Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
 
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
 
  35
  36static DEFINE_WW_CLASS(regulator_ww_class);
  37static DEFINE_MUTEX(regulator_nesting_mutex);
  38static DEFINE_MUTEX(regulator_list_mutex);
  39static LIST_HEAD(regulator_map_list);
  40static LIST_HEAD(regulator_ena_gpio_list);
  41static LIST_HEAD(regulator_supply_alias_list);
  42static LIST_HEAD(regulator_coupler_list);
  43static bool has_full_constraints;
  44
  45static struct dentry *debugfs_root;
  46
  47/*
  48 * struct regulator_map
  49 *
  50 * Used to provide symbolic supply names to devices.
  51 */
  52struct regulator_map {
  53	struct list_head list;
  54	const char *dev_name;   /* The dev_name() for the consumer */
  55	const char *supply;
  56	struct regulator_dev *regulator;
  57};
  58
  59/*
  60 * struct regulator_enable_gpio
  61 *
  62 * Management for shared enable GPIO pin
  63 */
  64struct regulator_enable_gpio {
  65	struct list_head list;
  66	struct gpio_desc *gpiod;
  67	u32 enable_count;	/* a number of enabled shared GPIO */
  68	u32 request_count;	/* a number of requested shared GPIO */
  69};
  70
  71/*
  72 * struct regulator_supply_alias
  73 *
  74 * Used to map lookups for a supply onto an alternative device.
  75 */
  76struct regulator_supply_alias {
  77	struct list_head list;
  78	struct device *src_dev;
  79	const char *src_supply;
  80	struct device *alias_dev;
  81	const char *alias_supply;
  82};
  83
  84static int _regulator_is_enabled(struct regulator_dev *rdev);
  85static int _regulator_disable(struct regulator *regulator);
  86static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  87static int _regulator_get_current_limit(struct regulator_dev *rdev);
  88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  89static int _notifier_call_chain(struct regulator_dev *rdev,
  90				  unsigned long event, void *data);
  91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  92				     int min_uV, int max_uV);
  93static int regulator_balance_voltage(struct regulator_dev *rdev,
  94				     suspend_state_t state);
  95static struct regulator *create_regulator(struct regulator_dev *rdev,
  96					  struct device *dev,
  97					  const char *supply_name);
  98static void destroy_regulator(struct regulator *regulator);
  99static void _regulator_put(struct regulator *regulator);
 100
 101const char *rdev_get_name(struct regulator_dev *rdev)
 102{
 103	if (rdev->constraints && rdev->constraints->name)
 104		return rdev->constraints->name;
 105	else if (rdev->desc->name)
 106		return rdev->desc->name;
 107	else
 108		return "";
 109}
 110EXPORT_SYMBOL_GPL(rdev_get_name);
 111
 112static bool have_full_constraints(void)
 113{
 114	return has_full_constraints || of_have_populated_dt();
 115}
 116
 117static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 118{
 119	if (!rdev->constraints) {
 120		rdev_err(rdev, "no constraints\n");
 121		return false;
 122	}
 123
 124	if (rdev->constraints->valid_ops_mask & ops)
 125		return true;
 126
 127	return false;
 128}
 129
 130/**
 131 * regulator_lock_nested - lock a single regulator
 132 * @rdev:		regulator source
 133 * @ww_ctx:		w/w mutex acquire context
 134 *
 135 * This function can be called many times by one task on
 136 * a single regulator and its mutex will be locked only
 137 * once. If a task, which is calling this function is other
 138 * than the one, which initially locked the mutex, it will
 139 * wait on mutex.
 
 
 140 */
 141static inline int regulator_lock_nested(struct regulator_dev *rdev,
 142					struct ww_acquire_ctx *ww_ctx)
 143{
 144	bool lock = false;
 145	int ret = 0;
 146
 147	mutex_lock(&regulator_nesting_mutex);
 148
 149	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 150		if (rdev->mutex_owner == current)
 151			rdev->ref_cnt++;
 152		else
 153			lock = true;
 154
 155		if (lock) {
 156			mutex_unlock(&regulator_nesting_mutex);
 157			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 158			mutex_lock(&regulator_nesting_mutex);
 159		}
 160	} else {
 161		lock = true;
 162	}
 163
 164	if (lock && ret != -EDEADLK) {
 165		rdev->ref_cnt++;
 166		rdev->mutex_owner = current;
 167	}
 168
 169	mutex_unlock(&regulator_nesting_mutex);
 170
 171	return ret;
 172}
 173
 174/**
 175 * regulator_lock - lock a single regulator
 176 * @rdev:		regulator source
 177 *
 178 * This function can be called many times by one task on
 179 * a single regulator and its mutex will be locked only
 180 * once. If a task, which is calling this function is other
 181 * than the one, which initially locked the mutex, it will
 182 * wait on mutex.
 183 */
 184static void regulator_lock(struct regulator_dev *rdev)
 185{
 186	regulator_lock_nested(rdev, NULL);
 187}
 188
 189/**
 190 * regulator_unlock - unlock a single regulator
 191 * @rdev:		regulator_source
 192 *
 193 * This function unlocks the mutex when the
 194 * reference counter reaches 0.
 195 */
 196static void regulator_unlock(struct regulator_dev *rdev)
 197{
 198	mutex_lock(&regulator_nesting_mutex);
 199
 200	if (--rdev->ref_cnt == 0) {
 201		rdev->mutex_owner = NULL;
 202		ww_mutex_unlock(&rdev->mutex);
 203	}
 204
 205	WARN_ON_ONCE(rdev->ref_cnt < 0);
 206
 207	mutex_unlock(&regulator_nesting_mutex);
 208}
 209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 211{
 212	struct regulator_dev *c_rdev;
 213	int i;
 214
 215	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 216		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 217
 218		if (rdev->supply->rdev == c_rdev)
 219			return true;
 220	}
 221
 222	return false;
 223}
 224
 225static void regulator_unlock_recursive(struct regulator_dev *rdev,
 226				       unsigned int n_coupled)
 227{
 228	struct regulator_dev *c_rdev, *supply_rdev;
 229	int i, supply_n_coupled;
 230
 231	for (i = n_coupled; i > 0; i--) {
 232		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 233
 234		if (!c_rdev)
 235			continue;
 236
 237		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 238			supply_rdev = c_rdev->supply->rdev;
 239			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 240
 241			regulator_unlock_recursive(supply_rdev,
 242						   supply_n_coupled);
 243		}
 244
 245		regulator_unlock(c_rdev);
 246	}
 247}
 248
 249static int regulator_lock_recursive(struct regulator_dev *rdev,
 250				    struct regulator_dev **new_contended_rdev,
 251				    struct regulator_dev **old_contended_rdev,
 252				    struct ww_acquire_ctx *ww_ctx)
 253{
 254	struct regulator_dev *c_rdev;
 255	int i, err;
 256
 257	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 258		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 259
 260		if (!c_rdev)
 261			continue;
 262
 263		if (c_rdev != *old_contended_rdev) {
 264			err = regulator_lock_nested(c_rdev, ww_ctx);
 265			if (err) {
 266				if (err == -EDEADLK) {
 267					*new_contended_rdev = c_rdev;
 268					goto err_unlock;
 269				}
 270
 271				/* shouldn't happen */
 272				WARN_ON_ONCE(err != -EALREADY);
 273			}
 274		} else {
 275			*old_contended_rdev = NULL;
 276		}
 277
 278		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 279			err = regulator_lock_recursive(c_rdev->supply->rdev,
 280						       new_contended_rdev,
 281						       old_contended_rdev,
 282						       ww_ctx);
 283			if (err) {
 284				regulator_unlock(c_rdev);
 285				goto err_unlock;
 286			}
 287		}
 288	}
 289
 290	return 0;
 291
 292err_unlock:
 293	regulator_unlock_recursive(rdev, i);
 294
 295	return err;
 296}
 297
 298/**
 299 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 300 *				regulators
 301 * @rdev:			regulator source
 302 * @ww_ctx:			w/w mutex acquire context
 303 *
 304 * Unlock all regulators related with rdev by coupling or supplying.
 305 */
 306static void regulator_unlock_dependent(struct regulator_dev *rdev,
 307				       struct ww_acquire_ctx *ww_ctx)
 308{
 309	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 310	ww_acquire_fini(ww_ctx);
 311}
 312
 313/**
 314 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 315 * @rdev:			regulator source
 316 * @ww_ctx:			w/w mutex acquire context
 317 *
 318 * This function as a wrapper on regulator_lock_recursive(), which locks
 319 * all regulators related with rdev by coupling or supplying.
 320 */
 321static void regulator_lock_dependent(struct regulator_dev *rdev,
 322				     struct ww_acquire_ctx *ww_ctx)
 323{
 324	struct regulator_dev *new_contended_rdev = NULL;
 325	struct regulator_dev *old_contended_rdev = NULL;
 326	int err;
 327
 328	mutex_lock(&regulator_list_mutex);
 329
 330	ww_acquire_init(ww_ctx, &regulator_ww_class);
 331
 332	do {
 333		if (new_contended_rdev) {
 334			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 335			old_contended_rdev = new_contended_rdev;
 336			old_contended_rdev->ref_cnt++;
 
 337		}
 338
 339		err = regulator_lock_recursive(rdev,
 340					       &new_contended_rdev,
 341					       &old_contended_rdev,
 342					       ww_ctx);
 343
 344		if (old_contended_rdev)
 345			regulator_unlock(old_contended_rdev);
 346
 347	} while (err == -EDEADLK);
 348
 349	ww_acquire_done(ww_ctx);
 350
 351	mutex_unlock(&regulator_list_mutex);
 352}
 353
 354/**
 355 * of_get_child_regulator - get a child regulator device node
 356 * based on supply name
 357 * @parent: Parent device node
 358 * @prop_name: Combination regulator supply name and "-supply"
 359 *
 360 * Traverse all child nodes.
 361 * Extract the child regulator device node corresponding to the supply name.
 362 * returns the device node corresponding to the regulator if found, else
 363 * returns NULL.
 364 */
 365static struct device_node *of_get_child_regulator(struct device_node *parent,
 366						  const char *prop_name)
 367{
 368	struct device_node *regnode = NULL;
 369	struct device_node *child = NULL;
 370
 371	for_each_child_of_node(parent, child) {
 372		regnode = of_parse_phandle(child, prop_name, 0);
 373
 374		if (!regnode) {
 375			regnode = of_get_child_regulator(child, prop_name);
 376			if (regnode)
 377				goto err_node_put;
 378		} else {
 379			goto err_node_put;
 380		}
 381	}
 382	return NULL;
 383
 384err_node_put:
 385	of_node_put(child);
 386	return regnode;
 387}
 388
 389/**
 390 * of_get_regulator - get a regulator device node based on supply name
 391 * @dev: Device pointer for the consumer (of regulator) device
 392 * @supply: regulator supply name
 393 *
 394 * Extract the regulator device node corresponding to the supply name.
 395 * returns the device node corresponding to the regulator if found, else
 396 * returns NULL.
 397 */
 398static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 399{
 400	struct device_node *regnode = NULL;
 401	char prop_name[64]; /* 64 is max size of property name */
 402
 403	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 404
 405	snprintf(prop_name, 64, "%s-supply", supply);
 406	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 407
 408	if (!regnode) {
 409		regnode = of_get_child_regulator(dev->of_node, prop_name);
 410		if (regnode)
 411			return regnode;
 412
 413		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 414				prop_name, dev->of_node);
 415		return NULL;
 416	}
 417	return regnode;
 418}
 419
 420/* Platform voltage constraint check */
 421int regulator_check_voltage(struct regulator_dev *rdev,
 422			    int *min_uV, int *max_uV)
 423{
 424	BUG_ON(*min_uV > *max_uV);
 425
 426	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 427		rdev_err(rdev, "voltage operation not allowed\n");
 428		return -EPERM;
 429	}
 430
 431	if (*max_uV > rdev->constraints->max_uV)
 432		*max_uV = rdev->constraints->max_uV;
 433	if (*min_uV < rdev->constraints->min_uV)
 434		*min_uV = rdev->constraints->min_uV;
 435
 436	if (*min_uV > *max_uV) {
 437		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 438			 *min_uV, *max_uV);
 439		return -EINVAL;
 440	}
 441
 442	return 0;
 443}
 444
 445/* return 0 if the state is valid */
 446static int regulator_check_states(suspend_state_t state)
 447{
 448	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 449}
 450
 451/* Make sure we select a voltage that suits the needs of all
 452 * regulator consumers
 453 */
 454int regulator_check_consumers(struct regulator_dev *rdev,
 455			      int *min_uV, int *max_uV,
 456			      suspend_state_t state)
 457{
 458	struct regulator *regulator;
 459	struct regulator_voltage *voltage;
 460
 461	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 462		voltage = &regulator->voltage[state];
 463		/*
 464		 * Assume consumers that didn't say anything are OK
 465		 * with anything in the constraint range.
 466		 */
 467		if (!voltage->min_uV && !voltage->max_uV)
 468			continue;
 469
 470		if (*max_uV > voltage->max_uV)
 471			*max_uV = voltage->max_uV;
 472		if (*min_uV < voltage->min_uV)
 473			*min_uV = voltage->min_uV;
 474	}
 475
 476	if (*min_uV > *max_uV) {
 477		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 478			*min_uV, *max_uV);
 479		return -EINVAL;
 480	}
 481
 482	return 0;
 483}
 484
 485/* current constraint check */
 486static int regulator_check_current_limit(struct regulator_dev *rdev,
 487					int *min_uA, int *max_uA)
 488{
 489	BUG_ON(*min_uA > *max_uA);
 490
 491	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 492		rdev_err(rdev, "current operation not allowed\n");
 493		return -EPERM;
 494	}
 495
 496	if (*max_uA > rdev->constraints->max_uA)
 
 497		*max_uA = rdev->constraints->max_uA;
 498	if (*min_uA < rdev->constraints->min_uA)
 499		*min_uA = rdev->constraints->min_uA;
 500
 501	if (*min_uA > *max_uA) {
 502		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 503			 *min_uA, *max_uA);
 504		return -EINVAL;
 505	}
 506
 507	return 0;
 508}
 509
 510/* operating mode constraint check */
 511static int regulator_mode_constrain(struct regulator_dev *rdev,
 512				    unsigned int *mode)
 513{
 514	switch (*mode) {
 515	case REGULATOR_MODE_FAST:
 516	case REGULATOR_MODE_NORMAL:
 517	case REGULATOR_MODE_IDLE:
 518	case REGULATOR_MODE_STANDBY:
 519		break;
 520	default:
 521		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 522		return -EINVAL;
 523	}
 524
 525	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 526		rdev_err(rdev, "mode operation not allowed\n");
 527		return -EPERM;
 528	}
 529
 530	/* The modes are bitmasks, the most power hungry modes having
 531	 * the lowest values. If the requested mode isn't supported
 532	 * try higher modes.
 533	 */
 534	while (*mode) {
 535		if (rdev->constraints->valid_modes_mask & *mode)
 536			return 0;
 537		*mode /= 2;
 538	}
 539
 540	return -EINVAL;
 541}
 542
 543static inline struct regulator_state *
 544regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 545{
 546	if (rdev->constraints == NULL)
 547		return NULL;
 548
 549	switch (state) {
 550	case PM_SUSPEND_STANDBY:
 551		return &rdev->constraints->state_standby;
 552	case PM_SUSPEND_MEM:
 553		return &rdev->constraints->state_mem;
 554	case PM_SUSPEND_MAX:
 555		return &rdev->constraints->state_disk;
 556	default:
 557		return NULL;
 558	}
 559}
 560
 561static const struct regulator_state *
 562regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 563{
 564	const struct regulator_state *rstate;
 565
 566	rstate = regulator_get_suspend_state(rdev, state);
 567	if (rstate == NULL)
 568		return NULL;
 569
 570	/* If we have no suspend mode configuration don't set anything;
 571	 * only warn if the driver implements set_suspend_voltage or
 572	 * set_suspend_mode callback.
 573	 */
 574	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 575	    rstate->enabled != DISABLE_IN_SUSPEND) {
 576		if (rdev->desc->ops->set_suspend_voltage ||
 577		    rdev->desc->ops->set_suspend_mode)
 578			rdev_warn(rdev, "No configuration\n");
 579		return NULL;
 580	}
 581
 582	return rstate;
 583}
 584
 585static ssize_t microvolts_show(struct device *dev,
 586			       struct device_attribute *attr, char *buf)
 587{
 588	struct regulator_dev *rdev = dev_get_drvdata(dev);
 589	int uV;
 590
 591	regulator_lock(rdev);
 592	uV = regulator_get_voltage_rdev(rdev);
 593	regulator_unlock(rdev);
 594
 595	if (uV < 0)
 596		return uV;
 597	return sprintf(buf, "%d\n", uV);
 598}
 599static DEVICE_ATTR_RO(microvolts);
 600
 601static ssize_t microamps_show(struct device *dev,
 602			      struct device_attribute *attr, char *buf)
 603{
 604	struct regulator_dev *rdev = dev_get_drvdata(dev);
 605
 606	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 607}
 608static DEVICE_ATTR_RO(microamps);
 609
 610static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 611			 char *buf)
 612{
 613	struct regulator_dev *rdev = dev_get_drvdata(dev);
 614
 615	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 616}
 617static DEVICE_ATTR_RO(name);
 618
 619static const char *regulator_opmode_to_str(int mode)
 620{
 621	switch (mode) {
 622	case REGULATOR_MODE_FAST:
 623		return "fast";
 624	case REGULATOR_MODE_NORMAL:
 625		return "normal";
 626	case REGULATOR_MODE_IDLE:
 627		return "idle";
 628	case REGULATOR_MODE_STANDBY:
 629		return "standby";
 630	}
 631	return "unknown";
 632}
 633
 634static ssize_t regulator_print_opmode(char *buf, int mode)
 635{
 636	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 637}
 638
 639static ssize_t opmode_show(struct device *dev,
 640			   struct device_attribute *attr, char *buf)
 641{
 642	struct regulator_dev *rdev = dev_get_drvdata(dev);
 643
 644	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 645}
 646static DEVICE_ATTR_RO(opmode);
 647
 648static ssize_t regulator_print_state(char *buf, int state)
 649{
 650	if (state > 0)
 651		return sprintf(buf, "enabled\n");
 652	else if (state == 0)
 653		return sprintf(buf, "disabled\n");
 654	else
 655		return sprintf(buf, "unknown\n");
 656}
 657
 658static ssize_t state_show(struct device *dev,
 659			  struct device_attribute *attr, char *buf)
 660{
 661	struct regulator_dev *rdev = dev_get_drvdata(dev);
 662	ssize_t ret;
 663
 664	regulator_lock(rdev);
 665	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 666	regulator_unlock(rdev);
 667
 668	return ret;
 669}
 670static DEVICE_ATTR_RO(state);
 671
 672static ssize_t status_show(struct device *dev,
 673			   struct device_attribute *attr, char *buf)
 674{
 675	struct regulator_dev *rdev = dev_get_drvdata(dev);
 676	int status;
 677	char *label;
 678
 679	status = rdev->desc->ops->get_status(rdev);
 680	if (status < 0)
 681		return status;
 682
 683	switch (status) {
 684	case REGULATOR_STATUS_OFF:
 685		label = "off";
 686		break;
 687	case REGULATOR_STATUS_ON:
 688		label = "on";
 689		break;
 690	case REGULATOR_STATUS_ERROR:
 691		label = "error";
 692		break;
 693	case REGULATOR_STATUS_FAST:
 694		label = "fast";
 695		break;
 696	case REGULATOR_STATUS_NORMAL:
 697		label = "normal";
 698		break;
 699	case REGULATOR_STATUS_IDLE:
 700		label = "idle";
 701		break;
 702	case REGULATOR_STATUS_STANDBY:
 703		label = "standby";
 704		break;
 705	case REGULATOR_STATUS_BYPASS:
 706		label = "bypass";
 707		break;
 708	case REGULATOR_STATUS_UNDEFINED:
 709		label = "undefined";
 710		break;
 711	default:
 712		return -ERANGE;
 713	}
 714
 715	return sprintf(buf, "%s\n", label);
 716}
 717static DEVICE_ATTR_RO(status);
 718
 719static ssize_t min_microamps_show(struct device *dev,
 720				  struct device_attribute *attr, char *buf)
 721{
 722	struct regulator_dev *rdev = dev_get_drvdata(dev);
 723
 724	if (!rdev->constraints)
 725		return sprintf(buf, "constraint not defined\n");
 726
 727	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 728}
 729static DEVICE_ATTR_RO(min_microamps);
 730
 731static ssize_t max_microamps_show(struct device *dev,
 732				  struct device_attribute *attr, char *buf)
 733{
 734	struct regulator_dev *rdev = dev_get_drvdata(dev);
 735
 736	if (!rdev->constraints)
 737		return sprintf(buf, "constraint not defined\n");
 738
 739	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 740}
 741static DEVICE_ATTR_RO(max_microamps);
 742
 743static ssize_t min_microvolts_show(struct device *dev,
 744				   struct device_attribute *attr, char *buf)
 745{
 746	struct regulator_dev *rdev = dev_get_drvdata(dev);
 747
 748	if (!rdev->constraints)
 749		return sprintf(buf, "constraint not defined\n");
 750
 751	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 752}
 753static DEVICE_ATTR_RO(min_microvolts);
 754
 755static ssize_t max_microvolts_show(struct device *dev,
 756				   struct device_attribute *attr, char *buf)
 757{
 758	struct regulator_dev *rdev = dev_get_drvdata(dev);
 759
 760	if (!rdev->constraints)
 761		return sprintf(buf, "constraint not defined\n");
 762
 763	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 764}
 765static DEVICE_ATTR_RO(max_microvolts);
 766
 767static ssize_t requested_microamps_show(struct device *dev,
 768					struct device_attribute *attr, char *buf)
 769{
 770	struct regulator_dev *rdev = dev_get_drvdata(dev);
 771	struct regulator *regulator;
 772	int uA = 0;
 773
 774	regulator_lock(rdev);
 775	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 776		if (regulator->enable_count)
 777			uA += regulator->uA_load;
 778	}
 779	regulator_unlock(rdev);
 780	return sprintf(buf, "%d\n", uA);
 781}
 782static DEVICE_ATTR_RO(requested_microamps);
 783
 784static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 785			      char *buf)
 786{
 787	struct regulator_dev *rdev = dev_get_drvdata(dev);
 788	return sprintf(buf, "%d\n", rdev->use_count);
 789}
 790static DEVICE_ATTR_RO(num_users);
 791
 792static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 793			 char *buf)
 794{
 795	struct regulator_dev *rdev = dev_get_drvdata(dev);
 796
 797	switch (rdev->desc->type) {
 798	case REGULATOR_VOLTAGE:
 799		return sprintf(buf, "voltage\n");
 800	case REGULATOR_CURRENT:
 801		return sprintf(buf, "current\n");
 802	}
 803	return sprintf(buf, "unknown\n");
 804}
 805static DEVICE_ATTR_RO(type);
 806
 807static ssize_t suspend_mem_microvolts_show(struct device *dev,
 808					   struct device_attribute *attr, char *buf)
 809{
 810	struct regulator_dev *rdev = dev_get_drvdata(dev);
 811
 812	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 813}
 814static DEVICE_ATTR_RO(suspend_mem_microvolts);
 815
 816static ssize_t suspend_disk_microvolts_show(struct device *dev,
 817					    struct device_attribute *attr, char *buf)
 818{
 819	struct regulator_dev *rdev = dev_get_drvdata(dev);
 820
 821	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 822}
 823static DEVICE_ATTR_RO(suspend_disk_microvolts);
 824
 825static ssize_t suspend_standby_microvolts_show(struct device *dev,
 826					       struct device_attribute *attr, char *buf)
 827{
 828	struct regulator_dev *rdev = dev_get_drvdata(dev);
 829
 830	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 831}
 832static DEVICE_ATTR_RO(suspend_standby_microvolts);
 833
 834static ssize_t suspend_mem_mode_show(struct device *dev,
 835				     struct device_attribute *attr, char *buf)
 836{
 837	struct regulator_dev *rdev = dev_get_drvdata(dev);
 838
 839	return regulator_print_opmode(buf,
 840		rdev->constraints->state_mem.mode);
 841}
 842static DEVICE_ATTR_RO(suspend_mem_mode);
 843
 844static ssize_t suspend_disk_mode_show(struct device *dev,
 845				      struct device_attribute *attr, char *buf)
 846{
 847	struct regulator_dev *rdev = dev_get_drvdata(dev);
 848
 849	return regulator_print_opmode(buf,
 850		rdev->constraints->state_disk.mode);
 851}
 852static DEVICE_ATTR_RO(suspend_disk_mode);
 853
 854static ssize_t suspend_standby_mode_show(struct device *dev,
 855					 struct device_attribute *attr, char *buf)
 856{
 857	struct regulator_dev *rdev = dev_get_drvdata(dev);
 858
 859	return regulator_print_opmode(buf,
 860		rdev->constraints->state_standby.mode);
 861}
 862static DEVICE_ATTR_RO(suspend_standby_mode);
 863
 864static ssize_t suspend_mem_state_show(struct device *dev,
 865				      struct device_attribute *attr, char *buf)
 866{
 867	struct regulator_dev *rdev = dev_get_drvdata(dev);
 868
 869	return regulator_print_state(buf,
 870			rdev->constraints->state_mem.enabled);
 871}
 872static DEVICE_ATTR_RO(suspend_mem_state);
 873
 874static ssize_t suspend_disk_state_show(struct device *dev,
 875				       struct device_attribute *attr, char *buf)
 876{
 877	struct regulator_dev *rdev = dev_get_drvdata(dev);
 878
 879	return regulator_print_state(buf,
 880			rdev->constraints->state_disk.enabled);
 881}
 882static DEVICE_ATTR_RO(suspend_disk_state);
 883
 884static ssize_t suspend_standby_state_show(struct device *dev,
 885					  struct device_attribute *attr, char *buf)
 886{
 887	struct regulator_dev *rdev = dev_get_drvdata(dev);
 888
 889	return regulator_print_state(buf,
 890			rdev->constraints->state_standby.enabled);
 891}
 892static DEVICE_ATTR_RO(suspend_standby_state);
 893
 894static ssize_t bypass_show(struct device *dev,
 895			   struct device_attribute *attr, char *buf)
 896{
 897	struct regulator_dev *rdev = dev_get_drvdata(dev);
 898	const char *report;
 899	bool bypass;
 900	int ret;
 901
 902	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 903
 904	if (ret != 0)
 905		report = "unknown";
 906	else if (bypass)
 907		report = "enabled";
 908	else
 909		report = "disabled";
 910
 911	return sprintf(buf, "%s\n", report);
 912}
 913static DEVICE_ATTR_RO(bypass);
 914
 915#define REGULATOR_ERROR_ATTR(name, bit)							\
 916	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 917				   char *buf)						\
 918	{										\
 919		int ret;								\
 920		unsigned int flags;							\
 921		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 922		ret = _regulator_get_error_flags(rdev, &flags);				\
 923		if (ret)								\
 924			return ret;							\
 925		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 926	}										\
 927	static DEVICE_ATTR_RO(name)
 928
 929REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 930REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 931REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
 932REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
 933REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
 934REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
 935REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
 936REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
 937REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
 938
 939/* Calculate the new optimum regulator operating mode based on the new total
 940 * consumer load. All locks held by caller
 941 */
 942static int drms_uA_update(struct regulator_dev *rdev)
 943{
 944	struct regulator *sibling;
 945	int current_uA = 0, output_uV, input_uV, err;
 946	unsigned int mode;
 947
 948	/*
 949	 * first check to see if we can set modes at all, otherwise just
 950	 * tell the consumer everything is OK.
 951	 */
 952	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 953		rdev_dbg(rdev, "DRMS operation not allowed\n");
 954		return 0;
 955	}
 956
 957	if (!rdev->desc->ops->get_optimum_mode &&
 958	    !rdev->desc->ops->set_load)
 959		return 0;
 960
 961	if (!rdev->desc->ops->set_mode &&
 962	    !rdev->desc->ops->set_load)
 963		return -EINVAL;
 964
 965	/* calc total requested load */
 966	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 967		if (sibling->enable_count)
 968			current_uA += sibling->uA_load;
 969	}
 970
 971	current_uA += rdev->constraints->system_load;
 972
 973	if (rdev->desc->ops->set_load) {
 974		/* set the optimum mode for our new total regulator load */
 975		err = rdev->desc->ops->set_load(rdev, current_uA);
 976		if (err < 0)
 977			rdev_err(rdev, "failed to set load %d: %pe\n",
 978				 current_uA, ERR_PTR(err));
 979	} else {
 980		/*
 981		 * Unfortunately in some cases the constraints->valid_ops has
 982		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
 983		 * That's not really legit but we won't consider it a fatal
 984		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
 985		 * wasn't set.
 986		 */
 987		if (!rdev->constraints->valid_modes_mask) {
 988			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
 989			return 0;
 990		}
 991
 992		/* get output voltage */
 993		output_uV = regulator_get_voltage_rdev(rdev);
 994
 995		/*
 996		 * Don't return an error; if regulator driver cares about
 997		 * output_uV then it's up to the driver to validate.
 998		 */
 999		if (output_uV <= 0)
1000			rdev_dbg(rdev, "invalid output voltage found\n");
1001
1002		/* get input voltage */
1003		input_uV = 0;
1004		if (rdev->supply)
1005			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1006		if (input_uV <= 0)
1007			input_uV = rdev->constraints->input_uV;
1008
1009		/*
1010		 * Don't return an error; if regulator driver cares about
1011		 * input_uV then it's up to the driver to validate.
1012		 */
1013		if (input_uV <= 0)
1014			rdev_dbg(rdev, "invalid input voltage found\n");
1015
1016		/* now get the optimum mode for our new total regulator load */
1017		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1018							 output_uV, current_uA);
1019
1020		/* check the new mode is allowed */
1021		err = regulator_mode_constrain(rdev, &mode);
1022		if (err < 0) {
1023			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1024				 current_uA, input_uV, output_uV, ERR_PTR(err));
1025			return err;
1026		}
1027
1028		err = rdev->desc->ops->set_mode(rdev, mode);
1029		if (err < 0)
1030			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1031				 mode, ERR_PTR(err));
1032	}
1033
1034	return err;
1035}
1036
1037static int __suspend_set_state(struct regulator_dev *rdev,
1038			       const struct regulator_state *rstate)
1039{
1040	int ret = 0;
1041
1042	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1043		rdev->desc->ops->set_suspend_enable)
1044		ret = rdev->desc->ops->set_suspend_enable(rdev);
1045	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1046		rdev->desc->ops->set_suspend_disable)
1047		ret = rdev->desc->ops->set_suspend_disable(rdev);
1048	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1049		ret = 0;
1050
1051	if (ret < 0) {
1052		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053		return ret;
1054	}
1055
1056	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1057		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1058		if (ret < 0) {
1059			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060			return ret;
1061		}
1062	}
1063
1064	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1065		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1066		if (ret < 0) {
1067			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068			return ret;
1069		}
1070	}
1071
1072	return ret;
1073}
1074
1075static int suspend_set_initial_state(struct regulator_dev *rdev)
1076{
1077	const struct regulator_state *rstate;
1078
1079	rstate = regulator_get_suspend_state_check(rdev,
1080			rdev->constraints->initial_state);
1081	if (!rstate)
1082		return 0;
1083
1084	return __suspend_set_state(rdev, rstate);
1085}
1086
1087#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1088static void print_constraints_debug(struct regulator_dev *rdev)
1089{
1090	struct regulation_constraints *constraints = rdev->constraints;
1091	char buf[160] = "";
1092	size_t len = sizeof(buf) - 1;
1093	int count = 0;
1094	int ret;
1095
1096	if (constraints->min_uV && constraints->max_uV) {
1097		if (constraints->min_uV == constraints->max_uV)
1098			count += scnprintf(buf + count, len - count, "%d mV ",
1099					   constraints->min_uV / 1000);
1100		else
1101			count += scnprintf(buf + count, len - count,
1102					   "%d <--> %d mV ",
1103					   constraints->min_uV / 1000,
1104					   constraints->max_uV / 1000);
1105	}
1106
1107	if (!constraints->min_uV ||
1108	    constraints->min_uV != constraints->max_uV) {
1109		ret = regulator_get_voltage_rdev(rdev);
1110		if (ret > 0)
1111			count += scnprintf(buf + count, len - count,
1112					   "at %d mV ", ret / 1000);
1113	}
1114
1115	if (constraints->uV_offset)
1116		count += scnprintf(buf + count, len - count, "%dmV offset ",
1117				   constraints->uV_offset / 1000);
1118
1119	if (constraints->min_uA && constraints->max_uA) {
1120		if (constraints->min_uA == constraints->max_uA)
1121			count += scnprintf(buf + count, len - count, "%d mA ",
1122					   constraints->min_uA / 1000);
1123		else
1124			count += scnprintf(buf + count, len - count,
1125					   "%d <--> %d mA ",
1126					   constraints->min_uA / 1000,
1127					   constraints->max_uA / 1000);
1128	}
1129
1130	if (!constraints->min_uA ||
1131	    constraints->min_uA != constraints->max_uA) {
1132		ret = _regulator_get_current_limit(rdev);
1133		if (ret > 0)
1134			count += scnprintf(buf + count, len - count,
1135					   "at %d mA ", ret / 1000);
1136	}
1137
1138	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139		count += scnprintf(buf + count, len - count, "fast ");
1140	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141		count += scnprintf(buf + count, len - count, "normal ");
1142	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143		count += scnprintf(buf + count, len - count, "idle ");
1144	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145		count += scnprintf(buf + count, len - count, "standby ");
1146
1147	if (!count)
1148		count = scnprintf(buf, len, "no parameters");
1149	else
1150		--count;
1151
1152	count += scnprintf(buf + count, len - count, ", %s",
1153		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154
1155	rdev_dbg(rdev, "%s\n", buf);
1156}
1157#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1158static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1159#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1160
1161static void print_constraints(struct regulator_dev *rdev)
1162{
1163	struct regulation_constraints *constraints = rdev->constraints;
1164
1165	print_constraints_debug(rdev);
1166
1167	if ((constraints->min_uV != constraints->max_uV) &&
1168	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169		rdev_warn(rdev,
1170			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171}
1172
1173static int machine_constraints_voltage(struct regulator_dev *rdev,
1174	struct regulation_constraints *constraints)
1175{
1176	const struct regulator_ops *ops = rdev->desc->ops;
1177	int ret;
1178
1179	/* do we need to apply the constraint voltage */
1180	if (rdev->constraints->apply_uV &&
1181	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1182		int target_min, target_max;
1183		int current_uV = regulator_get_voltage_rdev(rdev);
1184
1185		if (current_uV == -ENOTRECOVERABLE) {
1186			/* This regulator can't be read and must be initialized */
1187			rdev_info(rdev, "Setting %d-%duV\n",
1188				  rdev->constraints->min_uV,
1189				  rdev->constraints->max_uV);
1190			_regulator_do_set_voltage(rdev,
1191						  rdev->constraints->min_uV,
1192						  rdev->constraints->max_uV);
1193			current_uV = regulator_get_voltage_rdev(rdev);
1194		}
1195
1196		if (current_uV < 0) {
1197			if (current_uV != -EPROBE_DEFER)
1198				rdev_err(rdev,
1199					 "failed to get the current voltage: %pe\n",
1200					 ERR_PTR(current_uV));
1201			return current_uV;
1202		}
1203
1204		/*
1205		 * If we're below the minimum voltage move up to the
1206		 * minimum voltage, if we're above the maximum voltage
1207		 * then move down to the maximum.
1208		 */
1209		target_min = current_uV;
1210		target_max = current_uV;
1211
1212		if (current_uV < rdev->constraints->min_uV) {
1213			target_min = rdev->constraints->min_uV;
1214			target_max = rdev->constraints->min_uV;
1215		}
1216
1217		if (current_uV > rdev->constraints->max_uV) {
1218			target_min = rdev->constraints->max_uV;
1219			target_max = rdev->constraints->max_uV;
1220		}
1221
1222		if (target_min != current_uV || target_max != current_uV) {
1223			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1224				  current_uV, target_min, target_max);
1225			ret = _regulator_do_set_voltage(
1226				rdev, target_min, target_max);
1227			if (ret < 0) {
1228				rdev_err(rdev,
1229					"failed to apply %d-%duV constraint: %pe\n",
1230					target_min, target_max, ERR_PTR(ret));
1231				return ret;
1232			}
1233		}
1234	}
1235
1236	/* constrain machine-level voltage specs to fit
1237	 * the actual range supported by this regulator.
1238	 */
1239	if (ops->list_voltage && rdev->desc->n_voltages) {
1240		int	count = rdev->desc->n_voltages;
1241		int	i;
1242		int	min_uV = INT_MAX;
1243		int	max_uV = INT_MIN;
1244		int	cmin = constraints->min_uV;
1245		int	cmax = constraints->max_uV;
1246
1247		/* it's safe to autoconfigure fixed-voltage supplies
1248		 * and the constraints are used by list_voltage.
1249		 */
1250		if (count == 1 && !cmin) {
1251			cmin = 1;
1252			cmax = INT_MAX;
1253			constraints->min_uV = cmin;
1254			constraints->max_uV = cmax;
1255		}
1256
1257		/* voltage constraints are optional */
1258		if ((cmin == 0) && (cmax == 0))
1259			return 0;
1260
1261		/* else require explicit machine-level constraints */
1262		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263			rdev_err(rdev, "invalid voltage constraints\n");
1264			return -EINVAL;
1265		}
1266
1267		/* no need to loop voltages if range is continuous */
1268		if (rdev->desc->continuous_voltage_range)
1269			return 0;
1270
1271		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1272		for (i = 0; i < count; i++) {
1273			int	value;
1274
1275			value = ops->list_voltage(rdev, i);
1276			if (value <= 0)
1277				continue;
1278
1279			/* maybe adjust [min_uV..max_uV] */
1280			if (value >= cmin && value < min_uV)
1281				min_uV = value;
1282			if (value <= cmax && value > max_uV)
1283				max_uV = value;
1284		}
1285
1286		/* final: [min_uV..max_uV] valid iff constraints valid */
1287		if (max_uV < min_uV) {
1288			rdev_err(rdev,
1289				 "unsupportable voltage constraints %u-%uuV\n",
1290				 min_uV, max_uV);
1291			return -EINVAL;
1292		}
1293
1294		/* use regulator's subset of machine constraints */
1295		if (constraints->min_uV < min_uV) {
1296			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1297				 constraints->min_uV, min_uV);
1298			constraints->min_uV = min_uV;
1299		}
1300		if (constraints->max_uV > max_uV) {
1301			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1302				 constraints->max_uV, max_uV);
1303			constraints->max_uV = max_uV;
1304		}
1305	}
1306
1307	return 0;
1308}
1309
1310static int machine_constraints_current(struct regulator_dev *rdev,
1311	struct regulation_constraints *constraints)
1312{
1313	const struct regulator_ops *ops = rdev->desc->ops;
1314	int ret;
1315
1316	if (!constraints->min_uA && !constraints->max_uA)
1317		return 0;
1318
1319	if (constraints->min_uA > constraints->max_uA) {
1320		rdev_err(rdev, "Invalid current constraints\n");
1321		return -EINVAL;
1322	}
1323
1324	if (!ops->set_current_limit || !ops->get_current_limit) {
1325		rdev_warn(rdev, "Operation of current configuration missing\n");
1326		return 0;
1327	}
1328
1329	/* Set regulator current in constraints range */
1330	ret = ops->set_current_limit(rdev, constraints->min_uA,
1331			constraints->max_uA);
1332	if (ret < 0) {
1333		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1334		return ret;
1335	}
1336
1337	return 0;
1338}
1339
1340static int _regulator_do_enable(struct regulator_dev *rdev);
1341
1342static int notif_set_limit(struct regulator_dev *rdev,
1343			   int (*set)(struct regulator_dev *, int, int, bool),
1344			   int limit, int severity)
1345{
1346	bool enable;
1347
1348	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1349		enable = false;
1350		limit = 0;
1351	} else {
1352		enable = true;
1353	}
1354
1355	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1356		limit = 0;
1357
1358	return set(rdev, limit, severity, enable);
1359}
1360
1361static int handle_notify_limits(struct regulator_dev *rdev,
1362			int (*set)(struct regulator_dev *, int, int, bool),
1363			struct notification_limit *limits)
1364{
1365	int ret = 0;
1366
1367	if (!set)
1368		return -EOPNOTSUPP;
1369
1370	if (limits->prot)
1371		ret = notif_set_limit(rdev, set, limits->prot,
1372				      REGULATOR_SEVERITY_PROT);
1373	if (ret)
1374		return ret;
1375
1376	if (limits->err)
1377		ret = notif_set_limit(rdev, set, limits->err,
1378				      REGULATOR_SEVERITY_ERR);
1379	if (ret)
1380		return ret;
1381
1382	if (limits->warn)
1383		ret = notif_set_limit(rdev, set, limits->warn,
1384				      REGULATOR_SEVERITY_WARN);
1385
1386	return ret;
1387}
1388/**
1389 * set_machine_constraints - sets regulator constraints
1390 * @rdev: regulator source
1391 *
1392 * Allows platform initialisation code to define and constrain
1393 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394 * Constraints *must* be set by platform code in order for some
1395 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396 * set_mode.
 
 
1397 */
1398static int set_machine_constraints(struct regulator_dev *rdev)
1399{
1400	int ret = 0;
1401	const struct regulator_ops *ops = rdev->desc->ops;
1402
1403	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404	if (ret != 0)
1405		return ret;
1406
1407	ret = machine_constraints_current(rdev, rdev->constraints);
1408	if (ret != 0)
1409		return ret;
1410
1411	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412		ret = ops->set_input_current_limit(rdev,
1413						   rdev->constraints->ilim_uA);
1414		if (ret < 0) {
1415			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416			return ret;
1417		}
1418	}
1419
1420	/* do we need to setup our suspend state */
1421	if (rdev->constraints->initial_state) {
1422		ret = suspend_set_initial_state(rdev);
1423		if (ret < 0) {
1424			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425			return ret;
1426		}
1427	}
1428
1429	if (rdev->constraints->initial_mode) {
1430		if (!ops->set_mode) {
1431			rdev_err(rdev, "no set_mode operation\n");
1432			return -EINVAL;
1433		}
1434
1435		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436		if (ret < 0) {
1437			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438			return ret;
1439		}
1440	} else if (rdev->constraints->system_load) {
1441		/*
1442		 * We'll only apply the initial system load if an
1443		 * initial mode wasn't specified.
1444		 */
1445		drms_uA_update(rdev);
1446	}
1447
1448	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449		&& ops->set_ramp_delay) {
1450		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451		if (ret < 0) {
1452			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453			return ret;
1454		}
1455	}
1456
1457	if (rdev->constraints->pull_down && ops->set_pull_down) {
1458		ret = ops->set_pull_down(rdev);
1459		if (ret < 0) {
1460			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461			return ret;
1462		}
1463	}
1464
1465	if (rdev->constraints->soft_start && ops->set_soft_start) {
1466		ret = ops->set_soft_start(rdev);
1467		if (ret < 0) {
1468			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469			return ret;
1470		}
1471	}
1472
1473	/*
1474	 * Existing logic does not warn if over_current_protection is given as
1475	 * a constraint but driver does not support that. I think we should
1476	 * warn about this type of issues as it is possible someone changes
1477	 * PMIC on board to another type - and the another PMIC's driver does
1478	 * not support setting protection. Board composer may happily believe
1479	 * the DT limits are respected - especially if the new PMIC HW also
1480	 * supports protection but the driver does not. I won't change the logic
1481	 * without hearing more experienced opinion on this though.
1482	 *
1483	 * If warning is seen as a good idea then we can merge handling the
1484	 * over-curret protection and detection and get rid of this special
1485	 * handling.
1486	 */
1487	if (rdev->constraints->over_current_protection
1488		&& ops->set_over_current_protection) {
1489		int lim = rdev->constraints->over_curr_limits.prot;
1490
1491		ret = ops->set_over_current_protection(rdev, lim,
1492						       REGULATOR_SEVERITY_PROT,
1493						       true);
1494		if (ret < 0) {
1495			rdev_err(rdev, "failed to set over current protection: %pe\n",
1496				 ERR_PTR(ret));
1497			return ret;
1498		}
1499	}
1500
1501	if (rdev->constraints->over_current_detection)
1502		ret = handle_notify_limits(rdev,
1503					   ops->set_over_current_protection,
1504					   &rdev->constraints->over_curr_limits);
1505	if (ret) {
1506		if (ret != -EOPNOTSUPP) {
1507			rdev_err(rdev, "failed to set over current limits: %pe\n",
1508				 ERR_PTR(ret));
1509			return ret;
1510		}
1511		rdev_warn(rdev,
1512			  "IC does not support requested over-current limits\n");
1513	}
1514
1515	if (rdev->constraints->over_voltage_detection)
1516		ret = handle_notify_limits(rdev,
1517					   ops->set_over_voltage_protection,
1518					   &rdev->constraints->over_voltage_limits);
1519	if (ret) {
1520		if (ret != -EOPNOTSUPP) {
1521			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1522				 ERR_PTR(ret));
1523			return ret;
1524		}
1525		rdev_warn(rdev,
1526			  "IC does not support requested over voltage limits\n");
1527	}
1528
1529	if (rdev->constraints->under_voltage_detection)
1530		ret = handle_notify_limits(rdev,
1531					   ops->set_under_voltage_protection,
1532					   &rdev->constraints->under_voltage_limits);
1533	if (ret) {
1534		if (ret != -EOPNOTSUPP) {
1535			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1536				 ERR_PTR(ret));
1537			return ret;
1538		}
1539		rdev_warn(rdev,
1540			  "IC does not support requested under voltage limits\n");
1541	}
1542
1543	if (rdev->constraints->over_temp_detection)
1544		ret = handle_notify_limits(rdev,
1545					   ops->set_thermal_protection,
1546					   &rdev->constraints->temp_limits);
1547	if (ret) {
1548		if (ret != -EOPNOTSUPP) {
1549			rdev_err(rdev, "failed to set temperature limits %pe\n",
1550				 ERR_PTR(ret));
1551			return ret;
1552		}
1553		rdev_warn(rdev,
1554			  "IC does not support requested temperature limits\n");
1555	}
1556
1557	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1558		bool ad_state = (rdev->constraints->active_discharge ==
1559			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1560
1561		ret = ops->set_active_discharge(rdev, ad_state);
1562		if (ret < 0) {
1563			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564			return ret;
1565		}
1566	}
1567
1568	/*
1569	 * If there is no mechanism for controlling the regulator then
1570	 * flag it as always_on so we don't end up duplicating checks
1571	 * for this so much.  Note that we could control the state of
1572	 * a supply to control the output on a regulator that has no
1573	 * direct control.
1574	 */
1575	if (!rdev->ena_pin && !ops->enable) {
1576		if (rdev->supply_name && !rdev->supply)
1577			return -EPROBE_DEFER;
1578
1579		if (rdev->supply)
1580			rdev->constraints->always_on =
1581				rdev->supply->rdev->constraints->always_on;
1582		else
1583			rdev->constraints->always_on = true;
1584	}
1585
1586	if (rdev->desc->off_on_delay)
1587		rdev->last_off = ktime_get();
1588
1589	/* If the constraints say the regulator should be on at this point
1590	 * and we have control then make sure it is enabled.
1591	 */
1592	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593		/* If we want to enable this regulator, make sure that we know
1594		 * the supplying regulator.
1595		 */
1596		if (rdev->supply_name && !rdev->supply)
1597			return -EPROBE_DEFER;
1598
1599		/* If supplying regulator has already been enabled,
1600		 * it's not intended to have use_count increment
1601		 * when rdev is only boot-on.
1602		 */
1603		if (rdev->supply &&
1604		    (rdev->constraints->always_on ||
1605		     !regulator_is_enabled(rdev->supply))) {
1606			ret = regulator_enable(rdev->supply);
1607			if (ret < 0) {
1608				_regulator_put(rdev->supply);
1609				rdev->supply = NULL;
1610				return ret;
1611			}
1612		}
1613
1614		ret = _regulator_do_enable(rdev);
1615		if (ret < 0 && ret != -EINVAL) {
1616			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1617			return ret;
1618		}
1619
1620		if (rdev->constraints->always_on)
1621			rdev->use_count++;
 
 
1622	}
1623
1624	print_constraints(rdev);
1625	return 0;
1626}
1627
1628/**
1629 * set_supply - set regulator supply regulator
1630 * @rdev: regulator name
1631 * @supply_rdev: supply regulator name
1632 *
1633 * Called by platform initialisation code to set the supply regulator for this
1634 * regulator. This ensures that a regulators supply will also be enabled by the
1635 * core if it's child is enabled.
 
