Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static int _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
93static int regulator_balance_voltage(struct regulator_dev *rdev,
94 suspend_state_t state);
95static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
98static void destroy_regulator(struct regulator *regulator);
99static void _regulator_put(struct regulator *regulator);
100
101const char *rdev_get_name(struct regulator_dev *rdev)
102{
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109}
110EXPORT_SYMBOL_GPL(rdev_get_name);
111
112static bool have_full_constraints(void)
113{
114 return has_full_constraints || of_have_populated_dt();
115}
116
117static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118{
119 if (!rdev->constraints) {
120 rdev_err(rdev, "no constraints\n");
121 return false;
122 }
123
124 if (rdev->constraints->valid_ops_mask & ops)
125 return true;
126
127 return false;
128}
129
130/**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev: regulator source
133 * @ww_ctx: w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
141static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 struct ww_acquire_ctx *ww_ctx)
143{
144 bool lock = false;
145 int ret = 0;
146
147 mutex_lock(®ulator_nesting_mutex);
148
149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 if (rdev->mutex_owner == current)
151 rdev->ref_cnt++;
152 else
153 lock = true;
154
155 if (lock) {
156 mutex_unlock(®ulator_nesting_mutex);
157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 mutex_lock(®ulator_nesting_mutex);
159 }
160 } else {
161 lock = true;
162 }
163
164 if (lock && ret != -EDEADLK) {
165 rdev->ref_cnt++;
166 rdev->mutex_owner = current;
167 }
168
169 mutex_unlock(®ulator_nesting_mutex);
170
171 return ret;
172}
173
174/**
175 * regulator_lock - lock a single regulator
176 * @rdev: regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
184static void regulator_lock(struct regulator_dev *rdev)
185{
186 regulator_lock_nested(rdev, NULL);
187}
188
189/**
190 * regulator_unlock - unlock a single regulator
191 * @rdev: regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
196static void regulator_unlock(struct regulator_dev *rdev)
197{
198 mutex_lock(®ulator_nesting_mutex);
199
200 if (--rdev->ref_cnt == 0) {
201 rdev->mutex_owner = NULL;
202 ww_mutex_unlock(&rdev->mutex);
203 }
204
205 WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207 mutex_unlock(®ulator_nesting_mutex);
208}
209
210static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211{
212 struct regulator_dev *c_rdev;
213 int i;
214
215 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217
218 if (rdev->supply->rdev == c_rdev)
219 return true;
220 }
221
222 return false;
223}
224
225static void regulator_unlock_recursive(struct regulator_dev *rdev,
226 unsigned int n_coupled)
227{
228 struct regulator_dev *c_rdev, *supply_rdev;
229 int i, supply_n_coupled;
230
231 for (i = n_coupled; i > 0; i--) {
232 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233
234 if (!c_rdev)
235 continue;
236
237 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238 supply_rdev = c_rdev->supply->rdev;
239 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240
241 regulator_unlock_recursive(supply_rdev,
242 supply_n_coupled);
243 }
244
245 regulator_unlock(c_rdev);
246 }
247}
248
249static int regulator_lock_recursive(struct regulator_dev *rdev,
250 struct regulator_dev **new_contended_rdev,
251 struct regulator_dev **old_contended_rdev,
252 struct ww_acquire_ctx *ww_ctx)
253{
254 struct regulator_dev *c_rdev;
255 int i, err;
256
257 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259
260 if (!c_rdev)
261 continue;
262
263 if (c_rdev != *old_contended_rdev) {
264 err = regulator_lock_nested(c_rdev, ww_ctx);
265 if (err) {
266 if (err == -EDEADLK) {
267 *new_contended_rdev = c_rdev;
268 goto err_unlock;
269 }
270
271 /* shouldn't happen */
272 WARN_ON_ONCE(err != -EALREADY);
273 }
274 } else {
275 *old_contended_rdev = NULL;
276 }
277
278 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279 err = regulator_lock_recursive(c_rdev->supply->rdev,
280 new_contended_rdev,
281 old_contended_rdev,
282 ww_ctx);
283 if (err) {
284 regulator_unlock(c_rdev);
285 goto err_unlock;
286 }
287 }
288 }
289
290 return 0;
291
292err_unlock:
293 regulator_unlock_recursive(rdev, i);
294
295 return err;
296}
297
298/**
299 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300 * regulators
301 * @rdev: regulator source
302 * @ww_ctx: w/w mutex acquire context
303 *
304 * Unlock all regulators related with rdev by coupling or supplying.
305 */
306static void regulator_unlock_dependent(struct regulator_dev *rdev,
307 struct ww_acquire_ctx *ww_ctx)
308{
309 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310 ww_acquire_fini(ww_ctx);
311}
312
313/**
314 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315 * @rdev: regulator source
316 * @ww_ctx: w/w mutex acquire context
317 *
318 * This function as a wrapper on regulator_lock_recursive(), which locks
319 * all regulators related with rdev by coupling or supplying.
320 */
321static void regulator_lock_dependent(struct regulator_dev *rdev,
322 struct ww_acquire_ctx *ww_ctx)
323{
324 struct regulator_dev *new_contended_rdev = NULL;
325 struct regulator_dev *old_contended_rdev = NULL;
326 int err;
327
328 mutex_lock(®ulator_list_mutex);
329
330 ww_acquire_init(ww_ctx, ®ulator_ww_class);
331
332 do {
333 if (new_contended_rdev) {
334 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335 old_contended_rdev = new_contended_rdev;
336 old_contended_rdev->ref_cnt++;
337 }
338
339 err = regulator_lock_recursive(rdev,
340 &new_contended_rdev,
341 &old_contended_rdev,
342 ww_ctx);
343
344 if (old_contended_rdev)
345 regulator_unlock(old_contended_rdev);
346
347 } while (err == -EDEADLK);
348
349 ww_acquire_done(ww_ctx);
350
351 mutex_unlock(®ulator_list_mutex);
352}
353
354/**
355 * of_get_child_regulator - get a child regulator device node
356 * based on supply name
357 * @parent: Parent device node
358 * @prop_name: Combination regulator supply name and "-supply"
359 *
360 * Traverse all child nodes.
361 * Extract the child regulator device node corresponding to the supply name.
362 * returns the device node corresponding to the regulator if found, else
363 * returns NULL.
364 */
365static struct device_node *of_get_child_regulator(struct device_node *parent,
366 const char *prop_name)
367{
368 struct device_node *regnode = NULL;
369 struct device_node *child = NULL;
370
371 for_each_child_of_node(parent, child) {
372 regnode = of_parse_phandle(child, prop_name, 0);
373
374 if (!regnode) {
375 regnode = of_get_child_regulator(child, prop_name);
376 if (regnode)
377 goto err_node_put;
378 } else {
379 goto err_node_put;
380 }
381 }
382 return NULL;
383
384err_node_put:
385 of_node_put(child);
386 return regnode;
387}
388
389/**
390 * of_get_regulator - get a regulator device node based on supply name
391 * @dev: Device pointer for the consumer (of regulator) device
392 * @supply: regulator supply name
393 *
394 * Extract the regulator device node corresponding to the supply name.
395 * returns the device node corresponding to the regulator if found, else
396 * returns NULL.
397 */
398static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399{
400 struct device_node *regnode = NULL;
401 char prop_name[64]; /* 64 is max size of property name */
402
403 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404
405 snprintf(prop_name, 64, "%s-supply", supply);
406 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407
408 if (!regnode) {
409 regnode = of_get_child_regulator(dev->of_node, prop_name);
410 if (regnode)
411 return regnode;
412
413 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414 prop_name, dev->of_node);
415 return NULL;
416 }
417 return regnode;
418}
419
420/* Platform voltage constraint check */
421int regulator_check_voltage(struct regulator_dev *rdev,
422 int *min_uV, int *max_uV)
423{
424 BUG_ON(*min_uV > *max_uV);
425
426 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427 rdev_err(rdev, "voltage operation not allowed\n");
428 return -EPERM;
429 }
430
431 if (*max_uV > rdev->constraints->max_uV)
432 *max_uV = rdev->constraints->max_uV;
433 if (*min_uV < rdev->constraints->min_uV)
434 *min_uV = rdev->constraints->min_uV;
435
436 if (*min_uV > *max_uV) {
437 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438 *min_uV, *max_uV);
439 return -EINVAL;
440 }
441
442 return 0;
443}
444
445/* return 0 if the state is valid */
446static int regulator_check_states(suspend_state_t state)
447{
448 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449}
450
451/* Make sure we select a voltage that suits the needs of all
452 * regulator consumers
453 */
454int regulator_check_consumers(struct regulator_dev *rdev,
455 int *min_uV, int *max_uV,
456 suspend_state_t state)
457{
458 struct regulator *regulator;
459 struct regulator_voltage *voltage;
460
461 list_for_each_entry(regulator, &rdev->consumer_list, list) {
462 voltage = ®ulator->voltage[state];
463 /*
464 * Assume consumers that didn't say anything are OK
465 * with anything in the constraint range.
466 */
467 if (!voltage->min_uV && !voltage->max_uV)
468 continue;
469
470 if (*max_uV > voltage->max_uV)
471 *max_uV = voltage->max_uV;
472 if (*min_uV < voltage->min_uV)
473 *min_uV = voltage->min_uV;
474 }
475
476 if (*min_uV > *max_uV) {
477 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478 *min_uV, *max_uV);
479 return -EINVAL;
480 }
481
482 return 0;
483}
484
485/* current constraint check */
486static int regulator_check_current_limit(struct regulator_dev *rdev,
487 int *min_uA, int *max_uA)
488{
489 BUG_ON(*min_uA > *max_uA);
490
491 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492 rdev_err(rdev, "current operation not allowed\n");
493 return -EPERM;
494 }
495
496 if (*max_uA > rdev->constraints->max_uA)
497 *max_uA = rdev->constraints->max_uA;
498 if (*min_uA < rdev->constraints->min_uA)
499 *min_uA = rdev->constraints->min_uA;
500
501 if (*min_uA > *max_uA) {
502 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503 *min_uA, *max_uA);
504 return -EINVAL;
505 }
506
507 return 0;
508}
509
510/* operating mode constraint check */
511static int regulator_mode_constrain(struct regulator_dev *rdev,
512 unsigned int *mode)
513{
514 switch (*mode) {
515 case REGULATOR_MODE_FAST:
516 case REGULATOR_MODE_NORMAL:
517 case REGULATOR_MODE_IDLE:
518 case REGULATOR_MODE_STANDBY:
519 break;
520 default:
521 rdev_err(rdev, "invalid mode %x specified\n", *mode);
522 return -EINVAL;
523 }
524
525 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526 rdev_err(rdev, "mode operation not allowed\n");
527 return -EPERM;
528 }
529
530 /* The modes are bitmasks, the most power hungry modes having
531 * the lowest values. If the requested mode isn't supported
532 * try higher modes.
533 */
534 while (*mode) {
535 if (rdev->constraints->valid_modes_mask & *mode)
536 return 0;
537 *mode /= 2;
538 }
539
540 return -EINVAL;
541}
542
543static inline struct regulator_state *
544regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545{
546 if (rdev->constraints == NULL)
547 return NULL;
548
549 switch (state) {
550 case PM_SUSPEND_STANDBY:
551 return &rdev->constraints->state_standby;
552 case PM_SUSPEND_MEM:
553 return &rdev->constraints->state_mem;
554 case PM_SUSPEND_MAX:
555 return &rdev->constraints->state_disk;
556 default:
557 return NULL;
558 }
559}
560
561static const struct regulator_state *
562regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563{
564 const struct regulator_state *rstate;
565
566 rstate = regulator_get_suspend_state(rdev, state);
567 if (rstate == NULL)
568 return NULL;
569
570 /* If we have no suspend mode configuration don't set anything;
571 * only warn if the driver implements set_suspend_voltage or
572 * set_suspend_mode callback.
573 */
574 if (rstate->enabled != ENABLE_IN_SUSPEND &&
575 rstate->enabled != DISABLE_IN_SUSPEND) {
576 if (rdev->desc->ops->set_suspend_voltage ||
577 rdev->desc->ops->set_suspend_mode)
578 rdev_warn(rdev, "No configuration\n");
579 return NULL;
580 }
581
582 return rstate;
583}
584
585static ssize_t microvolts_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587{
588 struct regulator_dev *rdev = dev_get_drvdata(dev);
589 int uV;
590
591 regulator_lock(rdev);
592 uV = regulator_get_voltage_rdev(rdev);
593 regulator_unlock(rdev);
594
595 if (uV < 0)
596 return uV;
597 return sprintf(buf, "%d\n", uV);
598}
599static DEVICE_ATTR_RO(microvolts);
600
601static ssize_t microamps_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603{
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607}
608static DEVICE_ATTR_RO(microamps);
609
610static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611 char *buf)
612{
613 struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615 return sprintf(buf, "%s\n", rdev_get_name(rdev));
616}
617static DEVICE_ATTR_RO(name);
618
619static const char *regulator_opmode_to_str(int mode)
620{
621 switch (mode) {
622 case REGULATOR_MODE_FAST:
623 return "fast";
624 case REGULATOR_MODE_NORMAL:
625 return "normal";
626 case REGULATOR_MODE_IDLE:
627 return "idle";
628 case REGULATOR_MODE_STANDBY:
629 return "standby";
630 }
631 return "unknown";
632}
633
634static ssize_t regulator_print_opmode(char *buf, int mode)
635{
636 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637}
638
639static ssize_t opmode_show(struct device *dev,
640 struct device_attribute *attr, char *buf)
641{
642 struct regulator_dev *rdev = dev_get_drvdata(dev);
643
644 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645}
646static DEVICE_ATTR_RO(opmode);
647
648static ssize_t regulator_print_state(char *buf, int state)
649{
650 if (state > 0)
651 return sprintf(buf, "enabled\n");
652 else if (state == 0)
653 return sprintf(buf, "disabled\n");
654 else
655 return sprintf(buf, "unknown\n");
656}
657
658static ssize_t state_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
660{
661 struct regulator_dev *rdev = dev_get_drvdata(dev);
662 ssize_t ret;
663
664 regulator_lock(rdev);
665 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666 regulator_unlock(rdev);
667
668 return ret;
669}
670static DEVICE_ATTR_RO(state);
671
672static ssize_t status_show(struct device *dev,
673 struct device_attribute *attr, char *buf)
674{
675 struct regulator_dev *rdev = dev_get_drvdata(dev);
676 int status;
677 char *label;
678
679 status = rdev->desc->ops->get_status(rdev);
680 if (status < 0)
681 return status;
682
683 switch (status) {
684 case REGULATOR_STATUS_OFF:
685 label = "off";
686 break;
687 case REGULATOR_STATUS_ON:
688 label = "on";
689 break;
690 case REGULATOR_STATUS_ERROR:
691 label = "error";
692 break;
693 case REGULATOR_STATUS_FAST:
694 label = "fast";
695 break;
696 case REGULATOR_STATUS_NORMAL:
697 label = "normal";
698 break;
699 case REGULATOR_STATUS_IDLE:
700 label = "idle";
701 break;
702 case REGULATOR_STATUS_STANDBY:
703 label = "standby";
704 break;
705 case REGULATOR_STATUS_BYPASS:
706 label = "bypass";
707 break;
708 case REGULATOR_STATUS_UNDEFINED:
709 label = "undefined";
710 break;
711 default:
712 return -ERANGE;
713 }
714
715 return sprintf(buf, "%s\n", label);
716}
717static DEVICE_ATTR_RO(status);
718
719static ssize_t min_microamps_show(struct device *dev,
720 struct device_attribute *attr, char *buf)
721{
722 struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724 if (!rdev->constraints)
725 return sprintf(buf, "constraint not defined\n");
726
727 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728}
729static DEVICE_ATTR_RO(min_microamps);
730
731static ssize_t max_microamps_show(struct device *dev,
732 struct device_attribute *attr, char *buf)
733{
734 struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736 if (!rdev->constraints)
737 return sprintf(buf, "constraint not defined\n");
738
739 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740}
741static DEVICE_ATTR_RO(max_microamps);
742
743static ssize_t min_microvolts_show(struct device *dev,
744 struct device_attribute *attr, char *buf)
745{
746 struct regulator_dev *rdev = dev_get_drvdata(dev);
747
748 if (!rdev->constraints)
749 return sprintf(buf, "constraint not defined\n");
750
751 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752}
753static DEVICE_ATTR_RO(min_microvolts);
754
755static ssize_t max_microvolts_show(struct device *dev,
756 struct device_attribute *attr, char *buf)
757{
758 struct regulator_dev *rdev = dev_get_drvdata(dev);
759
760 if (!rdev->constraints)
761 return sprintf(buf, "constraint not defined\n");
762
763 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764}
765static DEVICE_ATTR_RO(max_microvolts);
766
767static ssize_t requested_microamps_show(struct device *dev,
768 struct device_attribute *attr, char *buf)
769{
770 struct regulator_dev *rdev = dev_get_drvdata(dev);
771 struct regulator *regulator;
772 int uA = 0;
773
774 regulator_lock(rdev);
775 list_for_each_entry(regulator, &rdev->consumer_list, list) {
776 if (regulator->enable_count)
777 uA += regulator->uA_load;
778 }
779 regulator_unlock(rdev);
780 return sprintf(buf, "%d\n", uA);
781}
782static DEVICE_ATTR_RO(requested_microamps);
783
784static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785 char *buf)
786{
787 struct regulator_dev *rdev = dev_get_drvdata(dev);
788 return sprintf(buf, "%d\n", rdev->use_count);
789}
790static DEVICE_ATTR_RO(num_users);
791
792static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794{
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796
797 switch (rdev->desc->type) {
798 case REGULATOR_VOLTAGE:
799 return sprintf(buf, "voltage\n");
800 case REGULATOR_CURRENT:
801 return sprintf(buf, "current\n");
802 }
803 return sprintf(buf, "unknown\n");
804}
805static DEVICE_ATTR_RO(type);
806
807static ssize_t suspend_mem_microvolts_show(struct device *dev,
808 struct device_attribute *attr, char *buf)
809{
810 struct regulator_dev *rdev = dev_get_drvdata(dev);
811
812 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813}
814static DEVICE_ATTR_RO(suspend_mem_microvolts);
815
816static ssize_t suspend_disk_microvolts_show(struct device *dev,
817 struct device_attribute *attr, char *buf)
818{
819 struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822}
823static DEVICE_ATTR_RO(suspend_disk_microvolts);
824
825static ssize_t suspend_standby_microvolts_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827{
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831}
832static DEVICE_ATTR_RO(suspend_standby_microvolts);
833
834static ssize_t suspend_mem_mode_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
836{
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839 return regulator_print_opmode(buf,
840 rdev->constraints->state_mem.mode);
841}
842static DEVICE_ATTR_RO(suspend_mem_mode);
843
844static ssize_t suspend_disk_mode_show(struct device *dev,
845 struct device_attribute *attr, char *buf)
846{
847 struct regulator_dev *rdev = dev_get_drvdata(dev);
848
849 return regulator_print_opmode(buf,
850 rdev->constraints->state_disk.mode);
851}
852static DEVICE_ATTR_RO(suspend_disk_mode);
853
854static ssize_t suspend_standby_mode_show(struct device *dev,
855 struct device_attribute *attr, char *buf)
856{
857 struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859 return regulator_print_opmode(buf,
860 rdev->constraints->state_standby.mode);
861}
862static DEVICE_ATTR_RO(suspend_standby_mode);
863
864static ssize_t suspend_mem_state_show(struct device *dev,
865 struct device_attribute *attr, char *buf)
866{
867 struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869 return regulator_print_state(buf,
870 rdev->constraints->state_mem.enabled);
871}
872static DEVICE_ATTR_RO(suspend_mem_state);
873
874static ssize_t suspend_disk_state_show(struct device *dev,
875 struct device_attribute *attr, char *buf)
876{
877 struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879 return regulator_print_state(buf,
880 rdev->constraints->state_disk.enabled);
881}
882static DEVICE_ATTR_RO(suspend_disk_state);
883
884static ssize_t suspend_standby_state_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return regulator_print_state(buf,
890 rdev->constraints->state_standby.enabled);
891}
892static DEVICE_ATTR_RO(suspend_standby_state);
893
894static ssize_t bypass_show(struct device *dev,
895 struct device_attribute *attr, char *buf)
896{
897 struct regulator_dev *rdev = dev_get_drvdata(dev);
898 const char *report;
899 bool bypass;
900 int ret;
901
902 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903
904 if (ret != 0)
905 report = "unknown";
906 else if (bypass)
907 report = "enabled";
908 else
909 report = "disabled";
910
911 return sprintf(buf, "%s\n", report);
912}
913static DEVICE_ATTR_RO(bypass);
914
915#define REGULATOR_ERROR_ATTR(name, bit) \
916 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
917 char *buf) \
918 { \
919 int ret; \
920 unsigned int flags; \
921 struct regulator_dev *rdev = dev_get_drvdata(dev); \
922 ret = _regulator_get_error_flags(rdev, &flags); \
923 if (ret) \
924 return ret; \
925 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
926 } \
927 static DEVICE_ATTR_RO(name)
928
929REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938
939/* Calculate the new optimum regulator operating mode based on the new total
940 * consumer load. All locks held by caller
941 */
942static int drms_uA_update(struct regulator_dev *rdev)
943{
944 struct regulator *sibling;
945 int current_uA = 0, output_uV, input_uV, err;
946 unsigned int mode;
947
948 /*
949 * first check to see if we can set modes at all, otherwise just
950 * tell the consumer everything is OK.
951 */
952 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953 rdev_dbg(rdev, "DRMS operation not allowed\n");
954 return 0;
955 }
956
957 if (!rdev->desc->ops->get_optimum_mode &&
958 !rdev->desc->ops->set_load)
959 return 0;
960
961 if (!rdev->desc->ops->set_mode &&
962 !rdev->desc->ops->set_load)
963 return -EINVAL;
964
965 /* calc total requested load */
966 list_for_each_entry(sibling, &rdev->consumer_list, list) {
967 if (sibling->enable_count)
968 current_uA += sibling->uA_load;
969 }
970
971 current_uA += rdev->constraints->system_load;
972
973 if (rdev->desc->ops->set_load) {
974 /* set the optimum mode for our new total regulator load */
975 err = rdev->desc->ops->set_load(rdev, current_uA);
976 if (err < 0)
977 rdev_err(rdev, "failed to set load %d: %pe\n",
978 current_uA, ERR_PTR(err));
979 } else {
980 /*
981 * Unfortunately in some cases the constraints->valid_ops has
982 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
983 * That's not really legit but we won't consider it a fatal
984 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
985 * wasn't set.
986 */
987 if (!rdev->constraints->valid_modes_mask) {
988 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
989 return 0;
990 }
991
992 /* get output voltage */
993 output_uV = regulator_get_voltage_rdev(rdev);
994
995 /*
996 * Don't return an error; if regulator driver cares about
997 * output_uV then it's up to the driver to validate.
998 */
999 if (output_uV <= 0)
1000 rdev_dbg(rdev, "invalid output voltage found\n");
1001
1002 /* get input voltage */
1003 input_uV = 0;
1004 if (rdev->supply)
1005 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1006 if (input_uV <= 0)
1007 input_uV = rdev->constraints->input_uV;
1008
1009 /*
1010 * Don't return an error; if regulator driver cares about
1011 * input_uV then it's up to the driver to validate.
1012 */
1013 if (input_uV <= 0)
1014 rdev_dbg(rdev, "invalid input voltage found\n");
1015
1016 /* now get the optimum mode for our new total regulator load */
1017 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1018 output_uV, current_uA);
1019
1020 /* check the new mode is allowed */
1021 err = regulator_mode_constrain(rdev, &mode);
1022 if (err < 0) {
1023 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1024 current_uA, input_uV, output_uV, ERR_PTR(err));
1025 return err;
1026 }
1027
1028 err = rdev->desc->ops->set_mode(rdev, mode);
1029 if (err < 0)
1030 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1031 mode, ERR_PTR(err));
1032 }
1033
1034 return err;
1035}
1036
1037static int __suspend_set_state(struct regulator_dev *rdev,
1038 const struct regulator_state *rstate)
1039{
1040 int ret = 0;
1041
1042 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1043 rdev->desc->ops->set_suspend_enable)
1044 ret = rdev->desc->ops->set_suspend_enable(rdev);
1045 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1046 rdev->desc->ops->set_suspend_disable)
1047 ret = rdev->desc->ops->set_suspend_disable(rdev);
1048 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1049 ret = 0;
1050
1051 if (ret < 0) {
1052 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053 return ret;
1054 }
1055
1056 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1057 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1058 if (ret < 0) {
1059 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060 return ret;
1061 }
1062 }
1063
1064 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1065 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1066 if (ret < 0) {
1067 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068 return ret;
1069 }
1070 }
1071
1072 return ret;
1073}
1074
1075static int suspend_set_initial_state(struct regulator_dev *rdev)
1076{
1077 const struct regulator_state *rstate;
1078
1079 rstate = regulator_get_suspend_state_check(rdev,
1080 rdev->constraints->initial_state);
1081 if (!rstate)
1082 return 0;
1083
1084 return __suspend_set_state(rdev, rstate);
1085}
1086
1087#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1088static void print_constraints_debug(struct regulator_dev *rdev)
1089{
1090 struct regulation_constraints *constraints = rdev->constraints;
1091 char buf[160] = "";
1092 size_t len = sizeof(buf) - 1;
1093 int count = 0;
1094 int ret;
1095
1096 if (constraints->min_uV && constraints->max_uV) {
1097 if (constraints->min_uV == constraints->max_uV)
1098 count += scnprintf(buf + count, len - count, "%d mV ",
1099 constraints->min_uV / 1000);
1100 else
1101 count += scnprintf(buf + count, len - count,
1102 "%d <--> %d mV ",
1103 constraints->min_uV / 1000,
1104 constraints->max_uV / 1000);
1105 }
1106
1107 if (!constraints->min_uV ||
1108 constraints->min_uV != constraints->max_uV) {
1109 ret = regulator_get_voltage_rdev(rdev);
1110 if (ret > 0)
1111 count += scnprintf(buf + count, len - count,
1112 "at %d mV ", ret / 1000);
1113 }
1114
1115 if (constraints->uV_offset)
1116 count += scnprintf(buf + count, len - count, "%dmV offset ",
1117 constraints->uV_offset / 1000);
1118
1119 if (constraints->min_uA && constraints->max_uA) {
1120 if (constraints->min_uA == constraints->max_uA)
1121 count += scnprintf(buf + count, len - count, "%d mA ",
1122 constraints->min_uA / 1000);
1123 else
1124 count += scnprintf(buf + count, len - count,
1125 "%d <--> %d mA ",
1126 constraints->min_uA / 1000,
1127 constraints->max_uA / 1000);
1128 }
1129
1130 if (!constraints->min_uA ||
1131 constraints->min_uA != constraints->max_uA) {
1132 ret = _regulator_get_current_limit(rdev);
1133 if (ret > 0)
1134 count += scnprintf(buf + count, len - count,
1135 "at %d mA ", ret / 1000);
1136 }
1137
1138 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139 count += scnprintf(buf + count, len - count, "fast ");
1140 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141 count += scnprintf(buf + count, len - count, "normal ");
1142 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143 count += scnprintf(buf + count, len - count, "idle ");
1144 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145 count += scnprintf(buf + count, len - count, "standby ");
1146
1147 if (!count)
1148 count = scnprintf(buf, len, "no parameters");
1149 else
1150 --count;
1151
1152 count += scnprintf(buf + count, len - count, ", %s",
1153 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154
1155 rdev_dbg(rdev, "%s\n", buf);
1156}
1157#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1158static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1159#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1160
1161static void print_constraints(struct regulator_dev *rdev)
1162{
1163 struct regulation_constraints *constraints = rdev->constraints;
1164
1165 print_constraints_debug(rdev);
1166
1167 if ((constraints->min_uV != constraints->max_uV) &&
1168 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169 rdev_warn(rdev,
1170 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171}
1172
1173static int machine_constraints_voltage(struct regulator_dev *rdev,
1174 struct regulation_constraints *constraints)
1175{
1176 const struct regulator_ops *ops = rdev->desc->ops;
1177 int ret;
1178
1179 /* do we need to apply the constraint voltage */
1180 if (rdev->constraints->apply_uV &&
1181 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1182 int target_min, target_max;
1183 int current_uV = regulator_get_voltage_rdev(rdev);
1184
1185 if (current_uV == -ENOTRECOVERABLE) {
1186 /* This regulator can't be read and must be initialized */
1187 rdev_info(rdev, "Setting %d-%duV\n",
1188 rdev->constraints->min_uV,
1189 rdev->constraints->max_uV);
1190 _regulator_do_set_voltage(rdev,
1191 rdev->constraints->min_uV,
1192 rdev->constraints->max_uV);
1193 current_uV = regulator_get_voltage_rdev(rdev);
1194 }
1195
1196 if (current_uV < 0) {
1197 if (current_uV != -EPROBE_DEFER)
1198 rdev_err(rdev,
1199 "failed to get the current voltage: %pe\n",
1200 ERR_PTR(current_uV));
1201 return current_uV;
1202 }
1203
1204 /*
1205 * If we're below the minimum voltage move up to the
1206 * minimum voltage, if we're above the maximum voltage
1207 * then move down to the maximum.
1208 */
1209 target_min = current_uV;
1210 target_max = current_uV;
1211
1212 if (current_uV < rdev->constraints->min_uV) {
1213 target_min = rdev->constraints->min_uV;
1214 target_max = rdev->constraints->min_uV;
1215 }
1216
1217 if (current_uV > rdev->constraints->max_uV) {
1218 target_min = rdev->constraints->max_uV;
1219 target_max = rdev->constraints->max_uV;
1220 }
1221
1222 if (target_min != current_uV || target_max != current_uV) {
1223 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1224 current_uV, target_min, target_max);
1225 ret = _regulator_do_set_voltage(
1226 rdev, target_min, target_max);
1227 if (ret < 0) {
1228 rdev_err(rdev,
1229 "failed to apply %d-%duV constraint: %pe\n",
1230 target_min, target_max, ERR_PTR(ret));
1231 return ret;
1232 }
1233 }
1234 }
1235
1236 /* constrain machine-level voltage specs to fit
1237 * the actual range supported by this regulator.
1238 */
1239 if (ops->list_voltage && rdev->desc->n_voltages) {
1240 int count = rdev->desc->n_voltages;
1241 int i;
1242 int min_uV = INT_MAX;
1243 int max_uV = INT_MIN;
1244 int cmin = constraints->min_uV;
1245 int cmax = constraints->max_uV;
1246
1247 /* it's safe to autoconfigure fixed-voltage supplies
1248 * and the constraints are used by list_voltage.
1249 */
1250 if (count == 1 && !cmin) {
1251 cmin = 1;
1252 cmax = INT_MAX;
1253 constraints->min_uV = cmin;
1254 constraints->max_uV = cmax;
1255 }
1256
1257 /* voltage constraints are optional */
1258 if ((cmin == 0) && (cmax == 0))
1259 return 0;
1260
1261 /* else require explicit machine-level constraints */
1262 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263 rdev_err(rdev, "invalid voltage constraints\n");
1264 return -EINVAL;
1265 }
1266
1267 /* no need to loop voltages if range is continuous */
1268 if (rdev->desc->continuous_voltage_range)
1269 return 0;
1270
1271 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1272 for (i = 0; i < count; i++) {
1273 int value;
1274
1275 value = ops->list_voltage(rdev, i);
1276 if (value <= 0)
1277 continue;
1278
1279 /* maybe adjust [min_uV..max_uV] */
1280 if (value >= cmin && value < min_uV)
1281 min_uV = value;
1282 if (value <= cmax && value > max_uV)
1283 max_uV = value;
1284 }
1285
1286 /* final: [min_uV..max_uV] valid iff constraints valid */
1287 if (max_uV < min_uV) {
1288 rdev_err(rdev,
1289 "unsupportable voltage constraints %u-%uuV\n",
1290 min_uV, max_uV);
1291 return -EINVAL;
1292 }
1293
1294 /* use regulator's subset of machine constraints */
1295 if (constraints->min_uV < min_uV) {
1296 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1297 constraints->min_uV, min_uV);
1298 constraints->min_uV = min_uV;
1299 }
1300 if (constraints->max_uV > max_uV) {
1301 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1302 constraints->max_uV, max_uV);
1303 constraints->max_uV = max_uV;
1304 }
1305 }
1306
1307 return 0;
1308}
1309
1310static int machine_constraints_current(struct regulator_dev *rdev,
1311 struct regulation_constraints *constraints)
1312{
1313 const struct regulator_ops *ops = rdev->desc->ops;
1314 int ret;
1315
1316 if (!constraints->min_uA && !constraints->max_uA)
1317 return 0;
1318
1319 if (constraints->min_uA > constraints->max_uA) {
1320 rdev_err(rdev, "Invalid current constraints\n");
1321 return -EINVAL;
1322 }
1323
1324 if (!ops->set_current_limit || !ops->get_current_limit) {
1325 rdev_warn(rdev, "Operation of current configuration missing\n");
1326 return 0;
1327 }
1328
1329 /* Set regulator current in constraints range */
1330 ret = ops->set_current_limit(rdev, constraints->min_uA,
1331 constraints->max_uA);
1332 if (ret < 0) {
1333 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1334 return ret;
1335 }
1336
1337 return 0;
1338}
1339
1340static int _regulator_do_enable(struct regulator_dev *rdev);
1341
1342static int notif_set_limit(struct regulator_dev *rdev,
1343 int (*set)(struct regulator_dev *, int, int, bool),
1344 int limit, int severity)
1345{
1346 bool enable;
1347
1348 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1349 enable = false;
1350 limit = 0;
1351 } else {
1352 enable = true;
1353 }
1354
1355 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1356 limit = 0;
1357
1358 return set(rdev, limit, severity, enable);
1359}
1360
1361static int handle_notify_limits(struct regulator_dev *rdev,
1362 int (*set)(struct regulator_dev *, int, int, bool),
1363 struct notification_limit *limits)
1364{
1365 int ret = 0;
1366
1367 if (!set)
1368 return -EOPNOTSUPP;
1369
1370 if (limits->prot)
1371 ret = notif_set_limit(rdev, set, limits->prot,
1372 REGULATOR_SEVERITY_PROT);
1373 if (ret)
1374 return ret;
1375
1376 if (limits->err)
1377 ret = notif_set_limit(rdev, set, limits->err,
1378 REGULATOR_SEVERITY_ERR);
1379 if (ret)
1380 return ret;
1381
1382 if (limits->warn)
1383 ret = notif_set_limit(rdev, set, limits->warn,
1384 REGULATOR_SEVERITY_WARN);
1385
1386 return ret;
1387}
1388/**
1389 * set_machine_constraints - sets regulator constraints
1390 * @rdev: regulator source
1391 *
1392 * Allows platform initialisation code to define and constrain
1393 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1394 * Constraints *must* be set by platform code in order for some
1395 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396 * set_mode.
1397 */
1398static int set_machine_constraints(struct regulator_dev *rdev)
1399{
1400 int ret = 0;
1401 const struct regulator_ops *ops = rdev->desc->ops;
1402
1403 ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 if (ret != 0)
1405 return ret;
1406
1407 ret = machine_constraints_current(rdev, rdev->constraints);
1408 if (ret != 0)
1409 return ret;
1410
1411 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 ret = ops->set_input_current_limit(rdev,
1413 rdev->constraints->ilim_uA);
1414 if (ret < 0) {
1415 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 return ret;
1417 }
1418 }
1419
1420 /* do we need to setup our suspend state */
1421 if (rdev->constraints->initial_state) {
1422 ret = suspend_set_initial_state(rdev);
1423 if (ret < 0) {
1424 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 return ret;
1426 }
1427 }
1428
1429 if (rdev->constraints->initial_mode) {
1430 if (!ops->set_mode) {
1431 rdev_err(rdev, "no set_mode operation\n");
1432 return -EINVAL;
1433 }
1434
1435 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 if (ret < 0) {
1437 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 return ret;
1439 }
1440 } else if (rdev->constraints->system_load) {
1441 /*
1442 * We'll only apply the initial system load if an
1443 * initial mode wasn't specified.
1444 */
1445 drms_uA_update(rdev);
1446 }
1447
1448 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 && ops->set_ramp_delay) {
1450 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 if (ret < 0) {
1452 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 return ret;
1454 }
1455 }
1456
1457 if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 ret = ops->set_pull_down(rdev);
1459 if (ret < 0) {
1460 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 return ret;
1462 }
1463 }
1464
1465 if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 ret = ops->set_soft_start(rdev);
1467 if (ret < 0) {
1468 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 return ret;
1470 }
1471 }
1472
1473 /*
1474 * Existing logic does not warn if over_current_protection is given as
1475 * a constraint but driver does not support that. I think we should
1476 * warn about this type of issues as it is possible someone changes
1477 * PMIC on board to another type - and the another PMIC's driver does
1478 * not support setting protection. Board composer may happily believe
1479 * the DT limits are respected - especially if the new PMIC HW also
1480 * supports protection but the driver does not. I won't change the logic
1481 * without hearing more experienced opinion on this though.
1482 *
1483 * If warning is seen as a good idea then we can merge handling the
1484 * over-curret protection and detection and get rid of this special
1485 * handling.
1486 */
1487 if (rdev->constraints->over_current_protection
1488 && ops->set_over_current_protection) {
1489 int lim = rdev->constraints->over_curr_limits.prot;
1490
1491 ret = ops->set_over_current_protection(rdev, lim,
1492 REGULATOR_SEVERITY_PROT,
1493 true);
1494 if (ret < 0) {
1495 rdev_err(rdev, "failed to set over current protection: %pe\n",
1496 ERR_PTR(ret));
1497 return ret;
1498 }
1499 }
1500
1501 if (rdev->constraints->over_current_detection)
1502 ret = handle_notify_limits(rdev,
1503 ops->set_over_current_protection,
1504 &rdev->constraints->over_curr_limits);
1505 if (ret) {
1506 if (ret != -EOPNOTSUPP) {
1507 rdev_err(rdev, "failed to set over current limits: %pe\n",
1508 ERR_PTR(ret));
1509 return ret;
1510 }
1511 rdev_warn(rdev,
1512 "IC does not support requested over-current limits\n");
1513 }
1514
1515 if (rdev->constraints->over_voltage_detection)
1516 ret = handle_notify_limits(rdev,
1517 ops->set_over_voltage_protection,
1518 &rdev->constraints->over_voltage_limits);
1519 if (ret) {
1520 if (ret != -EOPNOTSUPP) {
1521 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1522 ERR_PTR(ret));
1523 return ret;
1524 }
1525 rdev_warn(rdev,
1526 "IC does not support requested over voltage limits\n");
1527 }
1528
1529 if (rdev->constraints->under_voltage_detection)
1530 ret = handle_notify_limits(rdev,
1531 ops->set_under_voltage_protection,
1532 &rdev->constraints->under_voltage_limits);
1533 if (ret) {
1534 if (ret != -EOPNOTSUPP) {
1535 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1536 ERR_PTR(ret));
1537 return ret;
1538 }
1539 rdev_warn(rdev,
1540 "IC does not support requested under voltage limits\n");
1541 }
1542
1543 if (rdev->constraints->over_temp_detection)
1544 ret = handle_notify_limits(rdev,
1545 ops->set_thermal_protection,
1546 &rdev->constraints->temp_limits);
1547 if (ret) {
1548 if (ret != -EOPNOTSUPP) {
1549 rdev_err(rdev, "failed to set temperature limits %pe\n",
1550 ERR_PTR(ret));
1551 return ret;
1552 }
1553 rdev_warn(rdev,
1554 "IC does not support requested temperature limits\n");
1555 }
1556
1557 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1558 bool ad_state = (rdev->constraints->active_discharge ==
1559 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1560
1561 ret = ops->set_active_discharge(rdev, ad_state);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564 return ret;
1565 }
1566 }
1567
1568 /*
1569 * If there is no mechanism for controlling the regulator then
1570 * flag it as always_on so we don't end up duplicating checks
1571 * for this so much. Note that we could control the state of
1572 * a supply to control the output on a regulator that has no
1573 * direct control.
1574 */
1575 if (!rdev->ena_pin && !ops->enable) {
1576 if (rdev->supply_name && !rdev->supply)
1577 return -EPROBE_DEFER;
1578
1579 if (rdev->supply)
1580 rdev->constraints->always_on =
1581 rdev->supply->rdev->constraints->always_on;
1582 else
1583 rdev->constraints->always_on = true;
1584 }
1585
1586 if (rdev->desc->off_on_delay)
1587 rdev->last_off = ktime_get();
1588
1589 /* If the constraints say the regulator should be on at this point
1590 * and we have control then make sure it is enabled.
1591 */
1592 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593 /* If we want to enable this regulator, make sure that we know
1594 * the supplying regulator.
1595 */
1596 if (rdev->supply_name && !rdev->supply)
1597 return -EPROBE_DEFER;
1598
1599 /* If supplying regulator has already been enabled,
1600 * it's not intended to have use_count increment
1601 * when rdev is only boot-on.
1602 */
1603 if (rdev->supply &&
1604 (rdev->constraints->always_on ||
1605 !regulator_is_enabled(rdev->supply))) {
1606 ret = regulator_enable(rdev->supply);
1607 if (ret < 0) {
1608 _regulator_put(rdev->supply);
1609 rdev->supply = NULL;
1610 return ret;
1611 }
1612 }
1613
1614 ret = _regulator_do_enable(rdev);
1615 if (ret < 0 && ret != -EINVAL) {
1616 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1617 return ret;
1618 }
1619
1620 if (rdev->constraints->always_on)
1621 rdev->use_count++;
1622 }
1623
1624 print_constraints(rdev);
1625 return 0;
1626}
1627
1628/**
1629 * set_supply - set regulator supply regulator
1630 * @rdev: regulator name
1631 * @supply_rdev: supply regulator name
1632 *
1633 * Called by platform initialisation code to set the supply regulator for this
1634 * regulator. This ensures that a regulators supply will also be enabled by the
1635 * core if it's child is enabled.
1636 */
1637static int set_supply(struct regulator_dev *rdev,
1638 struct regulator_dev *supply_rdev)
1639{
1640 int err;
1641
1642 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1643
1644 if (!try_module_get(supply_rdev->owner))
1645 return -ENODEV;
1646
1647 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1648 if (rdev->supply == NULL) {
1649 module_put(supply_rdev->owner);
1650 err = -ENOMEM;
1651 return err;
1652 }
1653 supply_rdev->open_count++;
1654
1655 return 0;
1656}
1657
1658/**
1659 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1660 * @rdev: regulator source
1661 * @consumer_dev_name: dev_name() string for device supply applies to
1662 * @supply: symbolic name for supply
1663 *
1664 * Allows platform initialisation code to map physical regulator
1665 * sources to symbolic names for supplies for use by devices. Devices
1666 * should use these symbolic names to request regulators, avoiding the
1667 * need to provide board-specific regulator names as platform data.
1668 */
1669static int set_consumer_device_supply(struct regulator_dev *rdev,
1670 const char *consumer_dev_name,
1671 const char *supply)
1672{
1673 struct regulator_map *node, *new_node;
1674 int has_dev;
1675
1676 if (supply == NULL)
1677 return -EINVAL;
1678
1679 if (consumer_dev_name != NULL)
1680 has_dev = 1;
1681 else
1682 has_dev = 0;
1683
1684 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1685 if (new_node == NULL)
1686 return -ENOMEM;
1687
1688 new_node->regulator = rdev;
1689 new_node->supply = supply;
1690
1691 if (has_dev) {
1692 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1693 if (new_node->dev_name == NULL) {
1694 kfree(new_node);
1695 return -ENOMEM;
1696 }
1697 }
1698
1699 mutex_lock(®ulator_list_mutex);
1700 list_for_each_entry(node, ®ulator_map_list, list) {
1701 if (node->dev_name && consumer_dev_name) {
1702 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1703 continue;
1704 } else if (node->dev_name || consumer_dev_name) {
1705 continue;
1706 }
1707
1708 if (strcmp(node->supply, supply) != 0)
1709 continue;
1710
1711 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1712 consumer_dev_name,
1713 dev_name(&node->regulator->dev),
1714 node->regulator->desc->name,
1715 supply,
1716 dev_name(&rdev->dev), rdev_get_name(rdev));
1717 goto fail;
1718 }
1719
1720 list_add(&new_node->list, ®ulator_map_list);
1721 mutex_unlock(®ulator_list_mutex);
1722
1723 return 0;
1724
1725fail:
1726 mutex_unlock(®ulator_list_mutex);
1727 kfree(new_node->dev_name);
1728 kfree(new_node);
1729 return -EBUSY;
1730}
1731
1732static void unset_regulator_supplies(struct regulator_dev *rdev)
1733{
1734 struct regulator_map *node, *n;
1735
1736 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1737 if (rdev == node->regulator) {
1738 list_del(&node->list);
1739 kfree(node->dev_name);
1740 kfree(node);
1741 }
1742 }
1743}
1744
1745#ifdef CONFIG_DEBUG_FS
1746static ssize_t constraint_flags_read_file(struct file *file,
1747 char __user *user_buf,
1748 size_t count, loff_t *ppos)
1749{
1750 const struct regulator *regulator = file->private_data;
1751 const struct regulation_constraints *c = regulator->rdev->constraints;
1752 char *buf;
1753 ssize_t ret;
1754
1755 if (!c)
1756 return 0;
1757
1758 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1759 if (!buf)
1760 return -ENOMEM;
1761
1762 ret = snprintf(buf, PAGE_SIZE,
1763 "always_on: %u\n"
1764 "boot_on: %u\n"
1765 "apply_uV: %u\n"
1766 "ramp_disable: %u\n"
1767 "soft_start: %u\n"
1768 "pull_down: %u\n"
1769 "over_current_protection: %u\n",
1770 c->always_on,
1771 c->boot_on,
1772 c->apply_uV,
1773 c->ramp_disable,
1774 c->soft_start,
1775 c->pull_down,
1776 c->over_current_protection);
1777
1778 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1779 kfree(buf);
1780
1781 return ret;
1782}
1783
1784#endif
1785
1786static const struct file_operations constraint_flags_fops = {
1787#ifdef CONFIG_DEBUG_FS
1788 .open = simple_open,
1789 .read = constraint_flags_read_file,
1790 .llseek = default_llseek,
1791#endif
1792};
1793
1794#define REG_STR_SIZE 64
1795
1796static struct regulator *create_regulator(struct regulator_dev *rdev,
1797 struct device *dev,
1798 const char *supply_name)
1799{
1800 struct regulator *regulator;
1801 int err = 0;
1802
1803 if (dev) {
1804 char buf[REG_STR_SIZE];
1805 int size;
1806
1807 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1808 dev->kobj.name, supply_name);
1809 if (size >= REG_STR_SIZE)
1810 return NULL;
1811
1812 supply_name = kstrdup(buf, GFP_KERNEL);
1813 if (supply_name == NULL)
1814 return NULL;
1815 } else {
1816 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1817 if (supply_name == NULL)
1818 return NULL;
1819 }
1820
1821 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1822 if (regulator == NULL) {
1823 kfree_const(supply_name);
1824 return NULL;
1825 }
1826
1827 regulator->rdev = rdev;
1828 regulator->supply_name = supply_name;
1829
1830 regulator_lock(rdev);
1831 list_add(®ulator->list, &rdev->consumer_list);
1832 regulator_unlock(rdev);
1833
1834 if (dev) {
1835 regulator->dev = dev;
1836
1837 /* Add a link to the device sysfs entry */
1838 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1839 supply_name);
1840 if (err) {
1841 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1842 dev->kobj.name, ERR_PTR(err));
1843 /* non-fatal */
1844 }
1845 }
1846
1847 if (err != -EEXIST)
1848 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1849 if (!regulator->debugfs) {
1850 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1851 } else {
1852 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1853 ®ulator->uA_load);
1854 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1855 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1856 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1857 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1858 debugfs_create_file("constraint_flags", 0444,
1859 regulator->debugfs, regulator,
1860 &constraint_flags_fops);
1861 }
1862
1863 /*
1864 * Check now if the regulator is an always on regulator - if
1865 * it is then we don't need to do nearly so much work for
1866 * enable/disable calls.
