Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
  24#include <linux/initrd.h>
  25#include <linux/io.h>
  26#include <linux/kexec.h>
  27#include <linux/platform_device.h>
  28#include <linux/random.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/acpi.h>
  32#include <linux/ucs2_string.h>
  33#include <linux/memblock.h>
  34#include <linux/security.h>
 
  35
  36#include <asm/early_ioremap.h>
  37
  38struct efi __read_mostly efi = {
  39	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  40	.acpi			= EFI_INVALID_TABLE_ADDR,
  41	.acpi20			= EFI_INVALID_TABLE_ADDR,
  42	.smbios			= EFI_INVALID_TABLE_ADDR,
  43	.smbios3		= EFI_INVALID_TABLE_ADDR,
  44	.esrt			= EFI_INVALID_TABLE_ADDR,
  45	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  46	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
  47#ifdef CONFIG_LOAD_UEFI_KEYS
  48	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
  49#endif
  50#ifdef CONFIG_EFI_COCO_SECRET
  51	.coco_secret		= EFI_INVALID_TABLE_ADDR,
  52#endif
 
 
 
  53};
  54EXPORT_SYMBOL(efi);
  55
  56unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  57static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  58static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  59static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
  60
  61extern unsigned long screen_info_table;
  62
  63struct mm_struct efi_mm = {
  64	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
  65	.mm_users		= ATOMIC_INIT(2),
  66	.mm_count		= ATOMIC_INIT(1),
  67	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
  68	MMAP_LOCK_INITIALIZER(efi_mm)
  69	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  70	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  71	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  72};
  73
  74struct workqueue_struct *efi_rts_wq;
  75
  76static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
  77static int __init setup_noefi(char *arg)
  78{
  79	disable_runtime = true;
  80	return 0;
  81}
  82early_param("noefi", setup_noefi);
  83
  84bool efi_runtime_disabled(void)
  85{
  86	return disable_runtime;
  87}
  88
  89bool __pure __efi_soft_reserve_enabled(void)
  90{
  91	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  92}
  93
  94static int __init parse_efi_cmdline(char *str)
  95{
  96	if (!str) {
  97		pr_warn("need at least one option\n");
  98		return -EINVAL;
  99	}
 100
 101	if (parse_option_str(str, "debug"))
 102		set_bit(EFI_DBG, &efi.flags);
 103
 104	if (parse_option_str(str, "noruntime"))
 105		disable_runtime = true;
 106
 107	if (parse_option_str(str, "runtime"))
 108		disable_runtime = false;
 109
 110	if (parse_option_str(str, "nosoftreserve"))
 111		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
 112
 113	return 0;
 114}
 115early_param("efi", parse_efi_cmdline);
 116
 117struct kobject *efi_kobj;
 118
 119/*
 120 * Let's not leave out systab information that snuck into
 121 * the efivars driver
 122 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 123 * one value per file rule!
 124 */
 125static ssize_t systab_show(struct kobject *kobj,
 126			   struct kobj_attribute *attr, char *buf)
 127{
 128	char *str = buf;
 129
 130	if (!kobj || !buf)
 131		return -EINVAL;
 132
 133	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 134		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 135	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 136		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 137	/*
 138	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 139	 * SMBIOS3 entry point shall be preferred, so we list it first to
 140	 * let applications stop parsing after the first match.
 141	 */
 142	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 143		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 144	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 145		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 146
 147	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
 148		str = efi_systab_show_arch(str);
 149
 150	return str - buf;
 151}
 152
 153static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 154
 155static ssize_t fw_platform_size_show(struct kobject *kobj,
 156				     struct kobj_attribute *attr, char *buf)
 157{
 158	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 159}
 160
 161extern __weak struct kobj_attribute efi_attr_fw_vendor;
 162extern __weak struct kobj_attribute efi_attr_runtime;
 163extern __weak struct kobj_attribute efi_attr_config_table;
 164static struct kobj_attribute efi_attr_fw_platform_size =
 165	__ATTR_RO(fw_platform_size);
 166
 167static struct attribute *efi_subsys_attrs[] = {
 168	&efi_attr_systab.attr,
 169	&efi_attr_fw_platform_size.attr,
 170	&efi_attr_fw_vendor.attr,
 171	&efi_attr_runtime.attr,
 172	&efi_attr_config_table.attr,
 173	NULL,
 174};
 175
 176umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 177				   int n)
 178{
 179	return attr->mode;
 180}
 181
 182static const struct attribute_group efi_subsys_attr_group = {
 183	.attrs = efi_subsys_attrs,
 184	.is_visible = efi_attr_is_visible,
 185};
 186
 
 
 
 187static struct efivars generic_efivars;
 188static struct efivar_operations generic_ops;
 189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190static int generic_ops_register(void)
 191{
 
 
 
 192	generic_ops.get_variable = efi.get_variable;
 193	generic_ops.get_next_variable = efi.get_next_variable;
 194	generic_ops.query_variable_store = efi_query_variable_store;
 
 195
 196	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 197		generic_ops.set_variable = efi.set_variable;
 198		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 199	}
 200	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
 201}
 202
 203static void generic_ops_unregister(void)
 204{
 
 
 
 205	efivars_unregister(&generic_efivars);
 206}
 207
 
 
 
 
 
 
 
 
 
 
 
 
 208#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 209#define EFIVAR_SSDT_NAME_MAX	16UL
 210static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 211static int __init efivar_ssdt_setup(char *str)
 212{
 213	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 214
 215	if (ret)
 216		return ret;
 217
 218	if (strlen(str) < sizeof(efivar_ssdt))
 219		memcpy(efivar_ssdt, str, strlen(str));
 220	else
 221		pr_warn("efivar_ssdt: name too long: %s\n", str);
 222	return 1;
 223}
 224__setup("efivar_ssdt=", efivar_ssdt_setup);
 225
 226static __init int efivar_ssdt_load(void)
 227{
 228	unsigned long name_size = 256;
 229	efi_char16_t *name = NULL;
 230	efi_status_t status;
 231	efi_guid_t guid;
 
 232
 233	if (!efivar_ssdt[0])
 234		return 0;
 235
 236	name = kzalloc(name_size, GFP_KERNEL);
 237	if (!name)
 238		return -ENOMEM;
 239
 240	for (;;) {
 241		char utf8_name[EFIVAR_SSDT_NAME_MAX];
 242		unsigned long data_size = 0;
 243		void *data;
 244		int limit;
 245
 246		status = efi.get_next_variable(&name_size, name, &guid);
 247		if (status == EFI_NOT_FOUND) {
 248			break;
 249		} else if (status == EFI_BUFFER_TOO_SMALL) {
 250			name = krealloc(name, name_size, GFP_KERNEL);
 251			if (!name)
 252				return -ENOMEM;
 
 
 
 
 253			continue;
 254		}
 255
 256		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
 257		ucs2_as_utf8(utf8_name, name, limit - 1);
 258		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 259			continue;
 260
 261		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
 262
 263		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
 264		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
 265			return -EIO;
 
 
 266
 267		data = kmalloc(data_size, GFP_KERNEL);
 268		if (!data)
 269			return -ENOMEM;
 
 
 270
 271		status = efi.get_variable(name, &guid, NULL, &data_size, data);
 272		if (status == EFI_SUCCESS) {
 273			acpi_status ret = acpi_load_table(data, NULL);
 274			if (ret)
 275				pr_err("failed to load table: %u\n", ret);
 276			else
 
 
 
 
 
 277				continue;
 
 278		} else {
 279			pr_err("failed to get var data: 0x%lx\n", status);
 280		}
 281		kfree(data);
 282	}
 283	return 0;
 
