0);
 364
 365	spin_lock_init(&cur_trans->delayed_refs.lock);
 366
 367	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 368	INIT_LIST_HEAD(&cur_trans->dev_update_list);
 369	INIT_LIST_HEAD(&cur_trans->switch_commits);
 370	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 371	INIT_LIST_HEAD(&cur_trans->io_bgs);
 372	INIT_LIST_HEAD(&cur_trans->dropped_roots);
 373	mutex_init(&cur_trans->cache_write_mutex);
 374	spin_lock_init(&cur_trans->dirty_bgs_lock);
 375	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 376	spin_lock_init(&cur_trans->dropped_roots_lock);
 377	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
 378	spin_lock_init(&cur_trans->releasing_ebs_lock);
 379	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 380	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 381			IO_TREE_TRANS_DIRTY_PAGES);
 382	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
 383			IO_TREE_FS_PINNED_EXTENTS);
 384	fs_info->generation++;
 385	cur_trans->transid = fs_info->generation;
 386	fs_info->running_transaction = cur_trans;
 387	cur_trans->aborted = 0;
 388	spin_unlock(&fs_info->trans_lock);
 389
 390	return 0;
 391}
 392
 393/*
 394 * This does all the record keeping required to make sure that a shareable root
 395 * is properly recorded in a given transaction.  This is required to make sure
 396 * the old root from before we joined the transaction is deleted when the
 397 * transaction commits.
 398 */
 399static int record_root_in_trans(struct btrfs_trans_handle *trans,
 400			       struct btrfs_root *root,
 401			       int force)
 402{
 403	struct btrfs_fs_info *fs_info = root->fs_info;
 404	int ret = 0;
 405
 406	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 407	    root->last_trans < trans->transid) || force) {
 
 408		WARN_ON(!force && root->commit_root != root->node);
 409
 410		/*
 411		 * see below for IN_TRANS_SETUP usage rules
 412		 * we have the reloc mutex held now, so there
 413		 * is only one writer in this function
 414		 */
 415		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 416
 417		/* make sure readers find IN_TRANS_SETUP before
 418		 * they find our root->last_trans update
 419		 */
 420		smp_wmb();
 421
 422		spin_lock(&fs_info->fs_roots_radix_lock);
 423		if (root->last_trans == trans->transid && !force) {
 424			spin_unlock(&fs_info->fs_roots_radix_lock);
 425			return 0;
 426		}
 427		radix_tree_tag_set(&fs_info->fs_roots_radix,
 428				   (unsigned long)root->root_key.objectid,
 429				   BTRFS_ROOT_TRANS_TAG);
 430		spin_unlock(&fs_info->fs_roots_radix_lock);
 431		root->last_trans = trans->transid;
 432
 433		/* this is pretty tricky.  We don't want to
 434		 * take the relocation lock in btrfs_record_root_in_trans
 435		 * unless we're really doing the first setup for this root in
 436		 * this transaction.
 437		 *
 438		 * Normally we'd use root->last_trans as a flag to decide
 439		 * if we want to take the expensive mutex.
 440		 *
 441		 * But, we have to set root->last_trans before we
 442		 * init the relocation root, otherwise, we trip over warnings
 443		 * in ctree.c.  The solution used here is to flag ourselves
 444		 * with root IN_TRANS_SETUP.  When this is 1, we're still
 445		 * fixing up the reloc trees and everyone must wait.
 446		 *
 447		 * When this is zero, they can trust root->last_trans and fly
 448		 * through btrfs_record_root_in_trans without having to take the
 449		 * lock.  smp_wmb() makes sure that all the writes above are
 450		 * done before we pop in the zero below
 451		 */
 452		ret = btrfs_init_reloc_root(trans, root);
 453		smp_mb__before_atomic();
 454		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 455	}
 456	return ret;
 457}
 458
 459
 460void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 461			    struct btrfs_root *root)
 462{
 463	struct btrfs_fs_info *fs_info = root->fs_info;
 464	struct btrfs_transaction *cur_trans = trans->transaction;
 465
 466	/* Add ourselves to the transaction dropped list */
 467	spin_lock(&cur_trans->dropped_roots_lock);
 468	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 469	spin_unlock(&cur_trans->dropped_roots_lock);
 470
 471	/* Make sure we don't try to update the root at commit time */
 472	spin_lock(&fs_info->fs_roots_radix_lock);
 473	radix_tree_tag_clear(&fs_info->fs_roots_radix,
 474			     (unsigned long)root->root_key.objectid,
 475			     BTRFS_ROOT_TRANS_TAG);
 476	spin_unlock(&fs_info->fs_roots_radix_lock);
 477}
 478
 479int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 480			       struct btrfs_root *root)
 481{
 482	struct btrfs_fs_info *fs_info = root->fs_info;
 483	int ret;
 484
 485	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 486		return 0;
 487
 488	/*
 489	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 490	 * and barriers
 491	 */
 492	smp_rmb();
 493	if (root->last_trans == trans->transid &&
 494	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 495		return 0;
 496
 497	mutex_lock(&fs_info->reloc_mutex);
 498	ret = record_root_in_trans(trans, root, 0);
 499	mutex_unlock(&fs_info->reloc_mutex);
 500
 501	return ret;
 502}
 503
 504static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 505{
 506	return (trans->state >= TRANS_STATE_COMMIT_START &&
 507		trans->state < TRANS_STATE_UNBLOCKED &&
 508		!TRANS_ABORTED(trans));
 509}
 510
 511/* wait for commit against the current transaction to become unblocked
 512 * when this is done, it is safe to start a new transaction, but the current
 513 * transaction might not be fully on disk.
 514 */
 515static void wait_current_trans(struct btrfs_fs_info *fs_info)
 516{
 517	struct btrfs_transaction *cur_trans;
 518
 519	spin_lock(&fs_info->trans_lock);
 520	cur_trans = fs_info->running_transaction;
 521	if (cur_trans && is_transaction_blocked(cur_trans)) {
 522		refcount_inc(&cur_trans->use_count);
 523		spin_unlock(&fs_info->trans_lock);
 524
 525		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
 526		wait_event(fs_info->transaction_wait,
 527			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 528			   TRANS_ABORTED(cur_trans));
 529		btrfs_put_transaction(cur_trans);
 530	} else {
 531		spin_unlock(&fs_info->trans_lock);
 532	}
 533}
 534
 535static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 536{
 537	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 538		return 0;
 539
 540	if (type == TRANS_START)
 541		return 1;
 542
 543	return 0;
 544}
 545
 546static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 547{
 548	struct btrfs_fs_info *fs_info = root->fs_info;
 549
 550	if (!fs_info->reloc_ctl ||
 551	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 552	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 553	    root->reloc_root)
 554		return false;
 555
 556	return true;
 557}
 558
 559static struct btrfs_trans_handle *
 560start_transaction(struct btrfs_root *root, unsigned int num_items,
 561		  unsigned int type, enum btrfs_reserve_flush_enum flush,
 562		  bool enforce_qgroups)
 563{
 564	struct btrfs_fs_info *fs_info = root->fs_info;
 565	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 566	struct btrfs_trans_handle *h;
 567	struct btrfs_transaction *cur_trans;
 568	u64 num_bytes = 0;
 569	u64 qgroup_reserved = 0;
 570	bool reloc_reserved = false;
 571	bool do_chunk_alloc = false;
 572	int ret;
 573
 574	if (BTRFS_FS_ERROR(fs_info))
 
 
 
 575		return ERR_PTR(-EROFS);
 576
 577	if (current->journal_info) {
 578		WARN_ON(type & TRANS_EXTWRITERS);
 579		h = current->journal_info;
 580		refcount_inc(&h->use_count);
 581		WARN_ON(refcount_read(&h->use_count) > 2);
 582		h->orig_rsv = h->block_rsv;
 583		h->block_rsv = NULL;
 584		goto got_it;
 585	}
 586
 587	/*
 588	 * Do the reservation before we join the transaction so we can do all
 589	 * the appropriate flushing if need be.
 590	 */
 591	if (num_items && root != fs_info->chunk_root) {
 592		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
 593		u64 delayed_refs_bytes = 0;
 594
 595		qgroup_reserved = num_items * fs_info->nodesize;
 596		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
 597				enforce_qgroups);
 598		if (ret)
 599			return ERR_PTR(ret);
 600
 601		/*
 602		 * We want to reserve all the bytes we may need all at once, so
 603		 * we only do 1 enospc flushing cycle per transaction start.  We
 604		 * accomplish this by simply assuming we'll do 2 x num_items
 605		 * worth of delayed refs updates in this trans handle, and
 606		 * refill that amount for whatever is missing in the reserve.
 607		 */
 608		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
 609		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
 610		    btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
 611			delayed_refs_bytes = num_bytes;
 612			num_bytes <<= 1;
 613		}
 614
 615		/*
 616		 * Do the reservation for the relocation root creation
 617		 */
 618		if (need_reserve_reloc_root(root)) {
 619			num_bytes += fs_info->nodesize;
 620			reloc_reserved = true;
 621		}
 622
 623		ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
 624		if (ret)
 625			goto reserve_fail;
 626		if (delayed_refs_bytes) {
 627			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
 628							  delayed_refs_bytes);
 629			num_bytes -= delayed_refs_bytes;
 630		}
 631
 632		if (rsv->space_info->force_alloc)
 633			do_chunk_alloc = true;
 634	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 635		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
 636		/*
 637		 * Some people call with btrfs_start_transaction(root, 0)
 638		 * because they can be throttled, but have some other mechanism
 639		 * for reserving space.  We still want these guys to refill the
 640		 * delayed block_rsv so just add 1 items worth of reservation
 641		 * here.
 642		 */
 643		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 644		if (ret)
 645			goto reserve_fail;
 646	}
 647again:
 648	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 649	if (!h) {
 650		ret = -ENOMEM;
 651		goto alloc_fail;
 652	}
 653
 654	/*
 655	 * If we are JOIN_NOLOCK we're already committing a transaction and
 656	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 657	 * because we're already holding a ref.  We need this because we could
 658	 * have raced in and did an fsync() on a file which can kick a commit
 659	 * and then we deadlock with somebody doing a freeze.
 660	 *
 661	 * If we are ATTACH, it means we just want to catch the current
 662	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 663	 */
 664	if (type & __TRANS_FREEZABLE)
 665		sb_start_intwrite(fs_info->sb);
 666
 667	if (may_wait_transaction(fs_info, type))
 668		wait_current_trans(fs_info);
 669
 670	do {
 671		ret = join_transaction(fs_info, type);
 672		if (ret == -EBUSY) {
 673			wait_current_trans(fs_info);
 674			if (unlikely(type == TRANS_ATTACH ||
 675				     type == TRANS_JOIN_NOSTART))
 676				ret = -ENOENT;
 677		}
 678	} while (ret == -EBUSY);
 679
 680	if (ret < 0)
 681		goto join_fail;
 682
 683	cur_trans = fs_info->running_transaction;
 684
 685	h->transid = cur_trans->transid;
 686	h->transaction = cur_trans;
 
 687	refcount_set(&h->use_count, 1);
 688	h->fs_info = root->fs_info;
 689
 690	h->type = type;
 
 691	INIT_LIST_HEAD(&h->new_bgs);
 692
 693	smp_mb();
 694	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
 695	    may_wait_transaction(fs_info, type)) {
 696		current->journal_info = h;
 697		btrfs_commit_transaction(h);
 698		goto again;
 699	}
 700
 701	if (num_bytes) {
 702		trace_btrfs_space_reservation(fs_info, "transaction",
 703					      h->transid, num_bytes, 1);
 704		h->block_rsv = &fs_info->trans_block_rsv;
 705		h->bytes_reserved = num_bytes;
 706		h->reloc_reserved = reloc_reserved;
 707	}
 708
 709got_it:
 710	if (!current->journal_info)
 711		current->journal_info = h;
 712
 713	/*
 714	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
 715	 * ALLOC_FORCE the first run through, and then we won't allocate for
 716	 * anybody else who races in later.  We don't care about the return
 717	 * value here.
 718	 */
 719	if (do_chunk_alloc && num_bytes) {
 720		u64 flags = h->block_rsv->space_info->flags;
 721
 722		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
 723				  CHUNK_ALLOC_NO_FORCE);
 724	}
 725
 726	/*
 727	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
 728	 * call btrfs_join_transaction() while we're also starting a
 729	 * transaction.
 730	 *
 731	 * Thus it need to be called after current->journal_info initialized,
 732	 * or we can deadlock.
 733	 */
 734	ret = btrfs_record_root_in_trans(h, root);
 735	if (ret) {
 736		/*
 737		 * The transaction handle is fully initialized and linked with
 738		 * other structures so it needs to be ended in case of errors,
 739		 * not just freed.
 740		 */
 741		btrfs_end_transaction(h);
 742		return ERR_PTR(ret);
 743	}
 744
 745	return h;
 746
 747join_fail:
 748	if (type & __TRANS_FREEZABLE)
 749		sb_end_intwrite(fs_info->sb);
 750	kmem_cache_free(btrfs_trans_handle_cachep, h);
 751alloc_fail:
 752	if (num_bytes)
 753		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 754					num_bytes, NULL);
 755reserve_fail:
 756	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
 757	return ERR_PTR(ret);
 758}
 759
 760struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 761						   unsigned int num_items)
 762{
 763	return start_transaction(root, num_items, TRANS_START,
 764				 BTRFS_RESERVE_FLUSH_ALL, true);
 765}
 766
 767struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 768					struct btrfs_root *root,
 769					unsigned int num_items)
 770{
 771	return start_transaction(root, num_items, TRANS_START,
 772				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
 773}
 774
 775struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 776{
 777	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 778				 true);
 779}
 780
 781struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
 782{
 783	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 784				 BTRFS_RESERVE_NO_FLUSH, true);
 785}
 786
 787/*
 788 * Similar to regular join but it never starts a transaction when none is
 789 * running or after waiting for the current one to finish.
 790 */
 791struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
 792{
 793	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
 794				 BTRFS_RESERVE_NO_FLUSH, true);
 795}
 796
 797/*
 798 * btrfs_attach_transaction() - catch the running transaction
 799 *
 800 * It is used when we want to commit the current the transaction, but
 801 * don't want to start a new one.
 802 *
 803 * Note: If this function return -ENOENT, it just means there is no
 804 * running transaction. But it is possible that the inactive transaction
 805 * is still in the memory, not fully on disk. If you hope there is no
 806 * inactive transaction in the fs when -ENOENT is returned, you should
 807 * invoke
 808 *     btrfs_attach_transaction_barrier()
 809 */
 810struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 811{
 812	return start_transaction(root, 0, TRANS_ATTACH,
 813				 BTRFS_RESERVE_NO_FLUSH, true);
 814}
 815
 816/*
 817 * btrfs_attach_transaction_barrier() - catch the running transaction
 818 *
 819 * It is similar to the above function, the difference is this one
 820 * will wait for all the inactive transactions until they fully
 821 * complete.
 822 */
 823struct btrfs_trans_handle *
 824btrfs_attach_transaction_barrier(struct btrfs_root *root)
 825{
 826	struct btrfs_trans_handle *trans;
 827
 828	trans = start_transaction(root, 0, TRANS_ATTACH,
 829				  BTRFS_RESERVE_NO_FLUSH, true);
 830	if (trans == ERR_PTR(-ENOENT))
 831		btrfs_wait_for_commit(root->fs_info, 0);
 832
 833	return trans;
 834}
 835
 836/* Wait for a transaction commit to reach at least the given state. */
 837static noinline void wait_for_commit(struct btrfs_transaction *commit,
 838				     const enum btrfs_trans_state min_state)
 839{
 840	struct btrfs_fs_info *fs_info = commit->fs_info;
 841	u64 transid = commit->transid;
 842	bool put = false;
 843
 844	/*
 845	 * At the moment this function is called with min_state either being
 846	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
 847	 */
 848	if (min_state == TRANS_STATE_COMPLETED)
 849		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
 850	else
 851		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
 852
 853	while (1) {
 854		wait_event(commit->commit_wait, commit->state >= min_state);
 855		if (put)
 856			btrfs_put_transaction(commit);
 857
 858		if (min_state < TRANS_STATE_COMPLETED)
 859			break;
 860
 861		/*
 862		 * A transaction isn't really completed until all of the
 863		 * previous transactions are completed, but with fsync we can
 864		 * end up with SUPER_COMMITTED transactions before a COMPLETED
 865		 * transaction. Wait for those.
 866		 */
 867
 868		spin_lock(&fs_info->trans_lock);
 869		commit = list_first_entry_or_null(&fs_info->trans_list,
 870						  struct btrfs_transaction,
 871						  list);
 872		if (!commit || commit->transid > transid) {
 873			spin_unlock(&fs_info->trans_lock);
 874			break;
 875		}
 876		refcount_inc(&commit->use_count);
 877		put = true;
 878		spin_unlock(&fs_info->trans_lock);
 879	}
 880}
 881
 882int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 883{
 884	struct btrfs_transaction *cur_trans = NULL, *t;
 885	int ret = 0;
 886
 887	if (transid) {
 888		if (transid <= fs_info->last_trans_committed)
 889			goto out;
 890
 891		/* find specified transaction */
 892		spin_lock(&fs_info->trans_lock);
 893		list_for_each_entry(t, &fs_info->trans_list, list) {
 894			if (t->transid == transid) {
 895				cur_trans = t;
 896				refcount_inc(&cur_trans->use_count);
 897				ret = 0;
 898				break;
 899			}
 900			if (t->transid > transid) {
 901				ret = 0;
 902				break;
 903			}
 904		}
 905		spin_unlock(&fs_info->trans_lock);
 906
 907		/*
 908		 * The specified transaction doesn't exist, or we
 909		 * raced with btrfs_commit_transaction
 910		 */
 911		if (!cur_trans) {
 912			if (transid > fs_info->last_trans_committed)
 913				ret = -EINVAL;
 914			goto out;
 915		}
 916	} else {
 917		/* find newest transaction that is committing | committed */
 918		spin_lock(&fs_info->trans_lock);
 919		list_for_each_entry_reverse(t, &fs_info->trans_list,
 920					    list) {
 921			if (t->state >= TRANS_STATE_COMMIT_START) {
 922				if (t->state == TRANS_STATE_COMPLETED)
 923					break;
 924				cur_trans = t;
 925				refcount_inc(&cur_trans->use_count);
 926				break;
 927			}
 928		}
 929		spin_unlock(&fs_info->trans_lock);
 930		if (!cur_trans)
 931			goto out;  /* nothing committing|committed */
 932	}
 933
 934	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
 935	btrfs_put_transaction(cur_trans);
 936out:
 937	return ret;
 938}
 939
 940void btrfs_throttle(struct btrfs_fs_info *fs_info)
 941{
 942	wait_current_trans(fs_info);
 943}
 944
 945static bool should_end_transaction(struct btrfs_trans_handle *trans)
 946{
 947	struct btrfs_fs_info *fs_info = trans->fs_info;
 948
 949	if (btrfs_check_space_for_delayed_refs(fs_info))
 950		return true;
 951
 952	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 50);
 953}
 954
 955bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 956{
 957	struct btrfs_transaction *cur_trans = trans->transaction;
 958
 
