Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
  4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  6 * Copyright 2003 PathScale, Inc.
  7 */
  8
  9#include <linux/stddef.h>
 10#include <linux/err.h>
 11#include <linux/hardirq.h>
 12#include <linux/mm.h>
 13#include <linux/module.h>
 14#include <linux/personality.h>
 15#include <linux/proc_fs.h>
 16#include <linux/ptrace.h>
 17#include <linux/random.h>
 
 18#include <linux/slab.h>
 19#include <linux/sched.h>
 20#include <linux/sched/debug.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/seq_file.h>
 24#include <linux/tick.h>
 25#include <linux/threads.h>
 26#include <linux/resume_user_mode.h>
 27#include <asm/current.h>
 28#include <asm/mmu_context.h>
 
 
 29#include <linux/uaccess.h>
 30#include <as-layout.h>
 31#include <kern_util.h>
 32#include <os.h>
 33#include <skas.h>
 34#include <registers.h>
 35#include <linux/time-internal.h>
 36#include <linux/elfcore.h>
 37
 38/*
 39 * This is a per-cpu array.  A processor only modifies its entry and it only
 40 * cares about its entry, so it's OK if another processor is modifying its
 41 * entry.
 42 */
 43struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
 44
 45static inline int external_pid(void)
 46{
 47	/* FIXME: Need to look up userspace_pid by cpu */
 48	return userspace_pid[0];
 49}
 50
 51int pid_to_processor_id(int pid)
 52{
 53	int i;
 54
 55	for (i = 0; i < ncpus; i++) {
 56		if (cpu_tasks[i].pid == pid)
 57			return i;
 58	}
 59	return -1;
 60}
 61
 62void free_stack(unsigned long stack, int order)
 63{
 64	free_pages(stack, order);
 65}
 66
 67unsigned long alloc_stack(int order, int atomic)
 68{
 69	unsigned long page;
 70	gfp_t flags = GFP_KERNEL;
 71
 72	if (atomic)
 73		flags = GFP_ATOMIC;
 74	page = __get_free_pages(flags, order);
 75
 76	return page;
 77}
 78
 79static inline void set_current(struct task_struct *task)
 80{
 81	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
 82		{ external_pid(), task });
 83}
 84
 85extern void arch_switch_to(struct task_struct *to);
 86
 87void *__switch_to(struct task_struct *from, struct task_struct *to)
 88{
 89	to->thread.prev_sched = from;
 90	set_current(to);
 91
 92	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
 93	arch_switch_to(current);
 94
 95	return current->thread.prev_sched;
 96}
 97
 98void interrupt_end(void)
 99{
100	struct pt_regs *regs = &current->thread.regs;
101
102	if (need_resched())
103		schedule();
104	if (test_thread_flag(TIF_SIGPENDING) ||
105	    test_thread_flag(TIF_NOTIFY_SIGNAL))
106		do_signal(regs);
107	if (test_thread_flag(TIF_NOTIFY_RESUME))
108		resume_user_mode_work(regs);
109}
110
111int get_current_pid(void)
112{
113	return task_pid_nr(current);
114}
115
116/*
117 * This is called magically, by its address being stuffed in a jmp_buf
118 * and being longjmp-d to.
119 */
120void new_thread_handler(void)
121{
122	int (*fn)(void *), n;
123	void *arg;
124
125	if (current->thread.prev_sched != NULL)
126		schedule_tail(current->thread.prev_sched);
127	current->thread.prev_sched = NULL;
128
129	fn = current->thread.request.u.thread.proc;
130	arg = current->thread.request.u.thread.arg;
131
132	/*
133	 * callback returns only if the kernel thread execs a process
134	 */
135	n = fn(arg);
136	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
137}
138
139/* Called magically, see new_thread_handler above */
140void fork_handler(void)
141{
142	force_flush_all();
143
144	schedule_tail(current->thread.prev_sched);
145
146	/*
147	 * XXX: if interrupt_end() calls schedule, this call to
148	 * arch_switch_to isn't needed. We could want to apply this to
149	 * improve performance. -bb
150	 */
151	arch_switch_to(current);
152
153	current->thread.prev_sched = NULL;
154
155	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
156}
157
158int copy_thread(struct task_struct * p, const struct kernel_clone_args *args)
