Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
  24#include <linux/initrd.h>
  25#include <linux/io.h>
  26#include <linux/kexec.h>
  27#include <linux/platform_device.h>
  28#include <linux/random.h>
  29#include <linux/reboot.h>
  30#include <linux/slab.h>
  31#include <linux/acpi.h>
  32#include <linux/ucs2_string.h>
  33#include <linux/memblock.h>
  34#include <linux/security.h>
  35
  36#include <asm/early_ioremap.h>
  37
  38struct efi __read_mostly efi = {
  39	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  40	.acpi			= EFI_INVALID_TABLE_ADDR,
  41	.acpi20			= EFI_INVALID_TABLE_ADDR,
  42	.smbios			= EFI_INVALID_TABLE_ADDR,
  43	.smbios3		= EFI_INVALID_TABLE_ADDR,
  44	.esrt			= EFI_INVALID_TABLE_ADDR,
  45	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  46	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
  47#ifdef CONFIG_LOAD_UEFI_KEYS
  48	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
  49#endif
  50#ifdef CONFIG_EFI_COCO_SECRET
  51	.coco_secret		= EFI_INVALID_TABLE_ADDR,
  52#endif
  53};
  54EXPORT_SYMBOL(efi);
  55
  56unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  57static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  58static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
  59static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
  60
  61extern unsigned long screen_info_table;
  62
  63struct mm_struct efi_mm = {
  64	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
  65	.mm_users		= ATOMIC_INIT(2),
  66	.mm_count		= ATOMIC_INIT(1),
  67	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
  68	MMAP_LOCK_INITIALIZER(efi_mm)
  69	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  70	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  71	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  72};
  73
  74struct workqueue_struct *efi_rts_wq;
  75
  76static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
  77static int __init setup_noefi(char *arg)
  78{
  79	disable_runtime = true;
  80	return 0;
  81}
  82early_param("noefi", setup_noefi);
  83
  84bool efi_runtime_disabled(void)
  85{
  86	return disable_runtime;
  87}
  88
  89bool __pure __efi_soft_reserve_enabled(void)
  90{
  91	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  92}
  93
  94static int __init parse_efi_cmdline(char *str)
  95{
  96	if (!str) {
  97		pr_warn("need at least one option\n");
  98		return -EINVAL;
  99	}
 100
 101	if (parse_option_str(str, "debug"))
 102		set_bit(EFI_DBG, &efi.flags);
 103
 104	if (parse_option_str(str, "noruntime"))
 105		disable_runtime = true;
 106
 107	if (parse_option_str(str, "runtime"))
 108		disable_runtime = false;
 109
 110	if (parse_option_str(str, "nosoftreserve"))
 111		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
 112
 113	return 0;
 114}
 115early_param("efi", parse_efi_cmdline);
 116
 117struct kobject *efi_kobj;
 118
 119/*
 120 * Let's not leave out systab information that snuck into
 121 * the efivars driver
 122 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 123 * one value per file rule!
 124 */
 125static ssize_t systab_show(struct kobject *kobj,
 126			   struct kobj_attribute *attr, char *buf)
 127{
 128	char *str = buf;
 129
 130	if (!kobj || !buf)
 131		return -EINVAL;
 132
 133	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 134		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 135	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 136		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 137	/*
 138	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 139	 * SMBIOS3 entry point shall be preferred, so we list it first to
 140	 * let applications stop parsing after the first match.
 141	 */
 142	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 143		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 144	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 145		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 146
 147	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
 148		str = efi_systab_show_arch(str);
 149
 150	return str - buf;
 151}
 152
 153static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 154
 155static ssize_t fw_platform_size_show(struct kobject *kobj,
 156				     struct kobj_attribute *attr, char *buf)
 157{
 158	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 159}
 160
 161extern __weak struct kobj_attribute efi_attr_fw_vendor;
 162extern __weak struct kobj_attribute efi_attr_runtime;
 163extern __weak struct kobj_attribute efi_attr_config_table;
 164static struct kobj_attribute efi_attr_fw_platform_size =
 165	__ATTR_RO(fw_platform_size);
 166
 167static struct attribute *efi_subsys_attrs[] = {
 168	&efi_attr_systab.attr,
 169	&efi_attr_fw_platform_size.attr,
 170	&efi_attr_fw_vendor.attr,
 171	&efi_attr_runtime.attr,
 172	&efi_attr_config_table.attr,
 173	NULL,
 174};
 175
 176umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 177				   int n)
 178{
 179	return attr->mode;
 180}
 181
 182static const struct attribute_group efi_subsys_attr_group = {
 183	.attrs = efi_subsys_attrs,
 184	.is_visible = efi_attr_is_visible,
 185};
 186
 187static struct efivars generic_efivars;
 188static struct efivar_operations generic_ops;
 189
 190static int generic_ops_register(void)
 191{
 192	generic_ops.get_variable = efi.get_variable;
 193	generic_ops.get_next_variable = efi.get_next_variable;
 194	generic_ops.query_variable_store = efi_query_variable_store;
 195
 196	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 197		generic_ops.set_variable = efi.set_variable;
 198		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 199	}
 200	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
 201}
 202
 203static void generic_ops_unregister(void)
 204{
 205	efivars_unregister(&generic_efivars);
 206}
 207
 208#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 209#define EFIVAR_SSDT_NAME_MAX	16UL
 210static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 211static int __init efivar_ssdt_setup(char *str)
 212{
 213	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 214
 215	if (ret)
 216		return ret;
 217
 218	if (strlen(str) < sizeof(efivar_ssdt))
 219		memcpy(efivar_ssdt, str, strlen(str));
 220	else
 221		pr_warn("efivar_ssdt: name too long: %s\n", str);
 222	return 1;
 223}
 224__setup("efivar_ssdt=", efivar_ssdt_setup);
 225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226static __init int efivar_ssdt_load(void)
 227{
 228	unsigned long name_size = 256;
 229	efi_char16_t *name = NULL;
 230	efi_status_t status;
 231	efi_guid_t guid;
 
 232
 233	if (!efivar_ssdt[0])
 234		return 0;
 235
 236	name = kzalloc(name_size, GFP_KERNEL);
 237	if (!name)
 238		return -ENOMEM;
 239
 240	for (;;) {
 241		char utf8_name[EFIVAR_SSDT_NAME_MAX];
 242		unsigned long data_size = 0;
 243		void *data;
 244		int limit;
 245
 246		status = efi.get_next_variable(&name_size, name, &guid);
 247		if (status == EFI_NOT_FOUND) {
 248			break;
 249		} else if (status == EFI_BUFFER_TOO_SMALL) {
 250			name = krealloc(name, name_size, GFP_KERNEL);
 251			if (!name)
 252				return -ENOMEM;
 253			continue;
 254		}
 255
 256		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
 257		ucs2_as_utf8(utf8_name, name, limit - 1);
 258		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 259			continue;
 
 260
 261		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);
 
 
 
 
 262
 263		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
 264		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
 265			return -EIO;
 266
 267		data = kmalloc(data_size, GFP_KERNEL);
 268		if (!data)
 269			return -ENOMEM;
 270
 271		status = efi.get_variable(name, &guid, NULL, &data_size, data);
 272		if (status == EFI_SUCCESS) {
 273			acpi_status ret = acpi_load_table(data, NULL);
 274			if (ret)
 275				pr_err("failed to load table: %u\n", ret);
 276			else
 277				continue;
 278		} else {
 279			pr_err("failed to get var data: 0x%lx\n", status);
 280		}
 
 
 
 
 281		kfree(data);
 
 
 
 282	}
 283	return 0;
 
