Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
 
 
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
  24#include <linux/initrd.h>
  25#include <linux/io.h>
  26#include <linux/kexec.h>
  27#include <linux/platform_device.h>
  28#include <linux/random.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/acpi.h>
  32#include <linux/ucs2_string.h>
  33#include <linux/memblock.h>
  34#include <linux/security.h>
  35
  36#include <asm/early_ioremap.h>
  37
  38struct efi __read_mostly efi = {
  39	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  40	.acpi			= EFI_INVALID_TABLE_ADDR,
  41	.acpi20			= EFI_INVALID_TABLE_ADDR,
  42	.smbios			= EFI_INVALID_TABLE_ADDR,
  43	.smbios3		= EFI_INVALID_TABLE_ADDR,
 
 
 
 
 
 
 
 
  44	.esrt			= EFI_INVALID_TABLE_ADDR,
  45	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  46	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
  47#ifdef CONFIG_LOAD_UEFI_KEYS
  48	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
  49#endif
  50#ifdef CONFIG_EFI_COCO_SECRET
  51	.coco_secret		= EFI_INVALID_TABLE_ADDR,
  52#endif
  53};
  54EXPORT_SYMBOL(efi);
  55
  56unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  57static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  58static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  59static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
  60
  61extern unsigned long screen_info_table;
  62
  63struct mm_struct efi_mm = {
  64	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
  65	.mm_users		= ATOMIC_INIT(2),
  66	.mm_count		= ATOMIC_INIT(1),
  67	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
  68	MMAP_LOCK_INITIALIZER(efi_mm)
  69	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  70	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  71	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  72};
  73
  74struct workqueue_struct *efi_rts_wq;
  75
  76static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
  77static int __init setup_noefi(char *arg)
  78{
  79	disable_runtime = true;
  80	return 0;
  81}
  82early_param("noefi", setup_noefi);
  83
  84bool efi_runtime_disabled(void)
  85{
  86	return disable_runtime;
  87}
  88
  89bool __pure __efi_soft_reserve_enabled(void)
  90{
  91	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  92}
  93
  94static int __init parse_efi_cmdline(char *str)
  95{
  96	if (!str) {
  97		pr_warn("need at least one option\n");
  98		return -EINVAL;
  99	}
 100
 101	if (parse_option_str(str, "debug"))
 102		set_bit(EFI_DBG, &efi.flags);
 103
 104	if (parse_option_str(str, "noruntime"))
 105		disable_runtime = true;
 106
 107	if (parse_option_str(str, "runtime"))
 108		disable_runtime = false;
 109
 110	if (parse_option_str(str, "nosoftreserve"))
 111		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
 112
 113	return 0;
 114}
 115early_param("efi", parse_efi_cmdline);
 116
 117struct kobject *efi_kobj;
 118
 119/*
 120 * Let's not leave out systab information that snuck into
 121 * the efivars driver
 122 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 123 * one value per file rule!
 124 */
 125static ssize_t systab_show(struct kobject *kobj,
 126			   struct kobj_attribute *attr, char *buf)
 127{
 128	char *str = buf;
 129
 130	if (!kobj || !buf)
 131		return -EINVAL;
 132
 
 
 133	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 134		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 135	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 136		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 137	/*
 138	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 139	 * SMBIOS3 entry point shall be preferred, so we list it first to
 140	 * let applications stop parsing after the first match.
 141	 */
 142	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 143		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 144	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 145		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 146
 147	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
 148		str = efi_systab_show_arch(str);
 
 
 
 149
 150	return str - buf;
 151}
 152
 153static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154
 155static ssize_t fw_platform_size_show(struct kobject *kobj,
 156				     struct kobj_attribute *attr, char *buf)
 157{
 158	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 159}
 160
 161extern __weak struct kobj_attribute efi_attr_fw_vendor;
 162extern __weak struct kobj_attribute efi_attr_runtime;
 163extern __weak struct kobj_attribute efi_attr_config_table;
 164static struct kobj_attribute efi_attr_fw_platform_size =
 165	__ATTR_RO(fw_platform_size);
 166
 167static struct attribute *efi_subsys_attrs[] = {
 168	&efi_attr_systab.attr,
 169	&efi_attr_fw_platform_size.attr,
 170	&efi_attr_fw_vendor.attr,
 171	&efi_attr_runtime.attr,
 172	&efi_attr_config_table.attr,
 
 173	NULL,
 174};
 175
 176umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 177				   int n)
 178{
 
 
 
 
 
 
 
 
 
 
 
 
 179	return attr->mode;
 180}
 181
 182static const struct attribute_group efi_subsys_attr_group = {
 183	.attrs = efi_subsys_attrs,
 184	.is_visible = efi_attr_is_visible,
 185};
 186
 187static struct efivars generic_efivars;
 188static struct efivar_operations generic_ops;
 189
 190static int generic_ops_register(void)
 191{
 192	generic_ops.get_variable = efi.get_variable;
 
 
 193	generic_ops.get_next_variable = efi.get_next_variable;
 194	generic_ops.query_variable_store = efi_query_variable_store;
 195
 196	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 197		generic_ops.set_variable = efi.set_variable;
 198		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 199	}
 200	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
 201}
 202
 203static void generic_ops_unregister(void)
 204{
 205	efivars_unregister(&generic_efivars);
 206}
 207
 208#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 209#define EFIVAR_SSDT_NAME_MAX	16UL
 210static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 211static int __init efivar_ssdt_setup(char *str)
 212{
 213	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 214
 215	if (ret)
 216		return ret;
 217
 218	if (strlen(str) < sizeof(efivar_ssdt))
 219		memcpy(efivar_ssdt, str, strlen(str));
 220	else
 221		pr_warn("efivar_ssdt: name too long: %s\n", str);
 222	return 1;
 223}
 224__setup("efivar_ssdt=", efivar_ssdt_setup);
 225
 226static __init int efivar_ssdt_load(void)
 
 227{
 228	unsigned long name_size = 256;
 229	efi_char16_t *name = NULL;
 230	efi_status_t status;
 231	efi_guid_t guid;
 232
 233	if (!efivar_ssdt[0])
 
 234		return 0;
 235
 236	name = kzalloc(name_size, GFP_KERNEL);
 237	if (!name)
 238		return -ENOMEM;
 239
 240	for (;;) {
 241		char utf8_name[EFIVAR_SSDT_NAME_MAX];
 242		unsigned long data_size = 0;
 243		void *data;
 244		int limit;
 245
 246		status = efi.get_next_variable(&name_size, name, &guid);
 247		if (status == EFI_NOT_FOUND) {
 248			break;
 249		} else if (status == EFI_BUFFER_TOO_SMALL) {
 250			name = krealloc(name, name_size, GFP_KERNEL);
 251			if (!name)
 252				return -ENOMEM;
 253			continue;
 254		}
 255
 256		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
 257		ucs2_as_utf8(utf8_name, name, limit - 1);
 258		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 259			continue;
 260
 261		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
 262
 263		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
 264		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
 265			return -EIO;
 266
 267		data = kmalloc(data_size, GFP_KERNEL);
 268		if (!data)
 269			return -ENOMEM;
 270
 271		status = efi.get_variable(name, &guid, NULL, &data_size, data);
 272		if (status == EFI_SUCCESS) {
 273			acpi_status ret = acpi_load_table(data, NULL);
 274			if (ret)
 275				pr_err("failed to load table: %u\n", ret);
 276			else
 277				continue;
 278		} else {
 279			pr_err("failed to get var data: 0x%lx\n", status);
 280		}
 281		kfree(data);
 282	}
 283	return 0;
 284}
 285#else
 286static inline int efivar_ssdt_load(void) { return 0; }
 287#endif
 288
 289#ifdef CONFIG_DEBUG_FS
 