 
1636 */
1637static int set_supply(struct regulator_dev *rdev,
1638		      struct regulator_dev *supply_rdev)
1639{
1640	int err;
1641
1642	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1643
1644	if (!try_module_get(supply_rdev->owner))
1645		return -ENODEV;
1646
1647	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1648	if (rdev->supply == NULL) {
1649		module_put(supply_rdev->owner);
1650		err = -ENOMEM;
1651		return err;
1652	}
1653	supply_rdev->open_count++;
1654
1655	return 0;
1656}
1657
1658/**
1659 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1660 * @rdev:         regulator source
1661 * @consumer_dev_name: dev_name() string for device supply applies to
1662 * @supply:       symbolic name for supply
1663 *
1664 * Allows platform initialisation code to map physical regulator
1665 * sources to symbolic names for supplies for use by devices.  Devices
1666 * should use these symbolic names to request regulators, avoiding the
1667 * need to provide board-specific regulator names as platform data.
 
 
1668 */
1669static int set_consumer_device_supply(struct regulator_dev *rdev,
1670				      const char *consumer_dev_name,
1671				      const char *supply)
1672{
1673	struct regulator_map *node, *new_node;
1674	int has_dev;
1675
1676	if (supply == NULL)
1677		return -EINVAL;
1678
1679	if (consumer_dev_name != NULL)
1680		has_dev = 1;
1681	else
1682		has_dev = 0;
1683
1684	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1685	if (new_node == NULL)
1686		return -ENOMEM;
1687
1688	new_node->regulator = rdev;
1689	new_node->supply = supply;
1690
1691	if (has_dev) {
1692		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1693		if (new_node->dev_name == NULL) {
1694			kfree(new_node);
1695			return -ENOMEM;
1696		}
1697	}
1698
1699	mutex_lock(&regulator_list_mutex);
1700	list_for_each_entry(node, &regulator_map_list, list) {
1701		if (node->dev_name && consumer_dev_name) {
1702			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1703				continue;
1704		} else if (node->dev_name || consumer_dev_name) {
1705			continue;
1706		}
1707
1708		if (strcmp(node->supply, supply) != 0)
1709			continue;
1710
1711		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1712			 consumer_dev_name,
1713			 dev_name(&node->regulator->dev),
1714			 node->regulator->desc->name,
1715			 supply,
1716			 dev_name(&rdev->dev), rdev_get_name(rdev));
1717		goto fail;
1718	}
1719
1720	list_add(&new_node->list, &regulator_map_list);
1721	mutex_unlock(&regulator_list_mutex);
1722
1723	return 0;
1724
1725fail:
1726	mutex_unlock(&regulator_list_mutex);
1727	kfree(new_node->dev_name);
1728	kfree(new_node);
1729	return -EBUSY;
1730}
1731
1732static void unset_regulator_supplies(struct regulator_dev *rdev)
1733{
1734	struct regulator_map *node, *n;
1735
1736	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1737		if (rdev == node->regulator) {
1738			list_del(&node->list);
1739			kfree(node->dev_name);
1740			kfree(node);
1741		}
1742	}
1743}
1744
1745#ifdef CONFIG_DEBUG_FS
1746static ssize_t constraint_flags_read_file(struct file *file,
1747					  char __user *user_buf,
1748					  size_t count, loff_t *ppos)
1749{
1750	const struct regulator *regulator = file->private_data;
1751	const struct regulation_constraints *c = regulator->rdev->constraints;
1752	char *buf;
1753	ssize_t ret;
1754
1755	if (!c)
1756		return 0;
1757
1758	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1759	if (!buf)
1760		return -ENOMEM;
1761
1762	ret = snprintf(buf, PAGE_SIZE,
1763			"always_on: %u\n"
1764			"boot_on: %u\n"
1765			"apply_uV: %u\n"
1766			"ramp_disable: %u\n"
1767			"soft_start: %u\n"
1768			"pull_down: %u\n"
1769			"over_current_protection: %u\n",
1770			c->always_on,
1771			c->boot_on,
1772			c->apply_uV,
1773			c->ramp_disable,
1774			c->soft_start,
1775			c->pull_down,
1776			c->over_current_protection);
1777
1778	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1779	kfree(buf);
1780
1781	return ret;
1782}
1783
1784#endif
1785
1786static const struct file_operations constraint_flags_fops = {
1787#ifdef CONFIG_DEBUG_FS
1788	.open = simple_open,
1789	.read = constraint_flags_read_file,
1790	.llseek = default_llseek,
1791#endif
1792};
1793
1794#define REG_STR_SIZE	64
1795
1796static struct regulator *create_regulator(struct regulator_dev *rdev,
1797					  struct device *dev,
1798					  const char *supply_name)
1799{
1800	struct regulator *regulator;
1801	int err = 0;
1802
 
 
1803	if (dev) {
1804		char buf[REG_STR_SIZE];
1805		int size;
1806
1807		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1808				dev->kobj.name, supply_name);
1809		if (size >= REG_STR_SIZE)
1810			return NULL;
1811
1812		supply_name = kstrdup(buf, GFP_KERNEL);
1813		if (supply_name == NULL)
1814			return NULL;
1815	} else {
1816		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1817		if (supply_name == NULL)
1818			return NULL;
1819	}
1820
1821	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1822	if (regulator == NULL) {
1823		kfree_const(supply_name);
1824		return NULL;
1825	}
1826
1827	regulator->rdev = rdev;
1828	regulator->supply_name = supply_name;
1829
1830	regulator_lock(rdev);
1831	list_add(&regulator->list, &rdev->consumer_list);
1832	regulator_unlock(rdev);
1833
1834	if (dev) {
1835		regulator->dev = dev;
1836
1837		/* Add a link to the device sysfs entry */
1838		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1839					       supply_name);
1840		if (err) {
1841			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1842				  dev->kobj.name, ERR_PTR(err));
1843			/* non-fatal */
1844		}
1845	}
1846
1847	if (err != -EEXIST)
1848		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1849	if (!regulator->debugfs) {
1850		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1851	} else {
 
 
 
 
1852		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1853				   &regulator->uA_load);
1854		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1855				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1856		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1857				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1858		debugfs_create_file("constraint_flags", 0444,
1859				    regulator->debugfs, regulator,
1860				    &constraint_flags_fops);
1861	}
1862
1863	/*
1864	 * Check now if the regulator is an always on regulator - if
1865	 * it is then we don't need to do nearly so much work for
1866	 * enable/disable calls.
1867	 */
1868	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1869	    _regulator_is_enabled(rdev))
1870		regulator->always_on = true;
1871
1872	return regulator;
1873}
1874
1875static int _regulator_get_enable_time(struct regulator_dev *rdev)
1876{
1877	if (rdev->constraints && rdev->constraints->enable_time)
1878		return rdev->constraints->enable_time;
1879	if (rdev->desc->ops->enable_time)
1880		return rdev->desc->ops->enable_time(rdev);
1881	return rdev->desc->enable_time;
1882}
1883
1884static struct regulator_supply_alias *regulator_find_supply_alias(
1885		struct device *dev, const char *supply)
1886{
1887	struct regulator_supply_alias *map;
1888
1889	list_for_each_entry(map, &regulator_supply_alias_list, list)
1890		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1891			return map;
1892
1893	return NULL;
1894}
1895
1896static void regulator_supply_alias(struct device **dev, const char **supply)
1897{
1898	struct regulator_supply_alias *map;
1899
1900	map = regulator_find_supply_alias(*dev, *supply);
1901	if (map) {
1902		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1903				*supply, map->alias_supply,
1904				dev_name(map->alias_dev));
1905		*dev = map->alias_dev;
1906		*supply = map->alias_supply;
1907	}
1908}
1909
1910static int regulator_match(struct device *dev, const void *data)
1911{
1912	struct regulator_dev *r = dev_to_rdev(dev);
1913
1914	return strcmp(rdev_get_name(r), data) == 0;
1915}
1916
1917static struct regulator_dev *regulator_lookup_by_name(const char *name)
1918{
1919	struct device *dev;
1920
1921	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1922
1923	return dev ? dev_to_rdev(dev) : NULL;
1924}
1925
1926/**
1927 * regulator_dev_lookup - lookup a regulator device.
1928 * @dev: device for regulator "consumer".
1929 * @supply: Supply name or regulator ID.
1930 *
 
 
1931 * If successful, returns a struct regulator_dev that corresponds to the name
1932 * @supply and with the embedded struct device refcount incremented by one.
1933 * The refcount must be dropped by calling put_device().
1934 * On failure one of the following ERR-PTR-encoded values is returned:
1935 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1936 * in the future.
1937 */
1938static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1939						  const char *supply)
1940{
1941	struct regulator_dev *r = NULL;
1942	struct device_node *node;
1943	struct regulator_map *map;
1944	const char *devname = NULL;
1945
1946	regulator_supply_alias(&dev, &supply);
1947
1948	/* first do a dt based lookup */
1949	if (dev && dev->of_node) {
1950		node = of_get_regulator(dev, supply);
1951		if (node) {
1952			r = of_find_regulator_by_node(node);
1953			of_node_put(node);
1954			if (r)
1955				return r;
1956
1957			/*
1958			 * We have a node, but there is no device.
1959			 * assume it has not registered yet.
1960			 */
1961			return ERR_PTR(-EPROBE_DEFER);
1962		}
1963	}
1964
1965	/* if not found, try doing it non-dt way */
1966	if (dev)
1967		devname = dev_name(dev);
1968
1969	mutex_lock(&regulator_list_mutex);
1970	list_for_each_entry(map, &regulator_map_list, list) {
1971		/* If the mapping has a device set up it must match */
1972		if (map->dev_name &&
1973		    (!devname || strcmp(map->dev_name, devname)))
1974			continue;
1975
1976		if (strcmp(map->supply, supply) == 0 &&
1977		    get_device(&map->regulator->dev)) {
1978			r = map->regulator;
1979			break;
1980		}
1981	}
1982	mutex_unlock(&regulator_list_mutex);
1983
1984	if (r)
1985		return r;
1986
1987	r = regulator_lookup_by_name(supply);
1988	if (r)
1989		return r;
1990
1991	return ERR_PTR(-ENODEV);
1992}
1993
1994static int regulator_resolve_supply(struct regulator_dev *rdev)
1995{
1996	struct regulator_dev *r;
1997	struct device *dev = rdev->dev.parent;
 
1998	int ret = 0;
1999
2000	/* No supply to resolve? */
2001	if (!rdev->supply_name)
2002		return 0;
2003
2004	/* Supply already resolved? (fast-path without locking contention) */
2005	if (rdev->supply)
2006		return 0;
2007
2008	r = regulator_dev_lookup(dev, rdev->supply_name);
2009	if (IS_ERR(r)) {
2010		ret = PTR_ERR(r);
2011
2012		/* Did the lookup explicitly defer for us? */
2013		if (ret == -EPROBE_DEFER)
2014			goto out;
2015
2016		if (have_full_constraints()) {
2017			r = dummy_regulator_rdev;
2018			get_device(&r->dev);
2019		} else {
2020			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2021				rdev->supply_name, rdev->desc->name);
2022			ret = -EPROBE_DEFER;
2023			goto out;
2024		}
2025	}
2026
2027	if (r == rdev) {
2028		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2029			rdev->desc->name, rdev->supply_name);
2030		if (!have_full_constraints()) {
2031			ret = -EINVAL;
2032			goto out;
2033		}
2034		r = dummy_regulator_rdev;
2035		get_device(&r->dev);
2036	}
2037
2038	/*
2039	 * If the supply's parent device is not the same as the
2040	 * regulator's parent device, then ensure the parent device
2041	 * is bound before we resolve the supply, in case the parent
2042	 * device get probe deferred and unregisters the supply.
2043	 */
2044	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2045		if (!device_is_bound(r->dev.parent)) {
2046			put_device(&r->dev);
2047			ret = -EPROBE_DEFER;
2048			goto out;
2049		}
2050	}
2051
2052	/* Recursively resolve the supply of the supply */
2053	ret = regulator_resolve_supply(r);
2054	if (ret < 0) {
2055		put_device(&r->dev);
2056		goto out;
2057	}
2058
2059	/*
2060	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2061	 * between rdev->supply null check and setting rdev->supply in
2062	 * set_supply() from concurrent tasks.
2063	 */
2064	regulator_lock(rdev);
2065
2066	/* Supply just resolved by a concurrent task? */
2067	if (rdev->supply) {
2068		regulator_unlock(rdev);
2069		put_device(&r->dev);
2070		goto out;
2071	}
2072
2073	ret = set_supply(rdev, r);
2074	if (ret < 0) {
2075		regulator_unlock(rdev);
2076		put_device(&r->dev);
2077		goto out;
2078	}
2079
2080	regulator_unlock(rdev);
2081
2082	/*
2083	 * In set_machine_constraints() we may have turned this regulator on
2084	 * but we couldn't propagate to the supply if it hadn't been resolved
2085	 * yet.  Do it now.
2086	 */
2087	if (rdev->use_count) {
2088		ret = regulator_enable(rdev->supply);
2089		if (ret < 0) {
2090			_regulator_put(rdev->supply);
2091			rdev->supply = NULL;
2092			goto out;
2093		}
2094	}
2095
2096out:
2097	return ret;
2098}
2099
2100/* Internal regulator request function */
2101struct regulator *_regulator_get(struct device *dev, const char *id,
2102				 enum regulator_get_type get_type)
2103{
2104	struct regulator_dev *rdev;
2105	struct regulator *regulator;
2106	struct device_link *link;
2107	int ret;
2108
2109	if (get_type >= MAX_GET_TYPE) {
2110		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2111		return ERR_PTR(-EINVAL);
2112	}
2113
2114	if (id == NULL) {
2115		pr_err("get() with no identifier\n");
2116		return ERR_PTR(-EINVAL);
2117	}
2118
2119	rdev = regulator_dev_lookup(dev, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2120	if (IS_ERR(rdev)) {
2121		ret = PTR_ERR(rdev);
2122
2123		/*
2124		 * If regulator_dev_lookup() fails with error other
2125		 * than -ENODEV our job here is done, we simply return it.
2126		 */
2127		if (ret != -ENODEV)
2128			return ERR_PTR(ret);
2129
2130		if (!have_full_constraints()) {
2131			dev_warn(dev,
2132				 "incomplete constraints, dummy supplies not allowed\n");
2133			return ERR_PTR(-ENODEV);
2134		}
2135
2136		switch (get_type) {
2137		case NORMAL_GET:
2138			/*
2139			 * Assume that a regulator is physically present and
2140			 * enabled, even if it isn't hooked up, and just
2141			 * provide a dummy.
2142			 */
2143			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2144			rdev = dummy_regulator_rdev;
2145			get_device(&rdev->dev);
2146			break;
2147
2148		case EXCLUSIVE_GET:
2149			dev_warn(dev,
2150				 "dummy supplies not allowed for exclusive requests\n");
2151			fallthrough;
2152
2153		default:
2154			return ERR_PTR(-ENODEV);
2155		}
2156	}
2157
2158	if (rdev->exclusive) {
2159		regulator = ERR_PTR(-EPERM);
2160		put_device(&rdev->dev);
2161		return regulator;
2162	}
2163
2164	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2165		regulator = ERR_PTR(-EBUSY);
2166		put_device(&rdev->dev);
2167		return regulator;
2168	}
2169
2170	mutex_lock(&regulator_list_mutex);
2171	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2172	mutex_unlock(&regulator_list_mutex);
2173
2174	if (ret != 0) {
2175		regulator = ERR_PTR(-EPROBE_DEFER);
2176		put_device(&rdev->dev);
2177		return regulator;
2178	}
2179
2180	ret = regulator_resolve_supply(rdev);
2181	if (ret < 0) {
2182		regulator = ERR_PTR(ret);
2183		put_device(&rdev->dev);
2184		return regulator;
2185	}
2186
2187	if (!try_module_get(rdev->owner)) {
2188		regulator = ERR_PTR(-EPROBE_DEFER);
2189		put_device(&rdev->dev);
2190		return regulator;
2191	}
2192
 
2193	regulator = create_regulator(rdev, dev, id);
 
2194	if (regulator == NULL) {
2195		regulator = ERR_PTR(-ENOMEM);
2196		module_put(rdev->owner);
2197		put_device(&rdev->dev);
2198		return regulator;
2199	}
2200
2201	rdev->open_count++;
2202	if (get_type == EXCLUSIVE_GET) {
2203		rdev->exclusive = 1;
2204
2205		ret = _regulator_is_enabled(rdev);
2206		if (ret > 0) {
2207			rdev->use_count = 1;
2208			regulator->enable_count = 1;
 
 
 
 
 
 
 
 
 
 
 
2209		} else {
2210			rdev->use_count = 0;
2211			regulator->enable_count = 0;
2212		}
2213	}
2214
2215	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2216	if (!IS_ERR_OR_NULL(link))
2217		regulator->device_link = true;
2218
2219	return regulator;
2220}
2221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222/**
2223 * regulator_get - lookup and obtain a reference to a regulator.
2224 * @dev: device for regulator "consumer"
2225 * @id: Supply name or regulator ID.
2226 *
2227 * Returns a struct regulator corresponding to the regulator producer,
2228 * or IS_ERR() condition containing errno.
2229 *
2230 * Use of supply names configured via set_consumer_device_supply() is
2231 * strongly encouraged.  It is recommended that the supply name used
2232 * should match the name used for the supply and/or the relevant
2233 * device pins in the datasheet.
 
 
 
2234 */
2235struct regulator *regulator_get(struct device *dev, const char *id)
2236{
2237	return _regulator_get(dev, id, NORMAL_GET);
2238}
2239EXPORT_SYMBOL_GPL(regulator_get);
2240
2241/**
2242 * regulator_get_exclusive - obtain exclusive access to a regulator.
2243 * @dev: device for regulator "consumer"
2244 * @id: Supply name or regulator ID.
2245 *
2246 * Returns a struct regulator corresponding to the regulator producer,
2247 * or IS_ERR() condition containing errno.  Other consumers will be
2248 * unable to obtain this regulator while this reference is held and the
2249 * use count for the regulator will be initialised to reflect the current
2250 * state of the regulator.
2251 *
2252 * This is intended for use by consumers which cannot tolerate shared
2253 * use of the regulator such as those which need to force the
2254 * regulator off for correct operation of the hardware they are
2255 * controlling.
2256 *
2257 * Use of supply names configured via set_consumer_device_supply() is
2258 * strongly encouraged.  It is recommended that the supply name used
2259 * should match the name used for the supply and/or the relevant
2260 * device pins in the datasheet.
 
 
 
2261 */
2262struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2263{
2264	return _regulator_get(dev, id, EXCLUSIVE_GET);
2265}
2266EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2267
2268/**
2269 * regulator_get_optional - obtain optional access to a regulator.
2270 * @dev: device for regulator "consumer"
2271 * @id: Supply name or regulator ID.
2272 *
2273 * Returns a struct regulator corresponding to the regulator producer,
2274 * or IS_ERR() condition containing errno.
2275 *
2276 * This is intended for use by consumers for devices which can have
2277 * some supplies unconnected in normal use, such as some MMC devices.
2278 * It can allow the regulator core to provide stub supplies for other
2279 * supplies requested using normal regulator_get() calls without
2280 * disrupting the operation of drivers that can handle absent
2281 * supplies.
2282 *
2283 * Use of supply names configured via set_consumer_device_supply() is
2284 * strongly encouraged.  It is recommended that the supply name used
2285 * should match the name used for the supply and/or the relevant
2286 * device pins in the datasheet.
 
 
 
2287 */
2288struct regulator *regulator_get_optional(struct device *dev, const char *id)
2289{
2290	return _regulator_get(dev, id, OPTIONAL_GET);
2291}
2292EXPORT_SYMBOL_GPL(regulator_get_optional);
2293
2294static void destroy_regulator(struct regulator *regulator)
2295{
2296	struct regulator_dev *rdev = regulator->rdev;
2297
2298	debugfs_remove_recursive(regulator->debugfs);
2299
2300	if (regulator->dev) {
2301		if (regulator->device_link)
2302			device_link_remove(regulator->dev, &rdev->dev);
2303
2304		/* remove any sysfs entries */
2305		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2306	}
2307
2308	regulator_lock(rdev);
2309	list_del(&regulator->list);
2310
2311	rdev->open_count--;
2312	rdev->exclusive = 0;
2313	regulator_unlock(rdev);
2314
2315	kfree_const(regulator->supply_name);
2316	kfree(regulator);
2317}
2318
2319/* regulator_list_mutex lock held by regulator_put() */
2320static void _regulator_put(struct regulator *regulator)
2321{
2322	struct regulator_dev *rdev;
2323
2324	if (IS_ERR_OR_NULL(regulator))
2325		return;
2326
2327	lockdep_assert_held_once(&regulator_list_mutex);
2328
2329	/* Docs say you must disable before calling regulator_put() */
2330	WARN_ON(regulator->enable_count);
2331
2332	rdev = regulator->rdev;
2333
2334	destroy_regulator(regulator);
2335
2336	module_put(rdev->owner);
2337	put_device(&rdev->dev);
2338}
2339
2340/**
2341 * regulator_put - "free" the regulator source
2342 * @regulator: regulator source
2343 *
2344 * Note: drivers must ensure that all regulator_enable calls made on this
2345 * regulator source are balanced by regulator_disable calls prior to calling
2346 * this function.
2347 */
2348void regulator_put(struct regulator *regulator)
2349{
2350	mutex_lock(&regulator_list_mutex);
2351	_regulator_put(regulator);
2352	mutex_unlock(&regulator_list_mutex);
2353}
2354EXPORT_SYMBOL_GPL(regulator_put);
2355
2356/**
2357 * regulator_register_supply_alias - Provide device alias for supply lookup
2358 *
2359 * @dev: device that will be given as the regulator "consumer"
2360 * @id: Supply name or regulator ID
2361 * @alias_dev: device that should be used to lookup the supply
2362 * @alias_id: Supply name or regulator ID that should be used to lookup the
2363 * supply
2364 *
2365 * All lookups for id on dev will instead be conducted for alias_id on
2366 * alias_dev.
 
 
2367 */
2368int regulator_register_supply_alias(struct device *dev, const char *id,
2369				    struct device *alias_dev,
2370				    const char *alias_id)
2371{
2372	struct regulator_supply_alias *map;
2373
2374	map = regulator_find_supply_alias(dev, id);
2375	if (map)
2376		return -EEXIST;
2377
2378	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2379	if (!map)
2380		return -ENOMEM;
2381
2382	map->src_dev = dev;
2383	map->src_supply = id;
2384	map->alias_dev = alias_dev;
2385	map->alias_supply = alias_id;
2386
2387	list_add(&map->list, &regulator_supply_alias_list);
2388
2389	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2390		id, dev_name(dev), alias_id, dev_name(alias_dev));
2391
2392	return 0;
2393}
2394EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2395
2396/**
2397 * regulator_unregister_supply_alias - Remove device alias
2398 *
2399 * @dev: device that will be given as the regulator "consumer"
2400 * @id: Supply name or regulator ID
2401 *
2402 * Remove a lookup alias if one exists for id on dev.
2403 */
2404void regulator_unregister_supply_alias(struct device *dev, const char *id)
2405{
2406	struct regulator_supply_alias *map;
2407
2408	map = regulator_find_supply_alias(dev, id);
2409	if (map) {
2410		list_del(&map->list);
2411		kfree(map);
2412	}
2413}
2414EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2415
2416/**
2417 * regulator_bulk_register_supply_alias - register multiple aliases
2418 *
2419 * @dev: device that will be given as the regulator "consumer"
2420 * @id: List of supply names or regulator IDs
2421 * @alias_dev: device that should be used to lookup the supply
2422 * @alias_id: List of supply names or regulator IDs that should be used to
2423 * lookup the supply
2424 * @num_id: Number of aliases to register
2425 *
2426 * @return 0 on success, an errno on failure.
2427 *
2428 * This helper function allows drivers to register several supply
2429 * aliases in one operation.  If any of the aliases cannot be
2430 * registered any aliases that were registered will be removed
2431 * before returning to the caller.
 
 
2432 */
2433int regulator_bulk_register_supply_alias(struct device *dev,
2434					 const char *const *id,
2435					 struct device *alias_dev,
2436					 const char *const *alias_id,
2437					 int num_id)
2438{
2439	int i;
2440	int ret;
2441
2442	for (i = 0; i < num_id; ++i) {
2443		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2444						      alias_id[i]);
2445		if (ret < 0)
2446			goto err;
2447	}
2448
2449	return 0;
2450
2451err:
2452	dev_err(dev,
2453		"Failed to create supply alias %s,%s -> %s,%s\n",
2454		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2455
2456	while (--i >= 0)
2457		regulator_unregister_supply_alias(dev, id[i]);
2458
2459	return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2462
2463/**
2464 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2465 *
2466 * @dev: device that will be given as the regulator "consumer"
2467 * @id: List of supply names or regulator IDs
2468 * @num_id: Number of aliases to unregister
2469 *
2470 * This helper function allows drivers to unregister several supply
2471 * aliases in one operation.
2472 */
2473void regulator_bulk_unregister_supply_alias(struct device *dev,
2474					    const char *const *id,
2475					    int num_id)
2476{
2477	int i;
2478
2479	for (i = 0; i < num_id; ++i)
2480		regulator_unregister_supply_alias(dev, id[i]);
2481}
2482EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2483
2484
2485/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2486static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2487				const struct regulator_config *config)
2488{
2489	struct regulator_enable_gpio *pin, *new_pin;
2490	struct gpio_desc *gpiod;
2491
2492	gpiod = config->ena_gpiod;
2493	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2494
2495	mutex_lock(&regulator_list_mutex);
2496
2497	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2498		if (pin->gpiod == gpiod) {
2499			rdev_dbg(rdev, "GPIO is already used\n");
2500			goto update_ena_gpio_to_rdev;
2501		}
2502	}
2503
2504	if (new_pin == NULL) {
2505		mutex_unlock(&regulator_list_mutex);
2506		return -ENOMEM;
2507	}
2508
2509	pin = new_pin;
2510	new_pin = NULL;
2511
2512	pin->gpiod = gpiod;
2513	list_add(&pin->list, &regulator_ena_gpio_list);
2514
2515update_ena_gpio_to_rdev:
2516	pin->request_count++;
2517	rdev->ena_pin = pin;
2518
2519	mutex_unlock(&regulator_list_mutex);
2520	kfree(new_pin);
2521
2522	return 0;
2523}
2524
2525static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2526{
2527	struct regulator_enable_gpio *pin, *n;
2528
2529	if (!rdev->ena_pin)
2530		return;
2531
2532	/* Free the GPIO only in case of no use */
2533	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2534		if (pin != rdev->ena_pin)
2535			continue;
2536
2537		if (--pin->request_count)
2538			break;
2539
2540		gpiod_put(pin->gpiod);
2541		list_del(&pin->list);
2542		kfree(pin);
2543		break;
2544	}
2545
2546	rdev->ena_pin = NULL;
2547}
2548
2549/**
2550 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2551 * @rdev: regulator_dev structure
2552 * @enable: enable GPIO at initial use?
2553 *
2554 * GPIO is enabled in case of initial use. (enable_count is 0)
2555 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 
 
2556 */
2557static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2558{
2559	struct regulator_enable_gpio *pin = rdev->ena_pin;
2560
2561	if (!pin)
2562		return -EINVAL;
2563
2564	if (enable) {
2565		/* Enable GPIO at initial use */
2566		if (pin->enable_count == 0)
2567			gpiod_set_value_cansleep(pin->gpiod, 1);
2568
2569		pin->enable_count++;
2570	} else {
2571		if (pin->enable_count > 1) {
2572			pin->enable_count--;
2573			return 0;
2574		}
2575
2576		/* Disable GPIO if not used */
2577		if (pin->enable_count <= 1) {
2578			gpiod_set_value_cansleep(pin->gpiod, 0);
2579			pin->enable_count = 0;
2580		}
2581	}
2582
2583	return 0;
2584}
2585
2586/**
2587 * _regulator_delay_helper - a delay helper function
2588 * @delay: time to delay in microseconds
2589 *
2590 * Delay for the requested amount of time as per the guidelines in:
2591 *
2592 *     Documentation/timers/timers-howto.rst
2593 *
2594 * The assumption here is that these regulator operations will never used in
2595 * atomic context and therefore sleeping functions can be used.
2596 */
2597static void _regulator_delay_helper(unsigned int delay)
2598{
2599	unsigned int ms = delay / 1000;
2600	unsigned int us = delay % 1000;
2601
2602	if (ms > 0) {
2603		/*
2604		 * For small enough values, handle super-millisecond
2605		 * delays in the usleep_range() call below.
2606		 */
2607		if (ms < 20)
2608			us += ms * 1000;
2609		else
2610			msleep(ms);
2611	}
2612
2613	/*
2614	 * Give the scheduler some room to coalesce with any other
2615	 * wakeup sources. For delays shorter than 10 us, don't even
2616	 * bother setting up high-resolution timers and just busy-
2617	 * loop.
2618	 */
2619	if (us >= 10)
2620		usleep_range(us, us + 100);
2621	else
2622		udelay(us);
2623}
2624
2625/**
2626 * _regulator_check_status_enabled
2627 *
2628 * A helper function to check if the regulator status can be interpreted
2629 * as 'regulator is enabled'.
2630 * @rdev: the regulator device to check
2631 *
2632 * Return:
2633 * * 1			- if status shows regulator is in enabled state
2634 * * 0			- if not enabled state
2635 * * Error Value	- as received from ops->get_status()
2636 */
2637static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2638{
2639	int ret = rdev->desc->ops->get_status(rdev);
2640
2641	if (ret < 0) {
2642		rdev_info(rdev, "get_status returned error: %d\n", ret);
2643		return ret;
2644	}
2645
2646	switch (ret) {
2647	case REGULATOR_STATUS_OFF:
2648	case REGULATOR_STATUS_ERROR:
2649	case REGULATOR_STATUS_UNDEFINED:
2650		return 0;
2651	default:
2652		return 1;
2653	}
2654}
2655
2656static int _regulator_do_enable(struct regulator_dev *rdev)
2657{
2658	int ret, delay;
2659
2660	/* Query before enabling in case configuration dependent.  */
2661	ret = _regulator_get_enable_time(rdev);
2662	if (ret >= 0) {
2663		delay = ret;
2664	} else {
2665		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2666		delay = 0;
2667	}
2668
2669	trace_regulator_enable(rdev_get_name(rdev));
2670
2671	if (rdev->desc->off_on_delay && rdev->last_off) {
2672		/* if needed, keep a distance of off_on_delay from last time
2673		 * this regulator was disabled.
2674		 */
2675		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2676		s64 remaining = ktime_us_delta(end, ktime_get());
2677
2678		if (remaining > 0)
2679			_regulator_delay_helper(remaining);
2680	}
2681
2682	if (rdev->ena_pin) {
2683		if (!rdev->ena_gpio_state) {
2684			ret = regulator_ena_gpio_ctrl(rdev, true);
2685			if (ret < 0)
2686				return ret;
2687			rdev->ena_gpio_state = 1;
2688		}
2689	} else if (rdev->desc->ops->enable) {
2690		ret = rdev->desc->ops->enable(rdev);
2691		if (ret < 0)
2692			return ret;
2693	} else {
2694		return -EINVAL;
2695	}
2696
2697	/* Allow the regulator to ramp; it would be useful to extend
2698	 * this for bulk operations so that the regulators can ramp
2699	 * together.
2700	 */
2701	trace_regulator_enable_delay(rdev_get_name(rdev));
2702
2703	/* If poll_enabled_time is set, poll upto the delay calculated
2704	 * above, delaying poll_enabled_time uS to check if the regulator
2705	 * actually got enabled.
2706	 * If the regulator isn't enabled after our delay helper has expired,
2707	 * return -ETIMEDOUT.
2708	 */
2709	if (rdev->desc->poll_enabled_time) {
2710		int time_remaining = delay;
2711
2712		while (time_remaining > 0) {
2713			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2714
2715			if (rdev->desc->ops->get_status) {
2716				ret = _regulator_check_status_enabled(rdev);
2717				if (ret < 0)
2718					return ret;
2719				else if (ret)
2720					break;
2721			} else if (rdev->desc->ops->is_enabled(rdev))
2722				break;
2723
2724			time_remaining -= rdev->desc->poll_enabled_time;
2725		}
2726
2727		if (time_remaining <= 0) {
2728			rdev_err(rdev, "Enabled check timed out\n");
2729			return -ETIMEDOUT;
2730		}
2731	} else {
2732		_regulator_delay_helper(delay);
2733	}
2734
2735	trace_regulator_enable_complete(rdev_get_name(rdev));
2736
2737	return 0;
2738}
2739
2740/**
2741 * _regulator_handle_consumer_enable - handle that a consumer enabled
2742 * @regulator: regulator source
2743 *
2744 * Some things on a regulator consumer (like the contribution towards total
2745 * load on the regulator) only have an effect when the consumer wants the
2746 * regulator enabled.  Explained in example with two consumers of the same
2747 * regulator:
2748 *   consumer A: set_load(100);       => total load = 0
2749 *   consumer A: regulator_enable();  => total load = 100
2750 *   consumer B: set_load(1000);      => total load = 100
2751 *   consumer B: regulator_enable();  => total load = 1100
2752 *   consumer A: regulator_disable(); => total_load = 1000
2753 *
2754 * This function (together with _regulator_handle_consumer_disable) is
2755 * responsible for keeping track of the refcount for a given regulator consumer
2756 * and applying / unapplying these things.
2757 *
2758 * Returns 0 upon no error; -error upon error.
2759 */
2760static int _regulator_handle_consumer_enable(struct regulator *regulator)
2761{
2762	int ret;
2763	struct regulator_dev *rdev = regulator->rdev;
2764
2765	lockdep_assert_held_once(&rdev->mutex.base);
2766
2767	regulator->enable_count++;
2768	if (regulator->uA_load && regulator->enable_count == 1) {
2769		ret = drms_uA_update(rdev);
2770		if (ret)
2771			regulator->enable_count--;
2772		return ret;
2773	}
2774
2775	return 0;
2776}
2777
2778/**
2779 * _regulator_handle_consumer_disable - handle that a consumer disabled
2780 * @regulator: regulator source
2781 *
2782 * The opposite of _regulator_handle_consumer_enable().
2783 *
2784 * Returns 0 upon no error; -error upon error.
2785 */
2786static int _regulator_handle_consumer_disable(struct regulator *regulator)
2787{
2788	struct regulator_dev *rdev = regulator->rdev;
2789
2790	lockdep_assert_held_once(&rdev->mutex.base);
2791
2792	if (!regulator->enable_count) {
2793		rdev_err(rdev, "Underflow of regulator enable count\n");
2794		return -EINVAL;
2795	}
2796
2797	regulator->enable_count--;
2798	if (regulator->uA_load && regulator->enable_count == 0)
2799		return drms_uA_update(rdev);
2800
2801	return 0;
2802}
2803
2804/* locks held by regulator_enable() */
2805static int _regulator_enable(struct regulator *regulator)
2806{
2807	struct regulator_dev *rdev = regulator->rdev;
2808	int ret;
2809
2810	lockdep_assert_held_once(&rdev->mutex.base);
2811
2812	if (rdev->use_count == 0 && rdev->supply) {
2813		ret = _regulator_enable(rdev->supply);
2814		if (ret < 0)
2815			return ret;
2816	}
2817
2818	/* balance only if there are regulators coupled */
2819	if (rdev->coupling_desc.n_coupled > 1) {
2820		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2821		if (ret < 0)
2822			goto err_disable_supply;
2823	}
2824
2825	ret = _regulator_handle_consumer_enable(regulator);
2826	if (ret < 0)
2827		goto err_disable_supply;
2828
2829	if (rdev->use_count == 0) {
2830		/*
2831		 * The regulator may already be enabled if it's not switchable
2832		 * or was left on
2833		 */
2834		ret = _regulator_is_enabled(rdev);
2835		if (ret == -EINVAL || ret == 0) {
2836			if (!regulator_ops_is_valid(rdev,
2837					REGULATOR_CHANGE_STATUS)) {
2838				ret = -EPERM;
2839				goto err_consumer_disable;
2840			}
2841
2842			ret = _regulator_do_enable(rdev);
2843			if (ret < 0)
2844				goto err_consumer_disable;
2845
2846			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2847					     NULL);
2848		} else if (ret < 0) {
2849			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2850			goto err_consumer_disable;
2851		}
2852		/* Fallthrough on positive return values - already enabled */
2853	}
2854
2855	rdev->use_count++;
 
2856
2857	return 0;
2858
2859err_consumer_disable:
2860	_regulator_handle_consumer_disable(regulator);
2861
2862err_disable_supply:
2863	if (rdev->use_count == 0 && rdev->supply)
2864		_regulator_disable(rdev->supply);
2865
2866	return ret;
2867}
2868
2869/**
2870 * regulator_enable - enable regulator output
2871 * @regulator: regulator source
2872 *
2873 * Request that the regulator be enabled with the regulator output at
2874 * the predefined voltage or current value.  Calls to regulator_enable()
2875 * must be balanced with calls to regulator_disable().
2876 *
2877 * NOTE: the output value can be set by other drivers, boot loader or may be
2878 * hardwired in the regulator.
 
 
2879 */
2880int regulator_enable(struct regulator *regulator)
2881{
2882	struct regulator_dev *rdev = regulator->rdev;
2883	struct ww_acquire_ctx ww_ctx;
2884	int ret;
2885
2886	regulator_lock_dependent(rdev, &ww_ctx);
2887	ret = _regulator_enable(regulator);
2888	regulator_unlock_dependent(rdev, &ww_ctx);
2889
2890	return ret;
2891}
2892EXPORT_SYMBOL_GPL(regulator_enable);
2893
2894static int _regulator_do_disable(struct regulator_dev *rdev)
2895{
2896	int ret;
2897
2898	trace_regulator_disable(rdev_get_name(rdev));
2899
2900	if (rdev->ena_pin) {
2901		if (rdev->ena_gpio_state) {
2902			ret = regulator_ena_gpio_ctrl(rdev, false);
2903			if (ret < 0)
2904				return ret;
2905			rdev->ena_gpio_state = 0;
2906		}
2907
2908	} else if (rdev->desc->ops->disable) {
2909		ret = rdev->desc->ops->disable(rdev);
2910		if (ret != 0)
2911			return ret;
2912	}
2913
2914	if (rdev->desc->off_on_delay)
2915		rdev->last_off = ktime_get();
2916
2917	trace_regulator_disable_complete(rdev_get_name(rdev));
2918
2919	return 0;
2920}
2921
2922/* locks held by regulator_disable() */
2923static int _regulator_disable(struct regulator *regulator)
2924{
2925	struct regulator_dev *rdev = regulator->rdev;
2926	int ret = 0;
2927
2928	lockdep_assert_held_once(&rdev->mutex.base);
2929
2930	if (WARN(rdev->use_count <= 0,
2931		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2932		return -EIO;
2933
2934	/* are we the last user and permitted to disable ? */
2935	if (rdev->use_count == 1 &&
2936	    (rdev->constraints && !rdev->constraints->always_on)) {
2937
2938		/* we are last user */
2939		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2940			ret = _notifier_call_chain(rdev,
2941						   REGULATOR_EVENT_PRE_DISABLE,
2942						   NULL);
2943			if (ret & NOTIFY_STOP_MASK)
2944				return -EINVAL;
2945
2946			ret = _regulator_do_disable(rdev);
2947			if (ret < 0) {
2948				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2949				_notifier_call_chain(rdev,
2950						REGULATOR_EVENT_ABORT_DISABLE,
 
 
 
 
 
 
2951						NULL);
2952				return ret;
2953			}
2954			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2955					NULL);
2956		}
2957
2958		rdev->use_count = 0;
2959	} else if (rdev->use_count > 1) {
2960		rdev->use_count--;
 
2961	}
2962
2963	if (ret == 0)
2964		ret = _regulator_handle_consumer_disable(regulator);
2965
2966	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2967		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2968
2969	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2970		ret = _regulator_disable(rdev->supply);
2971
2972	return ret;
2973}
2974
2975/**
2976 * regulator_disable - disable regulator output
2977 * @regulator: regulator source
2978 *
2979 * Disable the regulator output voltage or current.  Calls to
2980 * regulator_enable() must be balanced with calls to
2981 * regulator_disable().
2982 *
2983 * NOTE: this will only disable the regulator output if no other consumer
2984 * devices have it enabled, the regulator device supports disabling and
2985 * machine constraints permit this operation.
 
 
2986 */
2987int regulator_disable(struct regulator *regulator)
2988{
2989	struct regulator_dev *rdev = regulator->rdev;
2990	struct ww_acquire_ctx ww_ctx;
2991	int ret;
2992
2993	regulator_lock_dependent(rdev, &ww_ctx);
2994	ret = _regulator_disable(regulator);
2995	regulator_unlock_dependent(rdev, &ww_ctx);
2996
2997	return ret;
2998}
2999EXPORT_SYMBOL_GPL(regulator_disable);
3000
3001/* locks held by regulator_force_disable() */
3002static int _regulator_force_disable(struct regulator_dev *rdev)
3003{
3004	int ret = 0;
3005
3006	lockdep_assert_held_once(&rdev->mutex.base);
3007
3008	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3009			REGULATOR_EVENT_PRE_DISABLE, NULL);
3010	if (ret & NOTIFY_STOP_MASK)
3011		return -EINVAL;
3012
3013	ret = _regulator_do_disable(rdev);
3014	if (ret < 0) {
3015		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3016		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3017				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3018		return ret;
3019	}
3020
3021	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3022			REGULATOR_EVENT_DISABLE, NULL);
3023
3024	return 0;
3025}
3026
3027/**
3028 * regulator_force_disable - force disable regulator output
3029 * @regulator: regulator source
3030 *
3031 * Forcibly disable the regulator output voltage or current.
3032 * NOTE: this *will* disable the regulator output even if other consumer
3033 * devices have it enabled. This should be used for situations when device
3034 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 
 
3035 */
3036int regulator_force_disable(struct regulator *regulator)
3037{
3038	struct regulator_dev *rdev = regulator->rdev;
3039	struct ww_acquire_ctx ww_ctx;
3040	int ret;
3041
3042	regulator_lock_dependent(rdev, &ww_ctx);
3043
3044	ret = _regulator_force_disable(regulator->rdev);
3045
3046	if (rdev->coupling_desc.n_coupled > 1)
3047		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3048
3049	if (regulator->uA_load) {
3050		regulator->uA_load = 0;
3051		ret = drms_uA_update(rdev);
3052	}
3053
3054	if (rdev->use_count != 0 && rdev->supply)
3055		_regulator_disable(rdev->supply);
3056
3057	regulator_unlock_dependent(rdev, &ww_ctx);
3058
3059	return ret;
3060}
3061EXPORT_SYMBOL_GPL(regulator_force_disable);
3062
3063static void regulator_disable_work(struct work_struct *work)
3064{
3065	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3066						  disable_work.work);
3067	struct ww_acquire_ctx ww_ctx;
3068	int count, i, ret;
3069	struct regulator *regulator;
3070	int total_count = 0;
3071
3072	regulator_lock_dependent(rdev, &ww_ctx);
3073
3074	/*
3075	 * Workqueue functions queue the new work instance while the previous
3076	 * work instance is being processed. Cancel the queued work instance
3077	 * as the work instance under processing does the job of the queued
3078	 * work instance.
3079	 */
3080	cancel_delayed_work(&rdev->disable_work);
3081
3082	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3083		count = regulator->deferred_disables;
3084
3085		if (!count)
3086			continue;
3087
3088		total_count += count;
3089		regulator->deferred_disables = 0;
3090
3091		for (i = 0; i < count; i++) {
3092			ret = _regulator_disable(regulator);
3093			if (ret != 0)
3094				rdev_err(rdev, "Deferred disable failed: %pe\n",
3095					 ERR_PTR(ret));
3096		}
3097	}
3098	WARN_ON(!total_count);
3099
3100	if (rdev->coupling_desc.n_coupled > 1)
3101		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3102
3103	regulator_unlock_dependent(rdev, &ww_ctx);
3104}
3105
3106/**
3107 * regulator_disable_deferred - disable regulator output with delay
3108 * @regulator: regulator source
3109 * @ms: milliseconds until the regulator is disabled
3110 *
3111 * Execute regulator_disable() on the regulator after a delay.  This
3112 * is intended for use with devices that require some time to quiesce.
3113 *
3114 * NOTE: this will only disable the regulator output if no other consumer
3115 * devices have it enabled, the regulator device supports disabling and
3116 * machine constraints permit this operation.
 
 
3117 */
3118int regulator_disable_deferred(struct regulator *regulator, int ms)
3119{
3120	struct regulator_dev *rdev = regulator->rdev;
3121
3122	if (!ms)
3123		return regulator_disable(regulator);
3124
3125	regulator_lock(rdev);
3126	regulator->deferred_disables++;
3127	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3128			 msecs_to_jiffies(ms));
3129	regulator_unlock(rdev);
3130
3131	return 0;
3132}
3133EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3134
3135static int _regulator_is_enabled(struct regulator_dev *rdev)
3136{
3137	/* A GPIO control always takes precedence */
3138	if (rdev->ena_pin)
3139		return rdev->ena_gpio_state;
3140
3141	/* If we don't know then assume that the regulator is always on */
3142	if (!rdev->desc->ops->is_enabled)
3143		return 1;
3144
3145	return rdev->desc->ops->is_enabled(rdev);
3146}
3147
3148static int _regulator_list_voltage(struct regulator_dev *rdev,
3149				   unsigned selector, int lock)
3150{
3151	const struct regulator_ops *ops = rdev->desc->ops;
3152	int ret;
3153
3154	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3155		return rdev->desc->fixed_uV;
3156
3157	if (ops->list_voltage) {
3158		if (selector >= rdev->desc->n_voltages)
3159			return -EINVAL;
3160		if (selector < rdev->desc->linear_min_sel)
3161			return 0;
3162		if (lock)
3163			regulator_lock(rdev);
3164		ret = ops->list_voltage(rdev, selector);
3165		if (lock)
3166			regulator_unlock(rdev);
3167	} else if (rdev->is_switch && rdev->supply) {
3168		ret = _regulator_list_voltage(rdev->supply->rdev,
3169					      selector, lock);
3170	} else {
3171		return -EINVAL;
3172	}
3173
3174	if (ret > 0) {
3175		if (ret < rdev->constraints->min_uV)
3176			ret = 0;
3177		else if (ret > rdev->constraints->max_uV)
3178			ret = 0;
3179	}
3180
3181	return ret;
3182}
3183
3184/**
3185 * regulator_is_enabled - is the regulator output enabled
3186 * @regulator: regulator source
3187 *
3188 * Returns positive if the regulator driver backing the source/client
3189 * has requested that the device be enabled, zero if it hasn't, else a
3190 * negative errno code.
3191 *
3192 * Note that the device backing this regulator handle can have multiple
3193 * users, so it might be enabled even if regulator_enable() was never
3194 * called for this particular source.
 