 284}
 285#else
 286static inline int efivar_ssdt_load(void) { return 0; }
 287#endif
 288
 289#ifdef CONFIG_DEBUG_FS
 290
 291#define EFI_DEBUGFS_MAX_BLOBS 32
 292
 293static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 294
 295static void __init efi_debugfs_init(void)
 296{
 297	struct dentry *efi_debugfs;
 298	efi_memory_desc_t *md;
 299	char name[32];
 300	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 301	int i = 0;
 302
 303	efi_debugfs = debugfs_create_dir("efi", NULL);
 304	if (IS_ERR_OR_NULL(efi_debugfs))
 305		return;
 306
 307	for_each_efi_memory_desc(md) {
 308		switch (md->type) {
 309		case EFI_BOOT_SERVICES_CODE:
 310			snprintf(name, sizeof(name), "boot_services_code%d",
 311				 type_count[md->type]++);
 312			break;
 313		case EFI_BOOT_SERVICES_DATA:
 314			snprintf(name, sizeof(name), "boot_services_data%d",
 315				 type_count[md->type]++);
 316			break;
 317		default:
 318			continue;
 319		}
 320
 321		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 322			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 323				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 324			break;
 325		}
 326
 327		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 328		debugfs_blob[i].data = memremap(md->phys_addr,
 329						debugfs_blob[i].size,
 330						MEMREMAP_WB);
 331		if (!debugfs_blob[i].data)
 332			continue;
 333
 334		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 335		i++;
 336	}
 337}
 338#else
 339static inline void efi_debugfs_init(void) {}
 340#endif
 341
 342static void refresh_nv_rng_seed(struct work_struct *work)
 343{
 344	u8 seed[EFI_RANDOM_SEED_SIZE];
 345
 346	get_random_bytes(seed, sizeof(seed));
 347	efi.set_variable(L"RandomSeed", &LINUX_EFI_RANDOM_SEED_TABLE_GUID,
 348			 EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS |
 349			 EFI_VARIABLE_RUNTIME_ACCESS, sizeof(seed), seed);
 350	memzero_explicit(seed, sizeof(seed));
 351}
 352static int refresh_nv_rng_seed_notification(struct notifier_block *nb, unsigned long action, void *data)
 353{
 354	static DECLARE_WORK(work, refresh_nv_rng_seed);
 355	schedule_work(&work);
 356	return NOTIFY_DONE;
 357}
 358static struct notifier_block refresh_nv_rng_seed_nb = { .notifier_call = refresh_nv_rng_seed_notification };
 359
 360/*
 361 * We register the efi subsystem with the firmware subsystem and the
 362 * efivars subsystem with the efi subsystem, if the system was booted with
 363 * EFI.
 364 */
 365static int __init efisubsys_init(void)
 366{
 367	int error;
 368
 369	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 370		efi.runtime_supported_mask = 0;
 371
 372	if (!efi_enabled(EFI_BOOT))
 373		return 0;
 374
 375	if (efi.runtime_supported_mask) {
 376		/*
 377		 * Since we process only one efi_runtime_service() at a time, an
 378		 * ordered workqueue (which creates only one execution context)
 379		 * should suffice for all our needs.
 380		 */
 381		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 382		if (!efi_rts_wq) {
 383			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 384			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 385			efi.runtime_supported_mask = 0;
 386			return 0;
 387		}
 388	}
 389
 390	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 391		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 392
 393	/* We register the efi directory at /sys/firmware/efi */
 394	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 395	if (!efi_kobj) {
 396		pr_err("efi: Firmware registration failed.\n");
 397		error = -ENOMEM;
 398		goto err_destroy_wq;
 399	}
 400
 401	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 402				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 403		error = generic_ops_register();
 404		if (error)
 405			goto err_put;
 406		efivar_ssdt_load();
 407		platform_device_register_simple("efivars", 0, NULL, 0);
 408	}
 409
 410	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 411	if (error) {
 412		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 413		       error);
 414		goto err_unregister;
 415	}
 416
 
 
 
 
 417	/* and the standard mountpoint for efivarfs */
 418	error = sysfs_create_mount_point(efi_kobj, "efivars");
 419	if (error) {
 420		pr_err("efivars: Subsystem registration failed.\n");
 421		goto err_remove_group;
 422	}
 423
 424	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 425		efi_debugfs_init();
 426
 427#ifdef CONFIG_EFI_COCO_SECRET
 428	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
 429		platform_device_register_simple("efi_secret", 0, NULL, 0);
 430#endif
 431
 432	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE))
 433		execute_with_initialized_rng(&refresh_nv_rng_seed_nb);
 434
 435	return 0;
 436
 437err_remove_group:
 438	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 439err_unregister:
 440	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 441				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 442		generic_ops_unregister();
 443err_put:
 444	kobject_put(efi_kobj);
 445	efi_kobj = NULL;
 446err_destroy_wq:
 447	if (efi_rts_wq)
 448		destroy_workqueue(efi_rts_wq);
 449
 450	return error;
 451}
 452
 453subsys_initcall(efisubsys_init);
 454
 455void __init efi_find_mirror(void)
 456{
 457	efi_memory_desc_t *md;
 458	u64 mirror_size = 0, total_size = 0;
 459
 460	if (!efi_enabled(EFI_MEMMAP))
 461		return;
 462
 463	for_each_efi_memory_desc(md) {
 464		unsigned long long start = md->phys_addr;
 465		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 466
 467		total_size += size;
 468		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 469			memblock_mark_mirror(start, size);
 470			mirror_size += size;
 471		}
 472	}
 473	if (mirror_size)
 474		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 475			mirror_size>>20, total_size>>20);
 476}
 477
 478/*
 479 * Find the efi memory descriptor for a given physical address.  Given a
 480 * physical address, determine if it exists within an EFI Memory Map entry,
 481 * and if so, populate the supplied memory descriptor with the appropriate
 482 * data.
 483 */
 484int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 485{
 486	efi_memory_desc_t *md;
 487
 488	if (!efi_enabled(EFI_MEMMAP)) {
 489		pr_err_once("EFI_MEMMAP is not enabled.\n");
 490		return -EINVAL;
 491	}
 492
 493	if (!out_md) {
 494		pr_err_once("out_md is null.\n");
 495		return -EINVAL;
 496        }
 497
 498	for_each_efi_memory_desc(md) {
 499		u64 size;
 500		u64 end;
 501
 502		size = md->num_pages << EFI_PAGE_SHIFT;
 503		end = md->phys_addr + size;
 504		if (phys_addr >= md->phys_addr && phys_addr < end) {
 505			memcpy(out_md, md, sizeof(*out_md));
 506			return 0;
 507		}
 508	}
 509	return -ENOENT;
 510}
 511
 512/*
 513 * Calculate the highest address of an efi memory descriptor.
 514 */
 515u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 516{
 517	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 518	u64 end = md->phys_addr + size;
 519	return end;
 520}
 521
 522void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 523
 524/**
 525 * efi_mem_reserve - Reserve an EFI memory region
 526 * @addr: Physical address to reserve
 527 * @size: Size of reservation
 528 *
 529 * Mark a region as reserved from general kernel allocation and
 530 * prevent it being released by efi_free_boot_services().
 531 *
 532 * This function should be called drivers once they've parsed EFI
 533 * configuration tables to figure out where their data lives, e.g.
 534 * efi_esrt_init().
 535 */
 536void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 537{
 538	if (!memblock_is_region_reserved(addr, size))
 539		memblock_reserve(addr, size);
 540
 541	/*
 542	 * Some architectures (x86) reserve all boot services ranges
 543	 * until efi_free_boot_services() because of buggy firmware
 544	 * implementations. This means the above memblock_reserve() is
 545	 * superfluous on x86 and instead what it needs to do is
 546	 * ensure the @start, @size is not freed.
 547	 */
 548	efi_arch_mem_reserve(addr, size);
 549}
 550
 551static const efi_config_table_type_t common_tables[] __initconst = {
 552	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 553	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 554	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 555	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 556	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 557	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 558	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 559	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 560	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 561	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 562	{LINUX_EFI_INITRD_MEDIA_GUID,		&initrd,		"INITRD"	},
 563	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 564#ifdef CONFIG_EFI_RCI2_TABLE
 565	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 566#endif
 567#ifdef CONFIG_LOAD_UEFI_KEYS
 568	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
 569#endif
 570#ifdef CONFIG_EFI_COCO_SECRET
 571	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
 572#endif
 573#ifdef CONFIG_EFI_GENERIC_STUB
 574	{LINUX_EFI_SCREEN_INFO_TABLE_GUID,	&screen_info_table			},
 575#endif
 576	{},
 577};
 578
 579static __init int match_config_table(const efi_guid_t *guid,
 580				     unsigned long table,
 581				     const efi_config_table_type_t *table_types)
 582{
 583	int i;
 584
 585	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 586		if (!efi_guidcmp(*guid, table_types[i].guid)) {
 587			*(table_types[i].ptr) = table;
 588			if (table_types[i].name[0])
 589				pr_cont("%s=0x%lx ",
 590					table_types[i].name, table);
 591			return 1;
 592		}
 593	}
 594
 595	return 0;
 596}
 597
 598int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 599				   int count,
 600				   const efi_config_table_type_t *arch_tables)
 601{
 602	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 603	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 604	const efi_guid_t *guid;
 605	unsigned long table;
 606	int i;
 607
 608	pr_info("");
 609	for (i = 0; i < count; i++) {
 610		if (!IS_ENABLED(CONFIG_X86)) {
 611			guid = &config_tables[i].guid;
 612			table = (unsigned long)config_tables[i].table;
 613		} else if (efi_enabled(EFI_64BIT)) {
 614			guid = &tbl64[i].guid;
 615			table = tbl64[i].table;
 616
 617			if (IS_ENABLED(CONFIG_X86_32) &&
 618			    tbl64[i].table > U32_MAX) {
 619				pr_cont("\n");
 620				pr_err("Table located above 4GB, disabling EFI.\n");
 621				return -EINVAL;
 622			}
 623		} else {
 624			guid = &tbl32[i].guid;
 625			table = tbl32[i].table;
 626		}
 627
 628		if (!match_config_table(guid, table, common_tables) && arch_tables)
 629			match_config_table(guid, table, arch_tables);
 630	}
 631	pr_cont("\n");
 632	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 633
 634	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 635		struct linux_efi_random_seed *seed;
 636		u32 size = 0;
 637
 638		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 639		if (seed != NULL) {
 640			size = min_t(u32, seed->size, SZ_1K); // sanity check
 641			early_memunmap(seed, sizeof(*seed));
 642		} else {
 643			pr_err("Could not map UEFI random seed!\n");
 644		}
 645		if (size > 0) {
 646			seed = early_memremap(efi_rng_seed,
 647					      sizeof(*seed) + size);
 648			if (seed != NULL) {
 