 
 
 
 
 
 290
 291#define EFI_DEBUGFS_MAX_BLOBS 32
 292
 293static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 
 
 294
 295static void __init efi_debugfs_init(void)
 296{
 297	struct dentry *efi_debugfs;
 298	efi_memory_desc_t *md;
 299	char name[32];
 300	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 301	int i = 0;
 302
 303	efi_debugfs = debugfs_create_dir("efi", NULL);
 304	if (IS_ERR_OR_NULL(efi_debugfs))
 305		return;
 306
 307	for_each_efi_memory_desc(md) {
 308		switch (md->type) {
 309		case EFI_BOOT_SERVICES_CODE:
 310			snprintf(name, sizeof(name), "boot_services_code%d",
 311				 type_count[md->type]++);
 312			break;
 313		case EFI_BOOT_SERVICES_DATA:
 314			snprintf(name, sizeof(name), "boot_services_data%d",
 315				 type_count[md->type]++);
 316			break;
 317		default:
 318			continue;
 319		}
 320
 321		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 322			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 323				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 324			break;
 325		}
 326
 327		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 328		debugfs_blob[i].data = memremap(md->phys_addr,
 329						debugfs_blob[i].size,
 330						MEMREMAP_WB);
 331		if (!debugfs_blob[i].data)
 332			continue;
 
 
 
 
 
 
 
 
 
 
 333
 334		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 335		i++;
 336	}
 
 
 337}
 338#else
 339static inline void efi_debugfs_init(void) {}
 340#endif
 341
 342static void refresh_nv_rng_seed(struct work_struct *work)
 343{
 344	u8 seed[EFI_RANDOM_SEED_SIZE];
 345
 346	get_random_bytes(seed, sizeof(seed));
 347	efi.set_variable(L"RandomSeed", &LINUX_EFI_RANDOM_SEED_TABLE_GUID,
 348			 EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS |
 349			 EFI_VARIABLE_RUNTIME_ACCESS, sizeof(seed), seed);
 350	memzero_explicit(seed, sizeof(seed));
 351}
 352static int refresh_nv_rng_seed_notification(struct notifier_block *nb, unsigned long action, void *data)
 353{
 354	static DECLARE_WORK(work, refresh_nv_rng_seed);
 355	schedule_work(&work);
 356	return NOTIFY_DONE;
 357}
 358static struct notifier_block refresh_nv_rng_seed_nb = { .notifier_call = refresh_nv_rng_seed_notification };
 359
 360/*
 361 * We register the efi subsystem with the firmware subsystem and the
 362 * efivars subsystem with the efi subsystem, if the system was booted with
 363 * EFI.
 364 */
 365static int __init efisubsys_init(void)
 366{
 367	int error;
 368
 369	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 370		efi.runtime_supported_mask = 0;
 371
 372	if (!efi_enabled(EFI_BOOT))
 373		return 0;
 374
 375	if (efi.runtime_supported_mask) {
 376		/*
 377		 * Since we process only one efi_runtime_service() at a time, an
 378		 * ordered workqueue (which creates only one execution context)
 379		 * should suffice for all our needs.
 380		 */
 381		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 382		if (!efi_rts_wq) {
 383			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 384			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 385			efi.runtime_supported_mask = 0;
 386			return 0;
 387		}
 388	}
 389
 390	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 391		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 392
 393	/* We register the efi directory at /sys/firmware/efi */
 394	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 395	if (!efi_kobj) {
 396		pr_err("efi: Firmware registration failed.\n");
 397		error = -ENOMEM;
 398		goto err_destroy_wq;
 399	}
 400
 401	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 402				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 403		error = generic_ops_register();
 404		if (error)
 405			goto err_put;
 406		efivar_ssdt_load();
 407		platform_device_register_simple("efivars", 0, NULL, 0);
 408	}
 409
 410	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 411	if (error) {
 412		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 413		       error);
 414		goto err_unregister;
 415	}
 416
 
 
 
 
 417	/* and the standard mountpoint for efivarfs */
 418	error = sysfs_create_mount_point(efi_kobj, "efivars");
 419	if (error) {
 420		pr_err("efivars: Subsystem registration failed.\n");
 421		goto err_remove_group;
 422	}
 423
 424	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 425		efi_debugfs_init();
 426
 427#ifdef CONFIG_EFI_COCO_SECRET
 428	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
 429		platform_device_register_simple("efi_secret", 0, NULL, 0);
 430#endif
 431
 432	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE))
 433		execute_with_initialized_rng(&refresh_nv_rng_seed_nb);
 434
 435	return 0;
 436
 437err_remove_group:
 438	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 439err_unregister:
 440	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 441				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 442		generic_ops_unregister();
 443err_put:
 444	kobject_put(efi_kobj);
 445	efi_kobj = NULL;
 446err_destroy_wq:
 447	if (efi_rts_wq)
 448		destroy_workqueue(efi_rts_wq);
 449
 450	return error;
 451}
 452
 453subsys_initcall(efisubsys_init);
 454
 455void __init efi_find_mirror(void)
 456{
 457	efi_memory_desc_t *md;
 458	u64 mirror_size = 0, total_size = 0;
 459
 460	if (!efi_enabled(EFI_MEMMAP))
 461		return;
 462
 463	for_each_efi_memory_desc(md) {
 464		unsigned long long start = md->phys_addr;
 465		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 466
 467		total_size += size;
 468		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 469			memblock_mark_mirror(start, size);
 470			mirror_size += size;
 471		}
 472	}
 473	if (mirror_size)
 474		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 475			mirror_size>>20, total_size>>20);
 476}
 477
 478/*
 479 * Find the efi memory descriptor for a given physical address.  Given a
 480 * physical address, determine if it exists within an EFI Memory Map entry,
 481 * and if so, populate the supplied memory descriptor with the appropriate
 482 * data.
 483 */
 484int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 485{
 486	efi_memory_desc_t *md;
 487
 488	if (!efi_enabled(EFI_MEMMAP)) {
 489		pr_err_once("EFI_MEMMAP is not enabled.\n");
 490		return -EINVAL;
 491	}
 492
 493	if (!out_md) {
 494		pr_err_once("out_md is null.\n");
 495		return -EINVAL;
 496        }
 497
 498	for_each_efi_memory_desc(md) {
 499		u64 size;
 500		u64 end;
 501
 
 
 
 
 
 
 502		size = md->num_pages << EFI_PAGE_SHIFT;
 503		end = md->phys_addr + size;
 504		if (phys_addr >= md->phys_addr && phys_addr < end) {
 505			memcpy(out_md, md, sizeof(*out_md));
 506			return 0;
 507		}
 508	}
 