 959	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
 960	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
 961		return true;
 962
 963	return should_end_transaction(trans);
 964}
 965
 966static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
 967
 968{
 969	struct btrfs_fs_info *fs_info = trans->fs_info;
 970
 971	if (!trans->block_rsv) {
 972		ASSERT(!trans->bytes_reserved);
 973		return;
 974	}
 975
 976	if (!trans->bytes_reserved)
 977		return;
 978
 979	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
 980	trace_btrfs_space_reservation(fs_info, "transaction",
 981				      trans->transid, trans->bytes_reserved, 0);
 982	btrfs_block_rsv_release(fs_info, trans->block_rsv,
 983				trans->bytes_reserved, NULL);
 984	trans->bytes_reserved = 0;
 985}
 986
 987static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 988				   int throttle)
 989{
 990	struct btrfs_fs_info *info = trans->fs_info;
 991	struct btrfs_transaction *cur_trans = trans->transaction;
 992	int err = 0;
 993
 994	if (refcount_read(&trans->use_count) > 1) {
 995		refcount_dec(&trans->use_count);
 996		trans->block_rsv = trans->orig_rsv;
 997		return 0;
 998	}
 999
1000	btrfs_trans_release_metadata(trans);
1001	trans->block_rsv = NULL;
1002
1003	btrfs_create_pending_block_groups(trans);
1004
1005	btrfs_trans_release_chunk_metadata(trans);
1006
1007	if (trans->type & __TRANS_FREEZABLE)
1008		sb_end_intwrite(info->sb);
1009
1010	WARN_ON(cur_trans != info->running_transaction);
1011	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1012	atomic_dec(&cur_trans->num_writers);
1013	extwriter_counter_dec(cur_trans, trans->type);
1014
1015	cond_wake_up(&cur_trans->writer_wait);
1016
1017	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1018	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1019
1020	btrfs_put_transaction(cur_trans);
1021
1022	if (current->journal_info == trans)
1023		current->journal_info = NULL;
1024
1025	if (throttle)
1026		btrfs_run_delayed_iputs(info);
1027
1028	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
 
1029		wake_up_process(info->transaction_kthread);
1030		if (TRANS_ABORTED(trans))
1031			err = trans->aborted;
1032		else
1033			err = -EROFS;
1034	}
1035
1036	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1037	return err;
1038}
1039
1040int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1041{
1042	return __btrfs_end_transaction(trans, 0);
1043}
1044
1045int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1046{
1047	return __btrfs_end_transaction(trans, 1);
1048}
1049
1050/*
1051 * when btree blocks are allocated, they have some corresponding bits set for
1052 * them in one of two extent_io trees.  This is used to make sure all of
1053 * those extents are sent to disk but does not wait on them
1054 */
1055int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1056			       struct extent_io_tree *dirty_pages, int mark)
1057{
1058	int err = 0;
1059	int werr = 0;
1060	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1061	struct extent_state *cached_state = NULL;
1062	u64 start = 0;
1063	u64 end;
1064
1065	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1066	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1067				      mark, &cached_state)) {
1068		bool wait_writeback = false;
1069
1070		err = convert_extent_bit(dirty_pages, start, end,
1071					 EXTENT_NEED_WAIT,
1072					 mark, &cached_state);
1073		/*
1074		 * convert_extent_bit can return -ENOMEM, which is most of the
1075		 * time a temporary error. So when it happens, ignore the error
1076		 * and wait for writeback of this range to finish - because we
1077		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1078		 * to __btrfs_wait_marked_extents() would not know that
1079		 * writeback for this range started and therefore wouldn't
1080		 * wait for it to finish - we don't want to commit a
1081		 * superblock that points to btree nodes/leafs for which
1082		 * writeback hasn't finished yet (and without errors).
1083		 * We cleanup any entries left in the io tree when committing
1084		 * the transaction (through extent_io_tree_release()).
1085		 */
1086		if (err == -ENOMEM) {
1087			err = 0;
1088			wait_writeback = true;
1089		}
1090		if (!err)
1091			err = filemap_fdatawrite_range(mapping, start, end);
1092		if (err)
1093			werr = err;
1094		else if (wait_writeback)
1095			werr = filemap_fdatawait_range(mapping, start, end);
1096		free_extent_state(cached_state);
1097		cached_state = NULL;
1098		cond_resched();
1099		start = end + 1;
1100	}
1101	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1102	return werr;
1103}
1104
1105/*
1106 * when btree blocks are allocated, they have some corresponding bits set for
1107 * them in one of two extent_io trees.  This is used to make sure all of
1108 * those extents are on disk for transaction or log commit.  We wait
1109 * on all the pages and clear them from the dirty pages state tree
1110 */
1111static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1112				       struct extent_io_tree *dirty_pages)
1113{
1114	int err = 0;
1115	int werr = 0;
1116	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1117	struct extent_state *cached_state = NULL;
1118	u64 start = 0;
1119	u64 end;
1120
1121	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1122				      EXTENT_NEED_WAIT, &cached_state)) {
1123		/*
1124		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1125		 * When committing the transaction, we'll remove any entries
1126		 * left in the io tree. For a log commit, we don't remove them
1127		 * after committing the log because the tree can be accessed
1128		 * concurrently - we do it only at transaction commit time when
1129		 * it's safe to do it (through extent_io_tree_release()).
1130		 */
1131		err = clear_extent_bit(dirty_pages, start, end,
1132				       EXTENT_NEED_WAIT, &cached_state);
1133		if (err == -ENOMEM)
1134			err = 0;
1135		if (!err)
1136			err = filemap_fdatawait_range(mapping, start, end);
1137		if (err)
1138			werr = err;
1139		free_extent_state(cached_state);
1140		cached_state = NULL;
1141		cond_resched();
1142		start = end + 1;
1143	}
1144	if (err)
1145		werr = err;
1146	return werr;
1147}
1148
1149static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1150		       struct extent_io_tree *dirty_pages)
1151{
1152	bool errors = false;
1153	int err;
1154
1155	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1156	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1157		errors = true;
1158
1159	if (errors && !err)
1160		err = -EIO;
1161	return err;
1162}
1163
1164int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1165{
1166	struct btrfs_fs_info *fs_info = log_root->fs_info;
1167	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1168	bool errors = false;
1169	int err;
1170
1171	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1172
1173	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1174	if ((mark & EXTENT_DIRTY) &&
1175	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1176		errors = true;
1177
1178	if ((mark & EXTENT_NEW) &&
1179	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1180		errors = true;
1181
1182	if (errors && !err)
1183		err = -EIO;
1184	return err;
1185}
1186
1187/*
1188 * When btree blocks are allocated the corresponding extents are marked dirty.
1189 * This function ensures such extents are persisted on disk for transaction or
1190 * log commit.
1191 *
1192 * @trans: transaction whose dirty pages we'd like to write
1193 */
1194static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1195{
1196	int ret;
1197	int ret2;
1198	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1199	struct btrfs_fs_info *fs_info = trans->fs_info;
1200	struct blk_plug plug;
1201
1202	blk_start_plug(&plug);
1203	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1204	blk_finish_plug(&plug);
1205	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1206
1207	extent_io_tree_release(&trans->transaction->dirty_pages);
1208
1209	if (ret)
1210		return ret;
1211	else if (ret2)
1212		return ret2;
1213	else
1214		return 0;
1215}
1216
1217/*
1218 * this is used to update the root pointer in the tree of tree roots.
1219 *
1220 * But, in the case of the extent allocation tree, updating the root
1221 * pointer may allocate blocks which may change the root of the extent
1222 * allocation tree.
1223 *
1224 * So, this loops and repeats and makes sure the cowonly root didn't
1225 * change while the root pointer was being updated in the metadata.
1226 */
1227static int update_cowonly_root(struct btrfs_trans_handle *trans,
1228			       struct btrfs_root *root)
1229{
1230	int ret;
1231	u64 old_root_bytenr;
1232	u64 old_root_used;
1233	struct btrfs_fs_info *fs_info = root->fs_info;
1234	struct btrfs_root *tree_root = fs_info->tree_root;
1235
1236	old_root_used = btrfs_root_used(&root->root_item);
1237
1238	while (1) {
1239		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1240		if (old_root_bytenr == root->node->start &&
1241		    old_root_used == btrfs_root_used(&root->root_item))
1242			break;
1243
1244		btrfs_set_root_node(&root->root_item, root->node);
1245		ret = btrfs_update_root(trans, tree_root,
1246					&root->root_key,
1247					&root->root_item);
1248		if (ret)
1249			return ret;
1250
1251		old_root_used = btrfs_root_used(&root->root_item);
1252	}
1253
1254	return 0;
1255}
1256
1257/*
1258 * update all the cowonly tree roots on disk
1259 *
1260 * The error handling in this function may not be obvious. Any of the
1261 * failures will cause the file system to go offline. We still need
1262 * to clean up the delayed refs.
1263 */
1264static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1265{
1266	struct btrfs_fs_info *fs_info = trans->fs_info;
1267	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1268	struct list_head *io_bgs = &trans->transaction->io_bgs;
1269	struct list_head *next;
1270	struct extent_buffer *eb;
1271	int ret;
1272
1273	/*
1274	 * At this point no one can be using this transaction to modify any tree
1275	 * and no one can start another transaction to modify any tree either.
1276	 */
1277	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1278
1279	eb = btrfs_lock_root_node(fs_info->tree_root);
1280	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1281			      0, &eb, BTRFS_NESTING_COW);
1282	btrfs_tree_unlock(eb);
1283	free_extent_buffer(eb);
1284
1285	if (ret)
1286		return ret;
1287
 
 
 
 
1288	ret = btrfs_run_dev_stats(trans);
1289	if (ret)
1290		return ret;
1291	ret = btrfs_run_dev_replace(trans);
1292	if (ret)
1293		return ret;
1294	ret = btrfs_run_qgroups(trans);
1295	if (ret)
1296		return ret;
1297
1298	ret = btrfs_setup_space_cache(trans);
1299	if (ret)
1300		return ret;
1301
 
 
 
 
1302again:
1303	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1304		struct btrfs_root *root;
1305		next = fs_info->dirty_cowonly_roots.next;
1306		list_del_init(next);
1307		root = list_entry(next, struct btrfs_root, dirty_list);
1308		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1309
1310		list_add_tail(&root->dirty_list,
1311			      &trans->transaction->switch_commits);
 
1312		ret = update_cowonly_root(trans, root);
1313		if (ret)
1314			return ret;
 
 
 
1315	}
1316
1317	/* Now flush any delayed refs generated by updating all of the roots */
1318	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1319	if (ret)
1320		return ret;
1321
1322	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1323		ret = btrfs_write_dirty_block_groups(trans);
1324		if (ret)
1325			return ret;
1326
1327		/*
1328		 * We're writing the dirty block groups, which could generate
1329		 * delayed refs, which could generate more dirty block groups,
1330		 * so we want to keep this flushing in this loop to make sure
1331		 * everything gets run.
1332		 */
1333		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1334		if (ret)
1335			return ret;
1336	}
1337
1338	if (!list_empty(&fs_info->dirty_cowonly_roots))
1339		goto again;
1340
 
 
 
1341	/* Update dev-replace pointer once everything is committed */
1342	fs_info->dev_replace.committed_cursor_left =
1343		fs_info->dev_replace.cursor_left_last_write_of_item;
1344
1345	return 0;
1346}
1347
1348/*
1349 * If we had a pending drop we need to see if there are any others left in our
1350 * dead roots list, and if not clear our bit and wake any waiters.
1351 */
1352void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1353{
1354	/*
1355	 * We put the drop in progress roots at the front of the list, so if the
1356	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1357	 * up.
1358	 */
1359	spin_lock(&fs_info->trans_lock);
1360	if (!list_empty(&fs_info->dead_roots)) {
1361		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1362							   struct btrfs_root,
1363							   root_list);
1364		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1365			spin_unlock(&fs_info->trans_lock);
1366			return;
1367		}
1368	}
1369	spin_unlock(&fs_info->trans_lock);
1370
1371	btrfs_wake_unfinished_drop(fs_info);
1372}
1373
1374/*
1375 * dead roots are old snapshots that need to be deleted.  This allocates
1376 * a dirty root struct and adds it into the list of dead roots that need to
1377 * be deleted
1378 */
1379void btrfs_add_dead_root(struct btrfs_root *root)
1380{
1381	struct btrfs_fs_info *fs_info = root->fs_info;
1382
1383	spin_lock(&fs_info->trans_lock);
1384	if (list_empty(&root->root_list)) {
1385		btrfs_grab_root(root);
1386
1387		/* We want to process the partially complete drops first. */
1388		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1389			list_add(&root->root_list, &fs_info->dead_roots);
1390		else
1391			list_add_tail(&root->root_list, &fs_info->dead_roots);
1392	}
1393	spin_unlock(&fs_info->trans_lock);
1394}
1395
1396/*
1397 * Update each subvolume root and its relocation root, if it exists, in the tree
1398 * of tree roots. Also free log roots if they exist.
1399 */
1400static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1401{
1402	struct btrfs_fs_info *fs_info = trans->fs_info;
1403	struct btrfs_root *gang[8];
1404	int i;
1405	int ret;
1406
1407	/*
1408	 * At this point no one can be using this transaction to modify any tree
1409	 * and no one can start another transaction to modify any tree either.
1410	 */
1411	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1412
1413	spin_lock(&fs_info->fs_roots_radix_lock);
1414	while (1) {
1415		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1416						 (void **)gang, 0,
1417						 ARRAY_SIZE(gang),
1418						 BTRFS_ROOT_TRANS_TAG);
1419		if (ret == 0)
1420			break;
1421		for (i = 0; i < ret; i++) {
1422			struct btrfs_root *root = gang[i];
1423			int ret2;
1424
1425			/*
1426			 * At this point we can neither have tasks logging inodes
1427			 * from a root nor trying to commit a log tree.
1428			 */
1429			ASSERT(atomic_read(&root->log_writers) == 0);
1430			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1431			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1432
1433			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1434					(unsigned long)root->root_key.objectid,
1435					BTRFS_ROOT_TRANS_TAG);
1436			spin_unlock(&fs_info->fs_roots_radix_lock);
1437
1438			btrfs_free_log(trans, root);
1439			ret2 = btrfs_update_reloc_root(trans, root);
1440			if (ret2)
1441				return ret2;
1442
1443			/* see comments in should_cow_block() */
1444			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1445			smp_mb__after_atomic();
1446
1447			if (root->commit_root != root->node) {
1448				list_add_tail(&root->dirty_list,
1449					&trans->transaction->switch_commits);
1450				btrfs_set_root_node(&root->root_item,
1451						    root->node);
1452			}
1453
1454			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1455						&root->root_key,
1456						&root->root_item);
1457			if (ret2)
1458				return ret2;
1459			spin_lock(&fs_info->fs_roots_radix_lock);
 
 
1460			btrfs_qgroup_free_meta_all_pertrans(root);
1461		}
1462	}
1463	spin_unlock(&fs_info->fs_roots_radix_lock);
1464	return 0;
1465}
1466
1467/*
1468 * defrag a given btree.
1469 * Every leaf in the btree is read and defragged.
1470 */
1471int btrfs_defrag_root(struct btrfs_root *root)
1472{
1473	struct btrfs_fs_info *info = root->fs_info;
1474	struct btrfs_trans_handle *trans;
1475	int ret;
1476
1477	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1478		return 0;
1479
1480	while (1) {
1481		trans = btrfs_start_transaction(root, 0);
1482		if (IS_ERR(trans)) {
1483			ret = PTR_ERR(trans);
1484			break;
1485		}
1486
1487		ret = btrfs_defrag_leaves(trans, root);
1488
1489		btrfs_end_transaction(trans);
1490		btrfs_btree_balance_dirty(info);
1491		cond_resched();
1492
1493		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1494			break;
1495
1496		if (btrfs_defrag_cancelled(info)) {
1497			btrfs_debug(info, "defrag_root cancelled");
1498			ret = -EAGAIN;
1499			break;
1500		}
1501	}
1502	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1503	return ret;
1504}
1505
1506/*
1507 * Do all special snapshot related qgroup dirty hack.
1508 *
1509 * Will do all needed qgroup inherit and dirty hack like switch commit
1510 * roots inside one transaction and write all btree into disk, to make
1511 * qgroup works.
1512 */
1513static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1514				   struct btrfs_root *src,
1515				   struct btrfs_root *parent,
1516				   struct btrfs_qgroup_inherit *inherit,
1517				   u64 dst_objectid)
1518{
1519	struct btrfs_fs_info *fs_info = src->fs_info;
1520	int ret;
1521
1522	/*
1523	 * Save some performance in the case that qgroups are not
1524	 * enabled. If this check races with the ioctl, rescan will
1525	 * kick in anyway.
1526	 */
1527	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1528		return 0;
1529
1530	/*
1531	 * Ensure dirty @src will be committed.  Or, after coming
1532	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1533	 * recorded root will never be updated again, causing an outdated root
1534	 * item.
1535	 */
1536	ret = record_root_in_trans(trans, src, 1);
1537	if (ret)
1538		return ret;
1539
1540	/*
1541	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1542	 * src root, so we must run the delayed refs here.
1543	 *
1544	 * However this isn't particularly fool proof, because there's no
1545	 * synchronization keeping us from changing the tree after this point
1546	 * before we do the qgroup_inherit, or even from making changes while
1547	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1548	 * for now flush the delayed refs to narrow the race window where the
1549	 * qgroup counters could end up wrong.
1550	 */
1551	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1552	if (ret) {
1553		btrfs_abort_transaction(trans, ret);
1554		return ret;
1555	}
1556
1557	ret = commit_fs_roots(trans);
1558	if (ret)
1559		goto out;
1560	ret = btrfs_qgroup_account_extents(trans);
1561	if (ret < 0)
1562		goto out;
1563
1564	/* Now qgroup are all updated, we can inherit it to new qgroups */
1565	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1566				   inherit);
1567	if (ret < 0)
1568		goto out;
1569
1570	/*
1571	 * Now we do a simplified commit transaction, which will:
1572	 * 1) commit all subvolume and extent tree
1573	 *    To ensure all subvolume and extent tree have a valid
1574	 *    commit_root to accounting later insert_dir_item()
1575	 * 2) write all btree blocks onto disk
1576	 *    This is to make sure later btree modification will be cowed
1577	 *    Or commit_root can be populated and cause wrong qgroup numbers
1578	 * In this simplified commit, we don't really care about other trees
1579	 * like chunk and root tree, as they won't affect qgroup.
1580	 * And we don't write super to avoid half committed status.
1581	 */
1582	ret = commit_cowonly_roots(trans);
1583	if (ret)
1584		goto out;
1585	switch_commit_roots(trans);
1586	ret = btrfs_write_and_wait_transaction(trans);
1587	if (ret)
1588		btrfs_handle_fs_error(fs_info, ret,
1589			"Error while writing out transaction for qgroup");
1590
1591out:
 