 
 
 
3195 */
3196int regulator_is_enabled(struct regulator *regulator)
3197{
3198	int ret;
3199
3200	if (regulator->always_on)
3201		return 1;
3202
3203	regulator_lock(regulator->rdev);
3204	ret = _regulator_is_enabled(regulator->rdev);
3205	regulator_unlock(regulator->rdev);
3206
3207	return ret;
3208}
3209EXPORT_SYMBOL_GPL(regulator_is_enabled);
3210
3211/**
3212 * regulator_count_voltages - count regulator_list_voltage() selectors
3213 * @regulator: regulator source
3214 *
3215 * Returns number of selectors, or negative errno.  Selectors are
3216 * numbered starting at zero, and typically correspond to bitfields
3217 * in hardware registers.
 
3218 */
3219int regulator_count_voltages(struct regulator *regulator)
3220{
3221	struct regulator_dev	*rdev = regulator->rdev;
3222
3223	if (rdev->desc->n_voltages)
3224		return rdev->desc->n_voltages;
3225
3226	if (!rdev->is_switch || !rdev->supply)
3227		return -EINVAL;
3228
3229	return regulator_count_voltages(rdev->supply);
3230}
3231EXPORT_SYMBOL_GPL(regulator_count_voltages);
3232
3233/**
3234 * regulator_list_voltage - enumerate supported voltages
3235 * @regulator: regulator source
3236 * @selector: identify voltage to list
3237 * Context: can sleep
3238 *
3239 * Returns a voltage that can be passed to @regulator_set_voltage(),
3240 * zero if this selector code can't be used on this system, or a
3241 * negative errno.
3242 */
3243int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3244{
3245	return _regulator_list_voltage(regulator->rdev, selector, 1);
3246}
3247EXPORT_SYMBOL_GPL(regulator_list_voltage);
3248
3249/**
3250 * regulator_get_regmap - get the regulator's register map
3251 * @regulator: regulator source
3252 *
3253 * Returns the register map for the given regulator, or an ERR_PTR value
3254 * if the regulator doesn't use regmap.
3255 */
3256struct regmap *regulator_get_regmap(struct regulator *regulator)
3257{
3258	struct regmap *map = regulator->rdev->regmap;
3259
3260	return map ? map : ERR_PTR(-EOPNOTSUPP);
3261}
 
3262
3263/**
3264 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3265 * @regulator: regulator source
3266 * @vsel_reg: voltage selector register, output parameter
3267 * @vsel_mask: mask for voltage selector bitfield, output parameter
3268 *
3269 * Returns the hardware register offset and bitmask used for setting the
3270 * regulator voltage. This might be useful when configuring voltage-scaling
3271 * hardware or firmware that can make I2C requests behind the kernel's back,
3272 * for example.
3273 *
 
 
 
3274 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3275 * and 0 is returned, otherwise a negative errno is returned.
3276 */
3277int regulator_get_hardware_vsel_register(struct regulator *regulator,
3278					 unsigned *vsel_reg,
3279					 unsigned *vsel_mask)
3280{
3281	struct regulator_dev *rdev = regulator->rdev;
3282	const struct regulator_ops *ops = rdev->desc->ops;
3283
3284	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3285		return -EOPNOTSUPP;
3286
3287	*vsel_reg = rdev->desc->vsel_reg;
3288	*vsel_mask = rdev->desc->vsel_mask;
3289
3290	return 0;
3291}
3292EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3293
3294/**
3295 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3296 * @regulator: regulator source
3297 * @selector: identify voltage to list
3298 *
3299 * Converts the selector to a hardware-specific voltage selector that can be
3300 * directly written to the regulator registers. The address of the voltage
3301 * register can be determined by calling @regulator_get_hardware_vsel_register.
3302 *
3303 * On error a negative errno is returned.
 
 
3304 */
3305int regulator_list_hardware_vsel(struct regulator *regulator,
3306				 unsigned selector)
3307{
3308	struct regulator_dev *rdev = regulator->rdev;
3309	const struct regulator_ops *ops = rdev->desc->ops;
3310
3311	if (selector >= rdev->desc->n_voltages)
3312		return -EINVAL;
3313	if (selector < rdev->desc->linear_min_sel)
3314		return 0;
3315	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3316		return -EOPNOTSUPP;
3317
3318	return selector;
3319}
3320EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3321
3322/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3323 * regulator_get_linear_step - return the voltage step size between VSEL values
3324 * @regulator: regulator source
3325 *
3326 * Returns the voltage step size between VSEL values for linear
3327 * regulators, or return 0 if the regulator isn't a linear regulator.
3328 */
3329unsigned int regulator_get_linear_step(struct regulator *regulator)
3330{
3331	struct regulator_dev *rdev = regulator->rdev;
3332
3333	return rdev->desc->uV_step;
3334}
3335EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3336
3337/**
3338 * regulator_is_supported_voltage - check if a voltage range can be supported
3339 *
3340 * @regulator: Regulator to check.
3341 * @min_uV: Minimum required voltage in uV.
3342 * @max_uV: Maximum required voltage in uV.
3343 *
3344 * Returns a boolean.
 
 
3345 */
3346int regulator_is_supported_voltage(struct regulator *regulator,
3347				   int min_uV, int max_uV)
3348{
3349	struct regulator_dev *rdev = regulator->rdev;
3350	int i, voltages, ret;
3351
3352	/* If we can't change voltage check the current voltage */
3353	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3354		ret = regulator_get_voltage(regulator);
3355		if (ret >= 0)
3356			return min_uV <= ret && ret <= max_uV;
3357		else
3358			return ret;
3359	}
3360
3361	/* Any voltage within constrains range is fine? */
3362	if (rdev->desc->continuous_voltage_range)
3363		return min_uV >= rdev->constraints->min_uV &&
3364				max_uV <= rdev->constraints->max_uV;
3365
3366	ret = regulator_count_voltages(regulator);
3367	if (ret < 0)
3368		return 0;
3369	voltages = ret;
3370
3371	for (i = 0; i < voltages; i++) {
3372		ret = regulator_list_voltage(regulator, i);
3373
3374		if (ret >= min_uV && ret <= max_uV)
3375			return 1;
3376	}
3377
3378	return 0;
3379}
3380EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3381
3382static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3383				 int max_uV)
3384{
3385	const struct regulator_desc *desc = rdev->desc;
3386
3387	if (desc->ops->map_voltage)
3388		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3389
3390	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3391		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3392
3393	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3394		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3395
3396	if (desc->ops->list_voltage ==
3397		regulator_list_voltage_pickable_linear_range)
3398		return regulator_map_voltage_pickable_linear_range(rdev,
3399							min_uV, max_uV);
3400
3401	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3402}
3403
3404static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3405				       int min_uV, int max_uV,
3406				       unsigned *selector)
3407{
3408	struct pre_voltage_change_data data;
3409	int ret;
3410
3411	data.old_uV = regulator_get_voltage_rdev(rdev);
3412	data.min_uV = min_uV;
3413	data.max_uV = max_uV;
3414	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3415				   &data);
3416	if (ret & NOTIFY_STOP_MASK)
3417		return -EINVAL;
3418
3419	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3420	if (ret >= 0)
3421		return ret;
3422
3423	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3424			     (void *)data.old_uV);
3425
3426	return ret;
3427}
3428
3429static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3430					   int uV, unsigned selector)
3431{
3432	struct pre_voltage_change_data data;
3433	int ret;
3434
3435	data.old_uV = regulator_get_voltage_rdev(rdev);
3436	data.min_uV = uV;
3437	data.max_uV = uV;
3438	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3439				   &data);
3440	if (ret & NOTIFY_STOP_MASK)
3441		return -EINVAL;
3442
3443	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3444	if (ret >= 0)
3445		return ret;
3446
3447	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3448			     (void *)data.old_uV);
3449
3450	return ret;
3451}
3452
3453static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3454					   int uV, int new_selector)
3455{
3456	const struct regulator_ops *ops = rdev->desc->ops;
3457	int diff, old_sel, curr_sel, ret;
3458
3459	/* Stepping is only needed if the regulator is enabled. */
3460	if (!_regulator_is_enabled(rdev))
3461		goto final_set;
3462
3463	if (!ops->get_voltage_sel)
3464		return -EINVAL;
3465
3466	old_sel = ops->get_voltage_sel(rdev);
3467	if (old_sel < 0)
3468		return old_sel;
3469
3470	diff = new_selector - old_sel;
3471	if (diff == 0)
3472		return 0; /* No change needed. */
3473
3474	if (diff > 0) {
3475		/* Stepping up. */
3476		for (curr_sel = old_sel + rdev->desc->vsel_step;
3477		     curr_sel < new_selector;
3478		     curr_sel += rdev->desc->vsel_step) {
3479			/*
3480			 * Call the callback directly instead of using
3481			 * _regulator_call_set_voltage_sel() as we don't
3482			 * want to notify anyone yet. Same in the branch
3483			 * below.
3484			 */
3485			ret = ops->set_voltage_sel(rdev, curr_sel);
3486			if (ret)
3487				goto try_revert;
3488		}
3489	} else {
3490		/* Stepping down. */
3491		for (curr_sel = old_sel - rdev->desc->vsel_step;
3492		     curr_sel > new_selector;
3493		     curr_sel -= rdev->desc->vsel_step) {
3494			ret = ops->set_voltage_sel(rdev, curr_sel);
3495			if (ret)
3496				goto try_revert;
3497		}
3498	}
3499
3500final_set:
3501	/* The final selector will trigger the notifiers. */
3502	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3503
3504try_revert:
3505	/*
3506	 * At least try to return to the previous voltage if setting a new
3507	 * one failed.
3508	 */
3509	(void)ops->set_voltage_sel(rdev, old_sel);
3510	return ret;
3511}
3512
3513static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3514				       int old_uV, int new_uV)
3515{
3516	unsigned int ramp_delay = 0;
3517
3518	if (rdev->constraints->ramp_delay)
3519		ramp_delay = rdev->constraints->ramp_delay;
3520	else if (rdev->desc->ramp_delay)
3521		ramp_delay = rdev->desc->ramp_delay;
3522	else if (rdev->constraints->settling_time)
3523		return rdev->constraints->settling_time;
3524	else if (rdev->constraints->settling_time_up &&
3525		 (new_uV > old_uV))
3526		return rdev->constraints->settling_time_up;
3527	else if (rdev->constraints->settling_time_down &&
3528		 (new_uV < old_uV))
3529		return rdev->constraints->settling_time_down;
3530
3531	if (ramp_delay == 0)
3532		return 0;
3533
3534	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3535}
3536
3537static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3538				     int min_uV, int max_uV)
3539{
3540	int ret;
3541	int delay = 0;
3542	int best_val = 0;
3543	unsigned int selector;
3544	int old_selector = -1;
3545	const struct regulator_ops *ops = rdev->desc->ops;
3546	int old_uV = regulator_get_voltage_rdev(rdev);
3547
3548	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3549
3550	min_uV += rdev->constraints->uV_offset;
3551	max_uV += rdev->constraints->uV_offset;
3552
3553	/*
3554	 * If we can't obtain the old selector there is not enough
3555	 * info to call set_voltage_time_sel().
3556	 */
3557	if (_regulator_is_enabled(rdev) &&
3558	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3559		old_selector = ops->get_voltage_sel(rdev);
3560		if (old_selector < 0)
3561			return old_selector;
3562	}
3563
3564	if (ops->set_voltage) {
3565		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3566						  &selector);
3567
3568		if (ret >= 0) {
3569			if (ops->list_voltage)
3570				best_val = ops->list_voltage(rdev,
3571							     selector);
3572			else
3573				best_val = regulator_get_voltage_rdev(rdev);
3574		}
3575
3576	} else if (ops->set_voltage_sel) {
3577		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3578		if (ret >= 0) {
3579			best_val = ops->list_voltage(rdev, ret);
3580			if (min_uV <= best_val && max_uV >= best_val) {
3581				selector = ret;
3582				if (old_selector == selector)
3583					ret = 0;
3584				else if (rdev->desc->vsel_step)
3585					ret = _regulator_set_voltage_sel_step(
3586						rdev, best_val, selector);
3587				else
3588					ret = _regulator_call_set_voltage_sel(
3589						rdev, best_val, selector);
3590			} else {
3591				ret = -EINVAL;
3592			}
3593		}
3594	} else {
3595		ret = -EINVAL;
3596	}
3597
3598	if (ret)
3599		goto out;
3600
3601	if (ops->set_voltage_time_sel) {
3602		/*
3603		 * Call set_voltage_time_sel if successfully obtained
3604		 * old_selector
3605		 */
3606		if (old_selector >= 0 && old_selector != selector)
3607			delay = ops->set_voltage_time_sel(rdev, old_selector,
3608							  selector);
3609	} else {
3610		if (old_uV != best_val) {
3611			if (ops->set_voltage_time)
3612				delay = ops->set_voltage_time(rdev, old_uV,
3613							      best_val);
3614			else
3615				delay = _regulator_set_voltage_time(rdev,
3616								    old_uV,
3617								    best_val);
3618		}
3619	}
3620
3621	if (delay < 0) {
3622		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3623		delay = 0;
3624	}
3625
3626	/* Insert any necessary delays */
3627	_regulator_delay_helper(delay);
3628
3629	if (best_val >= 0) {
3630		unsigned long data = best_val;
3631
3632		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3633				     (void *)data);
3634	}
3635
3636out:
3637	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3638
3639	return ret;
3640}
3641
3642static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3643				  int min_uV, int max_uV, suspend_state_t state)
3644{
3645	struct regulator_state *rstate;
3646	int uV, sel;
3647
3648	rstate = regulator_get_suspend_state(rdev, state);
3649	if (rstate == NULL)
3650		return -EINVAL;
3651
3652	if (min_uV < rstate->min_uV)
3653		min_uV = rstate->min_uV;
3654	if (max_uV > rstate->max_uV)
3655		max_uV = rstate->max_uV;
3656
3657	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3658	if (sel < 0)
3659		return sel;
3660
3661	uV = rdev->desc->ops->list_voltage(rdev, sel);
3662	if (uV >= min_uV && uV <= max_uV)
3663		rstate->uV = uV;
3664
3665	return 0;
3666}
3667
3668static int regulator_set_voltage_unlocked(struct regulator *regulator,
3669					  int min_uV, int max_uV,
3670					  suspend_state_t state)
3671{
3672	struct regulator_dev *rdev = regulator->rdev;
3673	struct regulator_voltage *voltage = &regulator->voltage[state];
3674	int ret = 0;
3675	int old_min_uV, old_max_uV;
3676	int current_uV;
3677
3678	/* If we're setting the same range as last time the change
3679	 * should be a noop (some cpufreq implementations use the same
3680	 * voltage for multiple frequencies, for example).
3681	 */
3682	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3683		goto out;
3684
3685	/* If we're trying to set a range that overlaps the current voltage,
3686	 * return successfully even though the regulator does not support
3687	 * changing the voltage.
3688	 */
3689	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3690		current_uV = regulator_get_voltage_rdev(rdev);
3691		if (min_uV <= current_uV && current_uV <= max_uV) {
3692			voltage->min_uV = min_uV;
3693			voltage->max_uV = max_uV;
3694			goto out;
3695		}
3696	}
3697
3698	/* sanity check */
3699	if (!rdev->desc->ops->set_voltage &&
3700	    !rdev->desc->ops->set_voltage_sel) {
3701		ret = -EINVAL;
3702		goto out;
3703	}
3704
3705	/* constraints check */
3706	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3707	if (ret < 0)
3708		goto out;
3709
3710	/* restore original values in case of error */
3711	old_min_uV = voltage->min_uV;
3712	old_max_uV = voltage->max_uV;
3713	voltage->min_uV = min_uV;
3714	voltage->max_uV = max_uV;
3715
3716	/* for not coupled regulators this will just set the voltage */
3717	ret = regulator_balance_voltage(rdev, state);
3718	if (ret < 0) {
3719		voltage->min_uV = old_min_uV;
3720		voltage->max_uV = old_max_uV;
3721	}
3722
3723out:
3724	return ret;
3725}
3726
3727int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3728			       int max_uV, suspend_state_t state)
3729{
3730	int best_supply_uV = 0;
3731	int supply_change_uV = 0;
3732	int ret;
3733
3734	if (rdev->supply &&
3735	    regulator_ops_is_valid(rdev->supply->rdev,
3736				   REGULATOR_CHANGE_VOLTAGE) &&
3737	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3738					   rdev->desc->ops->get_voltage_sel))) {
3739		int current_supply_uV;
3740		int selector;
3741
3742		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3743		if (selector < 0) {
3744			ret = selector;
3745			goto out;
3746		}
3747
3748		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3749		if (best_supply_uV < 0) {
3750			ret = best_supply_uV;
3751			goto out;
3752		}
3753
3754		best_supply_uV += rdev->desc->min_dropout_uV;
3755
3756		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3757		if (current_supply_uV < 0) {
3758			ret = current_supply_uV;
3759			goto out;
3760		}
3761
3762		supply_change_uV = best_supply_uV - current_supply_uV;
3763	}
3764
3765	if (supply_change_uV > 0) {
3766		ret = regulator_set_voltage_unlocked(rdev->supply,
3767				best_supply_uV, INT_MAX, state);
3768		if (ret) {
3769			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3770				ERR_PTR(ret));
3771			goto out;
3772		}
3773	}
3774
3775	if (state == PM_SUSPEND_ON)
3776		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3777	else
3778		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3779							max_uV, state);
3780	if (ret < 0)
3781		goto out;
3782
3783	if (supply_change_uV < 0) {
3784		ret = regulator_set_voltage_unlocked(rdev->supply,
3785				best_supply_uV, INT_MAX, state);
3786		if (ret)
3787			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3788				 ERR_PTR(ret));
3789		/* No need to fail here */
3790		ret = 0;
3791	}
3792
3793out:
3794	return ret;
3795}
3796EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3797
3798static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3799					int *current_uV, int *min_uV)
3800{
3801	struct regulation_constraints *constraints = rdev->constraints;
3802
3803	/* Limit voltage change only if necessary */
3804	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3805		return 1;
3806
3807	if (*current_uV < 0) {
3808		*current_uV = regulator_get_voltage_rdev(rdev);
3809
3810		if (*current_uV < 0)
3811			return *current_uV;
3812	}
3813
3814	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3815		return 1;
3816
3817	/* Clamp target voltage within the given step */
3818	if (*current_uV < *min_uV)
3819		*min_uV = min(*current_uV + constraints->max_uV_step,
3820			      *min_uV);
3821	else
3822		*min_uV = max(*current_uV - constraints->max_uV_step,
3823			      *min_uV);
3824
3825	return 0;
3826}
3827
3828static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3829					 int *current_uV,
3830					 int *min_uV, int *max_uV,
3831					 suspend_state_t state,
3832					 int n_coupled)
3833{
3834	struct coupling_desc *c_desc = &rdev->coupling_desc;
3835	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3836	struct regulation_constraints *constraints = rdev->constraints;
3837	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3838	int max_current_uV = 0, min_current_uV = INT_MAX;
3839	int highest_min_uV = 0, target_uV, possible_uV;
3840	int i, ret, max_spread;
3841	bool done;
3842
3843	*current_uV = -1;
3844
3845	/*
3846	 * If there are no coupled regulators, simply set the voltage
3847	 * demanded by consumers.
3848	 */
3849	if (n_coupled == 1) {
3850		/*
3851		 * If consumers don't provide any demands, set voltage
3852		 * to min_uV
3853		 */
3854		desired_min_uV = constraints->min_uV;
3855		desired_max_uV = constraints->max_uV;
3856
3857		ret = regulator_check_consumers(rdev,
3858						&desired_min_uV,
3859						&desired_max_uV, state);
3860		if (ret < 0)
3861			return ret;
3862
3863		possible_uV = desired_min_uV;
3864		done = true;
3865
3866		goto finish;
3867	}
3868
3869	/* Find highest min desired voltage */
3870	for (i = 0; i < n_coupled; i++) {
3871		int tmp_min = 0;
3872		int tmp_max = INT_MAX;
3873
3874		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3875
3876		ret = regulator_check_consumers(c_rdevs[i],
3877						&tmp_min,
3878						&tmp_max, state);
3879		if (ret < 0)
3880			return ret;
3881
3882		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3883		if (ret < 0)
3884			return ret;
3885
3886		highest_min_uV = max(highest_min_uV, tmp_min);
3887
3888		if (i == 0) {
3889			desired_min_uV = tmp_min;
3890			desired_max_uV = tmp_max;
3891		}
3892	}
3893
3894	max_spread = constraints->max_spread[0];
3895
3896	/*
3897	 * Let target_uV be equal to the desired one if possible.
3898	 * If not, set it to minimum voltage, allowed by other coupled
3899	 * regulators.
3900	 */
3901	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3902
3903	/*
3904	 * Find min and max voltages, which currently aren't violating
3905	 * max_spread.
3906	 */
3907	for (i = 1; i < n_coupled; i++) {
3908		int tmp_act;
3909
3910		if (!_regulator_is_enabled(c_rdevs[i]))
3911			continue;
3912
3913		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3914		if (tmp_act < 0)
3915			return tmp_act;
3916
3917		min_current_uV = min(tmp_act, min_current_uV);
3918		max_current_uV = max(tmp_act, max_current_uV);
3919	}
3920
3921	/* There aren't any other regulators enabled */
3922	if (max_current_uV == 0) {
3923		possible_uV = target_uV;
3924	} else {
3925		/*
3926		 * Correct target voltage, so as it currently isn't
3927		 * violating max_spread
3928		 */
3929		possible_uV = max(target_uV, max_current_uV - max_spread);
3930		possible_uV = min(possible_uV, min_current_uV + max_spread);
3931	}
3932
3933	if (possible_uV > desired_max_uV)
3934		return -EINVAL;
3935
3936	done = (possible_uV == target_uV);
3937	desired_min_uV = possible_uV;
3938
3939finish:
3940	/* Apply max_uV_step constraint if necessary */
3941	if (state == PM_SUSPEND_ON) {
3942		ret = regulator_limit_voltage_step(rdev, current_uV,
3943						   &desired_min_uV);
3944		if (ret < 0)
3945			return ret;
3946
3947		if (ret == 0)
3948			done = false;
3949	}
3950
3951	/* Set current_uV if wasn't done earlier in the code and if necessary */
3952	if (n_coupled > 1 && *current_uV == -1) {
3953
3954		if (_regulator_is_enabled(rdev)) {
3955			ret = regulator_get_voltage_rdev(rdev);
3956			if (ret < 0)
3957				return ret;
3958
3959			*current_uV = ret;
3960		} else {
3961			*current_uV = desired_min_uV;
3962		}
3963	}
3964
3965	*min_uV = desired_min_uV;
3966	*max_uV = desired_max_uV;
3967
3968	return done;
3969}
3970
3971int regulator_do_balance_voltage(struct regulator_dev *rdev,
3972				 suspend_state_t state, bool skip_coupled)
3973{
3974	struct regulator_dev **c_rdevs;
3975	struct regulator_dev *best_rdev;
3976	struct coupling_desc *c_desc = &rdev->coupling_desc;
3977	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3978	unsigned int delta, best_delta;
3979	unsigned long c_rdev_done = 0;
3980	bool best_c_rdev_done;
3981
3982	c_rdevs = c_desc->coupled_rdevs;
3983	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3984
3985	/*
3986	 * Find the best possible voltage change on each loop. Leave the loop
3987	 * if there isn't any possible change.
3988	 */
3989	do {
3990		best_c_rdev_done = false;
3991		best_delta = 0;
3992		best_min_uV = 0;
3993		best_max_uV = 0;
3994		best_c_rdev = 0;
3995		best_rdev = NULL;
3996
3997		/*
3998		 * Find highest difference between optimal voltage
3999		 * and current voltage.
4000		 */
4001		for (i = 0; i < n_coupled; i++) {
4002			/*
4003			 * optimal_uV is the best voltage that can be set for
4004			 * i-th regulator at the moment without violating
4005			 * max_spread constraint in order to balance
4006			 * the coupled voltages.
4007			 */
4008			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4009
4010			if (test_bit(i, &c_rdev_done))
4011				continue;
4012
4013			ret = regulator_get_optimal_voltage(c_rdevs[i],
4014							    &current_uV,
4015							    &optimal_uV,
4016							    &optimal_max_uV,
4017							    state, n_coupled);
4018			if (ret < 0)
4019				goto out;
4020
4021			delta = abs(optimal_uV - current_uV);
4022
4023			if (delta && best_delta <= delta) {
4024				best_c_rdev_done = ret;
4025				best_delta = delta;
4026				best_rdev = c_rdevs[i];
4027				best_min_uV = optimal_uV;
4028				best_max_uV = optimal_max_uV;
4029				best_c_rdev = i;
4030			}
4031		}
4032
4033		/* Nothing to change, return successfully */
4034		if (!best_rdev) {
4035			ret = 0;
4036			goto out;
4037		}
4038
4039		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4040						 best_max_uV, state);
4041
4042		if (ret < 0)
4043			goto out;
4044
4045		if (best_c_rdev_done)
4046			set_bit(best_c_rdev, &c_rdev_done);
4047
4048	} while (n_coupled > 1);
4049
4050out:
4051	return ret;
4052}
4053
4054static int regulator_balance_voltage(struct regulator_dev *rdev,
4055				     suspend_state_t state)
4056{
4057	struct coupling_desc *c_desc = &rdev->coupling_desc;
4058	struct regulator_coupler *coupler = c_desc->coupler;
4059	bool skip_coupled = false;
4060
4061	/*
4062	 * If system is in a state other than PM_SUSPEND_ON, don't check
4063	 * other coupled regulators.
4064	 */
4065	if (state != PM_SUSPEND_ON)
4066		skip_coupled = true;
4067
4068	if (c_desc->n_resolved < c_desc->n_coupled) {
4069		rdev_err(rdev, "Not all coupled regulators registered\n");
4070		return -EPERM;
4071	}
4072
4073	/* Invoke custom balancer for customized couplers */
4074	if (coupler && coupler->balance_voltage)
4075		return coupler->balance_voltage(coupler, rdev, state);
4076
4077	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4078}
4079
4080/**
4081 * regulator_set_voltage - set regulator output voltage
4082 * @regulator: regulator source
4083 * @min_uV: Minimum required voltage in uV
4084 * @max_uV: Maximum acceptable voltage in uV
4085 *
4086 * Sets a voltage regulator to the desired output voltage. This can be set
4087 * during any regulator state. IOW, regulator can be disabled or enabled.
4088 *
4089 * If the regulator is enabled then the voltage will change to the new value
4090 * immediately otherwise if the regulator is disabled the regulator will
4091 * output at the new voltage when enabled.
4092 *
4093 * NOTE: If the regulator is shared between several devices then the lowest
4094 * request voltage that meets the system constraints will be used.
4095 * Regulator system constraints must be set for this regulator before
4096 * calling this function otherwise this call will fail.
 
 
4097 */
4098int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4099{
4100	struct ww_acquire_ctx ww_ctx;
4101	int ret;
4102
4103	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4104
4105	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4106					     PM_SUSPEND_ON);
4107
4108	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4109
4110	return ret;
4111}
4112EXPORT_SYMBOL_GPL(regulator_set_voltage);
4113
4114static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4115					   suspend_state_t state, bool en)
4116{
4117	struct regulator_state *rstate;
4118
4119	rstate = regulator_get_suspend_state(rdev, state);
4120	if (rstate == NULL)
4121		return -EINVAL;
4122
4123	if (!rstate->changeable)
4124		return -EPERM;
4125
4126	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4127
4128	return 0;
4129}
4130
4131int regulator_suspend_enable(struct regulator_dev *rdev,
4132				    suspend_state_t state)
4133{
4134	return regulator_suspend_toggle(rdev, state, true);
4135}
4136EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4137
4138int regulator_suspend_disable(struct regulator_dev *rdev,
4139				     suspend_state_t state)
4140{
4141	struct regulator *regulator;
4142	struct regulator_voltage *voltage;
4143
4144	/*
4145	 * if any consumer wants this regulator device keeping on in
4146	 * suspend states, don't set it as disabled.
4147	 */
4148	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4149		voltage = &regulator->voltage[state];
4150		if (voltage->min_uV || voltage->max_uV)
4151			return 0;
4152	}
4153
4154	return regulator_suspend_toggle(rdev, state, false);
4155}
4156EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4157
4158static int _regulator_set_suspend_voltage(struct regulator *regulator,
4159					  int min_uV, int max_uV,
4160					  suspend_state_t state)
4161{
4162	struct regulator_dev *rdev = regulator->rdev;
4163	struct regulator_state *rstate;
4164
4165	rstate = regulator_get_suspend_state(rdev, state);
4166	if (rstate == NULL)
4167		return -EINVAL;
4168
4169	if (rstate->min_uV == rstate->max_uV) {
4170		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4171		return -EPERM;
4172	}
4173
4174	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4175}
4176
4177int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4178				  int max_uV, suspend_state_t state)
4179{
4180	struct ww_acquire_ctx ww_ctx;
4181	int ret;
4182
4183	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4184	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4185		return -EINVAL;
4186
4187	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4188
4189	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4190					     max_uV, state);
4191
4192	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4193
4194	return ret;
4195}
4196EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4197
4198/**
4199 * regulator_set_voltage_time - get raise/fall time
4200 * @regulator: regulator source
4201 * @old_uV: starting voltage in microvolts
4202 * @new_uV: target voltage in microvolts
4203 *
4204 * Provided with the starting and ending voltage, this function attempts to
4205 * calculate the time in microseconds required to rise or fall to this new
4206 * voltage.
 
 
4207 */
4208int regulator_set_voltage_time(struct regulator *regulator,
4209			       int old_uV, int new_uV)
4210{
4211	struct regulator_dev *rdev = regulator->rdev;
4212	const struct regulator_ops *ops = rdev->desc->ops;
4213	int old_sel = -1;
4214	int new_sel = -1;
4215	int voltage;
4216	int i;
4217
4218	if (ops->set_voltage_time)
4219		return ops->set_voltage_time(rdev, old_uV, new_uV);
4220	else if (!ops->set_voltage_time_sel)
4221		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4222
4223	/* Currently requires operations to do this */
4224	if (!ops->list_voltage || !rdev->desc->n_voltages)
4225		return -EINVAL;
4226
4227	for (i = 0; i < rdev->desc->n_voltages; i++) {
4228		/* We only look for exact voltage matches here */
4229		if (i < rdev->desc->linear_min_sel)
4230			continue;
4231
4232		if (old_sel >= 0 && new_sel >= 0)
4233			break;
4234
4235		voltage = regulator_list_voltage(regulator, i);
4236		if (voltage < 0)
4237			return -EINVAL;
4238		if (voltage == 0)
4239			continue;
4240		if (voltage == old_uV)
4241			old_sel = i;
4242		if (voltage == new_uV)
4243			new_sel = i;
4244	}
4245
4246	if (old_sel < 0 || new_sel < 0)
4247		return -EINVAL;
4248
4249	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4250}
4251EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4252
4253/**
4254 * regulator_set_voltage_time_sel - get raise/fall time
4255 * @rdev: regulator source device
4256 * @old_selector: selector for starting voltage
4257 * @new_selector: selector for target voltage
4258 *
4259 * Provided with the starting and target voltage selectors, this function
4260 * returns time in microseconds required to rise or fall to this new voltage
4261 *
4262 * Drivers providing ramp_delay in regulation_constraints can use this as their
4263 * set_voltage_time_sel() operation.
 
 
4264 */
4265int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4266				   unsigned int old_selector,
4267				   unsigned int new_selector)
4268{
4269	int old_volt, new_volt;
4270
4271	/* sanity check */
4272	if (!rdev->desc->ops->list_voltage)
4273		return -EINVAL;
4274
4275	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4276	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4277
4278	if (rdev->desc->ops->set_voltage_time)
4279		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4280							 new_volt);
4281	else
4282		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4285
4286int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4287{
4288	int ret;
4289
4290	regulator_lock(rdev);
4291
4292	if (!rdev->desc->ops->set_voltage &&
4293	    !rdev->desc->ops->set_voltage_sel) {
4294		ret = -EINVAL;
4295		goto out;
4296	}
4297
4298	/* balance only, if regulator is coupled */
4299	if (rdev->coupling_desc.n_coupled > 1)
4300		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4301	else
4302		ret = -EOPNOTSUPP;
4303
4304out:
4305	regulator_unlock(rdev);
4306	return ret;
4307}
4308
4309/**
4310 * regulator_sync_voltage - re-apply last regulator output voltage
4311 * @regulator: regulator source
4312 *
4313 * Re-apply the last configured voltage.  This is intended to be used
4314 * where some external control source the consumer is cooperating with
4315 * has caused the configured voltage to change.
 
 
4316 */
4317int regulator_sync_voltage(struct regulator *regulator)
4318{
4319	struct regulator_dev *rdev = regulator->rdev;
4320	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4321	int ret, min_uV, max_uV;
4322
4323	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4324		return 0;
4325
4326	regulator_lock(rdev);
4327
4328	if (!rdev->desc->ops->set_voltage &&
4329	    !rdev->desc->ops->set_voltage_sel) {
4330		ret = -EINVAL;
4331		goto out;
4332	}
4333
4334	/* This is only going to work if we've had a voltage configured. */
4335	if (!voltage->min_uV && !voltage->max_uV) {
4336		ret = -EINVAL;
4337		goto out;
4338	}
4339
4340	min_uV = voltage->min_uV;
4341	max_uV = voltage->max_uV;
4342
4343	/* This should be a paranoia check... */
4344	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4345	if (ret < 0)
4346		goto out;
4347
4348	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4349	if (ret < 0)
4350		goto out;
4351
4352	/* balance only, if regulator is coupled */
4353	if (rdev->coupling_desc.n_coupled > 1)
4354		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4355	else
4356		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4357
4358out:
4359	regulator_unlock(rdev);
4360	return ret;
4361}
4362EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4363
4364int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4365{
4366	int sel, ret;
4367	bool bypassed;
4368
4369	if (rdev->desc->ops->get_bypass) {
4370		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4371		if (ret < 0)
4372			return ret;
4373		if (bypassed) {
4374			/* if bypassed the regulator must have a supply */
4375			if (!rdev->supply) {
4376				rdev_err(rdev,
4377					 "bypassed regulator has no supply!\n");
4378				return -EPROBE_DEFER;
4379			}
4380
4381			return regulator_get_voltage_rdev(rdev->supply->rdev);
4382		}
4383	}
4384
4385	if (rdev->desc->ops->get_voltage_sel) {
4386		sel = rdev->desc->ops->get_voltage_sel(rdev);
4387		if (sel < 0)
4388			return sel;
4389		ret = rdev->desc->ops->list_voltage(rdev, sel);
4390	} else if (rdev->desc->ops->get_voltage) {
4391		ret = rdev->desc->ops->get_voltage(rdev);
4392	} else if (rdev->desc->ops->list_voltage) {
4393		ret = rdev->desc->ops->list_voltage(rdev, 0);
4394	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4395		ret = rdev->desc->fixed_uV;
4396	} else if (rdev->supply) {
4397		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4398	} else if (rdev->supply_name) {
4399		return -EPROBE_DEFER;
4400	} else {
4401		return -EINVAL;
4402	}
4403
4404	if (ret < 0)
4405		return ret;
4406	return ret - rdev->constraints->uV_offset;
4407}
4408EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4409
4410/**
4411 * regulator_get_voltage - get regulator output voltage
4412 * @regulator: regulator source
4413 *
4414 * This returns the current regulator voltage in uV.
4415 *
4416 * NOTE: If the regulator is disabled it will return the voltage value. This
4417 * function should not be used to determine regulator state.
4418 */
4419int regulator_get_voltage(struct regulator *regulator)
4420{
4421	struct ww_acquire_ctx ww_ctx;
4422	int ret;
4423
4424	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4425	ret = regulator_get_voltage_rdev(regulator->rdev);
4426	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4427
4428	return ret;
4429}
4430EXPORT_SYMBOL_GPL(regulator_get_voltage);
4431
4432/**
4433 * regulator_set_current_limit - set regulator output current limit
4434 * @regulator: regulator source
4435 * @min_uA: Minimum supported current in uA
4436 * @max_uA: Maximum supported current in uA
4437 *
4438 * Sets current sink to the desired output current. This can be set during
4439 * any regulator state. IOW, regulator can be disabled or enabled.
4440 *
4441 * If the regulator is enabled then the current will change to the new value
4442 * immediately otherwise if the regulator is disabled the regulator will
4443 * output at the new current when enabled.
4444 *
4445 * NOTE: Regulator system constraints must be set for this regulator before
4446 * calling this function otherwise this call will fail.
 
 
4447 */
4448int regulator_set_current_limit(struct regulator *regulator,
4449			       int min_uA, int max_uA)
4450{
4451	struct regulator_dev *rdev = regulator->rdev;
4452	int ret;
4453
4454	regulator_lock(rdev);
4455
4456	/* sanity check */
4457	if (!rdev->desc->ops->set_current_limit) {
4458		ret = -EINVAL;
4459		goto out;
4460	}
4461
4462	/* constraints check */
4463	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4464	if (ret < 0)
4465		goto out;
4466
4467	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4468out:
4469	regulator_unlock(rdev);
4470	return ret;
4471}
4472EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4473
4474static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4475{
4476	/* sanity check */
4477	if (!rdev->desc->ops->get_current_limit)
4478		return -EINVAL;
4479
4480	return rdev->desc->ops->get_current_limit(rdev);
4481}
4482
4483static int _regulator_get_current_limit(struct regulator_dev *rdev)
4484{
4485	int ret;
4486
4487	regulator_lock(rdev);
4488	ret = _regulator_get_current_limit_unlocked(rdev);
4489	regulator_unlock(rdev);
4490
4491	return ret;
4492}
4493
4494/**
4495 * regulator_get_current_limit - get regulator output current
4496 * @regulator: regulator source
4497 *
4498 * This returns the current supplied by the specified current sink in uA.
 
4499 *
4500 * NOTE: If the regulator is disabled it will return the current value. This
4501 * function should not be used to determine regulator state.
4502 */
4503int regulator_get_current_limit(struct regulator *regulator)
4504{
4505	return _regulator_get_current_limit(regulator->rdev);
4506}
4507EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4508
4509/**
4510 * regulator_set_mode - set regulator operating mode
4511 * @regulator: regulator source
4512 * @mode: operating mode - one of the REGULATOR_MODE constants
4513 *
4514 * Set regulator operating mode to increase regulator efficiency or improve
4515 * regulation performance.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
 
 
4519 */
4520int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4521{
4522	struct regulator_dev *rdev = regulator->rdev;
4523	int ret;
4524	int regulator_curr_mode;
4525
4526	regulator_lock(rdev);
4527
4528	/* sanity check */
4529	if (!rdev->desc->ops->set_mode) {
4530		ret = -EINVAL;
4531		goto out;
4532	}
4533
4534	/* return if the same mode is requested */
4535	if (rdev->desc->ops->get_mode) {
4536		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4537		if (regulator_curr_mode == mode) {
4538			ret = 0;
4539			goto out;
4540		}
4541	}
4542
4543	/* constraints check */
4544	ret = regulator_mode_constrain(rdev, &mode);
4545	if (ret < 0)
4546		goto out;
4547
4548	ret = rdev->desc->ops->set_mode(rdev, mode);
4549out:
4550	regulator_unlock(rdev);
4551	return ret;
4552}
4553EXPORT_SYMBOL_GPL(regulator_set_mode);
4554
4555static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4556{
4557	/* sanity check */
4558	if (!rdev->desc->ops->get_mode)
4559		return -EINVAL;
4560
4561	return rdev->desc->ops->get_mode(rdev);
4562}
4563
4564static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4565{
4566	int ret;
4567
4568	regulator_lock(rdev);
4569	ret = _regulator_get_mode_unlocked(rdev);
4570	regulator_unlock(rdev);
4571
4572	return ret;
4573}
4574
4575/**
4576 * regulator_get_mode - get regulator operating mode
4577 * @regulator: regulator source
4578 *
4579 * Get the current regulator operating mode.
 
 
 
4580 */
4581unsigned int regulator_get_mode(struct regulator *regulator)
4582{
4583	return _regulator_get_mode(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_mode);
4586
4587static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4588{
4589	int ret = 0;
4590
4591	if (rdev->use_cached_err) {
4592		spin_lock(&rdev->err_lock);
4593		ret = rdev->cached_err;
4594		spin_unlock(&rdev->err_lock);
4595	}
4596	return ret;
4597}
4598
4599static int _regulator_get_error_flags(struct regulator_dev *rdev,
4600					unsigned int *flags)
4601{
4602	int cached_flags, ret = 0;
4603
4604	regulator_lock(rdev);
4605
4606	cached_flags = rdev_get_cached_err_flags(rdev);
4607
4608	if (rdev->desc->ops->get_error_flags)
4609		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4610	else if (!rdev->use_cached_err)
4611		ret = -EINVAL;
4612
4613	*flags |= cached_flags;
4614
4615	regulator_unlock(rdev);
4616
4617	return ret;
4618}
4619
4620/**
4621 * regulator_get_error_flags - get regulator error information
4622 * @regulator: regulator source
4623 * @flags: pointer to store error flags
4624 *
4625 * Get the current regulator error information.
 
 
4626 */
4627int regulator_get_error_flags(struct regulator *regulator,
4628				unsigned int *flags)
4629{
4630	return _regulator_get_error_flags(regulator->rdev, flags);
4631}
4632EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4633
4634/**
4635 * regulator_set_load - set regulator load
4636 * @regulator: regulator source
4637 * @uA_load: load current
4638 *
4639 * Notifies the regulator core of a new device load. This is then used by
4640 * DRMS (if enabled by constraints) to set the most efficient regulator
4641 * operating mode for the new regulator loading.
4642 *
4643 * Consumer devices notify their supply regulator of the maximum power
4644 * they will require (can be taken from device datasheet in the power
4645 * consumption tables) when they change operational status and hence power
4646 * state. Examples of operational state changes that can affect power
4647 * consumption are :-
4648 *
4649 *    o Device is opened / closed.
4650 *    o Device I/O is about to begin or has just finished.
4651 *    o Device is idling in between work.
4652 *
4653 * This information is also exported via sysfs to userspace.
4654 *
4655 * DRMS will sum the total requested load on the regulator and change
4656 * to the most efficient operating mode if platform constraints allow.
4657 *
4658 * NOTE: when a regulator consumer requests to have a regulator
4659 * disabled then any load that consumer requested no longer counts
4660 * toward the total requested load.  If the regulator is re-enabled
4661 * then the previously requested load will start counting again.
4662 *
4663 * If a regulator is an always-on regulator then an individual consumer's
4664 * load will still be removed if that consumer is fully disabled.
4665 *
4666 * On error a negative errno is returned.
4667 */
4668int regulator_set_load(struct regulator *regulator, int uA_load)
4669{
4670	struct regulator_dev *rdev = regulator->rdev;
4671	int old_uA_load;
4672	int ret = 0;
4673
4674	regulator_lock(rdev);
4675	old_uA_load = regulator->uA_load;
4676	regulator->uA_load = uA_load;
4677	if (regulator->enable_count && old_uA_load != uA_load) {
4678		ret = drms_uA_update(rdev);
4679		if (ret < 0)
4680			regulator->uA_load = old_uA_load;
4681	}
4682	regulator_unlock(rdev);
4683
4684	return ret;
4685}
4686EXPORT_SYMBOL_GPL(regulator_set_load);
4687
4688/**
4689 * regulator_allow_bypass - allow the regulator to go into bypass mode
4690 *
4691 * @regulator: Regulator to configure
4692 * @enable: enable or disable bypass mode
4693 *
4694 * Allow the regulator to go into bypass mode if all other consumers
4695 * for the regulator also enable bypass mode and the machine
4696 * constraints allow this.  Bypass mode means that the regulator is
4697 * simply passing the input directly to the output with no regulation.
 
 
 
4698 */
4699int regulator_allow_bypass(struct regulator *regulator, bool enable)
4700{
4701	struct regulator_dev *rdev = regulator->rdev;
4702	const char *name = rdev_get_name(rdev);
4703	int ret = 0;
4704
4705	if (!rdev->desc->ops->set_bypass)
4706		return 0;
4707
4708	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4709		return 0;
4710
4711	regulator_lock(rdev);
4712
4713	if (enable && !regulator->bypass) {
4714		rdev->bypass_count++;
4715
4716		if (rdev->bypass_count == rdev->open_count) {
4717			trace_regulator_bypass_enable(name);
4718
4719			ret = rdev->desc->ops->set_bypass(rdev, enable);
4720			if (ret != 0)
4721				rdev->bypass_count--;
4722			else
4723				trace_regulator_bypass_enable_complete(name);
4724		}
4725
4726	} else if (!enable && regulator->bypass) {
4727		rdev->bypass_count--;
4728
4729		if (rdev->bypass_count != rdev->open_count) {
4730			trace_regulator_bypass_disable(name);
4731
4732			ret = rdev->desc->ops->set_bypass(rdev, enable);
4733			if (ret != 0)
4734				rdev->bypass_count++;
4735			else
4736				trace_regulator_bypass_disable_complete(name);
4737		}
4738	}
4739
4740	if (ret == 0)
4741		regulator->bypass = enable;
4742
4743	regulator_unlock(rdev);
4744
4745	return ret;
4746}
4747EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4748
4749/**
4750 * regulator_register_notifier - register regulator event notifier
4751 * @regulator: regulator source
4752 * @nb: notifier block
4753 *
4754 * Register notifier block to receive regulator events.
 
 
4755 */
4756int regulator_register_notifier(struct regulator *regulator,
4757			      struct notifier_block *nb)
4758{
4759	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4760						nb);
4761}
4762EXPORT_SYMBOL_GPL(regulator_register_notifier);
4763
4764/**
4765 * regulator_unregister_notifier - unregister regulator event notifier
4766 * @regulator: regulator source
4767 * @nb: notifier block
4768 *
4769 * Unregister regulator event notifier block.
 
 
4770 */
4771int regulator_unregister_notifier(struct regulator *regulator,
4772				struct notifier_block *nb)
4773{
4774	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4775						  nb);
4776}
4777EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4778
4779/* notify regulator consumers and downstream regulator consumers.
4780 * Note mutex must be held by caller.
4781 */
4782static int _notifier_call_chain(struct regulator_dev *rdev,
4783				  unsigned long event, void *data)
4784{
4785	/* call rdev chain first */
4786	return blocking_notifier_call_chain(&rdev->notifier, event, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4787}
4788
4789int _regulator_bulk_get(struct device *dev, int num_consumers,
4790			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4791{
4792	int i;
4793	int ret;
4794
4795	for (i = 0; i < num_consumers; i++)
4796		consumers[i].consumer = NULL;
4797
4798	for (i = 0; i < num_consumers; i++) {
4799		consumers[i].consumer = _regulator_get(dev,
4800						       consumers[i].supply, get_type);
4801		if (IS_ERR(consumers[i].consumer)) {
4802			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4803					    "Failed to get supply '%s'",
4804					    consumers[i].supply);
4805			consumers[i].consumer = NULL;
4806			goto err;
4807		}
4808
4809		if (consumers[i].init_load_uA > 0) {
4810			ret = regulator_set_load(consumers[i].consumer,
4811						 consumers[i].init_load_uA);
4812			if (ret) {
4813				i++;
4814				goto err;
4815			}
4816		}
4817	}
4818
4819	return 0;
4820
4821err:
4822	while (--i >= 0)
4823		regulator_put(consumers[i].consumer);
4824
4825	return ret;
4826}
4827
4828/**
4829 * regulator_bulk_get - get multiple regulator consumers
4830 *
4831 * @dev:           Device to supply
4832 * @num_consumers: Number of consumers to register
4833 * @consumers:     Configuration of consumers; clients are stored here.
4834 *
4835 * @return 0 on success, an errno on failure.
4836 *
4837 * This helper function allows drivers to get several regulator
4838 * consumers in one operation.  If any of the regulators cannot be
4839 * acquired then any regulators that were allocated will be freed
4840 * before returning to the caller.
 