 509	return -ENOENT;
 510}
 511
 512/*
 513 * Calculate the highest address of an efi memory descriptor.
 514 */
 515u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 516{
 517	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 518	u64 end = md->phys_addr + size;
 519	return end;
 520}
 521
 522void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 523
 524/**
 525 * efi_mem_reserve - Reserve an EFI memory region
 526 * @addr: Physical address to reserve
 527 * @size: Size of reservation
 528 *
 529 * Mark a region as reserved from general kernel allocation and
 530 * prevent it being released by efi_free_boot_services().
 531 *
 532 * This function should be called drivers once they've parsed EFI
 533 * configuration tables to figure out where their data lives, e.g.
 534 * efi_esrt_init().
 535 */
 536void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 537{
 538	if (!memblock_is_region_reserved(addr, size))
 539		memblock_reserve(addr, size);
 540
 541	/*
 542	 * Some architectures (x86) reserve all boot services ranges
 543	 * until efi_free_boot_services() because of buggy firmware
 544	 * implementations. This means the above memblock_reserve() is
 545	 * superfluous on x86 and instead what it needs to do is
 546	 * ensure the @start, @size is not freed.
 547	 */
 548	efi_arch_mem_reserve(addr, size);
 549}
 550
 551static const efi_config_table_type_t common_tables[] __initconst = {
 552	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 553	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 554	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 555	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 556	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 557	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 558	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 559	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 560	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 561	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 562	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
 563	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 564#ifdef CONFIG_EFI_RCI2_TABLE
 565	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 566#endif
 567#ifdef CONFIG_LOAD_UEFI_KEYS
 568	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
 569#endif
 570#ifdef CONFIG_EFI_COCO_SECRET
 571	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
 572#endif
 573#ifdef CONFIG_EFI_GENERIC_STUB
 574	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
 575#endif
 576	{},
 577};
 578
 579static __init int match_config_table(const efi_guid_t *guid,
 580				     unsigned long table,
 581				     const efi_config_table_type_t *table_types)
 582{
 583	int i;
 584
 585	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 586		if (!efi_guidcmp(*guid, table_types[i].guid)) {
 587			*(table_types[i].ptr) = table;
 588			if (table_types[i].name[0])
 589				pr_cont("%s=0x%lx ",
 590					table_types[i].name, table);
 591			return 1;
 
 
 592		}
 593	}
 594
 595	return 0;
 596}
 597
 598int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 599				   int count,
 600				   const efi_config_table_type_t *arch_tables)
 601{
 602	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 603	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 604	const efi_guid_t *guid;
 605	unsigned long table;
 606	int i;
 607
 
 608	pr_info("");
 609	for (i = 0; i < count; i++) {
 610		if (!IS_ENABLED(CONFIG_X86)) {
 611			guid = &config_tables[i].guid;
 612			table = (unsigned long)config_tables[i].table;
 613		} else if (efi_enabled(EFI_64BIT)) {
 614			guid = &tbl64[i].guid;
 615			table = tbl64[i].table;
 616
 617			if (IS_ENABLED(CONFIG_X86_32) &&
 618			    tbl64[i].table > U32_MAX) {
 
 
 
 
 
 619				pr_cont("\n");
 620				pr_err("Table located above 4GB, disabling EFI.\n");
 621				return -EINVAL;
 622			}
 
 623		} else {
 624			guid = &tbl32[i].guid;
 625			table = tbl32[i].table;
 626		}
 627
 628		if (!match_config_table(guid, table, common_tables) && arch_tables)
 629			match_config_table(guid, table, arch_tables);
 
 
 630	}
 631	pr_cont("\n");
 632	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 633
 634	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 635		struct linux_efi_random_seed *seed;
 636		u32 size = 0;
 637
 638		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 639		if (seed != NULL) {
 640			size = min_t(u32, seed->size, SZ_1K); // sanity check
 641			early_memunmap(seed, sizeof(*seed));
 642		} else {
 643			pr_err("Could not map UEFI random seed!\n");
 644		}
 645		if (size > 0) {
 646			seed = early_memremap(efi_rng_seed,
 647					      sizeof(*seed) + size);
 648			if (seed != NULL) {
 649				add_bootloader_randomness(seed->bits, size);
 650				memzero_explicit(seed->bits, size);
 651				early_memunmap(seed, sizeof(*seed) + size);
 652			} else {
 653				pr_err("Could not map UEFI random seed!\n");
 654			}
 655		}
 656	}
 657
 658	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 659		efi_memattr_init();
 
 
 
 
 
 
 
 660
 661	efi_tpm_eventlog_init();
 
 
 662
 663	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 664		unsigned long prsv = mem_reserve;
 665
 666		while (prsv) {
 667			struct linux_efi_memreserve *rsv;
 668			u8 *p;
 669
 670			/*
 671			 * Just map a full page: that is what we will get
 672			 * anyway, and it permits us to map the entire entry
 673			 * before knowing its size.
 674			 */
 675			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 676					   PAGE_SIZE);
 677			if (p == NULL) {
 678				pr_err("Could not map UEFI memreserve entry!\n");
 679				return -ENOMEM;
 680			}
 681
 682			rsv = (void *)(p + prsv % PAGE_SIZE);
 
 
 
 683
 684			/* reserve the entry itself */
 685			memblock_reserve(prsv,
 686					 struct_size(rsv, entry, rsv->size));
 687
 688			for (i = 0; i < atomic_read(&rsv->count); i++) {
 689				memblock_reserve(rsv->entry[i].base,
 690						 rsv->entry[i].size);
 691			}
 692
 693			prsv = rsv->next;
 694			early_memunmap(p, PAGE_SIZE);
 695		}
 
 
 
 
 
 696	}
 697
 698	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 699		efi_rt_properties_table_t *tbl;
 700
 701		tbl = early_memremap(rt_prop, sizeof(*tbl));
 702		if (tbl) {
 703			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 704			early_memunmap(tbl, sizeof(*tbl));
 705		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706	}
 707
 708	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
 709	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
 710		struct linux_efi_initrd *tbl;
 711
 712		tbl = early_memremap(initrd, sizeof(*tbl));
 713		if (tbl) {
 714			phys_initrd_start = tbl->base;
 715			phys_initrd_size = tbl->size;
 716			early_memunmap(tbl, sizeof(*tbl));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718	}
 719
 720	return 0;
 721}
 722
 723int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
 724				   int min_major_version)
 725{
 726	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 727		pr_err("System table signature incorrect!\n");
 728		return -EINVAL;
 729	}
 730
 731	if ((systab_hdr->revision >> 16) < min_major_version)
 732		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
 733		       systab_hdr->revision >> 16,
 734		       systab_hdr->revision & 0xffff,
 735		       min_major_version);
 736
 737	return 0;
 738}
 
 
 739
 740#ifndef CONFIG_IA64
 741static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 742						size_t size)
 743{
 744	const efi_char16_t *ret;
 745
 746	ret = early_memremap_ro(fw_vendor, size);
 747	if (!ret)
 748		pr_err("Could not map the firmware vendor!\n");
 749	return ret;
 750}
 751
 752static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 753{
 754	early_memunmap((void *)fw_vendor, size);
 
 
 
 
 
 
 
 755}
 756#else
 757#define map_fw_vendor(p, s)	__va(p)
 758#define unmap_fw_vendor(v, s)
 759#endif
 760
 761void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 762				     unsigned long fw_vendor)
 763{
 764	char vendor[100] = "unknown";
 765	const efi_char16_t *c16;
 766	size_t i;
 767
 768	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 769	if (c16) {
 770		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 771			vendor[i] = c16[i];
 772		vendor[i] = '\0';
 773
 774		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 775	}
 776
 777	pr_info("EFI v%u.%.02u by %s\n",
 778		systab_hdr->revision >> 16,
 779		systab_hdr->revision & 0xffff,
 780		vendor);
 781
 782	if (IS_ENABLED(CONFIG_X86_64) &&
 783	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
 784	    !strcmp(vendor, "Apple")) {
 785		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
 786		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
 787	}
 788}
 