 
 284}
 285#else
 286static inline int efivar_ssdt_load(void) { return 0; }
 287#endif
 288
 289#ifdef CONFIG_DEBUG_FS
 290
 291#define EFI_DEBUGFS_MAX_BLOBS 32
 292
 293static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 294
 295static void __init efi_debugfs_init(void)
 296{
 297	struct dentry *efi_debugfs;
 298	efi_memory_desc_t *md;
 299	char name[32];
 300	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 301	int i = 0;
 302
 303	efi_debugfs = debugfs_create_dir("efi", NULL);
 304	if (IS_ERR_OR_NULL(efi_debugfs))
 305		return;
 306
 307	for_each_efi_memory_desc(md) {
 308		switch (md->type) {
 309		case EFI_BOOT_SERVICES_CODE:
 310			snprintf(name, sizeof(name), "boot_services_code%d",
 311				 type_count[md->type]++);
 312			break;
 313		case EFI_BOOT_SERVICES_DATA:
 314			snprintf(name, sizeof(name), "boot_services_data%d",
 315				 type_count[md->type]++);
 316			break;
 317		default:
 318			continue;
 319		}
 320
 321		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 322			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 323				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 324			break;
 325		}
 326
 327		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 328		debugfs_blob[i].data = memremap(md->phys_addr,
 329						debugfs_blob[i].size,
 330						MEMREMAP_WB);
 331		if (!debugfs_blob[i].data)
 332			continue;
 333
 334		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 335		i++;
 336	}
 337}
 338#else
 339static inline void efi_debugfs_init(void) {}
 340#endif
 341
 342static void refresh_nv_rng_seed(struct work_struct *work)
 343{
 344	u8 seed[EFI_RANDOM_SEED_SIZE];
 345
 346	get_random_bytes(seed, sizeof(seed));
 347	efi.set_variable(L"RandomSeed", &LINUX_EFI_RANDOM_SEED_TABLE_GUID,
 348			 EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS |
 349			 EFI_VARIABLE_RUNTIME_ACCESS, sizeof(seed), seed);
 350	memzero_explicit(seed, sizeof(seed));
 351}
 352static int refresh_nv_rng_seed_notification(struct notifier_block *nb, unsigned long action, void *data)
 353{
 354	static DECLARE_WORK(work, refresh_nv_rng_seed);
 355	schedule_work(&work);
 356	return NOTIFY_DONE;
 357}
 358static struct notifier_block refresh_nv_rng_seed_nb = { .notifier_call = refresh_nv_rng_seed_notification };
 359
 360/*
 361 * We register the efi subsystem with the firmware subsystem and the
 362 * efivars subsystem with the efi subsystem, if the system was booted with
 363 * EFI.
 364 */
 365static int __init efisubsys_init(void)
 366{
 367	int error;
 368
 369	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 370		efi.runtime_supported_mask = 0;
 371
 372	if (!efi_enabled(EFI_BOOT))
 373		return 0;
 374
 375	if (efi.runtime_supported_mask) {
 376		/*
 377		 * Since we process only one efi_runtime_service() at a time, an
 378		 * ordered workqueue (which creates only one execution context)
 379		 * should suffice for all our needs.
 380		 */
 381		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 382		if (!efi_rts_wq) {
 383			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 384			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 385			efi.runtime_supported_mask = 0;
 386			return 0;
 387		}
 388	}
 389
 390	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 391		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 392
 393	/* We register the efi directory at /sys/firmware/efi */
 394	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 395	if (!efi_kobj) {
 396		pr_err("efi: Firmware registration failed.\n");
 397		error = -ENOMEM;
 398		goto err_destroy_wq;
 399	}
 400
 401	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 402				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 403		error = generic_ops_register();
 404		if (error)
 405			goto err_put;
 406		efivar_ssdt_load();
 
 
 407		platform_device_register_simple("efivars", 0, NULL, 0);
 408	}
 409
 
 
 410	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 411	if (error) {
 412		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 413		       error);
 414		goto err_unregister;
 415	}
 416
 417	/* and the standard mountpoint for efivarfs */
 418	error = sysfs_create_mount_point(efi_kobj, "efivars");
 419	if (error) {
 420		pr_err("efivars: Subsystem registration failed.\n");
 421		goto err_remove_group;
 422	}
 423
 424	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 425		efi_debugfs_init();
 426
 427#ifdef CONFIG_EFI_COCO_SECRET
 428	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
 429		platform_device_register_simple("efi_secret", 0, NULL, 0);
 430#endif
 431
 432	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE))
 433		execute_with_initialized_rng(&refresh_nv_rng_seed_nb);
 434
 435	return 0;
 436
 437err_remove_group:
 438	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 439err_unregister:
 440	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 441				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 442		generic_ops_unregister();
 443err_put:
 444	kobject_put(efi_kobj);
 445	efi_kobj = NULL;
 446err_destroy_wq:
 447	if (efi_rts_wq)
 448		destroy_workqueue(efi_rts_wq);
 449
 450	return error;
 451}
 452
 453subsys_initcall(efisubsys_init);
 454
 455void __init efi_find_mirror(void)
 456{
 457	efi_memory_desc_t *md;
 458	u64 mirror_size = 0, total_size = 0;
 459
 460	if (!efi_enabled(EFI_MEMMAP))
 461		return;
 462
 463	for_each_efi_memory_desc(md) {
 464		unsigned long long start = md->phys_addr;
 465		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 466
 467		total_size += size;
 468		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 469			memblock_mark_mirror(start, size);
 470			mirror_size += size;
 471		}
 472	}
 473	if (mirror_size)
 474		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 475			mirror_size>>20, total_size>>20);
 476}
 477
 478/*
 479 * Find the efi memory descriptor for a given physical address.  Given a
 480 * physical address, determine if it exists within an EFI Memory Map entry,
 481 * and if so, populate the supplied memory descriptor with the appropriate
 482 * data.
 483 */
 484int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 485{
 486	efi_memory_desc_t *md;
 487
 488	if (!efi_enabled(EFI_MEMMAP)) {
 489		pr_err_once("EFI_MEMMAP is not enabled.\n");
 490		return -EINVAL;
 491	}
 492
 493	if (!out_md) {
 494		pr_err_once("out_md is null.\n");
 495		return -EINVAL;
 496        }
 497
 498	for_each_efi_memory_desc(md) {
 499		u64 size;
 500		u64 end;
 501
 
 
 
 
 
 
 502		size = md->num_pages << EFI_PAGE_SHIFT;
 503		end = md->phys_addr + size;
 504		if (phys_addr >= md->phys_addr && phys_addr < end) {
 505			memcpy(out_md, md, sizeof(*out_md));
 506			return 0;
 507		}
 508	}
 509	return -ENOENT;
 510}
 511
 
 
 
 512/*
 513 * Calculate the highest address of an efi memory descriptor.
 514 */
 515u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 516{
 517	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 518	u64 end = md->phys_addr + size;
 519	return end;
 520}
 521
 522void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 523
 524/**
 525 * efi_mem_reserve - Reserve an EFI memory region
 526 * @addr: Physical address to reserve
 527 * @size: Size of reservation
 528 *
 529 * Mark a region as reserved from general kernel allocation and
 530 * prevent it being released by efi_free_boot_services().
 531 *
 532 * This function should be called drivers once they've parsed EFI
 533 * configuration tables to figure out where their data lives, e.g.
 534 * efi_esrt_init().
 535 */
 536void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 537{
 
 
 
 
 538	if (!memblock_is_region_reserved(addr, size))
 539		memblock_reserve(addr, size);
 540
 541	/*
 542	 * Some architectures (x86) reserve all boot services ranges
 543	 * until efi_free_boot_services() because of buggy firmware
 544	 * implementations. This means the above memblock_reserve() is
 545	 * superfluous on x86 and instead what it needs to do is
 546	 * ensure the @start, @size is not freed.
 547	 */
 548	efi_arch_mem_reserve(addr, size);
 549}
 550
 551static const efi_config_table_type_t common_tables[] __initconst = {
 552	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 553	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 554	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 555	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 556	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 557	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 558	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 559	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 560	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 
 561	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 562	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
 563	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 564#ifdef CONFIG_EFI_RCI2_TABLE
 565	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 566#endif
 567#ifdef CONFIG_LOAD_UEFI_KEYS
 568	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
 569#endif
 570#ifdef CONFIG_EFI_COCO_SECRET
 571	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
 572#endif
 
 
 
 573#ifdef CONFIG_EFI_GENERIC_STUB
 574	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
 575#endif
 576	{},
 577};
 578
 579static __init int match_config_table(const efi_guid_t *guid,
 580				     unsigned long table,
 581				     const efi_config_table_type_t *table_types)
 582{
 583	int i;
 584
 585	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 586		if (!efi_guidcmp(*guid, table_types[i].guid)) {
 587			*(table_types[i].ptr) = table;
 
 
 588			if (table_types[i].name[0])
 589				pr_cont("%s=0x%lx ",
 590					table_types[i].name, table);
 591			return 1;
 592		}
 
 
 
 
 