1867 */
1868 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1869 _regulator_is_enabled(rdev))
1870 regulator->always_on = true;
1871
1872 return regulator;
1873}
1874
1875static int _regulator_get_enable_time(struct regulator_dev *rdev)
1876{
1877 if (rdev->constraints && rdev->constraints->enable_time)
1878 return rdev->constraints->enable_time;
1879 if (rdev->desc->ops->enable_time)
1880 return rdev->desc->ops->enable_time(rdev);
1881 return rdev->desc->enable_time;
1882}
1883
1884static struct regulator_supply_alias *regulator_find_supply_alias(
1885 struct device *dev, const char *supply)
1886{
1887 struct regulator_supply_alias *map;
1888
1889 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1890 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1891 return map;
1892
1893 return NULL;
1894}
1895
1896static void regulator_supply_alias(struct device **dev, const char **supply)
1897{
1898 struct regulator_supply_alias *map;
1899
1900 map = regulator_find_supply_alias(*dev, *supply);
1901 if (map) {
1902 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1903 *supply, map->alias_supply,
1904 dev_name(map->alias_dev));
1905 *dev = map->alias_dev;
1906 *supply = map->alias_supply;
1907 }
1908}
1909
1910static int regulator_match(struct device *dev, const void *data)
1911{
1912 struct regulator_dev *r = dev_to_rdev(dev);
1913
1914 return strcmp(rdev_get_name(r), data) == 0;
1915}
1916
1917static struct regulator_dev *regulator_lookup_by_name(const char *name)
1918{
1919 struct device *dev;
1920
1921 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1922
1923 return dev ? dev_to_rdev(dev) : NULL;
1924}
1925
1926/**
1927 * regulator_dev_lookup - lookup a regulator device.
1928 * @dev: device for regulator "consumer".
1929 * @supply: Supply name or regulator ID.
1930 *
1931 * If successful, returns a struct regulator_dev that corresponds to the name
1932 * @supply and with the embedded struct device refcount incremented by one.
1933 * The refcount must be dropped by calling put_device().
1934 * On failure one of the following ERR-PTR-encoded values is returned:
1935 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1936 * in the future.
1937 */
1938static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1939 const char *supply)
1940{
1941 struct regulator_dev *r = NULL;
1942 struct device_node *node;
1943 struct regulator_map *map;
1944 const char *devname = NULL;
1945
1946 regulator_supply_alias(&dev, &supply);
1947
1948 /* first do a dt based lookup */
1949 if (dev && dev->of_node) {
1950 node = of_get_regulator(dev, supply);
1951 if (node) {
1952 r = of_find_regulator_by_node(node);
1953 of_node_put(node);
1954 if (r)
1955 return r;
1956
1957 /*
1958 * We have a node, but there is no device.
1959 * assume it has not registered yet.
1960 */
1961 return ERR_PTR(-EPROBE_DEFER);
1962 }
1963 }
1964
1965 /* if not found, try doing it non-dt way */
1966 if (dev)
1967 devname = dev_name(dev);
1968
1969 mutex_lock(®ulator_list_mutex);
1970 list_for_each_entry(map, ®ulator_map_list, list) {
1971 /* If the mapping has a device set up it must match */
1972 if (map->dev_name &&
1973 (!devname || strcmp(map->dev_name, devname)))
1974 continue;
1975
1976 if (strcmp(map->supply, supply) == 0 &&
1977 get_device(&map->regulator->dev)) {
1978 r = map->regulator;
1979 break;
1980 }
1981 }
1982 mutex_unlock(®ulator_list_mutex);
1983
1984 if (r)
1985 return r;
1986
1987 r = regulator_lookup_by_name(supply);
1988 if (r)
1989 return r;
1990
1991 return ERR_PTR(-ENODEV);
1992}
1993
1994static int regulator_resolve_supply(struct regulator_dev *rdev)
1995{
1996 struct regulator_dev *r;
1997 struct device *dev = rdev->dev.parent;
1998 int ret = 0;
1999
2000 /* No supply to resolve? */
2001 if (!rdev->supply_name)
2002 return 0;
2003
2004 /* Supply already resolved? (fast-path without locking contention) */
2005 if (rdev->supply)
2006 return 0;
2007
2008 r = regulator_dev_lookup(dev, rdev->supply_name);
2009 if (IS_ERR(r)) {
2010 ret = PTR_ERR(r);
2011
2012 /* Did the lookup explicitly defer for us? */
2013 if (ret == -EPROBE_DEFER)
2014 goto out;
2015
2016 if (have_full_constraints()) {
2017 r = dummy_regulator_rdev;
2018 get_device(&r->dev);
2019 } else {
2020 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2021 rdev->supply_name, rdev->desc->name);
2022 ret = -EPROBE_DEFER;
2023 goto out;
2024 }
2025 }
2026
2027 if (r == rdev) {
2028 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2029 rdev->desc->name, rdev->supply_name);
2030 if (!have_full_constraints()) {
2031 ret = -EINVAL;
2032 goto out;
2033 }
2034 r = dummy_regulator_rdev;
2035 get_device(&r->dev);
2036 }
2037
2038 /*
2039 * If the supply's parent device is not the same as the
2040 * regulator's parent device, then ensure the parent device
2041 * is bound before we resolve the supply, in case the parent
2042 * device get probe deferred and unregisters the supply.
2043 */
2044 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2045 if (!device_is_bound(r->dev.parent)) {
2046 put_device(&r->dev);
2047 ret = -EPROBE_DEFER;
2048 goto out;
2049 }
2050 }
2051
2052 /* Recursively resolve the supply of the supply */
2053 ret = regulator_resolve_supply(r);
2054 if (ret < 0) {
2055 put_device(&r->dev);
2056 goto out;
2057 }
2058
2059 /*
2060 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2061 * between rdev->supply null check and setting rdev->supply in
2062 * set_supply() from concurrent tasks.
2063 */
2064 regulator_lock(rdev);
2065
2066 /* Supply just resolved by a concurrent task? */
2067 if (rdev->supply) {
2068 regulator_unlock(rdev);
2069 put_device(&r->dev);
2070 goto out;
2071 }
2072
2073 ret = set_supply(rdev, r);
2074 if (ret < 0) {
2075 regulator_unlock(rdev);
2076 put_device(&r->dev);
2077 goto out;
2078 }
2079
2080 regulator_unlock(rdev);
2081
2082 /*
2083 * In set_machine_constraints() we may have turned this regulator on
2084 * but we couldn't propagate to the supply if it hadn't been resolved
2085 * yet. Do it now.
2086 */
2087 if (rdev->use_count) {
2088 ret = regulator_enable(rdev->supply);
2089 if (ret < 0) {
2090 _regulator_put(rdev->supply);
2091 rdev->supply = NULL;
2092 goto out;
2093 }
2094 }
2095
2096out:
2097 return ret;
2098}
2099
2100/* Internal regulator request function */
2101struct regulator *_regulator_get(struct device *dev, const char *id,
2102 enum regulator_get_type get_type)
2103{
2104 struct regulator_dev *rdev;
2105 struct regulator *regulator;
2106 struct device_link *link;
2107 int ret;
2108
2109 if (get_type >= MAX_GET_TYPE) {
2110 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2111 return ERR_PTR(-EINVAL);
2112 }
2113
2114 if (id == NULL) {
2115 pr_err("get() with no identifier\n");
2116 return ERR_PTR(-EINVAL);
2117 }
2118
2119 rdev = regulator_dev_lookup(dev, id);
2120 if (IS_ERR(rdev)) {
2121 ret = PTR_ERR(rdev);
2122
2123 /*
2124 * If regulator_dev_lookup() fails with error other
2125 * than -ENODEV our job here is done, we simply return it.
2126 */
2127 if (ret != -ENODEV)
2128 return ERR_PTR(ret);
2129
2130 if (!have_full_constraints()) {
2131 dev_warn(dev,
2132 "incomplete constraints, dummy supplies not allowed\n");
2133 return ERR_PTR(-ENODEV);
2134 }
2135
2136 switch (get_type) {
2137 case NORMAL_GET:
2138 /*
2139 * Assume that a regulator is physically present and
2140 * enabled, even if it isn't hooked up, and just
2141 * provide a dummy.
2142 */
2143 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2144 rdev = dummy_regulator_rdev;
2145 get_device(&rdev->dev);
2146 break;
2147
2148 case EXCLUSIVE_GET:
2149 dev_warn(dev,
2150 "dummy supplies not allowed for exclusive requests\n");
2151 fallthrough;
2152
2153 default:
2154 return ERR_PTR(-ENODEV);
2155 }
2156 }
2157
2158 if (rdev->exclusive) {
2159 regulator = ERR_PTR(-EPERM);
2160 put_device(&rdev->dev);
2161 return regulator;
2162 }
2163
2164 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2165 regulator = ERR_PTR(-EBUSY);
2166 put_device(&rdev->dev);
2167 return regulator;
2168 }
2169
2170 mutex_lock(®ulator_list_mutex);
2171 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2172 mutex_unlock(®ulator_list_mutex);
2173
2174 if (ret != 0) {
2175 regulator = ERR_PTR(-EPROBE_DEFER);
2176 put_device(&rdev->dev);
2177 return regulator;
2178 }
2179
2180 ret = regulator_resolve_supply(rdev);
2181 if (ret < 0) {
2182 regulator = ERR_PTR(ret);
2183 put_device(&rdev->dev);
2184 return regulator;
2185 }
2186
2187 if (!try_module_get(rdev->owner)) {
2188 regulator = ERR_PTR(-EPROBE_DEFER);
2189 put_device(&rdev->dev);
2190 return regulator;
2191 }
2192
2193 regulator = create_regulator(rdev, dev, id);
2194 if (regulator == NULL) {
2195 regulator = ERR_PTR(-ENOMEM);
2196 module_put(rdev->owner);
2197 put_device(&rdev->dev);
2198 return regulator;
2199 }
2200
2201 rdev->open_count++;
2202 if (get_type == EXCLUSIVE_GET) {
2203 rdev->exclusive = 1;
2204
2205 ret = _regulator_is_enabled(rdev);
2206 if (ret > 0) {
2207 rdev->use_count = 1;
2208 regulator->enable_count = 1;
2209 } else {
2210 rdev->use_count = 0;
2211 regulator->enable_count = 0;
2212 }
2213 }
2214
2215 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2216 if (!IS_ERR_OR_NULL(link))
2217 regulator->device_link = true;
2218
2219 return regulator;
2220}
2221
2222/**
2223 * regulator_get - lookup and obtain a reference to a regulator.
2224 * @dev: device for regulator "consumer"
2225 * @id: Supply name or regulator ID.
2226 *
2227 * Returns a struct regulator corresponding to the regulator producer,
2228 * or IS_ERR() condition containing errno.
2229 *
2230 * Use of supply names configured via set_consumer_device_supply() is
2231 * strongly encouraged. It is recommended that the supply name used
2232 * should match the name used for the supply and/or the relevant
2233 * device pins in the datasheet.
2234 */
2235struct regulator *regulator_get(struct device *dev, const char *id)
2236{
2237 return _regulator_get(dev, id, NORMAL_GET);
2238}
2239EXPORT_SYMBOL_GPL(regulator_get);
2240
2241/**
2242 * regulator_get_exclusive - obtain exclusive access to a regulator.
2243 * @dev: device for regulator "consumer"
2244 * @id: Supply name or regulator ID.
2245 *
2246 * Returns a struct regulator corresponding to the regulator producer,
2247 * or IS_ERR() condition containing errno. Other consumers will be
2248 * unable to obtain this regulator while this reference is held and the
2249 * use count for the regulator will be initialised to reflect the current
2250 * state of the regulator.
2251 *
2252 * This is intended for use by consumers which cannot tolerate shared
2253 * use of the regulator such as those which need to force the
2254 * regulator off for correct operation of the hardware they are
2255 * controlling.
2256 *
2257 * Use of supply names configured via set_consumer_device_supply() is
2258 * strongly encouraged. It is recommended that the supply name used
2259 * should match the name used for the supply and/or the relevant
2260 * device pins in the datasheet.
2261 */
2262struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2263{
2264 return _regulator_get(dev, id, EXCLUSIVE_GET);
2265}
2266EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2267
2268/**
2269 * regulator_get_optional - obtain optional access to a regulator.
2270 * @dev: device for regulator "consumer"
2271 * @id: Supply name or regulator ID.
2272 *
2273 * Returns a struct regulator corresponding to the regulator producer,
2274 * or IS_ERR() condition containing errno.
2275 *
2276 * This is intended for use by consumers for devices which can have
2277 * some supplies unconnected in normal use, such as some MMC devices.
2278 * It can allow the regulator core to provide stub supplies for other
2279 * supplies requested using normal regulator_get() calls without
2280 * disrupting the operation of drivers that can handle absent
2281 * supplies.
2282 *
2283 * Use of supply names configured via set_consumer_device_supply() is
2284 * strongly encouraged. It is recommended that the supply name used
2285 * should match the name used for the supply and/or the relevant
2286 * device pins in the datasheet.
2287 */
2288struct regulator *regulator_get_optional(struct device *dev, const char *id)
2289{
2290 return _regulator_get(dev, id, OPTIONAL_GET);
2291}
2292EXPORT_SYMBOL_GPL(regulator_get_optional);
2293
2294static void destroy_regulator(struct regulator *regulator)
2295{
2296 struct regulator_dev *rdev = regulator->rdev;
2297
2298 debugfs_remove_recursive(regulator->debugfs);
2299
2300 if (regulator->dev) {
2301 if (regulator->device_link)
2302 device_link_remove(regulator->dev, &rdev->dev);
2303
2304 /* remove any sysfs entries */
2305 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2306 }
2307
2308 regulator_lock(rdev);
2309 list_del(®ulator->list);
2310
2311 rdev->open_count--;
2312 rdev->exclusive = 0;
2313 regulator_unlock(rdev);
2314
2315 kfree_const(regulator->supply_name);
2316 kfree(regulator);
2317}
2318
2319/* regulator_list_mutex lock held by regulator_put() */
2320static void _regulator_put(struct regulator *regulator)
2321{
2322 struct regulator_dev *rdev;
2323
2324 if (IS_ERR_OR_NULL(regulator))
2325 return;
2326
2327 lockdep_assert_held_once(®ulator_list_mutex);
2328
2329 /* Docs say you must disable before calling regulator_put() */
2330 WARN_ON(regulator->enable_count);
2331
2332 rdev = regulator->rdev;
2333
2334 destroy_regulator(regulator);
2335
2336 module_put(rdev->owner);
2337 put_device(&rdev->dev);
2338}
2339
2340/**
2341 * regulator_put - "free" the regulator source
2342 * @regulator: regulator source
2343 *
2344 * Note: drivers must ensure that all regulator_enable calls made on this
2345 * regulator source are balanced by regulator_disable calls prior to calling
2346 * this function.
2347 */
2348void regulator_put(struct regulator *regulator)
2349{
2350 mutex_lock(®ulator_list_mutex);
2351 _regulator_put(regulator);
2352 mutex_unlock(®ulator_list_mutex);
2353}
2354EXPORT_SYMBOL_GPL(regulator_put);
2355
2356/**
2357 * regulator_register_supply_alias - Provide device alias for supply lookup
2358 *
2359 * @dev: device that will be given as the regulator "consumer"
2360 * @id: Supply name or regulator ID
2361 * @alias_dev: device that should be used to lookup the supply
2362 * @alias_id: Supply name or regulator ID that should be used to lookup the
2363 * supply
2364 *
2365 * All lookups for id on dev will instead be conducted for alias_id on
2366 * alias_dev.
2367 */
2368int regulator_register_supply_alias(struct device *dev, const char *id,
2369 struct device *alias_dev,
2370 const char *alias_id)
2371{
2372 struct regulator_supply_alias *map;
2373
2374 map = regulator_find_supply_alias(dev, id);
2375 if (map)
2376 return -EEXIST;
2377
2378 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2379 if (!map)
2380 return -ENOMEM;
2381
2382 map->src_dev = dev;
2383 map->src_supply = id;
2384 map->alias_dev = alias_dev;
2385 map->alias_supply = alias_id;
2386
2387 list_add(&map->list, ®ulator_supply_alias_list);
2388
2389 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2390 id, dev_name(dev), alias_id, dev_name(alias_dev));
2391
2392 return 0;
2393}
2394EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2395
2396/**
2397 * regulator_unregister_supply_alias - Remove device alias
2398 *
2399 * @dev: device that will be given as the regulator "consumer"
2400 * @id: Supply name or regulator ID
2401 *
2402 * Remove a lookup alias if one exists for id on dev.
2403 */
2404void regulator_unregister_supply_alias(struct device *dev, const char *id)
2405{
2406 struct regulator_supply_alias *map;
2407
2408 map = regulator_find_supply_alias(dev, id);
2409 if (map) {
2410 list_del(&map->list);
2411 kfree(map);
2412 }
2413}
2414EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2415
2416/**
2417 * regulator_bulk_register_supply_alias - register multiple aliases
2418 *
2419 * @dev: device that will be given as the regulator "consumer"
2420 * @id: List of supply names or regulator IDs
2421 * @alias_dev: device that should be used to lookup the supply
2422 * @alias_id: List of supply names or regulator IDs that should be used to
2423 * lookup the supply
2424 * @num_id: Number of aliases to register
2425 *
2426 * @return 0 on success, an errno on failure.
2427 *
2428 * This helper function allows drivers to register several supply
2429 * aliases in one operation. If any of the aliases cannot be
2430 * registered any aliases that were registered will be removed
2431 * before returning to the caller.
2432 */
2433int regulator_bulk_register_supply_alias(struct device *dev,
2434 const char *const *id,
2435 struct device *alias_dev,
2436 const char *const *alias_id,
2437 int num_id)
2438{
2439 int i;
2440 int ret;
2441
2442 for (i = 0; i < num_id; ++i) {
2443 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2444 alias_id[i]);
2445 if (ret < 0)
2446 goto err;
2447 }
2448
2449 return 0;
2450
2451err:
2452 dev_err(dev,
2453 "Failed to create supply alias %s,%s -> %s,%s\n",
2454 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2455
2456 while (--i >= 0)
2457 regulator_unregister_supply_alias(dev, id[i]);
2458
2459 return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2462
2463/**
2464 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2465 *
2466 * @dev: device that will be given as the regulator "consumer"
2467 * @id: List of supply names or regulator IDs
2468 * @num_id: Number of aliases to unregister
2469 *
2470 * This helper function allows drivers to unregister several supply
2471 * aliases in one operation.
2472 */
2473void regulator_bulk_unregister_supply_alias(struct device *dev,
2474 const char *const *id,
2475 int num_id)
2476{
2477 int i;
2478
2479 for (i = 0; i < num_id; ++i)
2480 regulator_unregister_supply_alias(dev, id[i]);
2481}
2482EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2483
2484
2485/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2486static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2487 const struct regulator_config *config)
2488{
2489 struct regulator_enable_gpio *pin, *new_pin;
2490 struct gpio_desc *gpiod;
2491
2492 gpiod = config->ena_gpiod;
2493 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2494
2495 mutex_lock(®ulator_list_mutex);
2496
2497 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2498 if (pin->gpiod == gpiod) {
2499 rdev_dbg(rdev, "GPIO is already used\n");
2500 goto update_ena_gpio_to_rdev;
2501 }
2502 }
2503
2504 if (new_pin == NULL) {
2505 mutex_unlock(®ulator_list_mutex);
2506 return -ENOMEM;
2507 }
2508
2509 pin = new_pin;
2510 new_pin = NULL;
2511
2512 pin->gpiod = gpiod;
2513 list_add(&pin->list, ®ulator_ena_gpio_list);
2514
2515update_ena_gpio_to_rdev:
2516 pin->request_count++;
2517 rdev->ena_pin = pin;
2518
2519 mutex_unlock(®ulator_list_mutex);
2520 kfree(new_pin);
2521
2522 return 0;
2523}
2524
2525static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2526{
2527 struct regulator_enable_gpio *pin, *n;
2528
2529 if (!rdev->ena_pin)
2530 return;
2531
2532 /* Free the GPIO only in case of no use */
2533 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2534 if (pin != rdev->ena_pin)
2535 continue;
2536
2537 if (--pin->request_count)
2538 break;
2539
2540 gpiod_put(pin->gpiod);
2541 list_del(&pin->list);
2542 kfree(pin);
2543 break;
2544 }
2545
2546 rdev->ena_pin = NULL;
2547}
2548
2549/**
2550 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2551 * @rdev: regulator_dev structure
2552 * @enable: enable GPIO at initial use?
2553 *
2554 * GPIO is enabled in case of initial use. (enable_count is 0)
2555 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2556 */
2557static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2558{
2559 struct regulator_enable_gpio *pin = rdev->ena_pin;
2560
2561 if (!pin)
2562 return -EINVAL;
2563
2564 if (enable) {
2565 /* Enable GPIO at initial use */
2566 if (pin->enable_count == 0)
2567 gpiod_set_value_cansleep(pin->gpiod, 1);
2568
2569 pin->enable_count++;
2570 } else {
2571 if (pin->enable_count > 1) {
2572 pin->enable_count--;
2573 return 0;
2574 }
2575
2576 /* Disable GPIO if not used */
2577 if (pin->enable_count <= 1) {
2578 gpiod_set_value_cansleep(pin->gpiod, 0);
2579 pin->enable_count = 0;
2580 }
2581 }
2582
2583 return 0;
2584}
2585
2586/**
2587 * _regulator_delay_helper - a delay helper function
2588 * @delay: time to delay in microseconds
2589 *
2590 * Delay for the requested amount of time as per the guidelines in:
2591 *
2592 * Documentation/timers/timers-howto.rst
2593 *
2594 * The assumption here is that these regulator operations will never used in
2595 * atomic context and therefore sleeping functions can be used.
2596 */
2597static void _regulator_delay_helper(unsigned int delay)
2598{
2599 unsigned int ms = delay / 1000;
2600 unsigned int us = delay % 1000;
2601
2602 if (ms > 0) {
2603 /*
2604 * For small enough values, handle super-millisecond
2605 * delays in the usleep_range() call below.
2606 */
2607 if (ms < 20)
2608 us += ms * 1000;
2609 else
2610 msleep(ms);
2611 }
2612
2613 /*
2614 * Give the scheduler some room to coalesce with any other
2615 * wakeup sources. For delays shorter than 10 us, don't even
2616 * bother setting up high-resolution timers and just busy-
2617 * loop.
2618 */
2619 if (us >= 10)
2620 usleep_range(us, us + 100);
2621 else
2622 udelay(us);
2623}
2624
2625/**
2626 * _regulator_check_status_enabled
2627 *
2628 * A helper function to check if the regulator status can be interpreted
2629 * as 'regulator is enabled'.
2630 * @rdev: the regulator device to check
2631 *
2632 * Return:
2633 * * 1 - if status shows regulator is in enabled state
2634 * * 0 - if not enabled state
2635 * * Error Value - as received from ops->get_status()
2636 */
2637static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2638{
2639 int ret = rdev->desc->ops->get_status(rdev);
2640
2641 if (ret < 0) {
2642 rdev_info(rdev, "get_status returned error: %d\n", ret);
2643 return ret;
2644 }
2645
2646 switch (ret) {
2647 case REGULATOR_STATUS_OFF:
2648 case REGULATOR_STATUS_ERROR:
2649 case REGULATOR_STATUS_UNDEFINED:
2650 return 0;
2651 default:
2652 return 1;
2653 }
2654}
2655
2656static int _regulator_do_enable(struct regulator_dev *rdev)
2657{
2658 int ret, delay;
2659
2660 /* Query before enabling in case configuration dependent. */
2661 ret = _regulator_get_enable_time(rdev);
2662 if (ret >= 0) {
2663 delay = ret;
2664 } else {
2665 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2666 delay = 0;
2667 }
2668
2669 trace_regulator_enable(rdev_get_name(rdev));
2670
2671 if (rdev->desc->off_on_delay && rdev->last_off) {
2672 /* if needed, keep a distance of off_on_delay from last time
2673 * this regulator was disabled.
2674 */
2675 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2676 s64 remaining = ktime_us_delta(end, ktime_get());
2677
2678 if (remaining > 0)
2679 _regulator_delay_helper(remaining);
2680 }
2681
2682 if (rdev->ena_pin) {
2683 if (!rdev->ena_gpio_state) {
2684 ret = regulator_ena_gpio_ctrl(rdev, true);
2685 if (ret < 0)
2686 return ret;
2687 rdev->ena_gpio_state = 1;
2688 }
2689 } else if (rdev->desc->ops->enable) {
2690 ret = rdev->desc->ops->enable(rdev);
2691 if (ret < 0)
2692 return ret;
2693 } else {
2694 return -EINVAL;
2695 }
2696
2697 /* Allow the regulator to ramp; it would be useful to extend
2698 * this for bulk operations so that the regulators can ramp
2699 * together.
2700 */
2701 trace_regulator_enable_delay(rdev_get_name(rdev));
2702
2703 /* If poll_enabled_time is set, poll upto the delay calculated
2704 * above, delaying poll_enabled_time uS to check if the regulator
2705 * actually got enabled.
2706 * If the regulator isn't enabled after our delay helper has expired,
2707 * return -ETIMEDOUT.
2708 */
2709 if (rdev->desc->poll_enabled_time) {
2710 int time_remaining = delay;
2711
2712 while (time_remaining > 0) {
2713 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2714
2715 if (rdev->desc->ops->get_status) {
2716 ret = _regulator_check_status_enabled(rdev);
2717 if (ret < 0)
2718 return ret;
2719 else if (ret)
2720 break;
2721 } else if (rdev->desc->ops->is_enabled(rdev))
2722 break;
2723
2724 time_remaining -= rdev->desc->poll_enabled_time;
2725 }
2726
2727 if (time_remaining <= 0) {
2728 rdev_err(rdev, "Enabled check timed out\n");
2729 return -ETIMEDOUT;
2730 }
2731 } else {
2732 _regulator_delay_helper(delay);
2733 }
2734
2735 trace_regulator_enable_complete(rdev_get_name(rdev));
2736
2737 return 0;
2738}
2739
2740/**
2741 * _regulator_handle_consumer_enable - handle that a consumer enabled
2742 * @regulator: regulator source
2743 *
2744 * Some things on a regulator consumer (like the contribution towards total
2745 * load on the regulator) only have an effect when the consumer wants the
2746 * regulator enabled. Explained in example with two consumers of the same
2747 * regulator:
2748 * consumer A: set_load(100); => total load = 0
2749 * consumer A: regulator_enable(); => total load = 100
2750 * consumer B: set_load(1000); => total load = 100
2751 * consumer B: regulator_enable(); => total load = 1100
2752 * consumer A: regulator_disable(); => total_load = 1000
2753 *
2754 * This function (together with _regulator_handle_consumer_disable) is
2755 * responsible for keeping track of the refcount for a given regulator consumer
2756 * and applying / unapplying these things.
2757 *
2758 * Returns 0 upon no error; -error upon error.
2759 */
2760static int _regulator_handle_consumer_enable(struct regulator *regulator)
2761{
2762 int ret;
2763 struct regulator_dev *rdev = regulator->rdev;
2764
2765 lockdep_assert_held_once(&rdev->mutex.base);
2766
2767 regulator->enable_count++;
2768 if (regulator->uA_load && regulator->enable_count == 1) {
2769 ret = drms_uA_update(rdev);
2770 if (ret)
2771 regulator->enable_count--;
2772 return ret;
2773 }
2774
2775 return 0;
2776}
2777
2778/**
2779 * _regulator_handle_consumer_disable - handle that a consumer disabled
2780 * @regulator: regulator source
2781 *
2782 * The opposite of _regulator_handle_consumer_enable().
2783 *
2784 * Returns 0 upon no error; -error upon error.
2785 */
2786static int _regulator_handle_consumer_disable(struct regulator *regulator)
2787{
2788 struct regulator_dev *rdev = regulator->rdev;
2789
2790 lockdep_assert_held_once(&rdev->mutex.base);
2791
2792 if (!regulator->enable_count) {
2793 rdev_err(rdev, "Underflow of regulator enable count\n");
2794 return -EINVAL;
2795 }
2796
2797 regulator->enable_count--;
2798 if (regulator->uA_load && regulator->enable_count == 0)
2799 return drms_uA_update(rdev);
2800
2801 return 0;
2802}
2803
2804/* locks held by regulator_enable() */
2805static int _regulator_enable(struct regulator *regulator)
2806{
2807 struct regulator_dev *rdev = regulator->rdev;
2808 int ret;
2809
2810 lockdep_assert_held_once(&rdev->mutex.base);
2811
2812 if (rdev->use_count == 0 && rdev->supply) {
2813 ret = _regulator_enable(rdev->supply);
2814 if (ret < 0)
2815 return ret;
2816 }
2817
2818 /* balance only if there are regulators coupled */
2819 if (rdev->coupling_desc.n_coupled > 1) {
2820 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2821 if (ret < 0)
2822 goto err_disable_supply;
2823 }
2824
2825 ret = _regulator_handle_consumer_enable(regulator);
2826 if (ret < 0)
2827 goto err_disable_supply;
2828
2829 if (rdev->use_count == 0) {
2830 /*
2831 * The regulator may already be enabled if it's not switchable
2832 * or was left on
2833 */
2834 ret = _regulator_is_enabled(rdev);
2835 if (ret == -EINVAL || ret == 0) {
2836 if (!regulator_ops_is_valid(rdev,
2837 REGULATOR_CHANGE_STATUS)) {
2838 ret = -EPERM;
2839 goto err_consumer_disable;
2840 }
2841
2842 ret = _regulator_do_enable(rdev);
2843 if (ret < 0)
2844 goto err_consumer_disable;
2845
2846 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2847 NULL);
2848 } else if (ret < 0) {
2849 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2850 goto err_consumer_disable;
2851 }
2852 /* Fallthrough on positive return values - already enabled */
2853 }
2854
2855 rdev->use_count++;
2856
2857 return 0;
2858
2859err_consumer_disable:
2860 _regulator_handle_consumer_disable(regulator);
2861
2862err_disable_supply:
2863 if (rdev->use_count == 0 && rdev->supply)
2864 _regulator_disable(rdev->supply);
2865
2866 return ret;
2867}
2868
2869/**
2870 * regulator_enable - enable regulator output
2871 * @regulator: regulator source
2872 *
2873 * Request that the regulator be enabled with the regulator output at
2874 * the predefined voltage or current value. Calls to regulator_enable()
2875 * must be balanced with calls to regulator_disable().
2876 *
2877 * NOTE: the output value can be set by other drivers, boot loader or may be
2878 * hardwired in the regulator.
2879 */
2880int regulator_enable(struct regulator *regulator)
2881{
2882 struct regulator_dev *rdev = regulator->rdev;
2883 struct ww_acquire_ctx ww_ctx;
2884 int ret;
2885
2886 regulator_lock_dependent(rdev, &ww_ctx);
2887 ret = _regulator_enable(regulator);
2888 regulator_unlock_dependent(rdev, &ww_ctx);
2889
2890 return ret;
2891}
2892EXPORT_SYMBOL_GPL(regulator_enable);
2893
2894static int _regulator_do_disable(struct regulator_dev *rdev)
2895{
2896 int ret;
2897
2898 trace_regulator_disable(rdev_get_name(rdev));
2899
2900 if (rdev->ena_pin) {
2901 if (rdev->ena_gpio_state) {
2902 ret = regulator_ena_gpio_ctrl(rdev, false);
2903 if (ret < 0)
2904 return ret;
2905 rdev->ena_gpio_state = 0;
2906 }
2907
2908 } else if (rdev->desc->ops->disable) {
2909 ret = rdev->desc->ops->disable(rdev);
2910 if (ret != 0)
2911 return ret;
2912 }
2913
2914 if (rdev->desc->off_on_delay)
2915 rdev->last_off = ktime_get();
2916
2917 trace_regulator_disable_complete(rdev_get_name(rdev));
2918
2919 return 0;
2920}
2921
2922/* locks held by regulator_disable() */
2923static int _regulator_disable(struct regulator *regulator)
2924{
2925 struct regulator_dev *rdev = regulator->rdev;
2926 int ret = 0;
2927
2928 lockdep_assert_held_once(&rdev->mutex.base);
2929
2930 if (WARN(rdev->use_count <= 0,
2931 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2932 return -EIO;
2933
2934 /* are we the last user and permitted to disable ? */
2935 if (rdev->use_count == 1 &&
2936 (rdev->constraints && !rdev->constraints->always_on)) {
2937
2938 /* we are last user */
2939 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2940 ret = _notifier_call_chain(rdev,
2941 REGULATOR_EVENT_PRE_DISABLE,
2942 NULL);
2943 if (ret & NOTIFY_STOP_MASK)
2944 return -EINVAL;
2945
2946 ret = _regulator_do_disable(rdev);
2947 if (ret < 0) {
2948 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2949 _notifier_call_chain(rdev,
2950 REGULATOR_EVENT_ABORT_DISABLE,
2951 NULL);
2952 return ret;
2953 }
2954 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2955 NULL);
2956 }
2957
2958 rdev->use_count = 0;
2959 } else if (rdev->use_count > 1) {
2960 rdev->use_count--;
2961 }
2962
2963 if (ret == 0)
2964 ret = _regulator_handle_consumer_disable(regulator);
2965
2966 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2967 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2968
2969 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2970 ret = _regulator_disable(rdev->supply);
2971
2972 return ret;
2973}
2974
2975/**
2976 * regulator_disable - disable regulator output
2977 * @regulator: regulator source
2978 *
2979 * Disable the regulator output voltage or current. Calls to
2980 * regulator_enable() must be balanced with calls to
2981 * regulator_disable().
2982 *
2983 * NOTE: this will only disable the regulator output if no other consumer
2984 * devices have it enabled, the regulator device supports disabling and
2985 * machine constraints permit this operation.
2986 */
2987int regulator_disable(struct regulator *regulator)
2988{
2989 struct regulator_dev *rdev = regulator->rdev;
2990 struct ww_acquire_ctx ww_ctx;
2991 int ret;
2992
2993 regulator_lock_dependent(rdev, &ww_ctx);
2994 ret = _regulator_disable(regulator);
2995 regulator_unlock_dependent(rdev, &ww_ctx);
2996
2997 return ret;
2998}
2999EXPORT_SYMBOL_GPL(regulator_disable);
3000
3001/* locks held by regulator_force_disable() */
3002static int _regulator_force_disable(struct regulator_dev *rdev)
3003{
3004 int ret = 0;
3005
3006 lockdep_assert_held_once(&rdev->mutex.base);
3007
3008 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3009 REGULATOR_EVENT_PRE_DISABLE, NULL);
3010 if (ret & NOTIFY_STOP_MASK)
3011 return -EINVAL;
3012
3013 ret = _regulator_do_disable(rdev);
3014 if (ret < 0) {
3015 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3016 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3017 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3018 return ret;
3019 }
3020
3021 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3022 REGULATOR_EVENT_DISABLE, NULL);
3023
3024 return 0;
3025}
3026
3027/**
3028 * regulator_force_disable - force disable regulator output
3029 * @regulator: regulator source
3030 *
3031 * Forcibly disable the regulator output voltage or current.
3032 * NOTE: this *will* disable the regulator output even if other consumer
3033 * devices have it enabled. This should be used for situations when device
3034 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3035 */
3036int regulator_force_disable(struct regulator *regulator)
3037{
3038 struct regulator_dev *rdev = regulator->rdev;
3039 struct ww_acquire_ctx ww_ctx;
3040 int ret;
3041
3042 regulator_lock_dependent(rdev, &ww_ctx);
3043
3044 ret = _regulator_force_disable(regulator->rdev);
3045
3046 if (rdev->coupling_desc.n_coupled > 1)
3047 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3048
3049 if (regulator->uA_load) {
3050 regulator->uA_load = 0;
3051 ret = drms_uA_update(rdev);
3052 }
3053
3054 if (rdev->use_count != 0 && rdev->supply)
3055 _regulator_disable(rdev->supply);
3056
3057 regulator_unlock_dependent(rdev, &ww_ctx);
3058
3059 return ret;
3060}
3061EXPORT_SYMBOL_GPL(regulator_force_disable);
3062
3063static void regulator_disable_work(struct work_struct *work)
3064{
3065 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3066 disable_work.work);
3067 struct ww_acquire_ctx ww_ctx;
3068 int count, i, ret;
3069 struct regulator *regulator;
3070 int total_count = 0;
3071
3072 regulator_lock_dependent(rdev, &ww_ctx);
3073
3074 /*
3075 * Workqueue functions queue the new work instance while the previous
3076 * work instance is being processed. Cancel the queued work instance
3077 * as the work instance under processing does the job of the queued
3078 * work instance.
3079 */
3080 cancel_delayed_work(&rdev->disable_work);
3081
3082 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3083 count = regulator->deferred_disables;
3084
3085 if (!count)
3086 continue;
3087
3088 total_count += count;
3089 regulator->deferred_disables = 0;
3090
3091 for (i = 0; i < count; i++) {
3092 ret = _regulator_disable(regulator);
3093 if (ret != 0)
3094 rdev_err(rdev, "Deferred disable failed: %pe\n",
3095 ERR_PTR(ret));
3096 }
3097 }
3098 WARN_ON(!total_count);
3099
3100 if (rdev->coupling_desc.n_coupled > 1)
3101 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3102
3103 regulator_unlock_dependent(rdev, &ww_ctx);
3104}
3105
3106/**
3107 * regulator_disable_deferred - disable regulator output with delay
3108 * @regulator: regulator source
3109 * @ms: milliseconds until the regulator is disabled
3110 *
3111 * Execute regulator_disable() on the regulator after a delay. This
3112 * is intended for use with devices that require some time to quiesce.
3113 *
3114 * NOTE: this will only disable the regulator output if no other consumer
3115 * devices have it enabled, the regulator device supports disabling and
3116 * machine constraints permit this operation.
3117 */
3118int regulator_disable_deferred(struct regulator *regulator, int ms)
3119{
3120 struct regulator_dev *rdev = regulator->rdev;
3121
3122 if (!ms)
3123 return regulator_disable(regulator);
3124
3125 regulator_lock(rdev);
3126 regulator->deferred_disables++;
3127 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3128 msecs_to_jiffies(ms));
3129 regulator_unlock(rdev);
3130
3131 return 0;
3132}
3133EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3134
3135static int _regulator_is_enabled(struct regulator_dev *rdev)
3136{
3137 /* A GPIO control always takes precedence */
3138 if (rdev->ena_pin)
3139 return rdev->ena_gpio_state;
3140
3141 /* If we don't know then assume that the regulator is always on */
3142 if (!rdev->desc->ops->is_enabled)
3143 return 1;
3144
3145 return rdev->desc->ops->is_enabled(rdev);
3146}
3147
3148static int _regulator_list_voltage(struct regulator_dev *rdev,
3149 unsigned selector, int lock)
3150{
3151 const struct regulator_ops *ops = rdev->desc->ops;
3152 int ret;
3153
3154 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3155 return rdev->desc->fixed_uV;
3156
3157 if (ops->list_voltage) {
3158 if (selector >= rdev->desc->n_voltages)
3159 return -EINVAL;
3160 if (selector < rdev->desc->linear_min_sel)
3161 return 0;
3162 if (lock)
3163 regulator_lock(rdev);
3164 ret = ops->list_voltage(rdev, selector);
3165 if (lock)
3166 regulator_unlock(rdev);
3167 } else if (rdev->is_switch && rdev->supply) {
3168 ret = _regulator_list_voltage(rdev->supply->rdev,
3169 selector, lock);
3170 } else {
3171 return -EINVAL;
3172 }
3173
3174 if (ret > 0) {
3175 if (ret < rdev->constraints->min_uV)
3176 ret = 0;
3177 else if (ret > rdev->constraints->max_uV)
3178 ret = 0;
3179 }
3180
3181 return ret;
3182}
3183
3184/**
3185 * regulator_is_enabled - is the regulator output enabled
3186 * @regulator: regulator source
3187 *
3188 * Returns positive if the regulator driver backing the source/client
3189 * has requested that the device be enabled, zero if it hasn't, else a
3190 * negative errno code.
3191 *
3192 * Note that the device backing this regulator handle can have multiple
3193 * users, so it might be enabled even if regulator_enable() was never
3194 * called for this particular source.
3195 */
3196int regulator_is_enabled(struct regulator *regulator)
3197{
3198 int ret;
3199
3200 if (regulator->always_on)
3201 return 1;
3202
3203 regulator_lock(regulator->rdev);
3204 ret = _regulator_is_enabled(regulator->rdev);
3205 regulator_unlock(regulator->rdev);
3206
3207 return ret;
3208}
3209EXPORT_SYMBOL_GPL(regulator_is_enabled);
3210
3211/**
3212 * regulator_count_voltages - count regulator_list_voltage() selectors
3213 * @regulator: regulator source
3214 *
3215 * Returns number of selectors, or negative errno. Selectors are
3216 * numbered starting at zero, and typically correspond to bitfields
3217 * in hardware registers.
3218 */
3219int regulator_count_voltages(struct regulator *regulator)
3220{
3221 struct regulator_dev *rdev = regulator->rdev;
3222
3223 if (rdev->desc->n_voltages)
3224 return rdev->desc->n_voltages;
3225
3226 if (!rdev->is_switch || !rdev->supply)
3227 return -EINVAL;
3228
3229 return regulator_count_voltages(rdev->supply);
3230}
3231EXPORT_SYMBOL_GPL(regulator_count_voltages);
3232
3233/**
3234 * regulator_list_voltage - enumerate supported voltages
3235 * @regulator: regulator source
3236 * @selector: identify voltage to list
3237 * Context: can sleep
3238 *
3239 * Returns a voltage that can be passed to @regulator_set_voltage(),
3240 * zero if this selector code can't be used on this system, or a
3241 * negative errno.
3242 */
3243int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3244{
3245 return _regulator_list_voltage(regulator->rdev, selector, 1);
3246}
3247EXPORT_SYMBOL_GPL(regulator_list_voltage);
3248
3249/**
3250 * regulator_get_regmap - get the regulator's register map
3251 * @regulator: regulator source
3252 *
3253 * Returns the register map for the given regulator, or an ERR_PTR value
3254 * if the regulator doesn't use regmap.
3255 */
3256struct regmap *regulator_get_regmap(struct regulator *regulator)
3257{
3258 struct regmap *map = regulator->rdev->regmap;
3259
3260 return map ? map : ERR_PTR(-EOPNOTSUPP);
3261}
3262
3263/**
3264 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3265 * @regulator: regulator source
3266 * @vsel_reg: voltage selector register, output parameter
3267 * @vsel_mask: mask for voltage selector bitfield, output parameter
3268 *
3269 * Returns the hardware register offset and bitmask used for setting the
3270 * regulator voltage. This might be useful when configuring voltage-scaling
3271 * hardware or firmware that can make I2C requests behind the kernel's back,
3272 * for example.
3273 *
3274 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3275 * and 0 is returned, otherwise a negative errno is returned.