 789
 790static __initdata char memory_type_name[][13] = {
 791	"Reserved",
 792	"Loader Code",
 793	"Loader Data",
 794	"Boot Code",
 795	"Boot Data",
 796	"Runtime Code",
 797	"Runtime Data",
 798	"Conventional",
 799	"Unusable",
 800	"ACPI Reclaim",
 801	"ACPI Mem NVS",
 802	"MMIO",
 803	"MMIO Port",
 804	"PAL Code",
 805	"Persistent",
 806};
 807
 808char * __init efi_md_typeattr_format(char *buf, size_t size,
 809				     const efi_memory_desc_t *md)
 810{
 811	char *pos;
 812	int type_len;
 813	u64 attr;
 814
 815	pos = buf;
 816	if (md->type >= ARRAY_SIZE(memory_type_name))
 817		type_len = snprintf(pos, size, "[type=%u", md->type);
 818	else
 819		type_len = snprintf(pos, size, "[%-*s",
 820				    (int)(sizeof(memory_type_name[0]) - 1),
 821				    memory_type_name[md->type]);
 822	if (type_len >= size)
 823		return buf;
 824
 825	pos += type_len;
 826	size -= type_len;
 827
 828	attr = md->attribute;
 829	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 830		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 831		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 832		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
 833		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 834		snprintf(pos, size, "|attr=0x%016llx]",
 835			 (unsigned long long)attr);
 836	else
 837		snprintf(pos, size,
 838			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 839			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
 840			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
 841			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
 842			 attr & EFI_MEMORY_SP			? "SP"  : "",
 843			 attr & EFI_MEMORY_NV			? "NV"  : "",
 844			 attr & EFI_MEMORY_XP			? "XP"  : "",
 845			 attr & EFI_MEMORY_RP			? "RP"  : "",
 846			 attr & EFI_MEMORY_WP			? "WP"  : "",
 847			 attr & EFI_MEMORY_RO			? "RO"  : "",
 848			 attr & EFI_MEMORY_UCE			? "UCE" : "",
 849			 attr & EFI_MEMORY_WB			? "WB"  : "",
 850			 attr & EFI_MEMORY_WT			? "WT"  : "",
 851			 attr & EFI_MEMORY_WC			? "WC"  : "",
 852			 attr & EFI_MEMORY_UC			? "UC"  : "");
 853	return buf;
 854}
 855
 856/*
 857 * IA64 has a funky EFI memory map that doesn't work the same way as
 858 * other architectures.
 859 */
 860#ifndef CONFIG_IA64
 861/*
 862 * efi_mem_attributes - lookup memmap attributes for physical address
 863 * @phys_addr: the physical address to lookup
 864 *
 865 * Search in the EFI memory map for the region covering
 866 * @phys_addr. Returns the EFI memory attributes if the region
 867 * was found in the memory map, 0 otherwise.
 
 
 
 
 
 868 */
 869u64 efi_mem_attributes(unsigned long phys_addr)
 870{
 871	efi_memory_desc_t *md;
 872
 873	if (!efi_enabled(EFI_MEMMAP))
 874		return 0;
 875
 876	for_each_efi_memory_desc(md) {
 877		if ((md->phys_addr <= phys_addr) &&
 878		    (phys_addr < (md->phys_addr +
 879		    (md->num_pages << EFI_PAGE_SHIFT))))
 880			return md->attribute;
 881	}
 882	return 0;
 883}
 884
 885/*
 886 * efi_mem_type - lookup memmap type for physical address
 887 * @phys_addr: the physical address to lookup
 888 *
 889 * Search in the EFI memory map for the region covering @phys_addr.
 890 * Returns the EFI memory type if the region was found in the memory
 891 * map, -EINVAL otherwise.
 892 */
 893int efi_mem_type(unsigned long phys_addr)
 894{
 895	const efi_memory_desc_t *md;
 896
 897	if (!efi_enabled(EFI_MEMMAP))
 898		return -ENOTSUPP;
 899
 900	for_each_efi_memory_desc(md) {
 901		if ((md->phys_addr <= phys_addr) &&
 902		    (phys_addr < (md->phys_addr +
 903				  (md->num_pages << EFI_PAGE_SHIFT))))
 904			return md->type;
 905	}
 906	return -EINVAL;
 907}
 908#endif
 909
 910int efi_status_to_err(efi_status_t status)
 911{
 912	int err;
 913
 914	switch (status) {
 915	case EFI_SUCCESS:
 916		err = 0;
 917		break;
 918	case EFI_INVALID_PARAMETER:
 919		err = -EINVAL;
 920		break;
 921	case EFI_OUT_OF_RESOURCES:
 922		err = -ENOSPC;
 923		break;
 924	case EFI_DEVICE_ERROR:
 925		err = -EIO;
 926		break;
 927	case EFI_WRITE_PROTECTED:
 928		err = -EROFS;
 929		break;
 930	case EFI_SECURITY_VIOLATION:
 931		err = -EACCES;
 932		break;
 933	case EFI_NOT_FOUND:
 934		err = -ENOENT;
 935		break;
 936	case EFI_ABORTED:
 937		err = -EINTR;
 938		break;
 939	default:
 940		err = -EINVAL;
 941	}
 942
 943	return err;
 944}
 945EXPORT_SYMBOL_GPL(efi_status_to_err);
 946
 947static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
 948static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
 949
 950static int __init efi_memreserve_map_root(void)
 951{
 952	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
 953		return -ENODEV;
 954
 955	efi_memreserve_root = memremap(mem_reserve,
 956				       sizeof(*efi_memreserve_root),
 957				       MEMREMAP_WB);
 958	if (WARN_ON_ONCE(!efi_memreserve_root))
 959		return -ENOMEM;
 960	return 0;
 961}
 962
 963static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
 964{
 965	struct resource *res, *parent;
 966	int ret;
 967
 968	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 969	if (!res)
 970		return -ENOMEM;
 971
 972	res->name	= "reserved";
 973	res->flags	= IORESOURCE_MEM;
 974	res->start	= addr;
 975	res->end	= addr + size - 1;
 976
 977	/* we expect a conflict with a 'System RAM' region */
 978	parent = request_resource_conflict(&iomem_resource, res);
 979	ret = parent ? request_resource(parent, res) : 0;
 980
 981	/*
 982	 * Given that efi_mem_reserve_iomem() can be called at any
 983	 * time, only call memblock_reserve() if the architecture
 984	 * keeps the infrastructure around.
 985	 */
 986	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
 987		memblock_reserve(addr, size);
 988
 989	return ret;
 990}
 991
 992int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
 993{
 994	struct linux_efi_memreserve *rsv;
 995	unsigned long prsv;
 996	int rc, index;
 997
 998	if (efi_memreserve_root == (void *)ULONG_MAX)
 999		return -ENODEV;
1000
1001	if (!efi_memreserve_root) {
1002		rc = efi_memreserve_map_root();
1003		if (rc)
1004			return rc;
1005	}
1006
1007	/* first try to find a slot in an existing linked list entry */
1008	for (prsv = efi_memreserve_root->next; prsv; ) {
1009		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1010		if (!rsv)
1011			return -ENOMEM;
1012		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1013		if (index < rsv->size) {
1014			rsv->entry[index].base = addr;
1015			rsv->entry[index].size = size;
1016
1017			memunmap(rsv);
1018			return efi_mem_reserve_iomem(addr, size);
1019		}
1020		prsv = rsv->next;
1021		memunmap(rsv);
1022	}
1023
1024	/* no slot found - allocate a new linked list entry */
1025	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1026	if (!rsv)
1027		return -ENOMEM;
1028
1029	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1030	if (rc) {
1031		free_page((unsigned long)rsv);
1032		return rc;
1033	}
1034
1035	/*
1036	 * The memremap() call above assumes that a linux_efi_memreserve entry
1037	 * never crosses a page boundary, so let's ensure that this remains true
1038	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1039	 * using SZ_4K explicitly in the size calculation below.
1040	 */
1041	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1042	atomic_set(&rsv->count, 1);
1043	rsv->entry[0].base = addr;
1044	rsv->entry[0].size = size;
1045
1046	spin_lock(&efi_mem_reserve_persistent_lock);
1047	rsv->next = efi_memreserve_root->next;
1048	efi_memreserve_root->next = __pa(rsv);
1049	spin_unlock(&efi_mem_reserve_persistent_lock);
1050
1051	return efi_mem_reserve_iomem(addr, size);
1052}
1053
1054static int __init efi_memreserve_root_init(void)
1055{
1056	if (efi_memreserve_root)
1057		return 0;
1058	if (efi_memreserve_map_root())
1059		efi_memreserve_root = (void *)ULONG_MAX;
1060	return 0;
1061}
1062early_initcall(efi_memreserve_root_init);
1063
1064#ifdef CONFIG_KEXEC
1065static int update_efi_random_seed(struct notifier_block *nb,
1066				  unsigned long code, void *unused)
1067{
1068	struct linux_efi_random_seed *seed;
1069	u32 size = 0;
1070
1071	if (!kexec_in_progress)
1072		return NOTIFY_DONE;
1073
1074	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1075	if (seed != NULL) {
1076		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1077		memunmap(seed);
1078	} else {
1079		pr_err("Could not map UEFI random seed!\n");
1080	}
1081	if (size > 0) {
1082		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1083				MEMREMAP_WB);
1084		if (seed != NULL) {
1085			seed->size = size;
1086			get_random_bytes(seed->bits, seed->size);
1087			memunmap(seed);
1088		} else {
1089			pr_err("Could not map UEFI random seed!\n");
1090		}
1091	}
1092	return NOTIFY_DONE;
1093}
1094
1095static struct notifier_block efi_random_seed_nb = {
1096	.notifier_call = update_efi_random_seed,
1097};
1098
1099static int __init register_update_efi_random_seed(void)
1100{
1101	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1102		return 0;
1103	return register_reboot_notifier(&efi_random_seed_nb);
1104}
1105late_initcall(register_update_efi_random_seed);
1106#endif
v4.10.11
 