 593	}
 594
 595	return 0;
 596}
 597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 599				   int count,
 600				   const efi_config_table_type_t *arch_tables)
 601{
 602	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 603	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 604	const efi_guid_t *guid;
 605	unsigned long table;
 606	int i;
 607
 608	pr_info("");
 609	for (i = 0; i < count; i++) {
 610		if (!IS_ENABLED(CONFIG_X86)) {
 611			guid = &config_tables[i].guid;
 612			table = (unsigned long)config_tables[i].table;
 613		} else if (efi_enabled(EFI_64BIT)) {
 614			guid = &tbl64[i].guid;
 615			table = tbl64[i].table;
 616
 617			if (IS_ENABLED(CONFIG_X86_32) &&
 618			    tbl64[i].table > U32_MAX) {
 619				pr_cont("\n");
 620				pr_err("Table located above 4GB, disabling EFI.\n");
 621				return -EINVAL;
 622			}
 623		} else {
 624			guid = &tbl32[i].guid;
 625			table = tbl32[i].table;
 626		}
 627
 628		if (!match_config_table(guid, table, common_tables) && arch_tables)
 629			match_config_table(guid, table, arch_tables);
 630	}
 631	pr_cont("\n");
 632	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 633
 634	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 635		struct linux_efi_random_seed *seed;
 636		u32 size = 0;
 637
 638		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 639		if (seed != NULL) {
 640			size = min_t(u32, seed->size, SZ_1K); // sanity check
 641			early_memunmap(seed, sizeof(*seed));
 642		} else {
 643			pr_err("Could not map UEFI random seed!\n");
 644		}
 645		if (size > 0) {
 646			seed = early_memremap(efi_rng_seed,
 647					      sizeof(*seed) + size);
 648			if (seed != NULL) {
 649				add_bootloader_randomness(seed->bits, size);
 650				memzero_explicit(seed->bits, size);
 651				early_memunmap(seed, sizeof(*seed) + size);
 652			} else {
 653				pr_err("Could not map UEFI random seed!\n");
 654			}
 655		}
 656	}
 657
 658	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 659		efi_memattr_init();
 660
 661	efi_tpm_eventlog_init();
 662
 663	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 664		unsigned long prsv = mem_reserve;
 665
 666		while (prsv) {
 667			struct linux_efi_memreserve *rsv;
 668			u8 *p;
 669
 670			/*
 671			 * Just map a full page: that is what we will get
 672			 * anyway, and it permits us to map the entire entry
 673			 * before knowing its size.
 674			 */
 675			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 676					   PAGE_SIZE);
 677			if (p == NULL) {
 678				pr_err("Could not map UEFI memreserve entry!\n");
 679				return -ENOMEM;
 680			}
 681
 682			rsv = (void *)(p + prsv % PAGE_SIZE);
 683
 684			/* reserve the entry itself */
 685			memblock_reserve(prsv,
 686					 struct_size(rsv, entry, rsv->size));
 687
 688			for (i = 0; i < atomic_read(&rsv->count); i++) {
 689				memblock_reserve(rsv->entry[i].base,
 690						 rsv->entry[i].size);
 691			}
 692
 693			prsv = rsv->next;
 694			early_memunmap(p, PAGE_SIZE);
 695		}
 696	}
 697
 698	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 699		efi_rt_properties_table_t *tbl;
 700
 701		tbl = early_memremap(rt_prop, sizeof(*tbl));
 702		if (tbl) {
 703			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 704			early_memunmap(tbl, sizeof(*tbl));
 705		}
 706	}
 707
 708	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
 709	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
 710		struct linux_efi_initrd *tbl;
 711
 712		tbl = early_memremap(initrd, sizeof(*tbl));
 713		if (tbl) {
 714			phys_initrd_start = tbl->base;
 715			phys_initrd_size = tbl->size;
 716			early_memunmap(tbl, sizeof(*tbl));
 717		}
 718	}
 719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720	return 0;
 721}
 722
 723int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
 724				   int min_major_version)
 725{
 726	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 727		pr_err("System table signature incorrect!\n");
 728		return -EINVAL;
 729	}
 730
 731	if ((systab_hdr->revision >> 16) < min_major_version)
 732		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
 733		       systab_hdr->revision >> 16,
 734		       systab_hdr->revision & 0xffff,
 735		       min_major_version);
 736
 737	return 0;
 738}
 739
 740#ifndef CONFIG_IA64
 741static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 742						size_t size)
 743{
 744	const efi_char16_t *ret;
 745
 746	ret = early_memremap_ro(fw_vendor, size);
 747	if (!ret)
 748		pr_err("Could not map the firmware vendor!\n");
 749	return ret;
 750}
 751
 752static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 753{
 754	early_memunmap((void *)fw_vendor, size);
 755}
 756#else
 757#define map_fw_vendor(p, s)	__va(p)
 758#define unmap_fw_vendor(v, s)
 759#endif
 760
 761void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 762				     unsigned long fw_vendor)
 763{
 764	char vendor[100] = "unknown";
 765	const efi_char16_t *c16;
 766	size_t i;
 
 767
 768	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 769	if (c16) {
 770		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 771			vendor[i] = c16[i];
 772		vendor[i] = '\0';
 773
 774		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 775	}
 776
 777	pr_info("EFI v%u.%.02u by %s\n",
 778		systab_hdr->revision >> 16,
 779		systab_hdr->revision & 0xffff,
 780		vendor);
 
 
 
 
 781
 782	if (IS_ENABLED(CONFIG_X86_64) &&
 783	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
 784	    !strcmp(vendor, "Apple")) {
 785		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
 786		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
 787	}
 788}
 789
 790static __initdata char memory_type_name[][13] = {
 791	"Reserved",
 792	"Loader Code",
 793	"Loader Data",
 794	"Boot Code",
 795	"Boot Data",
 796	"Runtime Code",
 797	"Runtime Data",
 798	"Conventional",
 799	"Unusable",
 800	"ACPI Reclaim",
 801	"ACPI Mem NVS",
 802	"MMIO",
 803	"MMIO Port",
 804	"PAL Code",
 805	"Persistent",
 
 806};
 807
 808char * __init efi_md_typeattr_format(char *buf, size_t size,
 809				     const efi_memory_desc_t *md)
 810{
 811	char *pos;
 812	int type_len;
 813	u64 attr;
 814
 815	pos = buf;
 816	if (md->type >= ARRAY_SIZE(memory_type_name))
 817		type_len = snprintf(pos, size, "[type=%u", md->type);
 818	else
 819		type_len = snprintf(pos, size, "[%-*s",
 820				    (int)(sizeof(memory_type_name[0]) - 1),
 821				    memory_type_name[md->type]);
 822	if (type_len >= size)
 823		return buf;
 824
 825	pos += type_len;
 826	size -= type_len;
 827
 828	attr = md->attribute;
 829	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 830		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 831		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 832		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
 833		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 
 834		snprintf(pos, size, "|attr=0x%016llx]",
 835			 (unsigned long long)attr);
 836	else
 837		snprintf(pos, size,
 838			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 839			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
 