 
1592	/*
1593	 * Force parent root to be updated, as we recorded it before so its
1594	 * last_trans == cur_transid.
1595	 * Or it won't be committed again onto disk after later
1596	 * insert_dir_item()
1597	 */
1598	if (!ret)
1599		ret = record_root_in_trans(trans, parent, 1);
1600	return ret;
1601}
1602
1603/*
1604 * new snapshots need to be created at a very specific time in the
1605 * transaction commit.  This does the actual creation.
1606 *
1607 * Note:
1608 * If the error which may affect the commitment of the current transaction
1609 * happens, we should return the error number. If the error which just affect
1610 * the creation of the pending snapshots, just return 0.
1611 */
1612static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1613				   struct btrfs_pending_snapshot *pending)
1614{
1615
1616	struct btrfs_fs_info *fs_info = trans->fs_info;
1617	struct btrfs_key key;
1618	struct btrfs_root_item *new_root_item;
1619	struct btrfs_root *tree_root = fs_info->tree_root;
1620	struct btrfs_root *root = pending->root;
1621	struct btrfs_root *parent_root;
1622	struct btrfs_block_rsv *rsv;
1623	struct inode *parent_inode = pending->dir;
1624	struct btrfs_path *path;
1625	struct btrfs_dir_item *dir_item;
 
1626	struct extent_buffer *tmp;
1627	struct extent_buffer *old;
1628	struct timespec64 cur_time;
1629	int ret = 0;
1630	u64 to_reserve = 0;
1631	u64 index = 0;
1632	u64 objectid;
1633	u64 root_flags;
1634	unsigned int nofs_flags;
1635	struct fscrypt_name fname;
1636
1637	ASSERT(pending->path);
1638	path = pending->path;
1639
1640	ASSERT(pending->root_item);
1641	new_root_item = pending->root_item;
1642
1643	/*
1644	 * We're inside a transaction and must make sure that any potential
1645	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1646	 * filesystem.
1647	 */
1648	nofs_flags = memalloc_nofs_save();
1649	pending->error = fscrypt_setup_filename(parent_inode,
1650						&pending->dentry->d_name, 0,
1651						&fname);
1652	memalloc_nofs_restore(nofs_flags);
1653	if (pending->error)
1654		goto free_pending;
1655
1656	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1657	if (pending->error)
1658		goto free_fname;
1659
1660	/*
1661	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1662	 * accounted by later btrfs_qgroup_inherit().
1663	 */
1664	btrfs_set_skip_qgroup(trans, objectid);
1665
1666	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1667
1668	if (to_reserve > 0) {
1669		pending->error = btrfs_block_rsv_add(fs_info,
1670						     &pending->block_rsv,
1671						     to_reserve,
1672						     BTRFS_RESERVE_NO_FLUSH);
1673		if (pending->error)
1674			goto clear_skip_qgroup;
1675	}
1676
1677	key.objectid = objectid;
1678	key.offset = (u64)-1;
1679	key.type = BTRFS_ROOT_ITEM_KEY;
1680
1681	rsv = trans->block_rsv;
1682	trans->block_rsv = &pending->block_rsv;
1683	trans->bytes_reserved = trans->block_rsv->reserved;
1684	trace_btrfs_space_reservation(fs_info, "transaction",
1685				      trans->transid,
1686				      trans->bytes_reserved, 1);
 
 
1687	parent_root = BTRFS_I(parent_inode)->root;
1688	ret = record_root_in_trans(trans, parent_root, 0);
1689	if (ret)
1690		goto fail;
1691	cur_time = current_time(parent_inode);
1692
1693	/*
1694	 * insert the directory item
1695	 */
1696	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1697	BUG_ON(ret); /* -ENOMEM */
1698
1699	/* check if there is a file/dir which has the same name. */
1700	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1701					 btrfs_ino(BTRFS_I(parent_inode)),
1702					 &fname.disk_name, 0);
 
1703	if (dir_item != NULL && !IS_ERR(dir_item)) {
1704		pending->error = -EEXIST;
1705		goto dir_item_existed;
1706	} else if (IS_ERR(dir_item)) {
1707		ret = PTR_ERR(dir_item);
1708		btrfs_abort_transaction(trans, ret);
1709		goto fail;
1710	}
1711	btrfs_release_path(path);
1712
1713	/*
1714	 * pull in the delayed directory update
1715	 * and the delayed inode item
1716	 * otherwise we corrupt the FS during
1717	 * snapshot
1718	 */
1719	ret = btrfs_run_delayed_items(trans);
1720	if (ret) {	/* Transaction aborted */
1721		btrfs_abort_transaction(trans, ret);
1722		goto fail;
1723	}
1724
1725	ret = record_root_in_trans(trans, root, 0);
1726	if (ret) {
1727		btrfs_abort_transaction(trans, ret);
1728		goto fail;
1729	}
1730	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1731	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1732	btrfs_check_and_init_root_item(new_root_item);
1733
1734	root_flags = btrfs_root_flags(new_root_item);
1735	if (pending->readonly)
1736		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1737	else
1738		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1739	btrfs_set_root_flags(new_root_item, root_flags);
1740
1741	btrfs_set_root_generation_v2(new_root_item,
1742			trans->transid);
1743	generate_random_guid(new_root_item->uuid);
1744	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1745			BTRFS_UUID_SIZE);
1746	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1747		memset(new_root_item->received_uuid, 0,
1748		       sizeof(new_root_item->received_uuid));
1749		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1750		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1751		btrfs_set_root_stransid(new_root_item, 0);
1752		btrfs_set_root_rtransid(new_root_item, 0);
1753	}
1754	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1755	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1756	btrfs_set_root_otransid(new_root_item, trans->transid);
1757
1758	old = btrfs_lock_root_node(root);
1759	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1760			      BTRFS_NESTING_COW);
1761	if (ret) {
1762		btrfs_tree_unlock(old);
1763		free_extent_buffer(old);
1764		btrfs_abort_transaction(trans, ret);
1765		goto fail;
1766	}
1767
 
 
1768	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1769	/* clean up in any case */
1770	btrfs_tree_unlock(old);
1771	free_extent_buffer(old);
1772	if (ret) {
1773		btrfs_abort_transaction(trans, ret);
1774		goto fail;
1775	}
1776	/* see comments in should_cow_block() */
1777	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1778	smp_wmb();
1779
1780	btrfs_set_root_node(new_root_item, tmp);
1781	/* record when the snapshot was created in key.offset */
1782	key.offset = trans->transid;
1783	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1784	btrfs_tree_unlock(tmp);
1785	free_extent_buffer(tmp);
1786	if (ret) {
1787		btrfs_abort_transaction(trans, ret);
1788		goto fail;
1789	}
1790
1791	/*
1792	 * insert root back/forward references
1793	 */
1794	ret = btrfs_add_root_ref(trans, objectid,
1795				 parent_root->root_key.objectid,
1796				 btrfs_ino(BTRFS_I(parent_inode)), index,
1797				 &fname.disk_name);
1798	if (ret) {
1799		btrfs_abort_transaction(trans, ret);
1800		goto fail;
1801	}
1802
1803	key.offset = (u64)-1;
1804	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1805	if (IS_ERR(pending->snap)) {
1806		ret = PTR_ERR(pending->snap);
1807		pending->snap = NULL;
1808		btrfs_abort_transaction(trans, ret);
1809		goto fail;
1810	}
1811
1812	ret = btrfs_reloc_post_snapshot(trans, pending);
1813	if (ret) {
1814		btrfs_abort_transaction(trans, ret);
1815		goto fail;
1816	}
1817
 
 
 
 
 
 
1818	/*
1819	 * Do special qgroup accounting for snapshot, as we do some qgroup
1820	 * snapshot hack to do fast snapshot.
1821	 * To co-operate with that hack, we do hack again.
1822	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1823	 */
1824	ret = qgroup_account_snapshot(trans, root, parent_root,
1825				      pending->inherit, objectid);
1826	if (ret < 0)
1827		goto fail;
1828
1829	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1830				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1831				    index);
1832	/* We have check then name at the beginning, so it is impossible. */
1833	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1834	if (ret) {
1835		btrfs_abort_transaction(trans, ret);
1836		goto fail;
1837	}
1838
1839	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1840						  fname.disk_name.len * 2);
1841	parent_inode->i_mtime = current_time(parent_inode);
1842	parent_inode->i_ctime = parent_inode->i_mtime;
1843	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1844	if (ret) {
1845		btrfs_abort_transaction(trans, ret);
1846		goto fail;
1847	}
1848	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1849				  BTRFS_UUID_KEY_SUBVOL,
1850				  objectid);
1851	if (ret) {
1852		btrfs_abort_transaction(trans, ret);
1853		goto fail;
1854	}
1855	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1856		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1857					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1858					  objectid);
1859		if (ret && ret != -EEXIST) {
1860			btrfs_abort_transaction(trans, ret);
1861			goto fail;
1862		}
1863	}
1864
 
 
 
 
 
 
1865fail:
1866	pending->error = ret;
1867dir_item_existed:
1868	trans->block_rsv = rsv;
1869	trans->bytes_reserved = 0;
1870clear_skip_qgroup:
1871	btrfs_clear_skip_qgroup(trans);
1872free_fname:
1873	fscrypt_free_filename(&fname);
1874free_pending:
1875	kfree(new_root_item);
1876	pending->root_item = NULL;
1877	btrfs_free_path(path);
1878	pending->path = NULL;
1879
1880	return ret;
1881}
1882
1883/*
1884 * create all the snapshots we've scheduled for creation
1885 */
1886static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1887{
1888	struct btrfs_pending_snapshot *pending, *next;
1889	struct list_head *head = &trans->transaction->pending_snapshots;
1890	int ret = 0;
1891
1892	list_for_each_entry_safe(pending, next, head, list) {
1893		list_del(&pending->list);
1894		ret = create_pending_snapshot(trans, pending);
1895		if (ret)
1896			break;
1897	}
1898	return ret;
1899}
1900
1901static void update_super_roots(struct btrfs_fs_info *fs_info)
1902{
1903	struct btrfs_root_item *root_item;
1904	struct btrfs_super_block *super;
1905
1906	super = fs_info->super_copy;
1907
1908	root_item = &fs_info->chunk_root->root_item;
1909	super->chunk_root = root_item->bytenr;
1910	super->chunk_root_generation = root_item->generation;
1911	super->chunk_root_level = root_item->level;
1912
1913	root_item = &fs_info->tree_root->root_item;
1914	super->root = root_item->bytenr;
1915	super->generation = root_item->generation;
1916	super->root_level = root_item->level;
1917	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1918		super->cache_generation = root_item->generation;
1919	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1920		super->cache_generation = 0;
1921	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1922		super->uuid_tree_generation = root_item->generation;
1923}
1924
1925int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1926{
1927	struct btrfs_transaction *trans;
1928	int ret = 0;
1929
1930	spin_lock(&info->trans_lock);
1931	trans = info->running_transaction;
1932	if (trans)
1933		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1934	spin_unlock(&info->trans_lock);
1935	return ret;
1936}
1937
1938int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1939{
1940	struct btrfs_transaction *trans;
1941	int ret = 0;
1942
1943	spin_lock(&info->trans_lock);
1944	trans = info->running_transaction;
1945	if (trans)
1946		ret = is_transaction_blocked(trans);
1947	spin_unlock(&info->trans_lock);
1948	return ret;
1949}
1950
1951void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952{
1953	struct btrfs_fs_info *fs_info = trans->fs_info;
 
1954	struct btrfs_transaction *cur_trans;
1955
1956	/* Kick the transaction kthread. */
1957	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1958	wake_up_process(fs_info->transaction_kthread);
 
 
 
 
 
 
 
 
1959
1960	/* take transaction reference */
1961	cur_trans = trans->transaction;
1962	refcount_inc(&cur_trans->use_count);
1963
1964	btrfs_end_transaction(trans);
1965
1966	/*
1967	 * Wait for the current transaction commit to start and block
1968	 * subsequent transaction joins
1969	 */
1970	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1971	wait_event(fs_info->transaction_blocked_wait,
1972		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1973		   TRANS_ABORTED(cur_trans));
 
 
 
 
 
 
 
 
 
 
1974	btrfs_put_transaction(cur_trans);
 
1975}
1976
 
1977static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1978{
1979	struct btrfs_fs_info *fs_info = trans->fs_info;
1980	struct btrfs_transaction *cur_trans = trans->transaction;
1981
1982	WARN_ON(refcount_read(&trans->use_count) > 1);
1983
1984	btrfs_abort_transaction(trans, err);
1985
1986	spin_lock(&fs_info->trans_lock);
1987
1988	/*
1989	 * If the transaction is removed from the list, it means this
1990	 * transaction has been committed successfully, so it is impossible
1991	 * to call the cleanup function.
1992	 */
1993	BUG_ON(list_empty(&cur_trans->list));
1994
 
1995	if (cur_trans == fs_info->running_transaction) {
1996		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1997		spin_unlock(&fs_info->trans_lock);
1998
1999		/*
2000		 * The thread has already released the lockdep map as reader
2001		 * already in btrfs_commit_transaction().
2002		 */
2003		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2004		wait_event(cur_trans->writer_wait,
2005			   atomic_read(&cur_trans->num_writers) == 1);
2006
2007		spin_lock(&fs_info->trans_lock);
2008	}
2009
2010	/*
2011	 * Now that we know no one else is still using the transaction we can
2012	 * remove the transaction from the list of transactions. This avoids
2013	 * the transaction kthread from cleaning up the transaction while some
2014	 * other task is still using it, which could result in a use-after-free
2015	 * on things like log trees, as it forces the transaction kthread to
2016	 * wait for this transaction to be cleaned up by us.
2017	 */
2018	list_del_init(&cur_trans->list);
2019
2020	spin_unlock(&fs_info->trans_lock);
2021
2022	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2023
2024	spin_lock(&fs_info->trans_lock);
2025	if (cur_trans == fs_info->running_transaction)
2026		fs_info->running_transaction = NULL;
2027	spin_unlock(&fs_info->trans_lock);
2028
2029	if (trans->type & __TRANS_FREEZABLE)
2030		sb_end_intwrite(fs_info->sb);
2031	btrfs_put_transaction(cur_trans);
2032	btrfs_put_transaction(cur_trans);
2033
2034	trace_btrfs_transaction_commit(fs_info);
2035
2036	if (current->journal_info == trans)
2037		current->journal_info = NULL;
2038	btrfs_scrub_cancel(fs_info);
2039
2040	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2041}
2042
2043/*
2044 * Release reserved delayed ref space of all pending block groups of the
2045 * transaction and remove them from the list
2046 */
2047static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2048{
2049       struct btrfs_fs_info *fs_info = trans->fs_info;
2050       struct btrfs_block_group *block_group, *tmp;
2051
2052       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2053               btrfs_delayed_refs_rsv_release(fs_info, 1);
2054               list_del_init(&block_group->bg_list);
2055       }
2056}
2057
2058static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2059{
 
 
2060	/*
2061	 * We use try_to_writeback_inodes_sb() here because if we used
2062	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2063	 * Currently are holding the fs freeze lock, if we do an async flush
2064	 * we'll do btrfs_join_transaction() and deadlock because we need to
2065	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2066	 * from already being in a transaction and our join_transaction doesn't
2067	 * have to re-take the fs freeze lock.
2068	 *
2069	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2070	 * if it can read lock sb->s_umount. It will always be able to lock it,
2071	 * except when the filesystem is being unmounted or being frozen, but in
2072	 * those cases sync_filesystem() is called, which results in calling
2073	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2074	 * Note that we don't call writeback_inodes_sb() directly, because it
2075	 * will emit a warning if sb->s_umount is not locked.
2076	 */
2077	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2078		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2079	return 0;
2080}
 
2081
2082static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2083{
2084	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2085		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
 
 
 
 
 
 
 
 
 
 
 
 
2086}
2087
2088/*
2089 * Add a pending snapshot associated with the given transaction handle to the
2090 * respective handle. This must be called after the transaction commit started
2091 * and while holding fs_info->trans_lock.
2092 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2093 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2094 * returns an error.
2095 */
2096static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2097{
2098	struct btrfs_transaction *cur_trans = trans->transaction;
2099
2100	if (!trans->pending_snapshot)
2101		return;
2102
2103	lockdep_assert_held(&trans->fs_info->trans_lock);
2104	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2105
2106	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2107}
 
 
 
2108
2109static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2110{
2111	fs_info->commit_stats.commit_count++;
2112	fs_info->commit_stats.last_commit_dur = interval;
2113	fs_info->commit_stats.max_commit_dur =
2114			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2115	fs_info->commit_stats.total_commit_dur += interval;
 
 
 
2116}
2117
2118int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2119{
2120	struct btrfs_fs_info *fs_info = trans->fs_info;
2121	struct btrfs_transaction *cur_trans = trans->transaction;
2122	struct btrfs_transaction *prev_trans = NULL;
2123	int ret;
2124	ktime_t start_time;
2125	ktime_t interval;
2126
2127	ASSERT(refcount_read(&trans->use_count) == 1);
2128	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2129
2130	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
 
 
 
 
 
 
2131
2132	/* Stop the commit early if ->aborted is set */
2133	if (TRANS_ABORTED(cur_trans)) {
2134		ret = cur_trans->aborted;
2135		goto lockdep_trans_commit_start_release;
 
2136	}
2137
2138	btrfs_trans_release_metadata(trans);
2139	trans->block_rsv = NULL;
2140
2141	/*
2142	 * We only want one transaction commit doing the flushing so we do not
2143	 * waste a bunch of time on lock contention on the extent root node.
2144	 */
2145	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2146			      &cur_trans->delayed_refs.flags)) {
2147		/*
2148		 * Make a pass through all the delayed refs we have so far.
2149		 * Any running threads may add more while we are here.
2150		 */
2151		ret = btrfs_run_delayed_refs(trans, 0);
2152		if (ret)
2153			goto lockdep_trans_commit_start_release;
2154	}
2155
 
 
 
 
 
 
 
 
 
2156	btrfs_create_pending_block_groups(trans);
2157
 
 
 
 
 
 
2158	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2159		int run_it = 0;
2160
2161		/* this mutex is also taken before trying to set
2162		 * block groups readonly.  We need to make sure
2163		 * that nobody has set a block group readonly
2164		 * after a extents from that block group have been
2165		 * allocated for cache files.  btrfs_set_block_group_ro
2166		 * will wait for the transaction to commit if it
2167		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2168		 *
2169		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2170		 * only one process starts all the block group IO.  It wouldn't
2171		 * hurt to have more than one go through, but there's no
2172		 * real advantage to it either.
2173		 */
2174		mutex_lock(&fs_info->ro_block_group_mutex);
2175		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2176				      &cur_trans->flags))
2177			run_it = 1;
2178		mutex_unlock(&fs_info->ro_block_group_mutex);
2179
2180		if (run_it) {
2181			ret = btrfs_start_dirty_block_groups(trans);
2182			if (ret)
2183				goto lockdep_trans_commit_start_release;
 
