Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
  4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  6 * Copyright 2003 PathScale, Inc.
 
  7 */
  8
  9#include <linux/stddef.h>
 10#include <linux/err.h>
 11#include <linux/hardirq.h>
 12#include <linux/mm.h>
 13#include <linux/module.h>
 14#include <linux/personality.h>
 15#include <linux/proc_fs.h>
 16#include <linux/ptrace.h>
 17#include <linux/random.h>
 18#include <linux/slab.h>
 19#include <linux/sched.h>
 20#include <linux/sched/debug.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/seq_file.h>
 24#include <linux/tick.h>
 25#include <linux/threads.h>
 26#include <linux/resume_user_mode.h>
 27#include <asm/current.h>
 
 28#include <asm/mmu_context.h>
 29#include <linux/uaccess.h>
 30#include <as-layout.h>
 31#include <kern_util.h>
 32#include <os.h>
 33#include <skas.h>
 34#include <registers.h>
 35#include <linux/time-internal.h>
 36#include <linux/elfcore.h>
 37
 38/*
 39 * This is a per-cpu array.  A processor only modifies its entry and it only
 40 * cares about its entry, so it's OK if another processor is modifying its
 41 * entry.
 42 */
 43struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
 44
 45static inline int external_pid(void)
 46{
 47	/* FIXME: Need to look up userspace_pid by cpu */
 48	return userspace_pid[0];
 49}
 50
 51int pid_to_processor_id(int pid)
 52{
 53	int i;
 54
 55	for (i = 0; i < ncpus; i++) {
 56		if (cpu_tasks[i].pid == pid)
 57			return i;
 58	}
 59	return -1;
 60}
 61
 62void free_stack(unsigned long stack, int order)
 63{
 64	free_pages(stack, order);
 65}
 66
 67unsigned long alloc_stack(int order, int atomic)
 68{
 69	unsigned long page;
 70	gfp_t flags = GFP_KERNEL;
 71
 72	if (atomic)
 73		flags = GFP_ATOMIC;
 74	page = __get_free_pages(flags, order);
 75
 76	return page;
 77}
 78
 79static inline void set_current(struct task_struct *task)
 80{
 81	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
 82		{ external_pid(), task });
 83}
 84
 85extern void arch_switch_to(struct task_struct *to);
 86
 87void *__switch_to(struct task_struct *from, struct task_struct *to)
 88{
 89	to->thread.prev_sched = from;
 90	set_current(to);
 91
 92	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
 93	arch_switch_to(current);
 94
 95	return current->thread.prev_sched;
 96}
 97
 98void interrupt_end(void)
 99{
100	struct pt_regs *regs = &current->thread.regs;
101
102	if (need_resched())
103		schedule();
104	if (test_thread_flag(TIF_SIGPENDING) ||
105	    test_thread_flag(TIF_NOTIFY_SIGNAL))
106		do_signal(regs);
107	if (test_thread_flag(TIF_NOTIFY_RESUME))
108		resume_user_mode_work(regs);
 
 
 
109}
110
111int get_current_pid(void)
112{
113	return task_pid_nr(current);
114}
115
116/*
117 * This is called magically, by its address being stuffed in a jmp_buf
118 * and being longjmp-d to.
119 */
120void new_thread_handler(void)
121{
122	int (*fn)(void *), n;
123	void *arg;
124
125	if (current->thread.prev_sched != NULL)
126		schedule_tail(current->thread.prev_sched);
127	current->thread.prev_sched = NULL;
128
129	fn = current->thread.request.u.thread.proc;
130	arg = current->thread.request.u.thread.arg;
131
132	/*
133	 * callback returns only if the kernel thread execs a process
134	 */
135	n = fn(arg);
136	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
137}
138
139/* Called magically, see new_thread_handler above */
140void fork_handler(void)
141{
142	force_flush_all();
143
144	schedule_tail(current->thread.prev_sched);
145
146	/*
147	 * XXX: if interrupt_end() calls schedule, this call to
148	 * arch_switch_to isn't needed. We could want to apply this to
149	 * improve performance. -bb
150	 */
151	arch_switch_to(current);
152
153	current->thread.prev_sched = NULL;
154
155	userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
156}
157
158int copy_thread(struct task_struct * p, const struct kernel_clone_args *args)
 