  1/*
  2 * efi.c - EFI subsystem
  3 *
  4 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
  5 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
  6 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
  7 *
  8 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  9 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 10 * The existance of /sys/firmware/efi may also be used by userspace to
 11 * determine that the system supports EFI.
 12 *
 13 * This file is released under the GPLv2.
 14 */
 15
 16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 17
 18#include <linux/kobject.h>
 19#include <linux/module.h>
 20#include <linux/init.h>
 
 21#include <linux/device.h>
 22#include <linux/efi.h>
 23#include <linux/of.h>
 24#include <linux/of_fdt.h>
 25#include <linux/io.h>
 26#include <linux/kexec.h>
 27#include <linux/platform_device.h>
 28#include <linux/random.h>
 29#include <linux/reboot.h>
 30#include <linux/slab.h>
 31#include <linux/acpi.h>
 32#include <linux/ucs2_string.h>
 33#include <linux/memblock.h>
 
 34
 35#include <asm/early_ioremap.h>
 36
 37struct efi __read_mostly efi = {
 38	.mps			= EFI_INVALID_TABLE_ADDR,
 39	.acpi			= EFI_INVALID_TABLE_ADDR,
 40	.acpi20			= EFI_INVALID_TABLE_ADDR,
 41	.smbios			= EFI_INVALID_TABLE_ADDR,
 42	.smbios3		= EFI_INVALID_TABLE_ADDR,
 43	.sal_systab		= EFI_INVALID_TABLE_ADDR,
 44	.boot_info		= EFI_INVALID_TABLE_ADDR,
 45	.hcdp			= EFI_INVALID_TABLE_ADDR,
 46	.uga			= EFI_INVALID_TABLE_ADDR,
 47	.uv_systab		= EFI_INVALID_TABLE_ADDR,
 48	.fw_vendor		= EFI_INVALID_TABLE_ADDR,
 49	.runtime		= EFI_INVALID_TABLE_ADDR,
 50	.config_table		= EFI_INVALID_TABLE_ADDR,
 51	.esrt			= EFI_INVALID_TABLE_ADDR,
 52	.properties_table	= EFI_INVALID_TABLE_ADDR,
 53	.mem_attr_table		= EFI_INVALID_TABLE_ADDR,
 54	.rng_seed		= EFI_INVALID_TABLE_ADDR,
 
 
 
 
 
 55};
 56EXPORT_SYMBOL(efi);
 57
 58static bool disable_runtime;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59static int __init setup_noefi(char *arg)
 60{
 61	disable_runtime = true;
 62	return 0;
 63}
 64early_param("noefi", setup_noefi);
 65
 66bool efi_runtime_disabled(void)
 67{
 68	return disable_runtime;
 69}
 70
 
 
 
 
 
 71static int __init parse_efi_cmdline(char *str)
 72{
 73	if (!str) {
 74		pr_warn("need at least one option\n");
 75		return -EINVAL;
 76	}
 77
 78	if (parse_option_str(str, "debug"))
 79		set_bit(EFI_DBG, &efi.flags);
 80
 81	if (parse_option_str(str, "noruntime"))
 82		disable_runtime = true;
 83
 
 
 
 
 
 
 84	return 0;
 85}
 86early_param("efi", parse_efi_cmdline);
 87
 88struct kobject *efi_kobj;
 89
 90/*
 91 * Let's not leave out systab information that snuck into
 92 * the efivars driver
 
 
 93 */
 94static ssize_t systab_show(struct kobject *kobj,
 95			   struct kobj_attribute *attr, char *buf)
 96{
 97	char *str = buf;
 98
 99	if (!kobj || !buf)
100		return -EINVAL;
101
102	if (efi.mps != EFI_INVALID_TABLE_ADDR)
103		str += sprintf(str, "MPS=0x%lx\n", efi.mps);
104	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
105		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
106	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
107		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
108	/*
109	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
110	 * SMBIOS3 entry point shall be preferred, so we list it first to
111	 * let applications stop parsing after the first match.
112	 */
113	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
114		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
115	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
116		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
117	if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
118		str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
119	if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
120		str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
121	if (efi.uga != EFI_INVALID_TABLE_ADDR)
122		str += sprintf(str, "UGA=0x%lx\n", efi.uga);
123
124	return str - buf;
125}
126
127static struct kobj_attribute efi_attr_systab =
128			__ATTR(systab, 0400, systab_show, NULL);
129
130#define EFI_FIELD(var) efi.var
131
132#define EFI_ATTR_SHOW(name) \
133static ssize_t name##_show(struct kobject *kobj, \
134				struct kobj_attribute *attr, char *buf) \
135{ \
136	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
137}
138
139EFI_ATTR_SHOW(fw_vendor);
140EFI_ATTR_SHOW(runtime);
141EFI_ATTR_SHOW(config_table);
142
143static ssize_t fw_platform_size_show(struct kobject *kobj,
144				     struct kobj_attribute *attr, char *buf)
145{
146	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
147}
148
149static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
150static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
151static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
152static struct kobj_attribute efi_attr_fw_platform_size =
153	__ATTR_RO(fw_platform_size);
154
155static struct attribute *efi_subsys_attrs[] = {
156	&efi_attr_systab.attr,
 