159{
160	unsigned long clone_flags = args->flags;
161	unsigned long sp = args->stack;
162	unsigned long tls = args->tls;
163	void (*handler)(void);
164	int ret = 0;
165
166	p->thread = (struct thread_struct) INIT_THREAD;
167
168	if (!args->fn) {
169	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
170		       sizeof(p->thread.regs.regs));
171		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
172		if (sp != 0)
173			REGS_SP(p->thread.regs.regs.gp) = sp;
174
175		handler = fork_handler;
176
177		arch_copy_thread(&current->thread.arch, &p->thread.arch);
178	} else {
179		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
180		p->thread.request.u.thread.proc = args->fn;
181		p->thread.request.u.thread.arg = args->fn_arg;
182		handler = new_thread_handler;
183	}
184
185	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
186
187	if (!args->fn) {
188		clear_flushed_tls(p);
189
190		/*
191		 * Set a new TLS for the child thread?
192		 */
193		if (clone_flags & CLONE_SETTLS)
194			ret = arch_set_tls(p, tls);
195	}
196
197	return ret;
198}
199
200void initial_thread_cb(void (*proc)(void *), void *arg)
201{
202	int save_kmalloc_ok = kmalloc_ok;
203
204	kmalloc_ok = 0;
205	initial_thread_cb_skas(proc, arg);
206	kmalloc_ok = save_kmalloc_ok;
207}
208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209void um_idle_sleep(void)
210{
211	if (time_travel_mode != TT_MODE_OFF)
212		time_travel_sleep();
213	else
214		os_idle_sleep();
215}
216
217void arch_cpu_idle(void)
218{
219	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
220	um_idle_sleep();
221	raw_local_irq_enable();
222}
223
224int __cant_sleep(void) {
225	return in_atomic() || irqs_disabled() || in_interrupt();
226	/* Is in_interrupt() really needed? */
227}
228
229int user_context(unsigned long sp)
230{
231	unsigned long stack;
232
233	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
234	return stack != (unsigned long) current_thread_info();
235}
236
237extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
238
239void do_uml_exitcalls(void)
240{
241	exitcall_t *call;
242
243	call = &__uml_exitcall_end;
244	while (--call >= &__uml_exitcall_begin)
245		(*call)();
246}
247
248char *uml_strdup(const char *string)
249{
250	return kstrdup(string, GFP_KERNEL);
251}
252EXPORT_SYMBOL(uml_strdup);
253
254int copy_to_user_proc(void __user *to, void *from, int size)
255{
256	return copy_to_user(to, from, size);
257}
258
259int copy_from_user_proc(void *to, void __user *from, int size)
260{
261	return copy_from_user(to, from, size);
262}
263
264int clear_user_proc(void __user *buf, int size)
265{
266	return clear_user(buf, size);
267}
268
269static atomic_t using_sysemu = ATOMIC_INIT(0);
270int sysemu_supported;
271
272void set_using_sysemu(int value)
273{
274	if (value > sysemu_supported)
275		return;
276	atomic_set(&using_sysemu, value);
277}
278
279int get_using_sysemu(void)
280{
281	return atomic_read(&using_sysemu);
282}
283
284static int sysemu_proc_show(struct seq_file *m, void *v)
285{
286	seq_printf(m, "%d\n", get_using_sysemu());
287	return 0;
288}
289
290static int sysemu_proc_open(struct inode *inode, struct file *file)
291{
292	return single_open(file, sysemu_proc_show, NULL);
293}
294
295static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
296				 size_t count, loff_t *pos)
297{
298	char tmp[2];
299
300	if (copy_from_user(tmp, buf, 1))
301		return -EFAULT;
302
303	if (tmp[0] >= '0' && tmp[0] <= '2')
304		set_using_sysemu(tmp[0] - '0');
305	/* We use the first char, but pretend to write everything */
306	return count;
307}
308
309static const struct proc_ops sysemu_proc_ops = {
310	.proc_open	= sysemu_proc_open,
311	.proc_read	= seq_read,
312	.proc_lseek	= seq_lseek,
313	.proc_release	= single_release,
314	.proc_write	= sysemu_proc_write,
315};
316
317int __init make_proc_sysemu(void)
318{