159{
160	unsigned long clone_flags = args->flags;
161	unsigned long sp = args->stack;
162	unsigned long tls = args->tls;
163	void (*handler)(void);
 
164	int ret = 0;
165
166	p->thread = (struct thread_struct) INIT_THREAD;
167
168	if (!args->fn) {
169	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
170		       sizeof(p->thread.regs.regs));
171		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
172		if (sp != 0)
173			REGS_SP(p->thread.regs.regs.gp) = sp;
174
175		handler = fork_handler;
176
177		arch_copy_thread(&current->thread.arch, &p->thread.arch);
178	} else {
179		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
180		p->thread.request.u.thread.proc = args->fn;
181		p->thread.request.u.thread.arg = args->fn_arg;
182		handler = new_thread_handler;
183	}
184
185	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
186
187	if (!args->fn) {
188		clear_flushed_tls(p);
189
190		/*
191		 * Set a new TLS for the child thread?
192		 */
193		if (clone_flags & CLONE_SETTLS)
194			ret = arch_set_tls(p, tls);
195	}
196
197	return ret;
198}
199
200void initial_thread_cb(void (*proc)(void *), void *arg)
201{
202	int save_kmalloc_ok = kmalloc_ok;
203
204	kmalloc_ok = 0;
205	initial_thread_cb_skas(proc, arg);
206	kmalloc_ok = save_kmalloc_ok;
207}
208
209void um_idle_sleep(void)
210{
211	if (time_travel_mode != TT_MODE_OFF)
212		time_travel_sleep();
213	else
214		os_idle_sleep();
215}
216
217void arch_cpu_idle(void)
218{
 
 
219	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
220	um_idle_sleep();
221	raw_local_irq_enable();
 
222}
223
224int __cant_sleep(void) {
225	return in_atomic() || irqs_disabled() || in_interrupt();
226	/* Is in_interrupt() really needed? */
227}
228
229int user_context(unsigned long sp)
230{
231	unsigned long stack;
232
233	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
234	return stack != (unsigned long) current_thread_info();
235}
236
237extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
238
239void do_uml_exitcalls(void)
240{
241	exitcall_t *call;
242
243	call = &__uml_exitcall_end;
244	while (--call >= &__uml_exitcall_begin)
245		(*call)();
246}
247
248char *uml_strdup(const char *string)
249{
250	return kstrdup(string, GFP_KERNEL);
251}
252EXPORT_SYMBOL(uml_strdup);
253
254int copy_to_user_proc(void __user *to, void *from, int size)
255{
256	return copy_to_user(to, from, size);
257}
258
259int copy_from_user_proc(void *to, void __user *from, int size)
260{
261	return copy_from_user(to, from, size);
262}
263
264int clear_user_proc(void __user *buf, int size)
265{
266	return clear_user(buf, size);
267}
268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269static atomic_t using_sysemu = ATOMIC_INIT(0);
270int sysemu_supported;
271
272void set_using_sysemu(int value)
273{
274	if (value > sysemu_supported)
275		return;
276	atomic_set(&using_sysemu, value);
277}
278
279int get_using_sysemu(void)
280{
281	return atomic_read(&using_sysemu);
282}
283
284static int sysemu_proc_show(struct seq_file *m, void *v)
285{
286	seq_printf(m, "%d\n", get_using_sysemu());
287	return 0;
288}
289
290static int sysemu_proc_open(struct inode *inode, struct file *file)
291{
292	return single_open(file, sysemu_proc_show, NULL);
293}
294
295static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
296				 size_t count, loff_t *pos)
297{
298	char tmp[2];
299
300	if (copy_from_user(tmp, buf, 1))
301		return -EFAULT;
302
303	if (tmp[0] >= '0' && tmp[0] <= '2')
304		set_using_sysemu(tmp[0] - '0');
305	/* We use the first char, but pretend to write everything */
306	return count;
307}
308
309static const struct proc_ops sysemu_proc_ops = {
310	.proc_open	= sysemu_proc_open,
311	.proc_read	= seq_read,
312	.proc_lseek	= seq_lseek,
313	.proc_release	= single_release,
314	.proc_write	= sysemu_proc_write,
 