3276 */
3277int regulator_get_hardware_vsel_register(struct regulator *regulator,
3278 unsigned *vsel_reg,
3279 unsigned *vsel_mask)
3280{
3281 struct regulator_dev *rdev = regulator->rdev;
3282 const struct regulator_ops *ops = rdev->desc->ops;
3283
3284 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3285 return -EOPNOTSUPP;
3286
3287 *vsel_reg = rdev->desc->vsel_reg;
3288 *vsel_mask = rdev->desc->vsel_mask;
3289
3290 return 0;
3291}
3292EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3293
3294/**
3295 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3296 * @regulator: regulator source
3297 * @selector: identify voltage to list
3298 *
3299 * Converts the selector to a hardware-specific voltage selector that can be
3300 * directly written to the regulator registers. The address of the voltage
3301 * register can be determined by calling @regulator_get_hardware_vsel_register.
3302 *
3303 * On error a negative errno is returned.
3304 */
3305int regulator_list_hardware_vsel(struct regulator *regulator,
3306 unsigned selector)
3307{
3308 struct regulator_dev *rdev = regulator->rdev;
3309 const struct regulator_ops *ops = rdev->desc->ops;
3310
3311 if (selector >= rdev->desc->n_voltages)
3312 return -EINVAL;
3313 if (selector < rdev->desc->linear_min_sel)
3314 return 0;
3315 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3316 return -EOPNOTSUPP;
3317
3318 return selector;
3319}
3320EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3321
3322/**
3323 * regulator_get_linear_step - return the voltage step size between VSEL values
3324 * @regulator: regulator source
3325 *
3326 * Returns the voltage step size between VSEL values for linear
3327 * regulators, or return 0 if the regulator isn't a linear regulator.
3328 */
3329unsigned int regulator_get_linear_step(struct regulator *regulator)
3330{
3331 struct regulator_dev *rdev = regulator->rdev;
3332
3333 return rdev->desc->uV_step;
3334}
3335EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3336
3337/**
3338 * regulator_is_supported_voltage - check if a voltage range can be supported
3339 *
3340 * @regulator: Regulator to check.
3341 * @min_uV: Minimum required voltage in uV.
3342 * @max_uV: Maximum required voltage in uV.
3343 *
3344 * Returns a boolean.
3345 */
3346int regulator_is_supported_voltage(struct regulator *regulator,
3347 int min_uV, int max_uV)
3348{
3349 struct regulator_dev *rdev = regulator->rdev;
3350 int i, voltages, ret;
3351
3352 /* If we can't change voltage check the current voltage */
3353 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3354 ret = regulator_get_voltage(regulator);
3355 if (ret >= 0)
3356 return min_uV <= ret && ret <= max_uV;
3357 else
3358 return ret;
3359 }
3360
3361 /* Any voltage within constrains range is fine? */
3362 if (rdev->desc->continuous_voltage_range)
3363 return min_uV >= rdev->constraints->min_uV &&
3364 max_uV <= rdev->constraints->max_uV;
3365
3366 ret = regulator_count_voltages(regulator);
3367 if (ret < 0)
3368 return 0;
3369 voltages = ret;
3370
3371 for (i = 0; i < voltages; i++) {
3372 ret = regulator_list_voltage(regulator, i);
3373
3374 if (ret >= min_uV && ret <= max_uV)
3375 return 1;
3376 }
3377
3378 return 0;
3379}
3380EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3381
3382static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3383 int max_uV)
3384{
3385 const struct regulator_desc *desc = rdev->desc;
3386
3387 if (desc->ops->map_voltage)
3388 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3389
3390 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3391 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3392
3393 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3394 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3395
3396 if (desc->ops->list_voltage ==
3397 regulator_list_voltage_pickable_linear_range)
3398 return regulator_map_voltage_pickable_linear_range(rdev,
3399 min_uV, max_uV);
3400
3401 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3402}
3403
3404static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3405 int min_uV, int max_uV,
3406 unsigned *selector)
3407{
3408 struct pre_voltage_change_data data;
3409 int ret;
3410
3411 data.old_uV = regulator_get_voltage_rdev(rdev);
3412 data.min_uV = min_uV;
3413 data.max_uV = max_uV;
3414 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3415 &data);
3416 if (ret & NOTIFY_STOP_MASK)
3417 return -EINVAL;
3418
3419 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3420 if (ret >= 0)
3421 return ret;
3422
3423 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3424 (void *)data.old_uV);
3425
3426 return ret;
3427}
3428
3429static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3430 int uV, unsigned selector)
3431{
3432 struct pre_voltage_change_data data;
3433 int ret;
3434
3435 data.old_uV = regulator_get_voltage_rdev(rdev);
3436 data.min_uV = uV;
3437 data.max_uV = uV;
3438 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3439 &data);
3440 if (ret & NOTIFY_STOP_MASK)
3441 return -EINVAL;
3442
3443 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3444 if (ret >= 0)
3445 return ret;
3446
3447 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3448 (void *)data.old_uV);
3449
3450 return ret;
3451}
3452
3453static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3454 int uV, int new_selector)
3455{
3456 const struct regulator_ops *ops = rdev->desc->ops;
3457 int diff, old_sel, curr_sel, ret;
3458
3459 /* Stepping is only needed if the regulator is enabled. */
3460 if (!_regulator_is_enabled(rdev))
3461 goto final_set;
3462
3463 if (!ops->get_voltage_sel)
3464 return -EINVAL;
3465
3466 old_sel = ops->get_voltage_sel(rdev);
3467 if (old_sel < 0)
3468 return old_sel;
3469
3470 diff = new_selector - old_sel;
3471 if (diff == 0)
3472 return 0; /* No change needed. */
3473
3474 if (diff > 0) {
3475 /* Stepping up. */
3476 for (curr_sel = old_sel + rdev->desc->vsel_step;
3477 curr_sel < new_selector;
3478 curr_sel += rdev->desc->vsel_step) {
3479 /*
3480 * Call the callback directly instead of using
3481 * _regulator_call_set_voltage_sel() as we don't
3482 * want to notify anyone yet. Same in the branch
3483 * below.
3484 */
3485 ret = ops->set_voltage_sel(rdev, curr_sel);
3486 if (ret)
3487 goto try_revert;
3488 }
3489 } else {
3490 /* Stepping down. */
3491 for (curr_sel = old_sel - rdev->desc->vsel_step;
3492 curr_sel > new_selector;
3493 curr_sel -= rdev->desc->vsel_step) {
3494 ret = ops->set_voltage_sel(rdev, curr_sel);
3495 if (ret)
3496 goto try_revert;
3497 }
3498 }
3499
3500final_set:
3501 /* The final selector will trigger the notifiers. */
3502 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3503
3504try_revert:
3505 /*
3506 * At least try to return to the previous voltage if setting a new
3507 * one failed.
3508 */
3509 (void)ops->set_voltage_sel(rdev, old_sel);
3510 return ret;
3511}
3512
3513static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3514 int old_uV, int new_uV)
3515{
3516 unsigned int ramp_delay = 0;
3517
3518 if (rdev->constraints->ramp_delay)
3519 ramp_delay = rdev->constraints->ramp_delay;
3520 else if (rdev->desc->ramp_delay)
3521 ramp_delay = rdev->desc->ramp_delay;
3522 else if (rdev->constraints->settling_time)
3523 return rdev->constraints->settling_time;
3524 else if (rdev->constraints->settling_time_up &&
3525 (new_uV > old_uV))
3526 return rdev->constraints->settling_time_up;
3527 else if (rdev->constraints->settling_time_down &&
3528 (new_uV < old_uV))
3529 return rdev->constraints->settling_time_down;
3530
3531 if (ramp_delay == 0)
3532 return 0;
3533
3534 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3535}
3536
3537static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3538 int min_uV, int max_uV)
3539{
3540 int ret;
3541 int delay = 0;
3542 int best_val = 0;
3543 unsigned int selector;
3544 int old_selector = -1;
3545 const struct regulator_ops *ops = rdev->desc->ops;
3546 int old_uV = regulator_get_voltage_rdev(rdev);
3547
3548 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3549
3550 min_uV += rdev->constraints->uV_offset;
3551 max_uV += rdev->constraints->uV_offset;
3552
3553 /*
3554 * If we can't obtain the old selector there is not enough
3555 * info to call set_voltage_time_sel().
3556 */
3557 if (_regulator_is_enabled(rdev) &&
3558 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3559 old_selector = ops->get_voltage_sel(rdev);
3560 if (old_selector < 0)
3561 return old_selector;
3562 }
3563
3564 if (ops->set_voltage) {
3565 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3566 &selector);
3567
3568 if (ret >= 0) {
3569 if (ops->list_voltage)
3570 best_val = ops->list_voltage(rdev,
3571 selector);
3572 else
3573 best_val = regulator_get_voltage_rdev(rdev);
3574 }
3575
3576 } else if (ops->set_voltage_sel) {
3577 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3578 if (ret >= 0) {
3579 best_val = ops->list_voltage(rdev, ret);
3580 if (min_uV <= best_val && max_uV >= best_val) {
3581 selector = ret;
3582 if (old_selector == selector)
3583 ret = 0;
3584 else if (rdev->desc->vsel_step)
3585 ret = _regulator_set_voltage_sel_step(
3586 rdev, best_val, selector);
3587 else
3588 ret = _regulator_call_set_voltage_sel(
3589 rdev, best_val, selector);
3590 } else {
3591 ret = -EINVAL;
3592 }
3593 }
3594 } else {
3595 ret = -EINVAL;
3596 }
3597
3598 if (ret)
3599 goto out;
3600
3601 if (ops->set_voltage_time_sel) {
3602 /*
3603 * Call set_voltage_time_sel if successfully obtained
3604 * old_selector
3605 */
3606 if (old_selector >= 0 && old_selector != selector)
3607 delay = ops->set_voltage_time_sel(rdev, old_selector,
3608 selector);
3609 } else {
3610 if (old_uV != best_val) {
3611 if (ops->set_voltage_time)
3612 delay = ops->set_voltage_time(rdev, old_uV,
3613 best_val);
3614 else
3615 delay = _regulator_set_voltage_time(rdev,
3616 old_uV,
3617 best_val);
3618 }
3619 }
3620
3621 if (delay < 0) {
3622 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3623 delay = 0;
3624 }
3625
3626 /* Insert any necessary delays */
3627 _regulator_delay_helper(delay);
3628
3629 if (best_val >= 0) {
3630 unsigned long data = best_val;
3631
3632 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3633 (void *)data);
3634 }
3635
3636out:
3637 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3638
3639 return ret;
3640}
3641
3642static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3643 int min_uV, int max_uV, suspend_state_t state)
3644{
3645 struct regulator_state *rstate;
3646 int uV, sel;
3647
3648 rstate = regulator_get_suspend_state(rdev, state);
3649 if (rstate == NULL)
3650 return -EINVAL;
3651
3652 if (min_uV < rstate->min_uV)
3653 min_uV = rstate->min_uV;
3654 if (max_uV > rstate->max_uV)
3655 max_uV = rstate->max_uV;
3656
3657 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3658 if (sel < 0)
3659 return sel;
3660
3661 uV = rdev->desc->ops->list_voltage(rdev, sel);
3662 if (uV >= min_uV && uV <= max_uV)
3663 rstate->uV = uV;
3664
3665 return 0;
3666}
3667
3668static int regulator_set_voltage_unlocked(struct regulator *regulator,
3669 int min_uV, int max_uV,
3670 suspend_state_t state)
3671{
3672 struct regulator_dev *rdev = regulator->rdev;
3673 struct regulator_voltage *voltage = ®ulator->voltage[state];
3674 int ret = 0;
3675 int old_min_uV, old_max_uV;
3676 int current_uV;
3677
3678 /* If we're setting the same range as last time the change
3679 * should be a noop (some cpufreq implementations use the same
3680 * voltage for multiple frequencies, for example).
3681 */
3682 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3683 goto out;
3684
3685 /* If we're trying to set a range that overlaps the current voltage,
3686 * return successfully even though the regulator does not support
3687 * changing the voltage.
3688 */
3689 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3690 current_uV = regulator_get_voltage_rdev(rdev);
3691 if (min_uV <= current_uV && current_uV <= max_uV) {
3692 voltage->min_uV = min_uV;
3693 voltage->max_uV = max_uV;
3694 goto out;
3695 }
3696 }
3697
3698 /* sanity check */
3699 if (!rdev->desc->ops->set_voltage &&
3700 !rdev->desc->ops->set_voltage_sel) {
3701 ret = -EINVAL;
3702 goto out;
3703 }
3704
3705 /* constraints check */
3706 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3707 if (ret < 0)
3708 goto out;
3709
3710 /* restore original values in case of error */
3711 old_min_uV = voltage->min_uV;
3712 old_max_uV = voltage->max_uV;
3713 voltage->min_uV = min_uV;
3714 voltage->max_uV = max_uV;
3715
3716 /* for not coupled regulators this will just set the voltage */
3717 ret = regulator_balance_voltage(rdev, state);
3718 if (ret < 0) {
3719 voltage->min_uV = old_min_uV;
3720 voltage->max_uV = old_max_uV;
3721 }
3722
3723out:
3724 return ret;
3725}
3726
3727int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3728 int max_uV, suspend_state_t state)
3729{
3730 int best_supply_uV = 0;
3731 int supply_change_uV = 0;
3732 int ret;
3733
3734 if (rdev->supply &&
3735 regulator_ops_is_valid(rdev->supply->rdev,
3736 REGULATOR_CHANGE_VOLTAGE) &&
3737 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3738 rdev->desc->ops->get_voltage_sel))) {
3739 int current_supply_uV;
3740 int selector;
3741
3742 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3743 if (selector < 0) {
3744 ret = selector;
3745 goto out;
3746 }
3747
3748 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3749 if (best_supply_uV < 0) {
3750 ret = best_supply_uV;
3751 goto out;
3752 }
3753
3754 best_supply_uV += rdev->desc->min_dropout_uV;
3755
3756 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3757 if (current_supply_uV < 0) {
3758 ret = current_supply_uV;
3759 goto out;
3760 }
3761
3762 supply_change_uV = best_supply_uV - current_supply_uV;
3763 }
3764
3765 if (supply_change_uV > 0) {
3766 ret = regulator_set_voltage_unlocked(rdev->supply,
3767 best_supply_uV, INT_MAX, state);
3768 if (ret) {
3769 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3770 ERR_PTR(ret));
3771 goto out;
3772 }
3773 }
3774
3775 if (state == PM_SUSPEND_ON)
3776 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3777 else
3778 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3779 max_uV, state);
3780 if (ret < 0)
3781 goto out;
3782
3783 if (supply_change_uV < 0) {
3784 ret = regulator_set_voltage_unlocked(rdev->supply,
3785 best_supply_uV, INT_MAX, state);
3786 if (ret)
3787 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3788 ERR_PTR(ret));
3789 /* No need to fail here */
3790 ret = 0;
3791 }
3792
3793out:
3794 return ret;
3795}
3796EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3797
3798static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3799 int *current_uV, int *min_uV)
3800{
3801 struct regulation_constraints *constraints = rdev->constraints;
3802
3803 /* Limit voltage change only if necessary */
3804 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3805 return 1;
3806
3807 if (*current_uV < 0) {
3808 *current_uV = regulator_get_voltage_rdev(rdev);
3809
3810 if (*current_uV < 0)
3811 return *current_uV;
3812 }
3813
3814 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3815 return 1;
3816
3817 /* Clamp target voltage within the given step */
3818 if (*current_uV < *min_uV)
3819 *min_uV = min(*current_uV + constraints->max_uV_step,
3820 *min_uV);
3821 else
3822 *min_uV = max(*current_uV - constraints->max_uV_step,
3823 *min_uV);
3824
3825 return 0;
3826}
3827
3828static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3829 int *current_uV,
3830 int *min_uV, int *max_uV,
3831 suspend_state_t state,
3832 int n_coupled)
3833{
3834 struct coupling_desc *c_desc = &rdev->coupling_desc;
3835 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3836 struct regulation_constraints *constraints = rdev->constraints;
3837 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3838 int max_current_uV = 0, min_current_uV = INT_MAX;
3839 int highest_min_uV = 0, target_uV, possible_uV;
3840 int i, ret, max_spread;
3841 bool done;
3842
3843 *current_uV = -1;
3844
3845 /*
3846 * If there are no coupled regulators, simply set the voltage
3847 * demanded by consumers.
3848 */
3849 if (n_coupled == 1) {
3850 /*
3851 * If consumers don't provide any demands, set voltage
3852 * to min_uV
3853 */
3854 desired_min_uV = constraints->min_uV;
3855 desired_max_uV = constraints->max_uV;
3856
3857 ret = regulator_check_consumers(rdev,
3858 &desired_min_uV,
3859 &desired_max_uV, state);
3860 if (ret < 0)
3861 return ret;
3862
3863 possible_uV = desired_min_uV;
3864 done = true;
3865
3866 goto finish;
3867 }
3868
3869 /* Find highest min desired voltage */
3870 for (i = 0; i < n_coupled; i++) {
3871 int tmp_min = 0;
3872 int tmp_max = INT_MAX;
3873
3874 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3875
3876 ret = regulator_check_consumers(c_rdevs[i],
3877 &tmp_min,
3878 &tmp_max, state);
3879 if (ret < 0)
3880 return ret;
3881
3882 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3883 if (ret < 0)
3884 return ret;
3885
3886 highest_min_uV = max(highest_min_uV, tmp_min);
3887
3888 if (i == 0) {
3889 desired_min_uV = tmp_min;
3890 desired_max_uV = tmp_max;
3891 }
3892 }
3893
3894 max_spread = constraints->max_spread[0];
3895
3896 /*
3897 * Let target_uV be equal to the desired one if possible.
3898 * If not, set it to minimum voltage, allowed by other coupled
3899 * regulators.
3900 */
3901 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3902
3903 /*
3904 * Find min and max voltages, which currently aren't violating
3905 * max_spread.
3906 */
3907 for (i = 1; i < n_coupled; i++) {
3908 int tmp_act;
3909
3910 if (!_regulator_is_enabled(c_rdevs[i]))
3911 continue;
3912
3913 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3914 if (tmp_act < 0)
3915 return tmp_act;
3916
3917 min_current_uV = min(tmp_act, min_current_uV);
3918 max_current_uV = max(tmp_act, max_current_uV);
3919 }
3920
3921 /* There aren't any other regulators enabled */
3922 if (max_current_uV == 0) {
3923 possible_uV = target_uV;
3924 } else {
3925 /*
3926 * Correct target voltage, so as it currently isn't
3927 * violating max_spread
3928 */
3929 possible_uV = max(target_uV, max_current_uV - max_spread);
3930 possible_uV = min(possible_uV, min_current_uV + max_spread);
3931 }
3932
3933 if (possible_uV > desired_max_uV)
3934 return -EINVAL;
3935
3936 done = (possible_uV == target_uV);
3937 desired_min_uV = possible_uV;
3938
3939finish:
3940 /* Apply max_uV_step constraint if necessary */
3941 if (state == PM_SUSPEND_ON) {
3942 ret = regulator_limit_voltage_step(rdev, current_uV,
3943 &desired_min_uV);
3944 if (ret < 0)
3945 return ret;
3946
3947 if (ret == 0)
3948 done = false;
3949 }
3950
3951 /* Set current_uV if wasn't done earlier in the code and if necessary */
3952 if (n_coupled > 1 && *current_uV == -1) {
3953
3954 if (_regulator_is_enabled(rdev)) {
3955 ret = regulator_get_voltage_rdev(rdev);
3956 if (ret < 0)
3957 return ret;
3958
3959 *current_uV = ret;
3960 } else {
3961 *current_uV = desired_min_uV;
3962 }
3963 }
3964
3965 *min_uV = desired_min_uV;
3966 *max_uV = desired_max_uV;
3967
3968 return done;
3969}
3970
3971int regulator_do_balance_voltage(struct regulator_dev *rdev,
3972 suspend_state_t state, bool skip_coupled)
3973{
3974 struct regulator_dev **c_rdevs;
3975 struct regulator_dev *best_rdev;
3976 struct coupling_desc *c_desc = &rdev->coupling_desc;
3977 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3978 unsigned int delta, best_delta;
3979 unsigned long c_rdev_done = 0;
3980 bool best_c_rdev_done;
3981
3982 c_rdevs = c_desc->coupled_rdevs;
3983 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3984
3985 /*
3986 * Find the best possible voltage change on each loop. Leave the loop
3987 * if there isn't any possible change.
3988 */
3989 do {
3990 best_c_rdev_done = false;
3991 best_delta = 0;
3992 best_min_uV = 0;
3993 best_max_uV = 0;
3994 best_c_rdev = 0;
3995 best_rdev = NULL;
3996
3997 /*
3998 * Find highest difference between optimal voltage
3999 * and current voltage.
4000 */
4001 for (i = 0; i < n_coupled; i++) {
4002 /*
4003 * optimal_uV is the best voltage that can be set for
4004 * i-th regulator at the moment without violating
4005 * max_spread constraint in order to balance
4006 * the coupled voltages.
4007 */
4008 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4009
4010 if (test_bit(i, &c_rdev_done))
4011 continue;
4012
4013 ret = regulator_get_optimal_voltage(c_rdevs[i],
4014 ¤t_uV,
4015 &optimal_uV,
4016 &optimal_max_uV,
4017 state, n_coupled);
4018 if (ret < 0)
4019 goto out;
4020
4021 delta = abs(optimal_uV - current_uV);
4022
4023 if (delta && best_delta <= delta) {
4024 best_c_rdev_done = ret;
4025 best_delta = delta;
4026 best_rdev = c_rdevs[i];
4027 best_min_uV = optimal_uV;
4028 best_max_uV = optimal_max_uV;
4029 best_c_rdev = i;
4030 }
4031 }
4032
4033 /* Nothing to change, return successfully */
4034 if (!best_rdev) {
4035 ret = 0;
4036 goto out;
4037 }
4038
4039 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4040 best_max_uV, state);
4041
4042 if (ret < 0)
4043 goto out;
4044
4045 if (best_c_rdev_done)
4046 set_bit(best_c_rdev, &c_rdev_done);
4047
4048 } while (n_coupled > 1);
4049
4050out:
4051 return ret;
4052}
4053
4054static int regulator_balance_voltage(struct regulator_dev *rdev,
4055 suspend_state_t state)
4056{
4057 struct coupling_desc *c_desc = &rdev->coupling_desc;
4058 struct regulator_coupler *coupler = c_desc->coupler;
4059 bool skip_coupled = false;
4060
4061 /*
4062 * If system is in a state other than PM_SUSPEND_ON, don't check
4063 * other coupled regulators.
4064 */
4065 if (state != PM_SUSPEND_ON)
4066 skip_coupled = true;
4067
4068 if (c_desc->n_resolved < c_desc->n_coupled) {
4069 rdev_err(rdev, "Not all coupled regulators registered\n");
4070 return -EPERM;
4071 }
4072
4073 /* Invoke custom balancer for customized couplers */
4074 if (coupler && coupler->balance_voltage)
4075 return coupler->balance_voltage(coupler, rdev, state);
4076
4077 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4078}
4079
4080/**
4081 * regulator_set_voltage - set regulator output voltage
4082 * @regulator: regulator source
4083 * @min_uV: Minimum required voltage in uV
4084 * @max_uV: Maximum acceptable voltage in uV
4085 *
4086 * Sets a voltage regulator to the desired output voltage. This can be set
4087 * during any regulator state. IOW, regulator can be disabled or enabled.
4088 *
4089 * If the regulator is enabled then the voltage will change to the new value
4090 * immediately otherwise if the regulator is disabled the regulator will
4091 * output at the new voltage when enabled.
4092 *
4093 * NOTE: If the regulator is shared between several devices then the lowest
4094 * request voltage that meets the system constraints will be used.
4095 * Regulator system constraints must be set for this regulator before
4096 * calling this function otherwise this call will fail.
4097 */
4098int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4099{
4100 struct ww_acquire_ctx ww_ctx;
4101 int ret;
4102
4103 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4104
4105 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4106 PM_SUSPEND_ON);
4107
4108 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4109
4110 return ret;
4111}
4112EXPORT_SYMBOL_GPL(regulator_set_voltage);
4113
4114static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4115 suspend_state_t state, bool en)
4116{
4117 struct regulator_state *rstate;
4118
4119 rstate = regulator_get_suspend_state(rdev, state);
4120 if (rstate == NULL)
4121 return -EINVAL;
4122
4123 if (!rstate->changeable)
4124 return -EPERM;
4125
4126 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4127
4128 return 0;
4129}
4130
4131int regulator_suspend_enable(struct regulator_dev *rdev,
4132 suspend_state_t state)
4133{
4134 return regulator_suspend_toggle(rdev, state, true);
4135}
4136EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4137
4138int regulator_suspend_disable(struct regulator_dev *rdev,
4139 suspend_state_t state)
4140{
4141 struct regulator *regulator;
4142 struct regulator_voltage *voltage;
4143
4144 /*
4145 * if any consumer wants this regulator device keeping on in
4146 * suspend states, don't set it as disabled.
4147 */
4148 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4149 voltage = ®ulator->voltage[state];
4150 if (voltage->min_uV || voltage->max_uV)
4151 return 0;
4152 }
4153
4154 return regulator_suspend_toggle(rdev, state, false);
4155}
4156EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4157
4158static int _regulator_set_suspend_voltage(struct regulator *regulator,
4159 int min_uV, int max_uV,
4160 suspend_state_t state)
4161{
4162 struct regulator_dev *rdev = regulator->rdev;
4163 struct regulator_state *rstate;
4164
4165 rstate = regulator_get_suspend_state(rdev, state);
4166 if (rstate == NULL)
4167 return -EINVAL;
4168
4169 if (rstate->min_uV == rstate->max_uV) {
4170 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4171 return -EPERM;
4172 }
4173
4174 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4175}
4176
4177int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4178 int max_uV, suspend_state_t state)
4179{
4180 struct ww_acquire_ctx ww_ctx;
4181 int ret;
4182
4183 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4184 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4185 return -EINVAL;
4186
4187 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4188
4189 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4190 max_uV, state);
4191
4192 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4193
4194 return ret;
4195}
4196EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4197
4198/**
4199 * regulator_set_voltage_time - get raise/fall time
4200 * @regulator: regulator source
4201 * @old_uV: starting voltage in microvolts
4202 * @new_uV: target voltage in microvolts
4203 *
4204 * Provided with the starting and ending voltage, this function attempts to
4205 * calculate the time in microseconds required to rise or fall to this new
4206 * voltage.
4207 */
4208int regulator_set_voltage_time(struct regulator *regulator,
4209 int old_uV, int new_uV)
4210{
4211 struct regulator_dev *rdev = regulator->rdev;
4212 const struct regulator_ops *ops = rdev->desc->ops;
4213 int old_sel = -1;
4214 int new_sel = -1;
4215 int voltage;
4216 int i;
4217
4218 if (ops->set_voltage_time)
4219 return ops->set_voltage_time(rdev, old_uV, new_uV);
4220 else if (!ops->set_voltage_time_sel)
4221 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4222
4223 /* Currently requires operations to do this */
4224 if (!ops->list_voltage || !rdev->desc->n_voltages)
4225 return -EINVAL;
4226
4227 for (i = 0; i < rdev->desc->n_voltages; i++) {
4228 /* We only look for exact voltage matches here */
4229 if (i < rdev->desc->linear_min_sel)
4230 continue;
4231
4232 if (old_sel >= 0 && new_sel >= 0)
4233 break;
4234
4235 voltage = regulator_list_voltage(regulator, i);
4236 if (voltage < 0)
4237 return -EINVAL;
4238 if (voltage == 0)
4239 continue;
4240 if (voltage == old_uV)
4241 old_sel = i;
4242 if (voltage == new_uV)
4243 new_sel = i;
4244 }
4245
4246 if (old_sel < 0 || new_sel < 0)
4247 return -EINVAL;
4248
4249 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4250}
4251EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4252
4253/**
4254 * regulator_set_voltage_time_sel - get raise/fall time
4255 * @rdev: regulator source device
4256 * @old_selector: selector for starting voltage
4257 * @new_selector: selector for target voltage
4258 *
4259 * Provided with the starting and target voltage selectors, this function
4260 * returns time in microseconds required to rise or fall to this new voltage
4261 *
4262 * Drivers providing ramp_delay in regulation_constraints can use this as their
4263 * set_voltage_time_sel() operation.
4264 */
4265int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4266 unsigned int old_selector,
4267 unsigned int new_selector)
4268{
4269 int old_volt, new_volt;
4270
4271 /* sanity check */
4272 if (!rdev->desc->ops->list_voltage)
4273 return -EINVAL;
4274
4275 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4276 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4277
4278 if (rdev->desc->ops->set_voltage_time)
4279 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4280 new_volt);
4281 else
4282 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4285
4286int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4287{
4288 int ret;
4289
4290 regulator_lock(rdev);
4291
4292 if (!rdev->desc->ops->set_voltage &&
4293 !rdev->desc->ops->set_voltage_sel) {
4294 ret = -EINVAL;
4295 goto out;
4296 }
4297
4298 /* balance only, if regulator is coupled */
4299 if (rdev->coupling_desc.n_coupled > 1)
4300 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4301 else
4302 ret = -EOPNOTSUPP;
4303
4304out:
4305 regulator_unlock(rdev);
4306 return ret;
4307}
4308
4309/**
4310 * regulator_sync_voltage - re-apply last regulator output voltage
4311 * @regulator: regulator source
4312 *
4313 * Re-apply the last configured voltage. This is intended to be used
4314 * where some external control source the consumer is cooperating with
4315 * has caused the configured voltage to change.
4316 */
4317int regulator_sync_voltage(struct regulator *regulator)
4318{
4319 struct regulator_dev *rdev = regulator->rdev;
4320 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4321 int ret, min_uV, max_uV;
4322
4323 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4324 return 0;
4325
4326 regulator_lock(rdev);
4327
4328 if (!rdev->desc->ops->set_voltage &&
4329 !rdev->desc->ops->set_voltage_sel) {
4330 ret = -EINVAL;
4331 goto out;
4332 }
4333
4334 /* This is only going to work if we've had a voltage configured. */
4335 if (!voltage->min_uV && !voltage->max_uV) {
4336 ret = -EINVAL;
4337 goto out;
4338 }
4339
4340 min_uV = voltage->min_uV;
4341 max_uV = voltage->max_uV;
4342
4343 /* This should be a paranoia check... */
4344 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4345 if (ret < 0)
4346 goto out;
4347
4348 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4349 if (ret < 0)
4350 goto out;
4351
4352 /* balance only, if regulator is coupled */
4353 if (rdev->coupling_desc.n_coupled > 1)
4354 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4355 else
4356 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4357
4358out:
4359 regulator_unlock(rdev);
4360 return ret;
4361}
4362EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4363
4364int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4365{
4366 int sel, ret;
4367 bool bypassed;
4368
4369 if (rdev->desc->ops->get_bypass) {
4370 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4371 if (ret < 0)
4372 return ret;
4373 if (bypassed) {
4374 /* if bypassed the regulator must have a supply */
4375 if (!rdev->supply) {
4376 rdev_err(rdev,
4377 "bypassed regulator has no supply!\n");
4378 return -EPROBE_DEFER;
4379 }
4380
4381 return regulator_get_voltage_rdev(rdev->supply->rdev);
4382 }
4383 }
4384
4385 if (rdev->desc->ops->get_voltage_sel) {
4386 sel = rdev->desc->ops->get_voltage_sel(rdev);
4387 if (sel < 0)
4388 return sel;
4389 ret = rdev->desc->ops->list_voltage(rdev, sel);
4390 } else if (rdev->desc->ops->get_voltage) {
4391 ret = rdev->desc->ops->get_voltage(rdev);
4392 } else if (rdev->desc->ops->list_voltage) {
4393 ret = rdev->desc->ops->list_voltage(rdev, 0);
4394 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4395 ret = rdev->desc->fixed_uV;
4396 } else if (rdev->supply) {
4397 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4398 } else if (rdev->supply_name) {
4399 return -EPROBE_DEFER;
4400 } else {
4401 return -EINVAL;
4402 }
4403
4404 if (ret < 0)
4405 return ret;
4406 return ret - rdev->constraints->uV_offset;
4407}
4408EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4409
4410/**
4411 * regulator_get_voltage - get regulator output voltage
4412 * @regulator: regulator source
4413 *
4414 * This returns the current regulator voltage in uV.
4415 *
4416 * NOTE: If the regulator is disabled it will return the voltage value. This
4417 * function should not be used to determine regulator state.
4418 */
4419int regulator_get_voltage(struct regulator *regulator)
4420{
4421 struct ww_acquire_ctx ww_ctx;
4422 int ret;
4423
4424 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4425 ret = regulator_get_voltage_rdev(regulator->rdev);
4426 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4427
4428 return ret;
4429}
4430EXPORT_SYMBOL_GPL(regulator_get_voltage);
4431
4432/**
4433 * regulator_set_current_limit - set regulator output current limit
4434 * @regulator: regulator source
4435 * @min_uA: Minimum supported current in uA
4436 * @max_uA: Maximum supported current in uA
4437 *
4438 * Sets current sink to the desired output current. This can be set during
4439 * any regulator state. IOW, regulator can be disabled or enabled.
4440 *
4441 * If the regulator is enabled then the current will change to the new value
4442 * immediately otherwise if the regulator is disabled the regulator will
4443 * output at the new current when enabled.
4444 *
4445 * NOTE: Regulator system constraints must be set for this regulator before
4446 * calling this function otherwise this call will fail.
4447 */
4448int regulator_set_current_limit(struct regulator *regulator,
4449 int min_uA, int max_uA)
4450{
4451 struct regulator_dev *rdev = regulator->rdev;
4452 int ret;
4453
4454 regulator_lock(rdev);
4455
4456 /* sanity check */
4457 if (!rdev->desc->ops->set_current_limit) {
4458 ret = -EINVAL;
4459 goto out;
4460 }
4461
4462 /* constraints check */
4463 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4464 if (ret < 0)
4465 goto out;
4466
4467 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4468out:
4469 regulator_unlock(rdev);
4470 return ret;
4471}
4472EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4473
4474static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4475{
4476 /* sanity check */
4477 if (!rdev->desc->ops->get_current_limit)
4478 return -EINVAL;
4479
4480 return rdev->desc->ops->get_current_limit(rdev);
4481}
4482
4483static int _regulator_get_current_limit(struct regulator_dev *rdev)
4484{
4485 int ret;
4486
4487 regulator_lock(rdev);
4488 ret = _regulator_get_current_limit_unlocked(rdev);
4489 regulator_unlock(rdev);
4490
4491 return ret;
4492}
4493
4494/**
4495 * regulator_get_current_limit - get regulator output current
4496 * @regulator: regulator source
4497 *
4498 * This returns the current supplied by the specified current sink in uA.
4499 *
4500 * NOTE: If the regulator is disabled it will return the current value. This
4501 * function should not be used to determine regulator state.
4502 */
4503int regulator_get_current_limit(struct regulator *regulator)
4504{
4505 return _regulator_get_current_limit(regulator->rdev);
4506}
4507EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4508
4509/**
4510 * regulator_set_mode - set regulator operating mode
4511 * @regulator: regulator source
4512 * @mode: operating mode - one of the REGULATOR_MODE constants
4513 *
4514 * Set regulator operating mode to increase regulator efficiency or improve
4515 * regulation performance.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
4520int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4521{
4522 struct regulator_dev *rdev = regulator->rdev;
4523 int ret;
4524 int regulator_curr_mode;
4525
4526 regulator_lock(rdev);
4527
4528 /* sanity check */
4529 if (!rdev->desc->ops->set_mode) {
4530 ret = -EINVAL;
4531 goto out;
4532 }
4533
4534 /* return if the same mode is requested */
4535 if (rdev->desc->ops->get_mode) {
4536 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4537 if (regulator_curr_mode == mode) {
4538 ret = 0;
4539 goto out;
4540 }
4541 }
4542
4543 /* constraints check */
4544 ret = regulator_mode_constrain(rdev, &mode);
4545 if (ret < 0)
4546 goto out;
4547
4548 ret = rdev->desc->ops->set_mode(rdev, mode);
4549out:
4550 regulator_unlock(rdev);
4551 return ret;
4552}
4553EXPORT_SYMBOL_GPL(regulator_set_mode);
4554
4555static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4556{
4557 /* sanity check */
4558 if (!rdev->desc->ops->get_mode)
4559 return -EINVAL;
4560
4561 return rdev->desc->ops->get_mode(rdev);
4562}
4563
4564static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4565{
4566 int ret;
4567
4568 regulator_lock(rdev);
4569 ret = _regulator_get_mode_unlocked(rdev);
4570 regulator_unlock(rdev);
4571
4572 return ret;
4573}
4574
4575/**
4576 * regulator_get_mode - get regulator operating mode
4577 * @regulator: regulator source
4578 *
4579 * Get the current regulator operating mode.
4580 */
4581unsigned int regulator_get_mode(struct regulator *regulator)
4582{
4583 return _regulator_get_mode(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_mode);
4586
4587static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4588{
4589 int ret = 0;
4590
4591 if (rdev->use_cached_err) {
4592 spin_lock(&rdev->err_lock);
4593 ret = rdev->cached_err;
4594 spin_unlock(&rdev->err_lock);
4595 }
4596 return ret;
4597}
4598
4599static int _regulator_get_error_flags(struct regulator_dev *rdev,
4600 unsigned int *flags)
4601{
4602 int cached_flags, ret = 0;
4603
4604 regulator_lock(rdev);
4605
4606 cached_flags = rdev_get_cached_err_flags(rdev);
4607
4608 if (rdev->desc->ops->get_error_flags)
4609 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4610 else if (!rdev->use_cached_err)
4611 ret = -EINVAL;
4612
4613 *flags |= cached_flags;
4614
4615 regulator_unlock(rdev);
4616
4617 return ret;
4618}
4619
4620/**
4621 * regulator_get_error_flags - get regulator error information
4622 * @regulator: regulator source
4623 * @flags: pointer to store error flags
4624 *
4625 * Get the current regulator error information.
4626 */
4627int regulator_get_error_flags(struct regulator *regulator,
4628 unsigned int *flags)
4629{
4630 return _regulator_get_error_flags(regulator->rdev, flags);
4631}
4632EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4633
4634/**
4635 * regulator_set_load - set regulator load
4636 * @regulator: regulator source
4637 * @uA_load: load current
4638 *
4639 * Notifies the regulator core of a new device load. This is then used by
4640 * DRMS (if enabled by constraints) to set the most efficient regulator
4641 * operating mode for the new regulator loading.
4642 *
4643 * Consumer devices notify their supply regulator of the maximum power
4644 * they will require (can be taken from device datasheet in the power
4645 * consumption tables) when they change operational status and hence power
4646 * state. Examples of operational state changes that can affect power
4647 * consumption are :-
4648 *
4649 * o Device is opened / closed.
4650 * o Device I/O is about to begin or has just finished.
4651 * o Device is idling in between work.
4652 *
4653 * This information is also exported via sysfs to userspace.
4654 *
4655 * DRMS will sum the total requested load on the regulator and change
4656 * to the most efficient operating mode if platform constraints allow.
4657 *
4658 * NOTE: when a regulator consumer requests to have a regulator
4659 * disabled then any load that consumer requested no longer counts
4660 * toward the total requested load. If the regulator is re-enabled
4661 * then the previously requested load will start counting again.
4662 *
4663 * If a regulator is an always-on regulator then an individual consumer's
4664 * load will still be removed if that consumer is fully disabled.
4665 *
4666 * On error a negative errno is returned.
4667 */
4668int regulator_set_load(struct regulator *regulator, int uA_load)
4669{
4670 struct regulator_dev *rdev = regulator->rdev;
4671 int old_uA_load;
4672 int ret = 0;
4673
4674 regulator_lock(rdev);
4675 old_uA_load = regulator->uA_load;
4676 regulator->uA_load = uA_load;
4677 if (regulator->enable_count && old_uA_load != uA_load) {
4678 ret = drms_uA_update(rdev);
4679 if (ret < 0)
4680 regulator->uA_load = old_uA_load;
4681 }
4682 regulator_unlock(rdev);
4683
4684 return ret;
4685}
4686EXPORT_SYMBOL_GPL(regulator_set_load);
4687
4688/**
4689 * regulator_allow_bypass - allow the regulator to go into bypass mode
4690 *
4691 * @regulator: Regulator to configure
4692 * @enable: enable or disable bypass mode
4693 *
4694 * Allow the regulator to go into bypass mode if all other consumers
4695 * for the regulator also enable bypass mode and the machine
4696 * constraints allow this. Bypass mode means that the regulator is
4697 * simply passing the input directly to the output with no regulation.
4698 */
4699int regulator_allow_bypass(struct regulator *regulator, bool enable)
4700{
4701 struct regulator_dev *rdev = regulator->rdev;
4702 const char *name = rdev_get_name(rdev);
4703 int ret = 0;
4704
4705 if (!rdev->desc->ops->set_bypass)
4706 return 0;
4707
4708 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4709 return 0;
4710
4711 regulator_lock(rdev);
4712
4713 if (enable && !regulator->bypass) {
4714 rdev->bypass_count++;
4715
4716 if (rdev->bypass_count == rdev->open_count) {
4717 trace_regulator_bypass_enable(name);
4718
4719 ret = rdev->desc->ops->set_bypass(rdev, enable);
4720 if (ret != 0)
4721 rdev->bypass_count--;
4722 else
4723 trace_regulator_bypass_enable_complete(name);
4724 }
4725
4726 } else if (!enable && regulator->bypass) {
4727 rdev->bypass_count--;
4728
4729 if (rdev->bypass_count != rdev->open_count) {
4730 trace_regulator_bypass_disable(name);
4731
4732 ret = rdev->desc->ops->set_bypass(rdev, enable);
4733 if (ret != 0)
4734 rdev->bypass_count++;
4735 else
4736 trace_regulator_bypass_disable_complete(name);
4737 }
4738 }
4739
4740 if (ret == 0)
4741 regulator->bypass = enable;
4742
4743 regulator_unlock(rdev);
4744
4745 return ret;
4746}
4747EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4748
4749/**
4750 * regulator_register_notifier - register regulator event notifier
4751 * @regulator: regulator source
4752 * @nb: notifier block
4753 *
4754 * Register notifier block to receive regulator events.
4755 */
4756int regulator_register_notifier(struct regulator *regulator,
4757 struct notifier_block *nb)
4758{
4759 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4760 nb);
4761}
4762EXPORT_SYMBOL_GPL(regulator_register_notifier);
4763
4764/**
4765 * regulator_unregister_notifier - unregister regulator event notifier
4766 * @regulator: regulator source
4767 * @nb: notifier block
4768 *
4769 * Unregister regulator event notifier block.
4770 */
4771int regulator_unregister_notifier(struct regulator *regulator,
4772 struct notifier_block *nb)
4773{
4774 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4775 nb);
4776}
4777EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4778
4779/* notify regulator consumers and downstream regulator consumers.
4780 * Note mutex must be held by caller.
4781 */
4782static int _notifier_call_chain(struct regulator_dev *rdev,
4783 unsigned long event, void *data)
4784{
4785 /* call rdev chain first */
4786 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4787}
4788
4789int _regulator_bulk_get(struct device *dev, int num_consumers,
4790 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4791{
4792 int i;
4793 int ret;
4794
4795 for (i = 0; i < num_consumers; i++)
4796 consumers[i].consumer = NULL;
4797
4798 for (i = 0; i < num_consumers; i++) {
4799 consumers[i].consumer = _regulator_get(dev,
4800 consumers[i].supply, get_type);
4801 if (IS_ERR(consumers[i].consumer)) {
4802 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4803 "Failed to get supply '%s'",
4804 consumers[i].supply);
4805 consumers[i].consumer = NULL;
4806 goto err;
4807 }
4808
4809 if (consumers[i].init_load_uA > 0) {
4810 ret = regulator_set_load(consumers[i].consumer,
4811 consumers[i].init_load_uA);
4812 if (ret) {
4813 i++;
4814 goto err;
4815 }
4816 }
4817 }
4818
4819 return 0;
4820
4821err:
4822 while (--i >= 0)
4823 regulator_put(consumers[i].consumer);
4824
4825 return ret;
4826}
4827
4828/**
4829 * regulator_bulk_get - get multiple regulator consumers
4830 *
4831 * @dev: Device to supply
4832 * @num_consumers: Number of consumers to register
4833 * @consumers: Configuration of consumers; clients are stored here.
4834 *
4835 * @return 0 on success, an errno on failure.
4836 *
4837 * This helper function allows drivers to get several regulator
4838 * consumers in one operation. If any of the regulators cannot be
4839 * acquired then any regulators that were allocated will be freed
4840 * before returning to the caller.
4841 */
4842int regulator_bulk_get(struct device *dev, int num_consumers,
4843 struct regulator_bulk_data *consumers)
4844{
4845 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4846}
4847EXPORT_SYMBOL_GPL(regulator_bulk_get);
4848
4849static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4850{
4851 struct regulator_bulk_data *bulk = data;
4852
4853 bulk->ret = regulator_enable(bulk->consumer);
4854}
4855
4856/**
4857 * regulator_bulk_enable - enable multiple regulator consumers
4858 *
4859 * @num_consumers: Number of consumers
4860 * @consumers: Consumer data; clients are stored here.
4861 * @return 0 on success, an errno on failure
4862 *
4863 * This convenience API allows consumers to enable multiple regulator
4864 * clients in a single API call. If any consumers cannot be enabled
4865 * then any others that were enabled will be disabled again prior to
4866 * return.