 649				add_bootloader_randomness(seed->bits, size);
 650				memzero_explicit(seed->bits, size);
 651				early_memunmap(seed, sizeof(*seed) + size);
 652			} else {
 653				pr_err("Could not map UEFI random seed!\n");
 654			}
 655		}
 656	}
 657
 658	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 659		efi_memattr_init();
 660
 661	efi_tpm_eventlog_init();
 662
 663	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 664		unsigned long prsv = mem_reserve;
 665
 666		while (prsv) {
 667			struct linux_efi_memreserve *rsv;
 668			u8 *p;
 669
 670			/*
 671			 * Just map a full page: that is what we will get
 672			 * anyway, and it permits us to map the entire entry
 673			 * before knowing its size.
 674			 */
 675			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 676					   PAGE_SIZE);
 677			if (p == NULL) {
 678				pr_err("Could not map UEFI memreserve entry!\n");
 679				return -ENOMEM;
 680			}
 681
 682			rsv = (void *)(p + prsv % PAGE_SIZE);
 683
 684			/* reserve the entry itself */
 685			memblock_reserve(prsv,
 686					 struct_size(rsv, entry, rsv->size));
 687
 688			for (i = 0; i < atomic_read(&rsv->count); i++) {
 689				memblock_reserve(rsv->entry[i].base,
 690						 rsv->entry[i].size);
 691			}
 692
 693			prsv = rsv->next;
 694			early_memunmap(p, PAGE_SIZE);
 695		}
 696	}
 697
 698	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 699		efi_rt_properties_table_t *tbl;
 700
 701		tbl = early_memremap(rt_prop, sizeof(*tbl));
 702		if (tbl) {
 703			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 704			early_memunmap(tbl, sizeof(*tbl));
 705		}
 706	}
 707
 708	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
 709	    initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
 710		struct linux_efi_initrd *tbl;
 711
 712		tbl = early_memremap(initrd, sizeof(*tbl));
 713		if (tbl) {
 714			phys_initrd_start = tbl->base;
 715			phys_initrd_size = tbl->size;
 716			early_memunmap(tbl, sizeof(*tbl));
 717		}
 718	}
 719
 720	return 0;
 721}
 722
 723int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
 724				   int min_major_version)
 725{
 726	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 727		pr_err("System table signature incorrect!\n");
 728		return -EINVAL;
 729	}
 730
 731	if ((systab_hdr->revision >> 16) < min_major_version)
 732		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
 733		       systab_hdr->revision >> 16,
 734		       systab_hdr->revision & 0xffff,
 735		       min_major_version);
 736
 737	return 0;
 738}
 739
 740#ifndef CONFIG_IA64
 741static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 742						size_t size)
 743{
 744	const efi_char16_t *ret;
 745
 746	ret = early_memremap_ro(fw_vendor, size);
 747	if (!ret)
 748		pr_err("Could not map the firmware vendor!\n");
 749	return ret;
 750}
 751
 752static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 753{
 754	early_memunmap((void *)fw_vendor, size);
 755}
 756#else
 757#define map_fw_vendor(p, s)	__va(p)
 758#define unmap_fw_vendor(v, s)
 759#endif
 760
 761void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 762				     unsigned long fw_vendor)
 763{
 764	char vendor[100] = "unknown";
 765	const efi_char16_t *c16;
 766	size_t i;
 767
 768	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 769	if (c16) {
 770		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 771			vendor[i] = c16[i];
 772		vendor[i] = '\0';
 773
 774		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 775	}
 776
 777	pr_info("EFI v%u.%.02u by %s\n",
 778		systab_hdr->revision >> 16,
 779		systab_hdr->revision & 0xffff,
 780		vendor);
 781
 782	if (IS_ENABLED(CONFIG_X86_64) &&
 783	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
 784	    !strcmp(vendor, "Apple")) {
 785		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
 786		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
 787	}
 788}
 789
 790static __initdata char memory_type_name[][13] = {
 791	"Reserved",
 792	"Loader Code",
 793	"Loader Data",
 794	"Boot Code",
 795	"Boot Data",
 796	"Runtime Code",
 797	"Runtime Data",
 798	"Conventional",
 799	"Unusable",
 800	"ACPI Reclaim",
 801	"ACPI Mem NVS",
 802	"MMIO",
 803	"MMIO Port",
 804	"PAL Code",
 805	"Persistent",
 806};
 807
 808char * __init efi_md_typeattr_format(char *buf, size_t size,
 809				     const efi_memory_desc_t *md)
 810{
 811	char *pos;
 812	int type_len;
 813	u64 attr;
 814
 815	pos = buf;
 816	if (md->type >= ARRAY_SIZE(memory_type_name))
 817		type_len = snprintf(pos, size, "[type=%u", md->type);
 818	else
 819		type_len = snprintf(pos, size, "[%-*s",
 820				    (int)(sizeof(memory_type_name[0]) - 1),
 821				    memory_type_name[md->type]);
 822	if (type_len >= size)
 823		return buf;
 824
 825	pos += type_len;
 826	size -= type_len;
 827
 828	attr = md->attribute;
 829	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 830		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 831		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 832		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
 833		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 834		snprintf(pos, size, "|attr=0x%016llx]",
 835			 (unsigned long long)attr);
 836	else
 837		snprintf(pos, size,
 838			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 839			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
 840			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
 841			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
 842			 attr & EFI_MEMORY_SP			? "SP"  : "",
 843			 attr & EFI_MEMORY_NV			? "NV"  : "",
 844			 attr & EFI_MEMORY_XP			? "XP"  : "",
 845			 attr & EFI_MEMORY_RP			? "RP"  : "",
 846			 attr & EFI_MEMORY_WP			? "WP"  : "",
 847			 attr & EFI_MEMORY_RO			? "RO"  : "",
 848			 attr & EFI_MEMORY_UCE			? "UCE" : "",
 849			 attr & EFI_MEMORY_WB			? "WB"  : "",
 850			 attr & EFI_MEMORY_WT			? "WT"  : "",
 851			 attr & EFI_MEMORY_WC			? "WC"  : "",
 852			 attr & EFI_MEMORY_UC			? "UC"  : "");
 853	return buf;
 854}
 855
 856/*
 857 * IA64 has a funky EFI memory map that doesn't work the same way as
 858 * other architectures.
 859 */
 860#ifndef CONFIG_IA64
 861/*
 862 * efi_mem_attributes - lookup memmap attributes for physical address
 863 * @phys_addr: the physical address to lookup
 864 *
 865 * Search in the EFI memory map for the region covering
 866 * @phys_addr. Returns the EFI memory attributes if the region
 867 * was found in the memory map, 0 otherwise.
 868 */
 869u64 efi_mem_attributes(unsigned long phys_addr)
 870{
 871	efi_memory_desc_t *md;
 872
 873	if (!efi_enabled(EFI_MEMMAP))
 874		return 0;
 875
 876	for_each_efi_memory_desc(md) {
 877		if ((md->phys_addr <= phys_addr) &&
 878		    (phys_addr < (md->phys_addr +
 879		    (md->num_pages << EFI_PAGE_SHIFT))))
 880			return md->attribute;