 
2184		}
2185	}
2186
2187	spin_lock(&fs_info->trans_lock);
2188	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2189		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2190
2191		add_pending_snapshot(trans);
2192
2193		spin_unlock(&fs_info->trans_lock);
2194		refcount_inc(&cur_trans->use_count);
2195
2196		if (trans->in_fsync)
2197			want_state = TRANS_STATE_SUPER_COMMITTED;
2198
2199		btrfs_trans_state_lockdep_release(fs_info,
2200						  BTRFS_LOCKDEP_TRANS_COMMIT_START);
2201		ret = btrfs_end_transaction(trans);
2202		wait_for_commit(cur_trans, want_state);
 
2203
2204		if (TRANS_ABORTED(cur_trans))
2205			ret = cur_trans->aborted;
2206
2207		btrfs_put_transaction(cur_trans);
2208
2209		return ret;
2210	}
2211
2212	cur_trans->state = TRANS_STATE_COMMIT_START;
2213	wake_up(&fs_info->transaction_blocked_wait);
2214	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2215
2216	if (cur_trans->list.prev != &fs_info->trans_list) {
2217		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2218
2219		if (trans->in_fsync)
2220			want_state = TRANS_STATE_SUPER_COMMITTED;
2221
2222		prev_trans = list_entry(cur_trans->list.prev,
2223					struct btrfs_transaction, list);
2224		if (prev_trans->state < want_state) {
2225			refcount_inc(&prev_trans->use_count);
2226			spin_unlock(&fs_info->trans_lock);
2227
2228			wait_for_commit(prev_trans, want_state);
2229
2230			ret = READ_ONCE(prev_trans->aborted);
2231
2232			btrfs_put_transaction(prev_trans);
2233			if (ret)
2234				goto lockdep_release;
2235		} else {
2236			spin_unlock(&fs_info->trans_lock);
2237		}
2238	} else {
2239		spin_unlock(&fs_info->trans_lock);
2240		/*
2241		 * The previous transaction was aborted and was already removed
2242		 * from the list of transactions at fs_info->trans_list. So we
2243		 * abort to prevent writing a new superblock that reflects a
2244		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2245		 */
2246		if (BTRFS_FS_ERROR(fs_info)) {
2247			ret = -EROFS;
2248			goto lockdep_release;
2249		}
2250	}
2251
2252	/*
2253	 * Get the time spent on the work done by the commit thread and not
2254	 * the time spent waiting on a previous commit
2255	 */
2256	start_time = ktime_get_ns();
2257
2258	extwriter_counter_dec(cur_trans, trans->type);
2259
2260	ret = btrfs_start_delalloc_flush(fs_info);
2261	if (ret)
2262		goto lockdep_release;
2263
2264	ret = btrfs_run_delayed_items(trans);
2265	if (ret)
2266		goto lockdep_release;
2267
2268	/*
2269	 * The thread has started/joined the transaction thus it holds the
2270	 * lockdep map as a reader. It has to release it before acquiring the
2271	 * lockdep map as a writer.
2272	 */
2273	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2274	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2275	wait_event(cur_trans->writer_wait,
2276		   extwriter_counter_read(cur_trans) == 0);
2277
2278	/* some pending stuffs might be added after the previous flush. */
2279	ret = btrfs_run_delayed_items(trans);
2280	if (ret) {
2281		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2282		goto cleanup_transaction;
2283	}
2284
2285	btrfs_wait_delalloc_flush(fs_info);
2286
2287	/*
2288	 * Wait for all ordered extents started by a fast fsync that joined this
2289	 * transaction. Otherwise if this transaction commits before the ordered
2290	 * extents complete we lose logged data after a power failure.
2291	 */
2292	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2293	wait_event(cur_trans->pending_wait,
2294		   atomic_read(&cur_trans->pending_ordered) == 0);
2295
2296	btrfs_scrub_pause(fs_info);
2297	/*
2298	 * Ok now we need to make sure to block out any other joins while we
2299	 * commit the transaction.  We could have started a join before setting
2300	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2301	 */
2302	spin_lock(&fs_info->trans_lock);
2303	add_pending_snapshot(trans);
2304	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2305	spin_unlock(&fs_info->trans_lock);
2306
2307	/*
2308	 * The thread has started/joined the transaction thus it holds the
2309	 * lockdep map as a reader. It has to release it before acquiring the
2310	 * lockdep map as a writer.
2311	 */
2312	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2313	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2314	wait_event(cur_trans->writer_wait,
2315		   atomic_read(&cur_trans->num_writers) == 1);
2316
2317	/*
2318	 * Make lockdep happy by acquiring the state locks after
2319	 * btrfs_trans_num_writers is released. If we acquired the state locks
2320	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2321	 * complain because we did not follow the reverse order unlocking rule.
2322	 */
2323	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2324	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2325	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2326
2327	/*
2328	 * We've started the commit, clear the flag in case we were triggered to
2329	 * do an async commit but somebody else started before the transaction
2330	 * kthread could do the work.
2331	 */
2332	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2333
2334	if (TRANS_ABORTED(cur_trans)) {
2335		ret = cur_trans->aborted;
2336		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2337		goto scrub_continue;
2338	}
2339	/*
2340	 * the reloc mutex makes sure that we stop
2341	 * the balancing code from coming in and moving
2342	 * extents around in the middle of the commit
2343	 */
2344	mutex_lock(&fs_info->reloc_mutex);
2345
2346	/*
2347	 * We needn't worry about the delayed items because we will
2348	 * deal with them in create_pending_snapshot(), which is the
2349	 * core function of the snapshot creation.
2350	 */
2351	ret = create_pending_snapshots(trans);
2352	if (ret)
2353		goto unlock_reloc;
2354
2355	/*
2356	 * We insert the dir indexes of the snapshots and update the inode
2357	 * of the snapshots' parents after the snapshot creation, so there
2358	 * are some delayed items which are not dealt with. Now deal with
2359	 * them.
2360	 *
2361	 * We needn't worry that this operation will corrupt the snapshots,
2362	 * because all the tree which are snapshoted will be forced to COW
2363	 * the nodes and leaves.
2364	 */
2365	ret = btrfs_run_delayed_items(trans);
2366	if (ret)
2367		goto unlock_reloc;
2368
2369	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2370	if (ret)
2371		goto unlock_reloc;
2372
2373	/*
2374	 * make sure none of the code above managed to slip in a
2375	 * delayed item
2376	 */
2377	btrfs_assert_delayed_root_empty(fs_info);
2378
2379	WARN_ON(cur_trans != trans->transaction);
2380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2381	ret = commit_fs_roots(trans);
2382	if (ret)
2383		goto unlock_reloc;
 
 
 
 
 
 
2384
2385	/* commit_fs_roots gets rid of all the tree log roots, it is now
2386	 * safe to free the root of tree log roots
2387	 */
2388	btrfs_free_log_root_tree(trans, fs_info);
2389
2390	/*
 
 
 
 
 
 
 
 
2391	 * Since fs roots are all committed, we can get a quite accurate
2392	 * new_roots. So let's do quota accounting.
2393	 */
2394	ret = btrfs_qgroup_account_extents(trans);
2395	if (ret < 0)
2396		goto unlock_reloc;
2397
2398	ret = commit_cowonly_roots(trans);
2399	if (ret)
2400		goto unlock_reloc;
2401
2402	/*
2403	 * The tasks which save the space cache and inode cache may also
2404	 * update ->aborted, check it.
2405	 */
2406	if (TRANS_ABORTED(cur_trans)) {
2407		ret = cur_trans->aborted;
2408		goto unlock_reloc;
2409	}
2410
 
 
2411	cur_trans = fs_info->running_transaction;
2412
2413	btrfs_set_root_node(&fs_info->tree_root->root_item,
2414			    fs_info->tree_root->node);
2415	list_add_tail(&fs_info->tree_root->dirty_list,
2416		      &cur_trans->switch_commits);
2417
2418	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2419			    fs_info->chunk_root->node);
2420	list_add_tail(&fs_info->chunk_root->dirty_list,
2421		      &cur_trans->switch_commits);
2422
2423	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2424		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2425				    fs_info->block_group_root->node);
2426		list_add_tail(&fs_info->block_group_root->dirty_list,
2427			      &cur_trans->switch_commits);
2428	}
2429
2430	switch_commit_roots(trans);
2431
2432	ASSERT(list_empty(&cur_trans->dirty_bgs));
2433	ASSERT(list_empty(&cur_trans->io_bgs));
2434	update_super_roots(fs_info);
2435
2436	btrfs_set_super_log_root(fs_info->super_copy, 0);
2437	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2438	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2439	       sizeof(*fs_info->super_copy));
2440
2441	btrfs_commit_device_sizes(cur_trans);
2442
2443	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2444	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2445
2446	btrfs_trans_release_chunk_metadata(trans);
2447
2448	/*
2449	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2450	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2451	 * make sure that before we commit our superblock, no other task can
2452	 * start a new transaction and commit a log tree before we commit our
2453	 * superblock. Anyone trying to commit a log tree locks this mutex before
2454	 * writing its superblock.
2455	 */
2456	mutex_lock(&fs_info->tree_log_mutex);
2457
2458	spin_lock(&fs_info->trans_lock);
2459	cur_trans->state = TRANS_STATE_UNBLOCKED;
2460	fs_info->running_transaction = NULL;
2461	spin_unlock(&fs_info->trans_lock);
2462	mutex_unlock(&fs_info->reloc_mutex);
2463
2464	wake_up(&fs_info->transaction_wait);
2465	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2466
2467	ret = btrfs_write_and_wait_transaction(trans);
2468	if (ret) {
2469		btrfs_handle_fs_error(fs_info, ret,
2470				      "Error while writing out transaction");
 
 
 
 
2471		mutex_unlock(&fs_info->tree_log_mutex);
2472		goto scrub_continue;
2473	}
2474
2475	/*
2476	 * At this point, we should have written all the tree blocks allocated
2477	 * in this transaction. So it's now safe to free the redirtyied extent
2478	 * buffers.
2479	 */
2480	btrfs_free_redirty_list(cur_trans);
2481
2482	ret = write_all_supers(fs_info, 0);
2483	/*
2484	 * the super is written, we can safely allow the tree-loggers
2485	 * to go about their business
2486	 */
2487	mutex_unlock(&fs_info->tree_log_mutex);
2488	if (ret)
2489		goto scrub_continue;
2490
2491	/*
2492	 * We needn't acquire the lock here because there is no other task
2493	 * which can change it.
2494	 */
2495	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2496	wake_up(&cur_trans->commit_wait);
2497	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2498
2499	btrfs_finish_extent_commit(trans);
2500
2501	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2502		btrfs_clear_space_info_full(fs_info);
2503
2504	fs_info->last_trans_committed = cur_trans->transid;
2505	/*
2506	 * We needn't acquire the lock here because there is no other task
2507	 * which can change it.
2508	 */
2509	cur_trans->state = TRANS_STATE_COMPLETED;
2510	wake_up(&cur_trans->commit_wait);
2511	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2512
2513	spin_lock(&fs_info->trans_lock);
2514	list_del_init(&cur_trans->list);
2515	spin_unlock(&fs_info->trans_lock);
2516
2517	btrfs_put_transaction(cur_trans);
2518	btrfs_put_transaction(cur_trans);
2519
2520	if (trans->type & __TRANS_FREEZABLE)
2521		sb_end_intwrite(fs_info->sb);
2522
2523	trace_btrfs_transaction_commit(fs_info);
2524
2525	interval = ktime_get_ns() - start_time;
2526
2527	btrfs_scrub_continue(fs_info);
2528
2529	if (current->journal_info == trans)
2530		current->journal_info = NULL;
2531
2532	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2533
2534	update_commit_stats(fs_info, interval);
2535
2536	return ret;
2537
 
 
2538unlock_reloc:
2539	mutex_unlock(&fs_info->reloc_mutex);
2540	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2541scrub_continue:
2542	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2543	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2544	btrfs_scrub_continue(fs_info);
2545cleanup_transaction:
2546	btrfs_trans_release_metadata(trans);
2547	btrfs_cleanup_pending_block_groups(trans);
2548	btrfs_trans_release_chunk_metadata(trans);
2549	trans->block_rsv = NULL;
2550	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2551	if (current->journal_info == trans)
2552		current->journal_info = NULL;
2553	cleanup_transaction(trans, ret);
2554
2555	return ret;
2556
2557lockdep_release:
2558	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2559	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2560	goto cleanup_transaction;
2561
2562lockdep_trans_commit_start_release:
2563	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2564	btrfs_end_transaction(trans);
2565	return ret;
2566}
2567
2568/*
2569 * return < 0 if error
2570 * 0 if there are no more dead_roots at the time of call
2571 * 1 there are more to be processed, call me again
2572 *
2573 * The return value indicates there are certainly more snapshots to delete, but
2574 * if there comes a new one during processing, it may return 0. We don't mind,
2575 * because btrfs_commit_super will poke cleaner thread and it will process it a
2576 * few seconds later.
2577 */
2578int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2579{
2580	struct btrfs_root *root;
2581	int ret;
 
2582
2583	spin_lock(&fs_info->trans_lock);
2584	if (list_empty(&fs_info->dead_roots)) {
2585		spin_unlock(&fs_info->trans_lock);
2586		return 0;
2587	}
2588	root = list_first_entry(&fs_info->dead_roots,
2589			struct btrfs_root, root_list);
2590	list_del_init(&root->root_list);
2591	spin_unlock(&fs_info->trans_lock);
2592
2593	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2594
2595	btrfs_kill_all_delayed_nodes(root);
 
 
 
 
2596
2597	if (btrfs_header_backref_rev(root->node) <
2598			BTRFS_MIXED_BACKREF_REV)
2599		ret = btrfs_drop_snapshot(root, 0, 0);
2600	else
2601		ret = btrfs_drop_snapshot(root, 1, 0);
2602
2603	btrfs_put_root(root);
2604	return (ret < 0) ? 0 : 1;
2605}
2606
2607int __init btrfs_transaction_init(void)
2608{
2609	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2610			sizeof(struct btrfs_trans_handle), 0,
2611			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2612	if (!btrfs_trans_handle_cachep)
2613		return -ENOMEM;
2614	return 0;
2615}
2616
2617void __cold btrfs_transaction_exit(void)
2618{
2619	kmem_cache_destroy(btrfs_trans_handle_cachep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2620}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
 
   9#include <linux/writeback.h>
  10#include <linux/pagemap.h>
  11#include <linux/blkdev.h>
  12#include <linux/uuid.h>
 
  13#include "misc.h"
  14#include "ctree.h"
  15#include "disk-io.h"
  16#include "transaction.h"
  17#include "locking.h"
  18#include "tree-log.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "dev-replace.h"
  22#include "qgroup.h"
  23#include "block-group.h"
  24#include "space-info.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
  25
  26#define BTRFS_ROOT_TRANS_TAG 0
  27
  28/*
  29 * Transaction states and transitions
  30 *
  31 * No running transaction (fs tree blocks are not modified)
  32 * |
  33 * | To next stage:
  34 * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
  35 * V
  36 * Transaction N [[TRANS_STATE_RUNNING]]
  37 * |
  38 * | New trans handles can be attached to transaction N by calling all
  39 * | start_transaction() variants.
  40 * |
  41 * | To next stage:
  42 * |  Call btrfs_commit_transaction() on any trans handle attached to
  43 * |  transaction N
  44 * V
  45 * Transaction N [[TRANS_STATE_COMMIT_START]]
  46 * |
  47 * | Will wait for previous running transaction to completely finish if there
  48 * | is one
  49 * |
  50 * | Then one of the following happes:
  51 * | - Wait for all other trans handle holders to release.
  52 * |   The btrfs_commit_transaction() caller will do the commit work.
  53 * | - Wait for current transaction to be committed by others.
  54 * |   Other btrfs_commit_transaction() caller will do the commit work.
  55 * |
  56 * | At this stage, only btrfs_join_transaction*() variants can attach
  57 * | to this running transaction.
  58 * | All other variants will wait for current one to finish and attach to
  59 * | transaction N+1.
  60 * |
  61 * | To next stage:
  62 * |  Caller is chosen to commit transaction N, and all other trans handle
  63 * |  haven been released.
  64 * V
  65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
  66 * |
  67 * | The heavy lifting transaction work is started.
  68 * | From running delayed refs (modifying extent tree) to creating pending
  69 * | snapshots, running qgroups.
  70 * | In short, modify supporting trees to reflect modifications of subvolume
  71 * | trees.
  72 * |
  73 * | At this stage, all start_transaction() calls will wait for this
  74 * | transaction to finish and attach to transaction N+1.
  75 * |
  76 * | To next stage:
  77 * |  Until all supporting trees are updated.
  78 * V
  79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
  80 * |						    Transaction N+1
  81 * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
  82 * | need to write them back to disk and update	    |
  83 * | super blocks.				    |
  84 * |						    |
  85 * | At this stage, new transaction is allowed to   |
  86 * | start.					    |
  87 * | All new start_transaction() calls will be	    |
  88 * | attached to transid N+1.			    |
  89 * |						    |
  90 * | To next stage:				    |
  91 * |  Until all tree blocks are super blocks are    |
  92 * |  written to block devices			    |
  93 * V						    |
  94 * Transaction N [[TRANS_STATE_COMPLETED]]	    V
  95 *   All tree blocks and super blocks are written.  Transaction N+1
  96 *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
  97 *   data structures will be cleaned up.	    | Life goes on
  98 */
  99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
 100	[TRANS_STATE_RUNNING]		= 0U,
 101	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
 102	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
 103					   __TRANS_ATTACH |
 104					   __TRANS_JOIN |
 105					   __TRANS_JOIN_NOSTART),
 106	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
 107					   __TRANS_ATTACH |
 108					   __TRANS_JOIN |
 109					   __TRANS_JOIN_NOLOCK |
 110					   __TRANS_JOIN_NOSTART),
 
 
 
 
 