4867 */
4868int regulator_bulk_enable(int num_consumers,
4869 struct regulator_bulk_data *consumers)
4870{
4871 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4872 int i;
4873 int ret = 0;
4874
4875 for (i = 0; i < num_consumers; i++) {
4876 async_schedule_domain(regulator_bulk_enable_async,
4877 &consumers[i], &async_domain);
4878 }
4879
4880 async_synchronize_full_domain(&async_domain);
4881
4882 /* If any consumer failed we need to unwind any that succeeded */
4883 for (i = 0; i < num_consumers; i++) {
4884 if (consumers[i].ret != 0) {
4885 ret = consumers[i].ret;
4886 goto err;
4887 }
4888 }
4889
4890 return 0;
4891
4892err:
4893 for (i = 0; i < num_consumers; i++) {
4894 if (consumers[i].ret < 0)
4895 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4896 ERR_PTR(consumers[i].ret));
4897 else
4898 regulator_disable(consumers[i].consumer);
4899 }
4900
4901 return ret;
4902}
4903EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4904
4905/**
4906 * regulator_bulk_disable - disable multiple regulator consumers
4907 *
4908 * @num_consumers: Number of consumers
4909 * @consumers: Consumer data; clients are stored here.
4910 * @return 0 on success, an errno on failure
4911 *
4912 * This convenience API allows consumers to disable multiple regulator
4913 * clients in a single API call. If any consumers cannot be disabled
4914 * then any others that were disabled will be enabled again prior to
4915 * return.
4916 */
4917int regulator_bulk_disable(int num_consumers,
4918 struct regulator_bulk_data *consumers)
4919{
4920 int i;
4921 int ret, r;
4922
4923 for (i = num_consumers - 1; i >= 0; --i) {
4924 ret = regulator_disable(consumers[i].consumer);
4925 if (ret != 0)
4926 goto err;
4927 }
4928
4929 return 0;
4930
4931err:
4932 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4933 for (++i; i < num_consumers; ++i) {
4934 r = regulator_enable(consumers[i].consumer);
4935 if (r != 0)
4936 pr_err("Failed to re-enable %s: %pe\n",
4937 consumers[i].supply, ERR_PTR(r));
4938 }
4939
4940 return ret;
4941}
4942EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4943
4944/**
4945 * regulator_bulk_force_disable - force disable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers: Consumer data; clients are stored here.
4949 * @return 0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to forcibly disable multiple regulator
4952 * clients in a single API call.
4953 * NOTE: This should be used for situations when device damage will
4954 * likely occur if the regulators are not disabled (e.g. over temp).
4955 * Although regulator_force_disable function call for some consumers can
4956 * return error numbers, the function is called for all consumers.
4957 */
4958int regulator_bulk_force_disable(int num_consumers,
4959 struct regulator_bulk_data *consumers)
4960{
4961 int i;
4962 int ret = 0;
4963
4964 for (i = 0; i < num_consumers; i++) {
4965 consumers[i].ret =
4966 regulator_force_disable(consumers[i].consumer);
4967
4968 /* Store first error for reporting */
4969 if (consumers[i].ret && !ret)
4970 ret = consumers[i].ret;
4971 }
4972
4973 return ret;
4974}
4975EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4976
4977/**
4978 * regulator_bulk_free - free multiple regulator consumers
4979 *
4980 * @num_consumers: Number of consumers
4981 * @consumers: Consumer data; clients are stored here.
4982 *
4983 * This convenience API allows consumers to free multiple regulator
4984 * clients in a single API call.
4985 */
4986void regulator_bulk_free(int num_consumers,
4987 struct regulator_bulk_data *consumers)
4988{
4989 int i;
4990
4991 for (i = 0; i < num_consumers; i++) {
4992 regulator_put(consumers[i].consumer);
4993 consumers[i].consumer = NULL;
4994 }
4995}
4996EXPORT_SYMBOL_GPL(regulator_bulk_free);
4997
4998/**
4999 * regulator_notifier_call_chain - call regulator event notifier
5000 * @rdev: regulator source
5001 * @event: notifier block
5002 * @data: callback-specific data.
5003 *
5004 * Called by regulator drivers to notify clients a regulator event has
5005 * occurred.
5006 */
5007int regulator_notifier_call_chain(struct regulator_dev *rdev,
5008 unsigned long event, void *data)
5009{
5010 _notifier_call_chain(rdev, event, data);
5011 return NOTIFY_DONE;
5012
5013}
5014EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5015
5016/**
5017 * regulator_mode_to_status - convert a regulator mode into a status
5018 *
5019 * @mode: Mode to convert
5020 *
5021 * Convert a regulator mode into a status.
5022 */
5023int regulator_mode_to_status(unsigned int mode)
5024{
5025 switch (mode) {
5026 case REGULATOR_MODE_FAST:
5027 return REGULATOR_STATUS_FAST;
5028 case REGULATOR_MODE_NORMAL:
5029 return REGULATOR_STATUS_NORMAL;
5030 case REGULATOR_MODE_IDLE:
5031 return REGULATOR_STATUS_IDLE;
5032 case REGULATOR_MODE_STANDBY:
5033 return REGULATOR_STATUS_STANDBY;
5034 default:
5035 return REGULATOR_STATUS_UNDEFINED;
5036 }
5037}
5038EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5039
5040static struct attribute *regulator_dev_attrs[] = {
5041 &dev_attr_name.attr,
5042 &dev_attr_num_users.attr,
5043 &dev_attr_type.attr,
5044 &dev_attr_microvolts.attr,
5045 &dev_attr_microamps.attr,
5046 &dev_attr_opmode.attr,
5047 &dev_attr_state.attr,
5048 &dev_attr_status.attr,
5049 &dev_attr_bypass.attr,
5050 &dev_attr_requested_microamps.attr,
5051 &dev_attr_min_microvolts.attr,
5052 &dev_attr_max_microvolts.attr,
5053 &dev_attr_min_microamps.attr,
5054 &dev_attr_max_microamps.attr,
5055 &dev_attr_under_voltage.attr,
5056 &dev_attr_over_current.attr,
5057 &dev_attr_regulation_out.attr,
5058 &dev_attr_fail.attr,
5059 &dev_attr_over_temp.attr,
5060 &dev_attr_under_voltage_warn.attr,
5061 &dev_attr_over_current_warn.attr,
5062 &dev_attr_over_voltage_warn.attr,
5063 &dev_attr_over_temp_warn.attr,
5064 &dev_attr_suspend_standby_state.attr,
5065 &dev_attr_suspend_mem_state.attr,
5066 &dev_attr_suspend_disk_state.attr,
5067 &dev_attr_suspend_standby_microvolts.attr,
5068 &dev_attr_suspend_mem_microvolts.attr,
5069 &dev_attr_suspend_disk_microvolts.attr,
5070 &dev_attr_suspend_standby_mode.attr,
5071 &dev_attr_suspend_mem_mode.attr,
5072 &dev_attr_suspend_disk_mode.attr,
5073 NULL
5074};
5075
5076/*
5077 * To avoid cluttering sysfs (and memory) with useless state, only
5078 * create attributes that can be meaningfully displayed.
5079 */
5080static umode_t regulator_attr_is_visible(struct kobject *kobj,
5081 struct attribute *attr, int idx)
5082{
5083 struct device *dev = kobj_to_dev(kobj);
5084 struct regulator_dev *rdev = dev_to_rdev(dev);
5085 const struct regulator_ops *ops = rdev->desc->ops;
5086 umode_t mode = attr->mode;
5087
5088 /* these three are always present */
5089 if (attr == &dev_attr_name.attr ||
5090 attr == &dev_attr_num_users.attr ||
5091 attr == &dev_attr_type.attr)
5092 return mode;
5093
5094 /* some attributes need specific methods to be displayed */
5095 if (attr == &dev_attr_microvolts.attr) {
5096 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5097 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5098 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5099 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5100 return mode;
5101 return 0;
5102 }
5103
5104 if (attr == &dev_attr_microamps.attr)
5105 return ops->get_current_limit ? mode : 0;
5106
5107 if (attr == &dev_attr_opmode.attr)
5108 return ops->get_mode ? mode : 0;
5109
5110 if (attr == &dev_attr_state.attr)
5111 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5112
5113 if (attr == &dev_attr_status.attr)
5114 return ops->get_status ? mode : 0;
5115
5116 if (attr == &dev_attr_bypass.attr)
5117 return ops->get_bypass ? mode : 0;
5118
5119 if (attr == &dev_attr_under_voltage.attr ||
5120 attr == &dev_attr_over_current.attr ||
5121 attr == &dev_attr_regulation_out.attr ||
5122 attr == &dev_attr_fail.attr ||
5123 attr == &dev_attr_over_temp.attr ||
5124 attr == &dev_attr_under_voltage_warn.attr ||
5125 attr == &dev_attr_over_current_warn.attr ||
5126 attr == &dev_attr_over_voltage_warn.attr ||
5127 attr == &dev_attr_over_temp_warn.attr)
5128 return ops->get_error_flags ? mode : 0;
5129
5130 /* constraints need specific supporting methods */
5131 if (attr == &dev_attr_min_microvolts.attr ||
5132 attr == &dev_attr_max_microvolts.attr)
5133 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5134
5135 if (attr == &dev_attr_min_microamps.attr ||
5136 attr == &dev_attr_max_microamps.attr)
5137 return ops->set_current_limit ? mode : 0;
5138
5139 if (attr == &dev_attr_suspend_standby_state.attr ||
5140 attr == &dev_attr_suspend_mem_state.attr ||
5141 attr == &dev_attr_suspend_disk_state.attr)
5142 return mode;
5143
5144 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5145 attr == &dev_attr_suspend_mem_microvolts.attr ||
5146 attr == &dev_attr_suspend_disk_microvolts.attr)
5147 return ops->set_suspend_voltage ? mode : 0;
5148
5149 if (attr == &dev_attr_suspend_standby_mode.attr ||
5150 attr == &dev_attr_suspend_mem_mode.attr ||
5151 attr == &dev_attr_suspend_disk_mode.attr)
5152 return ops->set_suspend_mode ? mode : 0;
5153
5154 return mode;
5155}
5156
5157static const struct attribute_group regulator_dev_group = {
5158 .attrs = regulator_dev_attrs,
5159 .is_visible = regulator_attr_is_visible,
5160};
5161
5162static const struct attribute_group *regulator_dev_groups[] = {
5163 ®ulator_dev_group,
5164 NULL
5165};
5166
5167static void regulator_dev_release(struct device *dev)
5168{
5169 struct regulator_dev *rdev = dev_get_drvdata(dev);
5170
5171 debugfs_remove_recursive(rdev->debugfs);
5172 kfree(rdev->constraints);
5173 of_node_put(rdev->dev.of_node);
5174 kfree(rdev);
5175}
5176
5177static void rdev_init_debugfs(struct regulator_dev *rdev)
5178{
5179 struct device *parent = rdev->dev.parent;
5180 const char *rname = rdev_get_name(rdev);
5181 char name[NAME_MAX];
5182
5183 /* Avoid duplicate debugfs directory names */
5184 if (parent && rname == rdev->desc->name) {
5185 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5186 rname);
5187 rname = name;
5188 }
5189
5190 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5191 if (!rdev->debugfs) {
5192 rdev_warn(rdev, "Failed to create debugfs directory\n");
5193 return;
5194 }
5195
5196 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5197 &rdev->use_count);
5198 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5199 &rdev->open_count);
5200 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5201 &rdev->bypass_count);
5202}
5203
5204static int regulator_register_resolve_supply(struct device *dev, void *data)
5205{
5206 struct regulator_dev *rdev = dev_to_rdev(dev);
5207
5208 if (regulator_resolve_supply(rdev))
5209 rdev_dbg(rdev, "unable to resolve supply\n");
5210
5211 return 0;
5212}
5213
5214int regulator_coupler_register(struct regulator_coupler *coupler)
5215{
5216 mutex_lock(®ulator_list_mutex);
5217 list_add_tail(&coupler->list, ®ulator_coupler_list);
5218 mutex_unlock(®ulator_list_mutex);
5219
5220 return 0;
5221}
5222
5223static struct regulator_coupler *
5224regulator_find_coupler(struct regulator_dev *rdev)
5225{
5226 struct regulator_coupler *coupler;
5227 int err;
5228
5229 /*
5230 * Note that regulators are appended to the list and the generic
5231 * coupler is registered first, hence it will be attached at last
5232 * if nobody cared.
5233 */
5234 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5235 err = coupler->attach_regulator(coupler, rdev);
5236 if (!err) {
5237 if (!coupler->balance_voltage &&
5238 rdev->coupling_desc.n_coupled > 2)
5239 goto err_unsupported;
5240
5241 return coupler;
5242 }
5243
5244 if (err < 0)
5245 return ERR_PTR(err);
5246
5247 if (err == 1)
5248 continue;
5249
5250 break;
5251 }
5252
5253 return ERR_PTR(-EINVAL);
5254
5255err_unsupported:
5256 if (coupler->detach_regulator)
5257 coupler->detach_regulator(coupler, rdev);
5258
5259 rdev_err(rdev,
5260 "Voltage balancing for multiple regulator couples is unimplemented\n");
5261
5262 return ERR_PTR(-EPERM);
5263}
5264
5265static void regulator_resolve_coupling(struct regulator_dev *rdev)
5266{
5267 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5268 struct coupling_desc *c_desc = &rdev->coupling_desc;
5269 int n_coupled = c_desc->n_coupled;
5270 struct regulator_dev *c_rdev;
5271 int i;
5272
5273 for (i = 1; i < n_coupled; i++) {
5274 /* already resolved */
5275 if (c_desc->coupled_rdevs[i])
5276 continue;
5277
5278 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5279
5280 if (!c_rdev)
5281 continue;
5282
5283 if (c_rdev->coupling_desc.coupler != coupler) {
5284 rdev_err(rdev, "coupler mismatch with %s\n",
5285 rdev_get_name(c_rdev));
5286 return;
5287 }
5288
5289 c_desc->coupled_rdevs[i] = c_rdev;
5290 c_desc->n_resolved++;
5291
5292 regulator_resolve_coupling(c_rdev);
5293 }
5294}
5295
5296static void regulator_remove_coupling(struct regulator_dev *rdev)
5297{
5298 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5299 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5300 struct regulator_dev *__c_rdev, *c_rdev;
5301 unsigned int __n_coupled, n_coupled;
5302 int i, k;
5303 int err;
5304
5305 n_coupled = c_desc->n_coupled;
5306
5307 for (i = 1; i < n_coupled; i++) {
5308 c_rdev = c_desc->coupled_rdevs[i];
5309
5310 if (!c_rdev)
5311 continue;
5312
5313 regulator_lock(c_rdev);
5314
5315 __c_desc = &c_rdev->coupling_desc;
5316 __n_coupled = __c_desc->n_coupled;
5317
5318 for (k = 1; k < __n_coupled; k++) {
5319 __c_rdev = __c_desc->coupled_rdevs[k];
5320
5321 if (__c_rdev == rdev) {
5322 __c_desc->coupled_rdevs[k] = NULL;
5323 __c_desc->n_resolved--;
5324 break;
5325 }
5326 }
5327
5328 regulator_unlock(c_rdev);
5329
5330 c_desc->coupled_rdevs[i] = NULL;
5331 c_desc->n_resolved--;
5332 }
5333
5334 if (coupler && coupler->detach_regulator) {
5335 err = coupler->detach_regulator(coupler, rdev);
5336 if (err)
5337 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5338 ERR_PTR(err));
5339 }
5340
5341 kfree(rdev->coupling_desc.coupled_rdevs);
5342 rdev->coupling_desc.coupled_rdevs = NULL;
5343}
5344
5345static int regulator_init_coupling(struct regulator_dev *rdev)
5346{
5347 struct regulator_dev **coupled;
5348 int err, n_phandles;
5349
5350 if (!IS_ENABLED(CONFIG_OF))
5351 n_phandles = 0;
5352 else
5353 n_phandles = of_get_n_coupled(rdev);
5354
5355 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5356 if (!coupled)
5357 return -ENOMEM;
5358
5359 rdev->coupling_desc.coupled_rdevs = coupled;
5360
5361 /*
5362 * Every regulator should always have coupling descriptor filled with
5363 * at least pointer to itself.
5364 */
5365 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5366 rdev->coupling_desc.n_coupled = n_phandles + 1;
5367 rdev->coupling_desc.n_resolved++;
5368
5369 /* regulator isn't coupled */
5370 if (n_phandles == 0)
5371 return 0;
5372
5373 if (!of_check_coupling_data(rdev))
5374 return -EPERM;
5375
5376 mutex_lock(®ulator_list_mutex);
5377 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5378 mutex_unlock(®ulator_list_mutex);
5379
5380 if (IS_ERR(rdev->coupling_desc.coupler)) {
5381 err = PTR_ERR(rdev->coupling_desc.coupler);
5382 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5383 return err;
5384 }
5385
5386 return 0;
5387}
5388
5389static int generic_coupler_attach(struct regulator_coupler *coupler,
5390 struct regulator_dev *rdev)
5391{
5392 if (rdev->coupling_desc.n_coupled > 2) {
5393 rdev_err(rdev,
5394 "Voltage balancing for multiple regulator couples is unimplemented\n");
5395 return -EPERM;
5396 }
5397
5398 if (!rdev->constraints->always_on) {
5399 rdev_err(rdev,
5400 "Coupling of a non always-on regulator is unimplemented\n");
5401 return -ENOTSUPP;
5402 }
5403
5404 return 0;
5405}
5406
5407static struct regulator_coupler generic_regulator_coupler = {
5408 .attach_regulator = generic_coupler_attach,
5409};
5410
5411/**
5412 * regulator_register - register regulator
5413 * @dev: the device that drive the regulator
5414 * @regulator_desc: regulator to register
5415 * @cfg: runtime configuration for regulator
5416 *
5417 * Called by regulator drivers to register a regulator.
5418 * Returns a valid pointer to struct regulator_dev on success
5419 * or an ERR_PTR() on error.
5420 */
5421struct regulator_dev *
5422regulator_register(struct device *dev,
5423 const struct regulator_desc *regulator_desc,
5424 const struct regulator_config *cfg)
5425{
5426 const struct regulator_init_data *init_data;
5427 struct regulator_config *config = NULL;
5428 static atomic_t regulator_no = ATOMIC_INIT(-1);
5429 struct regulator_dev *rdev;
5430 bool dangling_cfg_gpiod = false;
5431 bool dangling_of_gpiod = false;
5432 int ret, i;
5433 bool resolved_early = false;
5434
5435 if (cfg == NULL)
5436 return ERR_PTR(-EINVAL);
5437 if (cfg->ena_gpiod)
5438 dangling_cfg_gpiod = true;
5439 if (regulator_desc == NULL) {
5440 ret = -EINVAL;
5441 goto rinse;
5442 }
5443
5444 WARN_ON(!dev || !cfg->dev);
5445
5446 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5447 ret = -EINVAL;
5448 goto rinse;
5449 }
5450
5451 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5452 regulator_desc->type != REGULATOR_CURRENT) {
5453 ret = -EINVAL;
5454 goto rinse;
5455 }
5456
5457 /* Only one of each should be implemented */
5458 WARN_ON(regulator_desc->ops->get_voltage &&
5459 regulator_desc->ops->get_voltage_sel);
5460 WARN_ON(regulator_desc->ops->set_voltage &&
5461 regulator_desc->ops->set_voltage_sel);
5462
5463 /* If we're using selectors we must implement list_voltage. */
5464 if (regulator_desc->ops->get_voltage_sel &&
5465 !regulator_desc->ops->list_voltage) {
5466 ret = -EINVAL;
5467 goto rinse;
5468 }
5469 if (regulator_desc->ops->set_voltage_sel &&
5470 !regulator_desc->ops->list_voltage) {
5471 ret = -EINVAL;
5472 goto rinse;
5473 }
5474
5475 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5476 if (rdev == NULL) {
5477 ret = -ENOMEM;
5478 goto rinse;
5479 }
5480 device_initialize(&rdev->dev);
5481 spin_lock_init(&rdev->err_lock);
5482
5483 /*
5484 * Duplicate the config so the driver could override it after
5485 * parsing init data.
5486 */
5487 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5488 if (config == NULL) {
5489 ret = -ENOMEM;
5490 goto clean;
5491 }
5492
5493 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5494 &rdev->dev.of_node);
5495
5496 /*
5497 * Sometimes not all resources are probed already so we need to take
5498 * that into account. This happens most the time if the ena_gpiod comes
5499 * from a gpio extender or something else.
5500 */
5501 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5502 ret = -EPROBE_DEFER;
5503 goto clean;
5504 }
5505
5506 /*
5507 * We need to keep track of any GPIO descriptor coming from the
5508 * device tree until we have handled it over to the core. If the
5509 * config that was passed in to this function DOES NOT contain
5510 * a descriptor, and the config after this call DOES contain
5511 * a descriptor, we definitely got one from parsing the device
5512 * tree.
5513 */
5514 if (!cfg->ena_gpiod && config->ena_gpiod)
5515 dangling_of_gpiod = true;
5516 if (!init_data) {
5517 init_data = config->init_data;
5518 rdev->dev.of_node = of_node_get(config->of_node);
5519 }
5520
5521 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5522 rdev->reg_data = config->driver_data;
5523 rdev->owner = regulator_desc->owner;
5524 rdev->desc = regulator_desc;
5525 if (config->regmap)
5526 rdev->regmap = config->regmap;
5527 else if (dev_get_regmap(dev, NULL))
5528 rdev->regmap = dev_get_regmap(dev, NULL);
5529 else if (dev->parent)
5530 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5531 INIT_LIST_HEAD(&rdev->consumer_list);
5532 INIT_LIST_HEAD(&rdev->list);
5533 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5534 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5535
5536 if (init_data && init_data->supply_regulator)
5537 rdev->supply_name = init_data->supply_regulator;
5538 else if (regulator_desc->supply_name)
5539 rdev->supply_name = regulator_desc->supply_name;
5540
5541 /* register with sysfs */
5542 rdev->dev.class = ®ulator_class;
5543 rdev->dev.parent = config->dev;
5544 dev_set_name(&rdev->dev, "regulator.%lu",
5545 (unsigned long) atomic_inc_return(®ulator_no));
5546 dev_set_drvdata(&rdev->dev, rdev);
5547
5548 /* set regulator constraints */
5549 if (init_data)
5550 rdev->constraints = kmemdup(&init_data->constraints,
5551 sizeof(*rdev->constraints),
5552 GFP_KERNEL);
5553 else
5554 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5555 GFP_KERNEL);
5556 if (!rdev->constraints) {
5557 ret = -ENOMEM;
5558 goto wash;
5559 }
5560
5561 if ((rdev->supply_name && !rdev->supply) &&
5562 (rdev->constraints->always_on ||
5563 rdev->constraints->boot_on)) {
5564 ret = regulator_resolve_supply(rdev);
5565 if (ret)
5566 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5567 ERR_PTR(ret));
5568
5569 resolved_early = true;
5570 }
5571
5572 /* perform any regulator specific init */
5573 if (init_data && init_data->regulator_init) {
5574 ret = init_data->regulator_init(rdev->reg_data);
5575 if (ret < 0)
5576 goto wash;
5577 }
5578
5579 if (config->ena_gpiod) {
5580 ret = regulator_ena_gpio_request(rdev, config);
5581 if (ret != 0) {
5582 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5583 ERR_PTR(ret));
5584 goto wash;
5585 }
5586 /* The regulator core took over the GPIO descriptor */
5587 dangling_cfg_gpiod = false;
5588 dangling_of_gpiod = false;
5589 }
5590
5591 ret = set_machine_constraints(rdev);
5592 if (ret == -EPROBE_DEFER && !resolved_early) {
5593 /* Regulator might be in bypass mode and so needs its supply
5594 * to set the constraints
5595 */
5596 /* FIXME: this currently triggers a chicken-and-egg problem
5597 * when creating -SUPPLY symlink in sysfs to a regulator
5598 * that is just being created
5599 */
5600 rdev_dbg(rdev, "will resolve supply early: %s\n",
5601 rdev->supply_name);
5602 ret = regulator_resolve_supply(rdev);
5603 if (!ret)
5604 ret = set_machine_constraints(rdev);
5605 else
5606 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5607 ERR_PTR(ret));
5608 }
5609 if (ret < 0)
5610 goto wash;
5611
5612 ret = regulator_init_coupling(rdev);
5613 if (ret < 0)
5614 goto wash;
5615
5616 /* add consumers devices */
5617 if (init_data) {
5618 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5619 ret = set_consumer_device_supply(rdev,
5620 init_data->consumer_supplies[i].dev_name,
5621 init_data->consumer_supplies[i].supply);
5622 if (ret < 0) {
5623 dev_err(dev, "Failed to set supply %s\n",
5624 init_data->consumer_supplies[i].supply);
5625 goto unset_supplies;
5626 }
5627 }
5628 }
5629
5630 if (!rdev->desc->ops->get_voltage &&
5631 !rdev->desc->ops->list_voltage &&
5632 !rdev->desc->fixed_uV)
5633 rdev->is_switch = true;
5634
5635 ret = device_add(&rdev->dev);
5636 if (ret != 0)
5637 goto unset_supplies;
5638
5639 rdev_init_debugfs(rdev);
5640
5641 /* try to resolve regulators coupling since a new one was registered */
5642 mutex_lock(®ulator_list_mutex);
5643 regulator_resolve_coupling(rdev);
5644 mutex_unlock(®ulator_list_mutex);
5645
5646 /* try to resolve regulators supply since a new one was registered */
5647 class_for_each_device(®ulator_class, NULL, NULL,
5648 regulator_register_resolve_supply);
5649 kfree(config);
5650 return rdev;
5651
5652unset_supplies:
5653 mutex_lock(®ulator_list_mutex);
5654 unset_regulator_supplies(rdev);
5655 regulator_remove_coupling(rdev);
5656 mutex_unlock(®ulator_list_mutex);
5657wash:
5658 regulator_put(rdev->supply);
5659 kfree(rdev->coupling_desc.coupled_rdevs);
5660 mutex_lock(®ulator_list_mutex);
5661 regulator_ena_gpio_free(rdev);
5662 mutex_unlock(®ulator_list_mutex);
5663 put_device(&rdev->dev);
5664 rdev = NULL;
5665clean:
5666 if (dangling_of_gpiod)
5667 gpiod_put(config->ena_gpiod);
5668 if (rdev && rdev->dev.of_node)
5669 of_node_put(rdev->dev.of_node);
5670 kfree(rdev);
5671 kfree(config);
5672rinse:
5673 if (dangling_cfg_gpiod)
5674 gpiod_put(cfg->ena_gpiod);
5675 return ERR_PTR(ret);
5676}
5677EXPORT_SYMBOL_GPL(regulator_register);
5678
5679/**
5680 * regulator_unregister - unregister regulator
5681 * @rdev: regulator to unregister
5682 *
5683 * Called by regulator drivers to unregister a regulator.
5684 */
5685void regulator_unregister(struct regulator_dev *rdev)
5686{
5687 if (rdev == NULL)
5688 return;
5689
5690 if (rdev->supply) {
5691 while (rdev->use_count--)
5692 regulator_disable(rdev->supply);
5693 regulator_put(rdev->supply);
5694 }
5695
5696 flush_work(&rdev->disable_work.work);
5697
5698 mutex_lock(®ulator_list_mutex);
5699
5700 WARN_ON(rdev->open_count);
5701 regulator_remove_coupling(rdev);
5702 unset_regulator_supplies(rdev);
5703 list_del(&rdev->list);
5704 regulator_ena_gpio_free(rdev);
5705 device_unregister(&rdev->dev);
5706
5707 mutex_unlock(®ulator_list_mutex);
5708}
5709EXPORT_SYMBOL_GPL(regulator_unregister);
5710
5711#ifdef CONFIG_SUSPEND
5712/**
5713 * regulator_suspend - prepare regulators for system wide suspend
5714 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5715 *
5716 * Configure each regulator with it's suspend operating parameters for state.
5717 */
5718static int regulator_suspend(struct device *dev)
5719{
5720 struct regulator_dev *rdev = dev_to_rdev(dev);
5721 suspend_state_t state = pm_suspend_target_state;
5722 int ret;
5723 const struct regulator_state *rstate;
5724
5725 rstate = regulator_get_suspend_state_check(rdev, state);
5726 if (!rstate)
5727 return 0;
5728
5729 regulator_lock(rdev);
5730 ret = __suspend_set_state(rdev, rstate);
5731 regulator_unlock(rdev);
5732
5733 return ret;
5734}
5735
5736static int regulator_resume(struct device *dev)
5737{
5738 suspend_state_t state = pm_suspend_target_state;
5739 struct regulator_dev *rdev = dev_to_rdev(dev);
5740 struct regulator_state *rstate;
5741 int ret = 0;
5742
5743 rstate = regulator_get_suspend_state(rdev, state);
5744 if (rstate == NULL)
5745 return 0;
5746
5747 /* Avoid grabbing the lock if we don't need to */
5748 if (!rdev->desc->ops->resume)
5749 return 0;
5750
5751 regulator_lock(rdev);
5752
5753 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5754 rstate->enabled == DISABLE_IN_SUSPEND)
5755 ret = rdev->desc->ops->resume(rdev);
5756
5757 regulator_unlock(rdev);
5758
5759 return ret;
5760}
5761#else /* !CONFIG_SUSPEND */
5762
5763#define regulator_suspend NULL
5764#define regulator_resume NULL
5765
5766#endif /* !CONFIG_SUSPEND */
5767
5768#ifdef CONFIG_PM
5769static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5770 .suspend = regulator_suspend,
5771 .resume = regulator_resume,
5772};
5773#endif
5774
5775struct class regulator_class = {
5776 .name = "regulator",
5777 .dev_release = regulator_dev_release,
5778 .dev_groups = regulator_dev_groups,
5779#ifdef CONFIG_PM
5780 .pm = ®ulator_pm_ops,
5781#endif
5782};
5783/**
5784 * regulator_has_full_constraints - the system has fully specified constraints
5785 *
5786 * Calling this function will cause the regulator API to disable all
5787 * regulators which have a zero use count and don't have an always_on
5788 * constraint in a late_initcall.
5789 *
5790 * The intention is that this will become the default behaviour in a
5791 * future kernel release so users are encouraged to use this facility
5792 * now.
5793 */
5794void regulator_has_full_constraints(void)
5795{
5796 has_full_constraints = 1;
5797}
5798EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5799
5800/**
5801 * rdev_get_drvdata - get rdev regulator driver data
5802 * @rdev: regulator
5803 *
5804 * Get rdev regulator driver private data. This call can be used in the
5805 * regulator driver context.
5806 */
5807void *rdev_get_drvdata(struct regulator_dev *rdev)
5808{
5809 return rdev->reg_data;
5810}
5811EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5812
5813/**
5814 * regulator_get_drvdata - get regulator driver data
5815 * @regulator: regulator
5816 *
5817 * Get regulator driver private data. This call can be used in the consumer
5818 * driver context when non API regulator specific functions need to be called.
5819 */
5820void *regulator_get_drvdata(struct regulator *regulator)
5821{
5822 return regulator->rdev->reg_data;
5823}
5824EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5825
5826/**
5827 * regulator_set_drvdata - set regulator driver data
5828 * @regulator: regulator
5829 * @data: data
5830 */
5831void regulator_set_drvdata(struct regulator *regulator, void *data)
5832{
5833 regulator->rdev->reg_data = data;
5834}
5835EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5836
5837/**
5838 * rdev_get_id - get regulator ID
5839 * @rdev: regulator
5840 */
5841int rdev_get_id(struct regulator_dev *rdev)
5842{
5843 return rdev->desc->id;
5844}
5845EXPORT_SYMBOL_GPL(rdev_get_id);
5846
5847struct device *rdev_get_dev(struct regulator_dev *rdev)
5848{
5849 return &rdev->dev;
5850}
5851EXPORT_SYMBOL_GPL(rdev_get_dev);
5852
5853struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5854{
5855 return rdev->regmap;
5856}
5857EXPORT_SYMBOL_GPL(rdev_get_regmap);
5858
5859void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5860{
5861 return reg_init_data->driver_data;
5862}
5863EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5864
5865#ifdef CONFIG_DEBUG_FS
5866static int supply_map_show(struct seq_file *sf, void *data)
5867{
5868 struct regulator_map *map;
5869
5870 list_for_each_entry(map, ®ulator_map_list, list) {
5871 seq_printf(sf, "%s -> %s.%s\n",
5872 rdev_get_name(map->regulator), map->dev_name,
5873 map->supply);
5874 }
5875
5876 return 0;
5877}
5878DEFINE_SHOW_ATTRIBUTE(supply_map);
5879
5880struct summary_data {
5881 struct seq_file *s;
5882 struct regulator_dev *parent;
5883 int level;
5884};
5885
5886static void regulator_summary_show_subtree(struct seq_file *s,
5887 struct regulator_dev *rdev,
5888 int level);
5889
5890static int regulator_summary_show_children(struct device *dev, void *data)
5891{
5892 struct regulator_dev *rdev = dev_to_rdev(dev);
5893 struct summary_data *summary_data = data;
5894
5895 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5896 regulator_summary_show_subtree(summary_data->s, rdev,
5897 summary_data->level + 1);
5898
5899 return 0;
5900}
5901
5902static void regulator_summary_show_subtree(struct seq_file *s,
5903 struct regulator_dev *rdev,
5904 int level)
5905{
5906 struct regulation_constraints *c;
5907 struct regulator *consumer;
5908 struct summary_data summary_data;
5909 unsigned int opmode;
5910
5911 if (!rdev)
5912 return;
5913
5914 opmode = _regulator_get_mode_unlocked(rdev);
5915 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5916 level * 3 + 1, "",
5917 30 - level * 3, rdev_get_name(rdev),
5918 rdev->use_count, rdev->open_count, rdev->bypass_count,
5919 regulator_opmode_to_str(opmode));
5920
5921 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5922 seq_printf(s, "%5dmA ",
5923 _regulator_get_current_limit_unlocked(rdev) / 1000);
5924
5925 c = rdev->constraints;
5926 if (c) {
5927 switch (rdev->desc->type) {
5928 case REGULATOR_VOLTAGE:
5929 seq_printf(s, "%5dmV %5dmV ",
5930 c->min_uV / 1000, c->max_uV / 1000);
5931 break;
5932 case REGULATOR_CURRENT:
5933 seq_printf(s, "%5dmA %5dmA ",
5934 c->min_uA / 1000, c->max_uA / 1000);
5935 break;
5936 }
5937 }
5938
5939 seq_puts(s, "\n");
5940
5941 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5942 if (consumer->dev && consumer->dev->class == ®ulator_class)
5943 continue;
5944
5945 seq_printf(s, "%*s%-*s ",
5946 (level + 1) * 3 + 1, "",
5947 30 - (level + 1) * 3,
5948 consumer->supply_name ? consumer->supply_name :
5949 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5950
5951 switch (rdev->desc->type) {
5952 case REGULATOR_VOLTAGE:
5953 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5954 consumer->enable_count,
5955 consumer->uA_load / 1000,
5956 consumer->uA_load && !consumer->enable_count ?
5957 '*' : ' ',
5958 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5959 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5960 break;
5961 case REGULATOR_CURRENT:
5962 break;
5963 }
5964
5965 seq_puts(s, "\n");
5966 }
5967
5968 summary_data.s = s;
5969 summary_data.level = level;
5970 summary_data.parent = rdev;
5971
5972 class_for_each_device(®ulator_class, NULL, &summary_data,
5973 regulator_summary_show_children);
5974}
5975
5976struct summary_lock_data {
5977 struct ww_acquire_ctx *ww_ctx;
5978 struct regulator_dev **new_contended_rdev;
5979 struct regulator_dev **old_contended_rdev;
5980};
5981
5982static int regulator_summary_lock_one(struct device *dev, void *data)
5983{
5984 struct regulator_dev *rdev = dev_to_rdev(dev);
5985 struct summary_lock_data *lock_data = data;
5986 int ret = 0;
5987
5988 if (rdev != *lock_data->old_contended_rdev) {
5989 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5990
5991 if (ret == -EDEADLK)
5992 *lock_data->new_contended_rdev = rdev;
5993 else
5994 WARN_ON_ONCE(ret);
5995 } else {
5996 *lock_data->old_contended_rdev = NULL;
5997 }
5998
5999 return ret;
6000}
6001
6002static int regulator_summary_unlock_one(struct device *dev, void *data)
6003{
6004 struct regulator_dev *rdev = dev_to_rdev(dev);
6005 struct summary_lock_data *lock_data = data;
6006
6007 if (lock_data) {
6008 if (rdev == *lock_data->new_contended_rdev)
6009 return -EDEADLK;
6010 }
6011
6012 regulator_unlock(rdev);
6013
6014 return 0;
6015}
6016
6017static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6018 struct regulator_dev **new_contended_rdev,
6019 struct regulator_dev **old_contended_rdev)
6020{
6021 struct summary_lock_data lock_data;
6022 int ret;
6023
6024 lock_data.ww_ctx = ww_ctx;
6025 lock_data.new_contended_rdev = new_contended_rdev;
6026 lock_data.old_contended_rdev = old_contended_rdev;
6027
6028 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6029 regulator_summary_lock_one);
6030 if (ret)
6031 class_for_each_device(®ulator_class, NULL, &lock_data,
6032 regulator_summary_unlock_one);
6033
6034 return ret;
6035}
6036
6037static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6038{
6039 struct regulator_dev *new_contended_rdev = NULL;
6040 struct regulator_dev *old_contended_rdev = NULL;
6041 int err;
6042
6043 mutex_lock(®ulator_list_mutex);
6044
6045 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6046
6047 do {
6048 if (new_contended_rdev) {
6049 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6050 old_contended_rdev = new_contended_rdev;
6051 old_contended_rdev->ref_cnt++;
6052 }
6053
6054 err = regulator_summary_lock_all(ww_ctx,
6055 &new_contended_rdev,
6056 &old_contended_rdev);
6057
6058 if (old_contended_rdev)
6059 regulator_unlock(old_contended_rdev);
6060
6061 } while (err == -EDEADLK);
6062
6063 ww_acquire_done(ww_ctx);
6064}
6065
6066static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6067{
6068 class_for_each_device(®ulator_class, NULL, NULL,
6069 regulator_summary_unlock_one);
6070 ww_acquire_fini(ww_ctx);
6071
6072 mutex_unlock(®ulator_list_mutex);
6073}
6074
6075static int regulator_summary_show_roots(struct device *dev, void *data)
6076{
6077 struct regulator_dev *rdev = dev_to_rdev(dev);
6078 struct seq_file *s = data;
6079
6080 if (!rdev->supply)
6081 regulator_summary_show_subtree(s, rdev, 0);
6082
6083 return 0;
6084}
6085
6086static int regulator_summary_show(struct seq_file *s, void *data)
6087{
6088 struct ww_acquire_ctx ww_ctx;
6089
6090 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6091 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6092
6093 regulator_summary_lock(&ww_ctx);
6094
6095 class_for_each_device(®ulator_class, NULL, s,
6096 regulator_summary_show_roots);
6097
6098 regulator_summary_unlock(&ww_ctx);
6099
6100 return 0;
6101}
6102DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6103#endif /* CONFIG_DEBUG_FS */
6104
6105static int __init regulator_init(void)
6106{
6107 int ret;
6108
6109 ret = class_register(®ulator_class);
6110
6111 debugfs_root = debugfs_create_dir("regulator", NULL);
6112 if (!debugfs_root)
6113 pr_warn("regulator: Failed to create debugfs directory\n");
6114
6115#ifdef CONFIG_DEBUG_FS
6116 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6117 &supply_map_fops);
6118
6119 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6120 NULL, ®ulator_summary_fops);
6121#endif
6122 regulator_dummy_init();
6123
6124 regulator_coupler_register(&generic_regulator_coupler);
6125
6126 return ret;
6127}
6128
6129/* init early to allow our consumers to complete system booting */
6130core_initcall(regulator_init);
6131
6132static int regulator_late_cleanup(struct device *dev, void *data)
6133{
6134 struct regulator_dev *rdev = dev_to_rdev(dev);
6135 struct regulation_constraints *c = rdev->constraints;
6136 int ret;
6137
6138 if (c && c->always_on)
6139 return 0;
6140
6141 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6142 return 0;
6143
6144 regulator_lock(rdev);
6145
6146 if (rdev->use_count)
6147 goto unlock;
6148
6149 /* If reading the status failed, assume that it's off. */
6150 if (_regulator_is_enabled(rdev) <= 0)
6151 goto unlock;
6152
6153 if (have_full_constraints()) {
6154 /* We log since this may kill the system if it goes
6155 * wrong.
6156 */
6157 rdev_info(rdev, "disabling\n");
6158 ret = _regulator_do_disable(rdev);
6159 if (ret != 0)
6160 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6161 } else {
6162 /* The intention is that in future we will
6163 * assume that full constraints are provided
6164 * so warn even if we aren't going to do
6165 * anything here.
6166 */
6167 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6168 }
6169
6170unlock:
6171 regulator_unlock(rdev);
6172
6173 return 0;
6174}
6175
6176static void regulator_init_complete_work_function(struct work_struct *work)
6177{
6178 /*
6179 * Regulators may had failed to resolve their input supplies
6180 * when were registered, either because the input supply was
6181 * not registered yet or because its parent device was not
6182 * bound yet. So attempt to resolve the input supplies for
6183 * pending regulators before trying to disable unused ones.
6184 */
6185 class_for_each_device(®ulator_class, NULL, NULL,
6186 regulator_register_resolve_supply);
6187
6188 /* If we have a full configuration then disable any regulators
6189 * we have permission to change the status for and which are
6190 * not in use or always_on. This is effectively the default
6191 * for DT and ACPI as they have full constraints.
6192 */
6193 class_for_each_device(®ulator_class, NULL, NULL,
6194 regulator_late_cleanup);
6195}
6196
6197static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6198 regulator_init_complete_work_function);
6199
6200static int __init regulator_init_complete(void)
6201{
6202 /*
6203 * Since DT doesn't provide an idiomatic mechanism for
6204 * enabling full constraints and since it's much more natural
6205 * with DT to provide them just assume that a DT enabled
6206 * system has full constraints.
6207 */
6208 if (of_have_populated_dt())
6209 has_full_constraints = true;
6210
6211 /*
6212 * We punt completion for an arbitrary amount of time since
6213 * systems like distros will load many drivers from userspace
6214 * so consumers might not always be ready yet, this is
6215 * particularly an issue with laptops where this might bounce
6216 * the display off then on. Ideally we'd get a notification
6217 * from userspace when this happens but we don't so just wait
6218 * a bit and hope we waited long enough. It'd be better if
6219 * we'd only do this on systems that need it, and a kernel
6220 * command line option might be useful.
6221 */
6222 schedule_delayed_work(®ulator_init_complete_work,
6223 msecs_to_jiffies(30000));
6224
6225 return 0;
6226}
6227late_initcall_sync(regulator_init_complete);
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 *
143 * Return: 0 on success or a negative error number on failure.
144 */
145static inline int regulator_lock_nested(struct regulator_dev *rdev,
146 struct ww_acquire_ctx *ww_ctx)
147{
148 bool lock = false;
149 int ret = 0;
150
151 mutex_lock(®ulator_nesting_mutex);
152
153 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154 if (rdev->mutex_owner == current)
155 rdev->ref_cnt++;
156 else
157 lock = true;
158
159 if (lock) {
160 mutex_unlock(®ulator_nesting_mutex);
161 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162 mutex_lock(®ulator_nesting_mutex);
163 }
164 } else {
165 lock = true;
166 }
167
168 if (lock && ret != -EDEADLK) {
169 rdev->ref_cnt++;
170 rdev->mutex_owner = current;
171 }
172
173 mutex_unlock(®ulator_nesting_mutex);
174
175 return ret;
176}
177
178/**
179 * regulator_lock - lock a single regulator
180 * @rdev: regulator source
181 *
182 * This function can be called many times by one task on
183 * a single regulator and its mutex will be locked only
184 * once. If a task, which is calling this function is other
185 * than the one, which initially locked the mutex, it will
186 * wait on mutex.
187 */
188static void regulator_lock(struct regulator_dev *rdev)
189{
190 regulator_lock_nested(rdev, NULL);
191}
192
193/**
194 * regulator_unlock - unlock a single regulator
195 * @rdev: regulator_source
196 *
197 * This function unlocks the mutex when the
198 * reference counter reaches 0.
199 */
200static void regulator_unlock(struct regulator_dev *rdev)
201{
202 mutex_lock(®ulator_nesting_mutex);
203
204 if (--rdev->ref_cnt == 0) {
205 rdev->mutex_owner = NULL;
206 ww_mutex_unlock(&rdev->mutex);
207 }
208
209 WARN_ON_ONCE(rdev->ref_cnt < 0);
210
211 mutex_unlock(®ulator_nesting_mutex);
212}
213
214/**
215 * regulator_lock_two - lock two regulators
216 * @rdev1: first regulator
217 * @rdev2: second regulator
218 * @ww_ctx: w/w mutex acquire context
219 *
220 * Locks both rdevs using the regulator_ww_class.
221 */
222static void regulator_lock_two(struct regulator_dev *rdev1,
223 struct regulator_dev *rdev2,
224 struct ww_acquire_ctx *ww_ctx)
225{
226 struct regulator_dev *held, *contended;
227 int ret;
228
229 ww_acquire_init(ww_ctx, ®ulator_ww_class);
230
231 /* Try to just grab both of them */
232 ret = regulator_lock_nested(rdev1, ww_ctx);
233 WARN_ON(ret);
234 ret = regulator_lock_nested(rdev2, ww_ctx);
235 if (ret != -EDEADLOCK) {
236 WARN_ON(ret);
237 goto exit;
238 }
239
240 held = rdev1;
241 contended = rdev2;
242 while (true) {
243 regulator_unlock(held);
244
245 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246 contended->ref_cnt++;
247 contended->mutex_owner = current;
248 swap(held, contended);
249 ret = regulator_lock_nested(contended, ww_ctx);
250
251 if (ret != -EDEADLOCK) {
252 WARN_ON(ret);
253 break;
254 }
255 }
256
257exit:
258 ww_acquire_done(ww_ctx);
259}
260
261/**
262 * regulator_unlock_two - unlock two regulators
263 * @rdev1: first regulator
264 * @rdev2: second regulator
265 * @ww_ctx: w/w mutex acquire context
266 *
267 * The inverse of regulator_lock_two().