 840			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
 841			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
 842			 attr & EFI_MEMORY_SP			? "SP"  : "",
 843			 attr & EFI_MEMORY_NV			? "NV"  : "",
 844			 attr & EFI_MEMORY_XP			? "XP"  : "",
 845			 attr & EFI_MEMORY_RP			? "RP"  : "",
 846			 attr & EFI_MEMORY_WP			? "WP"  : "",
 847			 attr & EFI_MEMORY_RO			? "RO"  : "",
 848			 attr & EFI_MEMORY_UCE			? "UCE" : "",
 849			 attr & EFI_MEMORY_WB			? "WB"  : "",
 850			 attr & EFI_MEMORY_WT			? "WT"  : "",
 851			 attr & EFI_MEMORY_WC			? "WC"  : "",
 852			 attr & EFI_MEMORY_UC			? "UC"  : "");
 853	return buf;
 854}
 855
 856/*
 857 * IA64 has a funky EFI memory map that doesn't work the same way as
 858 * other architectures.
 859 */
 860#ifndef CONFIG_IA64
 861/*
 862 * efi_mem_attributes - lookup memmap attributes for physical address
 863 * @phys_addr: the physical address to lookup
 864 *
 865 * Search in the EFI memory map for the region covering
 866 * @phys_addr. Returns the EFI memory attributes if the region
 867 * was found in the memory map, 0 otherwise.
 868 */
 869u64 efi_mem_attributes(unsigned long phys_addr)
 870{
 871	efi_memory_desc_t *md;
 872
 873	if (!efi_enabled(EFI_MEMMAP))
 874		return 0;
 875
 876	for_each_efi_memory_desc(md) {
 877		if ((md->phys_addr <= phys_addr) &&
 878		    (phys_addr < (md->phys_addr +
 879		    (md->num_pages << EFI_PAGE_SHIFT))))
 880			return md->attribute;
 881	}
 882	return 0;
 883}
 884
 885/*
 886 * efi_mem_type - lookup memmap type for physical address
 887 * @phys_addr: the physical address to lookup
 888 *
 889 * Search in the EFI memory map for the region covering @phys_addr.
 890 * Returns the EFI memory type if the region was found in the memory
 891 * map, -EINVAL otherwise.
 892 */
 893int efi_mem_type(unsigned long phys_addr)
 894{
 895	const efi_memory_desc_t *md;
 896
 897	if (!efi_enabled(EFI_MEMMAP))
 898		return -ENOTSUPP;
 899
 900	for_each_efi_memory_desc(md) {
 901		if ((md->phys_addr <= phys_addr) &&
 902		    (phys_addr < (md->phys_addr +
 903				  (md->num_pages << EFI_PAGE_SHIFT))))
 904			return md->type;
 905	}
 906	return -EINVAL;
 907}
 908#endif
 909
 910int efi_status_to_err(efi_status_t status)
 911{
 912	int err;
 913
 914	switch (status) {
 915	case EFI_SUCCESS:
 916		err = 0;
 917		break;
 918	case EFI_INVALID_PARAMETER:
 919		err = -EINVAL;
 920		break;
 921	case EFI_OUT_OF_RESOURCES:
 922		err = -ENOSPC;
 923		break;
 924	case EFI_DEVICE_ERROR:
 925		err = -EIO;
 926		break;
 927	case EFI_WRITE_PROTECTED:
 928		err = -EROFS;
 929		break;
 930	case EFI_SECURITY_VIOLATION:
 931		err = -EACCES;
 932		break;
 933	case EFI_NOT_FOUND:
 934		err = -ENOENT;
 935		break;
 936	case EFI_ABORTED:
 937		err = -EINTR;
 938		break;
 939	default:
 940		err = -EINVAL;
 941	}
 942
 943	return err;
 944}
 945EXPORT_SYMBOL_GPL(efi_status_to_err);
 946
 947static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
 948static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
 949
 950static int __init efi_memreserve_map_root(void)
 951{
 952	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
 953		return -ENODEV;
 954
 955	efi_memreserve_root = memremap(mem_reserve,
 956				       sizeof(*efi_memreserve_root),
 957				       MEMREMAP_WB);
 958	if (WARN_ON_ONCE(!efi_memreserve_root))
 959		return -ENOMEM;
 960	return 0;
 961}
 962
 963static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
 964{
 965	struct resource *res, *parent;
 966	int ret;
 967
 968	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 969	if (!res)
 970		return -ENOMEM;
 971
 972	res->name	= "reserved";
 973	res->flags	= IORESOURCE_MEM;
 974	res->start	= addr;
 975	res->end	= addr + size - 1;
 976
 977	/* we expect a conflict with a 'System RAM' region */
 978	parent = request_resource_conflict(&iomem_resource, res);
 979	ret = parent ? request_resource(parent, res) : 0;
 980
 981	/*
 982	 * Given that efi_mem_reserve_iomem() can be called at any
 983	 * time, only call memblock_reserve() if the architecture
 984	 * keeps the infrastructure around.
 985	 */
 986	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
 987		memblock_reserve(addr, size);
 988
 989	return ret;
 990}
 991
 992int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
 993{
 994	struct linux_efi_memreserve *rsv;
 995	unsigned long prsv;
 996	int rc, index;
 997
 998	if (efi_memreserve_root == (void *)ULONG_MAX)
 999		return -ENODEV;
1000
1001	if (!efi_memreserve_root) {
1002		rc = efi_memreserve_map_root();
1003		if (rc)
1004			return rc;
1005	}
1006
1007	/* first try to find a slot in an existing linked list entry */
1008	for (prsv = efi_memreserve_root->next; prsv; ) {
1009		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1010		if (!rsv)
1011			return -ENOMEM;
1012		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1013		if (index < rsv->size) {
1014			rsv->entry[index].base = addr;
1015			rsv->entry[index].size = size;
1016
1017			memunmap(rsv);
1018			return efi_mem_reserve_iomem(addr, size);
1019		}
1020		prsv = rsv->next;
1021		memunmap(rsv);
1022	}
1023
1024	/* no slot found - allocate a new linked list entry */
1025	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1026	if (!rsv)
1027		return -ENOMEM;
1028
1029	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1030	if (rc) {
1031		free_page((unsigned long)rsv);
1032		return rc;
1033	}
1034
1035	/*
1036	 * The memremap() call above assumes that a linux_efi_memreserve entry
1037	 * never crosses a page boundary, so let's ensure that this remains true
1038	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1039	 * using SZ_4K explicitly in the size calculation below.
1040	 */
1041	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1042	atomic_set(&rsv->count, 1);
1043	rsv->entry[0].base = addr;
1044	rsv->entry[0].size = size;
1045
1046	spin_lock(&efi_mem_reserve_persistent_lock);
1047	rsv->next = efi_memreserve_root->next;
1048	efi_memreserve_root->next = __pa(rsv);
1049	spin_unlock(&efi_mem_reserve_persistent_lock);
1050
1051	return efi_mem_reserve_iomem(addr, size);
1052}
1053
1054static int __init efi_memreserve_root_init(void)
1055{
1056	if (efi_memreserve_root)
1057		return 0;
1058	if (efi_memreserve_map_root())
1059		efi_memreserve_root = (void *)ULONG_MAX;
1060	return 0;
1061}
1062early_initcall(efi_memreserve_root_init);
1063
1064#ifdef CONFIG_KEXEC
1065static int update_efi_random_seed(struct notifier_block *nb,
1066				  unsigned long code, void *unused)
1067{
1068	struct linux_efi_random_seed *seed;
1069	u32 size = 0;
1070
1071	if (!kexec_in_progress)
1072		return NOTIFY_DONE;
1073
1074	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1075	if (seed != NULL) {
1076		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1077		memunmap(seed);
1078	} else {
1079		pr_err("Could not map UEFI random seed!\n");
1080	}
1081	if (size > 0) {
1082		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1083				MEMREMAP_WB);
1084		if (seed != NULL) {
1085			seed->size = size;
1086			get_random_bytes(seed->bits, seed->size);
1087			memunmap(seed);
1088		} else {
1089			pr_err("Could not map UEFI random seed!\n");
1090		}
1091	}
1092	return NOTIFY_DONE;
1093}
1094
1095static struct notifier_block efi_random_seed_nb = {
1096	.notifier_call = update_efi_random_seed,
1097};
1098
1099static int __init register_update_efi_random_seed(void)
1100{
1101	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1102		return 0;
1103	return register_reboot_notifier(&efi_random_seed_nb);
1104}
1105late_initcall(register_update_efi_random_seed);
1106#endif
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
  24#include <linux/initrd.h>
  25#include <linux/io.h>
  26#include <linux/kexec.h>
  27#include <linux/platform_device.h>
  28#include <linux/random.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/acpi.h>
  32#include <linux/ucs2_string.h>
  33#include <linux/memblock.h>
  34#include <linux/security.h>
  35#include <linux/notifier.h>
  36
  37#include <asm/early_ioremap.h>
  38
  39struct efi __read_mostly efi = {
  40	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  41	.acpi			= EFI_INVALID_TABLE_ADDR,
  42	.acpi20			= EFI_INVALID_TABLE_ADDR,
  43	.smbios			= EFI_INVALID_TABLE_ADDR,
  44	.smbios3		= EFI_INVALID_TABLE_ADDR,
  45	.esrt			= EFI_INVALID_TABLE_ADDR,
  46	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  47	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
  48#ifdef CONFIG_LOAD_UEFI_KEYS
  49	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
  50#endif
  51#ifdef CONFIG_EFI_COCO_SECRET
  52	.coco_secret		= EFI_INVALID_TABLE_ADDR,
  53#endif
  54#ifdef CONFIG_UNACCEPTED_MEMORY
  55	.unaccepted		= EFI_INVALID_TABLE_ADDR,
  56#endif
  57};
  58EXPORT_SYMBOL(efi);
  59
  60unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  61static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  62static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  63static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
  64
  65extern unsigned long screen_info_table;
  66
  67struct mm_struct efi_mm = {
  68	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
  69	.mm_users		= ATOMIC_INIT(2),
  70	.mm_count		= ATOMIC_INIT(1),
  71	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
  72	MMAP_LOCK_INITIALIZER(efi_mm)
  73	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  74	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  75	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  76};
  77
  78struct workqueue_struct *efi_rts_wq;
  79
  80static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
  81static int __init setup_noefi(char *arg)
  82{
  83	disable_runtime = true;
  84	return 0;
  85}
  86early_param("noefi", setup_noefi);
  87
  88bool efi_runtime_disabled(void)
  89{
  90	return disable_runtime;
  91}
  92
  93bool __pure __efi_soft_reserve_enabled(void)
  94{
  95	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  96}
  97
  98static int __init parse_efi_cmdline(char *str)
  99{
 100	if (!str) {
 101		pr_warn("need at least one option\n");
 102		return -EINVAL;
 103	}
 104
 105	if (parse_option_str(str, "debug"))
 106		set_bit(EFI_DBG, &efi.flags);
 107
 108	if (parse_option_str(str, "noruntime"))
 109		disable_runtime = true;
 110
 111	if (parse_option_str(str, "runtime"))
 112		disable_runtime = false;
 113
 114	if (parse_option_str(str, "nosoftreserve"))
 115		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