 111	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
 112					   __TRANS_ATTACH |
 113					   __TRANS_JOIN |
 114					   __TRANS_JOIN_NOLOCK |
 115					   __TRANS_JOIN_NOSTART),
 116};
 117
 118void btrfs_put_transaction(struct btrfs_transaction *transaction)
 119{
 120	WARN_ON(refcount_read(&transaction->use_count) == 0);
 121	if (refcount_dec_and_test(&transaction->use_count)) {
 122		BUG_ON(!list_empty(&transaction->list));
 123		WARN_ON(!RB_EMPTY_ROOT(
 124				&transaction->delayed_refs.href_root.rb_root));
 125		WARN_ON(!RB_EMPTY_ROOT(
 126				&transaction->delayed_refs.dirty_extent_root));
 127		if (transaction->delayed_refs.pending_csums)
 128			btrfs_err(transaction->fs_info,
 129				  "pending csums is %llu",
 130				  transaction->delayed_refs.pending_csums);
 131		/*
 132		 * If any block groups are found in ->deleted_bgs then it's
 133		 * because the transaction was aborted and a commit did not
 134		 * happen (things failed before writing the new superblock
 135		 * and calling btrfs_finish_extent_commit()), so we can not
 136		 * discard the physical locations of the block groups.
 137		 */
 138		while (!list_empty(&transaction->deleted_bgs)) {
 139			struct btrfs_block_group *cache;
 140
 141			cache = list_first_entry(&transaction->deleted_bgs,
 142						 struct btrfs_block_group,
 143						 bg_list);
 144			list_del_init(&cache->bg_list);
 145			btrfs_unfreeze_block_group(cache);
 146			btrfs_put_block_group(cache);
 147		}
 148		WARN_ON(!list_empty(&transaction->dev_update_list));
 149		kfree(transaction);
 150	}
 151}
 152
 153static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
 154{
 155	struct btrfs_transaction *cur_trans = trans->transaction;
 156	struct btrfs_fs_info *fs_info = trans->fs_info;
 157	struct btrfs_root *root, *tmp;
 158
 
 
 
 
 
 
 159	down_write(&fs_info->commit_root_sem);
 
 
 
 
 160	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
 161				 dirty_list) {
 162		list_del_init(&root->dirty_list);
 163		free_extent_buffer(root->commit_root);
 164		root->commit_root = btrfs_root_node(root);
 165		if (is_fstree(root->root_key.objectid))
 166			btrfs_unpin_free_ino(root);
 167		extent_io_tree_release(&root->dirty_log_pages);
 168		btrfs_qgroup_clean_swapped_blocks(root);
 169	}
 170
 171	/* We can free old roots now. */
 172	spin_lock(&cur_trans->dropped_roots_lock);
 173	while (!list_empty(&cur_trans->dropped_roots)) {
 174		root = list_first_entry(&cur_trans->dropped_roots,
 175					struct btrfs_root, root_list);
 176		list_del_init(&root->root_list);
 177		spin_unlock(&cur_trans->dropped_roots_lock);
 178		btrfs_free_log(trans, root);
 179		btrfs_drop_and_free_fs_root(fs_info, root);
 180		spin_lock(&cur_trans->dropped_roots_lock);
 181	}
 182	spin_unlock(&cur_trans->dropped_roots_lock);
 
 183	up_write(&fs_info->commit_root_sem);
 184}
 185
 186static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 187					 unsigned int type)
 188{
 189	if (type & TRANS_EXTWRITERS)
 190		atomic_inc(&trans->num_extwriters);
 191}
 192
 193static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 194					 unsigned int type)
 195{
 196	if (type & TRANS_EXTWRITERS)
 197		atomic_dec(&trans->num_extwriters);
 198}
 199
 200static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 201					  unsigned int type)
 202{
 203	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 204}
 205
 206static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 207{
 208	return atomic_read(&trans->num_extwriters);
 209}
 210
 211/*
 212 * To be called after all the new block groups attached to the transaction
 213 * handle have been created (btrfs_create_pending_block_groups()).
 
 
 
 214 */
 215void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 216{
 217	struct btrfs_fs_info *fs_info = trans->fs_info;
 218
 219	if (!trans->chunk_bytes_reserved)
 220		return;
 221
 222	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
 223
 224	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
 225				trans->chunk_bytes_reserved, NULL);
 226	trans->chunk_bytes_reserved = 0;
 227}
 228
 229/*
 230 * either allocate a new transaction or hop into the existing one
 231 */
 232static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 233				     unsigned int type)
 234{
 235	struct btrfs_transaction *cur_trans;
 236
 237	spin_lock(&fs_info->trans_lock);
 238loop:
 239	/* The file system has been taken offline. No new transactions. */
 240	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 241		spin_unlock(&fs_info->trans_lock);
 242		return -EROFS;
 243	}
 244
 245	cur_trans = fs_info->running_transaction;
 246	if (cur_trans) {
 247		if (TRANS_ABORTED(cur_trans)) {
 248			spin_unlock(&fs_info->trans_lock);
 249			return cur_trans->aborted;
 250		}
 251		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 252			spin_unlock(&fs_info->trans_lock);
 253			return -EBUSY;
 254		}
 255		refcount_inc(&cur_trans->use_count);
 256		atomic_inc(&cur_trans->num_writers);
 257		extwriter_counter_inc(cur_trans, type);
 258		spin_unlock(&fs_info->trans_lock);
 
 
 259		return 0;
 260	}
 261	spin_unlock(&fs_info->trans_lock);
 262
 263	/*
 264	 * If we are ATTACH, we just want to catch the current transaction,
 265	 * and commit it. If there is no transaction, just return ENOENT.
 266	 */
 267	if (type == TRANS_ATTACH)
 268		return -ENOENT;
 269
 270	/*
 271	 * JOIN_NOLOCK only happens during the transaction commit, so
 272	 * it is impossible that ->running_transaction is NULL
 273	 */
 274	BUG_ON(type == TRANS_JOIN_NOLOCK);
 275
 276	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 277	if (!cur_trans)
 278		return -ENOMEM;
 279
 
 
 
 280	spin_lock(&fs_info->trans_lock);
 281	if (fs_info->running_transaction) {
 282		/*
 283		 * someone started a transaction after we unlocked.  Make sure
 284		 * to redo the checks above
 285		 */
 
 
 286		kfree(cur_trans);
 287		goto loop;
 288	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 289		spin_unlock(&fs_info->trans_lock);
 
 
 290		kfree(cur_trans);
 291		return -EROFS;
 292	}
 293
 294	cur_trans->fs_info = fs_info;
 
 
 295	atomic_set(&cur_trans->num_writers, 1);
 296	extwriter_counter_init(cur_trans, type);
 297	init_waitqueue_head(&cur_trans->writer_wait);
 298	init_waitqueue_head(&cur_trans->commit_wait);
 299	cur_trans->state = TRANS_STATE_RUNNING;
 300	/*
 301	 * One for this trans handle, one so it will live on until we
 302	 * commit the transaction.
 303	 */
 304	refcount_set(&cur_trans->use_count, 2);
 305	cur_trans->flags = 0;
 306	cur_trans->start_time = ktime_get_seconds();
 307
 308	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 309
 310	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
 311	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 312	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 313
 314	/*
 315	 * although the tree mod log is per file system and not per transaction,
 316	 * the log must never go across transaction boundaries.
 317	 */
 318	smp_mb();
 319	if (!list_empty(&fs_info->tree_mod_seq_list))
 320		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 321	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 322		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 323	atomic64_set(&fs_info->tree_mod_seq, 0);
 324
 325	spin_lock_init(&cur_trans->delayed_refs.lock);
 326
 327	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 328	INIT_LIST_HEAD(&cur_trans->dev_update_list);
 329	INIT_LIST_HEAD(&cur_trans->switch_commits);
 330	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 331	INIT_LIST_HEAD(&cur_trans->io_bgs);
 332	INIT_LIST_HEAD(&cur_trans->dropped_roots);
 333	mutex_init(&cur_trans->cache_write_mutex);
 334	spin_lock_init(&cur_trans->dirty_bgs_lock);
 335	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 336	spin_lock_init(&cur_trans->dropped_roots_lock);
 
 
 337	list_add_tail(&cur_trans->list, &fs_info->trans_list);
 338	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 339			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
 340	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
 341			IO_TREE_FS_PINNED_EXTENTS, NULL);
 342	fs_info->generation++;
 343	cur_trans->transid = fs_info->generation;
 344	fs_info->running_transaction = cur_trans;
 345	cur_trans->aborted = 0;
 346	spin_unlock(&fs_info->trans_lock);
 347
 348	return 0;
 349}
 350
 351/*
 352 * This does all the record keeping required to make sure that a shareable root
 353 * is properly recorded in a given transaction.  This is required to make sure
 354 * the old root from before we joined the transaction is deleted when the
 355 * transaction commits.
 356 */
 357static int record_root_in_trans(struct btrfs_trans_handle *trans,
 358			       struct btrfs_root *root,
 359			       int force)
 360{
 361	struct btrfs_fs_info *fs_info = root->fs_info;
 
 362
 363	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 364	    root->last_trans < trans->transid) || force) {
 365		WARN_ON(root == fs_info->extent_root);
 366		WARN_ON(!force && root->commit_root != root->node);
 367
 368		/*
 369		 * see below for IN_TRANS_SETUP usage rules
 370		 * we have the reloc mutex held now, so there
 371		 * is only one writer in this function
 372		 */
 373		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 374
 375		/* make sure readers find IN_TRANS_SETUP before
 376		 * they find our root->last_trans update
 377		 */
 378		smp_wmb();
 379
 380		spin_lock(&fs_info->fs_roots_radix_lock);
 381		if (root->last_trans == trans->transid && !force) {
 382			spin_unlock(&fs_info->fs_roots_radix_lock);
 383			return 0;
 384		}
 385		radix_tree_tag_set(&fs_info->fs_roots_radix,
 386				   (unsigned long)root->root_key.objectid,
 387				   BTRFS_ROOT_TRANS_TAG);
 388		spin_unlock(&fs_info->fs_roots_radix_lock);
 389		root->last_trans = trans->transid;
 390
 391		/* this is pretty tricky.  We don't want to
 392		 * take the relocation lock in btrfs_record_root_in_trans
 393		 * unless we're really doing the first setup for this root in
 394		 * this transaction.
 395		 *
 396		 * Normally we'd use root->last_trans as a flag to decide
 397		 * if we want to take the expensive mutex.
 398		 *
 399		 * But, we have to set root->last_trans before we
 400		 * init the relocation root, otherwise, we trip over warnings
 401		 * in ctree.c.  The solution used here is to flag ourselves
 402		 * with root IN_TRANS_SETUP.  When this is 1, we're still
 403		 * fixing up the reloc trees and everyone must wait.
 404		 *
 405		 * When this is zero, they can trust root->last_trans and fly
 406		 * through btrfs_record_root_in_trans without having to take the
 407		 * lock.  smp_wmb() makes sure that all the writes above are
 408		 * done before we pop in the zero below
 409		 */
 410		btrfs_init_reloc_root(trans, root);
 411		smp_mb__before_atomic();
 412		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 413	}
 414	return 0;
 415}
 416
 417
 418void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 419			    struct btrfs_root *root)
 420{
 421	struct btrfs_fs_info *fs_info = root->fs_info;
 422	struct btrfs_transaction *cur_trans = trans->transaction;
 423
 424	/* Add ourselves to the transaction dropped list */
 425	spin_lock(&cur_trans->dropped_roots_lock);
 426	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 427	spin_unlock(&cur_trans->dropped_roots_lock);
 428
 429	/* Make sure we don't try to update the root at commit time */
 430	spin_lock(&fs_info->fs_roots_radix_lock);
 431	radix_tree_tag_clear(&fs_info->fs_roots_radix,
 432			     (unsigned long)root->root_key.objectid,
 433			     BTRFS_ROOT_TRANS_TAG);
 434	spin_unlock(&fs_info->fs_roots_radix_lock);
 435}
 436
 437int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 438			       struct btrfs_root *root)
 439{
 440	struct btrfs_fs_info *fs_info = root->fs_info;
 
 441
 442	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 443		return 0;
 444
 445	/*
 446	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 447	 * and barriers
 448	 */
 449	smp_rmb();
 450	if (root->last_trans == trans->transid &&
 451	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 452		return 0;
 453
 454	mutex_lock(&fs_info->reloc_mutex);
 455	record_root_in_trans(trans, root, 0);
 456	mutex_unlock(&fs_info->reloc_mutex);
 457
 458	return 0;
 459}
 460
 461static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 462{
 463	return (trans->state >= TRANS_STATE_COMMIT_START &&
 464		trans->state < TRANS_STATE_UNBLOCKED &&
 465		!TRANS_ABORTED(trans));
 466}
 467
 468/* wait for commit against the current transaction to become unblocked
 469 * when this is done, it is safe to start a new transaction, but the current
 470 * transaction might not be fully on disk.
 471 */
 472static void wait_current_trans(struct btrfs_fs_info *fs_info)
 473{
 474	struct btrfs_transaction *cur_trans;
 475
 476	spin_lock(&fs_info->trans_lock);
 477	cur_trans = fs_info->running_transaction;
 478	if (cur_trans && is_transaction_blocked(cur_trans)) {
 479		refcount_inc(&cur_trans->use_count);
 480		spin_unlock(&fs_info->trans_lock);
 481
 
 482		wait_event(fs_info->transaction_wait,
 483			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 484			   TRANS_ABORTED(cur_trans));
 485		btrfs_put_transaction(cur_trans);
 486	} else {
 487		spin_unlock(&fs_info->trans_lock);
 488	}
 489}
 490
 491static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 492{
 493	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 494		return 0;
 495
 496	if (type == TRANS_START)
 497		return 1;
 498
 499	return 0;
 500}
 501
 502static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 503{
 504	struct btrfs_fs_info *fs_info = root->fs_info;
 505
 506	if (!fs_info->reloc_ctl ||
 507	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 508	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 509	    root->reloc_root)
 510		return false;
 511
 512	return true;
 513}
 514
 515static struct btrfs_trans_handle *
 516start_transaction(struct btrfs_root *root, unsigned int num_items,
 517		  unsigned int type, enum btrfs_reserve_flush_enum flush,
 518		  bool enforce_qgroups)
 519{
 520	struct btrfs_fs_info *fs_info = root->fs_info;
 521	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 522	struct btrfs_trans_handle *h;
 523	struct btrfs_transaction *cur_trans;
 524	u64 num_bytes = 0;
 525	u64 qgroup_reserved = 0;
 526	bool reloc_reserved = false;
 527	bool do_chunk_alloc = false;
 528	int ret;
 529
 530	/* Send isn't supposed to start transactions. */
 531	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
 532
 533	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 534		return ERR_PTR(-EROFS);
 535
 536	if (current->journal_info) {
 537		WARN_ON(type & TRANS_EXTWRITERS);
 538		h = current->journal_info;
 539		refcount_inc(&h->use_count);
 540		WARN_ON(refcount_read(&h->use_count) > 2);
 541		h->orig_rsv = h->block_rsv;
 542		h->block_rsv = NULL;
 543		goto got_it;
 544	}
 545
 546	/*
 547	 * Do the reservation before we join the transaction so we can do all
 548	 * the appropriate flushing if need be.
 549	 */
 550	if (num_items && root != fs_info->chunk_root) {
 551		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
 552		u64 delayed_refs_bytes = 0;
 553
 554		qgroup_reserved = num_items * fs_info->nodesize;
 555		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
 556				enforce_qgroups);
 557		if (ret)
 558			return ERR_PTR(ret);
 559
 560		/*
 561		 * We want to reserve all the bytes we may need all at once, so
 562		 * we only do 1 enospc flushing cycle per transaction start.  We
 563		 * accomplish this by simply assuming we'll do 2 x num_items
 564		 * worth of delayed refs updates in this trans handle, and
 565		 * refill that amount for whatever is missing in the reserve.
 566		 */
 567		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
 568		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
 569		    delayed_refs_rsv->full == 0) {
 570			delayed_refs_bytes = num_bytes;
 571			num_bytes <<= 1;
 572		}
 573
 574		/*
 575		 * Do the reservation for the relocation root creation
 576		 */
 577		if (need_reserve_reloc_root(root)) {
 578			num_bytes += fs_info->nodesize;
 579			reloc_reserved = true;
 580		}
 581
 582		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
 583		if (ret)
 584			goto reserve_fail;
 585		if (delayed_refs_bytes) {
 586			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
 587							  delayed_refs_bytes);
 588			num_bytes -= delayed_refs_bytes;
 589		}
 590
 591		if (rsv->space_info->force_alloc)
 592			do_chunk_alloc = true;
 593	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 594		   !delayed_refs_rsv->full) {
 595		/*
 596		 * Some people call with btrfs_start_transaction(root, 0)
 597		 * because they can be throttled, but have some other mechanism
 598		 * for reserving space.  We still want these guys to refill the
 599		 * delayed block_rsv so just add 1 items worth of reservation
 600		 * here.
 601		 */
 602		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 603		if (ret)
 604			goto reserve_fail;
 605	}
 606again:
 607	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 608	if (!h) {
 609		ret = -ENOMEM;
 610		goto alloc_fail;
 611	}
 612
 613	/*
 614	 * If we are JOIN_NOLOCK we're already committing a transaction and
 615	 * waiting on this guy, so we don't need to do the sb_start_intwrite
 616	 * because we're already holding a ref.  We need this because we could
 617	 * have raced in and did an fsync() on a file which can kick a commit
 618	 * and then we deadlock with somebody doing a freeze.
 619	 *
 620	 * If we are ATTACH, it means we just want to catch the current
 621	 * transaction and commit it, so we needn't do sb_start_intwrite(). 
 622	 */
 623	if (type & __TRANS_FREEZABLE)
 624		sb_start_intwrite(fs_info->sb);
 625
 626	if (may_wait_transaction(fs_info, type))
 627		wait_current_trans(fs_info);
 628
 629	do {
 630		ret = join_transaction(fs_info, type);
 631		if (ret == -EBUSY) {
 632			wait_current_trans(fs_info);
 633			if (unlikely(type == TRANS_ATTACH ||
 634				     type == TRANS_JOIN_NOSTART))
 635				ret = -ENOENT;
 636		}
 637	} while (ret == -EBUSY);
 638
 639	if (ret < 0)
 640		goto join_fail;
 641
 642	cur_trans = fs_info->running_transaction;
 643
 644	h->transid = cur_trans->transid;
 645	h->transaction = cur_trans;
 646	h->root = root;
 647	refcount_set(&h->use_count, 1);
 648	h->fs_info = root->fs_info;
 649
 650	h->type = type;
 651	h->can_flush_pending_bgs = true;
 652	INIT_LIST_HEAD(&h->new_bgs);
 653
 654	smp_mb();
 655	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
 656	    may_wait_transaction(fs_info, type)) {
 657		current->journal_info = h;
 658		btrfs_commit_transaction(h);
 659		goto again;
 660	}
 661
 662	if (num_bytes) {
 663		trace_btrfs_space_reservation(fs_info, "transaction",
 664					      h->transid, num_bytes, 1);
 665		h->block_rsv = &fs_info->trans_block_rsv;
 666		h->bytes_reserved = num_bytes;
 667		h->reloc_reserved = reloc_reserved;
 668	}
 669
 670got_it:
 671	if (!current->journal_info)
 672		current->journal_info = h;
 673
 674	/*
 675	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
 676	 * ALLOC_FORCE the first run through, and then we won't allocate for
 677	 * anybody else who races in later.  We don't care about the return
 678	 * value here.
 679	 */
 680	if (do_chunk_alloc && num_bytes) {
 681		u64 flags = h->block_rsv->space_info->flags;
 682
 683		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
 684				  CHUNK_ALLOC_NO_FORCE);
 685	}
 686
 687	/*
 688	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
 689	 * call btrfs_join_transaction() while we're also starting a
 690	 * transaction.
 691	 *
 692	 * Thus it need to be called after current->journal_info initialized,
 693	 * or we can deadlock.
 694	 */
 695	btrfs_record_root_in_trans(h, root);
 