319	struct proc_dir_entry *ent;
320	if (!sysemu_supported)
321		return 0;
322
323	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
324
325	if (ent == NULL)
326	{
327		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
328		return 0;
329	}
330
331	return 0;
332}
333
334late_initcall(make_proc_sysemu);
335
336int singlestepping(void * t)
337{
338	struct task_struct *task = t ? t : current;
339
340	if (!test_thread_flag(TIF_SINGLESTEP))
341		return 0;
342
343	if (task->thread.singlestep_syscall)
344		return 1;
345
346	return 2;
347}
348
349/*
350 * Only x86 and x86_64 have an arch_align_stack().
351 * All other arches have "#define arch_align_stack(x) (x)"
352 * in their asm/exec.h
353 * As this is included in UML from asm-um/system-generic.h,
354 * we can use it to behave as the subarch does.
355 */
356#ifndef arch_align_stack
357unsigned long arch_align_stack(unsigned long sp)
358{
359	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
360		sp -= get_random_u32_below(8192);
361	return sp & ~0xf;
362}
363#endif
364
365unsigned long __get_wchan(struct task_struct *p)
366{
367	unsigned long stack_page, sp, ip;
368	bool seen_sched = 0;
369
370	stack_page = (unsigned long) task_stack_page(p);
371	/* Bail if the process has no kernel stack for some reason */
372	if (stack_page == 0)
373		return 0;
374
375	sp = p->thread.switch_buf->JB_SP;
376	/*
377	 * Bail if the stack pointer is below the bottom of the kernel
378	 * stack for some reason
379	 */
380	if (sp < stack_page)
381		return 0;
382
383	while (sp < stack_page + THREAD_SIZE) {
384		ip = *((unsigned long *) sp);
385		if (in_sched_functions(ip))
386			/* Ignore everything until we're above the scheduler */
387			seen_sched = 1;
388		else if (kernel_text_address(ip) && seen_sched)
389			return ip;
390
391		sp += sizeof(unsigned long);
392	}
393
394	return 0;
395}
396
397int elf_core_copy_task_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
398{
399	int cpu = current_thread_info()->cpu;
400
401	return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
402}
403
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
  4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  6 * Copyright 2003 PathScale, Inc.
  7 */
  8
  9#include <linux/stddef.h>
 10#include <linux/err.h>
 11#include <linux/hardirq.h>
 12#include <linux/mm.h>
 13#include <linux/module.h>
 14#include <linux/personality.h>
 15#include <linux/proc_fs.h>
 16#include <linux/ptrace.h>
 17#include <linux/random.h>
 18#include <linux/cpu.h>
 19#include <linux/slab.h>
 20#include <linux/sched.h>
 21#include <linux/sched/debug.h>
 22#include <linux/sched/task.h>
 23#include <linux/sched/task_stack.h>
 24#include <linux/seq_file.h>
 25#include <linux/tick.h>
 26#include <linux/threads.h>
 27#include <linux/resume_user_mode.h>
 28#include <asm/current.h>
 29#include <asm/mmu_context.h>
 30#include <asm/switch_to.h>
 31#include <asm/exec.h>
 32#include <linux/uaccess.h>
 33#include <as-layout.h>
 34#include <kern_util.h>
 35#include <os.h>
 36#include <skas.h>
 37#include <registers.h>
 38#include <linux/time-internal.h>
 39#include <linux/elfcore.h>
 40
 41/*
 42 * This is a per-cpu array.  A processor only modifies its entry and it only
 43 * cares about its entry, so it's OK if another processor is modifying its
 44 * entry.
 45 */
 46struct task_struct *cpu_tasks[NR_CPUS];
 47EXPORT_SYMBOL(cpu_tasks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48
 49void free_stack(unsigned long stack, int order)
 50{
 51	free_pages(stack, order);
 52}
 53
 54unsigned long alloc_stack(int order, int atomic)
 55{
 56	unsigned long page;
 57	gfp_t flags = GFP_KERNEL;
 58
 59	if (atomic)
 60		flags = GFP_ATOMIC;
 61	page = __get_free_pages(flags, order);
 62
 63	return page;
 64}
 65
 66static inline void set_current(struct task_struct *task)
 67{
 68	cpu_tasks[task_thread_info(task)->cpu] = task;
 