 881	}
 882	return 0;
 883}
 884
 885/*
 886 * efi_mem_type - lookup memmap type for physical address
 887 * @phys_addr: the physical address to lookup
 888 *
 889 * Search in the EFI memory map for the region covering @phys_addr.
 890 * Returns the EFI memory type if the region was found in the memory
 891 * map, -EINVAL otherwise.
 892 */
 893int efi_mem_type(unsigned long phys_addr)
 894{
 895	const efi_memory_desc_t *md;
 896
 897	if (!efi_enabled(EFI_MEMMAP))
 898		return -ENOTSUPP;
 899
 900	for_each_efi_memory_desc(md) {
 901		if ((md->phys_addr <= phys_addr) &&
 902		    (phys_addr < (md->phys_addr +
 903				  (md->num_pages << EFI_PAGE_SHIFT))))
 904			return md->type;
 905	}
 906	return -EINVAL;
 907}
 908#endif
 909
 910int efi_status_to_err(efi_status_t status)
 911{
 912	int err;
 913
 914	switch (status) {
 915	case EFI_SUCCESS:
 916		err = 0;
 917		break;
 918	case EFI_INVALID_PARAMETER:
 919		err = -EINVAL;
 920		break;
 921	case EFI_OUT_OF_RESOURCES:
 922		err = -ENOSPC;
 923		break;
 924	case EFI_DEVICE_ERROR:
 925		err = -EIO;
 926		break;
 927	case EFI_WRITE_PROTECTED:
 928		err = -EROFS;
 929		break;
 930	case EFI_SECURITY_VIOLATION:
 931		err = -EACCES;
 932		break;
 933	case EFI_NOT_FOUND:
 934		err = -ENOENT;
 935		break;
 936	case EFI_ABORTED:
 937		err = -EINTR;
 938		break;
 939	default:
 940		err = -EINVAL;
 941	}
 942
 943	return err;
 944}
 945EXPORT_SYMBOL_GPL(efi_status_to_err);
 946
 947static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
 948static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
 949
 950static int __init efi_memreserve_map_root(void)
 951{
 952	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
 953		return -ENODEV;
 954
 955	efi_memreserve_root = memremap(mem_reserve,
 956				       sizeof(*efi_memreserve_root),
 957				       MEMREMAP_WB);
 958	if (WARN_ON_ONCE(!efi_memreserve_root))
 959		return -ENOMEM;
 960	return 0;
 961}
 962
 963static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
 964{
 965	struct resource *res, *parent;
 966	int ret;
 967
 968	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 969	if (!res)
 970		return -ENOMEM;
 971
 972	res->name	= "reserved";
 973	res->flags	= IORESOURCE_MEM;
 974	res->start	= addr;
 975	res->end	= addr + size - 1;
 976
 977	/* we expect a conflict with a 'System RAM' region */
 978	parent = request_resource_conflict(&iomem_resource, res);
 979	ret = parent ? request_resource(parent, res) : 0;
 980
 981	/*
 982	 * Given that efi_mem_reserve_iomem() can be called at any
 983	 * time, only call memblock_reserve() if the architecture
 984	 * keeps the infrastructure around.
 985	 */
 986	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
 987		memblock_reserve(addr, size);
 988
 989	return ret;
 990}
 991
 992int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
 993{
 994	struct linux_efi_memreserve *rsv;
 995	unsigned long prsv;
 996	int rc, index;
 997
 998	if (efi_memreserve_root == (void *)ULONG_MAX)
 999		return -ENODEV;
1000
1001	if (!efi_memreserve_root) {
1002		rc = efi_memreserve_map_root();
1003		if (rc)
1004			return rc;
1005	}
1006
1007	/* first try to find a slot in an existing linked list entry */
1008	for (prsv = efi_memreserve_root->next; prsv; ) {
1009		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
1010		if (!rsv)
1011			return -ENOMEM;
1012		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
1013		if (index < rsv->size) {
1014			rsv->entry[index].base = addr;
1015			rsv->entry[index].size = size;
1016
1017			memunmap(rsv);
1018			return efi_mem_reserve_iomem(addr, size);
1019		}
1020		prsv = rsv->next;
1021		memunmap(rsv);
1022	}
1023
1024	/* no slot found - allocate a new linked list entry */
1025	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
1026	if (!rsv)
1027		return -ENOMEM;
1028
1029	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
1030	if (rc) {
1031		free_page((unsigned long)rsv);
1032		return rc;
1033	}
1034
1035	/*
1036	 * The memremap() call above assumes that a linux_efi_memreserve entry
1037	 * never crosses a page boundary, so let's ensure that this remains true
1038	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
1039	 * using SZ_4K explicitly in the size calculation below.
1040	 */
1041	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
1042	atomic_set(&rsv->count, 1);
1043	rsv->entry[0].base = addr;
1044	rsv->entry[0].size = size;
1045
1046	spin_lock(&efi_mem_reserve_persistent_lock);
1047	rsv->next = efi_memreserve_root->next;
1048	efi_memreserve_root->next = __pa(rsv);
1049	spin_unlock(&efi_mem_reserve_persistent_lock);
1050
1051	return efi_mem_reserve_iomem(addr, size);
1052}
1053
1054static int __init efi_memreserve_root_init(void)
1055{
1056	if (efi_memreserve_root)
1057		return 0;
1058	if (efi_memreserve_map_root())
1059		efi_memreserve_root = (void *)ULONG_MAX;
1060	return 0;
1061}
1062early_initcall(efi_memreserve_root_init);
1063
1064#ifdef CONFIG_KEXEC
1065static int update_efi_random_seed(struct notifier_block *nb,
1066				  unsigned long code, void *unused)
1067{
1068	struct linux_efi_random_seed *seed;
1069	u32 size = 0;
1070
1071	if (!kexec_in_progress)
1072		return NOTIFY_DONE;
1073
1074	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1075	if (seed != NULL) {
1076		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1077		memunmap(seed);
1078	} else {
1079		pr_err("Could not map UEFI random seed!\n");
1080	}
1081	if (size > 0) {
1082		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1083				MEMREMAP_WB);
1084		if (seed != NULL) {
1085			seed->size = size;
1086			get_random_bytes(seed->bits, seed->size);
1087			memunmap(seed);
1088		} else {
1089			pr_err("Could not map UEFI random seed!\n");
1090		}
1091	}
1092	return NOTIFY_DONE;
1093}
1094
1095static struct notifier_block efi_random_seed_nb = {
1096	.notifier_call = update_efi_random_seed,
1097};
1098
1099static int __init register_update_efi_random_seed(void)
1100{
1101	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1102		return 0;
1103	return register_reboot_notifier(&efi_random_seed_nb);
1104}
1105late_initcall(register_update_efi_random_seed);
1106#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * efi.c - EFI subsystem
   4 *
   5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
   6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
   7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
   8 *
   9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
  10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
  11 * The existance of /sys/firmware/efi may also be used by userspace to
  12 * determine that the system supports EFI.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/kobject.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/efi.h>
  23#include <linux/of.h>
 