 
 
 
 
 
 
 
 
 696
 697	return h;
 698
 699join_fail:
 700	if (type & __TRANS_FREEZABLE)
 701		sb_end_intwrite(fs_info->sb);
 702	kmem_cache_free(btrfs_trans_handle_cachep, h);
 703alloc_fail:
 704	if (num_bytes)
 705		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 706					num_bytes, NULL);
 707reserve_fail:
 708	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
 709	return ERR_PTR(ret);
 710}
 711
 712struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 713						   unsigned int num_items)
 714{
 715	return start_transaction(root, num_items, TRANS_START,
 716				 BTRFS_RESERVE_FLUSH_ALL, true);
 717}
 718
 719struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 720					struct btrfs_root *root,
 721					unsigned int num_items)
 722{
 723	return start_transaction(root, num_items, TRANS_START,
 724				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
 725}
 726
 727struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 728{
 729	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 730				 true);
 731}
 732
 733struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
 734{
 735	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 736				 BTRFS_RESERVE_NO_FLUSH, true);
 737}
 738
 739/*
 740 * Similar to regular join but it never starts a transaction when none is
 741 * running or after waiting for the current one to finish.
 742 */
 743struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
 744{
 745	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
 746				 BTRFS_RESERVE_NO_FLUSH, true);
 747}
 748
 749/*
 750 * btrfs_attach_transaction() - catch the running transaction
 751 *
 752 * It is used when we want to commit the current the transaction, but
 753 * don't want to start a new one.
 754 *
 755 * Note: If this function return -ENOENT, it just means there is no
 756 * running transaction. But it is possible that the inactive transaction
 757 * is still in the memory, not fully on disk. If you hope there is no
 758 * inactive transaction in the fs when -ENOENT is returned, you should
 759 * invoke
 760 *     btrfs_attach_transaction_barrier()
 761 */
 762struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 763{
 764	return start_transaction(root, 0, TRANS_ATTACH,
 765				 BTRFS_RESERVE_NO_FLUSH, true);
 766}
 767
 768/*
 769 * btrfs_attach_transaction_barrier() - catch the running transaction
 770 *
 771 * It is similar to the above function, the difference is this one
 772 * will wait for all the inactive transactions until they fully
 773 * complete.
 774 */
 775struct btrfs_trans_handle *
 776btrfs_attach_transaction_barrier(struct btrfs_root *root)
 777{
 778	struct btrfs_trans_handle *trans;
 779
 780	trans = start_transaction(root, 0, TRANS_ATTACH,
 781				  BTRFS_RESERVE_NO_FLUSH, true);
 782	if (trans == ERR_PTR(-ENOENT))
 783		btrfs_wait_for_commit(root->fs_info, 0);
 784
 785	return trans;
 786}
 787
 788/* wait for a transaction commit to be fully complete */
 789static noinline void wait_for_commit(struct btrfs_transaction *commit)
 
 790{
 791	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792}
 793
 794int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 795{
 796	struct btrfs_transaction *cur_trans = NULL, *t;
 797	int ret = 0;
 798
 799	if (transid) {
 800		if (transid <= fs_info->last_trans_committed)
 801			goto out;
 802
 803		/* find specified transaction */
 804		spin_lock(&fs_info->trans_lock);
 805		list_for_each_entry(t, &fs_info->trans_list, list) {
 806			if (t->transid == transid) {
 807				cur_trans = t;
 808				refcount_inc(&cur_trans->use_count);
 809				ret = 0;
 810				break;
 811			}
 812			if (t->transid > transid) {
 813				ret = 0;
 814				break;
 815			}
 816		}
 817		spin_unlock(&fs_info->trans_lock);
 818
 819		/*
 820		 * The specified transaction doesn't exist, or we
 821		 * raced with btrfs_commit_transaction
 822		 */
 823		if (!cur_trans) {
 824			if (transid > fs_info->last_trans_committed)
 825				ret = -EINVAL;
 826			goto out;
 827		}
 828	} else {
 829		/* find newest transaction that is committing | committed */
 830		spin_lock(&fs_info->trans_lock);
 831		list_for_each_entry_reverse(t, &fs_info->trans_list,
 832					    list) {
 833			if (t->state >= TRANS_STATE_COMMIT_START) {
 834				if (t->state == TRANS_STATE_COMPLETED)
 835					break;
 836				cur_trans = t;
 837				refcount_inc(&cur_trans->use_count);
 838				break;
 839			}
 840		}
 841		spin_unlock(&fs_info->trans_lock);
 842		if (!cur_trans)
 843			goto out;  /* nothing committing|committed */
 844	}
 845
 846	wait_for_commit(cur_trans);
 847	btrfs_put_transaction(cur_trans);
 848out:
 849	return ret;
 850}
 851
 852void btrfs_throttle(struct btrfs_fs_info *fs_info)
 853{
 854	wait_current_trans(fs_info);
 855}
 856
 857static int should_end_transaction(struct btrfs_trans_handle *trans)
 858{
 859	struct btrfs_fs_info *fs_info = trans->fs_info;
 860
 861	if (btrfs_check_space_for_delayed_refs(fs_info))
 862		return 1;
 863
 864	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
 865}
 866
 867int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 868{
 869	struct btrfs_transaction *cur_trans = trans->transaction;
 870
 871	smp_mb();
 872	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
 873	    cur_trans->delayed_refs.flushing)
 874		return 1;
 875
 876	return should_end_transaction(trans);
 877}
 878
 879static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
 880
 881{
 882	struct btrfs_fs_info *fs_info = trans->fs_info;
 883
 884	if (!trans->block_rsv) {
 885		ASSERT(!trans->bytes_reserved);
 886		return;
 887	}
 888
 889	if (!trans->bytes_reserved)
 890		return;
 891
 892	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
 893	trace_btrfs_space_reservation(fs_info, "transaction",
 894				      trans->transid, trans->bytes_reserved, 0);
 895	btrfs_block_rsv_release(fs_info, trans->block_rsv,
 896				trans->bytes_reserved, NULL);
 897	trans->bytes_reserved = 0;
 898}
 899
 900static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 901				   int throttle)
 902{
 903	struct btrfs_fs_info *info = trans->fs_info;
 904	struct btrfs_transaction *cur_trans = trans->transaction;
 905	int err = 0;
 906
 907	if (refcount_read(&trans->use_count) > 1) {
 908		refcount_dec(&trans->use_count);
 909		trans->block_rsv = trans->orig_rsv;
 910		return 0;
 911	}
 912
 913	btrfs_trans_release_metadata(trans);
 914	trans->block_rsv = NULL;
 915
 916	btrfs_create_pending_block_groups(trans);
 917
 918	btrfs_trans_release_chunk_metadata(trans);
 919
 920	if (trans->type & __TRANS_FREEZABLE)
 921		sb_end_intwrite(info->sb);
 922
 923	WARN_ON(cur_trans != info->running_transaction);
 924	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 925	atomic_dec(&cur_trans->num_writers);
 926	extwriter_counter_dec(cur_trans, trans->type);
 927
 928	cond_wake_up(&cur_trans->writer_wait);
 
 
 
 
 929	btrfs_put_transaction(cur_trans);
 930
 931	if (current->journal_info == trans)
 932		current->journal_info = NULL;
 933
 934	if (throttle)
 935		btrfs_run_delayed_iputs(info);
 936
 937	if (TRANS_ABORTED(trans) ||
 938	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
 939		wake_up_process(info->transaction_kthread);
 940		if (TRANS_ABORTED(trans))
 941			err = trans->aborted;
 942		else
 943			err = -EROFS;
 944	}
 945
 946	kmem_cache_free(btrfs_trans_handle_cachep, trans);
 947	return err;
 948}
 949
 950int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 951{
 952	return __btrfs_end_transaction(trans, 0);
 953}
 954
 955int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 956{
 957	return __btrfs_end_transaction(trans, 1);
 958}
 959
 960/*
 961 * when btree blocks are allocated, they have some corresponding bits set for
 962 * them in one of two extent_io trees.  This is used to make sure all of
 963 * those extents are sent to disk but does not wait on them
 964 */
 965int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
 966			       struct extent_io_tree *dirty_pages, int mark)
 967{
 968	int err = 0;
 969	int werr = 0;
 970	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 971	struct extent_state *cached_state = NULL;
 972	u64 start = 0;
 973	u64 end;
 974
 975	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
 976	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 977				      mark, &cached_state)) {
 978		bool wait_writeback = false;
 979
 980		err = convert_extent_bit(dirty_pages, start, end,
 981					 EXTENT_NEED_WAIT,
 982					 mark, &cached_state);
 983		/*
 984		 * convert_extent_bit can return -ENOMEM, which is most of the
 985		 * time a temporary error. So when it happens, ignore the error
 986		 * and wait for writeback of this range to finish - because we
 987		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
 988		 * to __btrfs_wait_marked_extents() would not know that
 989		 * writeback for this range started and therefore wouldn't
 990		 * wait for it to finish - we don't want to commit a
 991		 * superblock that points to btree nodes/leafs for which
 992		 * writeback hasn't finished yet (and without errors).
 993		 * We cleanup any entries left in the io tree when committing
 994		 * the transaction (through extent_io_tree_release()).
 995		 */
 996		if (err == -ENOMEM) {
 997			err = 0;
 998			wait_writeback = true;
 999		}
1000		if (!err)
1001			err = filemap_fdatawrite_range(mapping, start, end);
1002		if (err)
1003			werr = err;
1004		else if (wait_writeback)
1005			werr = filemap_fdatawait_range(mapping, start, end);
1006		free_extent_state(cached_state);
1007		cached_state = NULL;
1008		cond_resched();
1009		start = end + 1;
1010	}
1011	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1012	return werr;
1013}
1014
1015/*
1016 * when btree blocks are allocated, they have some corresponding bits set for
1017 * them in one of two extent_io trees.  This is used to make sure all of
1018 * those extents are on disk for transaction or log commit.  We wait
1019 * on all the pages and clear them from the dirty pages state tree
1020 */
1021static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022				       struct extent_io_tree *dirty_pages)
1023{
1024	int err = 0;
1025	int werr = 0;
1026	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1027	struct extent_state *cached_state = NULL;
1028	u64 start = 0;
1029	u64 end;
1030
1031	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1032				      EXTENT_NEED_WAIT, &cached_state)) {
1033		/*
1034		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035		 * When committing the transaction, we'll remove any entries
1036		 * left in the io tree. For a log commit, we don't remove them
1037		 * after committing the log because the tree can be accessed
1038		 * concurrently - we do it only at transaction commit time when
1039		 * it's safe to do it (through extent_io_tree_release()).
1040		 */
1041		err = clear_extent_bit(dirty_pages, start, end,
1042				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1043		if (err == -ENOMEM)
1044			err = 0;
1045		if (!err)
1046			err = filemap_fdatawait_range(mapping, start, end);
1047		if (err)
1048			werr = err;
1049		free_extent_state(cached_state);
1050		cached_state = NULL;
1051		cond_resched();
1052		start = end + 1;
1053	}
1054	if (err)
1055		werr = err;
1056	return werr;
1057}
1058
1059static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1060		       struct extent_io_tree *dirty_pages)
1061{
1062	bool errors = false;
1063	int err;
1064
1065	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067		errors = true;
1068
1069	if (errors && !err)
1070		err = -EIO;
1071	return err;
1072}
1073
1074int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1075{
1076	struct btrfs_fs_info *fs_info = log_root->fs_info;
1077	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078	bool errors = false;
1079	int err;
1080
1081	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1082
1083	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084	if ((mark & EXTENT_DIRTY) &&
1085	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086		errors = true;
1087
1088	if ((mark & EXTENT_NEW) &&
1089	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090		errors = true;
1091
1092	if (errors && !err)
1093		err = -EIO;
1094	return err;
1095}
1096
1097/*
1098 * When btree blocks are allocated the corresponding extents are marked dirty.
1099 * This function ensures such extents are persisted on disk for transaction or
1100 * log commit.
1101 *
1102 * @trans: transaction whose dirty pages we'd like to write
1103 */
1104static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1105{
1106	int ret;
1107	int ret2;
1108	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1109	struct btrfs_fs_info *fs_info = trans->fs_info;
1110	struct blk_plug plug;
1111
1112	blk_start_plug(&plug);
1113	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1114	blk_finish_plug(&plug);
1115	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1116
1117	extent_io_tree_release(&trans->transaction->dirty_pages);
1118
1119	if (ret)
1120		return ret;
1121	else if (ret2)
1122		return ret2;
1123	else
1124		return 0;
1125}
1126
1127/*
1128 * this is used to update the root pointer in the tree of tree roots.
1129 *
1130 * But, in the case of the extent allocation tree, updating the root
1131 * pointer may allocate blocks which may change the root of the extent
1132 * allocation tree.
1133 *
1134 * So, this loops and repeats and makes sure the cowonly root didn't
1135 * change while the root pointer was being updated in the metadata.
1136 */
1137static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138			       struct btrfs_root *root)
1139{
1140	int ret;
1141	u64 old_root_bytenr;
1142	u64 old_root_used;
1143	struct btrfs_fs_info *fs_info = root->fs_info;
1144	struct btrfs_root *tree_root = fs_info->tree_root;
1145
1146	old_root_used = btrfs_root_used(&root->root_item);
1147
1148	while (1) {
1149		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1150		if (old_root_bytenr == root->node->start &&
1151		    old_root_used == btrfs_root_used(&root->root_item))
1152			break;
1153
1154		btrfs_set_root_node(&root->root_item, root->node);
1155		ret = btrfs_update_root(trans, tree_root,
1156					&root->root_key,
1157					&root->root_item);
1158		if (ret)
1159			return ret;
1160
1161		old_root_used = btrfs_root_used(&root->root_item);
1162	}
1163
1164	return 0;
1165}
1166
1167/*
1168 * update all the cowonly tree roots on disk
1169 *
1170 * The error handling in this function may not be obvious. Any of the
1171 * failures will cause the file system to go offline. We still need
1172 * to clean up the delayed refs.
1173 */
1174static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1175{
1176	struct btrfs_fs_info *fs_info = trans->fs_info;
1177	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1178	struct list_head *io_bgs = &trans->transaction->io_bgs;
1179	struct list_head *next;
1180	struct extent_buffer *eb;
1181	int ret;
1182
 
 
 
 
 
 
1183	eb = btrfs_lock_root_node(fs_info->tree_root);
1184	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185			      0, &eb);
1186	btrfs_tree_unlock(eb);
1187	free_extent_buffer(eb);
1188
1189	if (ret)
1190		return ret;
1191
1192	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1193	if (ret)
1194		return ret;
1195
1196	ret = btrfs_run_dev_stats(trans);
1197	if (ret)
1198		return ret;
1199	ret = btrfs_run_dev_replace(trans);
1200	if (ret)
1201		return ret;
1202	ret = btrfs_run_qgroups(trans);
1203	if (ret)
1204		return ret;
1205
1206	ret = btrfs_setup_space_cache(trans);
1207	if (ret)
1208		return ret;
1209
1210	/* run_qgroups might have added some more refs */
1211	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1212	if (ret)
1213		return ret;
1214again:
1215	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1216		struct btrfs_root *root;
1217		next = fs_info->dirty_cowonly_roots.next;
1218		list_del_init(next);
1219		root = list_entry(next, struct btrfs_root, dirty_list);
1220		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1221
1222		if (root != fs_info->extent_root)
1223			list_add_tail(&root->dirty_list,
1224				      &trans->transaction->switch_commits);
1225		ret = update_cowonly_root(trans, root);
1226		if (ret)
1227			return ret;
1228		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1229		if (ret)
1230			return ret;
1231	}
1232
 
 
 
 
 
1233	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1234		ret = btrfs_write_dirty_block_groups(trans);
1235		if (ret)
1236			return ret;
 
 
 
 
 
 
 
1237		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1238		if (ret)
1239			return ret;
1240	}
1241
1242	if (!list_empty(&fs_info->dirty_cowonly_roots))
1243		goto again;
1244
1245	list_add_tail(&fs_info->extent_root->dirty_list,
1246		      &trans->transaction->switch_commits);
1247
1248	/* Update dev-replace pointer once everything is committed */
1249	fs_info->dev_replace.committed_cursor_left =
1250		fs_info->dev_replace.cursor_left_last_write_of_item;
1251
1252	return 0;
1253}
1254
1255/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256 * dead roots are old snapshots that need to be deleted.  This allocates
1257 * a dirty root struct and adds it into the list of dead roots that need to
1258 * be deleted
1259 */
1260void btrfs_add_dead_root(struct btrfs_root *root)
1261{
1262	struct btrfs_fs_info *fs_info = root->fs_info;
1263
1264	spin_lock(&fs_info->trans_lock);
1265	if (list_empty(&root->root_list)) {
1266		btrfs_grab_root(root);
1267		list_add_tail(&root->root_list, &fs_info->dead_roots);
 
 
 
 
 
1268	}
1269	spin_unlock(&fs_info->trans_lock);
1270}
1271
1272/*
1273 * update all the cowonly tree roots on disk
 
1274 */
1275static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1276{
1277	struct btrfs_fs_info *fs_info = trans->fs_info;
1278	struct btrfs_root *gang[8];
1279	int i;
1280	int ret;
1281	int err = 0;
 
 
 
 
 
1282
1283	spin_lock(&fs_info->fs_roots_radix_lock);
1284	while (1) {
1285		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1286						 (void **)gang, 0,
1287						 ARRAY_SIZE(gang),
1288						 BTRFS_ROOT_TRANS_TAG);
1289		if (ret == 0)
1290			break;
1291		for (i = 0; i < ret; i++) {
1292			struct btrfs_root *root = gang[i];
 
 
 
 
 
 
 
 
 
 
1293			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1294					(unsigned long)root->root_key.objectid,
1295					BTRFS_ROOT_TRANS_TAG);
1296			spin_unlock(&fs_info->fs_roots_radix_lock);
1297
1298			btrfs_free_log(trans, root);
1299			btrfs_update_reloc_root(trans, root);
1300
1301			btrfs_save_ino_cache(root, trans);
1302
1303			/* see comments in should_cow_block() */
1304			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1305			smp_mb__after_atomic();
1306
1307			if (root->commit_root != root->node) {
1308				list_add_tail(&root->dirty_list,
1309					&trans->transaction->switch_commits);
1310				btrfs_set_root_node(&root->root_item,
1311						    root->node);
1312			}
1313
1314			err = btrfs_update_root(trans, fs_info->tree_root,
1315						&root->root_key,
1316						&root->root_item);
 