315};
316
317int __init make_proc_sysemu(void)
318{
319	struct proc_dir_entry *ent;
320	if (!sysemu_supported)
321		return 0;
322
323	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
324
325	if (ent == NULL)
326	{
327		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
328		return 0;
329	}
330
331	return 0;
332}
333
334late_initcall(make_proc_sysemu);
335
336int singlestepping(void * t)
337{
338	struct task_struct *task = t ? t : current;
339
340	if (!test_thread_flag(TIF_SINGLESTEP))
341		return 0;
342
343	if (task->thread.singlestep_syscall)
344		return 1;
345
346	return 2;
347}
348
349/*
350 * Only x86 and x86_64 have an arch_align_stack().
351 * All other arches have "#define arch_align_stack(x) (x)"
352 * in their asm/exec.h
353 * As this is included in UML from asm-um/system-generic.h,
354 * we can use it to behave as the subarch does.
355 */
356#ifndef arch_align_stack
357unsigned long arch_align_stack(unsigned long sp)
358{
359	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
360		sp -= get_random_u32_below(8192);
361	return sp & ~0xf;
362}
363#endif
364
365unsigned long __get_wchan(struct task_struct *p)
366{
367	unsigned long stack_page, sp, ip;
368	bool seen_sched = 0;
369
 
 
 
370	stack_page = (unsigned long) task_stack_page(p);
371	/* Bail if the process has no kernel stack for some reason */
372	if (stack_page == 0)
373		return 0;
374
375	sp = p->thread.switch_buf->JB_SP;
376	/*
377	 * Bail if the stack pointer is below the bottom of the kernel
378	 * stack for some reason
379	 */
380	if (sp < stack_page)
381		return 0;
382
383	while (sp < stack_page + THREAD_SIZE) {
384		ip = *((unsigned long *) sp);
385		if (in_sched_functions(ip))
386			/* Ignore everything until we're above the scheduler */
387			seen_sched = 1;
388		else if (kernel_text_address(ip) && seen_sched)
389			return ip;
390
391		sp += sizeof(unsigned long);
392	}
393
394	return 0;
395}
396
397int elf_core_copy_task_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
398{
399	int cpu = current_thread_info()->cpu;
400
401	return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
402}
403
v3.15
 
  1/*
 
 
  2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3 * Copyright 2003 PathScale, Inc.
  4 * Licensed under the GPL
  5 */
  6
  7#include <linux/stddef.h>
  8#include <linux/err.h>
  9#include <linux/hardirq.h>
 10#include <linux/mm.h>
 11#include <linux/module.h>
 12#include <linux/personality.h>
 13#include <linux/proc_fs.h>
 14#include <linux/ptrace.h>
 15#include <linux/random.h>
 16#include <linux/slab.h>
 17#include <linux/sched.h>
 
 
 
 18#include <linux/seq_file.h>
 19#include <linux/tick.h>
 20#include <linux/threads.h>
 21#include <linux/tracehook.h>
 22#include <asm/current.h>
 23#include <asm/pgtable.h>
 24#include <asm/mmu_context.h>
 25#include <asm/uaccess.h>
 26#include <as-layout.h>
 27#include <kern_util.h>
 28#include <os.h>
 29#include <skas.h>
 
 
 
 30
 31/*
 32 * This is a per-cpu array.  A processor only modifies its entry and it only
 33 * cares about its entry, so it's OK if another processor is modifying its
 34 * entry.
 35 */
 36struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
 37
 38static inline int external_pid(void)
 39{
 40	/* FIXME: Need to look up userspace_pid by cpu */
 41	return userspace_pid[0];
 42}
 43
 44int pid_to_processor_id(int pid)
 45{
 46	int i;
 47
 48	for (i = 0; i < ncpus; i++) {
 49		if (cpu_tasks[i].pid == pid)
 50			return i;
 51	}
 52	return -1;
 53}
 54
 55void free_stack(unsigned long stack, int order)
 56{
 57	free_pages(stack, order);
 58}
 59
 60unsigned long alloc_stack(int order, int atomic)
 61{
 62	unsigned long page;
 63	gfp_t flags = GFP_KERNEL;
 64
 65	if (atomic)
 66		flags = GFP_ATOMIC;
 67	page = __get_free_pages(flags, order);
 68
 69	return page;
 70}
 71
 72static inline void set_current(struct task_struct *task)
 73{
 74	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
 75		{ external_pid(), task });
 76}
 77
 78extern void arch_switch_to(struct task_struct *to);
 79
 80void *__switch_to(struct task_struct *from, struct task_struct *to)
 81{
 82	to->thread.prev_sched = from;
 83	set_current(to);
 84
 85	switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
 86	arch_switch_to(current);
 87
 88	return current->thread.prev_sched;
 89}
 90
 91void interrupt_end(void)
 92{
 