  24#include <linux/io.h>
  25#include <linux/kexec.h>
  26#include <linux/platform_device.h>
  27#include <linux/random.h>
  28#include <linux/reboot.h>
  29#include <linux/slab.h>
  30#include <linux/acpi.h>
  31#include <linux/ucs2_string.h>
  32#include <linux/memblock.h>
  33#include <linux/security.h>
  34
  35#include <asm/early_ioremap.h>
  36
  37struct efi __read_mostly efi = {
  38	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
  39	.acpi			= EFI_INVALID_TABLE_ADDR,
  40	.acpi20			= EFI_INVALID_TABLE_ADDR,
  41	.smbios			= EFI_INVALID_TABLE_ADDR,
  42	.smbios3		= EFI_INVALID_TABLE_ADDR,
  43	.esrt			= EFI_INVALID_TABLE_ADDR,
  44	.tpm_log		= EFI_INVALID_TABLE_ADDR,
  45	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
  46#ifdef CONFIG_LOAD_UEFI_KEYS
  47	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
  48#endif
 
 
 
  49};
  50EXPORT_SYMBOL(efi);
  51
  52unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
  53static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
  54static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
 
 
 
  55
  56struct mm_struct efi_mm = {
  57	.mm_rb			= RB_ROOT,
  58	.mm_users		= ATOMIC_INIT(2),
  59	.mm_count		= ATOMIC_INIT(1),
  60	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
  61	MMAP_LOCK_INITIALIZER(efi_mm)
  62	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
  63	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
  64	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
  65};
  66
  67struct workqueue_struct *efi_rts_wq;
  68
  69static bool disable_runtime;
  70static int __init setup_noefi(char *arg)
  71{
  72	disable_runtime = true;
  73	return 0;
  74}
  75early_param("noefi", setup_noefi);
  76
  77bool efi_runtime_disabled(void)
  78{
  79	return disable_runtime;
  80}
  81
  82bool __pure __efi_soft_reserve_enabled(void)
  83{
  84	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
  85}
  86
  87static int __init parse_efi_cmdline(char *str)
  88{
  89	if (!str) {
  90		pr_warn("need at least one option\n");
  91		return -EINVAL;
  92	}
  93
  94	if (parse_option_str(str, "debug"))
  95		set_bit(EFI_DBG, &efi.flags);
  96
  97	if (parse_option_str(str, "noruntime"))
  98		disable_runtime = true;
  99
 
 
 
 100	if (parse_option_str(str, "nosoftreserve"))
 101		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
 102
 103	return 0;
 104}
 105early_param("efi", parse_efi_cmdline);
 106
 107struct kobject *efi_kobj;
 108
 109/*
 110 * Let's not leave out systab information that snuck into
 111 * the efivars driver
 112 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 113 * one value per file rule!
 114 */
 115static ssize_t systab_show(struct kobject *kobj,
 116			   struct kobj_attribute *attr, char *buf)
 117{
 118	char *str = buf;
 119
 120	if (!kobj || !buf)
 121		return -EINVAL;
 122
 123	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 124		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
 125	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 126		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
 127	/*
 128	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
 129	 * SMBIOS3 entry point shall be preferred, so we list it first to
 130	 * let applications stop parsing after the first match.
 131	 */
 132	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
 133		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
 134	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
 135		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
 136
 137	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
 138		str = efi_systab_show_arch(str);
 139
 140	return str - buf;
 141}
 142
 143static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
 144
 145static ssize_t fw_platform_size_show(struct kobject *kobj,
 146				     struct kobj_attribute *attr, char *buf)
 147{
 148	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
 149}
 150
 151extern __weak struct kobj_attribute efi_attr_fw_vendor;
 152extern __weak struct kobj_attribute efi_attr_runtime;
 153extern __weak struct kobj_attribute efi_attr_config_table;
 154static struct kobj_attribute efi_attr_fw_platform_size =
 155	__ATTR_RO(fw_platform_size);
 156
 157static struct attribute *efi_subsys_attrs[] = {
 158	&efi_attr_systab.attr,
 159	&efi_attr_fw_platform_size.attr,
 160	&efi_attr_fw_vendor.attr,
 161	&efi_attr_runtime.attr,
 162	&efi_attr_config_table.attr,
 163	NULL,
 164};
 165
 166umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
 167				   int n)
 168{
 169	return attr->mode;
 170}
 171
 172static const struct attribute_group efi_subsys_attr_group = {
 173	.attrs = efi_subsys_attrs,
 174	.is_visible = efi_attr_is_visible,
 175};
 176
 177static struct efivars generic_efivars;
 178static struct efivar_operations generic_ops;
 179
 180static int generic_ops_register(void)
 181{
 182	generic_ops.get_variable = efi.get_variable;
 183	generic_ops.get_next_variable = efi.get_next_variable;
 184	generic_ops.query_variable_store = efi_query_variable_store;
 185
 186	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
 187		generic_ops.set_variable = efi.set_variable;
 188		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
 189	}
 190	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
 191}
 192
 193static void generic_ops_unregister(void)
 194{
 195	efivars_unregister(&generic_efivars);
 196}
 197
 198#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
 199#define EFIVAR_SSDT_NAME_MAX	16
 200static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
 201static int __init efivar_ssdt_setup(char *str)
 202{
 203	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
 204
 205	if (ret)
 206		return ret;
 207
 208	if (strlen(str) < sizeof(efivar_ssdt))
 209		memcpy(efivar_ssdt, str, strlen(str));
 210	else
 211		pr_warn("efivar_ssdt: name too long: %s\n", str);
 212	return 0;
 213}
 214__setup("efivar_ssdt=", efivar_ssdt_setup);
 215
 216static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
 217				   unsigned long name_size, void *data)
 218{
 219	struct efivar_entry *entry;
 220	struct list_head *list = data;
 221	char utf8_name[EFIVAR_SSDT_NAME_MAX];
 222	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
 223
 224	ucs2_as_utf8(utf8_name, name, limit - 1);
 225	if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
 226		return 0;
 227
 228	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
 229	if (!entry)
 230		return 0;
 231
 232	memcpy(entry->var.VariableName, name, name_size);
 233	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
 234
 235	efivar_entry_add(entry, list);
 236
 237	return 0;
 238}
 239
 240static __init int efivar_ssdt_load(void)
 241{
 242	LIST_HEAD(entries);
 243	struct efivar_entry *entry, *aux;
 244	unsigned long size;
 245	void *data;
 246	int ret;
 247
 248	if (!efivar_ssdt[0])
 249		return 0;
 250
 251	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
 
 
 252
 253	list_for_each_entry_safe(entry, aux, &entries, list) {
 254		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
 255			&entry->var.VendorGuid);
 
 
 256
 257		list_del(&entry->list);
 258
 259		ret = efivar_entry_size(entry, &size);
 260		if (ret) {
 261			pr_err("failed to get var size\n");
 262			goto free_entry;
 