268 */
269
270static void regulator_unlock_two(struct regulator_dev *rdev1,
271 struct regulator_dev *rdev2,
272 struct ww_acquire_ctx *ww_ctx)
273{
274 regulator_unlock(rdev2);
275 regulator_unlock(rdev1);
276 ww_acquire_fini(ww_ctx);
277}
278
279static bool regulator_supply_is_couple(struct regulator_dev *rdev)
280{
281 struct regulator_dev *c_rdev;
282 int i;
283
284 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
286
287 if (rdev->supply->rdev == c_rdev)
288 return true;
289 }
290
291 return false;
292}
293
294static void regulator_unlock_recursive(struct regulator_dev *rdev,
295 unsigned int n_coupled)
296{
297 struct regulator_dev *c_rdev, *supply_rdev;
298 int i, supply_n_coupled;
299
300 for (i = n_coupled; i > 0; i--) {
301 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
302
303 if (!c_rdev)
304 continue;
305
306 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307 supply_rdev = c_rdev->supply->rdev;
308 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
309
310 regulator_unlock_recursive(supply_rdev,
311 supply_n_coupled);
312 }
313
314 regulator_unlock(c_rdev);
315 }
316}
317
318static int regulator_lock_recursive(struct regulator_dev *rdev,
319 struct regulator_dev **new_contended_rdev,
320 struct regulator_dev **old_contended_rdev,
321 struct ww_acquire_ctx *ww_ctx)
322{
323 struct regulator_dev *c_rdev;
324 int i, err;
325
326 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
328
329 if (!c_rdev)
330 continue;
331
332 if (c_rdev != *old_contended_rdev) {
333 err = regulator_lock_nested(c_rdev, ww_ctx);
334 if (err) {
335 if (err == -EDEADLK) {
336 *new_contended_rdev = c_rdev;
337 goto err_unlock;
338 }
339
340 /* shouldn't happen */
341 WARN_ON_ONCE(err != -EALREADY);
342 }
343 } else {
344 *old_contended_rdev = NULL;
345 }
346
347 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348 err = regulator_lock_recursive(c_rdev->supply->rdev,
349 new_contended_rdev,
350 old_contended_rdev,
351 ww_ctx);
352 if (err) {
353 regulator_unlock(c_rdev);
354 goto err_unlock;
355 }
356 }
357 }
358
359 return 0;
360
361err_unlock:
362 regulator_unlock_recursive(rdev, i);
363
364 return err;
365}
366
367/**
368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369 * regulators
370 * @rdev: regulator source
371 * @ww_ctx: w/w mutex acquire context
372 *
373 * Unlock all regulators related with rdev by coupling or supplying.
374 */
375static void regulator_unlock_dependent(struct regulator_dev *rdev,
376 struct ww_acquire_ctx *ww_ctx)
377{
378 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379 ww_acquire_fini(ww_ctx);
380}
381
382/**
383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384 * @rdev: regulator source
385 * @ww_ctx: w/w mutex acquire context
386 *
387 * This function as a wrapper on regulator_lock_recursive(), which locks
388 * all regulators related with rdev by coupling or supplying.
389 */
390static void regulator_lock_dependent(struct regulator_dev *rdev,
391 struct ww_acquire_ctx *ww_ctx)
392{
393 struct regulator_dev *new_contended_rdev = NULL;
394 struct regulator_dev *old_contended_rdev = NULL;
395 int err;
396
397 mutex_lock(®ulator_list_mutex);
398
399 ww_acquire_init(ww_ctx, ®ulator_ww_class);
400
401 do {
402 if (new_contended_rdev) {
403 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404 old_contended_rdev = new_contended_rdev;
405 old_contended_rdev->ref_cnt++;
406 old_contended_rdev->mutex_owner = current;
407 }
408
409 err = regulator_lock_recursive(rdev,
410 &new_contended_rdev,
411 &old_contended_rdev,
412 ww_ctx);
413
414 if (old_contended_rdev)
415 regulator_unlock(old_contended_rdev);
416
417 } while (err == -EDEADLK);
418
419 ww_acquire_done(ww_ctx);
420
421 mutex_unlock(®ulator_list_mutex);
422}
423
424/* Platform voltage constraint check */
425int regulator_check_voltage(struct regulator_dev *rdev,
426 int *min_uV, int *max_uV)
427{
428 BUG_ON(*min_uV > *max_uV);
429
430 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431 rdev_err(rdev, "voltage operation not allowed\n");
432 return -EPERM;
433 }
434
435 if (*max_uV > rdev->constraints->max_uV)
436 *max_uV = rdev->constraints->max_uV;
437 if (*min_uV < rdev->constraints->min_uV)
438 *min_uV = rdev->constraints->min_uV;
439
440 if (*min_uV > *max_uV) {
441 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442 *min_uV, *max_uV);
443 return -EINVAL;
444 }
445
446 return 0;
447}
448
449/* return 0 if the state is valid */
450static int regulator_check_states(suspend_state_t state)
451{
452 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
453}
454
455/* Make sure we select a voltage that suits the needs of all
456 * regulator consumers
457 */
458int regulator_check_consumers(struct regulator_dev *rdev,
459 int *min_uV, int *max_uV,
460 suspend_state_t state)
461{
462 struct regulator *regulator;
463 struct regulator_voltage *voltage;
464
465 list_for_each_entry(regulator, &rdev->consumer_list, list) {
466 voltage = ®ulator->voltage[state];
467 /*
468 * Assume consumers that didn't say anything are OK
469 * with anything in the constraint range.
470 */
471 if (!voltage->min_uV && !voltage->max_uV)
472 continue;
473
474 if (*max_uV > voltage->max_uV)
475 *max_uV = voltage->max_uV;
476 if (*min_uV < voltage->min_uV)
477 *min_uV = voltage->min_uV;
478 }
479
480 if (*min_uV > *max_uV) {
481 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482 *min_uV, *max_uV);
483 return -EINVAL;
484 }
485
486 return 0;
487}
488
489/* current constraint check */
490static int regulator_check_current_limit(struct regulator_dev *rdev,
491 int *min_uA, int *max_uA)
492{
493 BUG_ON(*min_uA > *max_uA);
494
495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496 rdev_err(rdev, "current operation not allowed\n");
497 return -EPERM;
498 }
499
500 if (*max_uA > rdev->constraints->max_uA &&
501 rdev->constraints->max_uA)
502 *max_uA = rdev->constraints->max_uA;
503 if (*min_uA < rdev->constraints->min_uA)
504 *min_uA = rdev->constraints->min_uA;
505
506 if (*min_uA > *max_uA) {
507 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
508 *min_uA, *max_uA);
509 return -EINVAL;
510 }
511
512 return 0;
513}
514
515/* operating mode constraint check */
516static int regulator_mode_constrain(struct regulator_dev *rdev,
517 unsigned int *mode)
518{
519 switch (*mode) {
520 case REGULATOR_MODE_FAST:
521 case REGULATOR_MODE_NORMAL:
522 case REGULATOR_MODE_IDLE:
523 case REGULATOR_MODE_STANDBY:
524 break;
525 default:
526 rdev_err(rdev, "invalid mode %x specified\n", *mode);
527 return -EINVAL;
528 }
529
530 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
531 rdev_err(rdev, "mode operation not allowed\n");
532 return -EPERM;
533 }
534
535 /* The modes are bitmasks, the most power hungry modes having
536 * the lowest values. If the requested mode isn't supported
537 * try higher modes.
538 */
539 while (*mode) {
540 if (rdev->constraints->valid_modes_mask & *mode)
541 return 0;
542 *mode /= 2;
543 }
544
545 return -EINVAL;
546}
547
548static inline struct regulator_state *
549regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
550{
551 if (rdev->constraints == NULL)
552 return NULL;
553
554 switch (state) {
555 case PM_SUSPEND_STANDBY:
556 return &rdev->constraints->state_standby;
557 case PM_SUSPEND_MEM:
558 return &rdev->constraints->state_mem;
559 case PM_SUSPEND_MAX:
560 return &rdev->constraints->state_disk;
561 default:
562 return NULL;
563 }
564}
565
566static const struct regulator_state *
567regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
568{
569 const struct regulator_state *rstate;
570
571 rstate = regulator_get_suspend_state(rdev, state);
572 if (rstate == NULL)
573 return NULL;
574
575 /* If we have no suspend mode configuration don't set anything;
576 * only warn if the driver implements set_suspend_voltage or
577 * set_suspend_mode callback.
578 */
579 if (rstate->enabled != ENABLE_IN_SUSPEND &&
580 rstate->enabled != DISABLE_IN_SUSPEND) {
581 if (rdev->desc->ops->set_suspend_voltage ||
582 rdev->desc->ops->set_suspend_mode)
583 rdev_warn(rdev, "No configuration\n");
584 return NULL;
585 }
586
587 return rstate;
588}
589
590static ssize_t microvolts_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
592{
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
594 int uV;
595
596 regulator_lock(rdev);
597 uV = regulator_get_voltage_rdev(rdev);
598 regulator_unlock(rdev);
599
600 if (uV < 0)
601 return uV;
602 return sprintf(buf, "%d\n", uV);
603}
604static DEVICE_ATTR_RO(microvolts);
605
606static ssize_t microamps_show(struct device *dev,
607 struct device_attribute *attr, char *buf)
608{
609 struct regulator_dev *rdev = dev_get_drvdata(dev);
610
611 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
612}
613static DEVICE_ATTR_RO(microamps);
614
615static ssize_t name_show(struct device *dev, struct device_attribute *attr,
616 char *buf)
617{
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620 return sprintf(buf, "%s\n", rdev_get_name(rdev));
621}
622static DEVICE_ATTR_RO(name);
623
624static const char *regulator_opmode_to_str(int mode)
625{
626 switch (mode) {
627 case REGULATOR_MODE_FAST:
628 return "fast";
629 case REGULATOR_MODE_NORMAL:
630 return "normal";
631 case REGULATOR_MODE_IDLE:
632 return "idle";
633 case REGULATOR_MODE_STANDBY:
634 return "standby";
635 }
636 return "unknown";
637}
638
639static ssize_t regulator_print_opmode(char *buf, int mode)
640{
641 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
642}
643
644static ssize_t opmode_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646{
647 struct regulator_dev *rdev = dev_get_drvdata(dev);
648
649 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
650}
651static DEVICE_ATTR_RO(opmode);
652
653static ssize_t regulator_print_state(char *buf, int state)
654{
655 if (state > 0)
656 return sprintf(buf, "enabled\n");
657 else if (state == 0)
658 return sprintf(buf, "disabled\n");
659 else
660 return sprintf(buf, "unknown\n");
661}
662
663static ssize_t state_show(struct device *dev,
664 struct device_attribute *attr, char *buf)
665{
666 struct regulator_dev *rdev = dev_get_drvdata(dev);
667 ssize_t ret;
668
669 regulator_lock(rdev);
670 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
671 regulator_unlock(rdev);
672
673 return ret;
674}
675static DEVICE_ATTR_RO(state);
676
677static ssize_t status_show(struct device *dev,
678 struct device_attribute *attr, char *buf)
679{
680 struct regulator_dev *rdev = dev_get_drvdata(dev);
681 int status;
682 char *label;
683
684 status = rdev->desc->ops->get_status(rdev);
685 if (status < 0)
686 return status;
687
688 switch (status) {
689 case REGULATOR_STATUS_OFF:
690 label = "off";
691 break;
692 case REGULATOR_STATUS_ON:
693 label = "on";
694 break;
695 case REGULATOR_STATUS_ERROR:
696 label = "error";
697 break;
698 case REGULATOR_STATUS_FAST:
699 label = "fast";
700 break;
701 case REGULATOR_STATUS_NORMAL:
702 label = "normal";
703 break;
704 case REGULATOR_STATUS_IDLE:
705 label = "idle";
706 break;
707 case REGULATOR_STATUS_STANDBY:
708 label = "standby";
709 break;
710 case REGULATOR_STATUS_BYPASS:
711 label = "bypass";
712 break;
713 case REGULATOR_STATUS_UNDEFINED:
714 label = "undefined";
715 break;
716 default:
717 return -ERANGE;
718 }
719
720 return sprintf(buf, "%s\n", label);
721}
722static DEVICE_ATTR_RO(status);
723
724static ssize_t min_microamps_show(struct device *dev,
725 struct device_attribute *attr, char *buf)
726{
727 struct regulator_dev *rdev = dev_get_drvdata(dev);
728
729 if (!rdev->constraints)
730 return sprintf(buf, "constraint not defined\n");
731
732 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
733}
734static DEVICE_ATTR_RO(min_microamps);
735
736static ssize_t max_microamps_show(struct device *dev,
737 struct device_attribute *attr, char *buf)
738{
739 struct regulator_dev *rdev = dev_get_drvdata(dev);
740
741 if (!rdev->constraints)
742 return sprintf(buf, "constraint not defined\n");
743
744 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
745}
746static DEVICE_ATTR_RO(max_microamps);
747
748static ssize_t min_microvolts_show(struct device *dev,
749 struct device_attribute *attr, char *buf)
750{
751 struct regulator_dev *rdev = dev_get_drvdata(dev);
752
753 if (!rdev->constraints)
754 return sprintf(buf, "constraint not defined\n");
755
756 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
757}
758static DEVICE_ATTR_RO(min_microvolts);
759
760static ssize_t max_microvolts_show(struct device *dev,
761 struct device_attribute *attr, char *buf)
762{
763 struct regulator_dev *rdev = dev_get_drvdata(dev);
764
765 if (!rdev->constraints)
766 return sprintf(buf, "constraint not defined\n");
767
768 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
769}
770static DEVICE_ATTR_RO(max_microvolts);
771
772static ssize_t requested_microamps_show(struct device *dev,
773 struct device_attribute *attr, char *buf)
774{
775 struct regulator_dev *rdev = dev_get_drvdata(dev);
776 struct regulator *regulator;
777 int uA = 0;
778
779 regulator_lock(rdev);
780 list_for_each_entry(regulator, &rdev->consumer_list, list) {
781 if (regulator->enable_count)
782 uA += regulator->uA_load;
783 }
784 regulator_unlock(rdev);
785 return sprintf(buf, "%d\n", uA);
786}
787static DEVICE_ATTR_RO(requested_microamps);
788
789static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
790 char *buf)
791{
792 struct regulator_dev *rdev = dev_get_drvdata(dev);
793 return sprintf(buf, "%d\n", rdev->use_count);
794}
795static DEVICE_ATTR_RO(num_users);
796
797static ssize_t type_show(struct device *dev, struct device_attribute *attr,
798 char *buf)
799{
800 struct regulator_dev *rdev = dev_get_drvdata(dev);
801
802 switch (rdev->desc->type) {
803 case REGULATOR_VOLTAGE:
804 return sprintf(buf, "voltage\n");
805 case REGULATOR_CURRENT:
806 return sprintf(buf, "current\n");
807 }
808 return sprintf(buf, "unknown\n");
809}
810static DEVICE_ATTR_RO(type);
811
812static ssize_t suspend_mem_microvolts_show(struct device *dev,
813 struct device_attribute *attr, char *buf)
814{
815 struct regulator_dev *rdev = dev_get_drvdata(dev);
816
817 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
818}
819static DEVICE_ATTR_RO(suspend_mem_microvolts);
820
821static ssize_t suspend_disk_microvolts_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823{
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
827}
828static DEVICE_ATTR_RO(suspend_disk_microvolts);
829
830static ssize_t suspend_standby_microvolts_show(struct device *dev,
831 struct device_attribute *attr, char *buf)
832{
833 struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
836}
837static DEVICE_ATTR_RO(suspend_standby_microvolts);
838
839static ssize_t suspend_mem_mode_show(struct device *dev,
840 struct device_attribute *attr, char *buf)
841{
842 struct regulator_dev *rdev = dev_get_drvdata(dev);
843
844 return regulator_print_opmode(buf,
845 rdev->constraints->state_mem.mode);
846}
847static DEVICE_ATTR_RO(suspend_mem_mode);
848
849static ssize_t suspend_disk_mode_show(struct device *dev,
850 struct device_attribute *attr, char *buf)
851{
852 struct regulator_dev *rdev = dev_get_drvdata(dev);
853
854 return regulator_print_opmode(buf,
855 rdev->constraints->state_disk.mode);
856}
857static DEVICE_ATTR_RO(suspend_disk_mode);
858
859static ssize_t suspend_standby_mode_show(struct device *dev,
860 struct device_attribute *attr, char *buf)
861{
862 struct regulator_dev *rdev = dev_get_drvdata(dev);
863
864 return regulator_print_opmode(buf,
865 rdev->constraints->state_standby.mode);
866}
867static DEVICE_ATTR_RO(suspend_standby_mode);
868
869static ssize_t suspend_mem_state_show(struct device *dev,
870 struct device_attribute *attr, char *buf)
871{
872 struct regulator_dev *rdev = dev_get_drvdata(dev);
873
874 return regulator_print_state(buf,
875 rdev->constraints->state_mem.enabled);
876}
877static DEVICE_ATTR_RO(suspend_mem_state);
878
879static ssize_t suspend_disk_state_show(struct device *dev,
880 struct device_attribute *attr, char *buf)
881{
882 struct regulator_dev *rdev = dev_get_drvdata(dev);
883
884 return regulator_print_state(buf,
885 rdev->constraints->state_disk.enabled);
886}
887static DEVICE_ATTR_RO(suspend_disk_state);
888
889static ssize_t suspend_standby_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891{
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894 return regulator_print_state(buf,
895 rdev->constraints->state_standby.enabled);
896}
897static DEVICE_ATTR_RO(suspend_standby_state);
898
899static ssize_t bypass_show(struct device *dev,
900 struct device_attribute *attr, char *buf)
901{
902 struct regulator_dev *rdev = dev_get_drvdata(dev);
903 const char *report;
904 bool bypass;
905 int ret;
906
907 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
908
909 if (ret != 0)
910 report = "unknown";
911 else if (bypass)
912 report = "enabled";
913 else
914 report = "disabled";
915
916 return sprintf(buf, "%s\n", report);
917}
918static DEVICE_ATTR_RO(bypass);
919
920#define REGULATOR_ERROR_ATTR(name, bit) \
921 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
922 char *buf) \
923 { \
924 int ret; \
925 unsigned int flags; \
926 struct regulator_dev *rdev = dev_get_drvdata(dev); \
927 ret = _regulator_get_error_flags(rdev, &flags); \
928 if (ret) \
929 return ret; \
930 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
931 } \
932 static DEVICE_ATTR_RO(name)
933
934REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
935REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
936REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
937REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
938REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
939REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
940REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
941REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
942REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
943
944/* Calculate the new optimum regulator operating mode based on the new total
945 * consumer load. All locks held by caller
946 */
947static int drms_uA_update(struct regulator_dev *rdev)
948{
949 struct regulator *sibling;
950 int current_uA = 0, output_uV, input_uV, err;
951 unsigned int mode;
952
953 /*
954 * first check to see if we can set modes at all, otherwise just
955 * tell the consumer everything is OK.
956 */
957 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
958 rdev_dbg(rdev, "DRMS operation not allowed\n");
959 return 0;
960 }
961
962 if (!rdev->desc->ops->get_optimum_mode &&
963 !rdev->desc->ops->set_load)
964 return 0;
965
966 if (!rdev->desc->ops->set_mode &&
967 !rdev->desc->ops->set_load)
968 return -EINVAL;
969
970 /* calc total requested load */
971 list_for_each_entry(sibling, &rdev->consumer_list, list) {
972 if (sibling->enable_count)
973 current_uA += sibling->uA_load;
974 }
975
976 current_uA += rdev->constraints->system_load;
977
978 if (rdev->desc->ops->set_load) {
979 /* set the optimum mode for our new total regulator load */
980 err = rdev->desc->ops->set_load(rdev, current_uA);
981 if (err < 0)
982 rdev_err(rdev, "failed to set load %d: %pe\n",
983 current_uA, ERR_PTR(err));
984 } else {
985 /*
986 * Unfortunately in some cases the constraints->valid_ops has
987 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
988 * That's not really legit but we won't consider it a fatal
989 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
990 * wasn't set.
991 */
992 if (!rdev->constraints->valid_modes_mask) {
993 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
994 return 0;
995 }
996
997 /* get output voltage */
998 output_uV = regulator_get_voltage_rdev(rdev);
999
1000 /*
1001 * Don't return an error; if regulator driver cares about
1002 * output_uV then it's up to the driver to validate.
1003 */
1004 if (output_uV <= 0)
1005 rdev_dbg(rdev, "invalid output voltage found\n");
1006
1007 /* get input voltage */
1008 input_uV = 0;
1009 if (rdev->supply)
1010 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1011 if (input_uV <= 0)
1012 input_uV = rdev->constraints->input_uV;
1013
1014 /*
1015 * Don't return an error; if regulator driver cares about
1016 * input_uV then it's up to the driver to validate.
1017 */
1018 if (input_uV <= 0)
1019 rdev_dbg(rdev, "invalid input voltage found\n");
1020
1021 /* now get the optimum mode for our new total regulator load */
1022 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1023 output_uV, current_uA);
1024
1025 /* check the new mode is allowed */
1026 err = regulator_mode_constrain(rdev, &mode);
1027 if (err < 0) {
1028 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1029 current_uA, input_uV, output_uV, ERR_PTR(err));
1030 return err;
1031 }
1032
1033 err = rdev->desc->ops->set_mode(rdev, mode);
1034 if (err < 0)
1035 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1036 mode, ERR_PTR(err));
1037 }
1038
1039 return err;
1040}
1041
1042static int __suspend_set_state(struct regulator_dev *rdev,
1043 const struct regulator_state *rstate)
1044{
1045 int ret = 0;
1046
1047 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1048 rdev->desc->ops->set_suspend_enable)
1049 ret = rdev->desc->ops->set_suspend_enable(rdev);
1050 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1051 rdev->desc->ops->set_suspend_disable)
1052 ret = rdev->desc->ops->set_suspend_disable(rdev);
1053 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1054 ret = 0;
1055
1056 if (ret < 0) {
1057 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1058 return ret;
1059 }
1060
1061 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1062 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1063 if (ret < 0) {
1064 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1065 return ret;
1066 }
1067 }
1068
1069 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1070 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1071 if (ret < 0) {
1072 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1073 return ret;
1074 }
1075 }
1076
1077 return ret;
1078}
1079
1080static int suspend_set_initial_state(struct regulator_dev *rdev)
1081{
1082 const struct regulator_state *rstate;
1083
1084 rstate = regulator_get_suspend_state_check(rdev,
1085 rdev->constraints->initial_state);
1086 if (!rstate)
1087 return 0;
1088
1089 return __suspend_set_state(rdev, rstate);
1090}
1091
1092#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1093static void print_constraints_debug(struct regulator_dev *rdev)
1094{
1095 struct regulation_constraints *constraints = rdev->constraints;
1096 char buf[160] = "";
1097 size_t len = sizeof(buf) - 1;
1098 int count = 0;
1099 int ret;
1100
1101 if (constraints->min_uV && constraints->max_uV) {
1102 if (constraints->min_uV == constraints->max_uV)
1103 count += scnprintf(buf + count, len - count, "%d mV ",
1104 constraints->min_uV / 1000);
1105 else
1106 count += scnprintf(buf + count, len - count,
1107 "%d <--> %d mV ",
1108 constraints->min_uV / 1000,
1109 constraints->max_uV / 1000);
1110 }
1111
1112 if (!constraints->min_uV ||
1113 constraints->min_uV != constraints->max_uV) {
1114 ret = regulator_get_voltage_rdev(rdev);
1115 if (ret > 0)
1116 count += scnprintf(buf + count, len - count,
1117 "at %d mV ", ret / 1000);
1118 }
1119
1120 if (constraints->uV_offset)
1121 count += scnprintf(buf + count, len - count, "%dmV offset ",
1122 constraints->uV_offset / 1000);
1123
1124 if (constraints->min_uA && constraints->max_uA) {
1125 if (constraints->min_uA == constraints->max_uA)
1126 count += scnprintf(buf + count, len - count, "%d mA ",
1127 constraints->min_uA / 1000);
1128 else
1129 count += scnprintf(buf + count, len - count,
1130 "%d <--> %d mA ",
1131 constraints->min_uA / 1000,
1132 constraints->max_uA / 1000);
1133 }
1134
1135 if (!constraints->min_uA ||
1136 constraints->min_uA != constraints->max_uA) {
1137 ret = _regulator_get_current_limit(rdev);
1138 if (ret > 0)
1139 count += scnprintf(buf + count, len - count,
1140 "at %d mA ", ret / 1000);
1141 }
1142
1143 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1144 count += scnprintf(buf + count, len - count, "fast ");
1145 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1146 count += scnprintf(buf + count, len - count, "normal ");
1147 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1148 count += scnprintf(buf + count, len - count, "idle ");
1149 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1150 count += scnprintf(buf + count, len - count, "standby ");
1151
1152 if (!count)
1153 count = scnprintf(buf, len, "no parameters");
1154 else
1155 --count;
1156
1157 count += scnprintf(buf + count, len - count, ", %s",
1158 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1159
1160 rdev_dbg(rdev, "%s\n", buf);
1161}
1162#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1163static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1164#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1165
1166static void print_constraints(struct regulator_dev *rdev)
1167{
1168 struct regulation_constraints *constraints = rdev->constraints;
1169
1170 print_constraints_debug(rdev);
1171
1172 if ((constraints->min_uV != constraints->max_uV) &&
1173 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1174 rdev_warn(rdev,
1175 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1176}
1177
1178static int machine_constraints_voltage(struct regulator_dev *rdev,
1179 struct regulation_constraints *constraints)
1180{
1181 const struct regulator_ops *ops = rdev->desc->ops;
1182 int ret;
1183
1184 /* do we need to apply the constraint voltage */
1185 if (rdev->constraints->apply_uV &&
1186 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1187 int target_min, target_max;
1188 int current_uV = regulator_get_voltage_rdev(rdev);
1189
1190 if (current_uV == -ENOTRECOVERABLE) {
1191 /* This regulator can't be read and must be initialized */
1192 rdev_info(rdev, "Setting %d-%duV\n",
1193 rdev->constraints->min_uV,
1194 rdev->constraints->max_uV);
1195 _regulator_do_set_voltage(rdev,
1196 rdev->constraints->min_uV,
1197 rdev->constraints->max_uV);
1198 current_uV = regulator_get_voltage_rdev(rdev);
1199 }
1200
1201 if (current_uV < 0) {
1202 if (current_uV != -EPROBE_DEFER)
1203 rdev_err(rdev,
1204 "failed to get the current voltage: %pe\n",
1205 ERR_PTR(current_uV));
1206 return current_uV;
1207 }
1208
1209 /*
1210 * If we're below the minimum voltage move up to the
1211 * minimum voltage, if we're above the maximum voltage
1212 * then move down to the maximum.
1213 */
1214 target_min = current_uV;
1215 target_max = current_uV;
1216
1217 if (current_uV < rdev->constraints->min_uV) {
1218 target_min = rdev->constraints->min_uV;
1219 target_max = rdev->constraints->min_uV;
1220 }
1221
1222 if (current_uV > rdev->constraints->max_uV) {
1223 target_min = rdev->constraints->max_uV;
1224 target_max = rdev->constraints->max_uV;
1225 }
1226
1227 if (target_min != current_uV || target_max != current_uV) {
1228 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1229 current_uV, target_min, target_max);
1230 ret = _regulator_do_set_voltage(
1231 rdev, target_min, target_max);
1232 if (ret < 0) {
1233 rdev_err(rdev,
1234 "failed to apply %d-%duV constraint: %pe\n",
1235 target_min, target_max, ERR_PTR(ret));
1236 return ret;
1237 }
1238 }
1239 }
1240
1241 /* constrain machine-level voltage specs to fit
1242 * the actual range supported by this regulator.
1243 */
1244 if (ops->list_voltage && rdev->desc->n_voltages) {
1245 int count = rdev->desc->n_voltages;
1246 int i;
1247 int min_uV = INT_MAX;
1248 int max_uV = INT_MIN;
1249 int cmin = constraints->min_uV;
1250 int cmax = constraints->max_uV;
1251
1252 /* it's safe to autoconfigure fixed-voltage supplies
1253 * and the constraints are used by list_voltage.
1254 */
1255 if (count == 1 && !cmin) {
1256 cmin = 1;
1257 cmax = INT_MAX;
1258 constraints->min_uV = cmin;
1259 constraints->max_uV = cmax;
1260 }
1261
1262 /* voltage constraints are optional */
1263 if ((cmin == 0) && (cmax == 0))
1264 return 0;
1265
1266 /* else require explicit machine-level constraints */
1267 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1268 rdev_err(rdev, "invalid voltage constraints\n");
1269 return -EINVAL;
1270 }
1271
1272 /* no need to loop voltages if range is continuous */
1273 if (rdev->desc->continuous_voltage_range)
1274 return 0;
1275
1276 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1277 for (i = 0; i < count; i++) {
1278 int value;
1279
1280 value = ops->list_voltage(rdev, i);
1281 if (value <= 0)
1282 continue;
1283
1284 /* maybe adjust [min_uV..max_uV] */
1285 if (value >= cmin && value < min_uV)
1286 min_uV = value;
1287 if (value <= cmax && value > max_uV)
1288 max_uV = value;
1289 }
1290
1291 /* final: [min_uV..max_uV] valid iff constraints valid */
1292 if (max_uV < min_uV) {
1293 rdev_err(rdev,
1294 "unsupportable voltage constraints %u-%uuV\n",
1295 min_uV, max_uV);
1296 return -EINVAL;
1297 }
1298
1299 /* use regulator's subset of machine constraints */
1300 if (constraints->min_uV < min_uV) {
1301 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1302 constraints->min_uV, min_uV);
1303 constraints->min_uV = min_uV;
1304 }
1305 if (constraints->max_uV > max_uV) {
1306 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1307 constraints->max_uV, max_uV);
1308 constraints->max_uV = max_uV;
1309 }
1310 }
1311
1312 return 0;
1313}
1314
1315static int machine_constraints_current(struct regulator_dev *rdev,
1316 struct regulation_constraints *constraints)
1317{
1318 const struct regulator_ops *ops = rdev->desc->ops;
1319 int ret;
1320
1321 if (!constraints->min_uA && !constraints->max_uA)
1322 return 0;
1323
1324 if (constraints->min_uA > constraints->max_uA) {
1325 rdev_err(rdev, "Invalid current constraints\n");
1326 return -EINVAL;
1327 }
1328
1329 if (!ops->set_current_limit || !ops->get_current_limit) {
1330 rdev_warn(rdev, "Operation of current configuration missing\n");
1331 return 0;
1332 }
1333
1334 /* Set regulator current in constraints range */
1335 ret = ops->set_current_limit(rdev, constraints->min_uA,
1336 constraints->max_uA);
1337 if (ret < 0) {
1338 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1339 return ret;
1340 }
1341
1342 return 0;
1343}
1344
1345static int _regulator_do_enable(struct regulator_dev *rdev);
1346
1347static int notif_set_limit(struct regulator_dev *rdev,
1348 int (*set)(struct regulator_dev *, int, int, bool),
1349 int limit, int severity)
1350{
1351 bool enable;
1352
1353 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1354 enable = false;
1355 limit = 0;
1356 } else {
1357 enable = true;
1358 }
1359
1360 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1361 limit = 0;
1362
1363 return set(rdev, limit, severity, enable);
1364}
1365
1366static int handle_notify_limits(struct regulator_dev *rdev,
1367 int (*set)(struct regulator_dev *, int, int, bool),
1368 struct notification_limit *limits)
1369{
1370 int ret = 0;
1371
1372 if (!set)
1373 return -EOPNOTSUPP;
1374
1375 if (limits->prot)
1376 ret = notif_set_limit(rdev, set, limits->prot,
1377 REGULATOR_SEVERITY_PROT);
1378 if (ret)
1379 return ret;
1380
1381 if (limits->err)
1382 ret = notif_set_limit(rdev, set, limits->err,
1383 REGULATOR_SEVERITY_ERR);
1384 if (ret)
1385 return ret;
1386
1387 if (limits->warn)
1388 ret = notif_set_limit(rdev, set, limits->warn,
1389 REGULATOR_SEVERITY_WARN);
1390
1391 return ret;
1392}
1393/**
1394 * set_machine_constraints - sets regulator constraints
1395 * @rdev: regulator source
1396 *
1397 * Allows platform initialisation code to define and constrain
1398 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1399 * Constraints *must* be set by platform code in order for some
1400 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1401 * set_mode.
1402 *
1403 * Return: 0 on success or a negative error number on failure.
1404 */
1405static int set_machine_constraints(struct regulator_dev *rdev)
1406{
1407 int ret = 0;
1408 const struct regulator_ops *ops = rdev->desc->ops;
1409
1410 ret = machine_constraints_voltage(rdev, rdev->constraints);
1411 if (ret != 0)
1412 return ret;
1413
1414 ret = machine_constraints_current(rdev, rdev->constraints);
1415 if (ret != 0)
1416 return ret;
1417
1418 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1419 ret = ops->set_input_current_limit(rdev,
1420 rdev->constraints->ilim_uA);
1421 if (ret < 0) {
1422 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1423 return ret;
1424 }
1425 }
1426
1427 /* do we need to setup our suspend state */
1428 if (rdev->constraints->initial_state) {
1429 ret = suspend_set_initial_state(rdev);
1430 if (ret < 0) {
1431 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1432 return ret;
1433 }
1434 }
1435
1436 if (rdev->constraints->initial_mode) {
1437 if (!ops->set_mode) {
1438 rdev_err(rdev, "no set_mode operation\n");
1439 return -EINVAL;
1440 }
1441
1442 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1443 if (ret < 0) {
1444 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1445 return ret;
1446 }
1447 } else if (rdev->constraints->system_load) {
1448 /*
1449 * We'll only apply the initial system load if an
1450 * initial mode wasn't specified.
1451 */
1452 drms_uA_update(rdev);
1453 }
1454
1455 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1456 && ops->set_ramp_delay) {
1457 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1458 if (ret < 0) {
1459 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1460 return ret;
1461 }
1462 }
1463
1464 if (rdev->constraints->pull_down && ops->set_pull_down) {
1465 ret = ops->set_pull_down(rdev);
1466 if (ret < 0) {
1467 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1468 return ret;
1469 }
1470 }
1471
1472 if (rdev->constraints->soft_start && ops->set_soft_start) {
1473 ret = ops->set_soft_start(rdev);
1474 if (ret < 0) {
1475 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1476 return ret;
1477 }
1478 }
1479
1480 /*
1481 * Existing logic does not warn if over_current_protection is given as
1482 * a constraint but driver does not support that. I think we should
1483 * warn about this type of issues as it is possible someone changes
1484 * PMIC on board to another type - and the another PMIC's driver does
1485 * not support setting protection. Board composer may happily believe
1486 * the DT limits are respected - especially if the new PMIC HW also
1487 * supports protection but the driver does not. I won't change the logic
1488 * without hearing more experienced opinion on this though.
1489 *
1490 * If warning is seen as a good idea then we can merge handling the
1491 * over-curret protection and detection and get rid of this special
1492 * handling.
1493 */
1494 if (rdev->constraints->over_current_protection
1495 && ops->set_over_current_protection) {
1496 int lim = rdev->constraints->over_curr_limits.prot;
1497
1498 ret = ops->set_over_current_protection(rdev, lim,
1499 REGULATOR_SEVERITY_PROT,
1500 true);
1501 if (ret < 0) {
1502 rdev_err(rdev, "failed to set over current protection: %pe\n",
1503 ERR_PTR(ret));
1504 return ret;
1505 }
1506 }
1507
1508 if (rdev->constraints->over_current_detection)
1509 ret = handle_notify_limits(rdev,
1510 ops->set_over_current_protection,
1511 &rdev->constraints->over_curr_limits);
1512 if (ret) {
1513 if (ret != -EOPNOTSUPP) {
1514 rdev_err(rdev, "failed to set over current limits: %pe\n",
1515 ERR_PTR(ret));
1516 return ret;
1517 }
1518 rdev_warn(rdev,
1519 "IC does not support requested over-current limits\n");
1520 }
1521
1522 if (rdev->constraints->over_voltage_detection)
1523 ret = handle_notify_limits(rdev,
1524 ops->set_over_voltage_protection,
1525 &rdev->constraints->over_voltage_limits);
1526 if (ret) {
1527 if (ret != -EOPNOTSUPP) {
1528 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1529 ERR_PTR(ret));
1530 return ret;
1531 }
1532 rdev_warn(rdev,
1533 "IC does not support requested over voltage limits\n");
1534 }
1535
1536 if (rdev->constraints->under_voltage_detection)
1537 ret = handle_notify_limits(rdev,
1538 ops->set_under_voltage_protection,
1539 &rdev->constraints->under_voltage_limits);
1540 if (ret) {
1541 if (ret != -EOPNOTSUPP) {
1542 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1543 ERR_PTR(ret));
1544 return ret;
1545 }
1546 rdev_warn(rdev,
1547 "IC does not support requested under voltage limits\n");
1548 }
1549
1550 if (rdev->constraints->over_temp_detection)
1551 ret = handle_notify_limits(rdev,
1552 ops->set_thermal_protection,
1553 &rdev->constraints->temp_limits);
1554 if (ret) {
1555 if (ret != -EOPNOTSUPP) {
1556 rdev_err(rdev, "failed to set temperature limits %pe\n",
1557 ERR_PTR(ret));
1558 return ret;
1559 }
1560 rdev_warn(rdev,
1561 "IC does not support requested temperature limits\n");
1562 }
1563
1564 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1565 bool ad_state = (rdev->constraints->active_discharge ==
1566 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1567
1568 ret = ops->set_active_discharge(rdev, ad_state);
1569 if (ret < 0) {
1570 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1571 return ret;
1572 }
1573 }
1574
1575 /*
1576 * If there is no mechanism for controlling the regulator then
1577 * flag it as always_on so we don't end up duplicating checks
1578 * for this so much. Note that we could control the state of
1579 * a supply to control the output on a regulator that has no
1580 * direct control.
1581 */
1582 if (!rdev->ena_pin && !ops->enable) {
1583 if (rdev->supply_name && !rdev->supply)
1584 return -EPROBE_DEFER;
1585
1586 if (rdev->supply)
1587 rdev->constraints->always_on =
1588 rdev->supply->rdev->constraints->always_on;
1589 else
1590 rdev->constraints->always_on = true;
1591 }
1592
1593 /* If the constraints say the regulator should be on at this point
1594 * and we have control then make sure it is enabled.
1595 */
1596 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1597 /* If we want to enable this regulator, make sure that we know
1598 * the supplying regulator.
1599 */
1600 if (rdev->supply_name && !rdev->supply)
1601 return -EPROBE_DEFER;
1602
1603 /* If supplying regulator has already been enabled,
1604 * it's not intended to have use_count increment
1605 * when rdev is only boot-on.
1606 */
1607 if (rdev->supply &&
1608 (rdev->constraints->always_on ||
1609 !regulator_is_enabled(rdev->supply))) {
1610 ret = regulator_enable(rdev->supply);
1611 if (ret < 0) {
1612 _regulator_put(rdev->supply);
1613 rdev->supply = NULL;
1614 return ret;
1615 }
1616 }
1617
1618 ret = _regulator_do_enable(rdev);
1619 if (ret < 0 && ret != -EINVAL) {
1620 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1621 return ret;
1622 }
1623
1624 if (rdev->constraints->always_on)
1625 rdev->use_count++;
1626 } else if (rdev->desc->off_on_delay) {
1627 rdev->last_off = ktime_get();
1628 }
1629
1630 print_constraints(rdev);
1631 return 0;
1632}
1633
1634/**
1635 * set_supply - set regulator supply regulator
1636 * @rdev: regulator (locked)
1637 * @supply_rdev: supply regulator (locked))
1638 *
1639 * Called by platform initialisation code to set the supply regulator for this
1640 * regulator. This ensures that a regulators supply will also be enabled by the
1641 * core if it's child is enabled.
1642 *
1643 * Return: 0 on success or a negative error number on failure.
1644 */
1645static int set_supply(struct regulator_dev *rdev,
1646 struct regulator_dev *supply_rdev)
1647{
1648 int err;
1649
1650 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1651
1652 if (!try_module_get(supply_rdev->owner))
1653 return -ENODEV;
1654
1655 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1656 if (rdev->supply == NULL) {
1657 module_put(supply_rdev->owner);
1658 err = -ENOMEM;
1659 return err;
1660 }
1661 supply_rdev->open_count++;
1662
1663 return 0;
1664}
1665
1666/**
1667 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1668 * @rdev: regulator source
1669 * @consumer_dev_name: dev_name() string for device supply applies to
1670 * @supply: symbolic name for supply
1671 *
1672 * Allows platform initialisation code to map physical regulator
1673 * sources to symbolic names for supplies for use by devices. Devices
1674 * should use these symbolic names to request regulators, avoiding the
1675 * need to provide board-specific regulator names as platform data.
1676 *
1677 * Return: 0 on success or a negative error number on failure.
1678 */
1679static int set_consumer_device_supply(struct regulator_dev *rdev,
1680 const char *consumer_dev_name,
1681 const char *supply)
1682{
1683 struct regulator_map *node, *new_node;
1684 int has_dev;
1685
1686 if (supply == NULL)
1687 return -EINVAL;
1688
1689 if (consumer_dev_name != NULL)
1690 has_dev = 1;
1691 else
1692 has_dev = 0;
1693
1694 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1695 if (new_node == NULL)
1696 return -ENOMEM;
1697
1698 new_node->regulator = rdev;
1699 new_node->supply = supply;
1700
1701 if (has_dev) {
1702 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1703 if (new_node->dev_name == NULL) {
1704 kfree(new_node);
1705 return -ENOMEM;
1706 }
1707 }
1708
1709 mutex_lock(®ulator_list_mutex);
1710 list_for_each_entry(node, ®ulator_map_list, list) {
1711 if (node->dev_name && consumer_dev_name) {
1712 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1713 continue;
1714 } else if (node->dev_name || consumer_dev_name) {
1715 continue;
1716 }
1717
1718 if (strcmp(node->supply, supply) != 0)
1719 continue;
1720
1721 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1722 consumer_dev_name,
1723 dev_name(&node->regulator->dev),
1724 node->regulator->desc->name,
1725 supply,
1726 dev_name(&rdev->dev), rdev_get_name(rdev));
1727 goto fail;
1728 }
1729
1730 list_add(&new_node->list, ®ulator_map_list);
1731 mutex_unlock(®ulator_list_mutex);
1732
1733 return 0;
1734
1735fail:
1736 mutex_unlock(®ulator_list_mutex);
1737 kfree(new_node->dev_name);
1738 kfree(new_node);
1739 return -EBUSY;
1740}
1741
1742static void unset_regulator_supplies(struct regulator_dev *rdev)
1743{
1744 struct regulator_map *node, *n;
1745
1746 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1747 if (rdev == node->regulator) {
1748 list_del(&node->list);
1749 kfree(node->dev_name);
1750 kfree(node);
1751 }
1752 }
1753}
1754
1755#ifdef CONFIG_DEBUG_FS
1756static ssize_t constraint_flags_read_file(struct file *file,
1757 char __user *user_buf,
1758 size_t count, loff_t *ppos)
1759{
1760 const struct regulator *regulator = file->private_data;
1761 const struct regulation_constraints *c = regulator->rdev->constraints;
1762 char *buf;
1763 ssize_t ret;
1764
1765 if (!c)
1766 return 0;
1767
1768 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1769 if (!buf)
1770 return -ENOMEM;
1771
1772 ret = snprintf(buf, PAGE_SIZE,
1773 "always_on: %u\n"
1774 "boot_on: %u\n"
1775 "apply_uV: %u\n"
1776 "ramp_disable: %u\n"
1777 "soft_start: %u\n"
1778 "pull_down: %u\n"
1779 "over_current_protection: %u\n",
1780 c->always_on,
1781 c->boot_on,
1782 c->apply_uV,
1783 c->ramp_disable,
1784 c->soft_start,
1785 c->pull_down,
1786 c->over_current_protection);
1787
1788 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1789 kfree(buf);
1790
1791 return ret;
1792}
1793
1794#endif
1795
1796static const struct file_operations constraint_flags_fops = {
1797#ifdef CONFIG_DEBUG_FS
1798 .open = simple_open,
1799 .read = constraint_flags_read_file,
1800 .llseek = default_llseek,
1801#endif
1802};
1803
1804#define REG_STR_SIZE 64
1805
1806static struct regulator *create_regulator(struct regulator_dev *rdev,
1807 struct device *dev,
1808 const char *supply_name)
1809{
1810 struct regulator *regulator;
1811 int err = 0;
1812
1813 lockdep_assert_held_once(&rdev->mutex.base);
1814
1815 if (dev) {
1816 char buf[REG_STR_SIZE];
1817 int size;
1818
1819 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1820 dev->kobj.name, supply_name);
1821 if (size >= REG_STR_SIZE)
1822 return NULL;
1823
1824 supply_name = kstrdup(buf, GFP_KERNEL);
1825 if (supply_name == NULL)
1826 return NULL;
1827 } else {
1828 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1829 if (supply_name == NULL)
1830 return NULL;
1831 }
1832
1833 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1834 if (regulator == NULL) {
1835 kfree_const(supply_name);
1836 return NULL;
1837 }
1838
1839 regulator->rdev = rdev;
1840 regulator->supply_name = supply_name;
1841
1842 list_add(®ulator->list, &rdev->consumer_list);
1843
1844 if (dev) {
1845 regulator->dev = dev;
1846
1847 /* Add a link to the device sysfs entry */
1848 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1849 supply_name);
1850 if (err) {
1851 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1852 dev->kobj.name, ERR_PTR(err));
1853 /* non-fatal */
1854 }
1855 }
1856
1857 if (err != -EEXIST) {
1858 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1859 if (IS_ERR(regulator->debugfs)) {
1860 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1861 regulator->debugfs = NULL;
1862 }
1863 }
1864
1865 if (regulator->debugfs) {
1866 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1867 ®ulator->uA_load);
1868 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1869 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1870 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1871 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1872 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1873 regulator, &constraint_flags_fops);
1874 }
1875
1876 /*
1877 * Check now if the regulator is an always on regulator - if
1878 * it is then we don't need to do nearly so much work for
1879 * enable/disable calls.