 69}
 70
 71struct task_struct *__switch_to(struct task_struct *from, struct task_struct *to)
 
 
 72{
 73	to->thread.prev_sched = from;
 74	set_current(to);
 75
 76	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
 77	arch_switch_to(current);
 78
 79	return current->thread.prev_sched;
 80}
 81
 82void interrupt_end(void)
 83{
 84	struct pt_regs *regs = &current->thread.regs;
 85
 86	if (need_resched())
 87		schedule();
 88	if (test_thread_flag(TIF_SIGPENDING) ||
 89	    test_thread_flag(TIF_NOTIFY_SIGNAL))
 90		do_signal(regs);
 91	if (test_thread_flag(TIF_NOTIFY_RESUME))
 92		resume_user_mode_work(regs);
 93}
 94
 95int get_current_pid(void)
 96{
 97	return task_pid_nr(current);
 98}
 99
100/*
101 * This is called magically, by its address being stuffed in a jmp_buf
102 * and being longjmp-d to.
103 */
104void new_thread_handler(void)
105{
106	int (*fn)(void *);
107	void *arg;
108
109	if (current->thread.prev_sched != NULL)
110		schedule_tail(current->thread.prev_sched);
111	current->thread.prev_sched = NULL;
112
113	fn = current->thread.request.thread.proc;
114	arg = current->thread.request.thread.arg;
115
116	/*
117	 * callback returns only if the kernel thread execs a process
118	 */
119	fn(arg);
120	userspace(&current->thread.regs.regs);
121}
122
123/* Called magically, see new_thread_handler above */
124static void fork_handler(void)
125{
 