 
4841 */
4842int regulator_bulk_get(struct device *dev, int num_consumers,
4843		       struct regulator_bulk_data *consumers)
4844{
4845	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4846}
4847EXPORT_SYMBOL_GPL(regulator_bulk_get);
4848
4849static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4850{
4851	struct regulator_bulk_data *bulk = data;
4852
4853	bulk->ret = regulator_enable(bulk->consumer);
4854}
4855
4856/**
4857 * regulator_bulk_enable - enable multiple regulator consumers
4858 *
4859 * @num_consumers: Number of consumers
4860 * @consumers:     Consumer data; clients are stored here.
4861 * @return         0 on success, an errno on failure
4862 *
4863 * This convenience API allows consumers to enable multiple regulator
4864 * clients in a single API call.  If any consumers cannot be enabled
4865 * then any others that were enabled will be disabled again prior to
4866 * return.
 
 
4867 */
4868int regulator_bulk_enable(int num_consumers,
4869			  struct regulator_bulk_data *consumers)
4870{
4871	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4872	int i;
4873	int ret = 0;
4874
4875	for (i = 0; i < num_consumers; i++) {
4876		async_schedule_domain(regulator_bulk_enable_async,
4877				      &consumers[i], &async_domain);
4878	}
4879
4880	async_synchronize_full_domain(&async_domain);
4881
4882	/* If any consumer failed we need to unwind any that succeeded */
4883	for (i = 0; i < num_consumers; i++) {
4884		if (consumers[i].ret != 0) {
4885			ret = consumers[i].ret;
4886			goto err;
4887		}
4888	}
4889
4890	return 0;
4891
4892err:
4893	for (i = 0; i < num_consumers; i++) {
4894		if (consumers[i].ret < 0)
4895			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4896			       ERR_PTR(consumers[i].ret));
4897		else
4898			regulator_disable(consumers[i].consumer);
4899	}
4900
4901	return ret;
4902}
4903EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4904
4905/**
4906 * regulator_bulk_disable - disable multiple regulator consumers
4907 *
4908 * @num_consumers: Number of consumers
4909 * @consumers:     Consumer data; clients are stored here.
4910 * @return         0 on success, an errno on failure
4911 *
4912 * This convenience API allows consumers to disable multiple regulator
4913 * clients in a single API call.  If any consumers cannot be disabled
4914 * then any others that were disabled will be enabled again prior to
4915 * return.
 
 
4916 */
4917int regulator_bulk_disable(int num_consumers,
4918			   struct regulator_bulk_data *consumers)
4919{
4920	int i;
4921	int ret, r;
4922
4923	for (i = num_consumers - 1; i >= 0; --i) {
4924		ret = regulator_disable(consumers[i].consumer);
4925		if (ret != 0)
4926			goto err;
4927	}
4928
4929	return 0;
4930
4931err:
4932	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4933	for (++i; i < num_consumers; ++i) {
4934		r = regulator_enable(consumers[i].consumer);
4935		if (r != 0)
4936			pr_err("Failed to re-enable %s: %pe\n",
4937			       consumers[i].supply, ERR_PTR(r));
4938	}
4939
4940	return ret;
4941}
4942EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4943
4944/**
4945 * regulator_bulk_force_disable - force disable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers:     Consumer data; clients are stored here.
4949 * @return         0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to forcibly disable multiple regulator
4952 * clients in a single API call.
4953 * NOTE: This should be used for situations when device damage will
4954 * likely occur if the regulators are not disabled (e.g. over temp).
4955 * Although regulator_force_disable function call for some consumers can
4956 * return error numbers, the function is called for all consumers.
 
 
4957 */
4958int regulator_bulk_force_disable(int num_consumers,
4959			   struct regulator_bulk_data *consumers)
4960{
4961	int i;
4962	int ret = 0;
4963
4964	for (i = 0; i < num_consumers; i++) {
4965		consumers[i].ret =
4966			    regulator_force_disable(consumers[i].consumer);
4967
4968		/* Store first error for reporting */
4969		if (consumers[i].ret && !ret)
4970			ret = consumers[i].ret;
4971	}
4972
4973	return ret;
4974}
4975EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4976
4977/**
4978 * regulator_bulk_free - free multiple regulator consumers
4979 *
4980 * @num_consumers: Number of consumers
4981 * @consumers:     Consumer data; clients are stored here.
4982 *
4983 * This convenience API allows consumers to free multiple regulator
4984 * clients in a single API call.
4985 */
4986void regulator_bulk_free(int num_consumers,
4987			 struct regulator_bulk_data *consumers)
4988{
4989	int i;
4990
4991	for (i = 0; i < num_consumers; i++) {
4992		regulator_put(consumers[i].consumer);
4993		consumers[i].consumer = NULL;
4994	}
4995}
4996EXPORT_SYMBOL_GPL(regulator_bulk_free);
4997
4998/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4999 * regulator_notifier_call_chain - call regulator event notifier
5000 * @rdev: regulator source
5001 * @event: notifier block
5002 * @data: callback-specific data.
5003 *
5004 * Called by regulator drivers to notify clients a regulator event has
5005 * occurred.
 
 
5006 */
5007int regulator_notifier_call_chain(struct regulator_dev *rdev,
5008				  unsigned long event, void *data)
5009{
 
 
5010	_notifier_call_chain(rdev, event, data);
5011	return NOTIFY_DONE;
5012
5013}
5014EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5015
5016/**
5017 * regulator_mode_to_status - convert a regulator mode into a status
5018 *
5019 * @mode: Mode to convert
5020 *
5021 * Convert a regulator mode into a status.
 
 
5022 */
5023int regulator_mode_to_status(unsigned int mode)
5024{
5025	switch (mode) {
5026	case REGULATOR_MODE_FAST:
5027		return REGULATOR_STATUS_FAST;
5028	case REGULATOR_MODE_NORMAL:
5029		return REGULATOR_STATUS_NORMAL;
5030	case REGULATOR_MODE_IDLE:
5031		return REGULATOR_STATUS_IDLE;
5032	case REGULATOR_MODE_STANDBY:
5033		return REGULATOR_STATUS_STANDBY;
5034	default:
5035		return REGULATOR_STATUS_UNDEFINED;
5036	}
5037}
5038EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5039
5040static struct attribute *regulator_dev_attrs[] = {
5041	&dev_attr_name.attr,
5042	&dev_attr_num_users.attr,
5043	&dev_attr_type.attr,
5044	&dev_attr_microvolts.attr,
5045	&dev_attr_microamps.attr,
5046	&dev_attr_opmode.attr,
5047	&dev_attr_state.attr,
5048	&dev_attr_status.attr,
5049	&dev_attr_bypass.attr,
5050	&dev_attr_requested_microamps.attr,
5051	&dev_attr_min_microvolts.attr,
5052	&dev_attr_max_microvolts.attr,
5053	&dev_attr_min_microamps.attr,
5054	&dev_attr_max_microamps.attr,
5055	&dev_attr_under_voltage.attr,
5056	&dev_attr_over_current.attr,
5057	&dev_attr_regulation_out.attr,
5058	&dev_attr_fail.attr,
5059	&dev_attr_over_temp.attr,
5060	&dev_attr_under_voltage_warn.attr,
5061	&dev_attr_over_current_warn.attr,
5062	&dev_attr_over_voltage_warn.attr,
5063	&dev_attr_over_temp_warn.attr,
5064	&dev_attr_suspend_standby_state.attr,
5065	&dev_attr_suspend_mem_state.attr,
5066	&dev_attr_suspend_disk_state.attr,
5067	&dev_attr_suspend_standby_microvolts.attr,
5068	&dev_attr_suspend_mem_microvolts.attr,
5069	&dev_attr_suspend_disk_microvolts.attr,
5070	&dev_attr_suspend_standby_mode.attr,
5071	&dev_attr_suspend_mem_mode.attr,
5072	&dev_attr_suspend_disk_mode.attr,
5073	NULL
5074};
5075
5076/*
5077 * To avoid cluttering sysfs (and memory) with useless state, only
5078 * create attributes that can be meaningfully displayed.
5079 */
5080static umode_t regulator_attr_is_visible(struct kobject *kobj,
5081					 struct attribute *attr, int idx)
5082{
5083	struct device *dev = kobj_to_dev(kobj);
5084	struct regulator_dev *rdev = dev_to_rdev(dev);
5085	const struct regulator_ops *ops = rdev->desc->ops;
5086	umode_t mode = attr->mode;
5087
5088	/* these three are always present */
5089	if (attr == &dev_attr_name.attr ||
5090	    attr == &dev_attr_num_users.attr ||
5091	    attr == &dev_attr_type.attr)
5092		return mode;
5093
5094	/* some attributes need specific methods to be displayed */
5095	if (attr == &dev_attr_microvolts.attr) {
5096		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5097		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5098		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5099		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5100			return mode;
5101		return 0;
5102	}
5103
5104	if (attr == &dev_attr_microamps.attr)
5105		return ops->get_current_limit ? mode : 0;
5106
5107	if (attr == &dev_attr_opmode.attr)
5108		return ops->get_mode ? mode : 0;
5109
5110	if (attr == &dev_attr_state.attr)
5111		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5112
5113	if (attr == &dev_attr_status.attr)
5114		return ops->get_status ? mode : 0;
5115
5116	if (attr == &dev_attr_bypass.attr)
5117		return ops->get_bypass ? mode : 0;
5118
5119	if (attr == &dev_attr_under_voltage.attr ||
5120	    attr == &dev_attr_over_current.attr ||
5121	    attr == &dev_attr_regulation_out.attr ||
5122	    attr == &dev_attr_fail.attr ||
5123	    attr == &dev_attr_over_temp.attr ||
5124	    attr == &dev_attr_under_voltage_warn.attr ||
5125	    attr == &dev_attr_over_current_warn.attr ||
5126	    attr == &dev_attr_over_voltage_warn.attr ||
5127	    attr == &dev_attr_over_temp_warn.attr)
5128		return ops->get_error_flags ? mode : 0;
5129
5130	/* constraints need specific supporting methods */
5131	if (attr == &dev_attr_min_microvolts.attr ||
5132	    attr == &dev_attr_max_microvolts.attr)
5133		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5134
5135	if (attr == &dev_attr_min_microamps.attr ||
5136	    attr == &dev_attr_max_microamps.attr)
5137		return ops->set_current_limit ? mode : 0;
5138
5139	if (attr == &dev_attr_suspend_standby_state.attr ||
5140	    attr == &dev_attr_suspend_mem_state.attr ||
5141	    attr == &dev_attr_suspend_disk_state.attr)
5142		return mode;
5143
5144	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5145	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5146	    attr == &dev_attr_suspend_disk_microvolts.attr)
5147		return ops->set_suspend_voltage ? mode : 0;
5148
5149	if (attr == &dev_attr_suspend_standby_mode.attr ||
5150	    attr == &dev_attr_suspend_mem_mode.attr ||
5151	    attr == &dev_attr_suspend_disk_mode.attr)
5152		return ops->set_suspend_mode ? mode : 0;
5153
5154	return mode;
5155}
5156
5157static const struct attribute_group regulator_dev_group = {
5158	.attrs = regulator_dev_attrs,
5159	.is_visible = regulator_attr_is_visible,
5160};
5161
5162static const struct attribute_group *regulator_dev_groups[] = {
5163	&regulator_dev_group,
5164	NULL
5165};
5166
5167static void regulator_dev_release(struct device *dev)
5168{
5169	struct regulator_dev *rdev = dev_get_drvdata(dev);
5170
5171	debugfs_remove_recursive(rdev->debugfs);
5172	kfree(rdev->constraints);
5173	of_node_put(rdev->dev.of_node);
5174	kfree(rdev);
5175}
5176
5177static void rdev_init_debugfs(struct regulator_dev *rdev)
5178{
5179	struct device *parent = rdev->dev.parent;
5180	const char *rname = rdev_get_name(rdev);
5181	char name[NAME_MAX];
5182
5183	/* Avoid duplicate debugfs directory names */
5184	if (parent && rname == rdev->desc->name) {
5185		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5186			 rname);
5187		rname = name;
5188	}
5189
5190	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5191	if (!rdev->debugfs) {
5192		rdev_warn(rdev, "Failed to create debugfs directory\n");
5193		return;
5194	}
5195
5196	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5197			   &rdev->use_count);
5198	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5199			   &rdev->open_count);
5200	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5201			   &rdev->bypass_count);
5202}
5203
5204static int regulator_register_resolve_supply(struct device *dev, void *data)
5205{
5206	struct regulator_dev *rdev = dev_to_rdev(dev);
5207
5208	if (regulator_resolve_supply(rdev))
5209		rdev_dbg(rdev, "unable to resolve supply\n");
5210
5211	return 0;
5212}
5213
5214int regulator_coupler_register(struct regulator_coupler *coupler)
5215{
5216	mutex_lock(&regulator_list_mutex);
5217	list_add_tail(&coupler->list, &regulator_coupler_list);
5218	mutex_unlock(&regulator_list_mutex);
5219
5220	return 0;
5221}
5222
5223static struct regulator_coupler *
5224regulator_find_coupler(struct regulator_dev *rdev)
5225{
5226	struct regulator_coupler *coupler;
5227	int err;
5228
5229	/*
5230	 * Note that regulators are appended to the list and the generic
5231	 * coupler is registered first, hence it will be attached at last
5232	 * if nobody cared.
5233	 */
5234	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5235		err = coupler->attach_regulator(coupler, rdev);
5236		if (!err) {
5237			if (!coupler->balance_voltage &&
5238			    rdev->coupling_desc.n_coupled > 2)
5239				goto err_unsupported;
5240
5241			return coupler;
5242		}
5243
5244		if (err < 0)
5245			return ERR_PTR(err);
5246
5247		if (err == 1)
5248			continue;
5249
5250		break;
5251	}
5252
5253	return ERR_PTR(-EINVAL);
5254
5255err_unsupported:
5256	if (coupler->detach_regulator)
5257		coupler->detach_regulator(coupler, rdev);
5258
5259	rdev_err(rdev,
5260		"Voltage balancing for multiple regulator couples is unimplemented\n");
5261
5262	return ERR_PTR(-EPERM);
5263}
5264
5265static void regulator_resolve_coupling(struct regulator_dev *rdev)
5266{
5267	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5268	struct coupling_desc *c_desc = &rdev->coupling_desc;
5269	int n_coupled = c_desc->n_coupled;
5270	struct regulator_dev *c_rdev;
5271	int i;
5272
5273	for (i = 1; i < n_coupled; i++) {
5274		/* already resolved */
5275		if (c_desc->coupled_rdevs[i])
5276			continue;
5277
5278		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5279
5280		if (!c_rdev)
5281			continue;
5282
5283		if (c_rdev->coupling_desc.coupler != coupler) {
5284			rdev_err(rdev, "coupler mismatch with %s\n",
5285				 rdev_get_name(c_rdev));
5286			return;
5287		}
5288
5289		c_desc->coupled_rdevs[i] = c_rdev;
5290		c_desc->n_resolved++;
5291
5292		regulator_resolve_coupling(c_rdev);
5293	}
5294}
5295
5296static void regulator_remove_coupling(struct regulator_dev *rdev)
5297{
5298	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5299	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5300	struct regulator_dev *__c_rdev, *c_rdev;
5301	unsigned int __n_coupled, n_coupled;
5302	int i, k;
5303	int err;
5304
5305	n_coupled = c_desc->n_coupled;
5306
5307	for (i = 1; i < n_coupled; i++) {
5308		c_rdev = c_desc->coupled_rdevs[i];
5309
5310		if (!c_rdev)
5311			continue;
5312
5313		regulator_lock(c_rdev);
5314
5315		__c_desc = &c_rdev->coupling_desc;
5316		__n_coupled = __c_desc->n_coupled;
5317
5318		for (k = 1; k < __n_coupled; k++) {
5319			__c_rdev = __c_desc->coupled_rdevs[k];
5320
5321			if (__c_rdev == rdev) {
5322				__c_desc->coupled_rdevs[k] = NULL;
5323				__c_desc->n_resolved--;
5324				break;
5325			}
5326		}
5327
5328		regulator_unlock(c_rdev);
5329
5330		c_desc->coupled_rdevs[i] = NULL;
5331		c_desc->n_resolved--;
5332	}
5333
5334	if (coupler && coupler->detach_regulator) {
5335		err = coupler->detach_regulator(coupler, rdev);
5336		if (err)
5337			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5338				 ERR_PTR(err));
5339	}
5340
5341	kfree(rdev->coupling_desc.coupled_rdevs);
5342	rdev->coupling_desc.coupled_rdevs = NULL;
5343}
5344
5345static int regulator_init_coupling(struct regulator_dev *rdev)
5346{
5347	struct regulator_dev **coupled;
5348	int err, n_phandles;
5349
5350	if (!IS_ENABLED(CONFIG_OF))
5351		n_phandles = 0;
5352	else
5353		n_phandles = of_get_n_coupled(rdev);
5354
5355	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5356	if (!coupled)
5357		return -ENOMEM;
5358
5359	rdev->coupling_desc.coupled_rdevs = coupled;
5360
5361	/*
5362	 * Every regulator should always have coupling descriptor filled with
5363	 * at least pointer to itself.
5364	 */
5365	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5366	rdev->coupling_desc.n_coupled = n_phandles + 1;
5367	rdev->coupling_desc.n_resolved++;
5368
5369	/* regulator isn't coupled */
5370	if (n_phandles == 0)
5371		return 0;
5372
5373	if (!of_check_coupling_data(rdev))
5374		return -EPERM;
5375
5376	mutex_lock(&regulator_list_mutex);
5377	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5378	mutex_unlock(&regulator_list_mutex);
5379
5380	if (IS_ERR(rdev->coupling_desc.coupler)) {
5381		err = PTR_ERR(rdev->coupling_desc.coupler);
5382		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5383		return err;
5384	}
5385
5386	return 0;
5387}
5388
5389static int generic_coupler_attach(struct regulator_coupler *coupler,
5390				  struct regulator_dev *rdev)
5391{
5392	if (rdev->coupling_desc.n_coupled > 2) {
5393		rdev_err(rdev,
5394			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5395		return -EPERM;
5396	}
5397
5398	if (!rdev->constraints->always_on) {
5399		rdev_err(rdev,
5400			 "Coupling of a non always-on regulator is unimplemented\n");
5401		return -ENOTSUPP;
5402	}
5403
5404	return 0;
5405}
5406
5407static struct regulator_coupler generic_regulator_coupler = {
5408	.attach_regulator = generic_coupler_attach,
5409};
5410
5411/**
5412 * regulator_register - register regulator
5413 * @dev: the device that drive the regulator
5414 * @regulator_desc: regulator to register
5415 * @cfg: runtime configuration for regulator
5416 *
5417 * Called by regulator drivers to register a regulator.
5418 * Returns a valid pointer to struct regulator_dev on success
5419 * or an ERR_PTR() on error.
 
5420 */
5421struct regulator_dev *
5422regulator_register(struct device *dev,
5423		   const struct regulator_desc *regulator_desc,
5424		   const struct regulator_config *cfg)
5425{
5426	const struct regulator_init_data *init_data;
5427	struct regulator_config *config = NULL;
5428	static atomic_t regulator_no = ATOMIC_INIT(-1);
5429	struct regulator_dev *rdev;
5430	bool dangling_cfg_gpiod = false;
5431	bool dangling_of_gpiod = false;
5432	int ret, i;
5433	bool resolved_early = false;
5434
5435	if (cfg == NULL)
5436		return ERR_PTR(-EINVAL);
5437	if (cfg->ena_gpiod)
5438		dangling_cfg_gpiod = true;
5439	if (regulator_desc == NULL) {
5440		ret = -EINVAL;
5441		goto rinse;
5442	}
5443
5444	WARN_ON(!dev || !cfg->dev);
5445
5446	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5447		ret = -EINVAL;
5448		goto rinse;
5449	}
5450
5451	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5452	    regulator_desc->type != REGULATOR_CURRENT) {
5453		ret = -EINVAL;
5454		goto rinse;
5455	}
5456
5457	/* Only one of each should be implemented */
5458	WARN_ON(regulator_desc->ops->get_voltage &&
5459		regulator_desc->ops->get_voltage_sel);
5460	WARN_ON(regulator_desc->ops->set_voltage &&
5461		regulator_desc->ops->set_voltage_sel);
5462
5463	/* If we're using selectors we must implement list_voltage. */
5464	if (regulator_desc->ops->get_voltage_sel &&
5465	    !regulator_desc->ops->list_voltage) {
5466		ret = -EINVAL;
5467		goto rinse;
5468	}
5469	if (regulator_desc->ops->set_voltage_sel &&
5470	    !regulator_desc->ops->list_voltage) {
5471		ret = -EINVAL;
5472		goto rinse;
5473	}
5474
5475	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5476	if (rdev == NULL) {
5477		ret = -ENOMEM;
5478		goto rinse;
5479	}
5480	device_initialize(&rdev->dev);
 
 
5481	spin_lock_init(&rdev->err_lock);
5482
5483	/*
5484	 * Duplicate the config so the driver could override it after
5485	 * parsing init data.
5486	 */
5487	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5488	if (config == NULL) {
5489		ret = -ENOMEM;
5490		goto clean;
5491	}
5492
 
 
 
 
5493	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5494					       &rdev->dev.of_node);
5495
5496	/*
5497	 * Sometimes not all resources are probed already so we need to take
5498	 * that into account. This happens most the time if the ena_gpiod comes
5499	 * from a gpio extender or something else.
5500	 */
5501	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5502		ret = -EPROBE_DEFER;
5503		goto clean;
5504	}
5505
5506	/*
5507	 * We need to keep track of any GPIO descriptor coming from the
5508	 * device tree until we have handled it over to the core. If the
5509	 * config that was passed in to this function DOES NOT contain
5510	 * a descriptor, and the config after this call DOES contain
5511	 * a descriptor, we definitely got one from parsing the device
5512	 * tree.
5513	 */
5514	if (!cfg->ena_gpiod && config->ena_gpiod)
5515		dangling_of_gpiod = true;
5516	if (!init_data) {
5517		init_data = config->init_data;
5518		rdev->dev.of_node = of_node_get(config->of_node);
5519	}
5520
5521	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5522	rdev->reg_data = config->driver_data;
5523	rdev->owner = regulator_desc->owner;
5524	rdev->desc = regulator_desc;
5525	if (config->regmap)
5526		rdev->regmap = config->regmap;
5527	else if (dev_get_regmap(dev, NULL))
5528		rdev->regmap = dev_get_regmap(dev, NULL);
5529	else if (dev->parent)
5530		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5531	INIT_LIST_HEAD(&rdev->consumer_list);
5532	INIT_LIST_HEAD(&rdev->list);
5533	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5534	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5535
5536	if (init_data && init_data->supply_regulator)
5537		rdev->supply_name = init_data->supply_regulator;
5538	else if (regulator_desc->supply_name)
5539		rdev->supply_name = regulator_desc->supply_name;
5540
5541	/* register with sysfs */
5542	rdev->dev.class = &regulator_class;
5543	rdev->dev.parent = config->dev;
5544	dev_set_name(&rdev->dev, "regulator.%lu",
5545		    (unsigned long) atomic_inc_return(&regulator_no));
5546	dev_set_drvdata(&rdev->dev, rdev);
5547
5548	/* set regulator constraints */
5549	if (init_data)
5550		rdev->constraints = kmemdup(&init_data->constraints,
5551					    sizeof(*rdev->constraints),
5552					    GFP_KERNEL);
5553	else
5554		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5555					    GFP_KERNEL);
5556	if (!rdev->constraints) {
5557		ret = -ENOMEM;
5558		goto wash;
5559	}
5560
 
 
 
 
 
 
5561	if ((rdev->supply_name && !rdev->supply) &&
5562		(rdev->constraints->always_on ||
5563		 rdev->constraints->boot_on)) {
5564		ret = regulator_resolve_supply(rdev);
5565		if (ret)
5566			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5567					 ERR_PTR(ret));
5568
5569		resolved_early = true;
5570	}
5571
5572	/* perform any regulator specific init */
5573	if (init_data && init_data->regulator_init) {
5574		ret = init_data->regulator_init(rdev->reg_data);
5575		if (ret < 0)
5576			goto wash;
5577	}
5578
5579	if (config->ena_gpiod) {
5580		ret = regulator_ena_gpio_request(rdev, config);
5581		if (ret != 0) {
5582			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5583				 ERR_PTR(ret));
5584			goto wash;
5585		}
5586		/* The regulator core took over the GPIO descriptor */
5587		dangling_cfg_gpiod = false;
5588		dangling_of_gpiod = false;
5589	}
5590
5591	ret = set_machine_constraints(rdev);
5592	if (ret == -EPROBE_DEFER && !resolved_early) {
5593		/* Regulator might be in bypass mode and so needs its supply
5594		 * to set the constraints
5595		 */
5596		/* FIXME: this currently triggers a chicken-and-egg problem
5597		 * when creating -SUPPLY symlink in sysfs to a regulator
5598		 * that is just being created
5599		 */
5600		rdev_dbg(rdev, "will resolve supply early: %s\n",
5601			 rdev->supply_name);
5602		ret = regulator_resolve_supply(rdev);
5603		if (!ret)
5604			ret = set_machine_constraints(rdev);
5605		else
5606			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5607				 ERR_PTR(ret));
5608	}
5609	if (ret < 0)
5610		goto wash;
5611
5612	ret = regulator_init_coupling(rdev);
5613	if (ret < 0)
5614		goto wash;
5615
5616	/* add consumers devices */
5617	if (init_data) {
5618		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5619			ret = set_consumer_device_supply(rdev,
5620				init_data->consumer_supplies[i].dev_name,
5621				init_data->consumer_supplies[i].supply);
5622			if (ret < 0) {
5623				dev_err(dev, "Failed to set supply %s\n",
5624					init_data->consumer_supplies[i].supply);
5625				goto unset_supplies;
5626			}
5627		}
5628	}
5629
5630	if (!rdev->desc->ops->get_voltage &&
5631	    !rdev->desc->ops->list_voltage &&
5632	    !rdev->desc->fixed_uV)
5633		rdev->is_switch = true;
5634
5635	ret = device_add(&rdev->dev);
5636	if (ret != 0)
5637		goto unset_supplies;
5638
5639	rdev_init_debugfs(rdev);
5640
5641	/* try to resolve regulators coupling since a new one was registered */
5642	mutex_lock(&regulator_list_mutex);
5643	regulator_resolve_coupling(rdev);
5644	mutex_unlock(&regulator_list_mutex);
5645
5646	/* try to resolve regulators supply since a new one was registered */
5647	class_for_each_device(&regulator_class, NULL, NULL,
5648			      regulator_register_resolve_supply);
5649	kfree(config);
5650	return rdev;
5651
5652unset_supplies:
5653	mutex_lock(&regulator_list_mutex);
5654	unset_regulator_supplies(rdev);
5655	regulator_remove_coupling(rdev);
5656	mutex_unlock(&regulator_list_mutex);
5657wash:
5658	regulator_put(rdev->supply);
5659	kfree(rdev->coupling_desc.coupled_rdevs);
5660	mutex_lock(&regulator_list_mutex);
5661	regulator_ena_gpio_free(rdev);
5662	mutex_unlock(&regulator_list_mutex);
5663	put_device(&rdev->dev);
5664	rdev = NULL;
5665clean:
5666	if (dangling_of_gpiod)
5667		gpiod_put(config->ena_gpiod);
5668	if (rdev && rdev->dev.of_node)
5669		of_node_put(rdev->dev.of_node);
5670	kfree(rdev);
5671	kfree(config);
 
5672rinse:
5673	if (dangling_cfg_gpiod)
5674		gpiod_put(cfg->ena_gpiod);
5675	return ERR_PTR(ret);
5676}
5677EXPORT_SYMBOL_GPL(regulator_register);
5678
5679/**
5680 * regulator_unregister - unregister regulator
5681 * @rdev: regulator to unregister
5682 *
5683 * Called by regulator drivers to unregister a regulator.
5684 */
5685void regulator_unregister(struct regulator_dev *rdev)
5686{
5687	if (rdev == NULL)
5688		return;
5689
5690	if (rdev->supply) {
5691		while (rdev->use_count--)
5692			regulator_disable(rdev->supply);
5693		regulator_put(rdev->supply);
5694	}
5695
5696	flush_work(&rdev->disable_work.work);
5697
5698	mutex_lock(&regulator_list_mutex);
5699
5700	WARN_ON(rdev->open_count);
5701	regulator_remove_coupling(rdev);
5702	unset_regulator_supplies(rdev);
5703	list_del(&rdev->list);
5704	regulator_ena_gpio_free(rdev);
5705	device_unregister(&rdev->dev);
5706
5707	mutex_unlock(&regulator_list_mutex);
5708}
5709EXPORT_SYMBOL_GPL(regulator_unregister);
5710
5711#ifdef CONFIG_SUSPEND
5712/**
5713 * regulator_suspend - prepare regulators for system wide suspend
5714 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5715 *
5716 * Configure each regulator with it's suspend operating parameters for state.
 
 
5717 */
5718static int regulator_suspend(struct device *dev)
5719{
5720	struct regulator_dev *rdev = dev_to_rdev(dev);
5721	suspend_state_t state = pm_suspend_target_state;
5722	int ret;
5723	const struct regulator_state *rstate;
5724
5725	rstate = regulator_get_suspend_state_check(rdev, state);
5726	if (!rstate)
5727		return 0;
5728
5729	regulator_lock(rdev);
5730	ret = __suspend_set_state(rdev, rstate);
5731	regulator_unlock(rdev);
5732
5733	return ret;
5734}
5735
5736static int regulator_resume(struct device *dev)
5737{
5738	suspend_state_t state = pm_suspend_target_state;
5739	struct regulator_dev *rdev = dev_to_rdev(dev);
5740	struct regulator_state *rstate;
5741	int ret = 0;
5742
5743	rstate = regulator_get_suspend_state(rdev, state);
5744	if (rstate == NULL)
5745		return 0;
5746
5747	/* Avoid grabbing the lock if we don't need to */
5748	if (!rdev->desc->ops->resume)
5749		return 0;
5750
5751	regulator_lock(rdev);
5752
5753	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5754	    rstate->enabled == DISABLE_IN_SUSPEND)
5755		ret = rdev->desc->ops->resume(rdev);
5756
5757	regulator_unlock(rdev);
5758
5759	return ret;
5760}
5761#else /* !CONFIG_SUSPEND */
5762
5763#define regulator_suspend	NULL
5764#define regulator_resume	NULL
5765
5766#endif /* !CONFIG_SUSPEND */
5767
5768#ifdef CONFIG_PM
5769static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5770	.suspend	= regulator_suspend,
5771	.resume		= regulator_resume,
5772};
5773#endif
5774
5775struct class regulator_class = {
5776	.name = "regulator",
5777	.dev_release = regulator_dev_release,
5778	.dev_groups = regulator_dev_groups,
5779#ifdef CONFIG_PM
5780	.pm = &regulator_pm_ops,
5781#endif
5782};
5783/**
5784 * regulator_has_full_constraints - the system has fully specified constraints
5785 *
5786 * Calling this function will cause the regulator API to disable all
5787 * regulators which have a zero use count and don't have an always_on
5788 * constraint in a late_initcall.
5789 *
5790 * The intention is that this will become the default behaviour in a
5791 * future kernel release so users are encouraged to use this facility
5792 * now.
5793 */
5794void regulator_has_full_constraints(void)
5795{
5796	has_full_constraints = 1;
5797}
5798EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5799
5800/**
5801 * rdev_get_drvdata - get rdev regulator driver data
5802 * @rdev: regulator
5803 *
5804 * Get rdev regulator driver private data. This call can be used in the
5805 * regulator driver context.
 
 
5806 */
5807void *rdev_get_drvdata(struct regulator_dev *rdev)
5808{
5809	return rdev->reg_data;
5810}
5811EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5812
5813/**
5814 * regulator_get_drvdata - get regulator driver data
5815 * @regulator: regulator
5816 *
5817 * Get regulator driver private data. This call can be used in the consumer
5818 * driver context when non API regulator specific functions need to be called.
 
 
5819 */
5820void *regulator_get_drvdata(struct regulator *regulator)
5821{
5822	return regulator->rdev->reg_data;
5823}
5824EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5825
5826/**
5827 * regulator_set_drvdata - set regulator driver data
5828 * @regulator: regulator
5829 * @data: data
5830 */
5831void regulator_set_drvdata(struct regulator *regulator, void *data)
5832{
5833	regulator->rdev->reg_data = data;
5834}
5835EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5836
5837/**
5838 * rdev_get_id - get regulator ID
5839 * @rdev: regulator
 
 
5840 */
5841int rdev_get_id(struct regulator_dev *rdev)
5842{
5843	return rdev->desc->id;
5844}
5845EXPORT_SYMBOL_GPL(rdev_get_id);
5846
5847struct device *rdev_get_dev(struct regulator_dev *rdev)
5848{
5849	return &rdev->dev;
5850}
5851EXPORT_SYMBOL_GPL(rdev_get_dev);
5852
5853struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5854{
5855	return rdev->regmap;
5856}
5857EXPORT_SYMBOL_GPL(rdev_get_regmap);
5858
5859void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5860{
5861	return reg_init_data->driver_data;
5862}
5863EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5864
5865#ifdef CONFIG_DEBUG_FS
5866static int supply_map_show(struct seq_file *sf, void *data)
5867{
5868	struct regulator_map *map;
5869
5870	list_for_each_entry(map, &regulator_map_list, list) {
5871		seq_printf(sf, "%s -> %s.%s\n",
5872				rdev_get_name(map->regulator), map->dev_name,
5873				map->supply);
5874	}
5875
5876	return 0;
5877}
5878DEFINE_SHOW_ATTRIBUTE(supply_map);
5879
5880struct summary_data {
5881	struct seq_file *s;
5882	struct regulator_dev *parent;
5883	int level;
5884};
5885
5886static void regulator_summary_show_subtree(struct seq_file *s,
5887					   struct regulator_dev *rdev,
5888					   int level);
5889
5890static int regulator_summary_show_children(struct device *dev, void *data)
5891{
5892	struct regulator_dev *rdev = dev_to_rdev(dev);
5893	struct summary_data *summary_data = data;
5894
5895	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5896		regulator_summary_show_subtree(summary_data->s, rdev,
5897					       summary_data->level + 1);
5898
5899	return 0;
5900}
5901
5902static void regulator_summary_show_subtree(struct seq_file *s,
5903					   struct regulator_dev *rdev,
5904					   int level)
5905{
5906	struct regulation_constraints *c;
5907	struct regulator *consumer;
5908	struct summary_data summary_data;
5909	unsigned int opmode;
5910
5911	if (!rdev)
5912		return;
5913
5914	opmode = _regulator_get_mode_unlocked(rdev);
5915	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5916		   level * 3 + 1, "",
5917		   30 - level * 3, rdev_get_name(rdev),
5918		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5919		   regulator_opmode_to_str(opmode));
5920
5921	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5922	seq_printf(s, "%5dmA ",
5923		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5924
5925	c = rdev->constraints;
5926	if (c) {
5927		switch (rdev->desc->type) {
5928		case REGULATOR_VOLTAGE:
5929			seq_printf(s, "%5dmV %5dmV ",
5930				   c->min_uV / 1000, c->max_uV / 1000);
5931			break;
5932		case REGULATOR_CURRENT:
5933			seq_printf(s, "%5dmA %5dmA ",
5934				   c->min_uA / 1000, c->max_uA / 1000);
5935			break;
5936		}
5937	}
5938
5939	seq_puts(s, "\n");
5940
5941	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5942		if (consumer->dev && consumer->dev->class == &regulator_class)
5943			continue;
5944
5945		seq_printf(s, "%*s%-*s ",
5946			   (level + 1) * 3 + 1, "",
5947			   30 - (level + 1) * 3,
5948			   consumer->supply_name ? consumer->supply_name :
5949			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5950
5951		switch (rdev->desc->type) {
5952		case REGULATOR_VOLTAGE:
5953			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5954				   consumer->enable_count,
5955				   consumer->uA_load / 1000,
5956				   consumer->uA_load && !consumer->enable_count ?
5957				   '*' : ' ',
5958				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5959				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5960			break;
5961		case REGULATOR_CURRENT:
5962			break;
5963		}
5964
5965		seq_puts(s, "\n");
5966	}
5967
5968	summary_data.s = s;
5969	summary_data.level = level;
5970	summary_data.parent = rdev;
5971
5972	class_for_each_device(&regulator_class, NULL, &summary_data,
5973			      regulator_summary_show_children);
5974}
5975
5976struct summary_lock_data {
5977	struct ww_acquire_ctx *ww_ctx;
5978	struct regulator_dev **new_contended_rdev;
5979	struct regulator_dev **old_contended_rdev;
5980};
5981
5982static int regulator_summary_lock_one(struct device *dev, void *data)
5983{
5984	struct regulator_dev *rdev = dev_to_rdev(dev);
5985	struct summary_lock_data *lock_data = data;
5986	int ret = 0;
5987
5988	if (rdev != *lock_data->old_contended_rdev) {
5989		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5990
5991		if (ret == -EDEADLK)
5992			*lock_data->new_contended_rdev = rdev;
5993		else
5994			WARN_ON_ONCE(ret);
5995	} else {
5996		*lock_data->old_contended_rdev = NULL;
5997	}
5998
5999	return ret;
6000}
6001
6002static int regulator_summary_unlock_one(struct device *dev, void *data)
6003{
6004	struct regulator_dev *rdev = dev_to_rdev(dev);
6005	struct summary_lock_data *lock_data = data;
6006
6007	if (lock_data) {
6008		if (rdev == *lock_data->new_contended_rdev)
6009			return -EDEADLK;
6010	}
6011
6012	regulator_unlock(rdev);
6013
6014	return 0;
6015}
6016
6017static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6018				      struct regulator_dev **new_contended_rdev,
6019				      struct regulator_dev **old_contended_rdev)
6020{
6021	struct summary_lock_data lock_data;
6022	int ret;
6023
6024	lock_data.ww_ctx = ww_ctx;
6025	lock_data.new_contended_rdev = new_contended_rdev;
6026	lock_data.old_contended_rdev = old_contended_rdev;
6027
6028	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6029				    regulator_summary_lock_one);
6030	if (ret)
6031		class_for_each_device(&regulator_class, NULL, &lock_data,
6032				      regulator_summary_unlock_one);
6033
6034	return ret;
6035}
6036
6037static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6038{
6039	struct regulator_dev *new_contended_rdev = NULL;
6040	struct regulator_dev *old_contended_rdev = NULL;
6041	int err;
6042
6043	mutex_lock(&regulator_list_mutex);
6044
6045	ww_acquire_init(ww_ctx, &regulator_ww_class);
6046
6047	do {
6048		if (new_contended_rdev) {
6049			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6050			old_contended_rdev = new_contended_rdev;
6051			old_contended_rdev->ref_cnt++;
 
6052		}
6053
6054		err = regulator_summary_lock_all(ww_ctx,
6055						 &new_contended_rdev,
6056						 &old_contended_rdev);
6057
6058		if (old_contended_rdev)
6059			regulator_unlock(old_contended_rdev);
6060
6061	} while (err == -EDEADLK);
6062
6063	ww_acquire_done(ww_ctx);
6064}
6065
6066static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6067{
6068	class_for_each_device(&regulator_class, NULL, NULL,
6069			      regulator_summary_unlock_one);
6070	ww_acquire_fini(ww_ctx);
6071
6072	mutex_unlock(&regulator_list_mutex);
6073}
6074
6075static int regulator_summary_show_roots(struct device *dev, void *data)
6076{
6077	struct regulator_dev *rdev = dev_to_rdev(dev);
6078	struct seq_file *s = data;
6079
6080	if (!rdev->supply)
6081		regulator_summary_show_subtree(s, rdev, 0);
6082
6083	return 0;
6084}
6085
6086static int regulator_summary_show(struct seq_file *s, void *data)
6087{
6088	struct ww_acquire_ctx ww_ctx;
6089
6090	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6091	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6092
6093	regulator_summary_lock(&ww_ctx);
6094
6095	class_for_each_device(&regulator_class, NULL, s,
6096			      regulator_summary_show_roots);
6097
6098	regulator_summary_unlock(&ww_ctx);
6099
6100	return 0;
6101}
6102DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6103#endif /* CONFIG_DEBUG_FS */
6104
6105static int __init regulator_init(void)
6106{
6107	int ret;
6108
6109	ret = class_register(&regulator_class);
6110
6111	debugfs_root = debugfs_create_dir("regulator", NULL);
6112	if (!debugfs_root)
6113		pr_warn("regulator: Failed to create debugfs directory\n");
6114
6115#ifdef CONFIG_DEBUG_FS
6116	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6117			    &supply_map_fops);
6118
6119	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6120			    NULL, &regulator_summary_fops);
6121#endif
6122	regulator_dummy_init();
6123
6124	regulator_coupler_register(&generic_regulator_coupler);
6125
6126	return ret;
6127}
6128
6129/* init early to allow our consumers to complete system booting */
6130core_initcall(regulator_init);
6131
6132static int regulator_late_cleanup(struct device *dev, void *data)
6133{
6134	struct regulator_dev *rdev = dev_to_rdev(dev);
6135	struct regulation_constraints *c = rdev->constraints;
6136	int ret;
6137
6138	if (c && c->always_on)
6139		return 0;
6140
6141	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6142		return 0;
6143
6144	regulator_lock(rdev);
6145
6146	if (rdev->use_count)
6147		goto unlock;
6148
6149	/* If reading the status failed, assume that it's off. */
6150	if (_regulator_is_enabled(rdev) <= 0)
6151		goto unlock;
6152
6153	if (have_full_constraints()) {
6154		/* We log since this may kill the system if it goes
6155		 * wrong.
6156		 */
6157		rdev_info(rdev, "disabling\n");
6158		ret = _regulator_do_disable(rdev);
6159		if (ret != 0)
6160			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6161	} else {
6162		/* The intention is that in future we will
6163		 * assume that full constraints are provided
6164		 * so warn even if we aren't going to do
6165		 * anything here.
6166		 */
6167		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6168	}
6169
6170unlock:
6171	regulator_unlock(rdev);
6172
6173	return 0;
6174}
6175
 
 
 
 
 
 
 
 
6176static void regulator_init_complete_work_function(struct work_struct *work)
6177{
6178	/*
6179	 * Regulators may had failed to resolve their input supplies
6180	 * when were registered, either because the input supply was
6181	 * not registered yet or because its parent device was not
6182	 * bound yet. So attempt to resolve the input supplies for
6183	 * pending regulators before trying to disable unused ones.
6184	 */
6185	class_for_each_device(&regulator_class, NULL, NULL,
6186			      regulator_register_resolve_supply);
 
 
 
 
 
 
 
 
 