 
 93	if (need_resched())
 94		schedule();
 95	if (test_thread_flag(TIF_SIGPENDING))
 96		do_signal();
 97	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
 98		tracehook_notify_resume(&current->thread.regs);
 99}
100
101void exit_thread(void)
102{
103}
104
105int get_current_pid(void)
106{
107	return task_pid_nr(current);
108}
109
110/*
111 * This is called magically, by its address being stuffed in a jmp_buf
112 * and being longjmp-d to.
113 */
114void new_thread_handler(void)
115{
116	int (*fn)(void *), n;
117	void *arg;
118
119	if (current->thread.prev_sched != NULL)
120		schedule_tail(current->thread.prev_sched);
121	current->thread.prev_sched = NULL;
122
123	fn = current->thread.request.u.thread.proc;
124	arg = current->thread.request.u.thread.arg;
125
126	/*
127	 * callback returns only if the kernel thread execs a process
128	 */
129	n = fn(arg);
130	userspace(&current->thread.regs.regs);
131}
132
133/* Called magically, see new_thread_handler above */
134void fork_handler(void)
135{
136	force_flush_all();
137
138	schedule_tail(current->thread.prev_sched);
139
140	/*
141	 * XXX: if interrupt_end() calls schedule, this call to
142	 * arch_switch_to isn't needed. We could want to apply this to
143	 * improve performance. -bb
144	 */
145	arch_switch_to(current);
146
147	current->thread.prev_sched = NULL;
148
149	userspace(&current->thread.regs.regs);
150}
151
152int copy_thread(unsigned long clone_flags, unsigned long sp,
153		unsigned long arg, struct task_struct * p)
154{
 
 
 
155	void (*handler)(void);
156	int kthread = current->flags & PF_KTHREAD;
157	int ret = 0;
158
159	p->thread = (struct thread_struct) INIT_THREAD;
160
161	if (!kthread) {
162	  	memcpy(&p->thread.regs.regs, current_pt_regs(),
163		       sizeof(p->thread.regs.regs));
164		PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
165		if (sp != 0)
166			REGS_SP(p->thread.regs.regs.gp) = sp;
167
168		handler = fork_handler;
169
170		arch_copy_thread(&current->thread.arch, &p->thread.arch);
171	} else {
172		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
173		p->thread.request.u.thread.proc = (int (*)(void *))sp;
174		p->thread.request.u.thread.arg = (void *)arg;
175		handler = new_thread_handler;
176	}
177
178	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
179
180	if (!kthread) {
181		clear_flushed_tls(p);
182
183		/*
184		 * Set a new TLS for the child thread?
185		 */
186		if (clone_flags & CLONE_SETTLS)
187			ret = arch_copy_tls(p);
188	}
189
190	return ret;
191}
192
193void initial_thread_cb(void (*proc)(void *), void *arg)
194{
195	int save_kmalloc_ok = kmalloc_ok;
196
197	kmalloc_ok = 0;
198	initial_thread_cb_skas(proc, arg);
199	kmalloc_ok = save_kmalloc_ok;
200}
201
 
 
 
 
 
 
 