 116
 117	return 0;
 118}
 119early_param("efi", parse_efi_cmdline);
 120
 121struct kobject *efi_kobj;
 122
 123/*
 124 * Let's not leave out systab information that snuck into
 125 * the efivars driver
 126 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 127 * one value per file rule!
 128 */
 129static ssize_t systab_show(struct kobject *kobj,
 130			   struct kobj_attribute *attr, char *buf)
 131{
 132	char *str = buf;
 133
 134	if (!kobj || !buf)
 135		return -EINVAL;
 136
 137	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 138		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 139	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 140		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 141	/*
 142	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 143	 * SMBIOS3 entry point shall be preferred, so we list it first to
 144	 * let applications stop parsing after the first match.
 145	 */
 146	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 147		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 148	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 149		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 150
 151	if (IS_ENABLED(CONFIG_X86))
 152		str = efi_systab_show_arch(str);
 153
 154	return str - buf;
 155}
 156
 157static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 158
 159static ssize_t fw_platform_size_show(struct kobject *kobj,
 160				     struct kobj_attribute *attr, char *buf)
 161{
 162	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 163}
 164
 165extern __weak struct kobj_attribute efi_attr_fw_vendor;
 166extern __weak struct kobj_attribute efi_attr_runtime;
 167extern __weak struct kobj_attribute efi_attr_config_table;
 168static struct kobj_attribute efi_attr_fw_platform_size =
 169	__ATTR_RO(fw_platform_size);
 170
 171static struct attribute *efi_subsys_attrs[] = {
 172	&efi_attr_systab.attr,
 173	&efi_attr_fw_platform_size.attr,
 174	&efi_attr_fw_vendor.attr,
 175	&efi_attr_runtime.attr,
 176	&efi_attr_config_table.attr,
 177	NULL,
 178};
 179
 180umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 181				   int n)
 182{
 183	return attr->mode;
 184}
 185
 186static const struct attribute_group efi_subsys_attr_group = {
 187	.attrs = efi_subsys_attrs,
 188	.is_visible = efi_attr_is_visible,
 189};
 190
 191struct blocking_notifier_head efivar_ops_nh;
 192EXPORT_SYMBOL_GPL(efivar_ops_nh);
 193
 194static struct efivars generic_efivars;
 195static struct efivar_operations generic_ops;
 196
 197static bool generic_ops_supported(void)
 198{
 199	unsigned long name_size;
 200	efi_status_t status;
 201	efi_char16_t name;
 202	efi_guid_t guid;
 203
 204	name_size = sizeof(name);
 205
 206	if (!efi.get_next_variable)
 207		return false;
 208	status = efi.get_next_variable(&name_size, &name, &guid);
 209	if (status == EFI_UNSUPPORTED)
 210		return false;
 211
 212	return true;
 213}
 214
 215static int generic_ops_register(void)
 216{
 217	if (!generic_ops_supported())
 218		return 0;
 219
 220	generic_ops.get_variable = efi.get_variable;
 221	generic_ops.get_next_variable = efi.get_next_variable;
 222	generic_ops.query_variable_store = efi_query_variable_store;
 223	generic_ops.query_variable_info = efi.query_variable_info;
 224
 225	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 226		generic_ops.set_variable = efi.set_variable;
 227		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 228	}
 229	return efivars_register(&generic_efivars, &generic_ops);
 230}
 231
 232static void generic_ops_unregister(void)
 233{
 234	if (!generic_ops.get_variable)
 235		return;
 236
 237	efivars_unregister(&generic_efivars);
 238}
 239
 240void efivars_generic_ops_register(void)
 241{
 242	generic_ops_register();
 243}
 244EXPORT_SYMBOL_GPL(efivars_generic_ops_register);
 245
 246void efivars_generic_ops_unregister(void)
 247{
 248	generic_ops_unregister();
 249}
 250EXPORT_SYMBOL_GPL(efivars_generic_ops_unregister);
 251
 252#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 253#define EFIVAR_SSDT_NAME_MAX	16UL
 254static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 255static int __init efivar_ssdt_setup(char *str)
 256{
 257	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 258
 259	if (ret)
 260		return ret;
 261
 262	if (strlen(str) < sizeof(efivar_ssdt))
 263		memcpy(efivar_ssdt, str, strlen(str));
 264	else
 265		pr_warn("efivar_ssdt: name too long: %s\n", str);
 266	return 1;
 267}
 268__setup("efivar_ssdt=", efivar_ssdt_setup);
 269
 270static __init int efivar_ssdt_load(void)
 271{
 272	unsigned long name_size = 256;
 273	efi_char16_t *name = NULL;
 274	efi_status_t status;
 275	efi_guid_t guid;
 276	int ret = 0;
 277
 278	if (!efivar_ssdt[0])
 279		return 0;
 280
 281	name = kzalloc(name_size, GFP_KERNEL);
 282	if (!name)
 283		return -ENOMEM;
 284
 285	for (;;) {
 286		char utf8_name[EFIVAR_SSDT_NAME_MAX];
 287		unsigned long data_size = 0;
 288		void *data;
 289		int limit;
 290
 291		status = efi.get_next_variable(&name_size, name, &guid);
 292		if (status == EFI_NOT_FOUND) {
 293			break;
 294		} else if (status == EFI_BUFFER_TOO_SMALL) {
 295			efi_char16_t *name_tmp =
 296				krealloc(name, name_size, GFP_KERNEL);
 297			if (!name_tmp) {
 298				ret = -ENOMEM;
 299				goto out;
 300			}
 301			name = name_tmp;
 302			continue;
 303		}
 304
 305		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
 306		ucs2_as_utf8(utf8_name, name, limit - 1);
 307		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 308			continue;
 309
 310		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
 311
 312		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
 313		if (status != EFI_BUFFER_TOO_SMALL || !data_size) {
 314			ret = -EIO;
 315			goto out;
 316		}
 317
 318		data = kmalloc(data_size, GFP_KERNEL);
 319		if (!data) {
 320			ret = -ENOMEM;
 321			goto out;
 322		}
 323
 324		status = efi.get_variable(name, &guid, NULL, &data_size, data);
 325		if (status == EFI_SUCCESS) {
 326			acpi_status acpi_ret = acpi_load_table(data, NULL);
 327			if (ACPI_FAILURE(acpi_ret)) {
 328				pr_err("efivar_ssdt: failed to load table: %u\n",
 329				       acpi_ret);
 330			} else {
 331				/*
 332				 * The @data will be in use by ACPI engine,
 333				 * do not free it!
 334				 */
 335				continue;
 336			}
 337		} else {
 338			pr_err("efivar_ssdt: failed to get var data: 0x%lx\n", status);
 339		}
 340		kfree(data);
 341	}
 342out:
 343	kfree(name);
 344	return ret;
 345}
 346#else
 347static inline int efivar_ssdt_load(void) { return 0; }
 348#endif
 349
 350#ifdef CONFIG_DEBUG_FS
 351
 352#define EFI_DEBUGFS_MAX_BLOBS 32
 353
 354static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 355
 356static void __init efi_debugfs_init(void)
 357{
 358	struct dentry *efi_debugfs;
 359	efi_memory_desc_t *md;
 360	char name[32];
 361	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 362	int i = 0;
 363
 364	efi_debugfs = debugfs_create_dir("efi", NULL);
 365	if (IS_ERR(efi_debugfs))
 366		return;
 367
 368	for_each_efi_memory_desc(md) {
 369		switch (md->type) {
 370		case EFI_BOOT_SERVICES_CODE:
 371			snprintf(name, sizeof(name), "boot_services_code%d",
 372				 type_count[md->type]++);
 373			break;
 374		case EFI_BOOT_SERVICES_DATA:
 375			snprintf(name, sizeof(name), "boot_services_data%d",
 376				 type_count[md->type]++);
 377			break;
 378		default:
 379			continue;
 380		}
 381
 382		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 383			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 384				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 385			break;
 386		}
 387
 388		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 389		debugfs_blob[i].data = memremap(md->phys_addr,
 390						debugfs_blob[i].size,
 391						MEMREMAP_WB);
 392		if (!debugfs_blob[i].data)
 393			continue;
 394
 395		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 396		i++;
 397	}
 398}
 399#else
 400static inline void efi_debugfs_init(void) {}
 401#endif
 402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403/*
 404 * We register the efi subsystem with the firmware subsystem and the
 405 * efivars subsystem with the efi subsystem, if the system was booted with
 406 * EFI.
 407 */
 408static int __init efisubsys_init(void)
 409{
 410	int error;
 411
 412	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 413		efi.runtime_supported_mask = 0;
 414
 415	if (!efi_enabled(EFI_BOOT))
 416		return 0;
 417
 418	if (efi.runtime_supported_mask) {
 419		/*
 420		 * Since we process only one efi_runtime_service() at a time, an
 421		 * ordered workqueue (which creates only one execution context)
 422		 * should suffice for all our needs.
 423		 */
 424		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 425		if (!efi_rts_wq) {
 426			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 427			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 428			efi.runtime_supported_mask = 0;
 429			return 0;
 430		}
 431	}
 432
 433	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 434		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 435
 436	/* We register the efi directory at /sys/firmware/efi */
 437	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 438	if (!efi_kobj) {
 439		pr_err("efi: Firmware registration failed.\n");
 440		error = -ENOMEM;
 441		goto err_destroy_wq;
 442	}
 443
 444	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 445				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 446		error = generic_ops_register();
 447		if (error)
 448			goto err_put;
 449		error = efivar_ssdt_load();
 450		if (error)
 451			pr_err("efi: failed to load SSDT, error %d.\n", error);
 452		platform_device_register_simple("efivars", 0, NULL, 0);
 453	}
 454
 455	BLOCKING_INIT_NOTIFIER_HEAD(&efivar_ops_nh);
 456
 457	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 458	if (error) {
 459		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 460		       error);
 461		goto err_unregister;
 462	}
 463
 464	/* and the standard mountpoint for efivarfs */
 465	error = sysfs_create_mount_point(efi_kobj, "efivars");
 466	if (error) {
 467		pr_err("efivars: Subsystem registration failed.\n");
 468		goto err_remove_group;
 469	}
 470
 471	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 472		efi_debugfs_init();
 473
 474#ifdef CONFIG_EFI_COCO_SECRET
 475	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
 476		platform_device_register_simple("efi_secret", 0, NULL, 0);
 477#endif
 478
 