6187
6188	/* If we have a full configuration then disable any regulators
6189	 * we have permission to change the status for and which are
6190	 * not in use or always_on.  This is effectively the default
6191	 * for DT and ACPI as they have full constraints.
6192	 */
6193	class_for_each_device(&regulator_class, NULL, NULL,
6194			      regulator_late_cleanup);
6195}
6196
6197static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6198			    regulator_init_complete_work_function);
6199
6200static int __init regulator_init_complete(void)
6201{
6202	/*
6203	 * Since DT doesn't provide an idiomatic mechanism for
6204	 * enabling full constraints and since it's much more natural
6205	 * with DT to provide them just assume that a DT enabled
6206	 * system has full constraints.
6207	 */
6208	if (of_have_populated_dt())
6209		has_full_constraints = true;
6210
6211	/*
6212	 * We punt completion for an arbitrary amount of time since
6213	 * systems like distros will load many drivers from userspace
6214	 * so consumers might not always be ready yet, this is
6215	 * particularly an issue with laptops where this might bounce
6216	 * the display off then on.  Ideally we'd get a notification
6217	 * from userspace when this happens but we don't so just wait
6218	 * a bit and hope we waited long enough.  It'd be better if
6219	 * we'd only do this on systems that need it, and a kernel
6220	 * command line option might be useful.
6221	 */
6222	schedule_delayed_work(&regulator_init_complete_work,
6223			      msecs_to_jiffies(30000));
6224
6225	return 0;
6226}
6227late_initcall_sync(regulator_init_complete);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/reboot.h>
  23#include <linux/regmap.h>
  24#include <linux/regulator/of_regulator.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/regulator/coupler.h>
  27#include <linux/regulator/driver.h>
  28#include <linux/regulator/machine.h>
  29#include <linux/module.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/regulator.h>
  33
  34#include "dummy.h"
  35#include "internal.h"
  36#include "regnl.h"
  37
  38static DEFINE_WW_CLASS(regulator_ww_class);
  39static DEFINE_MUTEX(regulator_nesting_mutex);
  40static DEFINE_MUTEX(regulator_list_mutex);
  41static LIST_HEAD(regulator_map_list);
  42static LIST_HEAD(regulator_ena_gpio_list);
  43static LIST_HEAD(regulator_supply_alias_list);
  44static LIST_HEAD(regulator_coupler_list);
  45static bool has_full_constraints;
  46
  47static struct dentry *debugfs_root;
  48
  49/*
  50 * struct regulator_map
  51 *
  52 * Used to provide symbolic supply names to devices.
  53 */
  54struct regulator_map {
  55	struct list_head list;
  56	const char *dev_name;   /* The dev_name() for the consumer */
  57	const char *supply;
  58	struct regulator_dev *regulator;
  59};
  60
  61/*
  62 * struct regulator_enable_gpio
  63 *
  64 * Management for shared enable GPIO pin
  65 */
  66struct regulator_enable_gpio {
  67	struct list_head list;
  68	struct gpio_desc *gpiod;
  69	u32 enable_count;	/* a number of enabled shared GPIO */
  70	u32 request_count;	/* a number of requested shared GPIO */
  71};
  72
  73/*
  74 * struct regulator_supply_alias
  75 *
  76 * Used to map lookups for a supply onto an alternative device.
  77 */
  78struct regulator_supply_alias {
  79	struct list_head list;
  80	struct device *src_dev;
  81	const char *src_supply;
  82	struct device *alias_dev;
  83	const char *alias_supply;
  84};
  85
  86static int _regulator_is_enabled(struct regulator_dev *rdev);
  87static int _regulator_disable(struct regulator *regulator);
  88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  89static int _regulator_get_current_limit(struct regulator_dev *rdev);
  90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  91static int _notifier_call_chain(struct regulator_dev *rdev,
  92				  unsigned long event, void *data);
  93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  94				     int min_uV, int max_uV);
  95static int regulator_balance_voltage(struct regulator_dev *rdev,
  96				     suspend_state_t state);
  97static struct regulator *create_regulator(struct regulator_dev *rdev,
  98					  struct device *dev,
  99					  const char *supply_name);
 100static void destroy_regulator(struct regulator *regulator);
 101static void _regulator_put(struct regulator *regulator);
 102
 103const char *rdev_get_name(struct regulator_dev *rdev)
 104{
 105	if (rdev->constraints && rdev->constraints->name)
 106		return rdev->constraints->name;
 107	else if (rdev->desc->name)
 108		return rdev->desc->name;
 109	else
 110		return "";
 111}
 112EXPORT_SYMBOL_GPL(rdev_get_name);
 113
 114static bool have_full_constraints(void)
 115{
 116	return has_full_constraints || of_have_populated_dt();
 117}
 118
 119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 120{
 121	if (!rdev->constraints) {
 122		rdev_err(rdev, "no constraints\n");
 123		return false;
 124	}
 125
 126	if (rdev->constraints->valid_ops_mask & ops)
 127		return true;
 128
 129	return false;
 130}
 131
 132/**
 133 * regulator_lock_nested - lock a single regulator
 134 * @rdev:		regulator source
 135 * @ww_ctx:		w/w mutex acquire context
 136 *
 137 * This function can be called many times by one task on
 138 * a single regulator and its mutex will be locked only
 139 * once. If a task, which is calling this function is other
 140 * than the one, which initially locked the mutex, it will
 141 * wait on mutex.
 142 *
 143 * Return: 0 on success or a negative error number on failure.
 144 */
 145static inline int regulator_lock_nested(struct regulator_dev *rdev,
 146					struct ww_acquire_ctx *ww_ctx)
 147{
 148	bool lock = false;
 149	int ret = 0;
 150
 151	mutex_lock(&regulator_nesting_mutex);
 152
 153	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 154		if (rdev->mutex_owner == current)
 155			rdev->ref_cnt++;
 156		else
 157			lock = true;
 158
 159		if (lock) {
 160			mutex_unlock(&regulator_nesting_mutex);
 161			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 162			mutex_lock(&regulator_nesting_mutex);
 163		}
 164	} else {
 165		lock = true;
 166	}
 167
 168	if (lock && ret != -EDEADLK) {
 169		rdev->ref_cnt++;
 170		rdev->mutex_owner = current;
 171	}
 172
 173	mutex_unlock(&regulator_nesting_mutex);
 174
 175	return ret;
 176}
 177
 178/**
 179 * regulator_lock - lock a single regulator
 180 * @rdev:		regulator source
 181 *
 182 * This function can be called many times by one task on
 183 * a single regulator and its mutex will be locked only
 184 * once. If a task, which is calling this function is other
 185 * than the one, which initially locked the mutex, it will
 186 * wait on mutex.
 187 */
 188static void regulator_lock(struct regulator_dev *rdev)
 189{
 190	regulator_lock_nested(rdev, NULL);
 191}
 192
 193/**
 194 * regulator_unlock - unlock a single regulator
 195 * @rdev:		regulator_source
 196 *
 197 * This function unlocks the mutex when the
 198 * reference counter reaches 0.
 199 */
 200static void regulator_unlock(struct regulator_dev *rdev)
 201{
 202	mutex_lock(&regulator_nesting_mutex);
 203
 204	if (--rdev->ref_cnt == 0) {
 205		rdev->mutex_owner = NULL;
 206		ww_mutex_unlock(&rdev->mutex);
 207	}
 208
 209	WARN_ON_ONCE(rdev->ref_cnt < 0);
 210
 211	mutex_unlock(&regulator_nesting_mutex);
 212}
 213
 214/**
 215 * regulator_lock_two - lock two regulators
 216 * @rdev1:		first regulator
 217 * @rdev2:		second regulator
 218 * @ww_ctx:		w/w mutex acquire context
 219 *
 220 * Locks both rdevs using the regulator_ww_class.
 221 */
 222static void regulator_lock_two(struct regulator_dev *rdev1,
 223			       struct regulator_dev *rdev2,
 224			       struct ww_acquire_ctx *ww_ctx)
 225{
 226	struct regulator_dev *held, *contended;
 227	int ret;
 228
 229	ww_acquire_init(ww_ctx, &regulator_ww_class);
 230
 231	/* Try to just grab both of them */
 232	ret = regulator_lock_nested(rdev1, ww_ctx);
 233	WARN_ON(ret);
 234	ret = regulator_lock_nested(rdev2, ww_ctx);
 235	if (ret != -EDEADLOCK) {
 236		WARN_ON(ret);
 237		goto exit;
 238	}
 239
 240	held = rdev1;
 241	contended = rdev2;
 242	while (true) {
 243		regulator_unlock(held);
 244
 245		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
 246		contended->ref_cnt++;
 247		contended->mutex_owner = current;
 248		swap(held, contended);
 249		ret = regulator_lock_nested(contended, ww_ctx);
 250
 251		if (ret != -EDEADLOCK) {
 252			WARN_ON(ret);
 253			break;
 254		}
 255	}
 256
 257exit:
 258	ww_acquire_done(ww_ctx);
 259}
 260
 261/**
 262 * regulator_unlock_two - unlock two regulators
 263 * @rdev1:		first regulator
 264 * @rdev2:		second regulator
 265 * @ww_ctx:		w/w mutex acquire context
 266 *
 267 * The inverse of regulator_lock_two().
 268 */
 269
 270static void regulator_unlock_two(struct regulator_dev *rdev1,
 271				 struct regulator_dev *rdev2,
 272				 struct ww_acquire_ctx *ww_ctx)
 273{
 274	regulator_unlock(rdev2);
 275	regulator_unlock(rdev1);
 276	ww_acquire_fini(ww_ctx);
 277}
 278
 279static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 280{
 281	struct regulator_dev *c_rdev;
 282	int i;
 283
 284	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 285		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 286
 287		if (rdev->supply->rdev == c_rdev)
 288			return true;
 289	}
 290
 291	return false;
 292}
 293
 294static void regulator_unlock_recursive(struct regulator_dev *rdev,
 295				       unsigned int n_coupled)
 296{
 297	struct regulator_dev *c_rdev, *supply_rdev;
 298	int i, supply_n_coupled;
 299
 300	for (i = n_coupled; i > 0; i--) {
 301		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 302
 303		if (!c_rdev)
 304			continue;
 305
 306		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 307			supply_rdev = c_rdev->supply->rdev;
 308			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 309
 310			regulator_unlock_recursive(supply_rdev,
 311						   supply_n_coupled);
 312		}
 313
 314		regulator_unlock(c_rdev);
 315	}
 316}
 317
 318static int regulator_lock_recursive(struct regulator_dev *rdev,
 319				    struct regulator_dev **new_contended_rdev,
 320				    struct regulator_dev **old_contended_rdev,
 321				    struct ww_acquire_ctx *ww_ctx)
 322{
 323	struct regulator_dev *c_rdev;
 324	int i, err;
 325
 326	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 327		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 328
 329		if (!c_rdev)
 330			continue;
 331
 332		if (c_rdev != *old_contended_rdev) {
 333			err = regulator_lock_nested(c_rdev, ww_ctx);
 334			if (err) {
 335				if (err == -EDEADLK) {
 336					*new_contended_rdev = c_rdev;
 337					goto err_unlock;
 338				}
 339
 340				/* shouldn't happen */
 341				WARN_ON_ONCE(err != -EALREADY);
 342			}
 343		} else {
 344			*old_contended_rdev = NULL;
 345		}
 346
 347		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 348			err = regulator_lock_recursive(c_rdev->supply->rdev,
 349						       new_contended_rdev,
 350						       old_contended_rdev,
 351						       ww_ctx);
 352			if (err) {
 353				regulator_unlock(c_rdev);
 354				goto err_unlock;
 355			}
 356		}
 357	}
 358
 359	return 0;
 360
 361err_unlock:
 362	regulator_unlock_recursive(rdev, i);
 363
 364	return err;
 365}
 366
 367/**
 368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 369 *				regulators
 370 * @rdev:			regulator source
 371 * @ww_ctx:			w/w mutex acquire context
 372 *
 373 * Unlock all regulators related with rdev by coupling or supplying.
 374 */
 375static void regulator_unlock_dependent(struct regulator_dev *rdev,
 376				       struct ww_acquire_ctx *ww_ctx)
 377{
 378	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 379	ww_acquire_fini(ww_ctx);
 380}
 381
 382/**
 383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 384 * @rdev:			regulator source
 385 * @ww_ctx:			w/w mutex acquire context
 386 *
 387 * This function as a wrapper on regulator_lock_recursive(), which locks
 388 * all regulators related with rdev by coupling or supplying.
 389 */
 390static void regulator_lock_dependent(struct regulator_dev *rdev,
 391				     struct ww_acquire_ctx *ww_ctx)
 392{
 393	struct regulator_dev *new_contended_rdev = NULL;
 394	struct regulator_dev *old_contended_rdev = NULL;
 395	int err;
 396
 397	mutex_lock(&regulator_list_mutex);
 398
 399	ww_acquire_init(ww_ctx, &regulator_ww_class);
 400
 401	do {
 402		if (new_contended_rdev) {
 403			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 404			old_contended_rdev = new_contended_rdev;
 405			old_contended_rdev->ref_cnt++;
 406			old_contended_rdev->mutex_owner = current;
 407		}
 408
 409		err = regulator_lock_recursive(rdev,
 410					       &new_contended_rdev,
 411					       &old_contended_rdev,
 412					       ww_ctx);
 413
 414		if (old_contended_rdev)
 415			regulator_unlock(old_contended_rdev);
 416
 417	} while (err == -EDEADLK);
 418
 419	ww_acquire_done(ww_ctx);
 420
 421	mutex_unlock(&regulator_list_mutex);
 422}
 423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424/* Platform voltage constraint check */
 425int regulator_check_voltage(struct regulator_dev *rdev,
 426			    int *min_uV, int *max_uV)
 427{
 428	BUG_ON(*min_uV > *max_uV);
 429
 430	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 431		rdev_err(rdev, "voltage operation not allowed\n");
 432		return -EPERM;
 433	}
 434
 435	if (*max_uV > rdev->constraints->max_uV)
 436		*max_uV = rdev->constraints->max_uV;
 437	if (*min_uV < rdev->constraints->min_uV)
 438		*min_uV = rdev->constraints->min_uV;
 439
 440	if (*min_uV > *max_uV) {
 441		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 442			 *min_uV, *max_uV);
 443		return -EINVAL;
 444	}
 445
 446	return 0;
 447}
 448
 449/* return 0 if the state is valid */
 450static int regulator_check_states(suspend_state_t state)
 451{
 452	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 453}
 454
 455/* Make sure we select a voltage that suits the needs of all
 456 * regulator consumers
 457 */
 458int regulator_check_consumers(struct regulator_dev *rdev,
 459			      int *min_uV, int *max_uV,
 460			      suspend_state_t state)
 461{
 462	struct regulator *regulator;
 463	struct regulator_voltage *voltage;
 464
 465	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 466		voltage = &regulator->voltage[state];
 467		/*
 468		 * Assume consumers that didn't say anything are OK
 469		 * with anything in the constraint range.
 470		 */
 471		if (!voltage->min_uV && !voltage->max_uV)
 472			continue;
 473
 474		if (*max_uV > voltage->max_uV)
 475			*max_uV = voltage->max_uV;
 476		if (*min_uV < voltage->min_uV)
 477			*min_uV = voltage->min_uV;
 478	}
 479
 480	if (*min_uV > *max_uV) {
 481		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 482			*min_uV, *max_uV);
 483		return -EINVAL;
 484	}
 485
 486	return 0;
 487}
 488
 489/* current constraint check */
 490static int regulator_check_current_limit(struct regulator_dev *rdev,
 491					int *min_uA, int *max_uA)
 492{
 493	BUG_ON(*min_uA > *max_uA);
 494
 495	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 496		rdev_err(rdev, "current operation not allowed\n");
 497		return -EPERM;
 498	}
 499
 500	if (*max_uA > rdev->constraints->max_uA &&
 501	    rdev->constraints->max_uA)
 502		*max_uA = rdev->constraints->max_uA;
 503	if (*min_uA < rdev->constraints->min_uA)
 504		*min_uA = rdev->constraints->min_uA;
 505
 506	if (*min_uA > *max_uA) {
 507		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 508			 *min_uA, *max_uA);
 509		return -EINVAL;
 510	}
 511
 512	return 0;
 513}
 514
 515/* operating mode constraint check */
 516static int regulator_mode_constrain(struct regulator_dev *rdev,
 517				    unsigned int *mode)
 518{
 519	switch (*mode) {
 520	case REGULATOR_MODE_FAST:
 521	case REGULATOR_MODE_NORMAL:
 522	case REGULATOR_MODE_IDLE:
 523	case REGULATOR_MODE_STANDBY:
 524		break;
 525	default:
 526		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 527		return -EINVAL;
 528	}
 529
 530	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 531		rdev_err(rdev, "mode operation not allowed\n");
 532		return -EPERM;
 533	}
 534
 535	/* The modes are bitmasks, the most power hungry modes having
 536	 * the lowest values. If the requested mode isn't supported
 537	 * try higher modes.
 538	 */
 539	while (*mode) {
 540		if (rdev->constraints->valid_modes_mask & *mode)
 541			return 0;
 542		*mode /= 2;
 543	}
 544
 545	return -EINVAL;
 546}
 547
 548static inline struct regulator_state *
 549regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 550{
 551	if (rdev->constraints == NULL)
 552		return NULL;
 553
 554	switch (state) {
 555	case PM_SUSPEND_STANDBY:
 556		return &rdev->constraints->state_standby;
 557	case PM_SUSPEND_MEM:
 558		return &rdev->constraints->state_mem;
 559	case PM_SUSPEND_MAX:
 560		return &rdev->constraints->state_disk;
 561	default:
 562		return NULL;
 563	}
 564}
 565
 566static const struct regulator_state *
 567regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 568{
 569	const struct regulator_state *rstate;
 570
 571	rstate = regulator_get_suspend_state(rdev, state);
 572	if (rstate == NULL)
 573		return NULL;
 574
 575	/* If we have no suspend mode configuration don't set anything;
 576	 * only warn if the driver implements set_suspend_voltage or
 577	 * set_suspend_mode callback.
 578	 */
 579	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 580	    rstate->enabled != DISABLE_IN_SUSPEND) {
 581		if (rdev->desc->ops->set_suspend_voltage ||
 582		    rdev->desc->ops->set_suspend_mode)
 583			rdev_warn(rdev, "No configuration\n");
 584		return NULL;
 585	}
 586
 587	return rstate;
 588}
 589
 590static ssize_t microvolts_show(struct device *dev,
 591			       struct device_attribute *attr, char *buf)
 592{
 593	struct regulator_dev *rdev = dev_get_drvdata(dev);
 594	int uV;
 595
 596	regulator_lock(rdev);
 597	uV = regulator_get_voltage_rdev(rdev);
 598	regulator_unlock(rdev);
 599
 600	if (uV < 0)
 601		return uV;
 602	return sprintf(buf, "%d\n", uV);
 603}
 604static DEVICE_ATTR_RO(microvolts);
 605
 606static ssize_t microamps_show(struct device *dev,
 607			      struct device_attribute *attr, char *buf)
 608{
 609	struct regulator_dev *rdev = dev_get_drvdata(dev);
 610
 611	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 612}
 613static DEVICE_ATTR_RO(microamps);
 614
 615static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 616			 char *buf)
 617{
 618	struct regulator_dev *rdev = dev_get_drvdata(dev);
 619
 620	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 621}
 622static DEVICE_ATTR_RO(name);
 623
 624static const char *regulator_opmode_to_str(int mode)
 625{
 626	switch (mode) {
 627	case REGULATOR_MODE_FAST:
 628		return "fast";
 629	case REGULATOR_MODE_NORMAL:
 630		return "normal";
 631	case REGULATOR_MODE_IDLE:
 632		return "idle";
 633	case REGULATOR_MODE_STANDBY:
 634		return "standby";
 635	}
 636	return "unknown";
 637}
 638
 639static ssize_t regulator_print_opmode(char *buf, int mode)
 640{
 641	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 642}
 643
 644static ssize_t opmode_show(struct device *dev,
 645			   struct device_attribute *attr, char *buf)
 646{
 647	struct regulator_dev *rdev = dev_get_drvdata(dev);
 648
 649	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 650}
 651static DEVICE_ATTR_RO(opmode);
 652
 653static ssize_t regulator_print_state(char *buf, int state)
 654{
 655	if (state > 0)
 656		return sprintf(buf, "enabled\n");
 657	else if (state == 0)
 658		return sprintf(buf, "disabled\n");
 659	else
 660		return sprintf(buf, "unknown\n");
 661}
 662
 663static ssize_t state_show(struct device *dev,
 664			  struct device_attribute *attr, char *buf)
 665{
 666	struct regulator_dev *rdev = dev_get_drvdata(dev);
 667	ssize_t ret;
 668
 669	regulator_lock(rdev);
 670	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 671	regulator_unlock(rdev);
 672
 673	return ret;
 674}
 675static DEVICE_ATTR_RO(state);
 676
 677static ssize_t status_show(struct device *dev,
 678			   struct device_attribute *attr, char *buf)
 679{
 680	struct regulator_dev *rdev = dev_get_drvdata(dev);
 681	int status;
 682	char *label;
 683
 684	status = rdev->desc->ops->get_status(rdev);
 685	if (status < 0)
 686		return status;
 687
 688	switch (status) {
 689	case REGULATOR_STATUS_OFF:
 690		label = "off";
 691		break;
 692	case REGULATOR_STATUS_ON:
 693		label = "on";
 694		break;
 695	case REGULATOR_STATUS_ERROR:
 696		label = "error";
 697		break;
 698	case REGULATOR_STATUS_FAST:
 699		label = "fast";
 700		break;
 701	case REGULATOR_STATUS_NORMAL:
 702		label = "normal";
 703		break;
 704	case REGULATOR_STATUS_IDLE:
 705		label = "idle";
 706		break;
 707	case REGULATOR_STATUS_STANDBY:
 708		label = "standby";
 709		break;
 710	case REGULATOR_STATUS_BYPASS:
 711		label = "bypass";
 712		break;
 713	case REGULATOR_STATUS_UNDEFINED:
 714		label = "undefined";
 715		break;
 716	default:
 717		return -ERANGE;
 718	}
 719
 720	return sprintf(buf, "%s\n", label);
 721}
 722static DEVICE_ATTR_RO(status);
 723
 724static ssize_t min_microamps_show(struct device *dev,
 725				  struct device_attribute *attr, char *buf)
 726{
 727	struct regulator_dev *rdev = dev_get_drvdata(dev);
 728
 729	if (!rdev->constraints)
 730		return sprintf(buf, "constraint not defined\n");
 731
 732	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 733}
 734static DEVICE_ATTR_RO(min_microamps);
 735
 736static ssize_t max_microamps_show(struct device *dev,
 737				  struct device_attribute *attr, char *buf)
 738{
 739	struct regulator_dev *rdev = dev_get_drvdata(dev);
 740
 741	if (!rdev->constraints)
 742		return sprintf(buf, "constraint not defined\n");
 743
 744	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 745}
 746static DEVICE_ATTR_RO(max_microamps);
 747
 748static ssize_t min_microvolts_show(struct device *dev,
 749				   struct device_attribute *attr, char *buf)
 750{
 751	struct regulator_dev *rdev = dev_get_drvdata(dev);
 752
 753	if (!rdev->constraints)
 754		return sprintf(buf, "constraint not defined\n");
 755
 756	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 757}
 758static DEVICE_ATTR_RO(min_microvolts);
 759
 760static ssize_t max_microvolts_show(struct device *dev,
 761				   struct device_attribute *attr, char *buf)
 762{
 763	struct regulator_dev *rdev = dev_get_drvdata(dev);
 764
 765	if (!rdev->constraints)
 766		return sprintf(buf, "constraint not defined\n");
 767
 768	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 769}
 770static DEVICE_ATTR_RO(max_microvolts);
 771
 772static ssize_t requested_microamps_show(struct device *dev,
 773					struct device_attribute *attr, char *buf)
 774{
 775	struct regulator_dev *rdev = dev_get_drvdata(dev);
 776	struct regulator *regulator;
 777	int uA = 0;
 778
 779	regulator_lock(rdev);
 780	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 781		if (regulator->enable_count)
 782			uA += regulator->uA_load;
 783	}
 784	regulator_unlock(rdev);
 785	return sprintf(buf, "%d\n", uA);
 786}
 787static DEVICE_ATTR_RO(requested_microamps);
 788
 789static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 790			      char *buf)
 791{
 792	struct regulator_dev *rdev = dev_get_drvdata(dev);
 793	return sprintf(buf, "%d\n", rdev->use_count);
 794}
 795static DEVICE_ATTR_RO(num_users);
 796
 797static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 798			 char *buf)
 799{
 800	struct regulator_dev *rdev = dev_get_drvdata(dev);
 801
 802	switch (rdev->desc->type) {
 803	case REGULATOR_VOLTAGE:
 804		return sprintf(buf, "voltage\n");
 805	case REGULATOR_CURRENT:
 806		return sprintf(buf, "current\n");
 807	}
 808	return sprintf(buf, "unknown\n");
 809}
 810static DEVICE_ATTR_RO(type);
 811
 812static ssize_t suspend_mem_microvolts_show(struct device *dev,
 813					   struct device_attribute *attr, char *buf)
 814{
 815	struct regulator_dev *rdev = dev_get_drvdata(dev);
 816
 817	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 818}
 819static DEVICE_ATTR_RO(suspend_mem_microvolts);
 820
 821static ssize_t suspend_disk_microvolts_show(struct device *dev,
 822					    struct device_attribute *attr, char *buf)
 823{
 824	struct regulator_dev *rdev = dev_get_drvdata(dev);
 825
 826	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 827}
 828static DEVICE_ATTR_RO(suspend_disk_microvolts);
 829
 830static ssize_t suspend_standby_microvolts_show(struct device *dev,
 831					       struct device_attribute *attr, char *buf)
 832{
 833	struct regulator_dev *rdev = dev_get_drvdata(dev);
 834
 835	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 836}
 837static DEVICE_ATTR_RO(suspend_standby_microvolts);
 838
 839static ssize_t suspend_mem_mode_show(struct device *dev,
 840				     struct device_attribute *attr, char *buf)
 841{
 842	struct regulator_dev *rdev = dev_get_drvdata(dev);
 843
 844	return regulator_print_opmode(buf,
 845		rdev->constraints->state_mem.mode);
 846}
 847static DEVICE_ATTR_RO(suspend_mem_mode);
 848
 849static ssize_t suspend_disk_mode_show(struct device *dev,
 850				      struct device_attribute *attr, char *buf)
 851{
 852	struct regulator_dev *rdev = dev_get_drvdata(dev);
 853
 854	return regulator_print_opmode(buf,
 855		rdev->constraints->state_disk.mode);
 856}
 857static DEVICE_ATTR_RO(suspend_disk_mode);
 858
 859static ssize_t suspend_standby_mode_show(struct device *dev,
 860					 struct device_attribute *attr, char *buf)
 861{
 862	struct regulator_dev *rdev = dev_get_drvdata(dev);
 863
 864	return regulator_print_opmode(buf,
 865		rdev->constraints->state_standby.mode);
 866}
 867static DEVICE_ATTR_RO(suspend_standby_mode);
 868
 869static ssize_t suspend_mem_state_show(struct device *dev,
 870				      struct device_attribute *attr, char *buf)
 871{
 872	struct regulator_dev *rdev = dev_get_drvdata(dev);
 873
 874	return regulator_print_state(buf,
 875			rdev->constraints->state_mem.enabled);
 876}
 877static DEVICE_ATTR_RO(suspend_mem_state);
 878
 879static ssize_t suspend_disk_state_show(struct device *dev,
 880				       struct device_attribute *attr, char *buf)
 881{
 882	struct regulator_dev *rdev = dev_get_drvdata(dev);
 883
 884	return regulator_print_state(buf,
 885			rdev->constraints->state_disk.enabled);
 886}
 887static DEVICE_ATTR_RO(suspend_disk_state);
 888
 889static ssize_t suspend_standby_state_show(struct device *dev,
 890					  struct device_attribute *attr, char *buf)
 891{
 892	struct regulator_dev *rdev = dev_get_drvdata(dev);
 893
 894	return regulator_print_state(buf,
 895			rdev->constraints->state_standby.enabled);
 896}
 897static DEVICE_ATTR_RO(suspend_standby_state);
 898
 899static ssize_t bypass_show(struct device *dev,
 900			   struct device_attribute *attr, char *buf)
 901{
 902	struct regulator_dev *rdev = dev_get_drvdata(dev);
 903	const char *report;
 904	bool bypass;
 905	int ret;
 906
 907	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 908
 909	if (ret != 0)
 910		report = "unknown";
 911	else if (bypass)
 912		report = "enabled";
 913	else
 914		report = "disabled";
 915
 916	return sprintf(buf, "%s\n", report);
 917}
 918static DEVICE_ATTR_RO(bypass);
 919
 920#define REGULATOR_ERROR_ATTR(name, bit)							\
 921	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 922				   char *buf)						\
 923	{										\
 924		int ret;								\
 925		unsigned int flags;							\
 926		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 927		ret = _regulator_get_error_flags(rdev, &flags);				\
 928		if (ret)								\
 929			return ret;							\
 930		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 931	}										\
 932	static DEVICE_ATTR_RO(name)
 933
 934REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 935REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 936REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
 937REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
 938REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
 939REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
 940REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
 941REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
 942REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
 943
 944/* Calculate the new optimum regulator operating mode based on the new total
 945 * consumer load. All locks held by caller
 946 */
 947static int drms_uA_update(struct regulator_dev *rdev)
 948{
 949	struct regulator *sibling;
 950	int current_uA = 0, output_uV, input_uV, err;
 951	unsigned int mode;
 952
 953	/*
 954	 * first check to see if we can set modes at all, otherwise just
 955	 * tell the consumer everything is OK.
 956	 */
 957	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 958		rdev_dbg(rdev, "DRMS operation not allowed\n");
 959		return 0;
 960	}
 961
 962	if (!rdev->desc->ops->get_optimum_mode &&
 963	    !rdev->desc->ops->set_load)
 964		return 0;
 965
 966	if (!rdev->desc->ops->set_mode &&
 967	    !rdev->desc->ops->set_load)
 968		return -EINVAL;
 969
 970	/* calc total requested load */
 971	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 972		if (sibling->enable_count)
 973			current_uA += sibling->uA_load;
 974	}
 975
 976	current_uA += rdev->constraints->system_load;
 977
 978	if (rdev->desc->ops->set_load) {
 979		/* set the optimum mode for our new total regulator load */
 980		err = rdev->desc->ops->set_load(rdev, current_uA);
 981		if (err < 0)
 982			rdev_err(rdev, "failed to set load %d: %pe\n",
 983				 current_uA, ERR_PTR(err));
 984	} else {
 985		/*
 986		 * Unfortunately in some cases the constraints->valid_ops has
 987		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
 988		 * That's not really legit but we won't consider it a fatal
 989		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
 990		 * wasn't set.
 991		 */
 992		if (!rdev->constraints->valid_modes_mask) {
 993			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
 994			return 0;
 995		}
 996
 997		/* get output voltage */
 998		output_uV = regulator_get_voltage_rdev(rdev);
 999
1000		/*
1001		 * Don't return an error; if regulator driver cares about
1002		 * output_uV then it's up to the driver to validate.
1003		 */
1004		if (output_uV <= 0)
1005			rdev_dbg(rdev, "invalid output voltage found\n");
1006
1007		/* get input voltage */
1008		input_uV = 0;
1009		if (rdev->supply)
1010			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1011		if (input_uV <= 0)
1012			input_uV = rdev->constraints->input_uV;
1013
1014		/*
1015		 * Don't return an error; if regulator driver cares about
1016		 * input_uV then it's up to the driver to validate.
1017		 */
1018		if (input_uV <= 0)
1019			rdev_dbg(rdev, "invalid input voltage found\n");
1020
1021		/* now get the optimum mode for our new total regulator load */
1022		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1023							 output_uV, current_uA);
1024
1025		/* check the new mode is allowed */
1026		err = regulator_mode_constrain(rdev, &mode);
1027		if (err < 0) {
1028			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1029				 current_uA, input_uV, output_uV, ERR_PTR(err));
1030			return err;
1031		}
1032
1033		err = rdev->desc->ops->set_mode(rdev, mode);
1034		if (err < 0)
1035			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1036				 mode, ERR_PTR(err));
1037	}
1038
1039	return err;
1040}
1041
1042static int __suspend_set_state(struct regulator_dev *rdev,
1043			       const struct regulator_state *rstate)
1044{
1045	int ret = 0;
1046
1047	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1048		rdev->desc->ops->set_suspend_enable)
1049		ret = rdev->desc->ops->set_suspend_enable(rdev);
1050	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1051		rdev->desc->ops->set_suspend_disable)
1052		ret = rdev->desc->ops->set_suspend_disable(rdev);
1053	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1054		ret = 0;
1055
1056	if (ret < 0) {
1057		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1058		return ret;
1059	}
1060
1061	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1062		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1063		if (ret < 0) {
1064			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1065			return ret;
1066		}
1067	}
1068
1069	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1070		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1071		if (ret < 0) {
1072			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1073			return ret;
1074		}
1075	}
1076
1077	return ret;
1078}
1079
1080static int suspend_set_initial_state(struct regulator_dev *rdev)
1081{
1082	const struct regulator_state *rstate;
1083
1084	rstate = regulator_get_suspend_state_check(rdev,
1085			rdev->constraints->initial_state);
1086	if (!rstate)
1087		return 0;
1088
1089	return __suspend_set_state(rdev, rstate);
1090}
1091
1092#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1093static void print_constraints_debug(struct regulator_dev *rdev)
1094{
1095	struct regulation_constraints *constraints = rdev->constraints;
1096	char buf[160] = "";
1097	size_t len = sizeof(buf) - 1;
1098	int count = 0;
1099	int ret;
1100
1101	if (constraints->min_uV && constraints->max_uV) {
1102		if (constraints->min_uV == constraints->max_uV)
1103			count += scnprintf(buf + count, len - count, "%d mV ",
1104					   constraints->min_uV / 1000);
1105		else
1106			count += scnprintf(buf + count, len - count,
1107					   "%d <--> %d mV ",
1108					   constraints->min_uV / 1000,
1109					   constraints->max_uV / 1000);
1110	}
1111
1112	if (!constraints->min_uV ||
1113	    constraints->min_uV != constraints->max_uV) {
1114		ret = regulator_get_voltage_rdev(rdev);
1115		if (ret > 0)
1116			count += scnprintf(buf + count, len - count,
1117					   "at %d mV ", ret / 1000);
1118	}
1119
1120	if (constraints->uV_offset)
1121		count += scnprintf(buf + count, len - count, "%dmV offset ",
1122				   constraints->uV_offset / 1000);
1123
1124	if (constraints->min_uA && constraints->max_uA) {
1125		if (constraints->min_uA == constraints->max_uA)
1126			count += scnprintf(buf + count, len - count, "%d mA ",
1127					   constraints->min_uA / 1000);
1128		else
1129			count += scnprintf(buf + count, len - count,
1130					   "%d <--> %d mA ",
1131					   constraints->min_uA / 1000,
1132					   constraints->max_uA / 1000);
1133	}
1134
1135	if (!constraints->min_uA ||
1136	    constraints->min_uA != constraints->max_uA) {
1137		ret = _regulator_get_current_limit(rdev);
1138		if (ret > 0)
1139			count += scnprintf(buf + count, len - count,
1140					   "at %d mA ", ret / 1000);
1141	}
1142
1143	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1144		count += scnprintf(buf + count, len - count, "fast ");
1145	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1146		count += scnprintf(buf + count, len - count, "normal ");
1147	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1148		count += scnprintf(buf + count, len - count, "idle ");
1149	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1150		count += scnprintf(buf + count, len - count, "standby ");
1151
1152	if (!count)
1153		count = scnprintf(buf, len, "no parameters");
1154	else
1155		--count;
1156
1157	count += scnprintf(buf + count, len - count, ", %s",
1158		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1159
1160	rdev_dbg(rdev, "%s\n", buf);
1161}
1162#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1163static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1164#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1165
1166static void print_constraints(struct regulator_dev *rdev)
1167{
1168	struct regulation_constraints *constraints = rdev->constraints;
1169
1170	print_constraints_debug(rdev);
1171
1172	if ((constraints->min_uV != constraints->max_uV) &&
1173	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1174		rdev_warn(rdev,
1175			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1176}
1177
1178static int machine_constraints_voltage(struct regulator_dev *rdev,
1179	struct regulation_constraints *constraints)
1180{
1181	const struct regulator_ops *ops = rdev->desc->ops;
1182	int ret;
1183
1184	/* do we need to apply the constraint voltage */
1185	if (rdev->constraints->apply_uV &&
1186	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1187		int target_min, target_max;
1188		int current_uV = regulator_get_voltage_rdev(rdev);
1189
1190		if (current_uV == -ENOTRECOVERABLE) {
1191			/* This regulator can't be read and must be initialized */
1192			rdev_info(rdev, "Setting %d-%duV\n",
1193				  rdev->constraints->min_uV,
1194				  rdev->constraints->max_uV);
1195			_regulator_do_set_voltage(rdev,
1196						  rdev->constraints->min_uV,
1197						  rdev->constraints->max_uV);
1198			current_uV = regulator_get_voltage_rdev(rdev);
1199		}
1200
1201		if (current_uV < 0) {
1202			if (current_uV != -EPROBE_DEFER)
1203				rdev_err(rdev,
1204					 "failed to get the current voltage: %pe\n",
1205					 ERR_PTR(current_uV));
1206			return current_uV;
1207		}
1208
1209		/*
1210		 * If we're below the minimum voltage move up to the
1211		 * minimum voltage, if we're above the maximum voltage
1212		 * then move down to the maximum.
1213		 */
1214		target_min = current_uV;
1215		target_max = current_uV;
1216
1217		if (current_uV < rdev->constraints->min_uV) {
1218			target_min = rdev->constraints->min_uV;
1219			target_max = rdev->constraints->min_uV;
1220		}
1221
1222		if (current_uV > rdev->constraints->max_uV) {
1223			target_min = rdev->constraints->max_uV;
1224			target_max = rdev->constraints->max_uV;
1225		}
1226
1227		if (target_min != current_uV || target_max != current_uV) {
1228			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1229				  current_uV, target_min, target_max);
1230			ret = _regulator_do_set_voltage(
1231				rdev, target_min, target_max);
1232			if (ret < 0) {
1233				rdev_err(rdev,
1234					"failed to apply %d-%duV constraint: %pe\n",
1235					target_min, target_max, ERR_PTR(ret));
1236				return ret;
1237			}
1238		}
1239	}
1240
1241	/* constrain machine-level voltage specs to fit
1242	 * the actual range supported by this regulator.
1243	 */
1244	if (ops->list_voltage && rdev->desc->n_voltages) {
1245		int	count = rdev->desc->n_voltages;
1246		int	i;
1247		int	min_uV = INT_MAX;
1248		int	max_uV = INT_MIN;
1249		int	cmin = constraints->min_uV;
1250		int	cmax = constraints->max_uV;
1251
1252		/* it's safe to autoconfigure fixed-voltage supplies
1253		 * and the constraints are used by list_voltage.
1254		 */
1255		if (count == 1 && !cmin) {
1256			cmin = 1;
1257			cmax = INT_MAX;
1258			constraints->min_uV = cmin;
1259			constraints->max_uV = cmax;
1260		}
1261
1262		/* voltage constraints are optional */
1263		if ((cmin == 0) && (cmax == 0))
1264			return 0;
1265
1266		/* else require explicit machine-level constraints */
1267		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1268			rdev_err(rdev, "invalid voltage constraints\n");
1269			return -EINVAL;
1270		}
1271
1272		/* no need to loop voltages if range is continuous */
1273		if (rdev->desc->continuous_voltage_range)
1274			return 0;
1275
1276		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1277		for (i = 0; i < count; i++) {
1278			int	value;
1279
1280			value = ops->list_voltage(rdev, i);
1281			if (value <= 0)
1282				continue;
1283
1284			/* maybe adjust [min_uV..max_uV] */
1285			if (value >= cmin && value < min_uV)
1286				min_uV = value;
1287			if (value <= cmax && value > max_uV)
1288				max_uV = value;
1289		}
1290
1291		/* final: [min_uV..max_uV] valid iff constraints valid */
1292		if (max_uV < min_uV) {
1293			rdev_err(rdev,
1294				 "unsupportable voltage constraints %u-%uuV\n",
1295				 min_uV, max_uV);
1296			return -EINVAL;
1297		}
1298
1299		/* use regulator's subset of machine constraints */
1300		if (constraints->min_uV < min_uV) {
1301			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1302				 constraints->min_uV, min_uV);
1303			constraints->min_uV = min_uV;
1304		}
1305		if (constraints->max_uV > max_uV) {
1306			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1307				 constraints->max_uV, max_uV);
1308			constraints->max_uV = max_uV;
1309		}
1310	}
1311
1312	return 0;
1313}
1314
1315static int machine_constraints_current(struct regulator_dev *rdev,
1316	struct regulation_constraints *constraints)
1317{
1318	const struct regulator_ops *ops = rdev->desc->ops;
1319	int ret;
1320
1321	if (!constraints->min_uA && !constraints->max_uA)
1322		return 0;
1323
1324	if (constraints->min_uA > constraints->max_uA) {
1325		rdev_err(rdev, "Invalid current constraints\n");
1326		return -EINVAL;
1327	}
1328
1329	if (!ops->set_current_limit || !ops->get_current_limit) {
1330		rdev_warn(rdev, "Operation of current configuration missing\n");
1331		return 0;
1332	}
1333
1334	/* Set regulator current in constraints range */
1335	ret = ops->set_current_limit(rdev, constraints->min_uA,
1336			constraints->max_uA);
1337	if (ret < 0) {
1338		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1339		return ret;
1340	}
1341
1342	return 0;
1343}
1344
1345static int _regulator_do_enable(struct regulator_dev *rdev);
1346
1347static int notif_set_limit(struct regulator_dev *rdev,
1348			   int (*set)(struct regulator_dev *, int, int, bool),
1349			   int limit, int severity)
1350{
1351	bool enable;
1352
1353	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1354		enable = false;
1355		limit = 0;
1356	} else {
1357		enable = true;
1358	}
1359
1360	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1361		limit = 0;
1362
1363	return set(rdev, limit, severity, enable);
1364}
1365
1366static int handle_notify_limits(struct regulator_dev *rdev,
1367			int (*set)(struct regulator_dev *, int, int, bool),
1368			struct notification_limit *limits)
1369{
1370	int ret = 0;
1371
1372	if (!set)
1373		return -EOPNOTSUPP;
1374
1375	if (limits->prot)
1376		ret = notif_set_limit(rdev, set, limits->prot,
1377				      REGULATOR_SEVERITY_PROT);
1378	if (ret)
1379		return ret;
1380
1381	if (limits->err)
1382		ret = notif_set_limit(rdev, set, limits->err,
1383				      REGULATOR_SEVERITY_ERR);
1384	if (ret)
1385		return ret;
1386
1387	if (limits->warn)
1388		ret = notif_set_limit(rdev, set, limits->warn,
1389				      REGULATOR_SEVERITY_WARN);
1390
1391	return ret;
1392}
1393/**
1394 * set_machine_constraints - sets regulator constraints
1395 * @rdev: regulator source
1396 *
1397 * Allows platform initialisation code to define and constrain
1398 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1399 * Constraints *must* be set by platform code in order for some
1400 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1401 * set_mode.
1402 *
1403 * Return: 0 on success or a negative error number on failure.
1404 */
1405static int set_machine_constraints(struct regulator_dev *rdev)
1406{
1407	int ret = 0;
1408	const struct regulator_ops *ops = rdev->desc->ops;
1409
1410	ret = machine_constraints_voltage(rdev, rdev->constraints);
1411	if (ret != 0)
1412		return ret;
1413
1414	ret = machine_constraints_current(rdev, rdev->constraints);
1415	if (ret != 0)
1416		return ret;
1417
1418	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1419		ret = ops->set_input_current_limit(rdev,
1420						   rdev->constraints->ilim_uA);
1421		if (ret < 0) {
1422			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1423			return ret;
1424		}
1425	}
1426
1427	/* do we need to setup our suspend state */
1428	if (rdev->constraints->initial_state) {
1429		ret = suspend_set_initial_state(rdev);
1430		if (ret < 0) {
1431			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1432			return ret;
1433		}
1434	}
1435
1436	if (rdev->constraints->initial_mode) {
1437		if (!ops->set_mode) {
1438			rdev_err(rdev, "no set_mode operation\n");
1439			return -EINVAL;
1440		}
1441
1442		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1443		if (ret < 0) {
1444			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1445			return ret;
1446		}
1447	} else if (rdev->constraints->system_load) {
1448		/*
1449		 * We'll only apply the initial system load if an
1450		 * initial mode wasn't specified.
1451		 */
1452		drms_uA_update(rdev);
1453	}
1454
1455	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1456		&& ops->set_ramp_delay) {
1457		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1458		if (ret < 0) {
1459			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1460			return ret;
1461		}
1462	}
1463
1464	if (rdev->constraints->pull_down && ops->set_pull_down) {
1465		ret = ops->set_pull_down(rdev);
1466		if (ret < 0) {
1467			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1468			return ret;
1469		}
1470	}
1471
1472	if (rdev->constraints->soft_start && ops->set_soft_start) {
1473		ret = ops->set_soft_start(rdev);
1474		if (ret < 0) {
1475			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1476			return ret;
1477		}
1478	}
1479
1480	/*
1481	 * Existing logic does not warn if over_current_protection is given as
1482	 * a constraint but driver does not support that. I think we should
1483	 * warn about this type of issues as it is possible someone changes
1484	 * PMIC on board to another type - and the another PMIC's driver does
1485	 * not support setting protection. Board composer may happily believe
1486	 * the DT limits are respected - especially if the new PMIC HW also
1487	 * supports protection but the driver does not. I won't change the logic
1488	 * without hearing more experienced opinion on this though.
1489	 *
1490	 * If warning is seen as a good idea then we can merge handling the
1491	 * over-curret protection and detection and get rid of this special
1492	 * handling.
1493	 */
1494	if (rdev->constraints->over_current_protection
1495		&& ops->set_over_current_protection) {
1496		int lim = rdev->constraints->over_curr_limits.prot;
1497
1498		ret = ops->set_over_current_protection(rdev, lim,
1499						       REGULATOR_SEVERITY_PROT,
1500						       true);
1501		if (ret < 0) {
1502			rdev_err(rdev, "failed to set over current protection: %pe\n",
1503				 ERR_PTR(ret));
1504			return ret;
1505		}
1506	}
1507
1508	if (rdev->constraints->over_current_detection)
1509		ret = handle_notify_limits(rdev,
1510					   ops->set_over_current_protection,
1511					   &rdev->constraints->over_curr_limits);
1512	if (ret) {
1513		if (ret != -EOPNOTSUPP) {
1514			rdev_err(rdev, "failed to set over current limits: %pe\n",
1515				 ERR_PTR(ret));
1516			return ret;
1517		}
1518		rdev_warn(rdev,
1519			  "IC does not support requested over-current limits\n");
1520	}
1521
1522	if (rdev->constraints->over_voltage_detection)
1523		ret = handle_notify_limits(rdev,
1524					   ops->set_over_voltage_protection,
1525					   &rdev->constraints->over_voltage_limits);
1526	if (ret) {
1527		if (ret != -EOPNOTSUPP) {
1528			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1529				 ERR_PTR(ret));
1530			return ret;
1531		}
1532		rdev_warn(rdev,
1533			  "IC does not support requested over voltage limits\n");
1534	}
1535
1536	if (rdev->constraints->under_voltage_detection)
1537		ret = handle_notify_limits(rdev,
1538					   ops->set_under_voltage_protection,
1539					   &rdev->constraints->under_voltage_limits);
1540	if (ret) {
1541		if (ret != -EOPNOTSUPP) {
1542			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1543				 ERR_PTR(ret));
1544			return ret;
1545		}
1546		rdev_warn(rdev,
1547			  "IC does not support requested under voltage limits\n");
1548	}
1549
1550	if (rdev->constraints->over_temp_detection)
1551		ret = handle_notify_limits(rdev,
1552					   ops->set_thermal_protection,
1553					   &rdev->constraints->temp_limits);
1554	if (ret) {
1555		if (ret != -EOPNOTSUPP) {
1556			rdev_err(rdev, "failed to set temperature limits %pe\n",
1557				 ERR_PTR(ret));
1558			return ret;
1559		}
1560		rdev_warn(rdev,
1561			  "IC does not support requested temperature limits\n");
1562	}
1563
1564	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1565		bool ad_state = (rdev->constraints->active_discharge ==
1566			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1567
1568		ret = ops->set_active_discharge(rdev, ad_state);
1569		if (ret < 0) {
1570			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1571			return ret;
1572		}
1573	}
1574
1575	/*
1576	 * If there is no mechanism for controlling the regulator then
1577	 * flag it as always_on so we don't end up duplicating checks
1578	 * for this so much.  Note that we could control the state of
1579	 * a supply to control the output on a regulator that has no
1580	 * direct control.
1581	 */
1582	if (!rdev->ena_pin && !ops->enable) {
1583		if (rdev->supply_name && !rdev->supply)
1584			return -EPROBE_DEFER;
1585
1586		if (rdev->supply)
1587			rdev->constraints->always_on =
1588				rdev->supply->rdev->constraints->always_on;
1589		else
1590			rdev->constraints->always_on = true;
1591	}
1592
 
 
 