 
126	schedule_tail(current->thread.prev_sched);
127
128	/*
129	 * XXX: if interrupt_end() calls schedule, this call to
130	 * arch_switch_to isn't needed. We could want to apply this to
131	 * improve performance. -bb
132	 */
133	arch_switch_to(current);
134
135	current->thread.prev_sched = NULL;
136
137	userspace(&current->thread.regs.regs);
138}
139
140int copy_thread(struct task_struct * p, const struct kernel_clone_args *args)
141{
142	unsigned long clone_flags = args->flags;
143	unsigned long sp = args->stack;
144	unsigned long tls = args->tls;
145	void (*handler)(void);
146	int ret = 0;
147
148	p->thread = (struct thread_struct) INIT_THREAD;
149
150	if (!args->fn) {
151	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
152		       sizeof(p->thread.regs.regs));
153		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
154		if (sp != 0)
155			REGS_SP(p->thread.regs.regs.gp) = sp;
156
157		handler = fork_handler;
158
159		arch_copy_thread(&current->thread.arch, &p->thread.arch);
160	} else {
161		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
162		p->thread.request.thread.proc = args->fn;
163		p->thread.request.thread.arg = args->fn_arg;
164		handler = new_thread_handler;
165	}
166
167	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
168
169	if (!args->fn) {
170		clear_flushed_tls(p);
171
172		/*
173		 * Set a new TLS for the child thread?
174		 */
175		if (clone_flags & CLONE_SETTLS)
176			ret = arch_set_tls(p, tls);
177	}
178
179	return ret;
180}
181
182void initial_thread_cb(void (*proc)(void *), void *arg)
183{
184	int save_kmalloc_ok = kmalloc_ok;
185
186	kmalloc_ok = 0;
187	initial_thread_cb_skas(proc, arg);
188	kmalloc_ok = save_kmalloc_ok;
189}
190
191int arch_dup_task_struct(struct task_struct *dst,
192			 struct task_struct *src)
193{
194	/* init_task is not dynamically sized (missing FPU state) */
195	if (unlikely(src == &init_task)) {
196		memcpy(dst, src, sizeof(init_task));
197		memset((void *)dst + sizeof(init_task), 0,
198		       arch_task_struct_size - sizeof(init_task));
199	} else {
200		memcpy(dst, src, arch_task_struct_size);
201	}
202
203	return 0;
204}
205
206void um_idle_sleep(void)
207{
208	if (time_travel_mode != TT_MODE_OFF)
209		time_travel_sleep();
210	else
211		os_idle_sleep();
212}
213
214void arch_cpu_idle(void)
215{
 
216	um_idle_sleep();
 
217}
218
219int __uml_cant_sleep(void) {
220	return in_atomic() || irqs_disabled() || in_interrupt();
221	/* Is in_interrupt() really needed? */
222}
223
224int user_context(unsigned long sp)
225{
226	unsigned long stack;
227
228	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
229	return stack != (unsigned long) current_thread_info();
230}
231
232extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
233
234void do_uml_exitcalls(void)
235{
236	exitcall_t *call;
237
238	call = &__uml_exitcall_end;
239	while (--call >= &__uml_exitcall_begin)
240		(*call)();
241}
242
243char *uml_strdup(const char *string)
244{
245	return kstrdup(string, GFP_KERNEL);
246}
247EXPORT_SYMBOL(uml_strdup);
248
 
 
 
 
 
249int copy_from_user_proc(void *to, void __user *from, int size)
250{
251	return copy_from_user(to, from, size);
252}
253
254int singlestepping(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255{
256	return test_thread_flag(TIF_SINGLESTEP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257}
258
259/*
260 * Only x86 and x86_64 have an arch_align_stack().
261 * All other arches have "#define arch_align_stack(x) (x)"
262 * in their asm/exec.h
263 * As this is included in UML from asm-um/system-generic.h,
264 * we can use it to behave as the subarch does.
265 */
266#ifndef arch_align_stack
267unsigned long arch_align_stack(unsigned long sp)
268{
269	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
270		sp -= get_random_u32_below(8192);
271	return sp & ~0xf;
272}
273#endif
274
275unsigned long __get_wchan(struct task_struct *p)
276{
277	unsigned long stack_page, sp, ip;
278	bool seen_sched = 0;
279
280	stack_page = (unsigned long) task_stack_page(p);
281	/* Bail if the process has no kernel stack for some reason */
282	if (stack_page == 0)
283		return 0;
284
285	sp = p->thread.switch_buf->JB_SP;
286	/*
287	 * Bail if the stack pointer is below the bottom of the kernel
288	 * stack for some reason
289	 */
290	if (sp < stack_page)
291		return 0;
292
293	while (sp < stack_page + THREAD_SIZE) {
294		ip = *((unsigned long *) sp);
295		if (in_sched_functions(ip))
296			/* Ignore everything until we're above the scheduler */
297			seen_sched = 1;
298		else if (kernel_text_address(ip) && seen_sched)
299			return ip;
300
301		sp += sizeof(unsigned long);
302	}
303
304	return 0;
305}