 
 
 479	return 0;
 480
 481err_remove_group:
 482	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 483err_unregister:
 484	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 485				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 486		generic_ops_unregister();
 487err_put:
 488	kobject_put(efi_kobj);
 489	efi_kobj = NULL;
 490err_destroy_wq:
 491	if (efi_rts_wq)
 492		destroy_workqueue(efi_rts_wq);
 493
 494	return error;
 495}
 496
 497subsys_initcall(efisubsys_init);
 498
 499void __init efi_find_mirror(void)
 500{
 501	efi_memory_desc_t *md;
 502	u64 mirror_size = 0, total_size = 0;
 503
 504	if (!efi_enabled(EFI_MEMMAP))
 505		return;
 506
 507	for_each_efi_memory_desc(md) {
 508		unsigned long long start = md->phys_addr;
 509		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 510
 511		total_size += size;
 512		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 513			memblock_mark_mirror(start, size);
 514			mirror_size += size;
 515		}
 516	}
 517	if (mirror_size)
 518		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 519			mirror_size>>20, total_size>>20);
 520}
 521
 522/*
 523 * Find the efi memory descriptor for a given physical address.  Given a
 524 * physical address, determine if it exists within an EFI Memory Map entry,
 525 * and if so, populate the supplied memory descriptor with the appropriate
 526 * data.
 527 */
 528int __efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 529{
 530	efi_memory_desc_t *md;
 531
 532	if (!efi_enabled(EFI_MEMMAP)) {
 533		pr_err_once("EFI_MEMMAP is not enabled.\n");
 534		return -EINVAL;
 535	}
 536
 537	if (!out_md) {
 538		pr_err_once("out_md is null.\n");
 539		return -EINVAL;
 540        }
 541
 542	for_each_efi_memory_desc(md) {
 543		u64 size;
 544		u64 end;
 545
 546		/* skip bogus entries (including empty ones) */
 547		if ((md->phys_addr & (EFI_PAGE_SIZE - 1)) ||
 548		    (md->num_pages <= 0) ||
 549		    (md->num_pages > (U64_MAX - md->phys_addr) >> EFI_PAGE_SHIFT))
 550			continue;
 551
 552		size = md->num_pages << EFI_PAGE_SHIFT;
 553		end = md->phys_addr + size;
 554		if (phys_addr >= md->phys_addr && phys_addr < end) {
 555			memcpy(out_md, md, sizeof(*out_md));
 556			return 0;
 557		}
 558	}
 559	return -ENOENT;
 560}
 561
 562extern int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 563	__weak __alias(__efi_mem_desc_lookup);
 564
 565/*
 566 * Calculate the highest address of an efi memory descriptor.
 567 */
 568u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 569{
 570	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 571	u64 end = md->phys_addr + size;
 572	return end;
 573}
 574
 575void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 576
 577/**
 578 * efi_mem_reserve - Reserve an EFI memory region
 579 * @addr: Physical address to reserve
 580 * @size: Size of reservation
 581 *
 582 * Mark a region as reserved from general kernel allocation and
 583 * prevent it being released by efi_free_boot_services().
 584 *
 585 * This function should be called drivers once they've parsed EFI
 586 * configuration tables to figure out where their data lives, e.g.
 587 * efi_esrt_init().
 588 */
 589void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 590{
 591	/* efi_mem_reserve() does not work under Xen */
 592	if (WARN_ON_ONCE(efi_enabled(EFI_PARAVIRT)))
 593		return;
 594
 595	if (!memblock_is_region_reserved(addr, size))
 596		memblock_reserve(addr, size);
 597
 598	/*
 599	 * Some architectures (x86) reserve all boot services ranges
 600	 * until efi_free_boot_services() because of buggy firmware
 601	 * implementations. This means the above memblock_reserve() is
 602	 * superfluous on x86 and instead what it needs to do is
 603	 * ensure the @start, @size is not freed.
 604	 */
 605	efi_arch_mem_reserve(addr, size);
 606}
 607
 608static const efi_config_table_type_t common_tables[] __initconst = {
 609	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 610	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 611	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 612	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 613	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 614	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 615	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 616	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 617	{EFI_TCG2_FINAL_EVENTS_TABLE_GUID,	&efi.tpm_final_log,	"TPMFinalLog"	},
 618	{EFI_CC_FINAL_EVENTS_TABLE_GUID,	&efi.tpm_final_log,	"CCFinalLog"	},
 619	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 620	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
 621	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 622#ifdef CONFIG_EFI_RCI2_TABLE
 623	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 624#endif
 625#ifdef CONFIG_LOAD_UEFI_KEYS
 626	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
 627#endif
 628#ifdef CONFIG_EFI_COCO_SECRET
 629	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
 630#endif
 631#ifdef CONFIG_UNACCEPTED_MEMORY
 632	{LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID,	&efi.unaccepted,	"Unaccepted"	},
 633#endif
 634#ifdef CONFIG_EFI_GENERIC_STUB
 635	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
 636#endif
 637	{},
 638};
 639
 640static __init int match_config_table(const efi_guid_t *guid,
 641				     unsigned long table,
 642				     const efi_config_table_type_t *table_types)
 643{
 644	int i;
 645
 646	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 647		if (efi_guidcmp(*guid, table_types[i].guid))
 648			continue;
 649
 650		if (!efi_config_table_is_usable(guid, table)) {
 651			if (table_types[i].name[0])
 652				pr_cont("(%s=0x%lx unusable) ",
 653					table_types[i].name, table);
 654			return 1;
 655		}
 656
 657		*(table_types[i].ptr) = table;
 658		if (table_types[i].name[0])
 659			pr_cont("%s=0x%lx ", table_types[i].name, table);
 660		return 1;
 661	}
 662
 663	return 0;
 664}
 665
 666/**
 667 * reserve_unaccepted - Map and reserve unaccepted configuration table
 668 * @unaccepted: Pointer to unaccepted memory table
 669 *
 670 * memblock_add() makes sure that the table is mapped in direct mapping. During
 671 * normal boot it happens automatically because the table is allocated from
 672 * usable memory. But during crashkernel boot only memory specifically reserved
 673 * for crash scenario is mapped. memblock_add() forces the table to be mapped
 674 * in crashkernel case.
 675 *
 676 * Align the range to the nearest page borders. Ranges smaller than page size
 677 * are not going to be mapped.
 678 *
 679 * memblock_reserve() makes sure that future allocations will not touch the
 680 * table.
 681 */
 682
 683static __init void reserve_unaccepted(struct efi_unaccepted_memory *unaccepted)
 684{
 685	phys_addr_t start, size;
 686
 687	start = PAGE_ALIGN_DOWN(efi.unaccepted);
 688	size = PAGE_ALIGN(sizeof(*unaccepted) + unaccepted->size);
 689
 690	memblock_add(start, size);
 691	memblock_reserve(start, size);
 692}
 693
 694int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 695				   int count,
 696				   const efi_config_table_type_t *arch_tables)
 697{
 698	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 699	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 700	const efi_guid_t *guid;
 701	unsigned long table;
 702	int i;
 703
 704	pr_info("");
 705	for (i = 0; i < count; i++) {
 706		if (!IS_ENABLED(CONFIG_X86)) {
 707			guid = &config_tables[i].guid;
 708			table = (unsigned long)config_tables[i].table;
 709		} else if (efi_enabled(EFI_64BIT)) {
 710			guid = &tbl64[i].guid;
 711			table = tbl64[i].table;
 712
 713			if (IS_ENABLED(CONFIG_X86_32) &&
 714			    tbl64[i].table > U32_MAX) {
 715				pr_cont("\n");
 716				pr_err("Table located above 4GB, disabling EFI.\n");
 717				return -EINVAL;
 718			}
 719		} else {
 720			guid = &tbl32[i].guid;
 721			table = tbl32[i].table;
 722		}
 723
 724		if (!match_config_table(guid, table, common_tables) && arch_tables)
 725			match_config_table(guid, table, arch_tables);
 726	}
 727	pr_cont("\n");
 728	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 729
 730	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 731		struct linux_efi_random_seed *seed;
 732		u32 size = 0;
 733
 734		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 735		if (seed != NULL) {
 736			size = min_t(u32, seed->size, SZ_1K); // sanity check
 737			early_memunmap(seed, sizeof(*seed));
 738		} else {
 739			pr_err("Could not map UEFI random seed!\n");
 740		}
 741		if (size > 0) {
 742			seed = early_memremap(efi_rng_seed,
 743					      sizeof(*seed) + size);
 744			if (seed != NULL) {
 745				add_bootloader_randomness(seed->bits, size);
 746				memzero_explicit(seed->bits, size);
 747				early_memunmap(seed, sizeof(*seed) + size);
 748			} else {
 749				pr_err("Could not map UEFI random seed!\n");
 750			}
 751		}
 752	}
 753
 754	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 755		efi_memattr_init();
 756
 757	efi_tpm_eventlog_init();
 758
 759	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 760		unsigned long prsv = mem_reserve;
 761
 762		while (prsv) {
 763			struct linux_efi_memreserve *rsv;
 764			u8 *p;
 765
 766			/*
 767			 * Just map a full page: that is what we will get
 768			 * anyway, and it permits us to map the entire entry
 769			 * before knowing its size.
 770			 */
 771			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 772					   PAGE_SIZE);
 773			if (p == NULL) {
 774				pr_err("Could not map UEFI memreserve entry!\n");
 775				return -ENOMEM;
 776			}
 777
 778			rsv = (void *)(p + prsv % PAGE_SIZE);
 779
 780			/* reserve the entry itself */
 781			memblock_reserve(prsv,
 782					 struct_size(rsv, entry, rsv->size));
 783
 784			for (i = 0; i < atomic_read(&rsv->count); i++) {
 785				memblock_reserve(rsv->entry[i].base,
 786						 rsv->entry[i].size);
 787			}
 788
 789			prsv = rsv->next;
 790			early_memunmap(p, PAGE_SIZE);
 791		}
 792	}
 793
 794	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 795		efi_rt_properties_table_t *tbl;
 796
 797		tbl = early_memremap(rt_prop, sizeof(*tbl));
 798		if (tbl) {
 799			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 800			early_memunmap(tbl, sizeof(*tbl));
 801		}
 802	}
 803
 804	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
 805	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
 806		struct linux_efi_initrd *tbl;
 807
 808		tbl = early_memremap(initrd, sizeof(*tbl));
 809		if (tbl) {
 810			phys_initrd_start = tbl->base;
 811			phys_initrd_size = tbl->size;
 812			early_memunmap(tbl, sizeof(*tbl));
 813		}
 814	}
 815
 816	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) &&
 817	    efi.unaccepted != EFI_INVALID_TABLE_ADDR) {
 818		struct efi_unaccepted_memory *unaccepted;
 819
 820		unaccepted = early_memremap(efi.unaccepted, sizeof(*unaccepted));
 821		if (unaccepted) {
 822
 823			if (unaccepted->version == 1) {
 824				reserve_unaccepted(unaccepted);
 825			} else {
 826				efi.unaccepted = EFI_INVALID_TABLE_ADDR;
 827			}
 828
 829			early_memunmap(unaccepted, sizeof(*unaccepted));
 830		}
 831	}
 832
 833	return 0;
 834}
 835
 836int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr)
 