1593	/* If the constraints say the regulator should be on at this point
1594	 * and we have control then make sure it is enabled.
1595	 */
1596	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1597		/* If we want to enable this regulator, make sure that we know
1598		 * the supplying regulator.
1599		 */
1600		if (rdev->supply_name && !rdev->supply)
1601			return -EPROBE_DEFER;
1602
1603		/* If supplying regulator has already been enabled,
1604		 * it's not intended to have use_count increment
1605		 * when rdev is only boot-on.
1606		 */
1607		if (rdev->supply &&
1608		    (rdev->constraints->always_on ||
1609		     !regulator_is_enabled(rdev->supply))) {
1610			ret = regulator_enable(rdev->supply);
1611			if (ret < 0) {
1612				_regulator_put(rdev->supply);
1613				rdev->supply = NULL;
1614				return ret;
1615			}
1616		}
1617
1618		ret = _regulator_do_enable(rdev);
1619		if (ret < 0 && ret != -EINVAL) {
1620			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1621			return ret;
1622		}
1623
1624		if (rdev->constraints->always_on)
1625			rdev->use_count++;
1626	} else if (rdev->desc->off_on_delay) {
1627		rdev->last_off = ktime_get();
1628	}
1629
1630	print_constraints(rdev);
1631	return 0;
1632}
1633
1634/**
1635 * set_supply - set regulator supply regulator
1636 * @rdev: regulator (locked)
1637 * @supply_rdev: supply regulator (locked))
1638 *
1639 * Called by platform initialisation code to set the supply regulator for this
1640 * regulator. This ensures that a regulators supply will also be enabled by the
1641 * core if it's child is enabled.
1642 *
1643 * Return: 0 on success or a negative error number on failure.
1644 */
1645static int set_supply(struct regulator_dev *rdev,
1646		      struct regulator_dev *supply_rdev)
1647{
1648	int err;
1649
1650	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1651
1652	if (!try_module_get(supply_rdev->owner))
1653		return -ENODEV;
1654
1655	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1656	if (rdev->supply == NULL) {
1657		module_put(supply_rdev->owner);
1658		err = -ENOMEM;
1659		return err;
1660	}
1661	supply_rdev->open_count++;
1662
1663	return 0;
1664}
1665
1666/**
1667 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1668 * @rdev:         regulator source
1669 * @consumer_dev_name: dev_name() string for device supply applies to
1670 * @supply:       symbolic name for supply
1671 *
1672 * Allows platform initialisation code to map physical regulator
1673 * sources to symbolic names for supplies for use by devices.  Devices
1674 * should use these symbolic names to request regulators, avoiding the
1675 * need to provide board-specific regulator names as platform data.
1676 *
1677 * Return: 0 on success or a negative error number on failure.
1678 */
1679static int set_consumer_device_supply(struct regulator_dev *rdev,
1680				      const char *consumer_dev_name,
1681				      const char *supply)
1682{
1683	struct regulator_map *node, *new_node;
1684	int has_dev;
1685
1686	if (supply == NULL)
1687		return -EINVAL;
1688
1689	if (consumer_dev_name != NULL)
1690		has_dev = 1;
1691	else
1692		has_dev = 0;
1693
1694	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1695	if (new_node == NULL)
1696		return -ENOMEM;
1697
1698	new_node->regulator = rdev;
1699	new_node->supply = supply;
1700
1701	if (has_dev) {
1702		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1703		if (new_node->dev_name == NULL) {
1704			kfree(new_node);
1705			return -ENOMEM;
1706		}
1707	}
1708
1709	mutex_lock(&regulator_list_mutex);
1710	list_for_each_entry(node, &regulator_map_list, list) {
1711		if (node->dev_name && consumer_dev_name) {
1712			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1713				continue;
1714		} else if (node->dev_name || consumer_dev_name) {
1715			continue;
1716		}
1717
1718		if (strcmp(node->supply, supply) != 0)
1719			continue;
1720
1721		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1722			 consumer_dev_name,
1723			 dev_name(&node->regulator->dev),
1724			 node->regulator->desc->name,
1725			 supply,
1726			 dev_name(&rdev->dev), rdev_get_name(rdev));
1727		goto fail;
1728	}
1729
1730	list_add(&new_node->list, &regulator_map_list);
1731	mutex_unlock(&regulator_list_mutex);
1732
1733	return 0;
1734
1735fail:
1736	mutex_unlock(&regulator_list_mutex);
1737	kfree(new_node->dev_name);
1738	kfree(new_node);
1739	return -EBUSY;
1740}
1741
1742static void unset_regulator_supplies(struct regulator_dev *rdev)
1743{
1744	struct regulator_map *node, *n;
1745
1746	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1747		if (rdev == node->regulator) {
1748			list_del(&node->list);
1749			kfree(node->dev_name);
1750			kfree(node);
1751		}
1752	}
1753}
1754
1755#ifdef CONFIG_DEBUG_FS
1756static ssize_t constraint_flags_read_file(struct file *file,
1757					  char __user *user_buf,
1758					  size_t count, loff_t *ppos)
1759{
1760	const struct regulator *regulator = file->private_data;
1761	const struct regulation_constraints *c = regulator->rdev->constraints;
1762	char *buf;
1763	ssize_t ret;
1764
1765	if (!c)
1766		return 0;
1767
1768	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1769	if (!buf)
1770		return -ENOMEM;
1771
1772	ret = snprintf(buf, PAGE_SIZE,
1773			"always_on: %u\n"
1774			"boot_on: %u\n"
1775			"apply_uV: %u\n"
1776			"ramp_disable: %u\n"
1777			"soft_start: %u\n"
1778			"pull_down: %u\n"
1779			"over_current_protection: %u\n",
1780			c->always_on,
1781			c->boot_on,
1782			c->apply_uV,
1783			c->ramp_disable,
1784			c->soft_start,
1785			c->pull_down,
1786			c->over_current_protection);
1787
1788	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1789	kfree(buf);
1790
1791	return ret;
1792}
1793
1794#endif
1795
1796static const struct file_operations constraint_flags_fops = {
1797#ifdef CONFIG_DEBUG_FS
1798	.open = simple_open,
1799	.read = constraint_flags_read_file,
1800	.llseek = default_llseek,
1801#endif
1802};
1803
1804#define REG_STR_SIZE	64
1805
1806static struct regulator *create_regulator(struct regulator_dev *rdev,
1807					  struct device *dev,
1808					  const char *supply_name)
1809{
1810	struct regulator *regulator;
1811	int err = 0;
1812
1813	lockdep_assert_held_once(&rdev->mutex.base);
1814
1815	if (dev) {
1816		char buf[REG_STR_SIZE];
1817		int size;
1818
1819		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1820				dev->kobj.name, supply_name);
1821		if (size >= REG_STR_SIZE)
1822			return NULL;
1823
1824		supply_name = kstrdup(buf, GFP_KERNEL);
1825		if (supply_name == NULL)
1826			return NULL;
1827	} else {
1828		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1829		if (supply_name == NULL)
1830			return NULL;
1831	}
1832
1833	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1834	if (regulator == NULL) {
1835		kfree_const(supply_name);
1836		return NULL;
1837	}
1838
1839	regulator->rdev = rdev;
1840	regulator->supply_name = supply_name;
1841
 
1842	list_add(&regulator->list, &rdev->consumer_list);
 
1843
1844	if (dev) {
1845		regulator->dev = dev;
1846
1847		/* Add a link to the device sysfs entry */
1848		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1849					       supply_name);
1850		if (err) {
1851			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1852				  dev->kobj.name, ERR_PTR(err));
1853			/* non-fatal */
1854		}
1855	}
1856
1857	if (err != -EEXIST) {
1858		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1859		if (IS_ERR(regulator->debugfs)) {
1860			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1861			regulator->debugfs = NULL;
1862		}
1863	}
1864
1865	if (regulator->debugfs) {
1866		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1867				   &regulator->uA_load);
1868		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1869				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1870		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1871				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1872		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1873				    regulator, &constraint_flags_fops);
 
1874	}
1875
1876	/*
1877	 * Check now if the regulator is an always on regulator - if
1878	 * it is then we don't need to do nearly so much work for
1879	 * enable/disable calls.
1880	 */
1881	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1882	    _regulator_is_enabled(rdev))
1883		regulator->always_on = true;
1884
1885	return regulator;
1886}
1887
1888static int _regulator_get_enable_time(struct regulator_dev *rdev)
1889{
1890	if (rdev->constraints && rdev->constraints->enable_time)
1891		return rdev->constraints->enable_time;
1892	if (rdev->desc->ops->enable_time)
1893		return rdev->desc->ops->enable_time(rdev);
1894	return rdev->desc->enable_time;
1895}
1896
1897static struct regulator_supply_alias *regulator_find_supply_alias(
1898		struct device *dev, const char *supply)
1899{
1900	struct regulator_supply_alias *map;
1901
1902	list_for_each_entry(map, &regulator_supply_alias_list, list)
1903		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1904			return map;
1905
1906	return NULL;
1907}
1908
1909static void regulator_supply_alias(struct device **dev, const char **supply)
1910{
1911	struct regulator_supply_alias *map;
1912
1913	map = regulator_find_supply_alias(*dev, *supply);
1914	if (map) {
1915		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1916				*supply, map->alias_supply,
1917				dev_name(map->alias_dev));
1918		*dev = map->alias_dev;
1919		*supply = map->alias_supply;
1920	}
1921}
1922
1923static int regulator_match(struct device *dev, const void *data)
1924{
1925	struct regulator_dev *r = dev_to_rdev(dev);
1926
1927	return strcmp(rdev_get_name(r), data) == 0;
1928}
1929
1930static struct regulator_dev *regulator_lookup_by_name(const char *name)
1931{
1932	struct device *dev;
1933
1934	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1935
1936	return dev ? dev_to_rdev(dev) : NULL;
1937}
1938
1939/**
1940 * regulator_dev_lookup - lookup a regulator device.
1941 * @dev: device for regulator "consumer".
1942 * @supply: Supply name or regulator ID.
1943 *
1944 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1945 *
1946 * If successful, returns a struct regulator_dev that corresponds to the name
1947 * @supply and with the embedded struct device refcount incremented by one.
1948 * The refcount must be dropped by calling put_device().
1949 * On failure one of the following ERR_PTR() encoded values is returned:
1950 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1951 * in the future.
1952 */
1953static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1954						  const char *supply)
1955{
1956	struct regulator_dev *r = NULL;
 
1957	struct regulator_map *map;
1958	const char *devname = NULL;
1959
1960	regulator_supply_alias(&dev, &supply);
1961
1962	/* first do a dt based lookup */
1963	if (dev_of_node(dev)) {
1964		r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1965		if (!IS_ERR(r))
1966			return r;
1967		if (PTR_ERR(r) == -EPROBE_DEFER)
1968			return r;
 
1969
1970		if (PTR_ERR(r) == -ENODEV)
1971			r = NULL;
 
 
 
 
1972	}
1973
1974	/* if not found, try doing it non-dt way */
1975	if (dev)
1976		devname = dev_name(dev);
1977
1978	mutex_lock(&regulator_list_mutex);
1979	list_for_each_entry(map, &regulator_map_list, list) {
1980		/* If the mapping has a device set up it must match */
1981		if (map->dev_name &&
1982		    (!devname || strcmp(map->dev_name, devname)))
1983			continue;
1984
1985		if (strcmp(map->supply, supply) == 0 &&
1986		    get_device(&map->regulator->dev)) {
1987			r = map->regulator;
1988			break;
1989		}
1990	}
1991	mutex_unlock(&regulator_list_mutex);
1992
1993	if (r)
1994		return r;
1995
1996	r = regulator_lookup_by_name(supply);
1997	if (r)
1998		return r;
1999
2000	return ERR_PTR(-ENODEV);
2001}
2002
2003static int regulator_resolve_supply(struct regulator_dev *rdev)
2004{
2005	struct regulator_dev *r;
2006	struct device *dev = rdev->dev.parent;
2007	struct ww_acquire_ctx ww_ctx;
2008	int ret = 0;
2009
2010	/* No supply to resolve? */
2011	if (!rdev->supply_name)
2012		return 0;
2013
2014	/* Supply already resolved? (fast-path without locking contention) */
2015	if (rdev->supply)
2016		return 0;
2017
2018	r = regulator_dev_lookup(dev, rdev->supply_name);
2019	if (IS_ERR(r)) {
2020		ret = PTR_ERR(r);
2021
2022		/* Did the lookup explicitly defer for us? */
2023		if (ret == -EPROBE_DEFER)
2024			goto out;
2025
2026		if (have_full_constraints()) {
2027			r = dummy_regulator_rdev;
2028			get_device(&r->dev);
2029		} else {
2030			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2031				rdev->supply_name, rdev->desc->name);
2032			ret = -EPROBE_DEFER;
2033			goto out;
2034		}
2035	}
2036
2037	if (r == rdev) {
2038		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2039			rdev->desc->name, rdev->supply_name);
2040		if (!have_full_constraints()) {
2041			ret = -EINVAL;
2042			goto out;
2043		}
2044		r = dummy_regulator_rdev;
2045		get_device(&r->dev);
2046	}
2047
2048	/*
2049	 * If the supply's parent device is not the same as the
2050	 * regulator's parent device, then ensure the parent device
2051	 * is bound before we resolve the supply, in case the parent
2052	 * device get probe deferred and unregisters the supply.
2053	 */
2054	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2055		if (!device_is_bound(r->dev.parent)) {
2056			put_device(&r->dev);
2057			ret = -EPROBE_DEFER;
2058			goto out;
2059		}
2060	}
2061
2062	/* Recursively resolve the supply of the supply */
2063	ret = regulator_resolve_supply(r);
2064	if (ret < 0) {
2065		put_device(&r->dev);
2066		goto out;
2067	}
2068
2069	/*
2070	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2071	 * between rdev->supply null check and setting rdev->supply in
2072	 * set_supply() from concurrent tasks.
2073	 */
2074	regulator_lock_two(rdev, r, &ww_ctx);
2075
2076	/* Supply just resolved by a concurrent task? */
2077	if (rdev->supply) {
2078		regulator_unlock_two(rdev, r, &ww_ctx);
2079		put_device(&r->dev);
2080		goto out;
2081	}
2082
2083	ret = set_supply(rdev, r);
2084	if (ret < 0) {
2085		regulator_unlock_two(rdev, r, &ww_ctx);
2086		put_device(&r->dev);
2087		goto out;
2088	}
2089
2090	regulator_unlock_two(rdev, r, &ww_ctx);
2091
2092	/*
2093	 * In set_machine_constraints() we may have turned this regulator on
2094	 * but we couldn't propagate to the supply if it hadn't been resolved
2095	 * yet.  Do it now.
2096	 */
2097	if (rdev->use_count) {
2098		ret = regulator_enable(rdev->supply);
2099		if (ret < 0) {
2100			_regulator_put(rdev->supply);
2101			rdev->supply = NULL;
2102			goto out;
2103		}
2104	}
2105
2106out:
2107	return ret;
2108}
2109
2110/* common pre-checks for regulator requests */
2111int _regulator_get_common_check(struct device *dev, const char *id,
2112				enum regulator_get_type get_type)
2113{
 
 
 
 
 
2114	if (get_type >= MAX_GET_TYPE) {
2115		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2116		return -EINVAL;
2117	}
2118
2119	if (id == NULL) {
2120		dev_err(dev, "regulator request with no identifier\n");
2121		return -EINVAL;
2122	}
2123
2124	return 0;
2125}
2126
2127/**
2128 * _regulator_get_common - Common code for regulator requests
2129 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2130 *       Its reference count is expected to have been incremented.
2131 * @dev: device used for dev_printk messages
2132 * @id: Supply name or regulator ID
2133 * @get_type: enum regulator_get_type value corresponding to type of request
2134 *
2135 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2136 *	    encoded error.
2137 *
2138 * This function should be chained with *regulator_dev_lookup() functions.
2139 */
2140struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2141					const char *id, enum regulator_get_type get_type)
2142{
2143	struct regulator *regulator;
2144	struct device_link *link;
2145	int ret;
2146
2147	if (IS_ERR(rdev)) {
2148		ret = PTR_ERR(rdev);
2149
2150		/*
2151		 * If regulator_dev_lookup() fails with error other
2152		 * than -ENODEV our job here is done, we simply return it.
2153		 */
2154		if (ret != -ENODEV)
2155			return ERR_PTR(ret);
2156
2157		if (!have_full_constraints()) {
2158			dev_warn(dev,
2159				 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2160			return ERR_PTR(-ENODEV);
2161		}
2162
2163		switch (get_type) {
2164		case NORMAL_GET:
2165			/*
2166			 * Assume that a regulator is physically present and
2167			 * enabled, even if it isn't hooked up, and just
2168			 * provide a dummy.
2169			 */
2170			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2171			rdev = dummy_regulator_rdev;
2172			get_device(&rdev->dev);
2173			break;
2174
2175		case EXCLUSIVE_GET:
2176			dev_warn(dev,
2177				 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2178			fallthrough;
2179
2180		default:
2181			return ERR_PTR(-ENODEV);
2182		}
2183	}
2184
2185	if (rdev->exclusive) {
2186		regulator = ERR_PTR(-EPERM);
2187		put_device(&rdev->dev);
2188		return regulator;
2189	}
2190
2191	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2192		regulator = ERR_PTR(-EBUSY);
2193		put_device(&rdev->dev);
2194		return regulator;
2195	}
2196
2197	mutex_lock(&regulator_list_mutex);
2198	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2199	mutex_unlock(&regulator_list_mutex);
2200
2201	if (ret != 0) {
2202		regulator = ERR_PTR(-EPROBE_DEFER);
2203		put_device(&rdev->dev);
2204		return regulator;
2205	}
2206
2207	ret = regulator_resolve_supply(rdev);
2208	if (ret < 0) {
2209		regulator = ERR_PTR(ret);
2210		put_device(&rdev->dev);
2211		return regulator;
2212	}
2213
2214	if (!try_module_get(rdev->owner)) {
2215		regulator = ERR_PTR(-EPROBE_DEFER);
2216		put_device(&rdev->dev);
2217		return regulator;
2218	}
2219
2220	regulator_lock(rdev);
2221	regulator = create_regulator(rdev, dev, id);
2222	regulator_unlock(rdev);
2223	if (regulator == NULL) {
2224		regulator = ERR_PTR(-ENOMEM);
2225		module_put(rdev->owner);
2226		put_device(&rdev->dev);
2227		return regulator;
2228	}
2229
2230	rdev->open_count++;
2231	if (get_type == EXCLUSIVE_GET) {
2232		rdev->exclusive = 1;
2233
2234		ret = _regulator_is_enabled(rdev);
2235		if (ret > 0) {
2236			rdev->use_count = 1;
2237			regulator->enable_count = 1;
2238
2239			/* Propagate the regulator state to its supply */
2240			if (rdev->supply) {
2241				ret = regulator_enable(rdev->supply);
2242				if (ret < 0) {
2243					destroy_regulator(regulator);
2244					module_put(rdev->owner);
2245					put_device(&rdev->dev);
2246					return ERR_PTR(ret);
2247				}
2248			}
2249		} else {
2250			rdev->use_count = 0;
2251			regulator->enable_count = 0;
2252		}
2253	}
2254
2255	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2256	if (!IS_ERR_OR_NULL(link))
2257		regulator->device_link = true;
2258
2259	return regulator;
2260}
2261
2262/* Internal regulator request function */
2263struct regulator *_regulator_get(struct device *dev, const char *id,
2264				 enum regulator_get_type get_type)
2265{
2266	struct regulator_dev *rdev;
2267	int ret;
2268
2269	ret = _regulator_get_common_check(dev, id, get_type);
2270	if (ret)
2271		return ERR_PTR(ret);
2272
2273	rdev = regulator_dev_lookup(dev, id);
2274	return _regulator_get_common(rdev, dev, id, get_type);
2275}
2276
2277/**
2278 * regulator_get - lookup and obtain a reference to a regulator.
2279 * @dev: device for regulator "consumer"
2280 * @id: Supply name or regulator ID.
2281 *
 
 
 
2282 * Use of supply names configured via set_consumer_device_supply() is
2283 * strongly encouraged.  It is recommended that the supply name used
2284 * should match the name used for the supply and/or the relevant
2285 * device pins in the datasheet.
2286 *
2287 * Return: Pointer to a &struct regulator corresponding to the regulator
2288 *	   producer, or an ERR_PTR() encoded negative error number.
2289 */
2290struct regulator *regulator_get(struct device *dev, const char *id)
2291{
2292	return _regulator_get(dev, id, NORMAL_GET);
2293}
2294EXPORT_SYMBOL_GPL(regulator_get);
2295
2296/**
2297 * regulator_get_exclusive - obtain exclusive access to a regulator.
2298 * @dev: device for regulator "consumer"
2299 * @id: Supply name or regulator ID.
2300 *
2301 * Other consumers will be unable to obtain this regulator while this
2302 * reference is held and the use count for the regulator will be
2303 * initialised to reflect the current state of the regulator.
 
 
2304 *
2305 * This is intended for use by consumers which cannot tolerate shared
2306 * use of the regulator such as those which need to force the
2307 * regulator off for correct operation of the hardware they are
2308 * controlling.
2309 *
2310 * Use of supply names configured via set_consumer_device_supply() is
2311 * strongly encouraged.  It is recommended that the supply name used
2312 * should match the name used for the supply and/or the relevant
2313 * device pins in the datasheet.
2314 *
2315 * Return: Pointer to a &struct regulator corresponding to the regulator
2316 *	   producer, or an ERR_PTR() encoded negative error number.
2317 */
2318struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2319{
2320	return _regulator_get(dev, id, EXCLUSIVE_GET);
2321}
2322EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2323
2324/**
2325 * regulator_get_optional - obtain optional access to a regulator.
2326 * @dev: device for regulator "consumer"
2327 * @id: Supply name or regulator ID.
2328 *
 
 
 
2329 * This is intended for use by consumers for devices which can have
2330 * some supplies unconnected in normal use, such as some MMC devices.
2331 * It can allow the regulator core to provide stub supplies for other
2332 * supplies requested using normal regulator_get() calls without
2333 * disrupting the operation of drivers that can handle absent
2334 * supplies.
2335 *
2336 * Use of supply names configured via set_consumer_device_supply() is
2337 * strongly encouraged.  It is recommended that the supply name used
2338 * should match the name used for the supply and/or the relevant
2339 * device pins in the datasheet.
2340 *
2341 * Return: Pointer to a &struct regulator corresponding to the regulator
2342 *	   producer, or an ERR_PTR() encoded negative error number.
2343 */
2344struct regulator *regulator_get_optional(struct device *dev, const char *id)
2345{
2346	return _regulator_get(dev, id, OPTIONAL_GET);
2347}
2348EXPORT_SYMBOL_GPL(regulator_get_optional);
2349
2350static void destroy_regulator(struct regulator *regulator)
2351{
2352	struct regulator_dev *rdev = regulator->rdev;
2353
2354	debugfs_remove_recursive(regulator->debugfs);
2355
2356	if (regulator->dev) {
2357		if (regulator->device_link)
2358			device_link_remove(regulator->dev, &rdev->dev);
2359
2360		/* remove any sysfs entries */
2361		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2362	}
2363
2364	regulator_lock(rdev);
2365	list_del(&regulator->list);
2366
2367	rdev->open_count--;
2368	rdev->exclusive = 0;
2369	regulator_unlock(rdev);
2370
2371	kfree_const(regulator->supply_name);
2372	kfree(regulator);
2373}
2374
2375/* regulator_list_mutex lock held by regulator_put() */
2376static void _regulator_put(struct regulator *regulator)
2377{
2378	struct regulator_dev *rdev;
2379
2380	if (IS_ERR_OR_NULL(regulator))
2381		return;
2382
2383	lockdep_assert_held_once(&regulator_list_mutex);
2384
2385	/* Docs say you must disable before calling regulator_put() */
2386	WARN_ON(regulator->enable_count);
2387
2388	rdev = regulator->rdev;
2389
2390	destroy_regulator(regulator);
2391
2392	module_put(rdev->owner);
2393	put_device(&rdev->dev);
2394}
2395
2396/**
2397 * regulator_put - "free" the regulator source
2398 * @regulator: regulator source
2399 *
2400 * Note: drivers must ensure that all regulator_enable calls made on this
2401 * regulator source are balanced by regulator_disable calls prior to calling
2402 * this function.
2403 */
2404void regulator_put(struct regulator *regulator)
2405{
2406	mutex_lock(&regulator_list_mutex);
2407	_regulator_put(regulator);
2408	mutex_unlock(&regulator_list_mutex);
2409}
2410EXPORT_SYMBOL_GPL(regulator_put);
2411
2412/**
2413 * regulator_register_supply_alias - Provide device alias for supply lookup
2414 *
2415 * @dev: device that will be given as the regulator "consumer"
2416 * @id: Supply name or regulator ID
2417 * @alias_dev: device that should be used to lookup the supply
2418 * @alias_id: Supply name or regulator ID that should be used to lookup the
2419 * supply
2420 *
2421 * All lookups for id on dev will instead be conducted for alias_id on
2422 * alias_dev.
2423 *
2424 * Return: 0 on success or a negative error number on failure.
2425 */
2426int regulator_register_supply_alias(struct device *dev, const char *id,
2427				    struct device *alias_dev,
2428				    const char *alias_id)
2429{
2430	struct regulator_supply_alias *map;
2431
2432	map = regulator_find_supply_alias(dev, id);
2433	if (map)
2434		return -EEXIST;
2435
2436	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2437	if (!map)
2438		return -ENOMEM;
2439
2440	map->src_dev = dev;
2441	map->src_supply = id;
2442	map->alias_dev = alias_dev;
2443	map->alias_supply = alias_id;
2444
2445	list_add(&map->list, &regulator_supply_alias_list);
2446
2447	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2448		id, dev_name(dev), alias_id, dev_name(alias_dev));
2449
2450	return 0;
2451}
2452EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2453
2454/**
2455 * regulator_unregister_supply_alias - Remove device alias
2456 *
2457 * @dev: device that will be given as the regulator "consumer"
2458 * @id: Supply name or regulator ID
2459 *
2460 * Remove a lookup alias if one exists for id on dev.
2461 */
2462void regulator_unregister_supply_alias(struct device *dev, const char *id)
2463{
2464	struct regulator_supply_alias *map;
2465
2466	map = regulator_find_supply_alias(dev, id);
2467	if (map) {
2468		list_del(&map->list);
2469		kfree(map);
2470	}
2471}
2472EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2473
2474/**
2475 * regulator_bulk_register_supply_alias - register multiple aliases
2476 *
2477 * @dev: device that will be given as the regulator "consumer"
2478 * @id: List of supply names or regulator IDs
2479 * @alias_dev: device that should be used to lookup the supply
2480 * @alias_id: List of supply names or regulator IDs that should be used to
2481 * lookup the supply
2482 * @num_id: Number of aliases to register
2483 *
 
 
2484 * This helper function allows drivers to register several supply
2485 * aliases in one operation.  If any of the aliases cannot be
2486 * registered any aliases that were registered will be removed
2487 * before returning to the caller.
2488 *
2489 * Return: 0 on success or a negative error number on failure.
2490 */
2491int regulator_bulk_register_supply_alias(struct device *dev,
2492					 const char *const *id,
2493					 struct device *alias_dev,
2494					 const char *const *alias_id,
2495					 int num_id)
2496{
2497	int i;
2498	int ret;
2499
2500	for (i = 0; i < num_id; ++i) {
2501		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2502						      alias_id[i]);
2503		if (ret < 0)
2504			goto err;
2505	}
2506
2507	return 0;
2508
2509err:
2510	dev_err(dev,
2511		"Failed to create supply alias %s,%s -> %s,%s\n",
2512		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2513
2514	while (--i >= 0)
2515		regulator_unregister_supply_alias(dev, id[i]);
2516
2517	return ret;
2518}
2519EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2520
2521/**
2522 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2523 *
2524 * @dev: device that will be given as the regulator "consumer"
2525 * @id: List of supply names or regulator IDs
2526 * @num_id: Number of aliases to unregister
2527 *
2528 * This helper function allows drivers to unregister several supply
2529 * aliases in one operation.
2530 */
2531void regulator_bulk_unregister_supply_alias(struct device *dev,
2532					    const char *const *id,
2533					    int num_id)
2534{
2535	int i;
2536
2537	for (i = 0; i < num_id; ++i)
2538		regulator_unregister_supply_alias(dev, id[i]);
2539}
2540EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2541
2542
2543/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2544static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2545				const struct regulator_config *config)
2546{
2547	struct regulator_enable_gpio *pin, *new_pin;
2548	struct gpio_desc *gpiod;
2549
2550	gpiod = config->ena_gpiod;
2551	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2552
2553	mutex_lock(&regulator_list_mutex);
2554
2555	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2556		if (pin->gpiod == gpiod) {
2557			rdev_dbg(rdev, "GPIO is already used\n");
2558			goto update_ena_gpio_to_rdev;
2559		}
2560	}
2561
2562	if (new_pin == NULL) {
2563		mutex_unlock(&regulator_list_mutex);
2564		return -ENOMEM;
2565	}
2566
2567	pin = new_pin;
2568	new_pin = NULL;
2569
2570	pin->gpiod = gpiod;
2571	list_add(&pin->list, &regulator_ena_gpio_list);
2572
2573update_ena_gpio_to_rdev:
2574	pin->request_count++;
2575	rdev->ena_pin = pin;
2576
2577	mutex_unlock(&regulator_list_mutex);
2578	kfree(new_pin);
2579
2580	return 0;
2581}
2582
2583static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2584{
2585	struct regulator_enable_gpio *pin, *n;
2586
2587	if (!rdev->ena_pin)
2588		return;
2589
2590	/* Free the GPIO only in case of no use */
2591	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2592		if (pin != rdev->ena_pin)
2593			continue;
2594
2595		if (--pin->request_count)
2596			break;
2597
2598		gpiod_put(pin->gpiod);
2599		list_del(&pin->list);
2600		kfree(pin);
2601		break;
2602	}
2603
2604	rdev->ena_pin = NULL;
2605}
2606
2607/**
2608 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2609 * @rdev: regulator_dev structure
2610 * @enable: enable GPIO at initial use?
2611 *
2612 * GPIO is enabled in case of initial use. (enable_count is 0)
2613 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2614 *
2615 * Return: 0 on success or a negative error number on failure.
2616 */
2617static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2618{
2619	struct regulator_enable_gpio *pin = rdev->ena_pin;
2620
2621	if (!pin)
2622		return -EINVAL;
2623
2624	if (enable) {
2625		/* Enable GPIO at initial use */
2626		if (pin->enable_count == 0)
2627			gpiod_set_value_cansleep(pin->gpiod, 1);
2628
2629		pin->enable_count++;
2630	} else {
2631		if (pin->enable_count > 1) {
2632			pin->enable_count--;
2633			return 0;
2634		}
2635
2636		/* Disable GPIO if not used */
2637		if (pin->enable_count <= 1) {
2638			gpiod_set_value_cansleep(pin->gpiod, 0);
2639			pin->enable_count = 0;
2640		}
2641	}
2642
2643	return 0;
2644}
2645
2646/**
2647 * _regulator_check_status_enabled - check if regulator status can be
2648 *				     interpreted as "regulator is enabled"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649 * @rdev: the regulator device to check
2650 *
2651 * Return:
2652 * * 1			- if status shows regulator is in enabled state
2653 * * 0			- if not enabled state
2654 * * Error Value	- as received from ops->get_status()
2655 */
2656static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2657{
2658	int ret = rdev->desc->ops->get_status(rdev);
2659
2660	if (ret < 0) {
2661		rdev_info(rdev, "get_status returned error: %d\n", ret);
2662		return ret;
2663	}
2664
2665	switch (ret) {
2666	case REGULATOR_STATUS_OFF:
2667	case REGULATOR_STATUS_ERROR:
2668	case REGULATOR_STATUS_UNDEFINED:
2669		return 0;
2670	default:
2671		return 1;
2672	}
2673}
2674
2675static int _regulator_do_enable(struct regulator_dev *rdev)
2676{
2677	int ret, delay;
2678
2679	/* Query before enabling in case configuration dependent.  */
2680	ret = _regulator_get_enable_time(rdev);
2681	if (ret >= 0) {
2682		delay = ret;
2683	} else {
2684		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2685		delay = 0;
2686	}
2687
2688	trace_regulator_enable(rdev_get_name(rdev));
2689
2690	if (rdev->desc->off_on_delay) {
2691		/* if needed, keep a distance of off_on_delay from last time
2692		 * this regulator was disabled.
2693		 */
2694		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2695		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2696
2697		if (remaining > 0)
2698			fsleep(remaining);
2699	}
2700
2701	if (rdev->ena_pin) {
2702		if (!rdev->ena_gpio_state) {
2703			ret = regulator_ena_gpio_ctrl(rdev, true);
2704			if (ret < 0)
2705				return ret;
2706			rdev->ena_gpio_state = 1;
2707		}
2708	} else if (rdev->desc->ops->enable) {
2709		ret = rdev->desc->ops->enable(rdev);
2710		if (ret < 0)
2711			return ret;
2712	} else {
2713		return -EINVAL;
2714	}
2715
2716	/* Allow the regulator to ramp; it would be useful to extend
2717	 * this for bulk operations so that the regulators can ramp
2718	 * together.
2719	 */
2720	trace_regulator_enable_delay(rdev_get_name(rdev));
2721
2722	/* If poll_enabled_time is set, poll upto the delay calculated
2723	 * above, delaying poll_enabled_time uS to check if the regulator
2724	 * actually got enabled.
2725	 * If the regulator isn't enabled after our delay helper has expired,
2726	 * return -ETIMEDOUT.
2727	 */
2728	if (rdev->desc->poll_enabled_time) {
2729		int time_remaining = delay;
2730
2731		while (time_remaining > 0) {
2732			fsleep(rdev->desc->poll_enabled_time);
2733
2734			if (rdev->desc->ops->get_status) {
2735				ret = _regulator_check_status_enabled(rdev);
2736				if (ret < 0)
2737					return ret;
2738				else if (ret)
2739					break;
2740			} else if (rdev->desc->ops->is_enabled(rdev))
2741				break;
2742
2743			time_remaining -= rdev->desc->poll_enabled_time;
2744		}
2745
2746		if (time_remaining <= 0) {
2747			rdev_err(rdev, "Enabled check timed out\n");
2748			return -ETIMEDOUT;
2749		}
2750	} else {
2751		fsleep(delay);
2752	}
2753
2754	trace_regulator_enable_complete(rdev_get_name(rdev));
2755
2756	return 0;
2757}
2758
2759/**
2760 * _regulator_handle_consumer_enable - handle that a consumer enabled
2761 * @regulator: regulator source
2762 *
2763 * Some things on a regulator consumer (like the contribution towards total
2764 * load on the regulator) only have an effect when the consumer wants the
2765 * regulator enabled.  Explained in example with two consumers of the same
2766 * regulator:
2767 *   consumer A: set_load(100);       => total load = 0
2768 *   consumer A: regulator_enable();  => total load = 100
2769 *   consumer B: set_load(1000);      => total load = 100
2770 *   consumer B: regulator_enable();  => total load = 1100
2771 *   consumer A: regulator_disable(); => total_load = 1000
2772 *
2773 * This function (together with _regulator_handle_consumer_disable) is
2774 * responsible for keeping track of the refcount for a given regulator consumer
2775 * and applying / unapplying these things.
2776 *
2777 * Return: 0 on success or negative error number on failure.
2778 */
2779static int _regulator_handle_consumer_enable(struct regulator *regulator)
2780{
2781	int ret;
2782	struct regulator_dev *rdev = regulator->rdev;
2783
2784	lockdep_assert_held_once(&rdev->mutex.base);
2785
2786	regulator->enable_count++;
2787	if (regulator->uA_load && regulator->enable_count == 1) {
2788		ret = drms_uA_update(rdev);
2789		if (ret)
2790			regulator->enable_count--;
2791		return ret;
2792	}
2793
2794	return 0;
2795}
2796
2797/**
2798 * _regulator_handle_consumer_disable - handle that a consumer disabled
2799 * @regulator: regulator source
2800 *
2801 * The opposite of _regulator_handle_consumer_enable().
2802 *
2803 * Return: 0 on success or a negative error number on failure.
2804 */
2805static int _regulator_handle_consumer_disable(struct regulator *regulator)
2806{
2807	struct regulator_dev *rdev = regulator->rdev;
2808
2809	lockdep_assert_held_once(&rdev->mutex.base);
2810
2811	if (!regulator->enable_count) {
2812		rdev_err(rdev, "Underflow of regulator enable count\n");
2813		return -EINVAL;
2814	}
2815
2816	regulator->enable_count--;
2817	if (regulator->uA_load && regulator->enable_count == 0)
2818		return drms_uA_update(rdev);
2819
2820	return 0;
2821}
2822
2823/* locks held by regulator_enable() */
2824static int _regulator_enable(struct regulator *regulator)
2825{
2826	struct regulator_dev *rdev = regulator->rdev;
2827	int ret;
2828
2829	lockdep_assert_held_once(&rdev->mutex.base);
2830
2831	if (rdev->use_count == 0 && rdev->supply) {
2832		ret = _regulator_enable(rdev->supply);
2833		if (ret < 0)
2834			return ret;
2835	}
2836
2837	/* balance only if there are regulators coupled */
2838	if (rdev->coupling_desc.n_coupled > 1) {
2839		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2840		if (ret < 0)
2841			goto err_disable_supply;
2842	}
2843
2844	ret = _regulator_handle_consumer_enable(regulator);
2845	if (ret < 0)
2846		goto err_disable_supply;
2847
2848	if (rdev->use_count == 0) {
2849		/*
2850		 * The regulator may already be enabled if it's not switchable
2851		 * or was left on
2852		 */
2853		ret = _regulator_is_enabled(rdev);
2854		if (ret == -EINVAL || ret == 0) {
2855			if (!regulator_ops_is_valid(rdev,
2856					REGULATOR_CHANGE_STATUS)) {
2857				ret = -EPERM;
2858				goto err_consumer_disable;
2859			}
2860
2861			ret = _regulator_do_enable(rdev);
2862			if (ret < 0)
2863				goto err_consumer_disable;
2864
2865			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2866					     NULL);
2867		} else if (ret < 0) {
2868			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2869			goto err_consumer_disable;
2870		}
2871		/* Fallthrough on positive return values - already enabled */
2872	}
2873
2874	if (regulator->enable_count == 1)
2875		rdev->use_count++;
2876
2877	return 0;
2878
2879err_consumer_disable:
2880	_regulator_handle_consumer_disable(regulator);
2881
2882err_disable_supply:
2883	if (rdev->use_count == 0 && rdev->supply)
2884		_regulator_disable(rdev->supply);
2885
2886	return ret;
2887}
2888
2889/**
2890 * regulator_enable - enable regulator output
2891 * @regulator: regulator source
2892 *
2893 * Request that the regulator be enabled with the regulator output at
2894 * the predefined voltage or current value.  Calls to regulator_enable()
2895 * must be balanced with calls to regulator_disable().
2896 *
2897 * NOTE: the output value can be set by other drivers, boot loader or may be
2898 * hardwired in the regulator.
2899 *
2900 * Return: 0 on success or a negative error number on failure.
2901 */
2902int regulator_enable(struct regulator *regulator)
2903{
2904	struct regulator_dev *rdev = regulator->rdev;
2905	struct ww_acquire_ctx ww_ctx;
2906	int ret;
2907
2908	regulator_lock_dependent(rdev, &ww_ctx);
2909	ret = _regulator_enable(regulator);
2910	regulator_unlock_dependent(rdev, &ww_ctx);
2911
2912	return ret;
2913}
2914EXPORT_SYMBOL_GPL(regulator_enable);
2915
2916static int _regulator_do_disable(struct regulator_dev *rdev)
2917{
2918	int ret;
2919
2920	trace_regulator_disable(rdev_get_name(rdev));
2921
2922	if (rdev->ena_pin) {
2923		if (rdev->ena_gpio_state) {
2924			ret = regulator_ena_gpio_ctrl(rdev, false);
2925			if (ret < 0)
2926				return ret;
2927			rdev->ena_gpio_state = 0;
2928		}
2929
2930	} else if (rdev->desc->ops->disable) {
2931		ret = rdev->desc->ops->disable(rdev);
2932		if (ret != 0)
2933			return ret;
2934	}
2935
2936	if (rdev->desc->off_on_delay)
2937		rdev->last_off = ktime_get_boottime();
2938
2939	trace_regulator_disable_complete(rdev_get_name(rdev));
2940
2941	return 0;
2942}
2943
2944/* locks held by regulator_disable() */
2945static int _regulator_disable(struct regulator *regulator)
2946{
2947	struct regulator_dev *rdev = regulator->rdev;
2948	int ret = 0;
2949
2950	lockdep_assert_held_once(&rdev->mutex.base);
2951
2952	if (WARN(regulator->enable_count == 0,
2953		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2954		return -EIO;
2955
2956	if (regulator->enable_count == 1) {
2957	/* disabling last enable_count from this regulator */
2958		/* are we the last user and permitted to disable ? */
2959		if (rdev->use_count == 1 &&
2960		    (rdev->constraints && !rdev->constraints->always_on)) {
2961
2962			/* we are last user */
2963			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2964				ret = _notifier_call_chain(rdev,
2965							   REGULATOR_EVENT_PRE_DISABLE,
2966							   NULL);
2967				if (ret & NOTIFY_STOP_MASK)
2968					return -EINVAL;
2969
2970				ret = _regulator_do_disable(rdev);
2971				if (ret < 0) {
2972					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2973					_notifier_call_chain(rdev,
2974							REGULATOR_EVENT_ABORT_DISABLE,
2975							NULL);
2976					return ret;
2977				}
2978				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2979						NULL);
 
2980			}
 
 
 
2981
2982			rdev->use_count = 0;
2983		} else if (rdev->use_count > 1) {
2984			rdev->use_count--;
2985		}
2986	}
2987
2988	if (ret == 0)
2989		ret = _regulator_handle_consumer_disable(regulator);
2990
2991	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2992		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2993
2994	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2995		ret = _regulator_disable(rdev->supply);
2996
2997	return ret;
2998}
2999
3000/**
3001 * regulator_disable - disable regulator output
3002 * @regulator: regulator source
3003 *
3004 * Disable the regulator output voltage or current.  Calls to
3005 * regulator_enable() must be balanced with calls to
3006 * regulator_disable().
3007 *
3008 * NOTE: this will only disable the regulator output if no other consumer
3009 * devices have it enabled, the regulator device supports disabling and
3010 * machine constraints permit this operation.
3011 *
3012 * Return: 0 on success or a negative error number on failure.
3013 */
3014int regulator_disable(struct regulator *regulator)
3015{
3016	struct regulator_dev *rdev = regulator->rdev;
3017	struct ww_acquire_ctx ww_ctx;
3018	int ret;
3019
3020	regulator_lock_dependent(rdev, &ww_ctx);
3021	ret = _regulator_disable(regulator);
3022	regulator_unlock_dependent(rdev, &ww_ctx);
3023
3024	return ret;
3025}
3026EXPORT_SYMBOL_GPL(regulator_disable);
3027
3028/* locks held by regulator_force_disable() */
3029static int _regulator_force_disable(struct regulator_dev *rdev)
3030{
3031	int ret = 0;
3032
3033	lockdep_assert_held_once(&rdev->mutex.base);
3034
3035	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3036			REGULATOR_EVENT_PRE_DISABLE, NULL);
3037	if (ret & NOTIFY_STOP_MASK)
3038		return -EINVAL;
3039
3040	ret = _regulator_do_disable(rdev);
3041	if (ret < 0) {
3042		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3043		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3044				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3045		return ret;
3046	}
3047
3048	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3049			REGULATOR_EVENT_DISABLE, NULL);
3050
3051	return 0;
3052}
3053
3054/**
3055 * regulator_force_disable - force disable regulator output
3056 * @regulator: regulator source
3057 *
3058 * Forcibly disable the regulator output voltage or current.
3059 * NOTE: this *will* disable the regulator output even if other consumer
3060 * devices have it enabled. This should be used for situations when device
3061 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3062 *
3063 * Return: 0 on success or a negative error number on failure.
3064 */
3065int regulator_force_disable(struct regulator *regulator)
3066{
3067	struct regulator_dev *rdev = regulator->rdev;
3068	struct ww_acquire_ctx ww_ctx;
3069	int ret;
3070
3071	regulator_lock_dependent(rdev, &ww_ctx);
3072
3073	ret = _regulator_force_disable(regulator->rdev);
3074
3075	if (rdev->coupling_desc.n_coupled > 1)
3076		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3077
3078	if (regulator->uA_load) {
3079		regulator->uA_load = 0;
3080		ret = drms_uA_update(rdev);
3081	}
3082
3083	if (rdev->use_count != 0 && rdev->supply)
3084		_regulator_disable(rdev->supply);
3085
3086	regulator_unlock_dependent(rdev, &ww_ctx);
3087
3088	return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_force_disable);
3091
3092static void regulator_disable_work(struct work_struct *work)
3093{
3094	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3095						  disable_work.work);
3096	struct ww_acquire_ctx ww_ctx;
3097	int count, i, ret;
3098	struct regulator *regulator;
3099	int total_count = 0;
3100
3101	regulator_lock_dependent(rdev, &ww_ctx);
3102
3103	/*
3104	 * Workqueue functions queue the new work instance while the previous
3105	 * work instance is being processed. Cancel the queued work instance
3106	 * as the work instance under processing does the job of the queued
3107	 * work instance.
3108	 */
3109	cancel_delayed_work(&rdev->disable_work);
3110
3111	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3112		count = regulator->deferred_disables;
3113
3114		if (!count)
3115			continue;
3116
3117		total_count += count;
3118		regulator->deferred_disables = 0;
3119
3120		for (i = 0; i < count; i++) {
3121			ret = _regulator_disable(regulator);
3122			if (ret != 0)
3123				rdev_err(rdev, "Deferred disable failed: %pe\n",
3124					 ERR_PTR(ret));
3125		}
3126	}
3127	WARN_ON(!total_count);
3128
3129	if (rdev->coupling_desc.n_coupled > 1)
3130		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3131
3132	regulator_unlock_dependent(rdev, &ww_ctx);
3133}
3134
3135/**
3136 * regulator_disable_deferred - disable regulator output with delay
3137 * @regulator: regulator source
3138 * @ms: milliseconds until the regulator is disabled
3139 *
3140 * Execute regulator_disable() on the regulator after a delay.  This
3141 * is intended for use with devices that require some time to quiesce.
3142 *
3143 * NOTE: this will only disable the regulator output if no other consumer
3144 * devices have it enabled, the regulator device supports disabling and
3145 * machine constraints permit this operation.
3146 *
3147 * Return: 0 on success or a negative error number on failure.
3148 */
3149int regulator_disable_deferred(struct regulator *regulator, int ms)
3150{
3151	struct regulator_dev *rdev = regulator->rdev;
3152
3153	if (!ms)
3154		return regulator_disable(regulator);
3155
3156	regulator_lock(rdev);
3157	regulator->deferred_disables++;
3158	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3159			 msecs_to_jiffies(ms));
3160	regulator_unlock(rdev);
3161
3162	return 0;
3163}
3164EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3165
3166static int _regulator_is_enabled(struct regulator_dev *rdev)
3167{
3168	/* A GPIO control always takes precedence */
3169	if (rdev->ena_pin)
3170		return rdev->ena_gpio_state;
3171
3172	/* If we don't know then assume that the regulator is always on */
3173	if (!rdev->desc->ops->is_enabled)
3174		return 1;
3175
3176	return rdev->desc->ops->is_enabled(rdev);
3177}
3178
3179static int _regulator_list_voltage(struct regulator_dev *rdev,
3180				   unsigned selector, int lock)
3181{
3182	const struct regulator_ops *ops = rdev->desc->ops;
3183	int ret;
3184
3185	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3186		return rdev->desc->fixed_uV;
3187
3188	if (ops->list_voltage) {
3189		if (selector >= rdev->desc->n_voltages)
3190			return -EINVAL;
3191		if (selector < rdev->desc->linear_min_sel)
3192			return 0;
3193		if (lock)
3194			regulator_lock(rdev);
3195		ret = ops->list_voltage(rdev, selector);
3196		if (lock)
3197			regulator_unlock(rdev);
3198	} else if (rdev->is_switch && rdev->supply) {
3199		ret = _regulator_list_voltage(rdev->supply->rdev,
3200					      selector, lock);
3201	} else {
3202		return -EINVAL;
3203	}
3204
3205	if (ret > 0) {
3206		if (ret < rdev->constraints->min_uV)
3207			ret = 0;
3208		else if (ret > rdev->constraints->max_uV)
3209			ret = 0;
3210	}
3211
3212	return ret;
3213}
3214
3215/**
3216 * regulator_is_enabled - is the regulator output enabled
3217 * @regulator: regulator source
3218 *
 
 
 