1880 */
1881 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1882 _regulator_is_enabled(rdev))
1883 regulator->always_on = true;
1884
1885 return regulator;
1886}
1887
1888static int _regulator_get_enable_time(struct regulator_dev *rdev)
1889{
1890 if (rdev->constraints && rdev->constraints->enable_time)
1891 return rdev->constraints->enable_time;
1892 if (rdev->desc->ops->enable_time)
1893 return rdev->desc->ops->enable_time(rdev);
1894 return rdev->desc->enable_time;
1895}
1896
1897static struct regulator_supply_alias *regulator_find_supply_alias(
1898 struct device *dev, const char *supply)
1899{
1900 struct regulator_supply_alias *map;
1901
1902 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1903 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1904 return map;
1905
1906 return NULL;
1907}
1908
1909static void regulator_supply_alias(struct device **dev, const char **supply)
1910{
1911 struct regulator_supply_alias *map;
1912
1913 map = regulator_find_supply_alias(*dev, *supply);
1914 if (map) {
1915 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1916 *supply, map->alias_supply,
1917 dev_name(map->alias_dev));
1918 *dev = map->alias_dev;
1919 *supply = map->alias_supply;
1920 }
1921}
1922
1923static int regulator_match(struct device *dev, const void *data)
1924{
1925 struct regulator_dev *r = dev_to_rdev(dev);
1926
1927 return strcmp(rdev_get_name(r), data) == 0;
1928}
1929
1930static struct regulator_dev *regulator_lookup_by_name(const char *name)
1931{
1932 struct device *dev;
1933
1934 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1935
1936 return dev ? dev_to_rdev(dev) : NULL;
1937}
1938
1939/**
1940 * regulator_dev_lookup - lookup a regulator device.
1941 * @dev: device for regulator "consumer".
1942 * @supply: Supply name or regulator ID.
1943 *
1944 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1945 *
1946 * If successful, returns a struct regulator_dev that corresponds to the name
1947 * @supply and with the embedded struct device refcount incremented by one.
1948 * The refcount must be dropped by calling put_device().
1949 * On failure one of the following ERR_PTR() encoded values is returned:
1950 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1951 * in the future.
1952 */
1953static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1954 const char *supply)
1955{
1956 struct regulator_dev *r = NULL;
1957 struct regulator_map *map;
1958 const char *devname = NULL;
1959
1960 regulator_supply_alias(&dev, &supply);
1961
1962 /* first do a dt based lookup */
1963 if (dev_of_node(dev)) {
1964 r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1965 if (!IS_ERR(r))
1966 return r;
1967 if (PTR_ERR(r) == -EPROBE_DEFER)
1968 return r;
1969
1970 if (PTR_ERR(r) == -ENODEV)
1971 r = NULL;
1972 }
1973
1974 /* if not found, try doing it non-dt way */
1975 if (dev)
1976 devname = dev_name(dev);
1977
1978 mutex_lock(®ulator_list_mutex);
1979 list_for_each_entry(map, ®ulator_map_list, list) {
1980 /* If the mapping has a device set up it must match */
1981 if (map->dev_name &&
1982 (!devname || strcmp(map->dev_name, devname)))
1983 continue;
1984
1985 if (strcmp(map->supply, supply) == 0 &&
1986 get_device(&map->regulator->dev)) {
1987 r = map->regulator;
1988 break;
1989 }
1990 }
1991 mutex_unlock(®ulator_list_mutex);
1992
1993 if (r)
1994 return r;
1995
1996 r = regulator_lookup_by_name(supply);
1997 if (r)
1998 return r;
1999
2000 return ERR_PTR(-ENODEV);
2001}
2002
2003static int regulator_resolve_supply(struct regulator_dev *rdev)
2004{
2005 struct regulator_dev *r;
2006 struct device *dev = rdev->dev.parent;
2007 struct ww_acquire_ctx ww_ctx;
2008 int ret = 0;
2009
2010 /* No supply to resolve? */
2011 if (!rdev->supply_name)
2012 return 0;
2013
2014 /* Supply already resolved? (fast-path without locking contention) */
2015 if (rdev->supply)
2016 return 0;
2017
2018 r = regulator_dev_lookup(dev, rdev->supply_name);
2019 if (IS_ERR(r)) {
2020 ret = PTR_ERR(r);
2021
2022 /* Did the lookup explicitly defer for us? */
2023 if (ret == -EPROBE_DEFER)
2024 goto out;
2025
2026 if (have_full_constraints()) {
2027 r = dummy_regulator_rdev;
2028 get_device(&r->dev);
2029 } else {
2030 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2031 rdev->supply_name, rdev->desc->name);
2032 ret = -EPROBE_DEFER;
2033 goto out;
2034 }
2035 }
2036
2037 if (r == rdev) {
2038 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2039 rdev->desc->name, rdev->supply_name);
2040 if (!have_full_constraints()) {
2041 ret = -EINVAL;
2042 goto out;
2043 }
2044 r = dummy_regulator_rdev;
2045 get_device(&r->dev);
2046 }
2047
2048 /*
2049 * If the supply's parent device is not the same as the
2050 * regulator's parent device, then ensure the parent device
2051 * is bound before we resolve the supply, in case the parent
2052 * device get probe deferred and unregisters the supply.
2053 */
2054 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2055 if (!device_is_bound(r->dev.parent)) {
2056 put_device(&r->dev);
2057 ret = -EPROBE_DEFER;
2058 goto out;
2059 }
2060 }
2061
2062 /* Recursively resolve the supply of the supply */
2063 ret = regulator_resolve_supply(r);
2064 if (ret < 0) {
2065 put_device(&r->dev);
2066 goto out;
2067 }
2068
2069 /*
2070 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2071 * between rdev->supply null check and setting rdev->supply in
2072 * set_supply() from concurrent tasks.
2073 */
2074 regulator_lock_two(rdev, r, &ww_ctx);
2075
2076 /* Supply just resolved by a concurrent task? */
2077 if (rdev->supply) {
2078 regulator_unlock_two(rdev, r, &ww_ctx);
2079 put_device(&r->dev);
2080 goto out;
2081 }
2082
2083 ret = set_supply(rdev, r);
2084 if (ret < 0) {
2085 regulator_unlock_two(rdev, r, &ww_ctx);
2086 put_device(&r->dev);
2087 goto out;
2088 }
2089
2090 regulator_unlock_two(rdev, r, &ww_ctx);
2091
2092 /*
2093 * In set_machine_constraints() we may have turned this regulator on
2094 * but we couldn't propagate to the supply if it hadn't been resolved
2095 * yet. Do it now.
2096 */
2097 if (rdev->use_count) {
2098 ret = regulator_enable(rdev->supply);
2099 if (ret < 0) {
2100 _regulator_put(rdev->supply);
2101 rdev->supply = NULL;
2102 goto out;
2103 }
2104 }
2105
2106out:
2107 return ret;
2108}
2109
2110/* common pre-checks for regulator requests */
2111int _regulator_get_common_check(struct device *dev, const char *id,
2112 enum regulator_get_type get_type)
2113{
2114 if (get_type >= MAX_GET_TYPE) {
2115 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2116 return -EINVAL;
2117 }
2118
2119 if (id == NULL) {
2120 dev_err(dev, "regulator request with no identifier\n");
2121 return -EINVAL;
2122 }
2123
2124 return 0;
2125}
2126
2127/**
2128 * _regulator_get_common - Common code for regulator requests
2129 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2130 * Its reference count is expected to have been incremented.
2131 * @dev: device used for dev_printk messages
2132 * @id: Supply name or regulator ID
2133 * @get_type: enum regulator_get_type value corresponding to type of request
2134 *
2135 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2136 * encoded error.
2137 *
2138 * This function should be chained with *regulator_dev_lookup() functions.
2139 */
2140struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2141 const char *id, enum regulator_get_type get_type)
2142{
2143 struct regulator *regulator;
2144 struct device_link *link;
2145 int ret;
2146
2147 if (IS_ERR(rdev)) {
2148 ret = PTR_ERR(rdev);
2149
2150 /*
2151 * If regulator_dev_lookup() fails with error other
2152 * than -ENODEV our job here is done, we simply return it.
2153 */
2154 if (ret != -ENODEV)
2155 return ERR_PTR(ret);
2156
2157 if (!have_full_constraints()) {
2158 dev_warn(dev,
2159 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2160 return ERR_PTR(-ENODEV);
2161 }
2162
2163 switch (get_type) {
2164 case NORMAL_GET:
2165 /*
2166 * Assume that a regulator is physically present and
2167 * enabled, even if it isn't hooked up, and just
2168 * provide a dummy.
2169 */
2170 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2171 rdev = dummy_regulator_rdev;
2172 get_device(&rdev->dev);
2173 break;
2174
2175 case EXCLUSIVE_GET:
2176 dev_warn(dev,
2177 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2178 fallthrough;
2179
2180 default:
2181 return ERR_PTR(-ENODEV);
2182 }
2183 }
2184
2185 if (rdev->exclusive) {
2186 regulator = ERR_PTR(-EPERM);
2187 put_device(&rdev->dev);
2188 return regulator;
2189 }
2190
2191 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2192 regulator = ERR_PTR(-EBUSY);
2193 put_device(&rdev->dev);
2194 return regulator;
2195 }
2196
2197 mutex_lock(®ulator_list_mutex);
2198 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2199 mutex_unlock(®ulator_list_mutex);
2200
2201 if (ret != 0) {
2202 regulator = ERR_PTR(-EPROBE_DEFER);
2203 put_device(&rdev->dev);
2204 return regulator;
2205 }
2206
2207 ret = regulator_resolve_supply(rdev);
2208 if (ret < 0) {
2209 regulator = ERR_PTR(ret);
2210 put_device(&rdev->dev);
2211 return regulator;
2212 }
2213
2214 if (!try_module_get(rdev->owner)) {
2215 regulator = ERR_PTR(-EPROBE_DEFER);
2216 put_device(&rdev->dev);
2217 return regulator;
2218 }
2219
2220 regulator_lock(rdev);
2221 regulator = create_regulator(rdev, dev, id);
2222 regulator_unlock(rdev);
2223 if (regulator == NULL) {
2224 regulator = ERR_PTR(-ENOMEM);
2225 module_put(rdev->owner);
2226 put_device(&rdev->dev);
2227 return regulator;
2228 }
2229
2230 rdev->open_count++;
2231 if (get_type == EXCLUSIVE_GET) {
2232 rdev->exclusive = 1;
2233
2234 ret = _regulator_is_enabled(rdev);
2235 if (ret > 0) {
2236 rdev->use_count = 1;
2237 regulator->enable_count = 1;
2238
2239 /* Propagate the regulator state to its supply */
2240 if (rdev->supply) {
2241 ret = regulator_enable(rdev->supply);
2242 if (ret < 0) {
2243 destroy_regulator(regulator);
2244 module_put(rdev->owner);
2245 put_device(&rdev->dev);
2246 return ERR_PTR(ret);
2247 }
2248 }
2249 } else {
2250 rdev->use_count = 0;
2251 regulator->enable_count = 0;
2252 }
2253 }
2254
2255 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2256 if (!IS_ERR_OR_NULL(link))
2257 regulator->device_link = true;
2258
2259 return regulator;
2260}
2261
2262/* Internal regulator request function */
2263struct regulator *_regulator_get(struct device *dev, const char *id,
2264 enum regulator_get_type get_type)
2265{
2266 struct regulator_dev *rdev;
2267 int ret;
2268
2269 ret = _regulator_get_common_check(dev, id, get_type);
2270 if (ret)
2271 return ERR_PTR(ret);
2272
2273 rdev = regulator_dev_lookup(dev, id);
2274 return _regulator_get_common(rdev, dev, id, get_type);
2275}
2276
2277/**
2278 * regulator_get - lookup and obtain a reference to a regulator.
2279 * @dev: device for regulator "consumer"
2280 * @id: Supply name or regulator ID.
2281 *
2282 * Use of supply names configured via set_consumer_device_supply() is
2283 * strongly encouraged. It is recommended that the supply name used
2284 * should match the name used for the supply and/or the relevant
2285 * device pins in the datasheet.
2286 *
2287 * Return: Pointer to a &struct regulator corresponding to the regulator
2288 * producer, or an ERR_PTR() encoded negative error number.
2289 */
2290struct regulator *regulator_get(struct device *dev, const char *id)
2291{
2292 return _regulator_get(dev, id, NORMAL_GET);
2293}
2294EXPORT_SYMBOL_GPL(regulator_get);
2295
2296/**
2297 * regulator_get_exclusive - obtain exclusive access to a regulator.
2298 * @dev: device for regulator "consumer"
2299 * @id: Supply name or regulator ID.
2300 *
2301 * Other consumers will be unable to obtain this regulator while this
2302 * reference is held and the use count for the regulator will be
2303 * initialised to reflect the current state of the regulator.
2304 *
2305 * This is intended for use by consumers which cannot tolerate shared
2306 * use of the regulator such as those which need to force the
2307 * regulator off for correct operation of the hardware they are
2308 * controlling.
2309 *
2310 * Use of supply names configured via set_consumer_device_supply() is
2311 * strongly encouraged. It is recommended that the supply name used
2312 * should match the name used for the supply and/or the relevant
2313 * device pins in the datasheet.
2314 *
2315 * Return: Pointer to a &struct regulator corresponding to the regulator
2316 * producer, or an ERR_PTR() encoded negative error number.
2317 */
2318struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2319{
2320 return _regulator_get(dev, id, EXCLUSIVE_GET);
2321}
2322EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2323
2324/**
2325 * regulator_get_optional - obtain optional access to a regulator.
2326 * @dev: device for regulator "consumer"
2327 * @id: Supply name or regulator ID.
2328 *
2329 * This is intended for use by consumers for devices which can have
2330 * some supplies unconnected in normal use, such as some MMC devices.
2331 * It can allow the regulator core to provide stub supplies for other
2332 * supplies requested using normal regulator_get() calls without
2333 * disrupting the operation of drivers that can handle absent
2334 * supplies.
2335 *
2336 * Use of supply names configured via set_consumer_device_supply() is
2337 * strongly encouraged. It is recommended that the supply name used
2338 * should match the name used for the supply and/or the relevant
2339 * device pins in the datasheet.
2340 *
2341 * Return: Pointer to a &struct regulator corresponding to the regulator
2342 * producer, or an ERR_PTR() encoded negative error number.
2343 */
2344struct regulator *regulator_get_optional(struct device *dev, const char *id)
2345{
2346 return _regulator_get(dev, id, OPTIONAL_GET);
2347}
2348EXPORT_SYMBOL_GPL(regulator_get_optional);
2349
2350static void destroy_regulator(struct regulator *regulator)
2351{
2352 struct regulator_dev *rdev = regulator->rdev;
2353
2354 debugfs_remove_recursive(regulator->debugfs);
2355
2356 if (regulator->dev) {
2357 if (regulator->device_link)
2358 device_link_remove(regulator->dev, &rdev->dev);
2359
2360 /* remove any sysfs entries */
2361 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2362 }
2363
2364 regulator_lock(rdev);
2365 list_del(®ulator->list);
2366
2367 rdev->open_count--;
2368 rdev->exclusive = 0;
2369 regulator_unlock(rdev);
2370
2371 kfree_const(regulator->supply_name);
2372 kfree(regulator);
2373}
2374
2375/* regulator_list_mutex lock held by regulator_put() */
2376static void _regulator_put(struct regulator *regulator)
2377{
2378 struct regulator_dev *rdev;
2379
2380 if (IS_ERR_OR_NULL(regulator))
2381 return;
2382
2383 lockdep_assert_held_once(®ulator_list_mutex);
2384
2385 /* Docs say you must disable before calling regulator_put() */
2386 WARN_ON(regulator->enable_count);
2387
2388 rdev = regulator->rdev;
2389
2390 destroy_regulator(regulator);
2391
2392 module_put(rdev->owner);
2393 put_device(&rdev->dev);
2394}
2395
2396/**
2397 * regulator_put - "free" the regulator source
2398 * @regulator: regulator source
2399 *
2400 * Note: drivers must ensure that all regulator_enable calls made on this
2401 * regulator source are balanced by regulator_disable calls prior to calling
2402 * this function.
2403 */
2404void regulator_put(struct regulator *regulator)
2405{
2406 mutex_lock(®ulator_list_mutex);
2407 _regulator_put(regulator);
2408 mutex_unlock(®ulator_list_mutex);
2409}
2410EXPORT_SYMBOL_GPL(regulator_put);
2411
2412/**
2413 * regulator_register_supply_alias - Provide device alias for supply lookup
2414 *
2415 * @dev: device that will be given as the regulator "consumer"
2416 * @id: Supply name or regulator ID
2417 * @alias_dev: device that should be used to lookup the supply
2418 * @alias_id: Supply name or regulator ID that should be used to lookup the
2419 * supply
2420 *
2421 * All lookups for id on dev will instead be conducted for alias_id on
2422 * alias_dev.
2423 *
2424 * Return: 0 on success or a negative error number on failure.
2425 */
2426int regulator_register_supply_alias(struct device *dev, const char *id,
2427 struct device *alias_dev,
2428 const char *alias_id)
2429{
2430 struct regulator_supply_alias *map;
2431
2432 map = regulator_find_supply_alias(dev, id);
2433 if (map)
2434 return -EEXIST;
2435
2436 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2437 if (!map)
2438 return -ENOMEM;
2439
2440 map->src_dev = dev;
2441 map->src_supply = id;
2442 map->alias_dev = alias_dev;
2443 map->alias_supply = alias_id;
2444
2445 list_add(&map->list, ®ulator_supply_alias_list);
2446
2447 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2448 id, dev_name(dev), alias_id, dev_name(alias_dev));
2449
2450 return 0;
2451}
2452EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2453
2454/**
2455 * regulator_unregister_supply_alias - Remove device alias
2456 *
2457 * @dev: device that will be given as the regulator "consumer"
2458 * @id: Supply name or regulator ID
2459 *
2460 * Remove a lookup alias if one exists for id on dev.
2461 */
2462void regulator_unregister_supply_alias(struct device *dev, const char *id)
2463{
2464 struct regulator_supply_alias *map;
2465
2466 map = regulator_find_supply_alias(dev, id);
2467 if (map) {
2468 list_del(&map->list);
2469 kfree(map);
2470 }
2471}
2472EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2473
2474/**
2475 * regulator_bulk_register_supply_alias - register multiple aliases
2476 *
2477 * @dev: device that will be given as the regulator "consumer"
2478 * @id: List of supply names or regulator IDs
2479 * @alias_dev: device that should be used to lookup the supply
2480 * @alias_id: List of supply names or regulator IDs that should be used to
2481 * lookup the supply
2482 * @num_id: Number of aliases to register
2483 *
2484 * This helper function allows drivers to register several supply
2485 * aliases in one operation. If any of the aliases cannot be
2486 * registered any aliases that were registered will be removed
2487 * before returning to the caller.
2488 *
2489 * Return: 0 on success or a negative error number on failure.
2490 */
2491int regulator_bulk_register_supply_alias(struct device *dev,
2492 const char *const *id,
2493 struct device *alias_dev,
2494 const char *const *alias_id,
2495 int num_id)
2496{
2497 int i;
2498 int ret;
2499
2500 for (i = 0; i < num_id; ++i) {
2501 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2502 alias_id[i]);
2503 if (ret < 0)
2504 goto err;
2505 }
2506
2507 return 0;
2508
2509err:
2510 dev_err(dev,
2511 "Failed to create supply alias %s,%s -> %s,%s\n",
2512 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2513
2514 while (--i >= 0)
2515 regulator_unregister_supply_alias(dev, id[i]);
2516
2517 return ret;
2518}
2519EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2520
2521/**
2522 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2523 *
2524 * @dev: device that will be given as the regulator "consumer"
2525 * @id: List of supply names or regulator IDs
2526 * @num_id: Number of aliases to unregister
2527 *
2528 * This helper function allows drivers to unregister several supply
2529 * aliases in one operation.
2530 */
2531void regulator_bulk_unregister_supply_alias(struct device *dev,
2532 const char *const *id,
2533 int num_id)
2534{
2535 int i;
2536
2537 for (i = 0; i < num_id; ++i)
2538 regulator_unregister_supply_alias(dev, id[i]);
2539}
2540EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2541
2542
2543/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2544static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2545 const struct regulator_config *config)
2546{
2547 struct regulator_enable_gpio *pin, *new_pin;
2548 struct gpio_desc *gpiod;
2549
2550 gpiod = config->ena_gpiod;
2551 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2552
2553 mutex_lock(®ulator_list_mutex);
2554
2555 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2556 if (pin->gpiod == gpiod) {
2557 rdev_dbg(rdev, "GPIO is already used\n");
2558 goto update_ena_gpio_to_rdev;
2559 }
2560 }
2561
2562 if (new_pin == NULL) {
2563 mutex_unlock(®ulator_list_mutex);
2564 return -ENOMEM;
2565 }
2566
2567 pin = new_pin;
2568 new_pin = NULL;
2569
2570 pin->gpiod = gpiod;
2571 list_add(&pin->list, ®ulator_ena_gpio_list);
2572
2573update_ena_gpio_to_rdev:
2574 pin->request_count++;
2575 rdev->ena_pin = pin;
2576
2577 mutex_unlock(®ulator_list_mutex);
2578 kfree(new_pin);
2579
2580 return 0;
2581}
2582
2583static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2584{
2585 struct regulator_enable_gpio *pin, *n;
2586
2587 if (!rdev->ena_pin)
2588 return;
2589
2590 /* Free the GPIO only in case of no use */
2591 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2592 if (pin != rdev->ena_pin)
2593 continue;
2594
2595 if (--pin->request_count)
2596 break;
2597
2598 gpiod_put(pin->gpiod);
2599 list_del(&pin->list);
2600 kfree(pin);
2601 break;
2602 }
2603
2604 rdev->ena_pin = NULL;
2605}
2606
2607/**
2608 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2609 * @rdev: regulator_dev structure
2610 * @enable: enable GPIO at initial use?
2611 *
2612 * GPIO is enabled in case of initial use. (enable_count is 0)
2613 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2614 *
2615 * Return: 0 on success or a negative error number on failure.
2616 */
2617static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2618{
2619 struct regulator_enable_gpio *pin = rdev->ena_pin;
2620
2621 if (!pin)
2622 return -EINVAL;
2623
2624 if (enable) {
2625 /* Enable GPIO at initial use */
2626 if (pin->enable_count == 0)
2627 gpiod_set_value_cansleep(pin->gpiod, 1);
2628
2629 pin->enable_count++;
2630 } else {
2631 if (pin->enable_count > 1) {
2632 pin->enable_count--;
2633 return 0;
2634 }
2635
2636 /* Disable GPIO if not used */
2637 if (pin->enable_count <= 1) {
2638 gpiod_set_value_cansleep(pin->gpiod, 0);
2639 pin->enable_count = 0;
2640 }
2641 }
2642
2643 return 0;
2644}
2645
2646/**
2647 * _regulator_check_status_enabled - check if regulator status can be
2648 * interpreted as "regulator is enabled"
2649 * @rdev: the regulator device to check
2650 *
2651 * Return:
2652 * * 1 - if status shows regulator is in enabled state
2653 * * 0 - if not enabled state
2654 * * Error Value - as received from ops->get_status()
2655 */
2656static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2657{
2658 int ret = rdev->desc->ops->get_status(rdev);
2659
2660 if (ret < 0) {
2661 rdev_info(rdev, "get_status returned error: %d\n", ret);
2662 return ret;
2663 }
2664
2665 switch (ret) {
2666 case REGULATOR_STATUS_OFF:
2667 case REGULATOR_STATUS_ERROR:
2668 case REGULATOR_STATUS_UNDEFINED:
2669 return 0;
2670 default:
2671 return 1;
2672 }
2673}
2674
2675static int _regulator_do_enable(struct regulator_dev *rdev)
2676{
2677 int ret, delay;
2678
2679 /* Query before enabling in case configuration dependent. */
2680 ret = _regulator_get_enable_time(rdev);
2681 if (ret >= 0) {
2682 delay = ret;
2683 } else {
2684 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2685 delay = 0;
2686 }
2687
2688 trace_regulator_enable(rdev_get_name(rdev));
2689
2690 if (rdev->desc->off_on_delay) {
2691 /* if needed, keep a distance of off_on_delay from last time
2692 * this regulator was disabled.
2693 */
2694 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2695 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2696
2697 if (remaining > 0)
2698 fsleep(remaining);
2699 }
2700
2701 if (rdev->ena_pin) {
2702 if (!rdev->ena_gpio_state) {
2703 ret = regulator_ena_gpio_ctrl(rdev, true);
2704 if (ret < 0)
2705 return ret;
2706 rdev->ena_gpio_state = 1;
2707 }
2708 } else if (rdev->desc->ops->enable) {
2709 ret = rdev->desc->ops->enable(rdev);
2710 if (ret < 0)
2711 return ret;
2712 } else {
2713 return -EINVAL;
2714 }
2715
2716 /* Allow the regulator to ramp; it would be useful to extend
2717 * this for bulk operations so that the regulators can ramp
2718 * together.
2719 */
2720 trace_regulator_enable_delay(rdev_get_name(rdev));
2721
2722 /* If poll_enabled_time is set, poll upto the delay calculated
2723 * above, delaying poll_enabled_time uS to check if the regulator
2724 * actually got enabled.
2725 * If the regulator isn't enabled after our delay helper has expired,
2726 * return -ETIMEDOUT.
2727 */
2728 if (rdev->desc->poll_enabled_time) {
2729 int time_remaining = delay;
2730
2731 while (time_remaining > 0) {
2732 fsleep(rdev->desc->poll_enabled_time);
2733
2734 if (rdev->desc->ops->get_status) {
2735 ret = _regulator_check_status_enabled(rdev);
2736 if (ret < 0)
2737 return ret;
2738 else if (ret)
2739 break;
2740 } else if (rdev->desc->ops->is_enabled(rdev))
2741 break;
2742
2743 time_remaining -= rdev->desc->poll_enabled_time;
2744 }
2745
2746 if (time_remaining <= 0) {
2747 rdev_err(rdev, "Enabled check timed out\n");
2748 return -ETIMEDOUT;
2749 }
2750 } else {
2751 fsleep(delay);
2752 }
2753
2754 trace_regulator_enable_complete(rdev_get_name(rdev));
2755
2756 return 0;
2757}
2758
2759/**
2760 * _regulator_handle_consumer_enable - handle that a consumer enabled
2761 * @regulator: regulator source
2762 *
2763 * Some things on a regulator consumer (like the contribution towards total
2764 * load on the regulator) only have an effect when the consumer wants the
2765 * regulator enabled. Explained in example with two consumers of the same
2766 * regulator:
2767 * consumer A: set_load(100); => total load = 0
2768 * consumer A: regulator_enable(); => total load = 100
2769 * consumer B: set_load(1000); => total load = 100
2770 * consumer B: regulator_enable(); => total load = 1100
2771 * consumer A: regulator_disable(); => total_load = 1000
2772 *
2773 * This function (together with _regulator_handle_consumer_disable) is
2774 * responsible for keeping track of the refcount for a given regulator consumer
2775 * and applying / unapplying these things.
2776 *
2777 * Return: 0 on success or negative error number on failure.
2778 */
2779static int _regulator_handle_consumer_enable(struct regulator *regulator)
2780{
2781 int ret;
2782 struct regulator_dev *rdev = regulator->rdev;
2783
2784 lockdep_assert_held_once(&rdev->mutex.base);
2785
2786 regulator->enable_count++;
2787 if (regulator->uA_load && regulator->enable_count == 1) {
2788 ret = drms_uA_update(rdev);
2789 if (ret)
2790 regulator->enable_count--;
2791 return ret;
2792 }
2793
2794 return 0;
2795}
2796
2797/**
2798 * _regulator_handle_consumer_disable - handle that a consumer disabled
2799 * @regulator: regulator source
2800 *
2801 * The opposite of _regulator_handle_consumer_enable().
2802 *
2803 * Return: 0 on success or a negative error number on failure.
2804 */
2805static int _regulator_handle_consumer_disable(struct regulator *regulator)
2806{
2807 struct regulator_dev *rdev = regulator->rdev;
2808
2809 lockdep_assert_held_once(&rdev->mutex.base);
2810
2811 if (!regulator->enable_count) {
2812 rdev_err(rdev, "Underflow of regulator enable count\n");
2813 return -EINVAL;
2814 }
2815
2816 regulator->enable_count--;
2817 if (regulator->uA_load && regulator->enable_count == 0)
2818 return drms_uA_update(rdev);
2819
2820 return 0;
2821}
2822
2823/* locks held by regulator_enable() */
2824static int _regulator_enable(struct regulator *regulator)
2825{
2826 struct regulator_dev *rdev = regulator->rdev;
2827 int ret;
2828
2829 lockdep_assert_held_once(&rdev->mutex.base);
2830
2831 if (rdev->use_count == 0 && rdev->supply) {
2832 ret = _regulator_enable(rdev->supply);
2833 if (ret < 0)
2834 return ret;
2835 }
2836
2837 /* balance only if there are regulators coupled */
2838 if (rdev->coupling_desc.n_coupled > 1) {
2839 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2840 if (ret < 0)
2841 goto err_disable_supply;
2842 }
2843
2844 ret = _regulator_handle_consumer_enable(regulator);
2845 if (ret < 0)
2846 goto err_disable_supply;
2847
2848 if (rdev->use_count == 0) {
2849 /*
2850 * The regulator may already be enabled if it's not switchable
2851 * or was left on
2852 */
2853 ret = _regulator_is_enabled(rdev);
2854 if (ret == -EINVAL || ret == 0) {
2855 if (!regulator_ops_is_valid(rdev,
2856 REGULATOR_CHANGE_STATUS)) {
2857 ret = -EPERM;
2858 goto err_consumer_disable;
2859 }
2860
2861 ret = _regulator_do_enable(rdev);
2862 if (ret < 0)
2863 goto err_consumer_disable;
2864
2865 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2866 NULL);
2867 } else if (ret < 0) {
2868 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2869 goto err_consumer_disable;
2870 }
2871 /* Fallthrough on positive return values - already enabled */
2872 }
2873
2874 if (regulator->enable_count == 1)
2875 rdev->use_count++;
2876
2877 return 0;
2878
2879err_consumer_disable:
2880 _regulator_handle_consumer_disable(regulator);
2881
2882err_disable_supply:
2883 if (rdev->use_count == 0 && rdev->supply)
2884 _regulator_disable(rdev->supply);
2885
2886 return ret;
2887}
2888
2889/**
2890 * regulator_enable - enable regulator output
2891 * @regulator: regulator source
2892 *
2893 * Request that the regulator be enabled with the regulator output at
2894 * the predefined voltage or current value. Calls to regulator_enable()
2895 * must be balanced with calls to regulator_disable().
2896 *
2897 * NOTE: the output value can be set by other drivers, boot loader or may be
2898 * hardwired in the regulator.
2899 *
2900 * Return: 0 on success or a negative error number on failure.
2901 */
2902int regulator_enable(struct regulator *regulator)
2903{
2904 struct regulator_dev *rdev = regulator->rdev;
2905 struct ww_acquire_ctx ww_ctx;
2906 int ret;
2907
2908 regulator_lock_dependent(rdev, &ww_ctx);
2909 ret = _regulator_enable(regulator);
2910 regulator_unlock_dependent(rdev, &ww_ctx);
2911
2912 return ret;
2913}
2914EXPORT_SYMBOL_GPL(regulator_enable);
2915
2916static int _regulator_do_disable(struct regulator_dev *rdev)
2917{
2918 int ret;
2919
2920 trace_regulator_disable(rdev_get_name(rdev));
2921
2922 if (rdev->ena_pin) {
2923 if (rdev->ena_gpio_state) {
2924 ret = regulator_ena_gpio_ctrl(rdev, false);
2925 if (ret < 0)
2926 return ret;
2927 rdev->ena_gpio_state = 0;
2928 }
2929
2930 } else if (rdev->desc->ops->disable) {
2931 ret = rdev->desc->ops->disable(rdev);
2932 if (ret != 0)
2933 return ret;
2934 }
2935
2936 if (rdev->desc->off_on_delay)
2937 rdev->last_off = ktime_get_boottime();
2938
2939 trace_regulator_disable_complete(rdev_get_name(rdev));
2940
2941 return 0;
2942}
2943
2944/* locks held by regulator_disable() */
2945static int _regulator_disable(struct regulator *regulator)
2946{
2947 struct regulator_dev *rdev = regulator->rdev;
2948 int ret = 0;
2949
2950 lockdep_assert_held_once(&rdev->mutex.base);
2951
2952 if (WARN(regulator->enable_count == 0,
2953 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2954 return -EIO;
2955
2956 if (regulator->enable_count == 1) {
2957 /* disabling last enable_count from this regulator */
2958 /* are we the last user and permitted to disable ? */
2959 if (rdev->use_count == 1 &&
2960 (rdev->constraints && !rdev->constraints->always_on)) {
2961
2962 /* we are last user */
2963 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2964 ret = _notifier_call_chain(rdev,
2965 REGULATOR_EVENT_PRE_DISABLE,
2966 NULL);
2967 if (ret & NOTIFY_STOP_MASK)
2968 return -EINVAL;
2969
2970 ret = _regulator_do_disable(rdev);
2971 if (ret < 0) {
2972 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2973 _notifier_call_chain(rdev,
2974 REGULATOR_EVENT_ABORT_DISABLE,
2975 NULL);
2976 return ret;
2977 }
2978 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2979 NULL);
2980 }
2981
2982 rdev->use_count = 0;
2983 } else if (rdev->use_count > 1) {
2984 rdev->use_count--;
2985 }
2986 }
2987
2988 if (ret == 0)
2989 ret = _regulator_handle_consumer_disable(regulator);
2990
2991 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2992 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2993
2994 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2995 ret = _regulator_disable(rdev->supply);
2996
2997 return ret;
2998}
2999
3000/**
3001 * regulator_disable - disable regulator output
3002 * @regulator: regulator source
3003 *
3004 * Disable the regulator output voltage or current. Calls to
3005 * regulator_enable() must be balanced with calls to
3006 * regulator_disable().
3007 *
3008 * NOTE: this will only disable the regulator output if no other consumer
3009 * devices have it enabled, the regulator device supports disabling and
3010 * machine constraints permit this operation.
3011 *
3012 * Return: 0 on success or a negative error number on failure.
3013 */
3014int regulator_disable(struct regulator *regulator)
3015{
3016 struct regulator_dev *rdev = regulator->rdev;
3017 struct ww_acquire_ctx ww_ctx;
3018 int ret;
3019
3020 regulator_lock_dependent(rdev, &ww_ctx);
3021 ret = _regulator_disable(regulator);
3022 regulator_unlock_dependent(rdev, &ww_ctx);
3023
3024 return ret;
3025}
3026EXPORT_SYMBOL_GPL(regulator_disable);
3027
3028/* locks held by regulator_force_disable() */
3029static int _regulator_force_disable(struct regulator_dev *rdev)
3030{
3031 int ret = 0;
3032
3033 lockdep_assert_held_once(&rdev->mutex.base);
3034
3035 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3036 REGULATOR_EVENT_PRE_DISABLE, NULL);
3037 if (ret & NOTIFY_STOP_MASK)
3038 return -EINVAL;
3039
3040 ret = _regulator_do_disable(rdev);
3041 if (ret < 0) {
3042 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3043 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3044 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3045 return ret;
3046 }
3047
3048 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3049 REGULATOR_EVENT_DISABLE, NULL);
3050
3051 return 0;
3052}
3053
3054/**
3055 * regulator_force_disable - force disable regulator output
3056 * @regulator: regulator source
3057 *
3058 * Forcibly disable the regulator output voltage or current.
3059 * NOTE: this *will* disable the regulator output even if other consumer
3060 * devices have it enabled. This should be used for situations when device
3061 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3062 *
3063 * Return: 0 on success or a negative error number on failure.
3064 */
3065int regulator_force_disable(struct regulator *regulator)
3066{
3067 struct regulator_dev *rdev = regulator->rdev;
3068 struct ww_acquire_ctx ww_ctx;
3069 int ret;
3070
3071 regulator_lock_dependent(rdev, &ww_ctx);
3072
3073 ret = _regulator_force_disable(regulator->rdev);
3074
3075 if (rdev->coupling_desc.n_coupled > 1)
3076 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3077
3078 if (regulator->uA_load) {
3079 regulator->uA_load = 0;
3080 ret = drms_uA_update(rdev);
3081 }
3082
3083 if (rdev->use_count != 0 && rdev->supply)
3084 _regulator_disable(rdev->supply);
3085
3086 regulator_unlock_dependent(rdev, &ww_ctx);
3087
3088 return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_force_disable);
3091
3092static void regulator_disable_work(struct work_struct *work)
3093{
3094 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3095 disable_work.work);
3096 struct ww_acquire_ctx ww_ctx;
3097 int count, i, ret;
3098 struct regulator *regulator;
3099 int total_count = 0;
3100
3101 regulator_lock_dependent(rdev, &ww_ctx);
3102
3103 /*
3104 * Workqueue functions queue the new work instance while the previous
3105 * work instance is being processed. Cancel the queued work instance
3106 * as the work instance under processing does the job of the queued
3107 * work instance.
3108 */
3109 cancel_delayed_work(&rdev->disable_work);
3110
3111 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3112 count = regulator->deferred_disables;
3113
3114 if (!count)
3115 continue;
3116
3117 total_count += count;
3118 regulator->deferred_disables = 0;
3119
3120 for (i = 0; i < count; i++) {
3121 ret = _regulator_disable(regulator);
3122 if (ret != 0)
3123 rdev_err(rdev, "Deferred disable failed: %pe\n",
3124 ERR_PTR(ret));
3125 }
3126 }
3127 WARN_ON(!total_count);
3128
3129 if (rdev->coupling_desc.n_coupled > 1)
3130 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3131
3132 regulator_unlock_dependent(rdev, &ww_ctx);
3133}
3134
3135/**
3136 * regulator_disable_deferred - disable regulator output with delay
3137 * @regulator: regulator source
3138 * @ms: milliseconds until the regulator is disabled
3139 *
3140 * Execute regulator_disable() on the regulator after a delay. This
3141 * is intended for use with devices that require some time to quiesce.
3142 *
3143 * NOTE: this will only disable the regulator output if no other consumer
3144 * devices have it enabled, the regulator device supports disabling and
3145 * machine constraints permit this operation.
3146 *
3147 * Return: 0 on success or a negative error number on failure.
3148 */
3149int regulator_disable_deferred(struct regulator *regulator, int ms)
3150{
3151 struct regulator_dev *rdev = regulator->rdev;
3152
3153 if (!ms)
3154 return regulator_disable(regulator);
3155
3156 regulator_lock(rdev);
3157 regulator->deferred_disables++;
3158 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3159 msecs_to_jiffies(ms));
3160 regulator_unlock(rdev);
3161
3162 return 0;
3163}
3164EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3165
3166static int _regulator_is_enabled(struct regulator_dev *rdev)
3167{
3168 /* A GPIO control always takes precedence */
3169 if (rdev->ena_pin)
3170 return rdev->ena_gpio_state;
3171
3172 /* If we don't know then assume that the regulator is always on */
3173 if (!rdev->desc->ops->is_enabled)
3174 return 1;
3175
3176 return rdev->desc->ops->is_enabled(rdev);
3177}
3178
3179static int _regulator_list_voltage(struct regulator_dev *rdev,
3180 unsigned selector, int lock)
3181{
3182 const struct regulator_ops *ops = rdev->desc->ops;
3183 int ret;
3184
3185 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3186 return rdev->desc->fixed_uV;
3187
3188 if (ops->list_voltage) {
3189 if (selector >= rdev->desc->n_voltages)
3190 return -EINVAL;
3191 if (selector < rdev->desc->linear_min_sel)
3192 return 0;
3193 if (lock)
3194 regulator_lock(rdev);
3195 ret = ops->list_voltage(rdev, selector);
3196 if (lock)
3197 regulator_unlock(rdev);
3198 } else if (rdev->is_switch && rdev->supply) {
3199 ret = _regulator_list_voltage(rdev->supply->rdev,
3200 selector, lock);
3201 } else {
3202 return -EINVAL;
3203 }
3204
3205 if (ret > 0) {
3206 if (ret < rdev->constraints->min_uV)
3207 ret = 0;
3208 else if (ret > rdev->constraints->max_uV)
3209 ret = 0;
3210 }
3211
3212 return ret;
3213}
3214
3215/**
3216 * regulator_is_enabled - is the regulator output enabled
3217 * @regulator: regulator source
3218 *
3219 * Note that the device backing this regulator handle can have multiple
3220 * users, so it might be enabled even if regulator_enable() was never
3221 * called for this particular source.
3222 *
3223 * Return: Positive if the regulator driver backing the source/client
3224 * has requested that the device be enabled, zero if it hasn't,
3225 * else a negative error number.
3226 */
3227int regulator_is_enabled(struct regulator *regulator)
3228{
3229 int ret;
3230
3231 if (regulator->always_on)
3232 return 1;
3233
3234 regulator_lock(regulator->rdev);
3235 ret = _regulator_is_enabled(regulator->rdev);
3236 regulator_unlock(regulator->rdev);
3237
3238 return ret;
3239}
3240EXPORT_SYMBOL_GPL(regulator_is_enabled);
3241
3242/**
3243 * regulator_count_voltages - count regulator_list_voltage() selectors
3244 * @regulator: regulator source
3245 *
3246 * Return: Number of selectors for @regulator, or negative error number.
3247 *
3248 * Selectors are numbered starting at zero, and typically correspond to
3249 * bitfields in hardware registers.
3250 */
3251int regulator_count_voltages(struct regulator *regulator)
3252{
3253 struct regulator_dev *rdev = regulator->rdev;
3254
3255 if (rdev->desc->n_voltages)
3256 return rdev->desc->n_voltages;
3257
3258 if (!rdev->is_switch || !rdev->supply)
3259 return -EINVAL;
3260
3261 return regulator_count_voltages(rdev->supply);
3262}
3263EXPORT_SYMBOL_GPL(regulator_count_voltages);
3264
3265/**
3266 * regulator_list_voltage - enumerate supported voltages
3267 * @regulator: regulator source
3268 * @selector: identify voltage to list
3269 * Context: can sleep
3270 *
3271 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3272 * 0 if @selector can't be used on this system, or a negative error
3273 * number on failure.
3274 */
3275int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3276{
3277 return _regulator_list_voltage(regulator->rdev, selector, 1);
3278}
3279EXPORT_SYMBOL_GPL(regulator_list_voltage);
3280
3281/**
3282 * regulator_get_regmap - get the regulator's register map
3283 * @regulator: regulator source
3284 *
3285 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3286 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3287 */
3288struct regmap *regulator_get_regmap(struct regulator *regulator)
3289{
3290 struct regmap *map = regulator->rdev->regmap;
3291
3292 return map ? map : ERR_PTR(-EOPNOTSUPP);
3293}
3294EXPORT_SYMBOL_GPL(regulator_get_regmap);
3295
3296/**
3297 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3298 * @regulator: regulator source
3299 * @vsel_reg: voltage selector register, output parameter
3300 * @vsel_mask: mask for voltage selector bitfield, output parameter
3301 *
3302 * Returns the hardware register offset and bitmask used for setting the
3303 * regulator voltage. This might be useful when configuring voltage-scaling
3304 * hardware or firmware that can make I2C requests behind the kernel's back,
3305 * for example.
3306 *
3307 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3308 * voltage selectors.
3309 *
3310 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3311 * and 0 is returned, otherwise a negative error number is returned.
3312 */
3313int regulator_get_hardware_vsel_register(struct regulator *regulator,
3314 unsigned *vsel_reg,
3315 unsigned *vsel_mask)
3316{
3317 struct regulator_dev *rdev = regulator->rdev;
3318 const struct regulator_ops *ops = rdev->desc->ops;
3319
3320 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3321 return -EOPNOTSUPP;
3322
3323 *vsel_reg = rdev->desc->vsel_reg;
3324 *vsel_mask = rdev->desc->vsel_mask;
3325
3326 return 0;
3327}
3328EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3329
3330/**
3331 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3332 * @regulator: regulator source
3333 * @selector: identify voltage to list
3334 *
3335 * Converts the selector to a hardware-specific voltage selector that can be
3336 * directly written to the regulator registers. The address of the voltage
3337 * register can be determined by calling @regulator_get_hardware_vsel_register.
3338 *
3339 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3340 * range, or -%EOPNOTSUPP if the regulator does not support voltage
3341 * selectors.
3342 */
3343int regulator_list_hardware_vsel(struct regulator *regulator,
3344 unsigned selector)
3345{
3346 struct regulator_dev *rdev = regulator->rdev;
3347 const struct regulator_ops *ops = rdev->desc->ops;
3348
3349 if (selector >= rdev->desc->n_voltages)
3350 return -EINVAL;
3351 if (selector < rdev->desc->linear_min_sel)
3352 return 0;
3353 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3354 return -EOPNOTSUPP;
3355
3356 return selector;
3357}
3358EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3359
3360/**
3361 * regulator_hardware_enable - access the HW for enable/disable regulator
3362 * @regulator: regulator source
3363 * @enable: true for enable, false for disable
3364 *
3365 * Request that the regulator be enabled/disabled with the regulator output at
3366 * the predefined voltage or current value.