157	&efi_attr_fw_vendor.attr,
158	&efi_attr_runtime.attr,
159	&efi_attr_config_table.attr,
160	&efi_attr_fw_platform_size.attr,
161	NULL,
162};
163
164static umode_t efi_attr_is_visible(struct kobject *kobj,
165				   struct attribute *attr, int n)
166{
167	if (attr == &efi_attr_fw_vendor.attr) {
168		if (efi_enabled(EFI_PARAVIRT) ||
169				efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
170			return 0;
171	} else if (attr == &efi_attr_runtime.attr) {
172		if (efi.runtime == EFI_INVALID_TABLE_ADDR)
173			return 0;
174	} else if (attr == &efi_attr_config_table.attr) {
175		if (efi.config_table == EFI_INVALID_TABLE_ADDR)
176			return 0;
177	}
178
179	return attr->mode;
180}
181
182static struct attribute_group efi_subsys_attr_group = {
183	.attrs = efi_subsys_attrs,
184	.is_visible = efi_attr_is_visible,
185};
186
187static struct efivars generic_efivars;
188static struct efivar_operations generic_ops;
189
190static int generic_ops_register(void)
191{
192	generic_ops.get_variable = efi.get_variable;
193	generic_ops.set_variable = efi.set_variable;
194	generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
195	generic_ops.get_next_variable = efi.get_next_variable;
196	generic_ops.query_variable_store = efi_query_variable_store;
197
 
 
 
 
198	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
199}
200
201static void generic_ops_unregister(void)
202{
203	efivars_unregister(&generic_efivars);
204}
205
206#if IS_ENABLED(CONFIG_ACPI)
207#define EFIVAR_SSDT_NAME_MAX	16
208static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
209static int __init efivar_ssdt_setup(char *str)
210{
 
 
 
 
 
211	if (strlen(str) < sizeof(efivar_ssdt))
212		memcpy(efivar_ssdt, str, strlen(str));
213	else
214		pr_warn("efivar_ssdt: name too long: %s\n", str);
215	return 0;
216}
217__setup("efivar_ssdt=", efivar_ssdt_setup);
218
219static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
220				   unsigned long name_size, void *data)
221{
222	struct efivar_entry *entry;
223	struct list_head *list = data;
224	char utf8_name[EFIVAR_SSDT_NAME_MAX];
225	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
226
227	ucs2_as_utf8(utf8_name, name, limit - 1);
228	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
229		return 0;
230
231	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
232	if (!entry)
233		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
235	memcpy(entry->var.VariableName, name, name_size);
236	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
 
237
238	efivar_entry_add(entry, list);
 
 
239
 
 
 
 
 
 
 
 
 
 
 
 
240	return 0;
241}
 
 
 
242
243static __init int efivar_ssdt_load(void)
244{
245	LIST_HEAD(entries);
246	struct efivar_entry *entry, *aux;
247	unsigned long size;
248	void *data;
249	int ret;
250
251	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
252
253	list_for_each_entry_safe(entry, aux, &entries, list) {
254		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
255			&entry->var.VendorGuid);
256
257		list_del(&entry->list);
 
 
 
 
 
 
 
 
 
 
258
259		ret = efivar_entry_size(entry, &size);
260		if (ret) {
261			pr_err("failed to get var size\n");
262			goto free_entry;
 
 
 
 
 
 
 
 
263		}
264
265		data = kmalloc(size, GFP_KERNEL);
266		if (!data) {
267			ret = -ENOMEM;
268			goto free_entry;
269		}
270
271		ret = efivar_entry_get(entry, NULL, &size, data);
272		if (ret) {
273			pr_err("failed to get var data\n");
274			goto free_data;
275		}
276
277		ret = acpi_load_table(data);
278		if (ret) {
279			pr_err("failed to load table: %d\n", ret);
280			goto free_data;
281		}
282
283		goto free_entry;
284
285free_data:
286		kfree(data);
287
288free_entry:
289		kfree(entry);
290	}
291
292	return ret;
293}
294#else
295static inline int efivar_ssdt_load(void) { return 0; }
296#endif
297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298/*
299 * We register the efi subsystem with the firmware subsystem and the
300 * efivars subsystem with the efi subsystem, if the system was booted with
301 * EFI.
302 */
303static int __init efisubsys_init(void)
304{
305	int error;
306
 
 
 
307	if (!efi_enabled(EFI_BOOT))
308		return 0;
309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310	/* We register the efi directory at /sys/firmware/efi */
311	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
312	if (!efi_kobj) {
313		pr_err("efi: Firmware registration failed.\n");
314		return -ENOMEM;
 
315	}
316
317	error = generic_ops_register();
318	if (error)
319		goto err_put;
320
321	if (efi_enabled(EFI_RUNTIME_SERVICES))
322		efivar_ssdt_load();
 
 
323
324	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
325	if (error) {
326		pr_err("efi: Sysfs attribute export failed with error %d.\n",
327		       error);
328		goto err_unregister;
329	}
330
331	error = efi_runtime_map_init(efi_kobj);
332	if (error)
333		goto err_remove_group;
334
335	/* and the standard mountpoint for efivarfs */
336	error = sysfs_create_mount_point(efi_kobj, "efivars");
337	if (error) {
338		pr_err("efivars: Subsystem registration failed.\n");
339		goto err_remove_group;
340	}
341
 
 
 
 
 
 
 
 
 
 
 
342	return 0;
343
344err_remove_group:
345	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
346err_unregister:
347	generic_ops_unregister();
 
 
348err_put:
349	kobject_put(efi_kobj);
 
 
 
 
 