 
3219 * Note that the device backing this regulator handle can have multiple
3220 * users, so it might be enabled even if regulator_enable() was never
3221 * called for this particular source.
3222 *
3223 * Return: Positive if the regulator driver backing the source/client
3224 *	   has requested that the device be enabled, zero if it hasn't,
3225 *	   else a negative error number.
3226 */
3227int regulator_is_enabled(struct regulator *regulator)
3228{
3229	int ret;
3230
3231	if (regulator->always_on)
3232		return 1;
3233
3234	regulator_lock(regulator->rdev);
3235	ret = _regulator_is_enabled(regulator->rdev);
3236	regulator_unlock(regulator->rdev);
3237
3238	return ret;
3239}
3240EXPORT_SYMBOL_GPL(regulator_is_enabled);
3241
3242/**
3243 * regulator_count_voltages - count regulator_list_voltage() selectors
3244 * @regulator: regulator source
3245 *
3246 * Return: Number of selectors for @regulator, or negative error number.
3247 *
3248 * Selectors are numbered starting at zero, and typically correspond to
3249 * bitfields in hardware registers.
3250 */
3251int regulator_count_voltages(struct regulator *regulator)
3252{
3253	struct regulator_dev	*rdev = regulator->rdev;
3254
3255	if (rdev->desc->n_voltages)
3256		return rdev->desc->n_voltages;
3257
3258	if (!rdev->is_switch || !rdev->supply)
3259		return -EINVAL;
3260
3261	return regulator_count_voltages(rdev->supply);
3262}
3263EXPORT_SYMBOL_GPL(regulator_count_voltages);
3264
3265/**
3266 * regulator_list_voltage - enumerate supported voltages
3267 * @regulator: regulator source
3268 * @selector: identify voltage to list
3269 * Context: can sleep
3270 *
3271 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3272 *	   0 if @selector can't be used on this system, or a negative error
3273 *	   number on failure.
3274 */
3275int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3276{
3277	return _regulator_list_voltage(regulator->rdev, selector, 1);
3278}
3279EXPORT_SYMBOL_GPL(regulator_list_voltage);
3280
3281/**
3282 * regulator_get_regmap - get the regulator's register map
3283 * @regulator: regulator source
3284 *
3285 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3286 *	   encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3287 */
3288struct regmap *regulator_get_regmap(struct regulator *regulator)
3289{
3290	struct regmap *map = regulator->rdev->regmap;
3291
3292	return map ? map : ERR_PTR(-EOPNOTSUPP);
3293}
3294EXPORT_SYMBOL_GPL(regulator_get_regmap);
3295
3296/**
3297 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3298 * @regulator: regulator source
3299 * @vsel_reg: voltage selector register, output parameter
3300 * @vsel_mask: mask for voltage selector bitfield, output parameter
3301 *
3302 * Returns the hardware register offset and bitmask used for setting the
3303 * regulator voltage. This might be useful when configuring voltage-scaling
3304 * hardware or firmware that can make I2C requests behind the kernel's back,
3305 * for example.
3306 *
3307 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3308 *         voltage selectors.
3309 *
3310 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3311 * and 0 is returned, otherwise a negative error number is returned.
3312 */
3313int regulator_get_hardware_vsel_register(struct regulator *regulator,
3314					 unsigned *vsel_reg,
3315					 unsigned *vsel_mask)
3316{
3317	struct regulator_dev *rdev = regulator->rdev;
3318	const struct regulator_ops *ops = rdev->desc->ops;
3319
3320	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3321		return -EOPNOTSUPP;
3322
3323	*vsel_reg = rdev->desc->vsel_reg;
3324	*vsel_mask = rdev->desc->vsel_mask;
3325
3326	return 0;
3327}
3328EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3329
3330/**
3331 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3332 * @regulator: regulator source
3333 * @selector: identify voltage to list
3334 *
3335 * Converts the selector to a hardware-specific voltage selector that can be
3336 * directly written to the regulator registers. The address of the voltage
3337 * register can be determined by calling @regulator_get_hardware_vsel_register.
3338 *
3339 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3340 *	   range, or -%EOPNOTSUPP if the regulator does not support voltage
3341 *	   selectors.
3342 */
3343int regulator_list_hardware_vsel(struct regulator *regulator,
3344				 unsigned selector)
3345{
3346	struct regulator_dev *rdev = regulator->rdev;
3347	const struct regulator_ops *ops = rdev->desc->ops;
3348
3349	if (selector >= rdev->desc->n_voltages)
3350		return -EINVAL;
3351	if (selector < rdev->desc->linear_min_sel)
3352		return 0;
3353	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3354		return -EOPNOTSUPP;
3355
3356	return selector;
3357}
3358EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3359
3360/**
3361 * regulator_hardware_enable - access the HW for enable/disable regulator
3362 * @regulator: regulator source
3363 * @enable: true for enable, false for disable
3364 *
3365 * Request that the regulator be enabled/disabled with the regulator output at
3366 * the predefined voltage or current value.
3367 *
3368 * Return: 0 on success or a negative error number on failure.
3369 */
3370int regulator_hardware_enable(struct regulator *regulator, bool enable)
3371{
3372	struct regulator_dev *rdev = regulator->rdev;
3373	const struct regulator_ops *ops = rdev->desc->ops;
3374	int ret = -EOPNOTSUPP;
3375
3376	if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3377		return ret;
3378
3379	if (enable)
3380		ret = ops->enable(rdev);
3381	else
3382		ret = ops->disable(rdev);
3383
3384	return ret;
3385}
3386EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3387
3388/**
3389 * regulator_get_linear_step - return the voltage step size between VSEL values
3390 * @regulator: regulator source
3391 *
3392 * Return: The voltage step size between VSEL values for linear regulators,
3393 *	   or 0 if the regulator isn't a linear regulator.
3394 */
3395unsigned int regulator_get_linear_step(struct regulator *regulator)
3396{
3397	struct regulator_dev *rdev = regulator->rdev;
3398
3399	return rdev->desc->uV_step;
3400}
3401EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3402
3403/**
3404 * regulator_is_supported_voltage - check if a voltage range can be supported
3405 *
3406 * @regulator: Regulator to check.
3407 * @min_uV: Minimum required voltage in uV.
3408 * @max_uV: Maximum required voltage in uV.
3409 *
3410 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3411 *	   number if @regulator's voltage can't be changed and voltage readback
3412 *	   failed.
3413 */
3414int regulator_is_supported_voltage(struct regulator *regulator,
3415				   int min_uV, int max_uV)
3416{
3417	struct regulator_dev *rdev = regulator->rdev;
3418	int i, voltages, ret;
3419
3420	/* If we can't change voltage check the current voltage */
3421	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3422		ret = regulator_get_voltage(regulator);
3423		if (ret >= 0)
3424			return min_uV <= ret && ret <= max_uV;
3425		else
3426			return ret;
3427	}
3428
3429	/* Any voltage within constrains range is fine? */
3430	if (rdev->desc->continuous_voltage_range)
3431		return min_uV >= rdev->constraints->min_uV &&
3432				max_uV <= rdev->constraints->max_uV;
3433
3434	ret = regulator_count_voltages(regulator);
3435	if (ret < 0)
3436		return 0;
3437	voltages = ret;
3438
3439	for (i = 0; i < voltages; i++) {
3440		ret = regulator_list_voltage(regulator, i);
3441
3442		if (ret >= min_uV && ret <= max_uV)
3443			return 1;
3444	}
3445
3446	return 0;
3447}
3448EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3449
3450static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3451				 int max_uV)
3452{
3453	const struct regulator_desc *desc = rdev->desc;
3454
3455	if (desc->ops->map_voltage)
3456		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3457
3458	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3459		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3460
3461	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3462		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3463
3464	if (desc->ops->list_voltage ==
3465		regulator_list_voltage_pickable_linear_range)
3466		return regulator_map_voltage_pickable_linear_range(rdev,
3467							min_uV, max_uV);
3468
3469	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3470}
3471
3472static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3473				       int min_uV, int max_uV,
3474				       unsigned *selector)
3475{
3476	struct pre_voltage_change_data data;
3477	int ret;
3478
3479	data.old_uV = regulator_get_voltage_rdev(rdev);
3480	data.min_uV = min_uV;
3481	data.max_uV = max_uV;
3482	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3483				   &data);
3484	if (ret & NOTIFY_STOP_MASK)
3485		return -EINVAL;
3486
3487	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3488	if (ret >= 0)
3489		return ret;
3490
3491	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3492			     (void *)data.old_uV);
3493
3494	return ret;
3495}
3496
3497static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3498					   int uV, unsigned selector)
3499{
3500	struct pre_voltage_change_data data;
3501	int ret;
3502
3503	data.old_uV = regulator_get_voltage_rdev(rdev);
3504	data.min_uV = uV;
3505	data.max_uV = uV;
3506	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3507				   &data);
3508	if (ret & NOTIFY_STOP_MASK)
3509		return -EINVAL;
3510
3511	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3512	if (ret >= 0)
3513		return ret;
3514
3515	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3516			     (void *)data.old_uV);
3517
3518	return ret;
3519}
3520
3521static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3522					   int uV, int new_selector)
3523{
3524	const struct regulator_ops *ops = rdev->desc->ops;
3525	int diff, old_sel, curr_sel, ret;
3526
3527	/* Stepping is only needed if the regulator is enabled. */
3528	if (!_regulator_is_enabled(rdev))
3529		goto final_set;
3530
3531	if (!ops->get_voltage_sel)
3532		return -EINVAL;
3533
3534	old_sel = ops->get_voltage_sel(rdev);
3535	if (old_sel < 0)
3536		return old_sel;
3537
3538	diff = new_selector - old_sel;
3539	if (diff == 0)
3540		return 0; /* No change needed. */
3541
3542	if (diff > 0) {
3543		/* Stepping up. */
3544		for (curr_sel = old_sel + rdev->desc->vsel_step;
3545		     curr_sel < new_selector;
3546		     curr_sel += rdev->desc->vsel_step) {
3547			/*
3548			 * Call the callback directly instead of using
3549			 * _regulator_call_set_voltage_sel() as we don't
3550			 * want to notify anyone yet. Same in the branch
3551			 * below.
3552			 */
3553			ret = ops->set_voltage_sel(rdev, curr_sel);
3554			if (ret)
3555				goto try_revert;
3556		}
3557	} else {
3558		/* Stepping down. */
3559		for (curr_sel = old_sel - rdev->desc->vsel_step;
3560		     curr_sel > new_selector;
3561		     curr_sel -= rdev->desc->vsel_step) {
3562			ret = ops->set_voltage_sel(rdev, curr_sel);
3563			if (ret)
3564				goto try_revert;
3565		}
3566	}
3567
3568final_set:
3569	/* The final selector will trigger the notifiers. */
3570	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3571
3572try_revert:
3573	/*
3574	 * At least try to return to the previous voltage if setting a new
3575	 * one failed.
3576	 */
3577	(void)ops->set_voltage_sel(rdev, old_sel);
3578	return ret;
3579}
3580
3581static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3582				       int old_uV, int new_uV)
3583{
3584	unsigned int ramp_delay = 0;
3585
3586	if (rdev->constraints->ramp_delay)
3587		ramp_delay = rdev->constraints->ramp_delay;
3588	else if (rdev->desc->ramp_delay)
3589		ramp_delay = rdev->desc->ramp_delay;
3590	else if (rdev->constraints->settling_time)
3591		return rdev->constraints->settling_time;
3592	else if (rdev->constraints->settling_time_up &&
3593		 (new_uV > old_uV))
3594		return rdev->constraints->settling_time_up;
3595	else if (rdev->constraints->settling_time_down &&
3596		 (new_uV < old_uV))
3597		return rdev->constraints->settling_time_down;
3598
3599	if (ramp_delay == 0)
3600		return 0;
3601
3602	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3603}
3604
3605static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3606				     int min_uV, int max_uV)
3607{
3608	int ret;
3609	int delay = 0;
3610	int best_val = 0;
3611	unsigned int selector;
3612	int old_selector = -1;
3613	const struct regulator_ops *ops = rdev->desc->ops;
3614	int old_uV = regulator_get_voltage_rdev(rdev);
3615
3616	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3617
3618	min_uV += rdev->constraints->uV_offset;
3619	max_uV += rdev->constraints->uV_offset;
3620
3621	/*
3622	 * If we can't obtain the old selector there is not enough
3623	 * info to call set_voltage_time_sel().
3624	 */
3625	if (_regulator_is_enabled(rdev) &&
3626	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3627		old_selector = ops->get_voltage_sel(rdev);
3628		if (old_selector < 0)
3629			return old_selector;
3630	}
3631
3632	if (ops->set_voltage) {
3633		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3634						  &selector);
3635
3636		if (ret >= 0) {
3637			if (ops->list_voltage)
3638				best_val = ops->list_voltage(rdev,
3639							     selector);
3640			else
3641				best_val = regulator_get_voltage_rdev(rdev);
3642		}
3643
3644	} else if (ops->set_voltage_sel) {
3645		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3646		if (ret >= 0) {
3647			best_val = ops->list_voltage(rdev, ret);
3648			if (min_uV <= best_val && max_uV >= best_val) {
3649				selector = ret;
3650				if (old_selector == selector)
3651					ret = 0;
3652				else if (rdev->desc->vsel_step)
3653					ret = _regulator_set_voltage_sel_step(
3654						rdev, best_val, selector);
3655				else
3656					ret = _regulator_call_set_voltage_sel(
3657						rdev, best_val, selector);
3658			} else {
3659				ret = -EINVAL;
3660			}
3661		}
3662	} else {
3663		ret = -EINVAL;
3664	}
3665
3666	if (ret)
3667		goto out;
3668
3669	if (ops->set_voltage_time_sel) {
3670		/*
3671		 * Call set_voltage_time_sel if successfully obtained
3672		 * old_selector
3673		 */
3674		if (old_selector >= 0 && old_selector != selector)
3675			delay = ops->set_voltage_time_sel(rdev, old_selector,
3676							  selector);
3677	} else {
3678		if (old_uV != best_val) {
3679			if (ops->set_voltage_time)
3680				delay = ops->set_voltage_time(rdev, old_uV,
3681							      best_val);
3682			else
3683				delay = _regulator_set_voltage_time(rdev,
3684								    old_uV,
3685								    best_val);
3686		}
3687	}
3688
3689	if (delay < 0) {
3690		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3691		delay = 0;
3692	}
3693
3694	/* Insert any necessary delays */
3695	fsleep(delay);
3696
3697	if (best_val >= 0) {
3698		unsigned long data = best_val;
3699
3700		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3701				     (void *)data);
3702	}
3703
3704out:
3705	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3706
3707	return ret;
3708}
3709
3710static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3711				  int min_uV, int max_uV, suspend_state_t state)
3712{
3713	struct regulator_state *rstate;
3714	int uV, sel;
3715
3716	rstate = regulator_get_suspend_state(rdev, state);
3717	if (rstate == NULL)
3718		return -EINVAL;
3719
3720	if (min_uV < rstate->min_uV)
3721		min_uV = rstate->min_uV;
3722	if (max_uV > rstate->max_uV)
3723		max_uV = rstate->max_uV;
3724
3725	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3726	if (sel < 0)
3727		return sel;
3728
3729	uV = rdev->desc->ops->list_voltage(rdev, sel);
3730	if (uV >= min_uV && uV <= max_uV)
3731		rstate->uV = uV;
3732
3733	return 0;
3734}
3735
3736static int regulator_set_voltage_unlocked(struct regulator *regulator,
3737					  int min_uV, int max_uV,
3738					  suspend_state_t state)
3739{
3740	struct regulator_dev *rdev = regulator->rdev;
3741	struct regulator_voltage *voltage = &regulator->voltage[state];
3742	int ret = 0;
3743	int old_min_uV, old_max_uV;
3744	int current_uV;
3745
3746	/* If we're setting the same range as last time the change
3747	 * should be a noop (some cpufreq implementations use the same
3748	 * voltage for multiple frequencies, for example).
3749	 */
3750	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3751		goto out;
3752
3753	/* If we're trying to set a range that overlaps the current voltage,
3754	 * return successfully even though the regulator does not support
3755	 * changing the voltage.
3756	 */
3757	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3758		current_uV = regulator_get_voltage_rdev(rdev);
3759		if (min_uV <= current_uV && current_uV <= max_uV) {
3760			voltage->min_uV = min_uV;
3761			voltage->max_uV = max_uV;
3762			goto out;
3763		}
3764	}
3765
3766	/* sanity check */
3767	if (!rdev->desc->ops->set_voltage &&
3768	    !rdev->desc->ops->set_voltage_sel) {
3769		ret = -EINVAL;
3770		goto out;
3771	}
3772
3773	/* constraints check */
3774	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3775	if (ret < 0)
3776		goto out;
3777
3778	/* restore original values in case of error */
3779	old_min_uV = voltage->min_uV;
3780	old_max_uV = voltage->max_uV;
3781	voltage->min_uV = min_uV;
3782	voltage->max_uV = max_uV;
3783
3784	/* for not coupled regulators this will just set the voltage */
3785	ret = regulator_balance_voltage(rdev, state);
3786	if (ret < 0) {
3787		voltage->min_uV = old_min_uV;
3788		voltage->max_uV = old_max_uV;
3789	}
3790
3791out:
3792	return ret;
3793}
3794
3795int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3796			       int max_uV, suspend_state_t state)
3797{
3798	int best_supply_uV = 0;
3799	int supply_change_uV = 0;
3800	int ret;
3801
3802	if (rdev->supply &&
3803	    regulator_ops_is_valid(rdev->supply->rdev,
3804				   REGULATOR_CHANGE_VOLTAGE) &&
3805	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3806					   rdev->desc->ops->get_voltage_sel))) {
3807		int current_supply_uV;
3808		int selector;
3809
3810		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3811		if (selector < 0) {
3812			ret = selector;
3813			goto out;
3814		}
3815
3816		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3817		if (best_supply_uV < 0) {
3818			ret = best_supply_uV;
3819			goto out;
3820		}
3821
3822		best_supply_uV += rdev->desc->min_dropout_uV;
3823
3824		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3825		if (current_supply_uV < 0) {
3826			ret = current_supply_uV;
3827			goto out;
3828		}
3829
3830		supply_change_uV = best_supply_uV - current_supply_uV;
3831	}
3832
3833	if (supply_change_uV > 0) {
3834		ret = regulator_set_voltage_unlocked(rdev->supply,
3835				best_supply_uV, INT_MAX, state);
3836		if (ret) {
3837			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3838				ERR_PTR(ret));
3839			goto out;
3840		}
3841	}
3842
3843	if (state == PM_SUSPEND_ON)
3844		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3845	else
3846		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3847							max_uV, state);
3848	if (ret < 0)
3849		goto out;
3850
3851	if (supply_change_uV < 0) {
3852		ret = regulator_set_voltage_unlocked(rdev->supply,
3853				best_supply_uV, INT_MAX, state);
3854		if (ret)
3855			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3856				 ERR_PTR(ret));
3857		/* No need to fail here */
3858		ret = 0;
3859	}
3860
3861out:
3862	return ret;
3863}
3864EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3865
3866static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3867					int *current_uV, int *min_uV)
3868{
3869	struct regulation_constraints *constraints = rdev->constraints;
3870
3871	/* Limit voltage change only if necessary */
3872	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3873		return 1;
3874
3875	if (*current_uV < 0) {
3876		*current_uV = regulator_get_voltage_rdev(rdev);
3877
3878		if (*current_uV < 0)
3879			return *current_uV;
3880	}
3881
3882	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3883		return 1;
3884
3885	/* Clamp target voltage within the given step */
3886	if (*current_uV < *min_uV)
3887		*min_uV = min(*current_uV + constraints->max_uV_step,
3888			      *min_uV);
3889	else
3890		*min_uV = max(*current_uV - constraints->max_uV_step,
3891			      *min_uV);
3892
3893	return 0;
3894}
3895
3896static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3897					 int *current_uV,
3898					 int *min_uV, int *max_uV,
3899					 suspend_state_t state,
3900					 int n_coupled)
3901{
3902	struct coupling_desc *c_desc = &rdev->coupling_desc;
3903	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3904	struct regulation_constraints *constraints = rdev->constraints;
3905	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3906	int max_current_uV = 0, min_current_uV = INT_MAX;
3907	int highest_min_uV = 0, target_uV, possible_uV;
3908	int i, ret, max_spread;
3909	bool done;
3910
3911	*current_uV = -1;
3912
3913	/*
3914	 * If there are no coupled regulators, simply set the voltage
3915	 * demanded by consumers.
3916	 */
3917	if (n_coupled == 1) {
3918		/*
3919		 * If consumers don't provide any demands, set voltage
3920		 * to min_uV
3921		 */
3922		desired_min_uV = constraints->min_uV;
3923		desired_max_uV = constraints->max_uV;
3924
3925		ret = regulator_check_consumers(rdev,
3926						&desired_min_uV,
3927						&desired_max_uV, state);
3928		if (ret < 0)
3929			return ret;
3930
 
3931		done = true;
3932
3933		goto finish;
3934	}
3935
3936	/* Find highest min desired voltage */
3937	for (i = 0; i < n_coupled; i++) {
3938		int tmp_min = 0;
3939		int tmp_max = INT_MAX;
3940
3941		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3942
3943		ret = regulator_check_consumers(c_rdevs[i],
3944						&tmp_min,
3945						&tmp_max, state);
3946		if (ret < 0)
3947			return ret;
3948
3949		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3950		if (ret < 0)
3951			return ret;
3952
3953		highest_min_uV = max(highest_min_uV, tmp_min);
3954
3955		if (i == 0) {
3956			desired_min_uV = tmp_min;
3957			desired_max_uV = tmp_max;
3958		}
3959	}
3960
3961	max_spread = constraints->max_spread[0];
3962
3963	/*
3964	 * Let target_uV be equal to the desired one if possible.
3965	 * If not, set it to minimum voltage, allowed by other coupled
3966	 * regulators.
3967	 */
3968	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3969
3970	/*
3971	 * Find min and max voltages, which currently aren't violating
3972	 * max_spread.
3973	 */
3974	for (i = 1; i < n_coupled; i++) {
3975		int tmp_act;
3976
3977		if (!_regulator_is_enabled(c_rdevs[i]))
3978			continue;
3979
3980		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3981		if (tmp_act < 0)
3982			return tmp_act;
3983
3984		min_current_uV = min(tmp_act, min_current_uV);
3985		max_current_uV = max(tmp_act, max_current_uV);
3986	}
3987
3988	/* There aren't any other regulators enabled */
3989	if (max_current_uV == 0) {
3990		possible_uV = target_uV;
3991	} else {
3992		/*
3993		 * Correct target voltage, so as it currently isn't
3994		 * violating max_spread
3995		 */
3996		possible_uV = max(target_uV, max_current_uV - max_spread);
3997		possible_uV = min(possible_uV, min_current_uV + max_spread);
3998	}
3999
4000	if (possible_uV > desired_max_uV)
4001		return -EINVAL;
4002
4003	done = (possible_uV == target_uV);
4004	desired_min_uV = possible_uV;
4005
4006finish:
4007	/* Apply max_uV_step constraint if necessary */
4008	if (state == PM_SUSPEND_ON) {
4009		ret = regulator_limit_voltage_step(rdev, current_uV,
4010						   &desired_min_uV);
4011		if (ret < 0)
4012			return ret;
4013
4014		if (ret == 0)
4015			done = false;
4016	}
4017
4018	/* Set current_uV if wasn't done earlier in the code and if necessary */
4019	if (n_coupled > 1 && *current_uV == -1) {
4020
4021		if (_regulator_is_enabled(rdev)) {
4022			ret = regulator_get_voltage_rdev(rdev);
4023			if (ret < 0)
4024				return ret;
4025
4026			*current_uV = ret;
4027		} else {
4028			*current_uV = desired_min_uV;
4029		}
4030	}
4031
4032	*min_uV = desired_min_uV;
4033	*max_uV = desired_max_uV;
4034
4035	return done;
4036}
4037
4038int regulator_do_balance_voltage(struct regulator_dev *rdev,
4039				 suspend_state_t state, bool skip_coupled)
4040{
4041	struct regulator_dev **c_rdevs;
4042	struct regulator_dev *best_rdev;
4043	struct coupling_desc *c_desc = &rdev->coupling_desc;
4044	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4045	unsigned int delta, best_delta;
4046	unsigned long c_rdev_done = 0;
4047	bool best_c_rdev_done;
4048
4049	c_rdevs = c_desc->coupled_rdevs;
4050	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4051
4052	/*
4053	 * Find the best possible voltage change on each loop. Leave the loop
4054	 * if there isn't any possible change.
4055	 */
4056	do {
4057		best_c_rdev_done = false;
4058		best_delta = 0;
4059		best_min_uV = 0;
4060		best_max_uV = 0;
4061		best_c_rdev = 0;
4062		best_rdev = NULL;
4063
4064		/*
4065		 * Find highest difference between optimal voltage
4066		 * and current voltage.
4067		 */
4068		for (i = 0; i < n_coupled; i++) {
4069			/*
4070			 * optimal_uV is the best voltage that can be set for
4071			 * i-th regulator at the moment without violating
4072			 * max_spread constraint in order to balance
4073			 * the coupled voltages.
4074			 */
4075			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4076
4077			if (test_bit(i, &c_rdev_done))
4078				continue;
4079
4080			ret = regulator_get_optimal_voltage(c_rdevs[i],
4081							    &current_uV,
4082							    &optimal_uV,
4083							    &optimal_max_uV,
4084							    state, n_coupled);
4085			if (ret < 0)
4086				goto out;
4087
4088			delta = abs(optimal_uV - current_uV);
4089
4090			if (delta && best_delta <= delta) {
4091				best_c_rdev_done = ret;
4092				best_delta = delta;
4093				best_rdev = c_rdevs[i];
4094				best_min_uV = optimal_uV;
4095				best_max_uV = optimal_max_uV;
4096				best_c_rdev = i;
4097			}
4098		}
4099
4100		/* Nothing to change, return successfully */
4101		if (!best_rdev) {
4102			ret = 0;
4103			goto out;
4104		}
4105
4106		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4107						 best_max_uV, state);
4108
4109		if (ret < 0)
4110			goto out;
4111
4112		if (best_c_rdev_done)
4113			set_bit(best_c_rdev, &c_rdev_done);
4114
4115	} while (n_coupled > 1);
4116
4117out:
4118	return ret;
4119}
4120
4121static int regulator_balance_voltage(struct regulator_dev *rdev,
4122				     suspend_state_t state)
4123{
4124	struct coupling_desc *c_desc = &rdev->coupling_desc;
4125	struct regulator_coupler *coupler = c_desc->coupler;
4126	bool skip_coupled = false;
4127
4128	/*
4129	 * If system is in a state other than PM_SUSPEND_ON, don't check
4130	 * other coupled regulators.
4131	 */
4132	if (state != PM_SUSPEND_ON)
4133		skip_coupled = true;
4134
4135	if (c_desc->n_resolved < c_desc->n_coupled) {
4136		rdev_err(rdev, "Not all coupled regulators registered\n");
4137		return -EPERM;
4138	}
4139
4140	/* Invoke custom balancer for customized couplers */
4141	if (coupler && coupler->balance_voltage)
4142		return coupler->balance_voltage(coupler, rdev, state);
4143
4144	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4145}
4146
4147/**
4148 * regulator_set_voltage - set regulator output voltage
4149 * @regulator: regulator source
4150 * @min_uV: Minimum required voltage in uV
4151 * @max_uV: Maximum acceptable voltage in uV
4152 *
4153 * Sets a voltage regulator to the desired output voltage. This can be set
4154 * during any regulator state. IOW, regulator can be disabled or enabled.
4155 *
4156 * If the regulator is enabled then the voltage will change to the new value
4157 * immediately otherwise if the regulator is disabled the regulator will
4158 * output at the new voltage when enabled.
4159 *
4160 * NOTE: If the regulator is shared between several devices then the lowest
4161 * request voltage that meets the system constraints will be used.
4162 * Regulator system constraints must be set for this regulator before
4163 * calling this function otherwise this call will fail.
4164 *
4165 * Return: 0 on success or a negative error number on failure.
4166 */
4167int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4168{
4169	struct ww_acquire_ctx ww_ctx;
4170	int ret;
4171
4172	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4173
4174	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4175					     PM_SUSPEND_ON);
4176
4177	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4178
4179	return ret;
4180}
4181EXPORT_SYMBOL_GPL(regulator_set_voltage);
4182
4183static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4184					   suspend_state_t state, bool en)
4185{
4186	struct regulator_state *rstate;
4187
4188	rstate = regulator_get_suspend_state(rdev, state);
4189	if (rstate == NULL)
4190		return -EINVAL;
4191
4192	if (!rstate->changeable)
4193		return -EPERM;
4194
4195	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4196
4197	return 0;
4198}
4199
4200int regulator_suspend_enable(struct regulator_dev *rdev,
4201				    suspend_state_t state)
4202{
4203	return regulator_suspend_toggle(rdev, state, true);
4204}
4205EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4206
4207int regulator_suspend_disable(struct regulator_dev *rdev,
4208				     suspend_state_t state)
4209{
4210	struct regulator *regulator;
4211	struct regulator_voltage *voltage;
4212
4213	/*
4214	 * if any consumer wants this regulator device keeping on in
4215	 * suspend states, don't set it as disabled.
4216	 */
4217	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4218		voltage = &regulator->voltage[state];
4219		if (voltage->min_uV || voltage->max_uV)
4220			return 0;
4221	}
4222
4223	return regulator_suspend_toggle(rdev, state, false);
4224}
4225EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4226
4227static int _regulator_set_suspend_voltage(struct regulator *regulator,
4228					  int min_uV, int max_uV,
4229					  suspend_state_t state)
4230{
4231	struct regulator_dev *rdev = regulator->rdev;
4232	struct regulator_state *rstate;
4233
4234	rstate = regulator_get_suspend_state(rdev, state);
4235	if (rstate == NULL)
4236		return -EINVAL;
4237
4238	if (rstate->min_uV == rstate->max_uV) {
4239		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4240		return -EPERM;
4241	}
4242
4243	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4244}
4245
4246int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4247				  int max_uV, suspend_state_t state)
4248{
4249	struct ww_acquire_ctx ww_ctx;
4250	int ret;
4251
4252	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4253	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4254		return -EINVAL;
4255
4256	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4257
4258	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4259					     max_uV, state);
4260
4261	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4262
4263	return ret;
4264}
4265EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4266
4267/**
4268 * regulator_set_voltage_time - get raise/fall time
4269 * @regulator: regulator source
4270 * @old_uV: starting voltage in microvolts
4271 * @new_uV: target voltage in microvolts
4272 *
4273 * Provided with the starting and ending voltage, this function attempts to
4274 * calculate the time in microseconds required to rise or fall to this new
4275 * voltage.
4276 *
4277 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4278 */
4279int regulator_set_voltage_time(struct regulator *regulator,
4280			       int old_uV, int new_uV)
4281{
4282	struct regulator_dev *rdev = regulator->rdev;
4283	const struct regulator_ops *ops = rdev->desc->ops;
4284	int old_sel = -1;
4285	int new_sel = -1;
4286	int voltage;
4287	int i;
4288
4289	if (ops->set_voltage_time)
4290		return ops->set_voltage_time(rdev, old_uV, new_uV);
4291	else if (!ops->set_voltage_time_sel)
4292		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4293
4294	/* Currently requires operations to do this */
4295	if (!ops->list_voltage || !rdev->desc->n_voltages)
4296		return -EINVAL;
4297
4298	for (i = 0; i < rdev->desc->n_voltages; i++) {
4299		/* We only look for exact voltage matches here */
4300		if (i < rdev->desc->linear_min_sel)
4301			continue;
4302
4303		if (old_sel >= 0 && new_sel >= 0)
4304			break;
4305
4306		voltage = regulator_list_voltage(regulator, i);
4307		if (voltage < 0)
4308			return -EINVAL;
4309		if (voltage == 0)
4310			continue;
4311		if (voltage == old_uV)
4312			old_sel = i;
4313		if (voltage == new_uV)
4314			new_sel = i;
4315	}
4316
4317	if (old_sel < 0 || new_sel < 0)
4318		return -EINVAL;
4319
4320	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4321}
4322EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4323
4324/**
4325 * regulator_set_voltage_time_sel - get raise/fall time
4326 * @rdev: regulator source device
4327 * @old_selector: selector for starting voltage
4328 * @new_selector: selector for target voltage
4329 *
4330 * Provided with the starting and target voltage selectors, this function
4331 * returns time in microseconds required to rise or fall to this new voltage
4332 *
4333 * Drivers providing ramp_delay in regulation_constraints can use this as their
4334 * set_voltage_time_sel() operation.
4335 *
4336 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4337 */
4338int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4339				   unsigned int old_selector,
4340				   unsigned int new_selector)
4341{
4342	int old_volt, new_volt;
4343
4344	/* sanity check */
4345	if (!rdev->desc->ops->list_voltage)
4346		return -EINVAL;
4347
4348	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4349	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4350
4351	if (rdev->desc->ops->set_voltage_time)
4352		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4353							 new_volt);
4354	else
4355		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4356}
4357EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4358
4359int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4360{
4361	int ret;
4362
4363	regulator_lock(rdev);
4364
4365	if (!rdev->desc->ops->set_voltage &&
4366	    !rdev->desc->ops->set_voltage_sel) {
4367		ret = -EINVAL;
4368		goto out;
4369	}
4370
4371	/* balance only, if regulator is coupled */
4372	if (rdev->coupling_desc.n_coupled > 1)
4373		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4374	else
4375		ret = -EOPNOTSUPP;
4376
4377out:
4378	regulator_unlock(rdev);
4379	return ret;
4380}
4381
4382/**
4383 * regulator_sync_voltage - re-apply last regulator output voltage
4384 * @regulator: regulator source
4385 *
4386 * Re-apply the last configured voltage.  This is intended to be used
4387 * where some external control source the consumer is cooperating with
4388 * has caused the configured voltage to change.
4389 *
4390 * Return: 0 on success or a negative error number on failure.
4391 */
4392int regulator_sync_voltage(struct regulator *regulator)
4393{
4394	struct regulator_dev *rdev = regulator->rdev;
4395	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4396	int ret, min_uV, max_uV;
4397
4398	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4399		return 0;
4400
4401	regulator_lock(rdev);
4402
4403	if (!rdev->desc->ops->set_voltage &&
4404	    !rdev->desc->ops->set_voltage_sel) {
4405		ret = -EINVAL;
4406		goto out;
4407	}
4408
4409	/* This is only going to work if we've had a voltage configured. */
4410	if (!voltage->min_uV && !voltage->max_uV) {
4411		ret = -EINVAL;
4412		goto out;
4413	}
4414
4415	min_uV = voltage->min_uV;
4416	max_uV = voltage->max_uV;
4417
4418	/* This should be a paranoia check... */
4419	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4420	if (ret < 0)
4421		goto out;
4422
4423	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4424	if (ret < 0)
4425		goto out;
4426
4427	/* balance only, if regulator is coupled */
4428	if (rdev->coupling_desc.n_coupled > 1)
4429		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4430	else
4431		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4432
4433out:
4434	regulator_unlock(rdev);
4435	return ret;
4436}
4437EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4438
4439int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4440{
4441	int sel, ret;
4442	bool bypassed;
4443
4444	if (rdev->desc->ops->get_bypass) {
4445		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4446		if (ret < 0)
4447			return ret;
4448		if (bypassed) {
4449			/* if bypassed the regulator must have a supply */
4450			if (!rdev->supply) {
4451				rdev_err(rdev,
4452					 "bypassed regulator has no supply!\n");
4453				return -EPROBE_DEFER;
4454			}
4455
4456			return regulator_get_voltage_rdev(rdev->supply->rdev);
4457		}
4458	}
4459
4460	if (rdev->desc->ops->get_voltage_sel) {
4461		sel = rdev->desc->ops->get_voltage_sel(rdev);
4462		if (sel < 0)
4463			return sel;
4464		ret = rdev->desc->ops->list_voltage(rdev, sel);
4465	} else if (rdev->desc->ops->get_voltage) {
4466		ret = rdev->desc->ops->get_voltage(rdev);
4467	} else if (rdev->desc->ops->list_voltage) {
4468		ret = rdev->desc->ops->list_voltage(rdev, 0);
4469	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4470		ret = rdev->desc->fixed_uV;
4471	} else if (rdev->supply) {
4472		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4473	} else if (rdev->supply_name) {
4474		return -EPROBE_DEFER;
4475	} else {
4476		return -EINVAL;
4477	}
4478
4479	if (ret < 0)
4480		return ret;
4481	return ret - rdev->constraints->uV_offset;
4482}
4483EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4484
4485/**
4486 * regulator_get_voltage - get regulator output voltage
4487 * @regulator: regulator source
4488 *
4489 * Return: Current regulator voltage in uV, or a negative error number on failure.
4490 *
4491 * NOTE: If the regulator is disabled it will return the voltage value. This
4492 * function should not be used to determine regulator state.
4493 */
4494int regulator_get_voltage(struct regulator *regulator)
4495{
4496	struct ww_acquire_ctx ww_ctx;
4497	int ret;
4498
4499	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4500	ret = regulator_get_voltage_rdev(regulator->rdev);
4501	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4502
4503	return ret;
4504}
4505EXPORT_SYMBOL_GPL(regulator_get_voltage);
4506
4507/**
4508 * regulator_set_current_limit - set regulator output current limit
4509 * @regulator: regulator source
4510 * @min_uA: Minimum supported current in uA
4511 * @max_uA: Maximum supported current in uA
4512 *
4513 * Sets current sink to the desired output current. This can be set during
4514 * any regulator state. IOW, regulator can be disabled or enabled.
4515 *
4516 * If the regulator is enabled then the current will change to the new value
4517 * immediately otherwise if the regulator is disabled the regulator will
4518 * output at the new current when enabled.
4519 *
4520 * NOTE: Regulator system constraints must be set for this regulator before
4521 * calling this function otherwise this call will fail.
4522 *
4523 * Return: 0 on success or a negative error number on failure.
4524 */
4525int regulator_set_current_limit(struct regulator *regulator,
4526			       int min_uA, int max_uA)
4527{
4528	struct regulator_dev *rdev = regulator->rdev;
4529	int ret;
4530
4531	regulator_lock(rdev);
4532
4533	/* sanity check */
4534	if (!rdev->desc->ops->set_current_limit) {
4535		ret = -EINVAL;
4536		goto out;
4537	}
4538
4539	/* constraints check */
4540	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4541	if (ret < 0)
4542		goto out;
4543
4544	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4545out:
4546	regulator_unlock(rdev);
4547	return ret;
4548}
4549EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4550
4551static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4552{
4553	/* sanity check */
4554	if (!rdev->desc->ops->get_current_limit)
4555		return -EINVAL;
4556
4557	return rdev->desc->ops->get_current_limit(rdev);
4558}
4559
4560static int _regulator_get_current_limit(struct regulator_dev *rdev)
4561{
4562	int ret;
4563
4564	regulator_lock(rdev);
4565	ret = _regulator_get_current_limit_unlocked(rdev);
4566	regulator_unlock(rdev);
4567
4568	return ret;
4569}
4570
4571/**
4572 * regulator_get_current_limit - get regulator output current
4573 * @regulator: regulator source
4574 *
4575 * Return: Current supplied by the specified current sink in uA,
4576 *	   or a negative error number on failure.
4577 *
4578 * NOTE: If the regulator is disabled it will return the current value. This
4579 * function should not be used to determine regulator state.
4580 */
4581int regulator_get_current_limit(struct regulator *regulator)
4582{
4583	return _regulator_get_current_limit(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4586
4587/**
4588 * regulator_set_mode - set regulator operating mode
4589 * @regulator: regulator source
4590 * @mode: operating mode - one of the REGULATOR_MODE constants
4591 *
4592 * Set regulator operating mode to increase regulator efficiency or improve
4593 * regulation performance.
4594 *
4595 * NOTE: Regulator system constraints must be set for this regulator before
4596 * calling this function otherwise this call will fail.
4597 *
4598 * Return: 0 on success or a negative error number on failure.
4599 */
4600int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4601{
4602	struct regulator_dev *rdev = regulator->rdev;
4603	int ret;
4604	int regulator_curr_mode;
4605
4606	regulator_lock(rdev);
4607
4608	/* sanity check */
4609	if (!rdev->desc->ops->set_mode) {
4610		ret = -EINVAL;
4611		goto out;
4612	}
4613
4614	/* return if the same mode is requested */
4615	if (rdev->desc->ops->get_mode) {
4616		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4617		if (regulator_curr_mode == mode) {
4618			ret = 0;
4619			goto out;
4620		}
4621	}
4622
4623	/* constraints check */
4624	ret = regulator_mode_constrain(rdev, &mode);
4625	if (ret < 0)
4626		goto out;
4627
4628	ret = rdev->desc->ops->set_mode(rdev, mode);
4629out:
4630	regulator_unlock(rdev);
4631	return ret;
4632}
4633EXPORT_SYMBOL_GPL(regulator_set_mode);
4634
4635static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4636{
4637	/* sanity check */
4638	if (!rdev->desc->ops->get_mode)
4639		return -EINVAL;
4640
4641	return rdev->desc->ops->get_mode(rdev);
4642}
4643
4644static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4645{
4646	int ret;
4647
4648	regulator_lock(rdev);
4649	ret = _regulator_get_mode_unlocked(rdev);
4650	regulator_unlock(rdev);
4651
4652	return ret;
4653}
4654
4655/**
4656 * regulator_get_mode - get regulator operating mode
4657 * @regulator: regulator source
4658 *
4659 * Get the current regulator operating mode.
4660 *
4661 * Return: Current operating mode as %REGULATOR_MODE_* values,
4662 *	   or a negative error number on failure.
4663 */
4664unsigned int regulator_get_mode(struct regulator *regulator)
4665{
4666	return _regulator_get_mode(regulator->rdev);
4667}
4668EXPORT_SYMBOL_GPL(regulator_get_mode);
4669
4670static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4671{
4672	int ret = 0;
4673
4674	if (rdev->use_cached_err) {
4675		spin_lock(&rdev->err_lock);
4676		ret = rdev->cached_err;
4677		spin_unlock(&rdev->err_lock);
4678	}
4679	return ret;
4680}
4681
4682static int _regulator_get_error_flags(struct regulator_dev *rdev,
4683					unsigned int *flags)
4684{
4685	int cached_flags, ret = 0;
4686
4687	regulator_lock(rdev);
4688
4689	cached_flags = rdev_get_cached_err_flags(rdev);
4690
4691	if (rdev->desc->ops->get_error_flags)
4692		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4693	else if (!rdev->use_cached_err)
4694		ret = -EINVAL;
4695
4696	*flags |= cached_flags;
4697
4698	regulator_unlock(rdev);
4699
4700	return ret;
4701}
4702
4703/**
4704 * regulator_get_error_flags - get regulator error information
4705 * @regulator: regulator source
4706 * @flags: pointer to store error flags
4707 *
4708 * Get the current regulator error information.
4709 *
4710 * Return: 0 on success or a negative error number on failure.
4711 */
4712int regulator_get_error_flags(struct regulator *regulator,
4713				unsigned int *flags)
4714{
4715	return _regulator_get_error_flags(regulator->rdev, flags);
4716}
4717EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4718
4719/**
4720 * regulator_set_load - set regulator load
4721 * @regulator: regulator source
4722 * @uA_load: load current
4723 *
4724 * Notifies the regulator core of a new device load. This is then used by
4725 * DRMS (if enabled by constraints) to set the most efficient regulator
4726 * operating mode for the new regulator loading.
4727 *
4728 * Consumer devices notify their supply regulator of the maximum power
4729 * they will require (can be taken from device datasheet in the power
4730 * consumption tables) when they change operational status and hence power
4731 * state. Examples of operational state changes that can affect power
4732 * consumption are :-
4733 *
4734 *    o Device is opened / closed.
4735 *    o Device I/O is about to begin or has just finished.
4736 *    o Device is idling in between work.
4737 *
4738 * This information is also exported via sysfs to userspace.
4739 *
4740 * DRMS will sum the total requested load on the regulator and change
4741 * to the most efficient operating mode if platform constraints allow.
4742 *
4743 * NOTE: when a regulator consumer requests to have a regulator
4744 * disabled then any load that consumer requested no longer counts
4745 * toward the total requested load.  If the regulator is re-enabled
4746 * then the previously requested load will start counting again.
4747 *
4748 * If a regulator is an always-on regulator then an individual consumer's
4749 * load will still be removed if that consumer is fully disabled.
4750 *
4751 * Return: 0 on success or a negative error number on failure.
4752 */
4753int regulator_set_load(struct regulator *regulator, int uA_load)
4754{
4755	struct regulator_dev *rdev = regulator->rdev;
4756	int old_uA_load;
4757	int ret = 0;
4758
4759	regulator_lock(rdev);
4760	old_uA_load = regulator->uA_load;
4761	regulator->uA_load = uA_load;
4762	if (regulator->enable_count && old_uA_load != uA_load) {
4763		ret = drms_uA_update(rdev);
4764		if (ret < 0)
4765			regulator->uA_load = old_uA_load;
4766	}
4767	regulator_unlock(rdev);
4768
4769	return ret;
4770}
4771EXPORT_SYMBOL_GPL(regulator_set_load);
4772
4773/**
4774 * regulator_allow_bypass - allow the regulator to go into bypass mode
4775 *
4776 * @regulator: Regulator to configure
4777 * @enable: enable or disable bypass mode
4778 *
4779 * Allow the regulator to go into bypass mode if all other consumers
4780 * for the regulator also enable bypass mode and the machine
4781 * constraints allow this.  Bypass mode means that the regulator is
4782 * simply passing the input directly to the output with no regulation.
4783 *
4784 * Return: 0 on success or if changing bypass is not possible, or
4785 *	   a negative error number on failure.
4786 */
4787int regulator_allow_bypass(struct regulator *regulator, bool enable)
4788{
4789	struct regulator_dev *rdev = regulator->rdev;
4790	const char *name = rdev_get_name(rdev);
4791	int ret = 0;
4792
4793	if (!rdev->desc->ops->set_bypass)
4794		return 0;
4795
4796	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4797		return 0;
4798
4799	regulator_lock(rdev);
4800
4801	if (enable && !regulator->bypass) {
4802		rdev->bypass_count++;
4803
4804		if (rdev->bypass_count == rdev->open_count) {
4805			trace_regulator_bypass_enable(name);
4806
4807			ret = rdev->desc->ops->set_bypass(rdev, enable);
4808			if (ret != 0)
4809				rdev->bypass_count--;
4810			else
4811				trace_regulator_bypass_enable_complete(name);
4812		}
4813
4814	} else if (!enable && regulator->bypass) {
4815		rdev->bypass_count--;
4816
4817		if (rdev->bypass_count != rdev->open_count) {
4818			trace_regulator_bypass_disable(name);
4819
4820			ret = rdev->desc->ops->set_bypass(rdev, enable);
4821			if (ret != 0)
4822				rdev->bypass_count++;
4823			else
4824				trace_regulator_bypass_disable_complete(name);
4825		}
4826	}
4827
4828	if (ret == 0)
4829		regulator->bypass = enable;
4830
4831	regulator_unlock(rdev);
4832
4833	return ret;
4834}
4835EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4836
4837/**
4838 * regulator_register_notifier - register regulator event notifier
4839 * @regulator: regulator source
4840 * @nb: notifier block
4841 *
4842 * Register notifier block to receive regulator events.
4843 *
4844 * Return: 0 on success or a negative error number on failure.
4845 */
4846int regulator_register_notifier(struct regulator *regulator,
4847			      struct notifier_block *nb)
4848{
4849	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4850						nb);
4851}
4852EXPORT_SYMBOL_GPL(regulator_register_notifier);
4853
4854/**
4855 * regulator_unregister_notifier - unregister regulator event notifier
4856 * @regulator: regulator source
4857 * @nb: notifier block
4858 *
4859 * Unregister regulator event notifier block.
4860 *
4861 * Return: 0 on success or a negative error number on failure.
4862 */
4863int regulator_unregister_notifier(struct regulator *regulator,
4864				struct notifier_block *nb)
4865{
4866	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4867						  nb);
4868}
4869EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4870
4871/* notify regulator consumers and downstream regulator consumers.
4872 * Note mutex must be held by caller.
4873 */
4874static int _notifier_call_chain(struct regulator_dev *rdev,
4875				  unsigned long event, void *data)
4876{
4877	/* call rdev chain first */
4878	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4879
4880	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4881		struct device *parent = rdev->dev.parent;
4882		const char *rname = rdev_get_name(rdev);
4883		char name[32];
4884
4885		/* Avoid duplicate debugfs directory names */
4886		if (parent && rname == rdev->desc->name) {
4887			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4888				 rname);
4889			rname = name;
4890		}
4891		reg_generate_netlink_event(rname, event);
4892	}
4893
4894	return ret;
4895}
4896
4897int _regulator_bulk_get(struct device *dev, int num_consumers,
4898			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4899{
4900	int i;
4901	int ret;
4902
4903	for (i = 0; i < num_consumers; i++)
4904		consumers[i].consumer = NULL;
4905
4906	for (i = 0; i < num_consumers; i++) {
4907		consumers[i].consumer = _regulator_get(dev,
4908						       consumers[i].supply, get_type);
4909		if (IS_ERR(consumers[i].consumer)) {
4910			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4911					    "Failed to get supply '%s'\n",
4912					    consumers[i].supply);
4913			consumers[i].consumer = NULL;
4914			goto err;
4915		}
4916
4917		if (consumers[i].init_load_uA > 0) {
4918			ret = regulator_set_load(consumers[i].consumer,
4919						 consumers[i].init_load_uA);
4920			if (ret) {
4921				i++;
4922				goto err;
4923			}
4924		}
4925	}
4926
4927	return 0;
4928
4929err:
4930	while (--i >= 0)
4931		regulator_put(consumers[i].consumer);
4932
4933	return ret;
4934}
4935
4936/**
4937 * regulator_bulk_get - get multiple regulator consumers
4938 *
4939 * @dev:           Device to supply
4940 * @num_consumers: Number of consumers to register
4941 * @consumers:     Configuration of consumers; clients are stored here.
4942 *
 
 
4943 * This helper function allows drivers to get several regulator
4944 * consumers in one operation.  If any of the regulators cannot be
4945 * acquired then any regulators that were allocated will be freed
4946 * before returning to the caller.
4947 *
4948 * Return: 0 on success or a negative error number on failure.
4949 */
4950int regulator_bulk_get(struct device *dev, int num_consumers,
4951		       struct regulator_bulk_data *consumers)
4952{
4953	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4954}
4955EXPORT_SYMBOL_GPL(regulator_bulk_get);
4956
4957static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4958{
4959	struct regulator_bulk_data *bulk = data;
4960
4961	bulk->ret = regulator_enable(bulk->consumer);
4962}
4963
4964/**
4965 * regulator_bulk_enable - enable multiple regulator consumers
4966 *
4967 * @num_consumers: Number of consumers
4968 * @consumers:     Consumer data; clients are stored here.
 