3367 *
3368 * Return: 0 on success or a negative error number on failure.
3369 */
3370int regulator_hardware_enable(struct regulator *regulator, bool enable)
3371{
3372 struct regulator_dev *rdev = regulator->rdev;
3373 const struct regulator_ops *ops = rdev->desc->ops;
3374 int ret = -EOPNOTSUPP;
3375
3376 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3377 return ret;
3378
3379 if (enable)
3380 ret = ops->enable(rdev);
3381 else
3382 ret = ops->disable(rdev);
3383
3384 return ret;
3385}
3386EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3387
3388/**
3389 * regulator_get_linear_step - return the voltage step size between VSEL values
3390 * @regulator: regulator source
3391 *
3392 * Return: The voltage step size between VSEL values for linear regulators,
3393 * or 0 if the regulator isn't a linear regulator.
3394 */
3395unsigned int regulator_get_linear_step(struct regulator *regulator)
3396{
3397 struct regulator_dev *rdev = regulator->rdev;
3398
3399 return rdev->desc->uV_step;
3400}
3401EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3402
3403/**
3404 * regulator_is_supported_voltage - check if a voltage range can be supported
3405 *
3406 * @regulator: Regulator to check.
3407 * @min_uV: Minimum required voltage in uV.
3408 * @max_uV: Maximum required voltage in uV.
3409 *
3410 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3411 * number if @regulator's voltage can't be changed and voltage readback
3412 * failed.
3413 */
3414int regulator_is_supported_voltage(struct regulator *regulator,
3415 int min_uV, int max_uV)
3416{
3417 struct regulator_dev *rdev = regulator->rdev;
3418 int i, voltages, ret;
3419
3420 /* If we can't change voltage check the current voltage */
3421 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3422 ret = regulator_get_voltage(regulator);
3423 if (ret >= 0)
3424 return min_uV <= ret && ret <= max_uV;
3425 else
3426 return ret;
3427 }
3428
3429 /* Any voltage within constrains range is fine? */
3430 if (rdev->desc->continuous_voltage_range)
3431 return min_uV >= rdev->constraints->min_uV &&
3432 max_uV <= rdev->constraints->max_uV;
3433
3434 ret = regulator_count_voltages(regulator);
3435 if (ret < 0)
3436 return 0;
3437 voltages = ret;
3438
3439 for (i = 0; i < voltages; i++) {
3440 ret = regulator_list_voltage(regulator, i);
3441
3442 if (ret >= min_uV && ret <= max_uV)
3443 return 1;
3444 }
3445
3446 return 0;
3447}
3448EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3449
3450static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3451 int max_uV)
3452{
3453 const struct regulator_desc *desc = rdev->desc;
3454
3455 if (desc->ops->map_voltage)
3456 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3457
3458 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3459 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3460
3461 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3462 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3463
3464 if (desc->ops->list_voltage ==
3465 regulator_list_voltage_pickable_linear_range)
3466 return regulator_map_voltage_pickable_linear_range(rdev,
3467 min_uV, max_uV);
3468
3469 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3470}
3471
3472static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3473 int min_uV, int max_uV,
3474 unsigned *selector)
3475{
3476 struct pre_voltage_change_data data;
3477 int ret;
3478
3479 data.old_uV = regulator_get_voltage_rdev(rdev);
3480 data.min_uV = min_uV;
3481 data.max_uV = max_uV;
3482 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3483 &data);
3484 if (ret & NOTIFY_STOP_MASK)
3485 return -EINVAL;
3486
3487 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3488 if (ret >= 0)
3489 return ret;
3490
3491 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3492 (void *)data.old_uV);
3493
3494 return ret;
3495}
3496
3497static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3498 int uV, unsigned selector)
3499{
3500 struct pre_voltage_change_data data;
3501 int ret;
3502
3503 data.old_uV = regulator_get_voltage_rdev(rdev);
3504 data.min_uV = uV;
3505 data.max_uV = uV;
3506 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3507 &data);
3508 if (ret & NOTIFY_STOP_MASK)
3509 return -EINVAL;
3510
3511 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3512 if (ret >= 0)
3513 return ret;
3514
3515 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3516 (void *)data.old_uV);
3517
3518 return ret;
3519}
3520
3521static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3522 int uV, int new_selector)
3523{
3524 const struct regulator_ops *ops = rdev->desc->ops;
3525 int diff, old_sel, curr_sel, ret;
3526
3527 /* Stepping is only needed if the regulator is enabled. */
3528 if (!_regulator_is_enabled(rdev))
3529 goto final_set;
3530
3531 if (!ops->get_voltage_sel)
3532 return -EINVAL;
3533
3534 old_sel = ops->get_voltage_sel(rdev);
3535 if (old_sel < 0)
3536 return old_sel;
3537
3538 diff = new_selector - old_sel;
3539 if (diff == 0)
3540 return 0; /* No change needed. */
3541
3542 if (diff > 0) {
3543 /* Stepping up. */
3544 for (curr_sel = old_sel + rdev->desc->vsel_step;
3545 curr_sel < new_selector;
3546 curr_sel += rdev->desc->vsel_step) {
3547 /*
3548 * Call the callback directly instead of using
3549 * _regulator_call_set_voltage_sel() as we don't
3550 * want to notify anyone yet. Same in the branch
3551 * below.
3552 */
3553 ret = ops->set_voltage_sel(rdev, curr_sel);
3554 if (ret)
3555 goto try_revert;
3556 }
3557 } else {
3558 /* Stepping down. */
3559 for (curr_sel = old_sel - rdev->desc->vsel_step;
3560 curr_sel > new_selector;
3561 curr_sel -= rdev->desc->vsel_step) {
3562 ret = ops->set_voltage_sel(rdev, curr_sel);
3563 if (ret)
3564 goto try_revert;
3565 }
3566 }
3567
3568final_set:
3569 /* The final selector will trigger the notifiers. */
3570 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3571
3572try_revert:
3573 /*
3574 * At least try to return to the previous voltage if setting a new
3575 * one failed.
3576 */
3577 (void)ops->set_voltage_sel(rdev, old_sel);
3578 return ret;
3579}
3580
3581static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3582 int old_uV, int new_uV)
3583{
3584 unsigned int ramp_delay = 0;
3585
3586 if (rdev->constraints->ramp_delay)
3587 ramp_delay = rdev->constraints->ramp_delay;
3588 else if (rdev->desc->ramp_delay)
3589 ramp_delay = rdev->desc->ramp_delay;
3590 else if (rdev->constraints->settling_time)
3591 return rdev->constraints->settling_time;
3592 else if (rdev->constraints->settling_time_up &&
3593 (new_uV > old_uV))
3594 return rdev->constraints->settling_time_up;
3595 else if (rdev->constraints->settling_time_down &&
3596 (new_uV < old_uV))
3597 return rdev->constraints->settling_time_down;
3598
3599 if (ramp_delay == 0)
3600 return 0;
3601
3602 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3603}
3604
3605static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3606 int min_uV, int max_uV)
3607{
3608 int ret;
3609 int delay = 0;
3610 int best_val = 0;
3611 unsigned int selector;
3612 int old_selector = -1;
3613 const struct regulator_ops *ops = rdev->desc->ops;
3614 int old_uV = regulator_get_voltage_rdev(rdev);
3615
3616 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3617
3618 min_uV += rdev->constraints->uV_offset;
3619 max_uV += rdev->constraints->uV_offset;
3620
3621 /*
3622 * If we can't obtain the old selector there is not enough
3623 * info to call set_voltage_time_sel().
3624 */
3625 if (_regulator_is_enabled(rdev) &&
3626 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3627 old_selector = ops->get_voltage_sel(rdev);
3628 if (old_selector < 0)
3629 return old_selector;
3630 }
3631
3632 if (ops->set_voltage) {
3633 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3634 &selector);
3635
3636 if (ret >= 0) {
3637 if (ops->list_voltage)
3638 best_val = ops->list_voltage(rdev,
3639 selector);
3640 else
3641 best_val = regulator_get_voltage_rdev(rdev);
3642 }
3643
3644 } else if (ops->set_voltage_sel) {
3645 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3646 if (ret >= 0) {
3647 best_val = ops->list_voltage(rdev, ret);
3648 if (min_uV <= best_val && max_uV >= best_val) {
3649 selector = ret;
3650 if (old_selector == selector)
3651 ret = 0;
3652 else if (rdev->desc->vsel_step)
3653 ret = _regulator_set_voltage_sel_step(
3654 rdev, best_val, selector);
3655 else
3656 ret = _regulator_call_set_voltage_sel(
3657 rdev, best_val, selector);
3658 } else {
3659 ret = -EINVAL;
3660 }
3661 }
3662 } else {
3663 ret = -EINVAL;
3664 }
3665
3666 if (ret)
3667 goto out;
3668
3669 if (ops->set_voltage_time_sel) {
3670 /*
3671 * Call set_voltage_time_sel if successfully obtained
3672 * old_selector
3673 */
3674 if (old_selector >= 0 && old_selector != selector)
3675 delay = ops->set_voltage_time_sel(rdev, old_selector,
3676 selector);
3677 } else {
3678 if (old_uV != best_val) {
3679 if (ops->set_voltage_time)
3680 delay = ops->set_voltage_time(rdev, old_uV,
3681 best_val);
3682 else
3683 delay = _regulator_set_voltage_time(rdev,
3684 old_uV,
3685 best_val);
3686 }
3687 }
3688
3689 if (delay < 0) {
3690 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3691 delay = 0;
3692 }
3693
3694 /* Insert any necessary delays */
3695 fsleep(delay);
3696
3697 if (best_val >= 0) {
3698 unsigned long data = best_val;
3699
3700 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3701 (void *)data);
3702 }
3703
3704out:
3705 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3706
3707 return ret;
3708}
3709
3710static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3711 int min_uV, int max_uV, suspend_state_t state)
3712{
3713 struct regulator_state *rstate;
3714 int uV, sel;
3715
3716 rstate = regulator_get_suspend_state(rdev, state);
3717 if (rstate == NULL)
3718 return -EINVAL;
3719
3720 if (min_uV < rstate->min_uV)
3721 min_uV = rstate->min_uV;
3722 if (max_uV > rstate->max_uV)
3723 max_uV = rstate->max_uV;
3724
3725 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3726 if (sel < 0)
3727 return sel;
3728
3729 uV = rdev->desc->ops->list_voltage(rdev, sel);
3730 if (uV >= min_uV && uV <= max_uV)
3731 rstate->uV = uV;
3732
3733 return 0;
3734}
3735
3736static int regulator_set_voltage_unlocked(struct regulator *regulator,
3737 int min_uV, int max_uV,
3738 suspend_state_t state)
3739{
3740 struct regulator_dev *rdev = regulator->rdev;
3741 struct regulator_voltage *voltage = ®ulator->voltage[state];
3742 int ret = 0;
3743 int old_min_uV, old_max_uV;
3744 int current_uV;
3745
3746 /* If we're setting the same range as last time the change
3747 * should be a noop (some cpufreq implementations use the same
3748 * voltage for multiple frequencies, for example).
3749 */
3750 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3751 goto out;
3752
3753 /* If we're trying to set a range that overlaps the current voltage,
3754 * return successfully even though the regulator does not support
3755 * changing the voltage.
3756 */
3757 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3758 current_uV = regulator_get_voltage_rdev(rdev);
3759 if (min_uV <= current_uV && current_uV <= max_uV) {
3760 voltage->min_uV = min_uV;
3761 voltage->max_uV = max_uV;
3762 goto out;
3763 }
3764 }
3765
3766 /* sanity check */
3767 if (!rdev->desc->ops->set_voltage &&
3768 !rdev->desc->ops->set_voltage_sel) {
3769 ret = -EINVAL;
3770 goto out;
3771 }
3772
3773 /* constraints check */
3774 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3775 if (ret < 0)
3776 goto out;
3777
3778 /* restore original values in case of error */
3779 old_min_uV = voltage->min_uV;
3780 old_max_uV = voltage->max_uV;
3781 voltage->min_uV = min_uV;
3782 voltage->max_uV = max_uV;
3783
3784 /* for not coupled regulators this will just set the voltage */
3785 ret = regulator_balance_voltage(rdev, state);
3786 if (ret < 0) {
3787 voltage->min_uV = old_min_uV;
3788 voltage->max_uV = old_max_uV;
3789 }
3790
3791out:
3792 return ret;
3793}
3794
3795int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3796 int max_uV, suspend_state_t state)
3797{
3798 int best_supply_uV = 0;
3799 int supply_change_uV = 0;
3800 int ret;
3801
3802 if (rdev->supply &&
3803 regulator_ops_is_valid(rdev->supply->rdev,
3804 REGULATOR_CHANGE_VOLTAGE) &&
3805 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3806 rdev->desc->ops->get_voltage_sel))) {
3807 int current_supply_uV;
3808 int selector;
3809
3810 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3811 if (selector < 0) {
3812 ret = selector;
3813 goto out;
3814 }
3815
3816 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3817 if (best_supply_uV < 0) {
3818 ret = best_supply_uV;
3819 goto out;
3820 }
3821
3822 best_supply_uV += rdev->desc->min_dropout_uV;
3823
3824 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3825 if (current_supply_uV < 0) {
3826 ret = current_supply_uV;
3827 goto out;
3828 }
3829
3830 supply_change_uV = best_supply_uV - current_supply_uV;
3831 }
3832
3833 if (supply_change_uV > 0) {
3834 ret = regulator_set_voltage_unlocked(rdev->supply,
3835 best_supply_uV, INT_MAX, state);
3836 if (ret) {
3837 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3838 ERR_PTR(ret));
3839 goto out;
3840 }
3841 }
3842
3843 if (state == PM_SUSPEND_ON)
3844 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3845 else
3846 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3847 max_uV, state);
3848 if (ret < 0)
3849 goto out;
3850
3851 if (supply_change_uV < 0) {
3852 ret = regulator_set_voltage_unlocked(rdev->supply,
3853 best_supply_uV, INT_MAX, state);
3854 if (ret)
3855 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3856 ERR_PTR(ret));
3857 /* No need to fail here */
3858 ret = 0;
3859 }
3860
3861out:
3862 return ret;
3863}
3864EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3865
3866static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3867 int *current_uV, int *min_uV)
3868{
3869 struct regulation_constraints *constraints = rdev->constraints;
3870
3871 /* Limit voltage change only if necessary */
3872 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3873 return 1;
3874
3875 if (*current_uV < 0) {
3876 *current_uV = regulator_get_voltage_rdev(rdev);
3877
3878 if (*current_uV < 0)
3879 return *current_uV;
3880 }
3881
3882 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3883 return 1;
3884
3885 /* Clamp target voltage within the given step */
3886 if (*current_uV < *min_uV)
3887 *min_uV = min(*current_uV + constraints->max_uV_step,
3888 *min_uV);
3889 else
3890 *min_uV = max(*current_uV - constraints->max_uV_step,
3891 *min_uV);
3892
3893 return 0;
3894}
3895
3896static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3897 int *current_uV,
3898 int *min_uV, int *max_uV,
3899 suspend_state_t state,
3900 int n_coupled)
3901{
3902 struct coupling_desc *c_desc = &rdev->coupling_desc;
3903 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3904 struct regulation_constraints *constraints = rdev->constraints;
3905 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3906 int max_current_uV = 0, min_current_uV = INT_MAX;
3907 int highest_min_uV = 0, target_uV, possible_uV;
3908 int i, ret, max_spread;
3909 bool done;
3910
3911 *current_uV = -1;
3912
3913 /*
3914 * If there are no coupled regulators, simply set the voltage
3915 * demanded by consumers.
3916 */
3917 if (n_coupled == 1) {
3918 /*
3919 * If consumers don't provide any demands, set voltage
3920 * to min_uV
3921 */
3922 desired_min_uV = constraints->min_uV;
3923 desired_max_uV = constraints->max_uV;
3924
3925 ret = regulator_check_consumers(rdev,
3926 &desired_min_uV,
3927 &desired_max_uV, state);
3928 if (ret < 0)
3929 return ret;
3930
3931 done = true;
3932
3933 goto finish;
3934 }
3935
3936 /* Find highest min desired voltage */
3937 for (i = 0; i < n_coupled; i++) {
3938 int tmp_min = 0;
3939 int tmp_max = INT_MAX;
3940
3941 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3942
3943 ret = regulator_check_consumers(c_rdevs[i],
3944 &tmp_min,
3945 &tmp_max, state);
3946 if (ret < 0)
3947 return ret;
3948
3949 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3950 if (ret < 0)
3951 return ret;
3952
3953 highest_min_uV = max(highest_min_uV, tmp_min);
3954
3955 if (i == 0) {
3956 desired_min_uV = tmp_min;
3957 desired_max_uV = tmp_max;
3958 }
3959 }
3960
3961 max_spread = constraints->max_spread[0];
3962
3963 /*
3964 * Let target_uV be equal to the desired one if possible.
3965 * If not, set it to minimum voltage, allowed by other coupled
3966 * regulators.
3967 */
3968 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3969
3970 /*
3971 * Find min and max voltages, which currently aren't violating
3972 * max_spread.
3973 */
3974 for (i = 1; i < n_coupled; i++) {
3975 int tmp_act;
3976
3977 if (!_regulator_is_enabled(c_rdevs[i]))
3978 continue;
3979
3980 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3981 if (tmp_act < 0)
3982 return tmp_act;
3983
3984 min_current_uV = min(tmp_act, min_current_uV);
3985 max_current_uV = max(tmp_act, max_current_uV);
3986 }
3987
3988 /* There aren't any other regulators enabled */
3989 if (max_current_uV == 0) {
3990 possible_uV = target_uV;
3991 } else {
3992 /*
3993 * Correct target voltage, so as it currently isn't
3994 * violating max_spread
3995 */
3996 possible_uV = max(target_uV, max_current_uV - max_spread);
3997 possible_uV = min(possible_uV, min_current_uV + max_spread);
3998 }
3999
4000 if (possible_uV > desired_max_uV)
4001 return -EINVAL;
4002
4003 done = (possible_uV == target_uV);
4004 desired_min_uV = possible_uV;
4005
4006finish:
4007 /* Apply max_uV_step constraint if necessary */
4008 if (state == PM_SUSPEND_ON) {
4009 ret = regulator_limit_voltage_step(rdev, current_uV,
4010 &desired_min_uV);
4011 if (ret < 0)
4012 return ret;
4013
4014 if (ret == 0)
4015 done = false;
4016 }
4017
4018 /* Set current_uV if wasn't done earlier in the code and if necessary */
4019 if (n_coupled > 1 && *current_uV == -1) {
4020
4021 if (_regulator_is_enabled(rdev)) {
4022 ret = regulator_get_voltage_rdev(rdev);
4023 if (ret < 0)
4024 return ret;
4025
4026 *current_uV = ret;
4027 } else {
4028 *current_uV = desired_min_uV;
4029 }
4030 }
4031
4032 *min_uV = desired_min_uV;
4033 *max_uV = desired_max_uV;
4034
4035 return done;
4036}
4037
4038int regulator_do_balance_voltage(struct regulator_dev *rdev,
4039 suspend_state_t state, bool skip_coupled)
4040{
4041 struct regulator_dev **c_rdevs;
4042 struct regulator_dev *best_rdev;
4043 struct coupling_desc *c_desc = &rdev->coupling_desc;
4044 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4045 unsigned int delta, best_delta;
4046 unsigned long c_rdev_done = 0;
4047 bool best_c_rdev_done;
4048
4049 c_rdevs = c_desc->coupled_rdevs;
4050 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4051
4052 /*
4053 * Find the best possible voltage change on each loop. Leave the loop
4054 * if there isn't any possible change.
4055 */
4056 do {
4057 best_c_rdev_done = false;
4058 best_delta = 0;
4059 best_min_uV = 0;
4060 best_max_uV = 0;
4061 best_c_rdev = 0;
4062 best_rdev = NULL;
4063
4064 /*
4065 * Find highest difference between optimal voltage
4066 * and current voltage.
4067 */
4068 for (i = 0; i < n_coupled; i++) {
4069 /*
4070 * optimal_uV is the best voltage that can be set for
4071 * i-th regulator at the moment without violating
4072 * max_spread constraint in order to balance
4073 * the coupled voltages.
4074 */
4075 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4076
4077 if (test_bit(i, &c_rdev_done))
4078 continue;
4079
4080 ret = regulator_get_optimal_voltage(c_rdevs[i],
4081 ¤t_uV,
4082 &optimal_uV,
4083 &optimal_max_uV,
4084 state, n_coupled);
4085 if (ret < 0)
4086 goto out;
4087
4088 delta = abs(optimal_uV - current_uV);
4089
4090 if (delta && best_delta <= delta) {
4091 best_c_rdev_done = ret;
4092 best_delta = delta;
4093 best_rdev = c_rdevs[i];
4094 best_min_uV = optimal_uV;
4095 best_max_uV = optimal_max_uV;
4096 best_c_rdev = i;
4097 }
4098 }
4099
4100 /* Nothing to change, return successfully */
4101 if (!best_rdev) {
4102 ret = 0;
4103 goto out;
4104 }
4105
4106 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4107 best_max_uV, state);
4108
4109 if (ret < 0)
4110 goto out;
4111
4112 if (best_c_rdev_done)
4113 set_bit(best_c_rdev, &c_rdev_done);
4114
4115 } while (n_coupled > 1);
4116
4117out:
4118 return ret;
4119}
4120
4121static int regulator_balance_voltage(struct regulator_dev *rdev,
4122 suspend_state_t state)
4123{
4124 struct coupling_desc *c_desc = &rdev->coupling_desc;
4125 struct regulator_coupler *coupler = c_desc->coupler;
4126 bool skip_coupled = false;
4127
4128 /*
4129 * If system is in a state other than PM_SUSPEND_ON, don't check
4130 * other coupled regulators.
4131 */
4132 if (state != PM_SUSPEND_ON)
4133 skip_coupled = true;
4134
4135 if (c_desc->n_resolved < c_desc->n_coupled) {
4136 rdev_err(rdev, "Not all coupled regulators registered\n");
4137 return -EPERM;
4138 }
4139
4140 /* Invoke custom balancer for customized couplers */
4141 if (coupler && coupler->balance_voltage)
4142 return coupler->balance_voltage(coupler, rdev, state);
4143
4144 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4145}
4146
4147/**
4148 * regulator_set_voltage - set regulator output voltage
4149 * @regulator: regulator source
4150 * @min_uV: Minimum required voltage in uV
4151 * @max_uV: Maximum acceptable voltage in uV
4152 *
4153 * Sets a voltage regulator to the desired output voltage. This can be set
4154 * during any regulator state. IOW, regulator can be disabled or enabled.
4155 *
4156 * If the regulator is enabled then the voltage will change to the new value
4157 * immediately otherwise if the regulator is disabled the regulator will
4158 * output at the new voltage when enabled.
4159 *
4160 * NOTE: If the regulator is shared between several devices then the lowest
4161 * request voltage that meets the system constraints will be used.
4162 * Regulator system constraints must be set for this regulator before
4163 * calling this function otherwise this call will fail.
4164 *
4165 * Return: 0 on success or a negative error number on failure.
4166 */
4167int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4168{
4169 struct ww_acquire_ctx ww_ctx;
4170 int ret;
4171
4172 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4173
4174 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4175 PM_SUSPEND_ON);
4176
4177 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4178
4179 return ret;
4180}
4181EXPORT_SYMBOL_GPL(regulator_set_voltage);
4182
4183static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4184 suspend_state_t state, bool en)
4185{
4186 struct regulator_state *rstate;
4187
4188 rstate = regulator_get_suspend_state(rdev, state);
4189 if (rstate == NULL)
4190 return -EINVAL;
4191
4192 if (!rstate->changeable)
4193 return -EPERM;
4194
4195 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4196
4197 return 0;
4198}
4199
4200int regulator_suspend_enable(struct regulator_dev *rdev,
4201 suspend_state_t state)
4202{
4203 return regulator_suspend_toggle(rdev, state, true);
4204}
4205EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4206
4207int regulator_suspend_disable(struct regulator_dev *rdev,
4208 suspend_state_t state)
4209{
4210 struct regulator *regulator;
4211 struct regulator_voltage *voltage;
4212
4213 /*
4214 * if any consumer wants this regulator device keeping on in
4215 * suspend states, don't set it as disabled.
4216 */
4217 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4218 voltage = ®ulator->voltage[state];
4219 if (voltage->min_uV || voltage->max_uV)
4220 return 0;
4221 }
4222
4223 return regulator_suspend_toggle(rdev, state, false);
4224}
4225EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4226
4227static int _regulator_set_suspend_voltage(struct regulator *regulator,
4228 int min_uV, int max_uV,
4229 suspend_state_t state)
4230{
4231 struct regulator_dev *rdev = regulator->rdev;
4232 struct regulator_state *rstate;
4233
4234 rstate = regulator_get_suspend_state(rdev, state);
4235 if (rstate == NULL)
4236 return -EINVAL;
4237
4238 if (rstate->min_uV == rstate->max_uV) {
4239 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4240 return -EPERM;
4241 }
4242
4243 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4244}
4245
4246int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4247 int max_uV, suspend_state_t state)
4248{
4249 struct ww_acquire_ctx ww_ctx;
4250 int ret;
4251
4252 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4253 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4254 return -EINVAL;
4255
4256 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4257
4258 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4259 max_uV, state);
4260
4261 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4262
4263 return ret;
4264}
4265EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4266
4267/**
4268 * regulator_set_voltage_time - get raise/fall time
4269 * @regulator: regulator source
4270 * @old_uV: starting voltage in microvolts
4271 * @new_uV: target voltage in microvolts
4272 *
4273 * Provided with the starting and ending voltage, this function attempts to
4274 * calculate the time in microseconds required to rise or fall to this new
4275 * voltage.
4276 *
4277 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4278 */
4279int regulator_set_voltage_time(struct regulator *regulator,
4280 int old_uV, int new_uV)
4281{
4282 struct regulator_dev *rdev = regulator->rdev;
4283 const struct regulator_ops *ops = rdev->desc->ops;
4284 int old_sel = -1;
4285 int new_sel = -1;
4286 int voltage;
4287 int i;
4288
4289 if (ops->set_voltage_time)
4290 return ops->set_voltage_time(rdev, old_uV, new_uV);
4291 else if (!ops->set_voltage_time_sel)
4292 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4293
4294 /* Currently requires operations to do this */
4295 if (!ops->list_voltage || !rdev->desc->n_voltages)
4296 return -EINVAL;
4297
4298 for (i = 0; i < rdev->desc->n_voltages; i++) {
4299 /* We only look for exact voltage matches here */
4300 if (i < rdev->desc->linear_min_sel)
4301 continue;
4302
4303 if (old_sel >= 0 && new_sel >= 0)
4304 break;
4305
4306 voltage = regulator_list_voltage(regulator, i);
4307 if (voltage < 0)
4308 return -EINVAL;
4309 if (voltage == 0)
4310 continue;
4311 if (voltage == old_uV)
4312 old_sel = i;
4313 if (voltage == new_uV)
4314 new_sel = i;
4315 }
4316
4317 if (old_sel < 0 || new_sel < 0)
4318 return -EINVAL;
4319
4320 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4321}
4322EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4323
4324/**
4325 * regulator_set_voltage_time_sel - get raise/fall time
4326 * @rdev: regulator source device
4327 * @old_selector: selector for starting voltage
4328 * @new_selector: selector for target voltage
4329 *
4330 * Provided with the starting and target voltage selectors, this function
4331 * returns time in microseconds required to rise or fall to this new voltage
4332 *
4333 * Drivers providing ramp_delay in regulation_constraints can use this as their
4334 * set_voltage_time_sel() operation.
4335 *
4336 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4337 */
4338int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4339 unsigned int old_selector,
4340 unsigned int new_selector)
4341{
4342 int old_volt, new_volt;
4343
4344 /* sanity check */
4345 if (!rdev->desc->ops->list_voltage)
4346 return -EINVAL;
4347
4348 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4349 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4350
4351 if (rdev->desc->ops->set_voltage_time)
4352 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4353 new_volt);
4354 else
4355 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4356}
4357EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4358
4359int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4360{
4361 int ret;
4362
4363 regulator_lock(rdev);
4364
4365 if (!rdev->desc->ops->set_voltage &&
4366 !rdev->desc->ops->set_voltage_sel) {
4367 ret = -EINVAL;
4368 goto out;
4369 }
4370
4371 /* balance only, if regulator is coupled */
4372 if (rdev->coupling_desc.n_coupled > 1)
4373 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4374 else
4375 ret = -EOPNOTSUPP;
4376
4377out:
4378 regulator_unlock(rdev);
4379 return ret;
4380}
4381
4382/**
4383 * regulator_sync_voltage - re-apply last regulator output voltage
4384 * @regulator: regulator source
4385 *
4386 * Re-apply the last configured voltage. This is intended to be used
4387 * where some external control source the consumer is cooperating with
4388 * has caused the configured voltage to change.
4389 *
4390 * Return: 0 on success or a negative error number on failure.
4391 */
4392int regulator_sync_voltage(struct regulator *regulator)
4393{
4394 struct regulator_dev *rdev = regulator->rdev;
4395 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4396 int ret, min_uV, max_uV;
4397
4398 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4399 return 0;
4400
4401 regulator_lock(rdev);
4402
4403 if (!rdev->desc->ops->set_voltage &&
4404 !rdev->desc->ops->set_voltage_sel) {
4405 ret = -EINVAL;
4406 goto out;
4407 }
4408
4409 /* This is only going to work if we've had a voltage configured. */
4410 if (!voltage->min_uV && !voltage->max_uV) {
4411 ret = -EINVAL;
4412 goto out;
4413 }
4414
4415 min_uV = voltage->min_uV;
4416 max_uV = voltage->max_uV;
4417
4418 /* This should be a paranoia check... */
4419 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4420 if (ret < 0)
4421 goto out;
4422
4423 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4424 if (ret < 0)
4425 goto out;
4426
4427 /* balance only, if regulator is coupled */
4428 if (rdev->coupling_desc.n_coupled > 1)
4429 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4430 else
4431 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4432
4433out:
4434 regulator_unlock(rdev);
4435 return ret;
4436}
4437EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4438
4439int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4440{
4441 int sel, ret;
4442 bool bypassed;
4443
4444 if (rdev->desc->ops->get_bypass) {
4445 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4446 if (ret < 0)
4447 return ret;
4448 if (bypassed) {
4449 /* if bypassed the regulator must have a supply */
4450 if (!rdev->supply) {
4451 rdev_err(rdev,
4452 "bypassed regulator has no supply!\n");
4453 return -EPROBE_DEFER;
4454 }
4455
4456 return regulator_get_voltage_rdev(rdev->supply->rdev);
4457 }
4458 }
4459
4460 if (rdev->desc->ops->get_voltage_sel) {
4461 sel = rdev->desc->ops->get_voltage_sel(rdev);
4462 if (sel < 0)
4463 return sel;
4464 ret = rdev->desc->ops->list_voltage(rdev, sel);
4465 } else if (rdev->desc->ops->get_voltage) {
4466 ret = rdev->desc->ops->get_voltage(rdev);
4467 } else if (rdev->desc->ops->list_voltage) {
4468 ret = rdev->desc->ops->list_voltage(rdev, 0);
4469 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4470 ret = rdev->desc->fixed_uV;
4471 } else if (rdev->supply) {
4472 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4473 } else if (rdev->supply_name) {
4474 return -EPROBE_DEFER;
4475 } else {
4476 return -EINVAL;
4477 }
4478
4479 if (ret < 0)
4480 return ret;
4481 return ret - rdev->constraints->uV_offset;
4482}
4483EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4484
4485/**
4486 * regulator_get_voltage - get regulator output voltage
4487 * @regulator: regulator source
4488 *
4489 * Return: Current regulator voltage in uV, or a negative error number on failure.
4490 *
4491 * NOTE: If the regulator is disabled it will return the voltage value. This
4492 * function should not be used to determine regulator state.
4493 */
4494int regulator_get_voltage(struct regulator *regulator)
4495{
4496 struct ww_acquire_ctx ww_ctx;
4497 int ret;
4498
4499 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4500 ret = regulator_get_voltage_rdev(regulator->rdev);
4501 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4502
4503 return ret;
4504}
4505EXPORT_SYMBOL_GPL(regulator_get_voltage);
4506
4507/**
4508 * regulator_set_current_limit - set regulator output current limit
4509 * @regulator: regulator source
4510 * @min_uA: Minimum supported current in uA
4511 * @max_uA: Maximum supported current in uA
4512 *
4513 * Sets current sink to the desired output current. This can be set during
4514 * any regulator state. IOW, regulator can be disabled or enabled.
4515 *
4516 * If the regulator is enabled then the current will change to the new value
4517 * immediately otherwise if the regulator is disabled the regulator will
4518 * output at the new current when enabled.
4519 *
4520 * NOTE: Regulator system constraints must be set for this regulator before
4521 * calling this function otherwise this call will fail.
4522 *
4523 * Return: 0 on success or a negative error number on failure.
4524 */
4525int regulator_set_current_limit(struct regulator *regulator,
4526 int min_uA, int max_uA)
4527{
4528 struct regulator_dev *rdev = regulator->rdev;
4529 int ret;
4530
4531 regulator_lock(rdev);
4532
4533 /* sanity check */
4534 if (!rdev->desc->ops->set_current_limit) {
4535 ret = -EINVAL;
4536 goto out;
4537 }
4538
4539 /* constraints check */
4540 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4541 if (ret < 0)
4542 goto out;
4543
4544 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4545out:
4546 regulator_unlock(rdev);
4547 return ret;
4548}
4549EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4550
4551static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4552{
4553 /* sanity check */
4554 if (!rdev->desc->ops->get_current_limit)
4555 return -EINVAL;
4556
4557 return rdev->desc->ops->get_current_limit(rdev);
4558}
4559
4560static int _regulator_get_current_limit(struct regulator_dev *rdev)
4561{
4562 int ret;
4563
4564 regulator_lock(rdev);
4565 ret = _regulator_get_current_limit_unlocked(rdev);
4566 regulator_unlock(rdev);
4567
4568 return ret;
4569}
4570
4571/**
4572 * regulator_get_current_limit - get regulator output current
4573 * @regulator: regulator source
4574 *
4575 * Return: Current supplied by the specified current sink in uA,
4576 * or a negative error number on failure.
4577 *
4578 * NOTE: If the regulator is disabled it will return the current value. This
4579 * function should not be used to determine regulator state.
4580 */
4581int regulator_get_current_limit(struct regulator *regulator)
4582{
4583 return _regulator_get_current_limit(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4586
4587/**
4588 * regulator_set_mode - set regulator operating mode
4589 * @regulator: regulator source
4590 * @mode: operating mode - one of the REGULATOR_MODE constants
4591 *
4592 * Set regulator operating mode to increase regulator efficiency or improve
4593 * regulation performance.
4594 *
4595 * NOTE: Regulator system constraints must be set for this regulator before
4596 * calling this function otherwise this call will fail.
4597 *
4598 * Return: 0 on success or a negative error number on failure.
4599 */
4600int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4601{
4602 struct regulator_dev *rdev = regulator->rdev;
4603 int ret;
4604 int regulator_curr_mode;
4605
4606 regulator_lock(rdev);
4607
4608 /* sanity check */
4609 if (!rdev->desc->ops->set_mode) {
4610 ret = -EINVAL;
4611 goto out;
4612 }
4613
4614 /* return if the same mode is requested */
4615 if (rdev->desc->ops->get_mode) {
4616 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4617 if (regulator_curr_mode == mode) {
4618 ret = 0;
4619 goto out;
4620 }
4621 }
4622
4623 /* constraints check */
4624 ret = regulator_mode_constrain(rdev, &mode);
4625 if (ret < 0)
4626 goto out;
4627
4628 ret = rdev->desc->ops->set_mode(rdev, mode);
4629out:
4630 regulator_unlock(rdev);
4631 return ret;
4632}
4633EXPORT_SYMBOL_GPL(regulator_set_mode);
4634
4635static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4636{
4637 /* sanity check */
4638 if (!rdev->desc->ops->get_mode)
4639 return -EINVAL;
4640
4641 return rdev->desc->ops->get_mode(rdev);
4642}
4643
4644static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4645{
4646 int ret;
4647
4648 regulator_lock(rdev);
4649 ret = _regulator_get_mode_unlocked(rdev);
4650 regulator_unlock(rdev);
4651
4652 return ret;
4653}
4654
4655/**
4656 * regulator_get_mode - get regulator operating mode
4657 * @regulator: regulator source
4658 *
4659 * Get the current regulator operating mode.
4660 *
4661 * Return: Current operating mode as %REGULATOR_MODE_* values,
4662 * or a negative error number on failure.
4663 */
4664unsigned int regulator_get_mode(struct regulator *regulator)
4665{
4666 return _regulator_get_mode(regulator->rdev);
4667}
4668EXPORT_SYMBOL_GPL(regulator_get_mode);
4669
4670static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4671{
4672 int ret = 0;
4673
4674 if (rdev->use_cached_err) {
4675 spin_lock(&rdev->err_lock);
4676 ret = rdev->cached_err;
4677 spin_unlock(&rdev->err_lock);
4678 }
4679 return ret;
4680}
4681
4682static int _regulator_get_error_flags(struct regulator_dev *rdev,
4683 unsigned int *flags)
4684{
4685 int cached_flags, ret = 0;
4686
4687 regulator_lock(rdev);
4688
4689 cached_flags = rdev_get_cached_err_flags(rdev);
4690
4691 if (rdev->desc->ops->get_error_flags)
4692 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4693 else if (!rdev->use_cached_err)
4694 ret = -EINVAL;
4695
4696 *flags |= cached_flags;
4697
4698 regulator_unlock(rdev);
4699
4700 return ret;
4701}
4702
4703/**
4704 * regulator_get_error_flags - get regulator error information
4705 * @regulator: regulator source
4706 * @flags: pointer to store error flags
4707 *
4708 * Get the current regulator error information.
4709 *
4710 * Return: 0 on success or a negative error number on failure.
4711 */
4712int regulator_get_error_flags(struct regulator *regulator,
4713 unsigned int *flags)
4714{
4715 return _regulator_get_error_flags(regulator->rdev, flags);
4716}
4717EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4718
4719/**
4720 * regulator_set_load - set regulator load
4721 * @regulator: regulator source
4722 * @uA_load: load current
4723 *
4724 * Notifies the regulator core of a new device load. This is then used by
4725 * DRMS (if enabled by constraints) to set the most efficient regulator
4726 * operating mode for the new regulator loading.
4727 *
4728 * Consumer devices notify their supply regulator of the maximum power
4729 * they will require (can be taken from device datasheet in the power
4730 * consumption tables) when they change operational status and hence power
4731 * state. Examples of operational state changes that can affect power
4732 * consumption are :-
4733 *
4734 * o Device is opened / closed.
4735 * o Device I/O is about to begin or has just finished.
4736 * o Device is idling in between work.
4737 *
4738 * This information is also exported via sysfs to userspace.
4739 *
4740 * DRMS will sum the total requested load on the regulator and change
4741 * to the most efficient operating mode if platform constraints allow.
4742 *
4743 * NOTE: when a regulator consumer requests to have a regulator
4744 * disabled then any load that consumer requested no longer counts
4745 * toward the total requested load. If the regulator is re-enabled
4746 * then the previously requested load will start counting again.
4747 *
4748 * If a regulator is an always-on regulator then an individual consumer's
4749 * load will still be removed if that consumer is fully disabled.
4750 *
4751 * Return: 0 on success or a negative error number on failure.
4752 */
4753int regulator_set_load(struct regulator *regulator, int uA_load)
4754{
4755 struct regulator_dev *rdev = regulator->rdev;
4756 int old_uA_load;
4757 int ret = 0;
4758
4759 regulator_lock(rdev);
4760 old_uA_load = regulator->uA_load;
4761 regulator->uA_load = uA_load;
4762 if (regulator->enable_count && old_uA_load != uA_load) {
4763 ret = drms_uA_update(rdev);
4764 if (ret < 0)
4765 regulator->uA_load = old_uA_load;
4766 }
4767 regulator_unlock(rdev);
4768
4769 return ret;
4770}
4771EXPORT_SYMBOL_GPL(regulator_set_load);
4772
4773/**
4774 * regulator_allow_bypass - allow the regulator to go into bypass mode
4775 *
4776 * @regulator: Regulator to configure
4777 * @enable: enable or disable bypass mode
4778 *
4779 * Allow the regulator to go into bypass mode if all other consumers
4780 * for the regulator also enable bypass mode and the machine
4781 * constraints allow this. Bypass mode means that the regulator is
4782 * simply passing the input directly to the output with no regulation.
4783 *
4784 * Return: 0 on success or if changing bypass is not possible, or
4785 * a negative error number on failure.
4786 */
4787int regulator_allow_bypass(struct regulator *regulator, bool enable)
4788{
4789 struct regulator_dev *rdev = regulator->rdev;
4790 const char *name = rdev_get_name(rdev);
4791 int ret = 0;
4792
4793 if (!rdev->desc->ops->set_bypass)
4794 return 0;
4795
4796 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4797 return 0;
4798
4799 regulator_lock(rdev);
4800
4801 if (enable && !regulator->bypass) {
4802 rdev->bypass_count++;
4803
4804 if (rdev->bypass_count == rdev->open_count) {
4805 trace_regulator_bypass_enable(name);
4806
4807 ret = rdev->desc->ops->set_bypass(rdev, enable);
4808 if (ret != 0)
4809 rdev->bypass_count--;
4810 else
4811 trace_regulator_bypass_enable_complete(name);
4812 }
4813
4814 } else if (!enable && regulator->bypass) {
4815 rdev->bypass_count--;
4816
4817 if (rdev->bypass_count != rdev->open_count) {
4818 trace_regulator_bypass_disable(name);
4819
4820 ret = rdev->desc->ops->set_bypass(rdev, enable);
4821 if (ret != 0)
4822 rdev->bypass_count++;
4823 else
4824 trace_regulator_bypass_disable_complete(name);
4825 }
4826 }
4827
4828 if (ret == 0)
4829 regulator->bypass = enable;
4830
4831 regulator_unlock(rdev);
4832
4833 return ret;
4834}
4835EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4836
4837/**
4838 * regulator_register_notifier - register regulator event notifier
4839 * @regulator: regulator source
4840 * @nb: notifier block
4841 *
4842 * Register notifier block to receive regulator events.
4843 *
4844 * Return: 0 on success or a negative error number on failure.
4845 */
4846int regulator_register_notifier(struct regulator *regulator,
4847 struct notifier_block *nb)
4848{
4849 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4850 nb);
4851}
4852EXPORT_SYMBOL_GPL(regulator_register_notifier);
4853
4854/**
4855 * regulator_unregister_notifier - unregister regulator event notifier
4856 * @regulator: regulator source
4857 * @nb: notifier block
4858 *
4859 * Unregister regulator event notifier block.
4860 *
4861 * Return: 0 on success or a negative error number on failure.
4862 */
4863int regulator_unregister_notifier(struct regulator *regulator,
4864 struct notifier_block *nb)
4865{
4866 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4867 nb);
4868}
4869EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4870
4871/* notify regulator consumers and downstream regulator consumers.
4872 * Note mutex must be held by caller.
4873 */
4874static int _notifier_call_chain(struct regulator_dev *rdev,
4875 unsigned long event, void *data)
4876{
4877 /* call rdev chain first */
4878 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4879
4880 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4881 struct device *parent = rdev->dev.parent;
4882 const char *rname = rdev_get_name(rdev);
4883 char name[32];
4884
4885 /* Avoid duplicate debugfs directory names */
4886 if (parent && rname == rdev->desc->name) {
4887 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4888 rname);
4889 rname = name;
4890 }
4891 reg_generate_netlink_event(rname, event);
4892 }
4893
4894 return ret;
4895}
4896
4897int _regulator_bulk_get(struct device *dev, int num_consumers,
4898 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4899{
4900 int i;
4901 int ret;
4902
4903 for (i = 0; i < num_consumers; i++)
4904 consumers[i].consumer = NULL;
4905
4906 for (i = 0; i < num_consumers; i++) {
4907 consumers[i].consumer = _regulator_get(dev,
4908 consumers[i].supply, get_type);
4909 if (IS_ERR(consumers[i].consumer)) {
4910 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4911 "Failed to get supply '%s'\n",
4912 consumers[i].supply);
4913 consumers[i].consumer = NULL;
4914 goto err;
4915 }
4916
4917 if (consumers[i].init_load_uA > 0) {
4918 ret = regulator_set_load(consumers[i].consumer,
4919 consumers[i].init_load_uA);
4920 if (ret) {
4921 i++;
4922 goto err;
4923 }
4924 }
4925 }
4926
4927 return 0;
4928
4929err:
4930 while (--i >= 0)
4931 regulator_put(consumers[i].consumer);
4932
4933 return ret;
4934}
4935
4936/**
4937 * regulator_bulk_get - get multiple regulator consumers
4938 *
4939 * @dev: Device to supply
4940 * @num_consumers: Number of consumers to register
4941 * @consumers: Configuration of consumers; clients are stored here.
4942 *
4943 * This helper function allows drivers to get several regulator
4944 * consumers in one operation. If any of the regulators cannot be
4945 * acquired then any regulators that were allocated will be freed
4946 * before returning to the caller.
4947 *
4948 * Return: 0 on success or a negative error number on failure.