 
 263		}
 264
 265		data = kmalloc(size, GFP_KERNEL);
 266		if (!data) {
 267			ret = -ENOMEM;
 268			goto free_entry;
 269		}
 270
 271		ret = efivar_entry_get(entry, NULL, &size, data);
 272		if (ret) {
 273			pr_err("failed to get var data\n");
 274			goto free_data;
 275		}
 276
 277		ret = acpi_load_table(data, NULL);
 278		if (ret) {
 279			pr_err("failed to load table: %d\n", ret);
 280			goto free_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 281		}
 282
 283		goto free_entry;
 284
 285free_data:
 286		kfree(data);
 287
 288free_entry:
 289		kfree(entry);
 290	}
 291
 292	return ret;
 293}
 294#else
 295static inline int efivar_ssdt_load(void) { return 0; }
 296#endif
 297
 298#ifdef CONFIG_DEBUG_FS
 299
 300#define EFI_DEBUGFS_MAX_BLOBS 32
 301
 302static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
 303
 304static void __init efi_debugfs_init(void)
 305{
 306	struct dentry *efi_debugfs;
 307	efi_memory_desc_t *md;
 308	char name[32];
 309	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
 310	int i = 0;
 311
 312	efi_debugfs = debugfs_create_dir("efi", NULL);
 313	if (IS_ERR_OR_NULL(efi_debugfs))
 314		return;
 315
 316	for_each_efi_memory_desc(md) {
 317		switch (md->type) {
 318		case EFI_BOOT_SERVICES_CODE:
 319			snprintf(name, sizeof(name), "boot_services_code%d",
 320				 type_count[md->type]++);
 321			break;
 322		case EFI_BOOT_SERVICES_DATA:
 323			snprintf(name, sizeof(name), "boot_services_data%d",
 324				 type_count[md->type]++);
 325			break;
 326		default:
 327			continue;
 328		}
 329
 330		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
 331			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
 332				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
 333			break;
 334		}
 335
 336		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
 337		debugfs_blob[i].data = memremap(md->phys_addr,
 338						debugfs_blob[i].size,
 339						MEMREMAP_WB);
 340		if (!debugfs_blob[i].data)
 341			continue;
 342
 343		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
 344		i++;
 345	}
 346}
 347#else
 348static inline void efi_debugfs_init(void) {}
 349#endif
 350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351/*
 352 * We register the efi subsystem with the firmware subsystem and the
 353 * efivars subsystem with the efi subsystem, if the system was booted with
 354 * EFI.
 355 */
 356static int __init efisubsys_init(void)
 357{
 358	int error;
 359
 360	if (!efi_enabled(EFI_RUNTIME_SERVICES))
 361		efi.runtime_supported_mask = 0;
 362
 363	if (!efi_enabled(EFI_BOOT))
 364		return 0;
 365
 366	if (efi.runtime_supported_mask) {
 367		/*
 368		 * Since we process only one efi_runtime_service() at a time, an
 369		 * ordered workqueue (which creates only one execution context)
 370		 * should suffice for all our needs.
 371		 */
 372		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
 373		if (!efi_rts_wq) {
 374			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
 375			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 376			efi.runtime_supported_mask = 0;
 377			return 0;
 378		}
 379	}
 380
 381	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
 382		platform_device_register_simple("rtc-efi", 0, NULL, 0);
 383
 384	/* We register the efi directory at /sys/firmware/efi */
 385	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
 386	if (!efi_kobj) {
 387		pr_err("efi: Firmware registration failed.\n");
 388		destroy_workqueue(efi_rts_wq);
 389		return -ENOMEM;
 390	}
 391
 392	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 393				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
 394		error = generic_ops_register();
 395		if (error)
 396			goto err_put;
 397		efivar_ssdt_load();
 398		platform_device_register_simple("efivars", 0, NULL, 0);
 399	}
 400
 401	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
 402	if (error) {
 403		pr_err("efi: Sysfs attribute export failed with error %d.\n",
 404		       error);
 405		goto err_unregister;
 406	}
 407
 408	error = efi_runtime_map_init(efi_kobj);
 409	if (error)
 410		goto err_remove_group;
 411
 412	/* and the standard mountpoint for efivarfs */
 413	error = sysfs_create_mount_point(efi_kobj, "efivars");
 414	if (error) {
 415		pr_err("efivars: Subsystem registration failed.\n");
 416		goto err_remove_group;
 417	}
 418
 419	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
 420		efi_debugfs_init();
 421
 
 
 
 
 
 
 
 
 422	return 0;
 423
 424err_remove_group:
 425	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
 426err_unregister:
 427	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
 428				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
 429		generic_ops_unregister();
 430err_put:
 431	kobject_put(efi_kobj);
 432	destroy_workqueue(efi_rts_wq);
 
 
 
 
 433	return error;
 434}
 435
 436subsys_initcall(efisubsys_init);
 437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438/*
 439 * Find the efi memory descriptor for a given physical address.  Given a
 440 * physical address, determine if it exists within an EFI Memory Map entry,
 441 * and if so, populate the supplied memory descriptor with the appropriate
 442 * data.
 443 */
 444int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
 445{
 446	efi_memory_desc_t *md;
 447
 448	if (!efi_enabled(EFI_MEMMAP)) {
 449		pr_err_once("EFI_MEMMAP is not enabled.\n");
 450		return -EINVAL;
 451	}
 452
 453	if (!out_md) {
 454		pr_err_once("out_md is null.\n");
 455		return -EINVAL;
 456        }
 457
 458	for_each_efi_memory_desc(md) {
 459		u64 size;
 460		u64 end;
 461
 462		size = md->num_pages << EFI_PAGE_SHIFT;
 463		end = md->phys_addr + size;
 464		if (phys_addr >= md->phys_addr && phys_addr < end) {
 465			memcpy(out_md, md, sizeof(*out_md));
 466			return 0;
 467		}
 468	}
 469	return -ENOENT;
 470}
 471
 472/*
 473 * Calculate the highest address of an efi memory descriptor.
 474 */
 475u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
 476{
 477	u64 size = md->num_pages << EFI_PAGE_SHIFT;
 478	u64 end = md->phys_addr + size;
 479	return end;
 480}
 481
 482void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
 483
 484/**
 485 * efi_mem_reserve - Reserve an EFI memory region
 486 * @addr: Physical address to reserve
 487 * @size: Size of reservation
 488 *
 489 * Mark a region as reserved from general kernel allocation and
 490 * prevent it being released by efi_free_boot_services().
 491 *
 492 * This function should be called drivers once they've parsed EFI
 493 * configuration tables to figure out where their data lives, e.g.
 494 * efi_esrt_init().
 495 */
 496void __init efi_mem_reserve(phys_addr_t addr, u64 size)
 497{
 498	if (!memblock_is_region_reserved(addr, size))
 499		memblock_reserve(addr, size);
 500
 501	/*
 502	 * Some architectures (x86) reserve all boot services ranges
 503	 * until efi_free_boot_services() because of buggy firmware
 504	 * implementations. This means the above memblock_reserve() is
 505	 * superfluous on x86 and instead what it needs to do is
 506	 * ensure the @start, @size is not freed.
 507	 */
 508	efi_arch_mem_reserve(addr, size);
 509}
 510
 511static const efi_config_table_type_t common_tables[] __initconst = {
 512	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
 513	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
 514	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
 515	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
 516	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
 517	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
 518	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
 519	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
 520	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
 521	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
 
 522	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
 523#ifdef CONFIG_EFI_RCI2_TABLE
 524	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
 525#endif
 526#ifdef CONFIG_LOAD_UEFI_KEYS
 527	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
 528#endif
 
 
 
 
 