350	return error;
351}
352
353subsys_initcall(efisubsys_init);
354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355/*
356 * Find the efi memory descriptor for a given physical address.  Given a
357 * physical address, determine if it exists within an EFI Memory Map entry,
358 * and if so, populate the supplied memory descriptor with the appropriate
359 * data.
360 */
361int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
362{
363	efi_memory_desc_t *md;
364
365	if (!efi_enabled(EFI_MEMMAP)) {
366		pr_err_once("EFI_MEMMAP is not enabled.\n");
367		return -EINVAL;
368	}
369
370	if (!out_md) {
371		pr_err_once("out_md is null.\n");
372		return -EINVAL;
373        }
374
375	for_each_efi_memory_desc(md) {
376		u64 size;
377		u64 end;
378
379		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
380		    md->type != EFI_BOOT_SERVICES_DATA &&
381		    md->type != EFI_RUNTIME_SERVICES_DATA) {
382			continue;
383		}
384
385		size = md->num_pages << EFI_PAGE_SHIFT;
386		end = md->phys_addr + size;
387		if (phys_addr >= md->phys_addr && phys_addr < end) {
388			memcpy(out_md, md, sizeof(*out_md));
389			return 0;
390		}
391	}
392	pr_err_once("requested map not found.\n");
393	return -ENOENT;
394}
395
396/*
397 * Calculate the highest address of an efi memory descriptor.
398 */
399u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
400{
401	u64 size = md->num_pages << EFI_PAGE_SHIFT;
402	u64 end = md->phys_addr + size;
403	return end;
404}
405
406void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
407
408/**
409 * efi_mem_reserve - Reserve an EFI memory region
410 * @addr: Physical address to reserve
411 * @size: Size of reservation
412 *
413 * Mark a region as reserved from general kernel allocation and
414 * prevent it being released by efi_free_boot_services().
415 *
416 * This function should be called drivers once they've parsed EFI
417 * configuration tables to figure out where their data lives, e.g.
418 * efi_esrt_init().
419 */
420void __init efi_mem_reserve(phys_addr_t addr, u64 size)
421{
422	if (!memblock_is_region_reserved(addr, size))
423		memblock_reserve(addr, size);
424
425	/*
426	 * Some architectures (x86) reserve all boot services ranges
427	 * until efi_free_boot_services() because of buggy firmware
428	 * implementations. This means the above memblock_reserve() is
429	 * superfluous on x86 and instead what it needs to do is
430	 * ensure the @start, @size is not freed.
431	 */
432	efi_arch_mem_reserve(addr, size);
433}
434
435static __initdata efi_config_table_type_t common_tables[] = {
436	{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
437	{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
438	{HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
439	{MPS_TABLE_GUID, "MPS", &efi.mps},
440	{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
441	{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
442	{SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
443	{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
444	{EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
445	{EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
446	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi.mem_attr_table},
447	{LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &efi.rng_seed},
448	{NULL_GUID, NULL, NULL},
 
 
 
 
 
 
 
 
 
 
 
 
449};
450
451static __init int match_config_table(efi_guid_t *guid,
452				     unsigned long table,
453				     efi_config_table_type_t *table_types)
454{
455	int i;
456
457	if (table_types) {
458		for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
459			if (!efi_guidcmp(*guid, table_types[i].guid)) {
460				*(table_types[i].ptr) = table;
461				if (table_types[i].name)
462					pr_cont(" %s=0x%lx ",
463						table_types[i].name, table);
464				return 1;
465			}
466		}
467	}
468
469	return 0;
470}
471
472int __init efi_config_parse_tables(void *config_tables, int count, int sz,
473				   efi_config_table_type_t *arch_tables)
474{
475	void *tablep;
 
 
 
 
476	int i;
477
478	tablep = config_tables;
479	pr_info("");
480	for (i = 0; i < count; i++) {
481		efi_guid_t guid;
482		unsigned long table;
 
 
 
 
483
484		if (efi_enabled(EFI_64BIT)) {
485			u64 table64;
486			guid = ((efi_config_table_64_t *)tablep)->guid;
487			table64 = ((efi_config_table_64_t *)tablep)->table;
488			table = table64;
489#ifndef CONFIG_64BIT
490			if (table64 >> 32) {
491				pr_cont("\n");
492				pr_err("Table located above 4GB, disabling EFI.\n");
493				return -EINVAL;
494			}
495#endif
496		} else {
497			guid = ((efi_config_table_32_t *)tablep)->guid;
498			table = ((efi_config_table_32_t *)tablep)->table;
499		}
500
501		if (!match_config_table(&guid, table, common_tables))
502			match_config_table(&guid, table, arch_tables);
503
504		tablep += sz;
505	}
506	pr_cont("\n");
507	set_bit(EFI_CONFIG_TABLES, &efi.flags);
508
509	if (efi.rng_seed != EFI_INVALID_TABLE_ADDR) {
510		struct linux_efi_random_seed *seed;
511		u32 size = 0;
512
513		seed = early_memremap(efi.rng_seed, sizeof(*seed));
514		if (seed != NULL) {
515			size = seed->size;
516			early_memunmap(seed, sizeof(*seed));
517		} else {
518			pr_err("Could not map UEFI random seed!\n");
519		}
520		if (size > 0) {
521			seed = early_memremap(efi.rng_seed,
522					      sizeof(*seed) + size);
523			if (seed != NULL) {
524				add_device_randomness(seed->bits, seed->size);
 
525				early_memunmap(seed, sizeof(*seed) + size);
526			} else {
527				pr_err("Could not map UEFI random seed!\n");
528			}
529		}
530	}
531
532	/* Parse the EFI Properties table if it exists */
533	if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
534		efi_properties_table_t *tbl;
535
536		tbl = early_memremap(efi.properties_table, sizeof(*tbl));
537		if (tbl == NULL) {
538			pr_err("Could not map Properties table!\n");
539			return -ENOMEM;
540		}
541
542		if (tbl->memory_protection_attribute &
543		    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
544			set_bit(EFI_NX_PE_DATA, &efi.flags);
545
546		early_memunmap(tbl, sizeof(*tbl));
547	}
548
549	return 0;
550}
 
 
 
 
 
 
 
 
 
 
 
 
 
551
552int __init efi_config_init(efi_config_table_type_t *arch_tables)
553{
554	void *config_tables;
555	int sz, ret;
556
557	if (efi_enabled(EFI_64BIT))
558		sz = sizeof(efi_config_table_64_t);
559	else
560		sz = sizeof(efi_config_table_32_t);
 
 
 
 
561
562	/*
563	 * Let's see what config tables the firmware passed to us.
564	 */
565	config_tables = early_memremap(efi.systab->tables,
566				       efi.systab->nr_tables * sz);
567	if (config_tables == NULL) {
568		pr_err("Could not map Configuration table!\n");
569		return -ENOMEM;
570	}
571
572	ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
573				      arch_tables);
574
575	early_memunmap(config_tables, efi.systab->nr_tables * sz);
576	return ret;
577}
578
579#ifdef CONFIG_EFI_VARS_MODULE
580static int __init efi_load_efivars(void)
581{
582	struct platform_device *pdev;
583
584	if (!efi_enabled(EFI_RUNTIME_SERVICES))
585		return 0;
586
587	pdev = platform_device_register_simple("efivars", 0, NULL, 0);
588	return IS_ERR(pdev) ? PTR_ERR(pdev) : 0;
589}
590device_initcall(efi_load_efivars);
591#endif
592
593#ifdef CONFIG_EFI_PARAMS_FROM_FDT
594
595#define UEFI_PARAM(name, prop, field)			   \
596	{						   \
597		{ name },				   \
598		{ prop },				   \
599		offsetof(struct efi_fdt_params, field),    \
600		FIELD_SIZEOF(struct efi_fdt_params, field) \
601	}
602
603struct params {
604	const char name[32];
605	const char propname[32];
606	int offset;
607	int size;
608};
609
610static __initdata struct params fdt_params[] = {
611	UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
612	UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
613	UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
614	UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
615	UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
616};
617
618static __initdata struct params xen_fdt_params[] = {
619	UEFI_PARAM("System Table", "xen,uefi-system-table", system_table),
620	UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap),
621	UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size),
622	UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size),
623	UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver)
624};
625
626#define EFI_FDT_PARAMS_SIZE	ARRAY_SIZE(fdt_params)
627
628static __initdata struct {
629	const char *uname;
630	const char *subnode;
631	struct params *params;
632} dt_params[] = {
633	{ "hypervisor", "uefi", xen_fdt_params },
634	{ "chosen", NULL, fdt_params },
635};
636
637struct param_info {
638	int found;
639	void *params;
640	const char *missing;
641};
642
643static int __init __find_uefi_params(unsigned long node,
644				     struct param_info *info,
645				     struct params *params)
646{
647	const void *prop;
648	void *dest;
649	u64 val;
650	int i, len;
651
652	for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) {
653		prop = of_get_flat_dt_prop(node, params[i].propname, &len);
654		if (!prop) {
655			info->missing = params[i].name;
656			return 0;
657		}
658
659		dest = info->params + params[i].offset;
660		info->found++;
661
662		val = of_read_number(prop, len / sizeof(u32));
663
664		if (params[i].size == sizeof(u32))
665			*(u32 *)dest = val;
666		else
667			*(u64 *)dest = val;
668
669		if (efi_enabled(EFI_DBG))
670			pr_info("  %s: 0x%0*llx\n", params[i].name,
671				params[i].size * 2, val);
672	}
673
674	return 1;
675}
676
677static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
678				       int depth, void *data)
679{
680	struct param_info *info = data;
681	int i;
 