 
1317			spin_lock(&fs_info->fs_roots_radix_lock);
1318			if (err)
1319				break;
1320			btrfs_qgroup_free_meta_all_pertrans(root);
1321		}
1322	}
1323	spin_unlock(&fs_info->fs_roots_radix_lock);
1324	return err;
1325}
1326
1327/*
1328 * defrag a given btree.
1329 * Every leaf in the btree is read and defragged.
1330 */
1331int btrfs_defrag_root(struct btrfs_root *root)
1332{
1333	struct btrfs_fs_info *info = root->fs_info;
1334	struct btrfs_trans_handle *trans;
1335	int ret;
1336
1337	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1338		return 0;
1339
1340	while (1) {
1341		trans = btrfs_start_transaction(root, 0);
1342		if (IS_ERR(trans))
1343			return PTR_ERR(trans);
 
 
1344
1345		ret = btrfs_defrag_leaves(trans, root);
1346
1347		btrfs_end_transaction(trans);
1348		btrfs_btree_balance_dirty(info);
1349		cond_resched();
1350
1351		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1352			break;
1353
1354		if (btrfs_defrag_cancelled(info)) {
1355			btrfs_debug(info, "defrag_root cancelled");
1356			ret = -EAGAIN;
1357			break;
1358		}
1359	}
1360	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1361	return ret;
1362}
1363
1364/*
1365 * Do all special snapshot related qgroup dirty hack.
1366 *
1367 * Will do all needed qgroup inherit and dirty hack like switch commit
1368 * roots inside one transaction and write all btree into disk, to make
1369 * qgroup works.
1370 */
1371static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1372				   struct btrfs_root *src,
1373				   struct btrfs_root *parent,
1374				   struct btrfs_qgroup_inherit *inherit,
1375				   u64 dst_objectid)
1376{
1377	struct btrfs_fs_info *fs_info = src->fs_info;
1378	int ret;
1379
1380	/*
1381	 * Save some performance in the case that qgroups are not
1382	 * enabled. If this check races with the ioctl, rescan will
1383	 * kick in anyway.
1384	 */
1385	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1386		return 0;
1387
1388	/*
1389	 * Ensure dirty @src will be committed.  Or, after coming
1390	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1391	 * recorded root will never be updated again, causing an outdated root
1392	 * item.
1393	 */
1394	record_root_in_trans(trans, src, 1);
 
 
1395
1396	/*
1397	 * We are going to commit transaction, see btrfs_commit_transaction()
1398	 * comment for reason locking tree_log_mutex
 
 
 
 
 
 
 
1399	 */
1400	mutex_lock(&fs_info->tree_log_mutex);
 
 
 
 
1401
1402	ret = commit_fs_roots(trans);
1403	if (ret)
1404		goto out;
1405	ret = btrfs_qgroup_account_extents(trans);
1406	if (ret < 0)
1407		goto out;
1408
1409	/* Now qgroup are all updated, we can inherit it to new qgroups */
1410	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1411				   inherit);
1412	if (ret < 0)
1413		goto out;
1414
1415	/*
1416	 * Now we do a simplified commit transaction, which will:
1417	 * 1) commit all subvolume and extent tree
1418	 *    To ensure all subvolume and extent tree have a valid
1419	 *    commit_root to accounting later insert_dir_item()
1420	 * 2) write all btree blocks onto disk
1421	 *    This is to make sure later btree modification will be cowed
1422	 *    Or commit_root can be populated and cause wrong qgroup numbers
1423	 * In this simplified commit, we don't really care about other trees
1424	 * like chunk and root tree, as they won't affect qgroup.
1425	 * And we don't write super to avoid half committed status.
1426	 */
1427	ret = commit_cowonly_roots(trans);
1428	if (ret)
1429		goto out;
1430	switch_commit_roots(trans);
1431	ret = btrfs_write_and_wait_transaction(trans);
1432	if (ret)
1433		btrfs_handle_fs_error(fs_info, ret,
1434			"Error while writing out transaction for qgroup");
1435
1436out:
1437	mutex_unlock(&fs_info->tree_log_mutex);
1438
1439	/*
1440	 * Force parent root to be updated, as we recorded it before so its
1441	 * last_trans == cur_transid.
1442	 * Or it won't be committed again onto disk after later
1443	 * insert_dir_item()
1444	 */
1445	if (!ret)
1446		record_root_in_trans(trans, parent, 1);
1447	return ret;
1448}
1449
1450/*
1451 * new snapshots need to be created at a very specific time in the
1452 * transaction commit.  This does the actual creation.
1453 *
1454 * Note:
1455 * If the error which may affect the commitment of the current transaction
1456 * happens, we should return the error number. If the error which just affect
1457 * the creation of the pending snapshots, just return 0.
1458 */
1459static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1460				   struct btrfs_pending_snapshot *pending)
1461{
1462
1463	struct btrfs_fs_info *fs_info = trans->fs_info;
1464	struct btrfs_key key;
1465	struct btrfs_root_item *new_root_item;
1466	struct btrfs_root *tree_root = fs_info->tree_root;
1467	struct btrfs_root *root = pending->root;
1468	struct btrfs_root *parent_root;
1469	struct btrfs_block_rsv *rsv;
1470	struct inode *parent_inode;
1471	struct btrfs_path *path;
1472	struct btrfs_dir_item *dir_item;
1473	struct dentry *dentry;
1474	struct extent_buffer *tmp;
1475	struct extent_buffer *old;
1476	struct timespec64 cur_time;
1477	int ret = 0;
1478	u64 to_reserve = 0;
1479	u64 index = 0;
1480	u64 objectid;
1481	u64 root_flags;
 
 
1482
1483	ASSERT(pending->path);
1484	path = pending->path;
1485
1486	ASSERT(pending->root_item);
1487	new_root_item = pending->root_item;
1488
1489	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
1490	if (pending->error)
1491		goto no_free_objectid;
1492
1493	/*
1494	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1495	 * accounted by later btrfs_qgroup_inherit().
1496	 */
1497	btrfs_set_skip_qgroup(trans, objectid);
1498
1499	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1500
1501	if (to_reserve > 0) {
1502		pending->error = btrfs_block_rsv_add(root,
1503						     &pending->block_rsv,
1504						     to_reserve,
1505						     BTRFS_RESERVE_NO_FLUSH);
1506		if (pending->error)
1507			goto clear_skip_qgroup;
1508	}
1509
1510	key.objectid = objectid;
1511	key.offset = (u64)-1;
1512	key.type = BTRFS_ROOT_ITEM_KEY;
1513
1514	rsv = trans->block_rsv;
1515	trans->block_rsv = &pending->block_rsv;
1516	trans->bytes_reserved = trans->block_rsv->reserved;
1517	trace_btrfs_space_reservation(fs_info, "transaction",
1518				      trans->transid,
1519				      trans->bytes_reserved, 1);
1520	dentry = pending->dentry;
1521	parent_inode = pending->dir;
1522	parent_root = BTRFS_I(parent_inode)->root;
1523	record_root_in_trans(trans, parent_root, 0);
1524
 
1525	cur_time = current_time(parent_inode);
1526
1527	/*
1528	 * insert the directory item
1529	 */
1530	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1531	BUG_ON(ret); /* -ENOMEM */
1532
1533	/* check if there is a file/dir which has the same name. */
1534	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1535					 btrfs_ino(BTRFS_I(parent_inode)),
1536					 dentry->d_name.name,
1537					 dentry->d_name.len, 0);
1538	if (dir_item != NULL && !IS_ERR(dir_item)) {
1539		pending->error = -EEXIST;
1540		goto dir_item_existed;
1541	} else if (IS_ERR(dir_item)) {
1542		ret = PTR_ERR(dir_item);
1543		btrfs_abort_transaction(trans, ret);
1544		goto fail;
1545	}
1546	btrfs_release_path(path);
1547
1548	/*
1549	 * pull in the delayed directory update
1550	 * and the delayed inode item
1551	 * otherwise we corrupt the FS during
1552	 * snapshot
1553	 */
1554	ret = btrfs_run_delayed_items(trans);
1555	if (ret) {	/* Transaction aborted */
1556		btrfs_abort_transaction(trans, ret);
1557		goto fail;
1558	}
1559
1560	record_root_in_trans(trans, root, 0);
 
 
 
 
1561	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1562	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1563	btrfs_check_and_init_root_item(new_root_item);
1564
1565	root_flags = btrfs_root_flags(new_root_item);
1566	if (pending->readonly)
1567		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1568	else
1569		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1570	btrfs_set_root_flags(new_root_item, root_flags);
1571
1572	btrfs_set_root_generation_v2(new_root_item,
1573			trans->transid);
1574	generate_random_guid(new_root_item->uuid);
1575	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576			BTRFS_UUID_SIZE);
1577	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578		memset(new_root_item->received_uuid, 0,
1579		       sizeof(new_root_item->received_uuid));
1580		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582		btrfs_set_root_stransid(new_root_item, 0);
1583		btrfs_set_root_rtransid(new_root_item, 0);
1584	}
1585	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1587	btrfs_set_root_otransid(new_root_item, trans->transid);
1588
1589	old = btrfs_lock_root_node(root);
1590	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
 
1591	if (ret) {
1592		btrfs_tree_unlock(old);
1593		free_extent_buffer(old);
1594		btrfs_abort_transaction(trans, ret);
1595		goto fail;
1596	}
1597
1598	btrfs_set_lock_blocking_write(old);
1599
1600	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1601	/* clean up in any case */
1602	btrfs_tree_unlock(old);
1603	free_extent_buffer(old);
1604	if (ret) {
1605		btrfs_abort_transaction(trans, ret);
1606		goto fail;
1607	}
1608	/* see comments in should_cow_block() */
1609	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1610	smp_wmb();
1611
1612	btrfs_set_root_node(new_root_item, tmp);
1613	/* record when the snapshot was created in key.offset */
1614	key.offset = trans->transid;
1615	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1616	btrfs_tree_unlock(tmp);
1617	free_extent_buffer(tmp);
1618	if (ret) {
1619		btrfs_abort_transaction(trans, ret);
1620		goto fail;
1621	}
1622
1623	/*
1624	 * insert root back/forward references
1625	 */
1626	ret = btrfs_add_root_ref(trans, objectid,
1627				 parent_root->root_key.objectid,
1628				 btrfs_ino(BTRFS_I(parent_inode)), index,
1629				 dentry->d_name.name, dentry->d_name.len);
1630	if (ret) {
1631		btrfs_abort_transaction(trans, ret);
1632		goto fail;
1633	}
1634
1635	key.offset = (u64)-1;
1636	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1637	if (IS_ERR(pending->snap)) {
1638		ret = PTR_ERR(pending->snap);
1639		pending->snap = NULL;
1640		btrfs_abort_transaction(trans, ret);
1641		goto fail;
1642	}
1643
1644	ret = btrfs_reloc_post_snapshot(trans, pending);
1645	if (ret) {
1646		btrfs_abort_transaction(trans, ret);
1647		goto fail;
1648	}
1649
1650	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1651	if (ret) {
1652		btrfs_abort_transaction(trans, ret);
1653		goto fail;
1654	}
1655
1656	/*
1657	 * Do special qgroup accounting for snapshot, as we do some qgroup
1658	 * snapshot hack to do fast snapshot.
1659	 * To co-operate with that hack, we do hack again.
1660	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1661	 */
1662	ret = qgroup_account_snapshot(trans, root, parent_root,
1663				      pending->inherit, objectid);
1664	if (ret < 0)
1665		goto fail;
1666
1667	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1668				    dentry->d_name.len, BTRFS_I(parent_inode),
1669				    &key, BTRFS_FT_DIR, index);
1670	/* We have check then name at the beginning, so it is impossible. */
1671	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1672	if (ret) {
1673		btrfs_abort_transaction(trans, ret);
1674		goto fail;
1675	}
1676
1677	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1678					 dentry->d_name.len * 2);
1679	parent_inode->i_mtime = parent_inode->i_ctime =
1680		current_time(parent_inode);
1681	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1682	if (ret) {
1683		btrfs_abort_transaction(trans, ret);
1684		goto fail;
1685	}
1686	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1687				  BTRFS_UUID_KEY_SUBVOL,
1688				  objectid);
1689	if (ret) {
1690		btrfs_abort_transaction(trans, ret);
1691		goto fail;
1692	}
1693	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1694		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1695					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1696					  objectid);
1697		if (ret && ret != -EEXIST) {
1698			btrfs_abort_transaction(trans, ret);
1699			goto fail;
1700		}
1701	}
1702
1703	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1704	if (ret) {
1705		btrfs_abort_transaction(trans, ret);
1706		goto fail;
1707	}
1708
1709fail:
1710	pending->error = ret;
1711dir_item_existed:
1712	trans->block_rsv = rsv;
1713	trans->bytes_reserved = 0;
1714clear_skip_qgroup:
1715	btrfs_clear_skip_qgroup(trans);
1716no_free_objectid:
 
 
1717	kfree(new_root_item);
1718	pending->root_item = NULL;
1719	btrfs_free_path(path);
1720	pending->path = NULL;
1721
1722	return ret;
1723}
1724
1725/*
1726 * create all the snapshots we've scheduled for creation
1727 */
1728static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1729{
1730	struct btrfs_pending_snapshot *pending, *next;
1731	struct list_head *head = &trans->transaction->pending_snapshots;
1732	int ret = 0;
1733
1734	list_for_each_entry_safe(pending, next, head, list) {
1735		list_del(&pending->list);
1736		ret = create_pending_snapshot(trans, pending);
1737		if (ret)
1738			break;
1739	}
1740	return ret;
1741}
1742
1743static void update_super_roots(struct btrfs_fs_info *fs_info)
1744{
1745	struct btrfs_root_item *root_item;
1746	struct btrfs_super_block *super;
1747
1748	super = fs_info->super_copy;
1749
1750	root_item = &fs_info->chunk_root->root_item;
1751	super->chunk_root = root_item->bytenr;
1752	super->chunk_root_generation = root_item->generation;
1753	super->chunk_root_level = root_item->level;
1754
1755	root_item = &fs_info->tree_root->root_item;
1756	super->root = root_item->bytenr;
1757	super->generation = root_item->generation;
1758	super->root_level = root_item->level;
1759	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1760		super->cache_generation = root_item->generation;
 
 
1761	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1762		super->uuid_tree_generation = root_item->generation;
1763}
1764
1765int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1766{
1767	struct btrfs_transaction *trans;
1768	int ret = 0;
1769
1770	spin_lock(&info->trans_lock);
1771	trans = info->running_transaction;
1772	if (trans)
1773		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1774	spin_unlock(&info->trans_lock);
1775	return ret;
1776}
1777
1778int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1779{
1780	struct btrfs_transaction *trans;
1781	int ret = 0;
1782
1783	spin_lock(&info->trans_lock);
1784	trans = info->running_transaction;
1785	if (trans)
1786		ret = is_transaction_blocked(trans);
1787	spin_unlock(&info->trans_lock);
1788	return ret;
1789}
1790
1791/*
1792 * wait for the current transaction commit to start and block subsequent
1793 * transaction joins
1794 */
1795static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1796					    struct btrfs_transaction *trans)
1797{
1798	wait_event(fs_info->transaction_blocked_wait,
1799		   trans->state >= TRANS_STATE_COMMIT_START ||
1800		   TRANS_ABORTED(trans));
1801}
1802
1803/*
1804 * wait for the current transaction to start and then become unblocked.
1805 * caller holds ref.
1806 */
1807static void wait_current_trans_commit_start_and_unblock(
1808					struct btrfs_fs_info *fs_info,
1809					struct btrfs_transaction *trans)
1810{
1811	wait_event(fs_info->transaction_wait,
1812		   trans->state >= TRANS_STATE_UNBLOCKED ||
1813		   TRANS_ABORTED(trans));
1814}
1815
1816/*
1817 * commit transactions asynchronously. once btrfs_commit_transaction_async
1818 * returns, any subsequent transaction will not be allowed to join.
1819 */
1820struct btrfs_async_commit {
1821	struct btrfs_trans_handle *newtrans;
1822	struct work_struct work;
1823};
1824
1825static void do_async_commit(struct work_struct *work)
1826{
1827	struct btrfs_async_commit *ac =
1828		container_of(work, struct btrfs_async_commit, work);
1829
1830	/*
1831	 * We've got freeze protection passed with the transaction.
1832	 * Tell lockdep about it.
1833	 */
1834	if (ac->newtrans->type & __TRANS_FREEZABLE)
1835		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1836
1837	current->journal_info = ac->newtrans;
1838
1839	btrfs_commit_transaction(ac->newtrans);
1840	kfree(ac);
1841}
1842
1843int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1844				   int wait_for_unblock)
1845{
1846	struct btrfs_fs_info *fs_info = trans->fs_info;
1847	struct btrfs_async_commit *ac;
1848	struct btrfs_transaction *cur_trans;
1849
1850	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1851	if (!ac)
1852		return -ENOMEM;
1853
1854	INIT_WORK(&ac->work, do_async_commit);
1855	ac->newtrans = btrfs_join_transaction(trans->root);
1856	if (IS_ERR(ac->newtrans)) {
1857		int err = PTR_ERR(ac->newtrans);
1858		kfree(ac);
1859		return err;
1860	}
1861
1862	/* take transaction reference */
1863	cur_trans = trans->transaction;
1864	refcount_inc(&cur_trans->use_count);
1865
1866	btrfs_end_transaction(trans);
1867
1868	/*
1869	 * Tell lockdep we've released the freeze rwsem, since the
1870	 * async commit thread will be the one to unlock it.
1871	 */
1872	if (ac->newtrans->type & __TRANS_FREEZABLE)
1873		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1874
1875	schedule_work(&ac->work);
1876
1877	/* wait for transaction to start and unblock */
1878	if (wait_for_unblock)
1879		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1880	else
1881		wait_current_trans_commit_start(fs_info, cur_trans);
1882
1883	if (current->journal_info == trans)
1884		current->journal_info = NULL;
1885
1886	btrfs_put_transaction(cur_trans);
1887	return 0;
1888}
1889
1890
1891static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1892{
1893	struct btrfs_fs_info *fs_info = trans->fs_info;
1894	struct btrfs_transaction *cur_trans = trans->transaction;
1895
1896	WARN_ON(refcount_read(&trans->use_count) > 1);
1897
1898	btrfs_abort_transaction(trans, err);
1899
1900	spin_lock(&fs_info->trans_lock);
1901
1902	/*
1903	 * If the transaction is removed from the list, it means this
1904	 * transaction has been committed successfully, so it is impossible
1905	 * to call the cleanup function.
1906	 */
1907	BUG_ON(list_empty(&cur_trans->list));
1908
1909	list_del_init(&cur_trans->list);
1910	if (cur_trans == fs_info->running_transaction) {
1911		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1912		spin_unlock(&fs_info->trans_lock);
 
 
 
 
 
 
1913		wait_event(cur_trans->writer_wait,
1914			   atomic_read(&cur_trans->num_writers) == 1);
1915
1916		spin_lock(&fs_info->trans_lock);
1917	}
 
 
 
 
 
 
 
 
 
 
 
1918	spin_unlock(&fs_info->trans_lock);
1919
1920	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1921
1922	spin_lock(&fs_info->trans_lock);
1923	if (cur_trans == fs_info->running_transaction)
1924		fs_info->running_transaction = NULL;
1925	spin_unlock(&fs_info->trans_lock);
1926
1927	if (trans->type & __TRANS_FREEZABLE)
1928		sb_end_intwrite(fs_info->sb);
1929	btrfs_put_transaction(cur_trans);
1930	btrfs_put_transaction(cur_trans);
1931
1932	trace_btrfs_transaction_commit(trans->root);
1933
1934	if (current->journal_info == trans)
1935		current->journal_info = NULL;
1936	btrfs_scrub_cancel(fs_info);
1937
1938	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1939}
1940
1941/*
1942 * Release reserved delayed ref space of all pending block groups of the
1943 * transaction and remove them from the list
1944 */
1945static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1946{
1947       struct btrfs_fs_info *fs_info = trans->fs_info;
1948       struct btrfs_block_group *block_group, *tmp;
1949
1950       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1951               btrfs_delayed_refs_rsv_release(fs_info, 1);
1952               list_del_init(&block_group->bg_list);
1953       }
1954}
1955
1956static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1957{
1958	struct btrfs_fs_info *fs_info = trans->fs_info;
1959
1960	/*
1961	 * We use writeback_inodes_sb here because if we used
1962	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1963	 * Currently are holding the fs freeze lock, if we do an async flush
1964	 * we'll do btrfs_join_transaction() and deadlock because we need to
1965	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1966	 * from already being in a transaction and our join_transaction doesn't
1967	 * have to re-take the fs freeze lock.
 