 837{
 838	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 839		pr_err("System table signature incorrect!\n");
 840		return -EINVAL;
 841	}
 842
 
 
 
 
 
 
 843	return 0;
 844}
 845
 
 846static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 847						size_t size)
 848{
 849	const efi_char16_t *ret;
 850
 851	ret = early_memremap_ro(fw_vendor, size);
 852	if (!ret)
 853		pr_err("Could not map the firmware vendor!\n");
 854	return ret;
 855}
 856
 857static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 858{
 859	early_memunmap((void *)fw_vendor, size);
 860}
 
 
 
 
 861
 862void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 863				     unsigned long fw_vendor)
 864{
 865	char vendor[100] = "unknown";
 866	const efi_char16_t *c16;
 867	size_t i;
 868	u16 rev;
 869
 870	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 871	if (c16) {
 872		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 873			vendor[i] = c16[i];
 874		vendor[i] = '\0';
 875
 876		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 877	}
 878
 879	rev = (u16)systab_hdr->revision;
 880	pr_info("EFI v%u.%u", systab_hdr->revision >> 16, rev / 10);
 881
 882	rev %= 10;
 883	if (rev)
 884		pr_cont(".%u", rev);
 885
 886	pr_cont(" by %s\n", vendor);
 887
 888	if (IS_ENABLED(CONFIG_X86_64) &&
 889	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
 890	    !strcmp(vendor, "Apple")) {
 891		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
 892		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
 893	}
 894}
 895
 896static __initdata char memory_type_name[][13] = {
 897	"Reserved",
 898	"Loader Code",
 899	"Loader Data",
 900	"Boot Code",
 901	"Boot Data",
 902	"Runtime Code",
 903	"Runtime Data",
 904	"Conventional",
 905	"Unusable",
 906	"ACPI Reclaim",
 907	"ACPI Mem NVS",
 908	"MMIO",
 909	"MMIO Port",
 910	"PAL Code",
 911	"Persistent",
 912	"Unaccepted",
 913};
 914
 915char * __init efi_md_typeattr_format(char *buf, size_t size,
 916				     const efi_memory_desc_t *md)
 917{
 918	char *pos;
 919	int type_len;
 920	u64 attr;
 921
 922	pos = buf;
 923	if (md->type >= ARRAY_SIZE(memory_type_name))
 924		type_len = snprintf(pos, size, "[type=%u", md->type);
 925	else
 926		type_len = snprintf(pos, size, "[%-*s",
 927				    (int)(sizeof(memory_type_name[0]) - 1),
 928				    memory_type_name[md->type]);
 929	if (type_len >= size)
 930		return buf;
 931
 932	pos += type_len;
 933	size -= type_len;
 934
 935	attr = md->attribute;
 936	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 937		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 938		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 939		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
 940		     EFI_MEMORY_MORE_RELIABLE | EFI_MEMORY_HOT_PLUGGABLE |
 941		     EFI_MEMORY_RUNTIME))
 942		snprintf(pos, size, "|attr=0x%016llx]",
 943			 (unsigned long long)attr);
 944	else
 945		snprintf(pos, size,
 946			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 947			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
 948			 attr & EFI_MEMORY_HOT_PLUGGABLE	? "HP"  : "",
 949			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
 950			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
 951			 attr & EFI_MEMORY_SP			? "SP"  : "",
 952			 attr & EFI_MEMORY_NV			? "NV"  : "",
 953			 attr & EFI_MEMORY_XP			? "XP"  : "",
 954			 attr & EFI_MEMORY_RP			? "RP"  : "",
 955			 attr & EFI_MEMORY_WP			? "WP"  : "",
 956			 attr & EFI_MEMORY_RO			? "RO"  : "",
 957			 attr & EFI_MEMORY_UCE			? "UCE" : "",
 958			 attr & EFI_MEMORY_WB			? "WB"  : "",
 959			 attr & EFI_MEMORY_WT			? "WT"  : "",
 960			 attr & EFI_MEMORY_WC			? "WC"  : "",
 961			 attr & EFI_MEMORY_UC			? "UC"  : "");
 962	return buf;
 963}
 964
 965/*
 