 
682
683	for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
684		const char *subnode = dt_params[i].subnode;
 
 
 
685
686		if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) {
687			info->missing = dt_params[i].params[0].name;
688			continue;
689		}
690
691		if (subnode) {
692			int err = of_get_flat_dt_subnode_by_name(node, subnode);
 
 
 
 
 
 
 
 
 
693
694			if (err < 0)
695				return 0;
696
697			node = err;
698		}
699
700		return __find_uefi_params(node, info, dt_params[i].params);
701	}
702
703	return 0;
704}
 
 
 
 
705
706int __init efi_get_fdt_params(struct efi_fdt_params *params)
 
707{
708	struct param_info info;
709	int ret;
 
 
 
 
 
 
 
710
711	pr_info("Getting EFI parameters from FDT:\n");
 
712
713	info.found = 0;
714	info.params = params;
715
716	ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
717	if (!info.found)
718		pr_info("UEFI not found.\n");
719	else if (!ret)
720		pr_err("Can't find '%s' in device tree!\n",
721		       info.missing);
722
723	return ret;
724}
725#endif /* CONFIG_EFI_PARAMS_FROM_FDT */
726
727static __initdata char memory_type_name[][20] = {
728	"Reserved",
729	"Loader Code",
730	"Loader Data",
731	"Boot Code",
732	"Boot Data",
733	"Runtime Code",
734	"Runtime Data",
735	"Conventional Memory",
736	"Unusable Memory",
737	"ACPI Reclaim Memory",
738	"ACPI Memory NVS",
739	"Memory Mapped I/O",
740	"MMIO Port Space",
741	"PAL Code",
742	"Persistent Memory",
743};
744
745char * __init efi_md_typeattr_format(char *buf, size_t size,
746				     const efi_memory_desc_t *md)
747{
748	char *pos;
749	int type_len;
750	u64 attr;
751
752	pos = buf;
753	if (md->type >= ARRAY_SIZE(memory_type_name))
754		type_len = snprintf(pos, size, "[type=%u", md->type);
755	else
756		type_len = snprintf(pos, size, "[%-*s",
757				    (int)(sizeof(memory_type_name[0]) - 1),
758				    memory_type_name[md->type]);
759	if (type_len >= size)
760		return buf;
761
762	pos += type_len;
763	size -= type_len;
764
765	attr = md->attribute;
766	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
767		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
768		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
769		     EFI_MEMORY_NV |
770		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
771		snprintf(pos, size, "|attr=0x%016llx]",
772			 (unsigned long long)attr);
773	else
774		snprintf(pos, size,
775			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
776			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
777			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
778			 attr & EFI_MEMORY_NV      ? "NV"  : "",
779			 attr & EFI_MEMORY_XP      ? "XP"  : "",
780			 attr & EFI_MEMORY_RP      ? "RP"  : "",
781			 attr & EFI_MEMORY_WP      ? "WP"  : "",
782			 attr & EFI_MEMORY_RO      ? "RO"  : "",
783			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
784			 attr & EFI_MEMORY_WB      ? "WB"  : "",
785			 attr & EFI_MEMORY_WT      ? "WT"  : "",
786			 attr & EFI_MEMORY_WC      ? "WC"  : "",
787			 attr & EFI_MEMORY_UC      ? "UC"  : "");
 
 
788	return buf;
789}
790
791/*
 
 
 
 
 
792 * efi_mem_attributes - lookup memmap attributes for physical address
793 * @phys_addr: the physical address to lookup
794 *
795 * Search in the EFI memory map for the region covering
796 * @phys_addr. Returns the EFI memory attributes if the region
797 * was found in the memory map, 0 otherwise.
798 *
799 * Despite being marked __weak, most architectures should *not*
800 * override this function. It is __weak solely for the benefit
801 * of ia64 which has a funky EFI memory map that doesn't work
802 * the same way as other architectures.
803 */
804u64 __weak efi_mem_attributes(unsigned long phys_addr)
805{
806	efi_memory_desc_t *md;
807
808	if (!efi_enabled(EFI_MEMMAP))
809		return 0;
810
811	for_each_efi_memory_desc(md) {
812		if ((md->phys_addr <= phys_addr) &&
813		    (phys_addr < (md->phys_addr +
814		    (md->num_pages << EFI_PAGE_SHIFT))))
815			return md->attribute;
816	}
817	return 0;
818}
819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
820int efi_status_to_err(efi_status_t status)
821{
822	int err;
823
824	switch (status) {
825	case EFI_SUCCESS:
826		err = 0;
827		break;
828	case EFI_INVALID_PARAMETER:
829		err = -EINVAL;
830		break;
831	case EFI_OUT_OF_RESOURCES:
832		err = -ENOSPC;
833		break;
834	case EFI_DEVICE_ERROR:
835		err = -EIO;
836		break;
837	case EFI_WRITE_PROTECTED:
838		err = -EROFS;
839		break;
840	case EFI_SECURITY_VIOLATION:
841		err = -EACCES;
842		break;
843	case EFI_NOT_FOUND:
844		err = -ENOENT;
845		break;
846	case EFI_ABORTED:
847		err = -EINTR;
848		break;
849	default:
850		err = -EINVAL;
851	}
852
853	return err;
854}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
855
856#ifdef CONFIG_KEXEC
857static int update_efi_random_seed(struct notifier_block *nb,
858				  unsigned long code, void *unused)
859{
860	struct linux_efi_random_seed *seed;
861	u32 size = 0;
862
863	if (!kexec_in_progress)
864		return NOTIFY_DONE;
865
866	seed = memremap(efi.rng_seed, sizeof(*seed), MEMREMAP_WB);
867	if (seed != NULL) {
868		size = min(seed->size, 32U);
869		memunmap(seed);
870	} else {
871		pr_err("Could not map UEFI random seed!\n");
872	}
873	if (size > 0) {
874		seed = memremap(efi.rng_seed, sizeof(*seed) + size,
875				MEMREMAP_WB);
876		if (seed != NULL) {
877			seed->size = size;
878			get_random_bytes(seed->bits, seed->size);
879			memunmap(seed);
880		} else {
881			pr_err("Could not map UEFI random seed!\n");
882		}
883	}
884	return NOTIFY_DONE;
885}
886
887static struct notifier_block efi_random_seed_nb = {
888	.notifier_call = update_efi_random_seed,
889};
890
891static int register_update_efi_random_seed(void)
892{
893	if (efi.rng_seed == EFI_INVALID_TABLE_ADDR)
894		return 0;
895	return register_reboot_notifier(&efi_random_seed_nb);
896}
897late_initcall(register_update_efi_random_seed);
898#endif