4949 */
4950int regulator_bulk_get(struct device *dev, int num_consumers,
4951 struct regulator_bulk_data *consumers)
4952{
4953 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4954}
4955EXPORT_SYMBOL_GPL(regulator_bulk_get);
4956
4957static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4958{
4959 struct regulator_bulk_data *bulk = data;
4960
4961 bulk->ret = regulator_enable(bulk->consumer);
4962}
4963
4964/**
4965 * regulator_bulk_enable - enable multiple regulator consumers
4966 *
4967 * @num_consumers: Number of consumers
4968 * @consumers: Consumer data; clients are stored here.
4969 *
4970 * This convenience API allows consumers to enable multiple regulator
4971 * clients in a single API call. If any consumers cannot be enabled
4972 * then any others that were enabled will be disabled again prior to
4973 * return.
4974 *
4975 * Return: 0 on success or a negative error number on failure.
4976 */
4977int regulator_bulk_enable(int num_consumers,
4978 struct regulator_bulk_data *consumers)
4979{
4980 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4981 int i;
4982 int ret = 0;
4983
4984 for (i = 0; i < num_consumers; i++) {
4985 async_schedule_domain(regulator_bulk_enable_async,
4986 &consumers[i], &async_domain);
4987 }
4988
4989 async_synchronize_full_domain(&async_domain);
4990
4991 /* If any consumer failed we need to unwind any that succeeded */
4992 for (i = 0; i < num_consumers; i++) {
4993 if (consumers[i].ret != 0) {
4994 ret = consumers[i].ret;
4995 goto err;
4996 }
4997 }
4998
4999 return 0;
5000
5001err:
5002 for (i = 0; i < num_consumers; i++) {
5003 if (consumers[i].ret < 0)
5004 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5005 ERR_PTR(consumers[i].ret));
5006 else
5007 regulator_disable(consumers[i].consumer);
5008 }
5009
5010 return ret;
5011}
5012EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5013
5014/**
5015 * regulator_bulk_disable - disable multiple regulator consumers
5016 *
5017 * @num_consumers: Number of consumers
5018 * @consumers: Consumer data; clients are stored here.
5019 *
5020 * This convenience API allows consumers to disable multiple regulator
5021 * clients in a single API call. If any consumers cannot be disabled
5022 * then any others that were disabled will be enabled again prior to
5023 * return.
5024 *
5025 * Return: 0 on success or a negative error number on failure.
5026 */
5027int regulator_bulk_disable(int num_consumers,
5028 struct regulator_bulk_data *consumers)
5029{
5030 int i;
5031 int ret, r;
5032
5033 for (i = num_consumers - 1; i >= 0; --i) {
5034 ret = regulator_disable(consumers[i].consumer);
5035 if (ret != 0)
5036 goto err;
5037 }
5038
5039 return 0;
5040
5041err:
5042 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5043 for (++i; i < num_consumers; ++i) {
5044 r = regulator_enable(consumers[i].consumer);
5045 if (r != 0)
5046 pr_err("Failed to re-enable %s: %pe\n",
5047 consumers[i].supply, ERR_PTR(r));
5048 }
5049
5050 return ret;
5051}
5052EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5053
5054/**
5055 * regulator_bulk_force_disable - force disable multiple regulator consumers
5056 *
5057 * @num_consumers: Number of consumers
5058 * @consumers: Consumer data; clients are stored here.
5059 *
5060 * This convenience API allows consumers to forcibly disable multiple regulator
5061 * clients in a single API call.
5062 * NOTE: This should be used for situations when device damage will
5063 * likely occur if the regulators are not disabled (e.g. over temp).
5064 * Although regulator_force_disable function call for some consumers can
5065 * return error numbers, the function is called for all consumers.
5066 *
5067 * Return: 0 on success or a negative error number on failure.
5068 */
5069int regulator_bulk_force_disable(int num_consumers,
5070 struct regulator_bulk_data *consumers)
5071{
5072 int i;
5073 int ret = 0;
5074
5075 for (i = 0; i < num_consumers; i++) {
5076 consumers[i].ret =
5077 regulator_force_disable(consumers[i].consumer);
5078
5079 /* Store first error for reporting */
5080 if (consumers[i].ret && !ret)
5081 ret = consumers[i].ret;
5082 }
5083
5084 return ret;
5085}
5086EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5087
5088/**
5089 * regulator_bulk_free - free multiple regulator consumers
5090 *
5091 * @num_consumers: Number of consumers
5092 * @consumers: Consumer data; clients are stored here.
5093 *
5094 * This convenience API allows consumers to free multiple regulator
5095 * clients in a single API call.
5096 */
5097void regulator_bulk_free(int num_consumers,
5098 struct regulator_bulk_data *consumers)
5099{
5100 int i;
5101
5102 for (i = 0; i < num_consumers; i++) {
5103 regulator_put(consumers[i].consumer);
5104 consumers[i].consumer = NULL;
5105 }
5106}
5107EXPORT_SYMBOL_GPL(regulator_bulk_free);
5108
5109/**
5110 * regulator_handle_critical - Handle events for system-critical regulators.
5111 * @rdev: The regulator device.
5112 * @event: The event being handled.
5113 *
5114 * This function handles critical events such as under-voltage, over-current,
5115 * and unknown errors for regulators deemed system-critical. On detecting such
5116 * events, it triggers a hardware protection shutdown with a defined timeout.
5117 */
5118static void regulator_handle_critical(struct regulator_dev *rdev,
5119 unsigned long event)
5120{
5121 const char *reason = NULL;
5122
5123 if (!rdev->constraints->system_critical)
5124 return;
5125
5126 switch (event) {
5127 case REGULATOR_EVENT_UNDER_VOLTAGE:
5128 reason = "System critical regulator: voltage drop detected";
5129 break;
5130 case REGULATOR_EVENT_OVER_CURRENT:
5131 reason = "System critical regulator: over-current detected";
5132 break;
5133 case REGULATOR_EVENT_FAIL:
5134 reason = "System critical regulator: unknown error";
5135 }
5136
5137 if (!reason)
5138 return;
5139
5140 hw_protection_shutdown(reason,
5141 rdev->constraints->uv_less_critical_window_ms);
5142}
5143
5144/**
5145 * regulator_notifier_call_chain - call regulator event notifier
5146 * @rdev: regulator source
5147 * @event: notifier block
5148 * @data: callback-specific data.
5149 *
5150 * Called by regulator drivers to notify clients a regulator event has
5151 * occurred.
5152 *
5153 * Return: %NOTIFY_DONE.
5154 */
5155int regulator_notifier_call_chain(struct regulator_dev *rdev,
5156 unsigned long event, void *data)
5157{
5158 regulator_handle_critical(rdev, event);
5159
5160 _notifier_call_chain(rdev, event, data);
5161 return NOTIFY_DONE;
5162
5163}
5164EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5165
5166/**
5167 * regulator_mode_to_status - convert a regulator mode into a status
5168 *
5169 * @mode: Mode to convert
5170 *
5171 * Convert a regulator mode into a status.
5172 *
5173 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5174 */
5175int regulator_mode_to_status(unsigned int mode)
5176{
5177 switch (mode) {
5178 case REGULATOR_MODE_FAST:
5179 return REGULATOR_STATUS_FAST;
5180 case REGULATOR_MODE_NORMAL:
5181 return REGULATOR_STATUS_NORMAL;
5182 case REGULATOR_MODE_IDLE:
5183 return REGULATOR_STATUS_IDLE;
5184 case REGULATOR_MODE_STANDBY:
5185 return REGULATOR_STATUS_STANDBY;
5186 default:
5187 return REGULATOR_STATUS_UNDEFINED;
5188 }
5189}
5190EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5191
5192static struct attribute *regulator_dev_attrs[] = {
5193 &dev_attr_name.attr,
5194 &dev_attr_num_users.attr,
5195 &dev_attr_type.attr,
5196 &dev_attr_microvolts.attr,
5197 &dev_attr_microamps.attr,
5198 &dev_attr_opmode.attr,
5199 &dev_attr_state.attr,
5200 &dev_attr_status.attr,
5201 &dev_attr_bypass.attr,
5202 &dev_attr_requested_microamps.attr,
5203 &dev_attr_min_microvolts.attr,
5204 &dev_attr_max_microvolts.attr,
5205 &dev_attr_min_microamps.attr,
5206 &dev_attr_max_microamps.attr,
5207 &dev_attr_under_voltage.attr,
5208 &dev_attr_over_current.attr,
5209 &dev_attr_regulation_out.attr,
5210 &dev_attr_fail.attr,
5211 &dev_attr_over_temp.attr,
5212 &dev_attr_under_voltage_warn.attr,
5213 &dev_attr_over_current_warn.attr,
5214 &dev_attr_over_voltage_warn.attr,
5215 &dev_attr_over_temp_warn.attr,
5216 &dev_attr_suspend_standby_state.attr,
5217 &dev_attr_suspend_mem_state.attr,
5218 &dev_attr_suspend_disk_state.attr,
5219 &dev_attr_suspend_standby_microvolts.attr,
5220 &dev_attr_suspend_mem_microvolts.attr,
5221 &dev_attr_suspend_disk_microvolts.attr,
5222 &dev_attr_suspend_standby_mode.attr,
5223 &dev_attr_suspend_mem_mode.attr,
5224 &dev_attr_suspend_disk_mode.attr,
5225 NULL
5226};
5227
5228/*
5229 * To avoid cluttering sysfs (and memory) with useless state, only
5230 * create attributes that can be meaningfully displayed.
5231 */
5232static umode_t regulator_attr_is_visible(struct kobject *kobj,
5233 struct attribute *attr, int idx)
5234{
5235 struct device *dev = kobj_to_dev(kobj);
5236 struct regulator_dev *rdev = dev_to_rdev(dev);
5237 const struct regulator_ops *ops = rdev->desc->ops;
5238 umode_t mode = attr->mode;
5239
5240 /* these three are always present */
5241 if (attr == &dev_attr_name.attr ||
5242 attr == &dev_attr_num_users.attr ||
5243 attr == &dev_attr_type.attr)
5244 return mode;
5245
5246 /* some attributes need specific methods to be displayed */
5247 if (attr == &dev_attr_microvolts.attr) {
5248 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5249 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5250 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5251 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5252 return mode;
5253 return 0;
5254 }
5255
5256 if (attr == &dev_attr_microamps.attr)
5257 return ops->get_current_limit ? mode : 0;
5258
5259 if (attr == &dev_attr_opmode.attr)
5260 return ops->get_mode ? mode : 0;
5261
5262 if (attr == &dev_attr_state.attr)
5263 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5264
5265 if (attr == &dev_attr_status.attr)
5266 return ops->get_status ? mode : 0;
5267
5268 if (attr == &dev_attr_bypass.attr)
5269 return ops->get_bypass ? mode : 0;
5270
5271 if (attr == &dev_attr_under_voltage.attr ||
5272 attr == &dev_attr_over_current.attr ||
5273 attr == &dev_attr_regulation_out.attr ||
5274 attr == &dev_attr_fail.attr ||
5275 attr == &dev_attr_over_temp.attr ||
5276 attr == &dev_attr_under_voltage_warn.attr ||
5277 attr == &dev_attr_over_current_warn.attr ||
5278 attr == &dev_attr_over_voltage_warn.attr ||
5279 attr == &dev_attr_over_temp_warn.attr)
5280 return ops->get_error_flags ? mode : 0;
5281
5282 /* constraints need specific supporting methods */
5283 if (attr == &dev_attr_min_microvolts.attr ||
5284 attr == &dev_attr_max_microvolts.attr)
5285 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5286
5287 if (attr == &dev_attr_min_microamps.attr ||
5288 attr == &dev_attr_max_microamps.attr)
5289 return ops->set_current_limit ? mode : 0;
5290
5291 if (attr == &dev_attr_suspend_standby_state.attr ||
5292 attr == &dev_attr_suspend_mem_state.attr ||
5293 attr == &dev_attr_suspend_disk_state.attr)
5294 return mode;
5295
5296 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5297 attr == &dev_attr_suspend_mem_microvolts.attr ||
5298 attr == &dev_attr_suspend_disk_microvolts.attr)
5299 return ops->set_suspend_voltage ? mode : 0;
5300
5301 if (attr == &dev_attr_suspend_standby_mode.attr ||
5302 attr == &dev_attr_suspend_mem_mode.attr ||
5303 attr == &dev_attr_suspend_disk_mode.attr)
5304 return ops->set_suspend_mode ? mode : 0;
5305
5306 return mode;
5307}
5308
5309static const struct attribute_group regulator_dev_group = {
5310 .attrs = regulator_dev_attrs,
5311 .is_visible = regulator_attr_is_visible,
5312};
5313
5314static const struct attribute_group *regulator_dev_groups[] = {
5315 ®ulator_dev_group,
5316 NULL
5317};
5318
5319static void regulator_dev_release(struct device *dev)
5320{
5321 struct regulator_dev *rdev = dev_get_drvdata(dev);
5322
5323 debugfs_remove_recursive(rdev->debugfs);
5324 kfree(rdev->constraints);
5325 of_node_put(rdev->dev.of_node);
5326 kfree(rdev);
5327}
5328
5329static void rdev_init_debugfs(struct regulator_dev *rdev)
5330{
5331 struct device *parent = rdev->dev.parent;
5332 const char *rname = rdev_get_name(rdev);
5333 char name[NAME_MAX];
5334
5335 /* Avoid duplicate debugfs directory names */
5336 if (parent && rname == rdev->desc->name) {
5337 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5338 rname);
5339 rname = name;
5340 }
5341
5342 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5343 if (IS_ERR(rdev->debugfs))
5344 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5345
5346 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5347 &rdev->use_count);
5348 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5349 &rdev->open_count);
5350 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5351 &rdev->bypass_count);
5352}
5353
5354static int regulator_register_resolve_supply(struct device *dev, void *data)
5355{
5356 struct regulator_dev *rdev = dev_to_rdev(dev);
5357
5358 if (regulator_resolve_supply(rdev))
5359 rdev_dbg(rdev, "unable to resolve supply\n");
5360
5361 return 0;
5362}
5363
5364int regulator_coupler_register(struct regulator_coupler *coupler)
5365{
5366 mutex_lock(®ulator_list_mutex);
5367 list_add_tail(&coupler->list, ®ulator_coupler_list);
5368 mutex_unlock(®ulator_list_mutex);
5369
5370 return 0;
5371}
5372
5373static struct regulator_coupler *
5374regulator_find_coupler(struct regulator_dev *rdev)
5375{
5376 struct regulator_coupler *coupler;
5377 int err;
5378
5379 /*
5380 * Note that regulators are appended to the list and the generic
5381 * coupler is registered first, hence it will be attached at last
5382 * if nobody cared.
5383 */
5384 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5385 err = coupler->attach_regulator(coupler, rdev);
5386 if (!err) {
5387 if (!coupler->balance_voltage &&
5388 rdev->coupling_desc.n_coupled > 2)
5389 goto err_unsupported;
5390
5391 return coupler;
5392 }
5393
5394 if (err < 0)
5395 return ERR_PTR(err);
5396
5397 if (err == 1)
5398 continue;
5399
5400 break;
5401 }
5402
5403 return ERR_PTR(-EINVAL);
5404
5405err_unsupported:
5406 if (coupler->detach_regulator)
5407 coupler->detach_regulator(coupler, rdev);
5408
5409 rdev_err(rdev,
5410 "Voltage balancing for multiple regulator couples is unimplemented\n");
5411
5412 return ERR_PTR(-EPERM);
5413}
5414
5415static void regulator_resolve_coupling(struct regulator_dev *rdev)
5416{
5417 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5418 struct coupling_desc *c_desc = &rdev->coupling_desc;
5419 int n_coupled = c_desc->n_coupled;
5420 struct regulator_dev *c_rdev;
5421 int i;
5422
5423 for (i = 1; i < n_coupled; i++) {
5424 /* already resolved */
5425 if (c_desc->coupled_rdevs[i])
5426 continue;
5427
5428 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5429
5430 if (!c_rdev)
5431 continue;
5432
5433 if (c_rdev->coupling_desc.coupler != coupler) {
5434 rdev_err(rdev, "coupler mismatch with %s\n",
5435 rdev_get_name(c_rdev));
5436 return;
5437 }
5438
5439 c_desc->coupled_rdevs[i] = c_rdev;
5440 c_desc->n_resolved++;
5441
5442 regulator_resolve_coupling(c_rdev);
5443 }
5444}
5445
5446static void regulator_remove_coupling(struct regulator_dev *rdev)
5447{
5448 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5449 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5450 struct regulator_dev *__c_rdev, *c_rdev;
5451 unsigned int __n_coupled, n_coupled;
5452 int i, k;
5453 int err;
5454
5455 n_coupled = c_desc->n_coupled;
5456
5457 for (i = 1; i < n_coupled; i++) {
5458 c_rdev = c_desc->coupled_rdevs[i];
5459
5460 if (!c_rdev)
5461 continue;
5462
5463 regulator_lock(c_rdev);
5464
5465 __c_desc = &c_rdev->coupling_desc;
5466 __n_coupled = __c_desc->n_coupled;
5467
5468 for (k = 1; k < __n_coupled; k++) {
5469 __c_rdev = __c_desc->coupled_rdevs[k];
5470
5471 if (__c_rdev == rdev) {
5472 __c_desc->coupled_rdevs[k] = NULL;
5473 __c_desc->n_resolved--;
5474 break;
5475 }
5476 }
5477
5478 regulator_unlock(c_rdev);
5479
5480 c_desc->coupled_rdevs[i] = NULL;
5481 c_desc->n_resolved--;
5482 }
5483
5484 if (coupler && coupler->detach_regulator) {
5485 err = coupler->detach_regulator(coupler, rdev);
5486 if (err)
5487 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5488 ERR_PTR(err));
5489 }
5490
5491 kfree(rdev->coupling_desc.coupled_rdevs);
5492 rdev->coupling_desc.coupled_rdevs = NULL;
5493}
5494
5495static int regulator_init_coupling(struct regulator_dev *rdev)
5496{
5497 struct regulator_dev **coupled;
5498 int err, n_phandles;
5499
5500 if (!IS_ENABLED(CONFIG_OF))
5501 n_phandles = 0;
5502 else
5503 n_phandles = of_get_n_coupled(rdev);
5504
5505 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5506 if (!coupled)
5507 return -ENOMEM;
5508
5509 rdev->coupling_desc.coupled_rdevs = coupled;
5510
5511 /*
5512 * Every regulator should always have coupling descriptor filled with
5513 * at least pointer to itself.
5514 */
5515 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5516 rdev->coupling_desc.n_coupled = n_phandles + 1;
5517 rdev->coupling_desc.n_resolved++;
5518
5519 /* regulator isn't coupled */
5520 if (n_phandles == 0)
5521 return 0;
5522
5523 if (!of_check_coupling_data(rdev))
5524 return -EPERM;
5525
5526 mutex_lock(®ulator_list_mutex);
5527 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5528 mutex_unlock(®ulator_list_mutex);
5529
5530 if (IS_ERR(rdev->coupling_desc.coupler)) {
5531 err = PTR_ERR(rdev->coupling_desc.coupler);
5532 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5533 return err;
5534 }
5535
5536 return 0;
5537}
5538
5539static int generic_coupler_attach(struct regulator_coupler *coupler,
5540 struct regulator_dev *rdev)
5541{
5542 if (rdev->coupling_desc.n_coupled > 2) {
5543 rdev_err(rdev,
5544 "Voltage balancing for multiple regulator couples is unimplemented\n");
5545 return -EPERM;
5546 }
5547
5548 if (!rdev->constraints->always_on) {
5549 rdev_err(rdev,
5550 "Coupling of a non always-on regulator is unimplemented\n");
5551 return -ENOTSUPP;
5552 }
5553
5554 return 0;
5555}
5556
5557static struct regulator_coupler generic_regulator_coupler = {
5558 .attach_regulator = generic_coupler_attach,
5559};
5560
5561/**
5562 * regulator_register - register regulator
5563 * @dev: the device that drive the regulator
5564 * @regulator_desc: regulator to register
5565 * @cfg: runtime configuration for regulator
5566 *
5567 * Called by regulator drivers to register a regulator.
5568 *
5569 * Return: Pointer to a valid &struct regulator_dev on success or
5570 * an ERR_PTR() encoded negative error number on failure.
5571 */
5572struct regulator_dev *
5573regulator_register(struct device *dev,
5574 const struct regulator_desc *regulator_desc,
5575 const struct regulator_config *cfg)
5576{
5577 const struct regulator_init_data *init_data;
5578 struct regulator_config *config = NULL;
5579 static atomic_t regulator_no = ATOMIC_INIT(-1);
5580 struct regulator_dev *rdev;
5581 bool dangling_cfg_gpiod = false;
5582 bool dangling_of_gpiod = false;
5583 int ret, i;
5584 bool resolved_early = false;
5585
5586 if (cfg == NULL)
5587 return ERR_PTR(-EINVAL);
5588 if (cfg->ena_gpiod)
5589 dangling_cfg_gpiod = true;
5590 if (regulator_desc == NULL) {
5591 ret = -EINVAL;
5592 goto rinse;
5593 }
5594
5595 WARN_ON(!dev || !cfg->dev);
5596
5597 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5598 ret = -EINVAL;
5599 goto rinse;
5600 }
5601
5602 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5603 regulator_desc->type != REGULATOR_CURRENT) {
5604 ret = -EINVAL;
5605 goto rinse;
5606 }
5607
5608 /* Only one of each should be implemented */
5609 WARN_ON(regulator_desc->ops->get_voltage &&
5610 regulator_desc->ops->get_voltage_sel);
5611 WARN_ON(regulator_desc->ops->set_voltage &&
5612 regulator_desc->ops->set_voltage_sel);
5613
5614 /* If we're using selectors we must implement list_voltage. */
5615 if (regulator_desc->ops->get_voltage_sel &&
5616 !regulator_desc->ops->list_voltage) {
5617 ret = -EINVAL;
5618 goto rinse;
5619 }
5620 if (regulator_desc->ops->set_voltage_sel &&
5621 !regulator_desc->ops->list_voltage) {
5622 ret = -EINVAL;
5623 goto rinse;
5624 }
5625
5626 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5627 if (rdev == NULL) {
5628 ret = -ENOMEM;
5629 goto rinse;
5630 }
5631 device_initialize(&rdev->dev);
5632 dev_set_drvdata(&rdev->dev, rdev);
5633 rdev->dev.class = ®ulator_class;
5634 spin_lock_init(&rdev->err_lock);
5635
5636 /*
5637 * Duplicate the config so the driver could override it after
5638 * parsing init data.
5639 */
5640 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5641 if (config == NULL) {
5642 ret = -ENOMEM;
5643 goto clean;
5644 }
5645
5646 /*
5647 * DT may override the config->init_data provided if the platform
5648 * needs to do so. If so, config->init_data is completely ignored.
5649 */
5650 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5651 &rdev->dev.of_node);
5652
5653 /*
5654 * Sometimes not all resources are probed already so we need to take
5655 * that into account. This happens most the time if the ena_gpiod comes
5656 * from a gpio extender or something else.
5657 */
5658 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5659 ret = -EPROBE_DEFER;
5660 goto clean;
5661 }
5662
5663 /*
5664 * We need to keep track of any GPIO descriptor coming from the
5665 * device tree until we have handled it over to the core. If the
5666 * config that was passed in to this function DOES NOT contain
5667 * a descriptor, and the config after this call DOES contain
5668 * a descriptor, we definitely got one from parsing the device
5669 * tree.
5670 */
5671 if (!cfg->ena_gpiod && config->ena_gpiod)
5672 dangling_of_gpiod = true;
5673 if (!init_data) {
5674 init_data = config->init_data;
5675 rdev->dev.of_node = of_node_get(config->of_node);
5676 }
5677
5678 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5679 rdev->reg_data = config->driver_data;
5680 rdev->owner = regulator_desc->owner;
5681 rdev->desc = regulator_desc;
5682 if (config->regmap)
5683 rdev->regmap = config->regmap;
5684 else if (dev_get_regmap(dev, NULL))
5685 rdev->regmap = dev_get_regmap(dev, NULL);
5686 else if (dev->parent)
5687 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5688 INIT_LIST_HEAD(&rdev->consumer_list);
5689 INIT_LIST_HEAD(&rdev->list);
5690 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5691 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5692
5693 if (init_data && init_data->supply_regulator)
5694 rdev->supply_name = init_data->supply_regulator;
5695 else if (regulator_desc->supply_name)
5696 rdev->supply_name = regulator_desc->supply_name;
5697
5698 /* register with sysfs */
5699 rdev->dev.parent = config->dev;
5700 dev_set_name(&rdev->dev, "regulator.%lu",
5701 (unsigned long) atomic_inc_return(®ulator_no));
5702
5703 /* set regulator constraints */
5704 if (init_data)
5705 rdev->constraints = kmemdup(&init_data->constraints,
5706 sizeof(*rdev->constraints),
5707 GFP_KERNEL);
5708 else
5709 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5710 GFP_KERNEL);
5711 if (!rdev->constraints) {
5712 ret = -ENOMEM;
5713 goto wash;
5714 }
5715
5716 if (regulator_desc->init_cb) {
5717 ret = regulator_desc->init_cb(rdev, config);
5718 if (ret < 0)
5719 goto wash;
5720 }
5721
5722 if ((rdev->supply_name && !rdev->supply) &&
5723 (rdev->constraints->always_on ||
5724 rdev->constraints->boot_on)) {
5725 ret = regulator_resolve_supply(rdev);
5726 if (ret)
5727 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5728 ERR_PTR(ret));
5729
5730 resolved_early = true;
5731 }
5732
5733 if (config->ena_gpiod) {
5734 ret = regulator_ena_gpio_request(rdev, config);
5735 if (ret != 0) {
5736 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5737 ERR_PTR(ret));
5738 goto wash;
5739 }
5740 /* The regulator core took over the GPIO descriptor */
5741 dangling_cfg_gpiod = false;
5742 dangling_of_gpiod = false;
5743 }
5744
5745 ret = set_machine_constraints(rdev);
5746 if (ret == -EPROBE_DEFER && !resolved_early) {
5747 /* Regulator might be in bypass mode and so needs its supply
5748 * to set the constraints
5749 */
5750 /* FIXME: this currently triggers a chicken-and-egg problem
5751 * when creating -SUPPLY symlink in sysfs to a regulator
5752 * that is just being created
5753 */
5754 rdev_dbg(rdev, "will resolve supply early: %s\n",
5755 rdev->supply_name);
5756 ret = regulator_resolve_supply(rdev);
5757 if (!ret)
5758 ret = set_machine_constraints(rdev);
5759 else
5760 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5761 ERR_PTR(ret));
5762 }
5763 if (ret < 0)
5764 goto wash;
5765
5766 ret = regulator_init_coupling(rdev);
5767 if (ret < 0)
5768 goto wash;
5769
5770 /* add consumers devices */
5771 if (init_data) {
5772 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5773 ret = set_consumer_device_supply(rdev,
5774 init_data->consumer_supplies[i].dev_name,
5775 init_data->consumer_supplies[i].supply);
5776 if (ret < 0) {
5777 dev_err(dev, "Failed to set supply %s\n",
5778 init_data->consumer_supplies[i].supply);
5779 goto unset_supplies;
5780 }
5781 }
5782 }
5783
5784 if (!rdev->desc->ops->get_voltage &&
5785 !rdev->desc->ops->list_voltage &&
5786 !rdev->desc->fixed_uV)
5787 rdev->is_switch = true;
5788
5789 ret = device_add(&rdev->dev);
5790 if (ret != 0)
5791 goto unset_supplies;
5792
5793 rdev_init_debugfs(rdev);
5794
5795 /* try to resolve regulators coupling since a new one was registered */
5796 mutex_lock(®ulator_list_mutex);
5797 regulator_resolve_coupling(rdev);
5798 mutex_unlock(®ulator_list_mutex);
5799
5800 /* try to resolve regulators supply since a new one was registered */
5801 class_for_each_device(®ulator_class, NULL, NULL,
5802 regulator_register_resolve_supply);
5803 kfree(config);
5804 return rdev;
5805
5806unset_supplies:
5807 mutex_lock(®ulator_list_mutex);
5808 unset_regulator_supplies(rdev);
5809 regulator_remove_coupling(rdev);
5810 mutex_unlock(®ulator_list_mutex);
5811wash:
5812 regulator_put(rdev->supply);
5813 kfree(rdev->coupling_desc.coupled_rdevs);
5814 mutex_lock(®ulator_list_mutex);
5815 regulator_ena_gpio_free(rdev);
5816 mutex_unlock(®ulator_list_mutex);
5817clean:
5818 if (dangling_of_gpiod)
5819 gpiod_put(config->ena_gpiod);
5820 kfree(config);
5821 put_device(&rdev->dev);
5822rinse:
5823 if (dangling_cfg_gpiod)
5824 gpiod_put(cfg->ena_gpiod);
5825 return ERR_PTR(ret);
5826}
5827EXPORT_SYMBOL_GPL(regulator_register);
5828
5829/**
5830 * regulator_unregister - unregister regulator
5831 * @rdev: regulator to unregister
5832 *
5833 * Called by regulator drivers to unregister a regulator.
5834 */
5835void regulator_unregister(struct regulator_dev *rdev)
5836{
5837 if (rdev == NULL)
5838 return;
5839
5840 if (rdev->supply) {
5841 while (rdev->use_count--)
5842 regulator_disable(rdev->supply);
5843 regulator_put(rdev->supply);
5844 }
5845
5846 flush_work(&rdev->disable_work.work);
5847
5848 mutex_lock(®ulator_list_mutex);
5849
5850 WARN_ON(rdev->open_count);
5851 regulator_remove_coupling(rdev);
5852 unset_regulator_supplies(rdev);
5853 list_del(&rdev->list);
5854 regulator_ena_gpio_free(rdev);
5855 device_unregister(&rdev->dev);
5856
5857 mutex_unlock(®ulator_list_mutex);
5858}
5859EXPORT_SYMBOL_GPL(regulator_unregister);
5860
5861#ifdef CONFIG_SUSPEND
5862/**
5863 * regulator_suspend - prepare regulators for system wide suspend
5864 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5865 *
5866 * Configure each regulator with it's suspend operating parameters for state.
5867 *
5868 * Return: 0 on success or a negative error number on failure.
5869 */
5870static int regulator_suspend(struct device *dev)
5871{
5872 struct regulator_dev *rdev = dev_to_rdev(dev);
5873 suspend_state_t state = pm_suspend_target_state;
5874 int ret;
5875 const struct regulator_state *rstate;
5876
5877 rstate = regulator_get_suspend_state_check(rdev, state);
5878 if (!rstate)
5879 return 0;
5880
5881 regulator_lock(rdev);
5882 ret = __suspend_set_state(rdev, rstate);
5883 regulator_unlock(rdev);
5884
5885 return ret;
5886}
5887
5888static int regulator_resume(struct device *dev)
5889{
5890 suspend_state_t state = pm_suspend_target_state;
5891 struct regulator_dev *rdev = dev_to_rdev(dev);
5892 struct regulator_state *rstate;
5893 int ret = 0;
5894
5895 rstate = regulator_get_suspend_state(rdev, state);
5896 if (rstate == NULL)
5897 return 0;
5898
5899 /* Avoid grabbing the lock if we don't need to */
5900 if (!rdev->desc->ops->resume)
5901 return 0;
5902
5903 regulator_lock(rdev);
5904
5905 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5906 rstate->enabled == DISABLE_IN_SUSPEND)
5907 ret = rdev->desc->ops->resume(rdev);
5908
5909 regulator_unlock(rdev);
5910
5911 return ret;
5912}
5913#else /* !CONFIG_SUSPEND */
5914
5915#define regulator_suspend NULL
5916#define regulator_resume NULL
5917
5918#endif /* !CONFIG_SUSPEND */
5919
5920#ifdef CONFIG_PM
5921static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5922 .suspend = regulator_suspend,
5923 .resume = regulator_resume,
5924};
5925#endif
5926
5927const struct class regulator_class = {
5928 .name = "regulator",
5929 .dev_release = regulator_dev_release,
5930 .dev_groups = regulator_dev_groups,
5931#ifdef CONFIG_PM
5932 .pm = ®ulator_pm_ops,
5933#endif
5934};
5935/**
5936 * regulator_has_full_constraints - the system has fully specified constraints
5937 *
5938 * Calling this function will cause the regulator API to disable all
5939 * regulators which have a zero use count and don't have an always_on
5940 * constraint in a late_initcall.
5941 *
5942 * The intention is that this will become the default behaviour in a
5943 * future kernel release so users are encouraged to use this facility
5944 * now.
5945 */
5946void regulator_has_full_constraints(void)
5947{
5948 has_full_constraints = 1;
5949}
5950EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5951
5952/**
5953 * rdev_get_drvdata - get rdev regulator driver data
5954 * @rdev: regulator
5955 *
5956 * Get rdev regulator driver private data. This call can be used in the
5957 * regulator driver context.
5958 *
5959 * Return: Pointer to regulator driver private data.
5960 */
5961void *rdev_get_drvdata(struct regulator_dev *rdev)
5962{
5963 return rdev->reg_data;
5964}
5965EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5966
5967/**
5968 * regulator_get_drvdata - get regulator driver data
5969 * @regulator: regulator
5970 *
5971 * Get regulator driver private data. This call can be used in the consumer
5972 * driver context when non API regulator specific functions need to be called.
5973 *
5974 * Return: Pointer to regulator driver private data.
5975 */
5976void *regulator_get_drvdata(struct regulator *regulator)
5977{
5978 return regulator->rdev->reg_data;
5979}
5980EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5981
5982/**
5983 * regulator_set_drvdata - set regulator driver data
5984 * @regulator: regulator
5985 * @data: data
5986 */
5987void regulator_set_drvdata(struct regulator *regulator, void *data)
5988{
5989 regulator->rdev->reg_data = data;
5990}
5991EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5992
5993/**
5994 * rdev_get_id - get regulator ID
5995 * @rdev: regulator
5996 *
5997 * Return: Regulator ID for @rdev.
5998 */
5999int rdev_get_id(struct regulator_dev *rdev)
6000{
6001 return rdev->desc->id;
6002}
6003EXPORT_SYMBOL_GPL(rdev_get_id);
6004
6005struct device *rdev_get_dev(struct regulator_dev *rdev)
6006{
6007 return &rdev->dev;
6008}
6009EXPORT_SYMBOL_GPL(rdev_get_dev);
6010
6011struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6012{
6013 return rdev->regmap;
6014}
6015EXPORT_SYMBOL_GPL(rdev_get_regmap);
6016
6017void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6018{
6019 return reg_init_data->driver_data;
6020}
6021EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6022
6023#ifdef CONFIG_DEBUG_FS
6024static int supply_map_show(struct seq_file *sf, void *data)
6025{
6026 struct regulator_map *map;
6027
6028 list_for_each_entry(map, ®ulator_map_list, list) {
6029 seq_printf(sf, "%s -> %s.%s\n",
6030 rdev_get_name(map->regulator), map->dev_name,
6031 map->supply);
6032 }
6033
6034 return 0;
6035}
6036DEFINE_SHOW_ATTRIBUTE(supply_map);
6037
6038struct summary_data {
6039 struct seq_file *s;
6040 struct regulator_dev *parent;
6041 int level;
6042};
6043
6044static void regulator_summary_show_subtree(struct seq_file *s,
6045 struct regulator_dev *rdev,
6046 int level);
6047
6048static int regulator_summary_show_children(struct device *dev, void *data)
6049{
6050 struct regulator_dev *rdev = dev_to_rdev(dev);
6051 struct summary_data *summary_data = data;
6052
6053 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6054 regulator_summary_show_subtree(summary_data->s, rdev,
6055 summary_data->level + 1);
6056
6057 return 0;
6058}
6059
6060static void regulator_summary_show_subtree(struct seq_file *s,
6061 struct regulator_dev *rdev,
6062 int level)
6063{
6064 struct regulation_constraints *c;
6065 struct regulator *consumer;
6066 struct summary_data summary_data;
6067 unsigned int opmode;
6068
6069 if (!rdev)
6070 return;
6071
6072 opmode = _regulator_get_mode_unlocked(rdev);
6073 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6074 level * 3 + 1, "",
6075 30 - level * 3, rdev_get_name(rdev),
6076 rdev->use_count, rdev->open_count, rdev->bypass_count,
6077 regulator_opmode_to_str(opmode));
6078
6079 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6080 seq_printf(s, "%5dmA ",
6081 _regulator_get_current_limit_unlocked(rdev) / 1000);
6082
6083 c = rdev->constraints;
6084 if (c) {
6085 switch (rdev->desc->type) {
6086 case REGULATOR_VOLTAGE:
6087 seq_printf(s, "%5dmV %5dmV ",
6088 c->min_uV / 1000, c->max_uV / 1000);
6089 break;
6090 case REGULATOR_CURRENT:
6091 seq_printf(s, "%5dmA %5dmA ",
6092 c->min_uA / 1000, c->max_uA / 1000);
6093 break;
6094 }
6095 }
6096
6097 seq_puts(s, "\n");
6098
6099 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6100 if (consumer->dev && consumer->dev->class == ®ulator_class)
6101 continue;
6102
6103 seq_printf(s, "%*s%-*s ",
6104 (level + 1) * 3 + 1, "",
6105 30 - (level + 1) * 3,
6106 consumer->supply_name ? consumer->supply_name :
6107 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6108
6109 switch (rdev->desc->type) {
6110 case REGULATOR_VOLTAGE:
6111 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6112 consumer->enable_count,
6113 consumer->uA_load / 1000,
6114 consumer->uA_load && !consumer->enable_count ?
6115 '*' : ' ',
6116 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6117 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6118 break;
6119 case REGULATOR_CURRENT:
6120 break;
6121 }
6122
6123 seq_puts(s, "\n");
6124 }
6125
6126 summary_data.s = s;
6127 summary_data.level = level;
6128 summary_data.parent = rdev;
6129
6130 class_for_each_device(®ulator_class, NULL, &summary_data,
6131 regulator_summary_show_children);
6132}
6133
6134struct summary_lock_data {
6135 struct ww_acquire_ctx *ww_ctx;
6136 struct regulator_dev **new_contended_rdev;
6137 struct regulator_dev **old_contended_rdev;
6138};
6139
6140static int regulator_summary_lock_one(struct device *dev, void *data)
6141{
6142 struct regulator_dev *rdev = dev_to_rdev(dev);
6143 struct summary_lock_data *lock_data = data;
6144 int ret = 0;
6145
6146 if (rdev != *lock_data->old_contended_rdev) {
6147 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6148
6149 if (ret == -EDEADLK)
6150 *lock_data->new_contended_rdev = rdev;
6151 else
6152 WARN_ON_ONCE(ret);
6153 } else {
6154 *lock_data->old_contended_rdev = NULL;
6155 }
6156
6157 return ret;
6158}
6159
6160static int regulator_summary_unlock_one(struct device *dev, void *data)
6161{
6162 struct regulator_dev *rdev = dev_to_rdev(dev);
6163 struct summary_lock_data *lock_data = data;
6164
6165 if (lock_data) {
6166 if (rdev == *lock_data->new_contended_rdev)
6167 return -EDEADLK;
6168 }
6169
6170 regulator_unlock(rdev);
6171
6172 return 0;
6173}
6174
6175static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6176 struct regulator_dev **new_contended_rdev,
6177 struct regulator_dev **old_contended_rdev)
6178{
6179 struct summary_lock_data lock_data;
6180 int ret;
6181
6182 lock_data.ww_ctx = ww_ctx;
6183 lock_data.new_contended_rdev = new_contended_rdev;
6184 lock_data.old_contended_rdev = old_contended_rdev;
6185
6186 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6187 regulator_summary_lock_one);
6188 if (ret)
6189 class_for_each_device(®ulator_class, NULL, &lock_data,
6190 regulator_summary_unlock_one);
6191
6192 return ret;
6193}
6194
6195static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6196{
6197 struct regulator_dev *new_contended_rdev = NULL;
6198 struct regulator_dev *old_contended_rdev = NULL;
6199 int err;
6200
6201 mutex_lock(®ulator_list_mutex);
6202
6203 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6204
6205 do {
6206 if (new_contended_rdev) {
6207 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6208 old_contended_rdev = new_contended_rdev;
6209 old_contended_rdev->ref_cnt++;
6210 old_contended_rdev->mutex_owner = current;
6211 }
6212
6213 err = regulator_summary_lock_all(ww_ctx,
6214 &new_contended_rdev,
6215 &old_contended_rdev);
6216
6217 if (old_contended_rdev)
6218 regulator_unlock(old_contended_rdev);
6219
6220 } while (err == -EDEADLK);
6221
6222 ww_acquire_done(ww_ctx);
6223}
6224
6225static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6226{
6227 class_for_each_device(®ulator_class, NULL, NULL,
6228 regulator_summary_unlock_one);
6229 ww_acquire_fini(ww_ctx);
6230
6231 mutex_unlock(®ulator_list_mutex);
6232}
6233
6234static int regulator_summary_show_roots(struct device *dev, void *data)
6235{
6236 struct regulator_dev *rdev = dev_to_rdev(dev);
6237 struct seq_file *s = data;
6238
6239 if (!rdev->supply)
6240 regulator_summary_show_subtree(s, rdev, 0);
6241
6242 return 0;
6243}
6244
6245static int regulator_summary_show(struct seq_file *s, void *data)
6246{
6247 struct ww_acquire_ctx ww_ctx;
6248
6249 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6250 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6251
6252 regulator_summary_lock(&ww_ctx);
6253
6254 class_for_each_device(®ulator_class, NULL, s,
6255 regulator_summary_show_roots);
6256
6257 regulator_summary_unlock(&ww_ctx);
6258
6259 return 0;
6260}
6261DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6262#endif /* CONFIG_DEBUG_FS */
6263
6264static int __init regulator_init(void)
6265{
6266 int ret;
6267
6268 ret = class_register(®ulator_class);
6269
6270 debugfs_root = debugfs_create_dir("regulator", NULL);
6271 if (IS_ERR(debugfs_root))
6272 pr_debug("regulator: Failed to create debugfs directory\n");
6273
6274#ifdef CONFIG_DEBUG_FS
6275 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6276 &supply_map_fops);
6277
6278 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6279 NULL, ®ulator_summary_fops);
6280#endif
6281 regulator_dummy_init();
6282
6283 regulator_coupler_register(&generic_regulator_coupler);
6284
6285 return ret;
6286}
6287
6288/* init early to allow our consumers to complete system booting */
6289core_initcall(regulator_init);
6290
6291static int regulator_late_cleanup(struct device *dev, void *data)
6292{
6293 struct regulator_dev *rdev = dev_to_rdev(dev);
6294 struct regulation_constraints *c = rdev->constraints;
6295 int ret;
6296
6297 if (c && c->always_on)
6298 return 0;
6299
6300 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6301 return 0;
6302
6303 regulator_lock(rdev);
6304
6305 if (rdev->use_count)
6306 goto unlock;
6307
6308 /* If reading the status failed, assume that it's off. */
6309 if (_regulator_is_enabled(rdev) <= 0)
6310 goto unlock;
6311
6312 if (have_full_constraints()) {
6313 /* We log since this may kill the system if it goes
6314 * wrong.
6315 */
6316 rdev_info(rdev, "disabling\n");
6317 ret = _regulator_do_disable(rdev);
6318 if (ret != 0)
6319 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6320 } else {
6321 /* The intention is that in future we will
6322 * assume that full constraints are provided
6323 * so warn even if we aren't going to do
6324 * anything here.
6325 */
6326 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6327 }
6328
6329unlock:
6330 regulator_unlock(rdev);
6331
6332 return 0;
6333}
6334
6335static bool regulator_ignore_unused;
6336static int __init regulator_ignore_unused_setup(char *__unused)
6337{
6338 regulator_ignore_unused = true;
6339 return 1;
6340}
6341__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6342
6343static void regulator_init_complete_work_function(struct work_struct *work)
6344{
6345 /*
6346 * Regulators may had failed to resolve their input supplies
6347 * when were registered, either because the input supply was
6348 * not registered yet or because its parent device was not
6349 * bound yet. So attempt to resolve the input supplies for
6350 * pending regulators before trying to disable unused ones.
6351 */
6352 class_for_each_device(®ulator_class, NULL, NULL,
6353 regulator_register_resolve_supply);
6354
6355 /*
6356 * For debugging purposes, it may be useful to prevent unused
6357 * regulators from being disabled.
6358 */
6359 if (regulator_ignore_unused) {
6360 pr_warn("regulator: Not disabling unused regulators\n");
6361 return;
6362 }
6363
6364 /* If we have a full configuration then disable any regulators
6365 * we have permission to change the status for and which are
6366 * not in use or always_on. This is effectively the default
6367 * for DT and ACPI as they have full constraints.
6368 */
6369 class_for_each_device(®ulator_class, NULL, NULL,
6370 regulator_late_cleanup);
6371}
6372
6373static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6374 regulator_init_complete_work_function);
6375
6376static int __init regulator_init_complete(void)
6377{
6378 /*
6379 * Since DT doesn't provide an idiomatic mechanism for
6380 * enabling full constraints and since it's much more natural
6381 * with DT to provide them just assume that a DT enabled
6382 * system has full constraints.
6383 */
6384 if (of_have_populated_dt())
6385 has_full_constraints = true;
6386
6387 /*
6388 * We punt completion for an arbitrary amount of time since
6389 * systems like distros will load many drivers from userspace
6390 * so consumers might not always be ready yet, this is
6391 * particularly an issue with laptops where this might bounce
6392 * the display off then on. Ideally we'd get a notification
6393 * from userspace when this happens but we don't so just wait
6394 * a bit and hope we waited long enough. It'd be better if
6395 * we'd only do this on systems that need it, and a kernel
6396 * command line option might be useful.
6397 */
6398 schedule_delayed_work(®ulator_init_complete_work,
6399 msecs_to_jiffies(30000));
6400
6401 return 0;
6402}
6403late_initcall_sync(regulator_init_complete);