4969 *
4970 * This convenience API allows consumers to enable multiple regulator
4971 * clients in a single API call.  If any consumers cannot be enabled
4972 * then any others that were enabled will be disabled again prior to
4973 * return.
4974 *
4975 * Return: 0 on success or a negative error number on failure.
4976 */
4977int regulator_bulk_enable(int num_consumers,
4978			  struct regulator_bulk_data *consumers)
4979{
4980	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4981	int i;
4982	int ret = 0;
4983
4984	for (i = 0; i < num_consumers; i++) {
4985		async_schedule_domain(regulator_bulk_enable_async,
4986				      &consumers[i], &async_domain);
4987	}
4988
4989	async_synchronize_full_domain(&async_domain);
4990
4991	/* If any consumer failed we need to unwind any that succeeded */
4992	for (i = 0; i < num_consumers; i++) {
4993		if (consumers[i].ret != 0) {
4994			ret = consumers[i].ret;
4995			goto err;
4996		}
4997	}
4998
4999	return 0;
5000
5001err:
5002	for (i = 0; i < num_consumers; i++) {
5003		if (consumers[i].ret < 0)
5004			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5005			       ERR_PTR(consumers[i].ret));
5006		else
5007			regulator_disable(consumers[i].consumer);
5008	}
5009
5010	return ret;
5011}
5012EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5013
5014/**
5015 * regulator_bulk_disable - disable multiple regulator consumers
5016 *
5017 * @num_consumers: Number of consumers
5018 * @consumers:     Consumer data; clients are stored here.
 
5019 *
5020 * This convenience API allows consumers to disable multiple regulator
5021 * clients in a single API call.  If any consumers cannot be disabled
5022 * then any others that were disabled will be enabled again prior to
5023 * return.
5024 *
5025 * Return: 0 on success or a negative error number on failure.
5026 */
5027int regulator_bulk_disable(int num_consumers,
5028			   struct regulator_bulk_data *consumers)
5029{
5030	int i;
5031	int ret, r;
5032
5033	for (i = num_consumers - 1; i >= 0; --i) {
5034		ret = regulator_disable(consumers[i].consumer);
5035		if (ret != 0)
5036			goto err;
5037	}
5038
5039	return 0;
5040
5041err:
5042	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5043	for (++i; i < num_consumers; ++i) {
5044		r = regulator_enable(consumers[i].consumer);
5045		if (r != 0)
5046			pr_err("Failed to re-enable %s: %pe\n",
5047			       consumers[i].supply, ERR_PTR(r));
5048	}
5049
5050	return ret;
5051}
5052EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5053
5054/**
5055 * regulator_bulk_force_disable - force disable multiple regulator consumers
5056 *
5057 * @num_consumers: Number of consumers
5058 * @consumers:     Consumer data; clients are stored here.
 
5059 *
5060 * This convenience API allows consumers to forcibly disable multiple regulator
5061 * clients in a single API call.
5062 * NOTE: This should be used for situations when device damage will
5063 * likely occur if the regulators are not disabled (e.g. over temp).
5064 * Although regulator_force_disable function call for some consumers can
5065 * return error numbers, the function is called for all consumers.
5066 *
5067 * Return: 0 on success or a negative error number on failure.
5068 */
5069int regulator_bulk_force_disable(int num_consumers,
5070			   struct regulator_bulk_data *consumers)
5071{
5072	int i;
5073	int ret = 0;
5074
5075	for (i = 0; i < num_consumers; i++) {
5076		consumers[i].ret =
5077			    regulator_force_disable(consumers[i].consumer);
5078
5079		/* Store first error for reporting */
5080		if (consumers[i].ret && !ret)
5081			ret = consumers[i].ret;
5082	}
5083
5084	return ret;
5085}
5086EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5087
5088/**
5089 * regulator_bulk_free - free multiple regulator consumers
5090 *
5091 * @num_consumers: Number of consumers
5092 * @consumers:     Consumer data; clients are stored here.
5093 *
5094 * This convenience API allows consumers to free multiple regulator
5095 * clients in a single API call.
5096 */
5097void regulator_bulk_free(int num_consumers,
5098			 struct regulator_bulk_data *consumers)
5099{
5100	int i;
5101
5102	for (i = 0; i < num_consumers; i++) {
5103		regulator_put(consumers[i].consumer);
5104		consumers[i].consumer = NULL;
5105	}
5106}
5107EXPORT_SYMBOL_GPL(regulator_bulk_free);
5108
5109/**
5110 * regulator_handle_critical - Handle events for system-critical regulators.
5111 * @rdev: The regulator device.
5112 * @event: The event being handled.
5113 *
5114 * This function handles critical events such as under-voltage, over-current,
5115 * and unknown errors for regulators deemed system-critical. On detecting such
5116 * events, it triggers a hardware protection shutdown with a defined timeout.
5117 */
5118static void regulator_handle_critical(struct regulator_dev *rdev,
5119				      unsigned long event)
5120{
5121	const char *reason = NULL;
5122
5123	if (!rdev->constraints->system_critical)
5124		return;
5125
5126	switch (event) {
5127	case REGULATOR_EVENT_UNDER_VOLTAGE:
5128		reason = "System critical regulator: voltage drop detected";
5129		break;
5130	case REGULATOR_EVENT_OVER_CURRENT:
5131		reason = "System critical regulator: over-current detected";
5132		break;
5133	case REGULATOR_EVENT_FAIL:
5134		reason = "System critical regulator: unknown error";
5135	}
5136
5137	if (!reason)
5138		return;
5139
5140	hw_protection_shutdown(reason,
5141			       rdev->constraints->uv_less_critical_window_ms);
5142}
5143
5144/**
5145 * regulator_notifier_call_chain - call regulator event notifier
5146 * @rdev: regulator source
5147 * @event: notifier block
5148 * @data: callback-specific data.
5149 *
5150 * Called by regulator drivers to notify clients a regulator event has
5151 * occurred.
5152 *
5153 * Return: %NOTIFY_DONE.
5154 */
5155int regulator_notifier_call_chain(struct regulator_dev *rdev,
5156				  unsigned long event, void *data)
5157{
5158	regulator_handle_critical(rdev, event);
5159
5160	_notifier_call_chain(rdev, event, data);
5161	return NOTIFY_DONE;
5162
5163}
5164EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5165
5166/**
5167 * regulator_mode_to_status - convert a regulator mode into a status
5168 *
5169 * @mode: Mode to convert
5170 *
5171 * Convert a regulator mode into a status.
5172 *
5173 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5174 */
5175int regulator_mode_to_status(unsigned int mode)
5176{
5177	switch (mode) {
5178	case REGULATOR_MODE_FAST:
5179		return REGULATOR_STATUS_FAST;
5180	case REGULATOR_MODE_NORMAL:
5181		return REGULATOR_STATUS_NORMAL;
5182	case REGULATOR_MODE_IDLE:
5183		return REGULATOR_STATUS_IDLE;
5184	case REGULATOR_MODE_STANDBY:
5185		return REGULATOR_STATUS_STANDBY;
5186	default:
5187		return REGULATOR_STATUS_UNDEFINED;
5188	}
5189}
5190EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5191
5192static struct attribute *regulator_dev_attrs[] = {
5193	&dev_attr_name.attr,
5194	&dev_attr_num_users.attr,
5195	&dev_attr_type.attr,
5196	&dev_attr_microvolts.attr,
5197	&dev_attr_microamps.attr,
5198	&dev_attr_opmode.attr,
5199	&dev_attr_state.attr,
5200	&dev_attr_status.attr,
5201	&dev_attr_bypass.attr,
5202	&dev_attr_requested_microamps.attr,
5203	&dev_attr_min_microvolts.attr,
5204	&dev_attr_max_microvolts.attr,
5205	&dev_attr_min_microamps.attr,
5206	&dev_attr_max_microamps.attr,
5207	&dev_attr_under_voltage.attr,
5208	&dev_attr_over_current.attr,
5209	&dev_attr_regulation_out.attr,
5210	&dev_attr_fail.attr,
5211	&dev_attr_over_temp.attr,
5212	&dev_attr_under_voltage_warn.attr,
5213	&dev_attr_over_current_warn.attr,
5214	&dev_attr_over_voltage_warn.attr,
5215	&dev_attr_over_temp_warn.attr,
5216	&dev_attr_suspend_standby_state.attr,
5217	&dev_attr_suspend_mem_state.attr,
5218	&dev_attr_suspend_disk_state.attr,
5219	&dev_attr_suspend_standby_microvolts.attr,
5220	&dev_attr_suspend_mem_microvolts.attr,
5221	&dev_attr_suspend_disk_microvolts.attr,
5222	&dev_attr_suspend_standby_mode.attr,
5223	&dev_attr_suspend_mem_mode.attr,
5224	&dev_attr_suspend_disk_mode.attr,
5225	NULL
5226};
5227
5228/*
5229 * To avoid cluttering sysfs (and memory) with useless state, only
5230 * create attributes that can be meaningfully displayed.
5231 */
5232static umode_t regulator_attr_is_visible(struct kobject *kobj,
5233					 struct attribute *attr, int idx)
5234{
5235	struct device *dev = kobj_to_dev(kobj);
5236	struct regulator_dev *rdev = dev_to_rdev(dev);
5237	const struct regulator_ops *ops = rdev->desc->ops;
5238	umode_t mode = attr->mode;
5239
5240	/* these three are always present */
5241	if (attr == &dev_attr_name.attr ||
5242	    attr == &dev_attr_num_users.attr ||
5243	    attr == &dev_attr_type.attr)
5244		return mode;
5245
5246	/* some attributes need specific methods to be displayed */
5247	if (attr == &dev_attr_microvolts.attr) {
5248		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5249		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5250		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5251		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5252			return mode;
5253		return 0;
5254	}
5255
5256	if (attr == &dev_attr_microamps.attr)
5257		return ops->get_current_limit ? mode : 0;
5258
5259	if (attr == &dev_attr_opmode.attr)
5260		return ops->get_mode ? mode : 0;
5261
5262	if (attr == &dev_attr_state.attr)
5263		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5264
5265	if (attr == &dev_attr_status.attr)
5266		return ops->get_status ? mode : 0;
5267
5268	if (attr == &dev_attr_bypass.attr)
5269		return ops->get_bypass ? mode : 0;
5270
5271	if (attr == &dev_attr_under_voltage.attr ||
5272	    attr == &dev_attr_over_current.attr ||
5273	    attr == &dev_attr_regulation_out.attr ||
5274	    attr == &dev_attr_fail.attr ||
5275	    attr == &dev_attr_over_temp.attr ||
5276	    attr == &dev_attr_under_voltage_warn.attr ||
5277	    attr == &dev_attr_over_current_warn.attr ||
5278	    attr == &dev_attr_over_voltage_warn.attr ||
5279	    attr == &dev_attr_over_temp_warn.attr)
5280		return ops->get_error_flags ? mode : 0;
5281
5282	/* constraints need specific supporting methods */
5283	if (attr == &dev_attr_min_microvolts.attr ||
5284	    attr == &dev_attr_max_microvolts.attr)
5285		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5286
5287	if (attr == &dev_attr_min_microamps.attr ||
5288	    attr == &dev_attr_max_microamps.attr)
5289		return ops->set_current_limit ? mode : 0;
5290
5291	if (attr == &dev_attr_suspend_standby_state.attr ||
5292	    attr == &dev_attr_suspend_mem_state.attr ||
5293	    attr == &dev_attr_suspend_disk_state.attr)
5294		return mode;
5295
5296	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5297	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5298	    attr == &dev_attr_suspend_disk_microvolts.attr)
5299		return ops->set_suspend_voltage ? mode : 0;
5300
5301	if (attr == &dev_attr_suspend_standby_mode.attr ||
5302	    attr == &dev_attr_suspend_mem_mode.attr ||
5303	    attr == &dev_attr_suspend_disk_mode.attr)
5304		return ops->set_suspend_mode ? mode : 0;
5305
5306	return mode;
5307}
5308
5309static const struct attribute_group regulator_dev_group = {
5310	.attrs = regulator_dev_attrs,
5311	.is_visible = regulator_attr_is_visible,
5312};
5313
5314static const struct attribute_group *regulator_dev_groups[] = {
5315	&regulator_dev_group,
5316	NULL
5317};
5318
5319static void regulator_dev_release(struct device *dev)
5320{
5321	struct regulator_dev *rdev = dev_get_drvdata(dev);
5322
5323	debugfs_remove_recursive(rdev->debugfs);
5324	kfree(rdev->constraints);
5325	of_node_put(rdev->dev.of_node);
5326	kfree(rdev);
5327}
5328
5329static void rdev_init_debugfs(struct regulator_dev *rdev)
5330{
5331	struct device *parent = rdev->dev.parent;
5332	const char *rname = rdev_get_name(rdev);
5333	char name[NAME_MAX];
5334
5335	/* Avoid duplicate debugfs directory names */
5336	if (parent && rname == rdev->desc->name) {
5337		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5338			 rname);
5339		rname = name;
5340	}
5341
5342	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5343	if (IS_ERR(rdev->debugfs))
5344		rdev_dbg(rdev, "Failed to create debugfs directory\n");
 
 
5345
5346	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5347			   &rdev->use_count);
5348	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5349			   &rdev->open_count);
5350	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5351			   &rdev->bypass_count);
5352}
5353
5354static int regulator_register_resolve_supply(struct device *dev, void *data)
5355{
5356	struct regulator_dev *rdev = dev_to_rdev(dev);
5357
5358	if (regulator_resolve_supply(rdev))
5359		rdev_dbg(rdev, "unable to resolve supply\n");
5360
5361	return 0;
5362}
5363
5364int regulator_coupler_register(struct regulator_coupler *coupler)
5365{
5366	mutex_lock(&regulator_list_mutex);
5367	list_add_tail(&coupler->list, &regulator_coupler_list);
5368	mutex_unlock(&regulator_list_mutex);
5369
5370	return 0;
5371}
5372
5373static struct regulator_coupler *
5374regulator_find_coupler(struct regulator_dev *rdev)
5375{
5376	struct regulator_coupler *coupler;
5377	int err;
5378
5379	/*
5380	 * Note that regulators are appended to the list and the generic
5381	 * coupler is registered first, hence it will be attached at last
5382	 * if nobody cared.
5383	 */
5384	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5385		err = coupler->attach_regulator(coupler, rdev);
5386		if (!err) {
5387			if (!coupler->balance_voltage &&
5388			    rdev->coupling_desc.n_coupled > 2)
5389				goto err_unsupported;
5390
5391			return coupler;
5392		}
5393
5394		if (err < 0)
5395			return ERR_PTR(err);
5396
5397		if (err == 1)
5398			continue;
5399
5400		break;
5401	}
5402
5403	return ERR_PTR(-EINVAL);
5404
5405err_unsupported:
5406	if (coupler->detach_regulator)
5407		coupler->detach_regulator(coupler, rdev);
5408
5409	rdev_err(rdev,
5410		"Voltage balancing for multiple regulator couples is unimplemented\n");
5411
5412	return ERR_PTR(-EPERM);
5413}
5414
5415static void regulator_resolve_coupling(struct regulator_dev *rdev)
5416{
5417	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5418	struct coupling_desc *c_desc = &rdev->coupling_desc;
5419	int n_coupled = c_desc->n_coupled;
5420	struct regulator_dev *c_rdev;
5421	int i;
5422
5423	for (i = 1; i < n_coupled; i++) {
5424		/* already resolved */
5425		if (c_desc->coupled_rdevs[i])
5426			continue;
5427
5428		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5429
5430		if (!c_rdev)
5431			continue;
5432
5433		if (c_rdev->coupling_desc.coupler != coupler) {
5434			rdev_err(rdev, "coupler mismatch with %s\n",
5435				 rdev_get_name(c_rdev));
5436			return;
5437		}
5438
5439		c_desc->coupled_rdevs[i] = c_rdev;
5440		c_desc->n_resolved++;
5441
5442		regulator_resolve_coupling(c_rdev);
5443	}
5444}
5445
5446static void regulator_remove_coupling(struct regulator_dev *rdev)
5447{
5448	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5449	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5450	struct regulator_dev *__c_rdev, *c_rdev;
5451	unsigned int __n_coupled, n_coupled;
5452	int i, k;
5453	int err;
5454
5455	n_coupled = c_desc->n_coupled;
5456
5457	for (i = 1; i < n_coupled; i++) {
5458		c_rdev = c_desc->coupled_rdevs[i];
5459
5460		if (!c_rdev)
5461			continue;
5462
5463		regulator_lock(c_rdev);
5464
5465		__c_desc = &c_rdev->coupling_desc;
5466		__n_coupled = __c_desc->n_coupled;
5467
5468		for (k = 1; k < __n_coupled; k++) {
5469			__c_rdev = __c_desc->coupled_rdevs[k];
5470
5471			if (__c_rdev == rdev) {
5472				__c_desc->coupled_rdevs[k] = NULL;
5473				__c_desc->n_resolved--;
5474				break;
5475			}
5476		}
5477
5478		regulator_unlock(c_rdev);
5479
5480		c_desc->coupled_rdevs[i] = NULL;
5481		c_desc->n_resolved--;
5482	}
5483
5484	if (coupler && coupler->detach_regulator) {
5485		err = coupler->detach_regulator(coupler, rdev);
5486		if (err)
5487			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5488				 ERR_PTR(err));
5489	}
5490
5491	kfree(rdev->coupling_desc.coupled_rdevs);
5492	rdev->coupling_desc.coupled_rdevs = NULL;
5493}
5494
5495static int regulator_init_coupling(struct regulator_dev *rdev)
5496{
5497	struct regulator_dev **coupled;
5498	int err, n_phandles;
5499
5500	if (!IS_ENABLED(CONFIG_OF))
5501		n_phandles = 0;
5502	else
5503		n_phandles = of_get_n_coupled(rdev);
5504
5505	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5506	if (!coupled)
5507		return -ENOMEM;
5508
5509	rdev->coupling_desc.coupled_rdevs = coupled;
5510
5511	/*
5512	 * Every regulator should always have coupling descriptor filled with
5513	 * at least pointer to itself.
5514	 */
5515	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5516	rdev->coupling_desc.n_coupled = n_phandles + 1;
5517	rdev->coupling_desc.n_resolved++;
5518
5519	/* regulator isn't coupled */
5520	if (n_phandles == 0)
5521		return 0;
5522
5523	if (!of_check_coupling_data(rdev))
5524		return -EPERM;
5525
5526	mutex_lock(&regulator_list_mutex);
5527	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5528	mutex_unlock(&regulator_list_mutex);
5529
5530	if (IS_ERR(rdev->coupling_desc.coupler)) {
5531		err = PTR_ERR(rdev->coupling_desc.coupler);
5532		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5533		return err;
5534	}
5535
5536	return 0;
5537}
5538
5539static int generic_coupler_attach(struct regulator_coupler *coupler,
5540				  struct regulator_dev *rdev)
5541{
5542	if (rdev->coupling_desc.n_coupled > 2) {
5543		rdev_err(rdev,
5544			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5545		return -EPERM;
5546	}
5547
5548	if (!rdev->constraints->always_on) {
5549		rdev_err(rdev,
5550			 "Coupling of a non always-on regulator is unimplemented\n");
5551		return -ENOTSUPP;
5552	}
5553
5554	return 0;
5555}
5556
5557static struct regulator_coupler generic_regulator_coupler = {
5558	.attach_regulator = generic_coupler_attach,
5559};
5560
5561/**
5562 * regulator_register - register regulator
5563 * @dev: the device that drive the regulator
5564 * @regulator_desc: regulator to register
5565 * @cfg: runtime configuration for regulator
5566 *
5567 * Called by regulator drivers to register a regulator.
5568 *
5569 * Return: Pointer to a valid &struct regulator_dev on success or
5570 *	   an ERR_PTR() encoded negative error number on failure.
5571 */
5572struct regulator_dev *
5573regulator_register(struct device *dev,
5574		   const struct regulator_desc *regulator_desc,
5575		   const struct regulator_config *cfg)
5576{
5577	const struct regulator_init_data *init_data;
5578	struct regulator_config *config = NULL;
5579	static atomic_t regulator_no = ATOMIC_INIT(-1);
5580	struct regulator_dev *rdev;
5581	bool dangling_cfg_gpiod = false;
5582	bool dangling_of_gpiod = false;
5583	int ret, i;
5584	bool resolved_early = false;
5585
5586	if (cfg == NULL)
5587		return ERR_PTR(-EINVAL);
5588	if (cfg->ena_gpiod)
5589		dangling_cfg_gpiod = true;
5590	if (regulator_desc == NULL) {
5591		ret = -EINVAL;
5592		goto rinse;
5593	}
5594
5595	WARN_ON(!dev || !cfg->dev);
5596
5597	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5598		ret = -EINVAL;
5599		goto rinse;
5600	}
5601
5602	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5603	    regulator_desc->type != REGULATOR_CURRENT) {
5604		ret = -EINVAL;
5605		goto rinse;
5606	}
5607
5608	/* Only one of each should be implemented */
5609	WARN_ON(regulator_desc->ops->get_voltage &&
5610		regulator_desc->ops->get_voltage_sel);
5611	WARN_ON(regulator_desc->ops->set_voltage &&
5612		regulator_desc->ops->set_voltage_sel);
5613
5614	/* If we're using selectors we must implement list_voltage. */
5615	if (regulator_desc->ops->get_voltage_sel &&
5616	    !regulator_desc->ops->list_voltage) {
5617		ret = -EINVAL;
5618		goto rinse;
5619	}
5620	if (regulator_desc->ops->set_voltage_sel &&
5621	    !regulator_desc->ops->list_voltage) {
5622		ret = -EINVAL;
5623		goto rinse;
5624	}
5625
5626	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5627	if (rdev == NULL) {
5628		ret = -ENOMEM;
5629		goto rinse;
5630	}
5631	device_initialize(&rdev->dev);
5632	dev_set_drvdata(&rdev->dev, rdev);
5633	rdev->dev.class = &regulator_class;
5634	spin_lock_init(&rdev->err_lock);
5635
5636	/*
5637	 * Duplicate the config so the driver could override it after
5638	 * parsing init data.
5639	 */
5640	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5641	if (config == NULL) {
5642		ret = -ENOMEM;
5643		goto clean;
5644	}
5645
5646	/*
5647	 * DT may override the config->init_data provided if the platform
5648	 * needs to do so. If so, config->init_data is completely ignored.
5649	 */
5650	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5651					       &rdev->dev.of_node);
5652
5653	/*
5654	 * Sometimes not all resources are probed already so we need to take
5655	 * that into account. This happens most the time if the ena_gpiod comes
5656	 * from a gpio extender or something else.
5657	 */
5658	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5659		ret = -EPROBE_DEFER;
5660		goto clean;
5661	}
5662
5663	/*
5664	 * We need to keep track of any GPIO descriptor coming from the
5665	 * device tree until we have handled it over to the core. If the
5666	 * config that was passed in to this function DOES NOT contain
5667	 * a descriptor, and the config after this call DOES contain
5668	 * a descriptor, we definitely got one from parsing the device
5669	 * tree.
5670	 */
5671	if (!cfg->ena_gpiod && config->ena_gpiod)
5672		dangling_of_gpiod = true;
5673	if (!init_data) {
5674		init_data = config->init_data;
5675		rdev->dev.of_node = of_node_get(config->of_node);
5676	}
5677
5678	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5679	rdev->reg_data = config->driver_data;
5680	rdev->owner = regulator_desc->owner;
5681	rdev->desc = regulator_desc;
5682	if (config->regmap)
5683		rdev->regmap = config->regmap;
5684	else if (dev_get_regmap(dev, NULL))
5685		rdev->regmap = dev_get_regmap(dev, NULL);
5686	else if (dev->parent)
5687		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5688	INIT_LIST_HEAD(&rdev->consumer_list);
5689	INIT_LIST_HEAD(&rdev->list);
5690	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5691	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5692
5693	if (init_data && init_data->supply_regulator)
5694		rdev->supply_name = init_data->supply_regulator;
5695	else if (regulator_desc->supply_name)
5696		rdev->supply_name = regulator_desc->supply_name;
5697
5698	/* register with sysfs */
 
5699	rdev->dev.parent = config->dev;
5700	dev_set_name(&rdev->dev, "regulator.%lu",
5701		    (unsigned long) atomic_inc_return(&regulator_no));
 
5702
5703	/* set regulator constraints */
5704	if (init_data)
5705		rdev->constraints = kmemdup(&init_data->constraints,
5706					    sizeof(*rdev->constraints),
5707					    GFP_KERNEL);
5708	else
5709		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5710					    GFP_KERNEL);
5711	if (!rdev->constraints) {
5712		ret = -ENOMEM;
5713		goto wash;
5714	}
5715
5716	if (regulator_desc->init_cb) {
5717		ret = regulator_desc->init_cb(rdev, config);
5718		if (ret < 0)
5719			goto wash;
5720	}
5721
5722	if ((rdev->supply_name && !rdev->supply) &&
5723		(rdev->constraints->always_on ||
5724		 rdev->constraints->boot_on)) {
5725		ret = regulator_resolve_supply(rdev);
5726		if (ret)
5727			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5728					 ERR_PTR(ret));
5729
5730		resolved_early = true;
5731	}
5732
 
 
 
 
 
 
 
5733	if (config->ena_gpiod) {
5734		ret = regulator_ena_gpio_request(rdev, config);
5735		if (ret != 0) {
5736			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5737				 ERR_PTR(ret));
5738			goto wash;
5739		}
5740		/* The regulator core took over the GPIO descriptor */
5741		dangling_cfg_gpiod = false;
5742		dangling_of_gpiod = false;
5743	}
5744
5745	ret = set_machine_constraints(rdev);
5746	if (ret == -EPROBE_DEFER && !resolved_early) {
5747		/* Regulator might be in bypass mode and so needs its supply
5748		 * to set the constraints
5749		 */
5750		/* FIXME: this currently triggers a chicken-and-egg problem
5751		 * when creating -SUPPLY symlink in sysfs to a regulator
5752		 * that is just being created
5753		 */
5754		rdev_dbg(rdev, "will resolve supply early: %s\n",
5755			 rdev->supply_name);
5756		ret = regulator_resolve_supply(rdev);
5757		if (!ret)
5758			ret = set_machine_constraints(rdev);
5759		else
5760			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5761				 ERR_PTR(ret));
5762	}
5763	if (ret < 0)
5764		goto wash;
5765
5766	ret = regulator_init_coupling(rdev);
5767	if (ret < 0)
5768		goto wash;
5769
5770	/* add consumers devices */
5771	if (init_data) {
5772		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5773			ret = set_consumer_device_supply(rdev,
5774				init_data->consumer_supplies[i].dev_name,
5775				init_data->consumer_supplies[i].supply);
5776			if (ret < 0) {
5777				dev_err(dev, "Failed to set supply %s\n",
5778					init_data->consumer_supplies[i].supply);
5779				goto unset_supplies;
5780			}
5781		}
5782	}
5783
5784	if (!rdev->desc->ops->get_voltage &&
5785	    !rdev->desc->ops->list_voltage &&
5786	    !rdev->desc->fixed_uV)
5787		rdev->is_switch = true;
5788
5789	ret = device_add(&rdev->dev);
5790	if (ret != 0)
5791		goto unset_supplies;
5792
5793	rdev_init_debugfs(rdev);
5794
5795	/* try to resolve regulators coupling since a new one was registered */
5796	mutex_lock(&regulator_list_mutex);
5797	regulator_resolve_coupling(rdev);
5798	mutex_unlock(&regulator_list_mutex);
5799
5800	/* try to resolve regulators supply since a new one was registered */
5801	class_for_each_device(&regulator_class, NULL, NULL,
5802			      regulator_register_resolve_supply);
5803	kfree(config);
5804	return rdev;
5805
5806unset_supplies:
5807	mutex_lock(&regulator_list_mutex);
5808	unset_regulator_supplies(rdev);
5809	regulator_remove_coupling(rdev);
5810	mutex_unlock(&regulator_list_mutex);
5811wash:
5812	regulator_put(rdev->supply);
5813	kfree(rdev->coupling_desc.coupled_rdevs);
5814	mutex_lock(&regulator_list_mutex);
5815	regulator_ena_gpio_free(rdev);
5816	mutex_unlock(&regulator_list_mutex);
 
 
5817clean:
5818	if (dangling_of_gpiod)
5819		gpiod_put(config->ena_gpiod);
 
 
 
5820	kfree(config);
5821	put_device(&rdev->dev);
5822rinse:
5823	if (dangling_cfg_gpiod)
5824		gpiod_put(cfg->ena_gpiod);
5825	return ERR_PTR(ret);
5826}
5827EXPORT_SYMBOL_GPL(regulator_register);
5828
5829/**
5830 * regulator_unregister - unregister regulator
5831 * @rdev: regulator to unregister
5832 *
5833 * Called by regulator drivers to unregister a regulator.
5834 */
5835void regulator_unregister(struct regulator_dev *rdev)
5836{
5837	if (rdev == NULL)
5838		return;
5839
5840	if (rdev->supply) {
5841		while (rdev->use_count--)
5842			regulator_disable(rdev->supply);
5843		regulator_put(rdev->supply);
5844	}
5845
5846	flush_work(&rdev->disable_work.work);
5847
5848	mutex_lock(&regulator_list_mutex);
5849
5850	WARN_ON(rdev->open_count);
5851	regulator_remove_coupling(rdev);
5852	unset_regulator_supplies(rdev);
5853	list_del(&rdev->list);
5854	regulator_ena_gpio_free(rdev);
5855	device_unregister(&rdev->dev);
5856
5857	mutex_unlock(&regulator_list_mutex);
5858}
5859EXPORT_SYMBOL_GPL(regulator_unregister);
5860
5861#ifdef CONFIG_SUSPEND
5862/**
5863 * regulator_suspend - prepare regulators for system wide suspend
5864 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5865 *
5866 * Configure each regulator with it's suspend operating parameters for state.
5867 *
5868 * Return: 0 on success or a negative error number on failure.
5869 */
5870static int regulator_suspend(struct device *dev)
5871{
5872	struct regulator_dev *rdev = dev_to_rdev(dev);
5873	suspend_state_t state = pm_suspend_target_state;
5874	int ret;
5875	const struct regulator_state *rstate;
5876
5877	rstate = regulator_get_suspend_state_check(rdev, state);
5878	if (!rstate)
5879		return 0;
5880
5881	regulator_lock(rdev);
5882	ret = __suspend_set_state(rdev, rstate);
5883	regulator_unlock(rdev);
5884
5885	return ret;
5886}
5887
5888static int regulator_resume(struct device *dev)
5889{
5890	suspend_state_t state = pm_suspend_target_state;
5891	struct regulator_dev *rdev = dev_to_rdev(dev);
5892	struct regulator_state *rstate;
5893	int ret = 0;
5894
5895	rstate = regulator_get_suspend_state(rdev, state);
5896	if (rstate == NULL)
5897		return 0;
5898
5899	/* Avoid grabbing the lock if we don't need to */
5900	if (!rdev->desc->ops->resume)
5901		return 0;
5902
5903	regulator_lock(rdev);
5904
5905	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5906	    rstate->enabled == DISABLE_IN_SUSPEND)
5907		ret = rdev->desc->ops->resume(rdev);
5908
5909	regulator_unlock(rdev);
5910
5911	return ret;
5912}
5913#else /* !CONFIG_SUSPEND */
5914
5915#define regulator_suspend	NULL
5916#define regulator_resume	NULL
5917
5918#endif /* !CONFIG_SUSPEND */
5919
5920#ifdef CONFIG_PM
5921static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5922	.suspend	= regulator_suspend,
5923	.resume		= regulator_resume,
5924};
5925#endif
5926
5927const struct class regulator_class = {
5928	.name = "regulator",
5929	.dev_release = regulator_dev_release,
5930	.dev_groups = regulator_dev_groups,
5931#ifdef CONFIG_PM
5932	.pm = &regulator_pm_ops,
5933#endif
5934};
5935/**
5936 * regulator_has_full_constraints - the system has fully specified constraints
5937 *
5938 * Calling this function will cause the regulator API to disable all
5939 * regulators which have a zero use count and don't have an always_on
5940 * constraint in a late_initcall.
5941 *
5942 * The intention is that this will become the default behaviour in a
5943 * future kernel release so users are encouraged to use this facility
5944 * now.
5945 */
5946void regulator_has_full_constraints(void)
5947{
5948	has_full_constraints = 1;
5949}
5950EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5951
5952/**
5953 * rdev_get_drvdata - get rdev regulator driver data
5954 * @rdev: regulator
5955 *
5956 * Get rdev regulator driver private data. This call can be used in the
5957 * regulator driver context.
5958 *
5959 * Return: Pointer to regulator driver private data.
5960 */
5961void *rdev_get_drvdata(struct regulator_dev *rdev)
5962{
5963	return rdev->reg_data;
5964}
5965EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5966
5967/**
5968 * regulator_get_drvdata - get regulator driver data
5969 * @regulator: regulator
5970 *
5971 * Get regulator driver private data. This call can be used in the consumer
5972 * driver context when non API regulator specific functions need to be called.
5973 *
5974 * Return: Pointer to regulator driver private data.
5975 */
5976void *regulator_get_drvdata(struct regulator *regulator)
5977{
5978	return regulator->rdev->reg_data;
5979}
5980EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5981
5982/**
5983 * regulator_set_drvdata - set regulator driver data
5984 * @regulator: regulator
5985 * @data: data
5986 */
5987void regulator_set_drvdata(struct regulator *regulator, void *data)
5988{
5989	regulator->rdev->reg_data = data;
5990}
5991EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5992
5993/**
5994 * rdev_get_id - get regulator ID
5995 * @rdev: regulator
5996 *
5997 * Return: Regulator ID for @rdev.
5998 */
5999int rdev_get_id(struct regulator_dev *rdev)
6000{
6001	return rdev->desc->id;
6002}
6003EXPORT_SYMBOL_GPL(rdev_get_id);
6004
6005struct device *rdev_get_dev(struct regulator_dev *rdev)
6006{
6007	return &rdev->dev;
6008}
6009EXPORT_SYMBOL_GPL(rdev_get_dev);
6010
6011struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6012{
6013	return rdev->regmap;
6014}
6015EXPORT_SYMBOL_GPL(rdev_get_regmap);
6016
6017void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6018{
6019	return reg_init_data->driver_data;
6020}
6021EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6022
6023#ifdef CONFIG_DEBUG_FS
6024static int supply_map_show(struct seq_file *sf, void *data)
6025{
6026	struct regulator_map *map;
6027
6028	list_for_each_entry(map, &regulator_map_list, list) {
6029		seq_printf(sf, "%s -> %s.%s\n",
6030				rdev_get_name(map->regulator), map->dev_name,
6031				map->supply);
6032	}
6033
6034	return 0;
6035}
6036DEFINE_SHOW_ATTRIBUTE(supply_map);
6037
6038struct summary_data {
6039	struct seq_file *s;
6040	struct regulator_dev *parent;
6041	int level;
6042};
6043
6044static void regulator_summary_show_subtree(struct seq_file *s,
6045					   struct regulator_dev *rdev,
6046					   int level);
6047
6048static int regulator_summary_show_children(struct device *dev, void *data)
6049{
6050	struct regulator_dev *rdev = dev_to_rdev(dev);
6051	struct summary_data *summary_data = data;
6052
6053	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6054		regulator_summary_show_subtree(summary_data->s, rdev,
6055					       summary_data->level + 1);
6056
6057	return 0;
6058}
6059
6060static void regulator_summary_show_subtree(struct seq_file *s,
6061					   struct regulator_dev *rdev,
6062					   int level)
6063{
6064	struct regulation_constraints *c;
6065	struct regulator *consumer;
6066	struct summary_data summary_data;
6067	unsigned int opmode;
6068
6069	if (!rdev)
6070		return;
6071
6072	opmode = _regulator_get_mode_unlocked(rdev);
6073	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6074		   level * 3 + 1, "",
6075		   30 - level * 3, rdev_get_name(rdev),
6076		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6077		   regulator_opmode_to_str(opmode));
6078
6079	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6080	seq_printf(s, "%5dmA ",
6081		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6082
6083	c = rdev->constraints;
6084	if (c) {
6085		switch (rdev->desc->type) {
6086		case REGULATOR_VOLTAGE:
6087			seq_printf(s, "%5dmV %5dmV ",
6088				   c->min_uV / 1000, c->max_uV / 1000);
6089			break;
6090		case REGULATOR_CURRENT:
6091			seq_printf(s, "%5dmA %5dmA ",
6092				   c->min_uA / 1000, c->max_uA / 1000);
6093			break;
6094		}
6095	}
6096
6097	seq_puts(s, "\n");
6098
6099	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6100		if (consumer->dev && consumer->dev->class == &regulator_class)
6101			continue;
6102
6103		seq_printf(s, "%*s%-*s ",
6104			   (level + 1) * 3 + 1, "",
6105			   30 - (level + 1) * 3,
6106			   consumer->supply_name ? consumer->supply_name :
6107			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6108
6109		switch (rdev->desc->type) {
6110		case REGULATOR_VOLTAGE:
6111			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6112				   consumer->enable_count,
6113				   consumer->uA_load / 1000,
6114				   consumer->uA_load && !consumer->enable_count ?
6115				   '*' : ' ',
6116				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6117				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6118			break;
6119		case REGULATOR_CURRENT:
6120			break;
6121		}
6122
6123		seq_puts(s, "\n");
6124	}
6125
6126	summary_data.s = s;
6127	summary_data.level = level;
6128	summary_data.parent = rdev;
6129
6130	class_for_each_device(&regulator_class, NULL, &summary_data,
6131			      regulator_summary_show_children);
6132}
6133
6134struct summary_lock_data {
6135	struct ww_acquire_ctx *ww_ctx;
6136	struct regulator_dev **new_contended_rdev;
6137	struct regulator_dev **old_contended_rdev;
6138};
6139
6140static int regulator_summary_lock_one(struct device *dev, void *data)
6141{
6142	struct regulator_dev *rdev = dev_to_rdev(dev);
6143	struct summary_lock_data *lock_data = data;
6144	int ret = 0;
6145
6146	if (rdev != *lock_data->old_contended_rdev) {
6147		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6148
6149		if (ret == -EDEADLK)
6150			*lock_data->new_contended_rdev = rdev;
6151		else
6152			WARN_ON_ONCE(ret);
6153	} else {
6154		*lock_data->old_contended_rdev = NULL;
6155	}
6156
6157	return ret;
6158}
6159
6160static int regulator_summary_unlock_one(struct device *dev, void *data)
6161{
6162	struct regulator_dev *rdev = dev_to_rdev(dev);
6163	struct summary_lock_data *lock_data = data;
6164
6165	if (lock_data) {
6166		if (rdev == *lock_data->new_contended_rdev)
6167			return -EDEADLK;
6168	}
6169
6170	regulator_unlock(rdev);
6171
6172	return 0;
6173}
6174
6175static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6176				      struct regulator_dev **new_contended_rdev,
6177				      struct regulator_dev **old_contended_rdev)
6178{
6179	struct summary_lock_data lock_data;
6180	int ret;
6181
6182	lock_data.ww_ctx = ww_ctx;
6183	lock_data.new_contended_rdev = new_contended_rdev;
6184	lock_data.old_contended_rdev = old_contended_rdev;
6185
6186	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6187				    regulator_summary_lock_one);
6188	if (ret)
6189		class_for_each_device(&regulator_class, NULL, &lock_data,
6190				      regulator_summary_unlock_one);
6191
6192	return ret;
6193}
6194
6195static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6196{
6197	struct regulator_dev *new_contended_rdev = NULL;
6198	struct regulator_dev *old_contended_rdev = NULL;
6199	int err;
6200
6201	mutex_lock(&regulator_list_mutex);
6202
6203	ww_acquire_init(ww_ctx, &regulator_ww_class);
6204
6205	do {
6206		if (new_contended_rdev) {
6207			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6208			old_contended_rdev = new_contended_rdev;
6209			old_contended_rdev->ref_cnt++;
6210			old_contended_rdev->mutex_owner = current;
6211		}
6212
6213		err = regulator_summary_lock_all(ww_ctx,
6214						 &new_contended_rdev,
6215						 &old_contended_rdev);
6216
6217		if (old_contended_rdev)
6218			regulator_unlock(old_contended_rdev);
6219
6220	} while (err == -EDEADLK);
6221
6222	ww_acquire_done(ww_ctx);
6223}
6224
6225static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6226{
6227	class_for_each_device(&regulator_class, NULL, NULL,
6228			      regulator_summary_unlock_one);
6229	ww_acquire_fini(ww_ctx);
6230
6231	mutex_unlock(&regulator_list_mutex);
6232}
6233
6234static int regulator_summary_show_roots(struct device *dev, void *data)
6235{
6236	struct regulator_dev *rdev = dev_to_rdev(dev);
6237	struct seq_file *s = data;
6238
6239	if (!rdev->supply)
6240		regulator_summary_show_subtree(s, rdev, 0);
6241
6242	return 0;
6243}
6244
6245static int regulator_summary_show(struct seq_file *s, void *data)
6246{
6247	struct ww_acquire_ctx ww_ctx;
6248
6249	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6250	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6251
6252	regulator_summary_lock(&ww_ctx);
6253
6254	class_for_each_device(&regulator_class, NULL, s,
6255			      regulator_summary_show_roots);
6256
6257	regulator_summary_unlock(&ww_ctx);
6258
6259	return 0;
6260}
6261DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6262#endif /* CONFIG_DEBUG_FS */
6263
6264static int __init regulator_init(void)
6265{
6266	int ret;
6267
6268	ret = class_register(&regulator_class);
6269
6270	debugfs_root = debugfs_create_dir("regulator", NULL);
6271	if (IS_ERR(debugfs_root))
6272		pr_debug("regulator: Failed to create debugfs directory\n");
6273
6274#ifdef CONFIG_DEBUG_FS
6275	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6276			    &supply_map_fops);
6277
6278	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6279			    NULL, &regulator_summary_fops);
6280#endif
6281	regulator_dummy_init();
6282
6283	regulator_coupler_register(&generic_regulator_coupler);
6284
6285	return ret;
6286}
6287
6288/* init early to allow our consumers to complete system booting */
6289core_initcall(regulator_init);
6290
6291static int regulator_late_cleanup(struct device *dev, void *data)
6292{
6293	struct regulator_dev *rdev = dev_to_rdev(dev);
6294	struct regulation_constraints *c = rdev->constraints;
6295	int ret;
6296
6297	if (c && c->always_on)
6298		return 0;
6299
6300	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6301		return 0;
6302
6303	regulator_lock(rdev);
6304
6305	if (rdev->use_count)
6306		goto unlock;
6307
6308	/* If reading the status failed, assume that it's off. */
6309	if (_regulator_is_enabled(rdev) <= 0)
6310		goto unlock;
6311
6312	if (have_full_constraints()) {
6313		/* We log since this may kill the system if it goes
6314		 * wrong.
6315		 */
6316		rdev_info(rdev, "disabling\n");
6317		ret = _regulator_do_disable(rdev);
6318		if (ret != 0)
6319			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6320	} else {
6321		/* The intention is that in future we will
6322		 * assume that full constraints are provided
6323		 * so warn even if we aren't going to do
6324		 * anything here.
6325		 */
6326		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6327	}
6328
6329unlock:
6330	regulator_unlock(rdev);
6331
6332	return 0;
6333}
6334
6335static bool regulator_ignore_unused;
6336static int __init regulator_ignore_unused_setup(char *__unused)
6337{
6338	regulator_ignore_unused = true;
6339	return 1;
6340}
6341__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6342
6343static void regulator_init_complete_work_function(struct work_struct *work)
6344{
6345	/*
6346	 * Regulators may had failed to resolve their input supplies
6347	 * when were registered, either because the input supply was
6348	 * not registered yet or because its parent device was not
6349	 * bound yet. So attempt to resolve the input supplies for
6350	 * pending regulators before trying to disable unused ones.
6351	 */
6352	class_for_each_device(&regulator_class, NULL, NULL,
6353			      regulator_register_resolve_supply);
6354
6355	/*
6356	 * For debugging purposes, it may be useful to prevent unused
6357	 * regulators from being disabled.
6358	 */
6359	if (regulator_ignore_unused) {
6360		pr_warn("regulator: Not disabling unused regulators\n");
6361		return;
6362	}
6363
6364	/* If we have a full configuration then disable any regulators
6365	 * we have permission to change the status for and which are
6366	 * not in use or always_on.  This is effectively the default
6367	 * for DT and ACPI as they have full constraints.
6368	 */
6369	class_for_each_device(&regulator_class, NULL, NULL,
6370			      regulator_late_cleanup);
6371}
6372
6373static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6374			    regulator_init_complete_work_function);
6375
6376static int __init regulator_init_complete(void)
6377{
6378	/*
6379	 * Since DT doesn't provide an idiomatic mechanism for
6380	 * enabling full constraints and since it's much more natural
6381	 * with DT to provide them just assume that a DT enabled
6382	 * system has full constraints.
6383	 */
6384	if (of_have_populated_dt())
6385		has_full_constraints = true;
6386
6387	/*
6388	 * We punt completion for an arbitrary amount of time since
6389	 * systems like distros will load many drivers from userspace
6390	 * so consumers might not always be ready yet, this is
6391	 * particularly an issue with laptops where this might bounce
6392	 * the display off then on.  Ideally we'd get a notification
6393	 * from userspace when this happens but we don't so just wait
6394	 * a bit and hope we waited long enough.  It'd be better if
6395	 * we'd only do this on systems that need it, and a kernel
6396	 * command line option might be useful.
6397	 */
6398	schedule_delayed_work(&regulator_init_complete_work,
6399			      msecs_to_jiffies(30000));
6400
6401	return 0;
6402}
6403late_initcall_sync(regulator_init_complete);