 
 529	{},
 530};
 531
 532static __init int match_config_table(const efi_guid_t *guid,
 533				     unsigned long table,
 534				     const efi_config_table_type_t *table_types)
 535{
 536	int i;
 537
 538	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
 539		if (!efi_guidcmp(*guid, table_types[i].guid)) {
 540			*(table_types[i].ptr) = table;
 541			if (table_types[i].name[0])
 542				pr_cont("%s=0x%lx ",
 543					table_types[i].name, table);
 544			return 1;
 545		}
 546	}
 547
 548	return 0;
 549}
 550
 551int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
 552				   int count,
 553				   const efi_config_table_type_t *arch_tables)
 554{
 555	const efi_config_table_64_t *tbl64 = (void *)config_tables;
 556	const efi_config_table_32_t *tbl32 = (void *)config_tables;
 557	const efi_guid_t *guid;
 558	unsigned long table;
 559	int i;
 560
 561	pr_info("");
 562	for (i = 0; i < count; i++) {
 563		if (!IS_ENABLED(CONFIG_X86)) {
 564			guid = &config_tables[i].guid;
 565			table = (unsigned long)config_tables[i].table;
 566		} else if (efi_enabled(EFI_64BIT)) {
 567			guid = &tbl64[i].guid;
 568			table = tbl64[i].table;
 569
 570			if (IS_ENABLED(CONFIG_X86_32) &&
 571			    tbl64[i].table > U32_MAX) {
 572				pr_cont("\n");
 573				pr_err("Table located above 4GB, disabling EFI.\n");
 574				return -EINVAL;
 575			}
 576		} else {
 577			guid = &tbl32[i].guid;
 578			table = tbl32[i].table;
 579		}
 580
 581		if (!match_config_table(guid, table, common_tables) && arch_tables)
 582			match_config_table(guid, table, arch_tables);
 583	}
 584	pr_cont("\n");
 585	set_bit(EFI_CONFIG_TABLES, &efi.flags);
 586
 587	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
 588		struct linux_efi_random_seed *seed;
 589		u32 size = 0;
 590
 591		seed = early_memremap(efi_rng_seed, sizeof(*seed));
 592		if (seed != NULL) {
 593			size = READ_ONCE(seed->size);
 594			early_memunmap(seed, sizeof(*seed));
 595		} else {
 596			pr_err("Could not map UEFI random seed!\n");
 597		}
 598		if (size > 0) {
 599			seed = early_memremap(efi_rng_seed,
 600					      sizeof(*seed) + size);
 601			if (seed != NULL) {
 602				pr_notice("seeding entropy pool\n");
 603				add_bootloader_randomness(seed->bits, size);
 
 604				early_memunmap(seed, sizeof(*seed) + size);
 605			} else {
 606				pr_err("Could not map UEFI random seed!\n");
 607			}
 608		}
 609	}
 610
 611	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
 612		efi_memattr_init();
 613
 614	efi_tpm_eventlog_init();
 615
 616	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
 617		unsigned long prsv = mem_reserve;
 618
 619		while (prsv) {
 620			struct linux_efi_memreserve *rsv;
 621			u8 *p;
 622
 623			/*
 624			 * Just map a full page: that is what we will get
 625			 * anyway, and it permits us to map the entire entry
 626			 * before knowing its size.
 627			 */
 628			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
 629					   PAGE_SIZE);
 630			if (p == NULL) {
 631				pr_err("Could not map UEFI memreserve entry!\n");
 632				return -ENOMEM;
 633			}
 634
 635			rsv = (void *)(p + prsv % PAGE_SIZE);
 636
 637			/* reserve the entry itself */
 638			memblock_reserve(prsv,
 639					 struct_size(rsv, entry, rsv->size));
 640
 641			for (i = 0; i < atomic_read(&rsv->count); i++) {
 642				memblock_reserve(rsv->entry[i].base,
 643						 rsv->entry[i].size);
 644			}
 645
 646			prsv = rsv->next;
 647			early_memunmap(p, PAGE_SIZE);
 648		}
 649	}
 650
 651	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
 652		efi_rt_properties_table_t *tbl;
 653
 654		tbl = early_memremap(rt_prop, sizeof(*tbl));
 655		if (tbl) {
 656			efi.runtime_supported_mask &= tbl->runtime_services_supported;
 657			early_memunmap(tbl, sizeof(*tbl));
 658		}
 659	}
 660
 
 
 
 
 
 
 
 
 
 
 
 
 661	return 0;
 662}
 663
 664int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
 665				   int min_major_version)
 666{
 667	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 668		pr_err("System table signature incorrect!\n");
 669		return -EINVAL;
 670	}
 671
 672	if ((systab_hdr->revision >> 16) < min_major_version)
 673		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
 674		       systab_hdr->revision >> 16,
 675		       systab_hdr->revision & 0xffff,
 676		       min_major_version);
 677
 678	return 0;
 679}
 680
 681#ifndef CONFIG_IA64
 682static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
 683						size_t size)
 684{
 685	const efi_char16_t *ret;
 686
 687	ret = early_memremap_ro(fw_vendor, size);
 688	if (!ret)
 689		pr_err("Could not map the firmware vendor!\n");
 690	return ret;
 691}
 692
 693static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
 694{
 695	early_memunmap((void *)fw_vendor, size);
 696}
 697#else
 698#define map_fw_vendor(p, s)	__va(p)
 699#define unmap_fw_vendor(v, s)
 700#endif
 701
 702void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
 703				     unsigned long fw_vendor)
 704{
 705	char vendor[100] = "unknown";
 706	const efi_char16_t *c16;
 707	size_t i;
 708
 709	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
 710	if (c16) {
 711		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
 712			vendor[i] = c16[i];
 713		vendor[i] = '\0';
 714
 715		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
 716	}
 717
 718	pr_info("EFI v%u.%.02u by %s\n",
 719		systab_hdr->revision >> 16,
 720		systab_hdr->revision & 0xffff,
 721		vendor);
 
 
 
 
 
 
 