 
 
 
 
 966 * efi_mem_attributes - lookup memmap attributes for physical address
 967 * @phys_addr: the physical address to lookup
 968 *
 969 * Search in the EFI memory map for the region covering
 970 * @phys_addr. Returns the EFI memory attributes if the region
 971 * was found in the memory map, 0 otherwise.
 972 */
 973u64 efi_mem_attributes(unsigned long phys_addr)
 974{
 975	efi_memory_desc_t *md;
 976
 977	if (!efi_enabled(EFI_MEMMAP))
 978		return 0;
 979
 980	for_each_efi_memory_desc(md) {
 981		if ((md->phys_addr <= phys_addr) &&
 982		    (phys_addr < (md->phys_addr +
 983		    (md->num_pages << EFI_PAGE_SHIFT))))
 984			return md->attribute;
 985	}
 986	return 0;
 987}
 988
 989/*
 990 * efi_mem_type - lookup memmap type for physical address
 991 * @phys_addr: the physical address to lookup
 992 *
 993 * Search in the EFI memory map for the region covering @phys_addr.
 994 * Returns the EFI memory type if the region was found in the memory
 995 * map, -EINVAL otherwise.
 996 */
 997int efi_mem_type(unsigned long phys_addr)
 998{
 999	const efi_memory_desc_t *md;
1000
1001	if (!efi_enabled(EFI_MEMMAP))
1002		return -ENOTSUPP;
1003
1004	for_each_efi_memory_desc(md) {
1005		if ((md->phys_addr <= phys_addr) &&
1006		    (phys_addr < (md->phys_addr +
1007				  (md->num_pages << EFI_PAGE_SHIFT))))
1008			return md->type;
1009	}
1010	return -EINVAL;
1011}
 
1012
1013int efi_status_to_err(efi_status_t status)
1014{
1015	int err;
1016
1017	switch (status) {
1018	case EFI_SUCCESS:
1019		err = 0;
1020		break;
1021	case EFI_INVALID_PARAMETER:
1022		err = -EINVAL;
1023		break;
1024	case EFI_OUT_OF_RESOURCES:
1025		err = -ENOSPC;
1026		break;
1027	case EFI_DEVICE_ERROR:
1028		err = -EIO;
1029		break;
1030	case EFI_WRITE_PROTECTED:
1031		err = -EROFS;
1032		break;
1033	case EFI_SECURITY_VIOLATION:
1034		err = -EACCES;
1035		break;
1036	case EFI_NOT_FOUND:
1037		err = -ENOENT;
1038		break;
1039	case EFI_ABORTED:
1040		err = -EINTR;
1041		break;
1042	default:
1043		err = -EINVAL;
1044	}
1045
1046	return err;
1047}
1048EXPORT_SYMBOL_GPL(efi_status_to_err);
1049
1050static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
1051static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
1052
1053static int __init efi_memreserve_map_root(void)
1054{
1055	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
1056		return -ENODEV;
1057
1058	efi_memreserve_root = memremap(mem_reserve,
1059				       sizeof(*efi_memreserve_root),
1060				       MEMREMAP_WB);
1061	if (WARN_ON_ONCE(!efi_memreserve_root))
1062		return -ENOMEM;
1063	return 0;
1064}
1065
1066static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
1067{
1068	struct resource *res, *parent;
1069	int ret;
1070
1071	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1072	if (!res)
1073		return -ENOMEM;
1074
1075	res->name	= "reserved";
1076	res->flags	= IORESOURCE_MEM;
1077	res->start	= addr;
1078	res->end	= addr + size - 1;
1079
1080	/* we expect a conflict with a 'System RAM' region */
1081	parent = request_resource_conflict(&iomem_resource, res);
1082	ret = parent ? request_resource(parent, res) : 0;
1083
1084	/*
1085	 * Given that efi_mem_reserve_iomem() can be called at any
1086	 * time, only call memblock_reserve() if the architecture
1087	 * keeps the infrastructure around.
1088	 */
1089	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
1090		memblock_reserve(addr, size);
1091
1092	return ret;
1093}
1094
1095int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
1096{
1097	struct linux_efi_memreserve *rsv;
1098	unsigned long prsv;
1099	int rc, index;
1100
1101	if (efi_memreserve_root == (void *)ULONG_MAX)
1102		return -ENODEV;
1103
1104	if (!efi_memreserve_root) {
1105		rc = efi_memreserve_map_root();
1106		if (rc)
1107			return rc;
1108	}
1109
1110	/* first try to find a slot in an existing linked list entry */
1111	for (prsv = efi_memreserve_root->next; prsv; ) {
1112		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1113		if (!rsv)
1114			return -ENOMEM;
1115		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1116		if (index < rsv->size) {
1117			rsv->entry[index].base = addr;
1118			rsv->entry[index].size = size;
1119
1120			memunmap(rsv);
1121			return efi_mem_reserve_iomem(addr, size);
1122		}
1123		prsv = rsv->next;
1124		memunmap(rsv);
1125	}
1126
1127	/* no slot found - allocate a new linked list entry */
1128	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1129	if (!rsv)
1130		return -ENOMEM;
1131
1132	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1133	if (rc) {
1134		free_page((unsigned long)rsv);
1135		return rc;
1136	}
1137
1138	/*
1139	 * The memremap() call above assumes that a linux_efi_memreserve entry
1140	 * never crosses a page boundary, so let's ensure that this remains true
1141	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1142	 * using SZ_4K explicitly in the size calculation below.
1143	 */
1144	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1145	atomic_set(&rsv->count, 1);
1146	rsv->entry[0].base = addr;
1147	rsv->entry[0].size = size;
1148
1149	spin_lock(&efi_mem_reserve_persistent_lock);
1150	rsv->next = efi_memreserve_root->next;
1151	efi_memreserve_root->next = __pa(rsv);
1152	spin_unlock(&efi_mem_reserve_persistent_lock);
1153
1154	return efi_mem_reserve_iomem(addr, size);
1155}
1156
1157static int __init efi_memreserve_root_init(void)
1158{
1159	if (efi_memreserve_root)
1160		return 0;
1161	if (efi_memreserve_map_root())
1162		efi_memreserve_root = (void *)ULONG_MAX;
1163	return 0;
1164}
1165early_initcall(efi_memreserve_root_init);
1166
1167#ifdef CONFIG_KEXEC
1168static int update_efi_random_seed(struct notifier_block *nb,
1169				  unsigned long code, void *unused)
1170{
1171	struct linux_efi_random_seed *seed;
1172	u32 size = 0;
1173
1174	if (!kexec_in_progress)
1175		return NOTIFY_DONE;
1176
1177	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1178	if (seed != NULL) {
1179		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1180		memunmap(seed);
1181	} else {
1182		pr_err("Could not map UEFI random seed!\n");
1183	}
1184	if (size > 0) {
1185		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1186				MEMREMAP_WB);
1187		if (seed != NULL) {
1188			seed->size = size;
1189			get_random_bytes(seed->bits, seed->size);
1190			memunmap(seed);
1191		} else {
1192			pr_err("Could not map UEFI random seed!\n");
1193		}
1194	}
1195	return NOTIFY_DONE;
1196}
1197
1198static struct notifier_block efi_random_seed_nb = {
1199	.notifier_call = update_efi_random_seed,
1200};
1201
1202static int __init register_update_efi_random_seed(void)
1203{
1204	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1205		return 0;
1206	return register_reboot_notifier(&efi_random_seed_nb);
1207}
1208late_initcall(register_update_efi_random_seed);
1209#endif