 
 
 
 
 
 
 
1968	 */
1969	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1970		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1971	} else {
1972		struct btrfs_pending_snapshot *pending;
1973		struct list_head *head = &trans->transaction->pending_snapshots;
1974
1975		/*
1976		 * Flush dellaloc for any root that is going to be snapshotted.
1977		 * This is done to avoid a corrupted version of files, in the
1978		 * snapshots, that had both buffered and direct IO writes (even
1979		 * if they were done sequentially) due to an unordered update of
1980		 * the inode's size on disk.
1981		 */
1982		list_for_each_entry(pending, head, list) {
1983			int ret;
1984
1985			ret = btrfs_start_delalloc_snapshot(pending->root);
1986			if (ret)
1987				return ret;
1988		}
1989	}
1990	return 0;
1991}
1992
1993static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
1994{
1995	struct btrfs_fs_info *fs_info = trans->fs_info;
 
 
 
 
 
 
1996
1997	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1998		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1999	} else {
2000		struct btrfs_pending_snapshot *pending;
2001		struct list_head *head = &trans->transaction->pending_snapshots;
2002
2003		/*
2004		 * Wait for any dellaloc that we started previously for the roots
2005		 * that are going to be snapshotted. This is to avoid a corrupted
2006		 * version of files in the snapshots that had both buffered and
2007		 * direct IO writes (even if they were done sequentially).
2008		 */
2009		list_for_each_entry(pending, head, list)
2010			btrfs_wait_ordered_extents(pending->root,
2011						   U64_MAX, 0, U64_MAX);
2012	}
2013}
2014
2015int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2016{
2017	struct btrfs_fs_info *fs_info = trans->fs_info;
2018	struct btrfs_transaction *cur_trans = trans->transaction;
2019	struct btrfs_transaction *prev_trans = NULL;
2020	int ret;
 
 
2021
2022	ASSERT(refcount_read(&trans->use_count) == 1);
 
2023
2024	/*
2025	 * Some places just start a transaction to commit it.  We need to make
2026	 * sure that if this commit fails that the abort code actually marks the
2027	 * transaction as failed, so set trans->dirty to make the abort code do
2028	 * the right thing.
2029	 */
2030	trans->dirty = true;
2031
2032	/* Stop the commit early if ->aborted is set */
2033	if (TRANS_ABORTED(cur_trans)) {
2034		ret = cur_trans->aborted;
2035		btrfs_end_transaction(trans);
2036		return ret;
2037	}
2038
2039	btrfs_trans_release_metadata(trans);
2040	trans->block_rsv = NULL;
2041
2042	/* make a pass through all the delayed refs we have so far
2043	 * any runnings procs may add more while we are here
 
2044	 */
2045	ret = btrfs_run_delayed_refs(trans, 0);
2046	if (ret) {
2047		btrfs_end_transaction(trans);
2048		return ret;
 
 
 
 
 
2049	}
2050
2051	cur_trans = trans->transaction;
2052
2053	/*
2054	 * set the flushing flag so procs in this transaction have to
2055	 * start sending their work down.
2056	 */
2057	cur_trans->delayed_refs.flushing = 1;
2058	smp_wmb();
2059
2060	btrfs_create_pending_block_groups(trans);
2061
2062	ret = btrfs_run_delayed_refs(trans, 0);
2063	if (ret) {
2064		btrfs_end_transaction(trans);
2065		return ret;
2066	}
2067
2068	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2069		int run_it = 0;
2070
2071		/* this mutex is also taken before trying to set
2072		 * block groups readonly.  We need to make sure
2073		 * that nobody has set a block group readonly
2074		 * after a extents from that block group have been
2075		 * allocated for cache files.  btrfs_set_block_group_ro
2076		 * will wait for the transaction to commit if it
2077		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2078		 *
2079		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2080		 * only one process starts all the block group IO.  It wouldn't
2081		 * hurt to have more than one go through, but there's no
2082		 * real advantage to it either.
2083		 */
2084		mutex_lock(&fs_info->ro_block_group_mutex);
2085		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2086				      &cur_trans->flags))
2087			run_it = 1;
2088		mutex_unlock(&fs_info->ro_block_group_mutex);
2089
2090		if (run_it) {
2091			ret = btrfs_start_dirty_block_groups(trans);
2092			if (ret) {
2093				btrfs_end_transaction(trans);
2094				return ret;
2095			}
2096		}
2097	}
2098
2099	spin_lock(&fs_info->trans_lock);
2100	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
 
 
 
 
2101		spin_unlock(&fs_info->trans_lock);
2102		refcount_inc(&cur_trans->use_count);
 
 
 
 
 
 
2103		ret = btrfs_end_transaction(trans);
2104
2105		wait_for_commit(cur_trans);
2106
2107		if (TRANS_ABORTED(cur_trans))
2108			ret = cur_trans->aborted;
2109
2110		btrfs_put_transaction(cur_trans);
2111
2112		return ret;
2113	}
2114
2115	cur_trans->state = TRANS_STATE_COMMIT_START;
2116	wake_up(&fs_info->transaction_blocked_wait);
 
2117
2118	if (cur_trans->list.prev != &fs_info->trans_list) {
 
 
 
 
 
2119		prev_trans = list_entry(cur_trans->list.prev,
2120					struct btrfs_transaction, list);
2121		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2122			refcount_inc(&prev_trans->use_count);
2123			spin_unlock(&fs_info->trans_lock);
2124
2125			wait_for_commit(prev_trans);
 
2126			ret = READ_ONCE(prev_trans->aborted);
2127
2128			btrfs_put_transaction(prev_trans);
2129			if (ret)
2130				goto cleanup_transaction;
2131		} else {
2132			spin_unlock(&fs_info->trans_lock);
2133		}
2134	} else {
2135		spin_unlock(&fs_info->trans_lock);
2136		/*
2137		 * The previous transaction was aborted and was already removed
2138		 * from the list of transactions at fs_info->trans_list. So we
2139		 * abort to prevent writing a new superblock that reflects a
2140		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2141		 */
2142		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2143			ret = -EROFS;
2144			goto cleanup_transaction;
2145		}
2146	}
2147
 
 
 
 
 
 
2148	extwriter_counter_dec(cur_trans, trans->type);
2149
2150	ret = btrfs_start_delalloc_flush(trans);
2151	if (ret)
2152		goto cleanup_transaction;
2153
2154	ret = btrfs_run_delayed_items(trans);
2155	if (ret)
2156		goto cleanup_transaction;
2157
 
 
 
 
 
 
 
2158	wait_event(cur_trans->writer_wait,
2159		   extwriter_counter_read(cur_trans) == 0);
2160
2161	/* some pending stuffs might be added after the previous flush. */
2162	ret = btrfs_run_delayed_items(trans);
2163	if (ret)
 
2164		goto cleanup_transaction;
 
2165
2166	btrfs_wait_delalloc_flush(trans);
 
 
 
 
 
 
 
 
 
2167
2168	btrfs_scrub_pause(fs_info);
2169	/*
2170	 * Ok now we need to make sure to block out any other joins while we
2171	 * commit the transaction.  We could have started a join before setting
2172	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2173	 */
2174	spin_lock(&fs_info->trans_lock);
 
2175	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2176	spin_unlock(&fs_info->trans_lock);
 
 
 
 
 
 
 
 
2177	wait_event(cur_trans->writer_wait,
2178		   atomic_read(&cur_trans->num_writers) == 1);
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180	if (TRANS_ABORTED(cur_trans)) {
2181		ret = cur_trans->aborted;
 
2182		goto scrub_continue;
2183	}
2184	/*
2185	 * the reloc mutex makes sure that we stop
2186	 * the balancing code from coming in and moving
2187	 * extents around in the middle of the commit
2188	 */
2189	mutex_lock(&fs_info->reloc_mutex);
2190
2191	/*
2192	 * We needn't worry about the delayed items because we will
2193	 * deal with them in create_pending_snapshot(), which is the
2194	 * core function of the snapshot creation.
2195	 */
2196	ret = create_pending_snapshots(trans);
2197	if (ret)
2198		goto unlock_reloc;
2199
2200	/*
2201	 * We insert the dir indexes of the snapshots and update the inode
2202	 * of the snapshots' parents after the snapshot creation, so there
2203	 * are some delayed items which are not dealt with. Now deal with
2204	 * them.
2205	 *
2206	 * We needn't worry that this operation will corrupt the snapshots,
2207	 * because all the tree which are snapshoted will be forced to COW
2208	 * the nodes and leaves.
2209	 */
2210	ret = btrfs_run_delayed_items(trans);
2211	if (ret)
2212		goto unlock_reloc;
2213
2214	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2215	if (ret)
2216		goto unlock_reloc;
2217
2218	/*
2219	 * make sure none of the code above managed to slip in a
2220	 * delayed item
2221	 */
2222	btrfs_assert_delayed_root_empty(fs_info);
2223
2224	WARN_ON(cur_trans != trans->transaction);
2225
2226	/* btrfs_commit_tree_roots is responsible for getting the
2227	 * various roots consistent with each other.  Every pointer
2228	 * in the tree of tree roots has to point to the most up to date
2229	 * root for every subvolume and other tree.  So, we have to keep
2230	 * the tree logging code from jumping in and changing any
2231	 * of the trees.
2232	 *
2233	 * At this point in the commit, there can't be any tree-log
2234	 * writers, but a little lower down we drop the trans mutex
2235	 * and let new people in.  By holding the tree_log_mutex
2236	 * from now until after the super is written, we avoid races
2237	 * with the tree-log code.
2238	 */
2239	mutex_lock(&fs_info->tree_log_mutex);
2240
2241	ret = commit_fs_roots(trans);
2242	if (ret)
2243		goto unlock_tree_log;
2244
2245	/*
2246	 * Since the transaction is done, we can apply the pending changes
2247	 * before the next transaction.
2248	 */
2249	btrfs_apply_pending_changes(fs_info);
2250
2251	/* commit_fs_roots gets rid of all the tree log roots, it is now
2252	 * safe to free the root of tree log roots
2253	 */
2254	btrfs_free_log_root_tree(trans, fs_info);
2255
2256	/*
2257	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2258	 * new delayed refs. Must handle them or qgroup can be wrong.
2259	 */
2260	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2261	if (ret)
2262		goto unlock_tree_log;
2263
2264	/*
2265	 * Since fs roots are all committed, we can get a quite accurate
2266	 * new_roots. So let's do quota accounting.
2267	 */
2268	ret = btrfs_qgroup_account_extents(trans);
2269	if (ret < 0)
2270		goto unlock_tree_log;
2271
2272	ret = commit_cowonly_roots(trans);
2273	if (ret)
2274		goto unlock_tree_log;
2275
2276	/*
2277	 * The tasks which save the space cache and inode cache may also
2278	 * update ->aborted, check it.
2279	 */
2280	if (TRANS_ABORTED(cur_trans)) {
2281		ret = cur_trans->aborted;
2282		goto unlock_tree_log;
2283	}
2284
2285	btrfs_prepare_extent_commit(fs_info);
2286
2287	cur_trans = fs_info->running_transaction;
2288
2289	btrfs_set_root_node(&fs_info->tree_root->root_item,
2290			    fs_info->tree_root->node);
2291	list_add_tail(&fs_info->tree_root->dirty_list,
2292		      &cur_trans->switch_commits);
2293
2294	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2295			    fs_info->chunk_root->node);
2296	list_add_tail(&fs_info->chunk_root->dirty_list,
2297		      &cur_trans->switch_commits);
2298
 
 
 
 
 
 
 
2299	switch_commit_roots(trans);
2300
2301	ASSERT(list_empty(&cur_trans->dirty_bgs));
2302	ASSERT(list_empty(&cur_trans->io_bgs));
2303	update_super_roots(fs_info);
2304
2305	btrfs_set_super_log_root(fs_info->super_copy, 0);
2306	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2307	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2308	       sizeof(*fs_info->super_copy));
2309
2310	btrfs_commit_device_sizes(cur_trans);
2311
2312	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2313	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2314
2315	btrfs_trans_release_chunk_metadata(trans);
2316
 
 
 
 
 
 
 
 
 
 
2317	spin_lock(&fs_info->trans_lock);
2318	cur_trans->state = TRANS_STATE_UNBLOCKED;
2319	fs_info->running_transaction = NULL;
2320	spin_unlock(&fs_info->trans_lock);
2321	mutex_unlock(&fs_info->reloc_mutex);
2322
2323	wake_up(&fs_info->transaction_wait);
 
2324
2325	ret = btrfs_write_and_wait_transaction(trans);
2326	if (ret) {
2327		btrfs_handle_fs_error(fs_info, ret,
2328				      "Error while writing out transaction");
2329		/*
2330		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2331		 * but we can't jump to unlock_tree_log causing double unlock
2332		 */
2333		mutex_unlock(&fs_info->tree_log_mutex);
2334		goto scrub_continue;
2335	}
2336
 
 
 
 
 
 
 
2337	ret = write_all_supers(fs_info, 0);
2338	/*
2339	 * the super is written, we can safely allow the tree-loggers
2340	 * to go about their business
2341	 */
2342	mutex_unlock(&fs_info->tree_log_mutex);
2343	if (ret)
2344		goto scrub_continue;
2345
 
 
 
 
 
 
 
 
2346	btrfs_finish_extent_commit(trans);
2347
2348	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2349		btrfs_clear_space_info_full(fs_info);
2350
2351	fs_info->last_trans_committed = cur_trans->transid;
2352	/*
2353	 * We needn't acquire the lock here because there is no other task
2354	 * which can change it.
2355	 */
2356	cur_trans->state = TRANS_STATE_COMPLETED;
2357	wake_up(&cur_trans->commit_wait);
 
2358
2359	spin_lock(&fs_info->trans_lock);
2360	list_del_init(&cur_trans->list);
2361	spin_unlock(&fs_info->trans_lock);
2362
2363	btrfs_put_transaction(cur_trans);
2364	btrfs_put_transaction(cur_trans);
2365
2366	if (trans->type & __TRANS_FREEZABLE)
2367		sb_end_intwrite(fs_info->sb);
2368
2369	trace_btrfs_transaction_commit(trans->root);
 
 
2370
2371	btrfs_scrub_continue(fs_info);
2372
2373	if (current->journal_info == trans)
2374		current->journal_info = NULL;
2375
2376	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2377
 
 
2378	return ret;
2379
2380unlock_tree_log:
2381	mutex_unlock(&fs_info->tree_log_mutex);
2382unlock_reloc:
2383	mutex_unlock(&fs_info->reloc_mutex);
 
2384scrub_continue:
 
 
2385	btrfs_scrub_continue(fs_info);
2386cleanup_transaction:
2387	btrfs_trans_release_metadata(trans);
2388	btrfs_cleanup_pending_block_groups(trans);
2389	btrfs_trans_release_chunk_metadata(trans);
2390	trans->block_rsv = NULL;
2391	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2392	if (current->journal_info == trans)
2393		current->journal_info = NULL;
2394	cleanup_transaction(trans, ret);
2395
2396	return ret;
 
 
 
 
 
 
 
 
 
 
2397}
2398
2399/*
2400 * return < 0 if error
2401 * 0 if there are no more dead_roots at the time of call
2402 * 1 there are more to be processed, call me again
2403 *
2404 * The return value indicates there are certainly more snapshots to delete, but
2405 * if there comes a new one during processing, it may return 0. We don't mind,
2406 * because btrfs_commit_super will poke cleaner thread and it will process it a
2407 * few seconds later.
2408 */
2409int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2410{
 
2411	int ret;
2412	struct btrfs_fs_info *fs_info = root->fs_info;
2413
2414	spin_lock(&fs_info->trans_lock);
2415	if (list_empty(&fs_info->dead_roots)) {
2416		spin_unlock(&fs_info->trans_lock);
2417		return 0;
2418	}
2419	root = list_first_entry(&fs_info->dead_roots,
2420			struct btrfs_root, root_list);
2421	list_del_init(&root->root_list);
2422	spin_unlock(&fs_info->trans_lock);
2423
2424	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2425
2426	btrfs_kill_all_delayed_nodes(root);
2427	if (root->ino_cache_inode) {
2428		iput(root->ino_cache_inode);
2429		root->ino_cache_inode = NULL;
2430	}
2431
2432	if (btrfs_header_backref_rev(root->node) <
2433			BTRFS_MIXED_BACKREF_REV)
2434		ret = btrfs_drop_snapshot(root, 0, 0);
2435	else
2436		ret = btrfs_drop_snapshot(root, 1, 0);
2437
2438	btrfs_put_root(root);
2439	return (ret < 0) ? 0 : 1;
2440}
2441
2442void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2443{
2444	unsigned long prev;
2445	unsigned long bit;
 
 
 
 
 
2446
2447	prev = xchg(&fs_info->pending_changes, 0);
2448	if (!prev)
2449		return;
2450
2451	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2452	if (prev & bit)
2453		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2454	prev &= ~bit;
2455
2456	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2457	if (prev & bit)
2458		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2459	prev &= ~bit;
2460
2461	bit = 1 << BTRFS_PENDING_COMMIT;
2462	if (prev & bit)
2463		btrfs_debug(fs_info, "pending commit done");
2464	prev &= ~bit;
2465
2466	if (prev)
2467		btrfs_warn(fs_info,
2468			"unknown pending changes left 0x%lx, ignoring", prev);
2469}