 722}
 723
 724static __initdata char memory_type_name[][13] = {
 725	"Reserved",
 726	"Loader Code",
 727	"Loader Data",
 728	"Boot Code",
 729	"Boot Data",
 730	"Runtime Code",
 731	"Runtime Data",
 732	"Conventional",
 733	"Unusable",
 734	"ACPI Reclaim",
 735	"ACPI Mem NVS",
 736	"MMIO",
 737	"MMIO Port",
 738	"PAL Code",
 739	"Persistent",
 740};
 741
 742char * __init efi_md_typeattr_format(char *buf, size_t size,
 743				     const efi_memory_desc_t *md)
 744{
 745	char *pos;
 746	int type_len;
 747	u64 attr;
 748
 749	pos = buf;
 750	if (md->type >= ARRAY_SIZE(memory_type_name))
 751		type_len = snprintf(pos, size, "[type=%u", md->type);
 752	else
 753		type_len = snprintf(pos, size, "[%-*s",
 754				    (int)(sizeof(memory_type_name[0]) - 1),
 755				    memory_type_name[md->type]);
 756	if (type_len >= size)
 757		return buf;
 758
 759	pos += type_len;
 760	size -= type_len;
 761
 762	attr = md->attribute;
 763	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
 764		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
 765		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
 766		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
 767		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
 768		snprintf(pos, size, "|attr=0x%016llx]",
 769			 (unsigned long long)attr);
 770	else
 771		snprintf(pos, size,
 772			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
 773			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
 774			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
 775			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
 776			 attr & EFI_MEMORY_SP			? "SP"  : "",
 777			 attr & EFI_MEMORY_NV			? "NV"  : "",
 778			 attr & EFI_MEMORY_XP			? "XP"  : "",
 779			 attr & EFI_MEMORY_RP			? "RP"  : "",
 780			 attr & EFI_MEMORY_WP			? "WP"  : "",
 781			 attr & EFI_MEMORY_RO			? "RO"  : "",
 782			 attr & EFI_MEMORY_UCE			? "UCE" : "",
 783			 attr & EFI_MEMORY_WB			? "WB"  : "",
 784			 attr & EFI_MEMORY_WT			? "WT"  : "",
 785			 attr & EFI_MEMORY_WC			? "WC"  : "",
 786			 attr & EFI_MEMORY_UC			? "UC"  : "");
 787	return buf;
 788}
 789
 790/*
 791 * IA64 has a funky EFI memory map that doesn't work the same way as
 792 * other architectures.
 793 */
 794#ifndef CONFIG_IA64
 795/*
 796 * efi_mem_attributes - lookup memmap attributes for physical address
 797 * @phys_addr: the physical address to lookup
 798 *
 799 * Search in the EFI memory map for the region covering
 800 * @phys_addr. Returns the EFI memory attributes if the region
 801 * was found in the memory map, 0 otherwise.
 802 */
 803u64 efi_mem_attributes(unsigned long phys_addr)
 804{
 805	efi_memory_desc_t *md;
 806
 807	if (!efi_enabled(EFI_MEMMAP))
 808		return 0;
 809
 810	for_each_efi_memory_desc(md) {
 811		if ((md->phys_addr <= phys_addr) &&
 812		    (phys_addr < (md->phys_addr +
 813		    (md->num_pages << EFI_PAGE_SHIFT))))
 814			return md->attribute;
 815	}
 816	return 0;
 817}
 818
 819/*
 820 * efi_mem_type - lookup memmap type for physical address
 821 * @phys_addr: the physical address to lookup
 822 *
 823 * Search in the EFI memory map for the region covering @phys_addr.
 824 * Returns the EFI memory type if the region was found in the memory
 825 * map, -EINVAL otherwise.
 826 */
 827int efi_mem_type(unsigned long phys_addr)
 828{
 829	const efi_memory_desc_t *md;
 830
 831	if (!efi_enabled(EFI_MEMMAP))
 832		return -ENOTSUPP;
 833
 834	for_each_efi_memory_desc(md) {
 835		if ((md->phys_addr <= phys_addr) &&
 836		    (phys_addr < (md->phys_addr +
 837				  (md->num_pages << EFI_PAGE_SHIFT))))
 838			return md->type;
 839	}
 840	return -EINVAL;
 841}
 842#endif
 843
 844int efi_status_to_err(efi_status_t status)
 845{
 846	int err;
 847
 848	switch (status) {
 849	case EFI_SUCCESS:
 850		err = 0;
 851		break;
 852	case EFI_INVALID_PARAMETER:
 853		err = -EINVAL;
 854		break;
 855	case EFI_OUT_OF_RESOURCES:
 856		err = -ENOSPC;
 857		break;
 858	case EFI_DEVICE_ERROR:
 859		err = -EIO;
 860		break;
 861	case EFI_WRITE_PROTECTED:
 862		err = -EROFS;
 863		break;
 864	case EFI_SECURITY_VIOLATION:
 865		err = -EACCES;
 866		break;
 867	case EFI_NOT_FOUND:
 868		err = -ENOENT;
 869		break;
 870	case EFI_ABORTED:
 871		err = -EINTR;
 872		break;
 873	default:
 874		err = -EINVAL;
 875	}
 876
 877	return err;
 878}
 
 879
 880static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
 881static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
 882
 883static int __init efi_memreserve_map_root(void)
 884{
 885	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
 886		return -ENODEV;
 887
 888	efi_memreserve_root = memremap(mem_reserve,
 889				       sizeof(*efi_memreserve_root),
 890				       MEMREMAP_WB);
 891	if (WARN_ON_ONCE(!efi_memreserve_root))
 892		return -ENOMEM;
 893	return 0;
 894}
 895
 896static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
 897{
 898	struct resource *res, *parent;
 899	int ret;
 900
 901	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
 902	if (!res)
 903		return -ENOMEM;
 904
 905	res->name	= "reserved";
 906	res->flags	= IORESOURCE_MEM;
 907	res->start	= addr;
 908	res->end	= addr + size - 1;
 909
 910	/* we expect a conflict with a 'System RAM' region */
 911	parent = request_resource_conflict(&iomem_resource, res);
 912	ret = parent ? request_resource(parent, res) : 0;
 913
 914	/*
 915	 * Given that efi_mem_reserve_iomem() can be called at any
 916	 * time, only call memblock_reserve() if the architecture
 917	 * keeps the infrastructure around.
 918	 */
 919	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
 920		memblock_reserve(addr, size);
 921
 922	return ret;
 923}
 924
 925int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
 926{
 927	struct linux_efi_memreserve *rsv;
 928	unsigned long prsv;
 929	int rc, index;
 930
 931	if (efi_memreserve_root == (void *)ULONG_MAX)
 932		return -ENODEV;
 933
 934	if (!efi_memreserve_root) {
 935		rc = efi_memreserve_map_root();
 936		if (rc)
 937			return rc;
 938	}
 939
 940	/* first try to find a slot in an existing linked list entry */
 941	for (prsv = efi_memreserve_root->next; prsv; ) {
 942		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
 
 
 943		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
 944		if (index < rsv->size) {
 945			rsv->entry[index].base = addr;
 946			rsv->entry[index].size = size;
 947
 948			memunmap(rsv);
 949			return efi_mem_reserve_iomem(addr, size);
 950		}
 951		prsv = rsv->next;
 952		memunmap(rsv);
 953	}
 954
 955	/* no slot found - allocate a new linked list entry */
 956	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
 957	if (!rsv)
 958		return -ENOMEM;
 959
 960	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
 961	if (rc) {
 962		free_page((unsigned long)rsv);
 963		return rc;
 964	}
 965
 966	/*
 967	 * The memremap() call above assumes that a linux_efi_memreserve entry
 968	 * never crosses a page boundary, so let's ensure that this remains true
 969	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
 970	 * using SZ_4K explicitly in the size calculation below.
 971	 */
 972	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
 973	atomic_set(&rsv->count, 1);
 974	rsv->entry[0].base = addr;
 975	rsv->entry[0].size = size;
 976
 977	spin_lock(&efi_mem_reserve_persistent_lock);
 978	rsv->next = efi_memreserve_root->next;
 979	efi_memreserve_root->next = __pa(rsv);
 980	spin_unlock(&efi_mem_reserve_persistent_lock);
 981
 982	return efi_mem_reserve_iomem(addr, size);
 983}
 984
 985static int __init efi_memreserve_root_init(void)
 986{
 987	if (efi_memreserve_root)
 988		return 0;
 989	if (efi_memreserve_map_root())
 990		efi_memreserve_root = (void *)ULONG_MAX;
 991	return 0;
 992}
 993early_initcall(efi_memreserve_root_init);
 994
 995#ifdef CONFIG_KEXEC
 996static int update_efi_random_seed(struct notifier_block *nb,
 997				  unsigned long code, void *unused)
 998{
 999	struct linux_efi_random_seed *seed;
1000	u32 size = 0;
1001
1002	if (!kexec_in_progress)
1003		return NOTIFY_DONE;
1004
1005	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1006	if (seed != NULL) {
1007		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1008		memunmap(seed);
1009	} else {
1010		pr_err("Could not map UEFI random seed!\n");
1011	}
1012	if (size > 0) {
1013		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1014				MEMREMAP_WB);
1015		if (seed != NULL) {
1016			seed->size = size;
1017			get_random_bytes(seed->bits, seed->size);
1018			memunmap(seed);
1019		} else {
1020			pr_err("Could not map UEFI random seed!\n");
1021		}
1022	}
1023	return NOTIFY_DONE;
1024}
1025
1026static struct notifier_block efi_random_seed_nb = {
1027	.notifier_call = update_efi_random_seed,
1028};
1029
1030static int __init register_update_efi_random_seed(void)
1031{
1032	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1033		return 0;
1034	return register_reboot_notifier(&efi_random_seed_nb);
1035}
1036late_initcall(register_update_efi_random_seed);
1037#endif