 
202void arch_cpu_idle(void)
203{
204	unsigned long long nsecs;
205
206	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
207	nsecs = disable_timer();
208	idle_sleep(nsecs);
209	local_irq_enable();
210}
211
212int __cant_sleep(void) {
213	return in_atomic() || irqs_disabled() || in_interrupt();
214	/* Is in_interrupt() really needed? */
215}
216
217int user_context(unsigned long sp)
218{
219	unsigned long stack;
220
221	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
222	return stack != (unsigned long) current_thread_info();
223}
224
225extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
226
227void do_uml_exitcalls(void)
228{
229	exitcall_t *call;
230
231	call = &__uml_exitcall_end;
232	while (--call >= &__uml_exitcall_begin)
233		(*call)();
234}
235
236char *uml_strdup(const char *string)
237{
238	return kstrdup(string, GFP_KERNEL);
239}
240EXPORT_SYMBOL(uml_strdup);
241
242int copy_to_user_proc(void __user *to, void *from, int size)
243{
244	return copy_to_user(to, from, size);
245}
246
247int copy_from_user_proc(void *to, void __user *from, int size)
248{
249	return copy_from_user(to, from, size);
250}
251
252int clear_user_proc(void __user *buf, int size)
253{
254	return clear_user(buf, size);
255}
256
257int strlen_user_proc(char __user *str)
258{
259	return strlen_user(str);
260}
261
262int smp_sigio_handler(void)
263{
264#ifdef CONFIG_SMP
265	int cpu = current_thread_info()->cpu;
266	IPI_handler(cpu);
267	if (cpu != 0)
268		return 1;
269#endif
270	return 0;
271}
272
273int cpu(void)
274{
275	return current_thread_info()->cpu;
276}
277
278static atomic_t using_sysemu = ATOMIC_INIT(0);
279int sysemu_supported;
280
281void set_using_sysemu(int value)
282{
283	if (value > sysemu_supported)
284		return;
285	atomic_set(&using_sysemu, value);
286}
287
288int get_using_sysemu(void)
289{
290	return atomic_read(&using_sysemu);
291}
292
293static int sysemu_proc_show(struct seq_file *m, void *v)
294{
295	seq_printf(m, "%d\n", get_using_sysemu());
296	return 0;
297}
298
299static int sysemu_proc_open(struct inode *inode, struct file *file)
300{
301	return single_open(file, sysemu_proc_show, NULL);
302}
303
304static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
305				 size_t count, loff_t *pos)
306{
307	char tmp[2];
308
309	if (copy_from_user(tmp, buf, 1))
310		return -EFAULT;
311
312	if (tmp[0] >= '0' && tmp[0] <= '2')
313		set_using_sysemu(tmp[0] - '0');
314	/* We use the first char, but pretend to write everything */
315	return count;
316}
317
318static const struct file_operations sysemu_proc_fops = {
319	.owner		= THIS_MODULE,
320	.open		= sysemu_proc_open,
321	.read		= seq_read,
322	.llseek		= seq_lseek,
323	.release	= single_release,
324	.write		= sysemu_proc_write,
325};
326
327int __init make_proc_sysemu(void)
328{
329	struct proc_dir_entry *ent;
330	if (!sysemu_supported)
331		return 0;
332
333	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
334
335	if (ent == NULL)
336	{
337		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
338		return 0;
339	}
340
341	return 0;
342}
343
344late_initcall(make_proc_sysemu);
345
346int singlestepping(void * t)
347{
348	struct task_struct *task = t ? t : current;
349
350	if (!(task->ptrace & PT_DTRACE))
351		return 0;
352
353	if (task->thread.singlestep_syscall)
354		return 1;
355
356	return 2;
357}
358
359/*
360 * Only x86 and x86_64 have an arch_align_stack().
361 * All other arches have "#define arch_align_stack(x) (x)"
362 * in their asm/exec.h
363 * As this is included in UML from asm-um/system-generic.h,
364 * we can use it to behave as the subarch does.
365 */
366#ifndef arch_align_stack
367unsigned long arch_align_stack(unsigned long sp)
368{
369	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
370		sp -= get_random_int() % 8192;
371	return sp & ~0xf;
372}
373#endif
374
375unsigned long get_wchan(struct task_struct *p)
376{
377	unsigned long stack_page, sp, ip;
378	bool seen_sched = 0;
379
380	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
381		return 0;
382
383	stack_page = (unsigned long) task_stack_page(p);
384	/* Bail if the process has no kernel stack for some reason */
385	if (stack_page == 0)
386		return 0;
387
388	sp = p->thread.switch_buf->JB_SP;
389	/*
390	 * Bail if the stack pointer is below the bottom of the kernel
391	 * stack for some reason
392	 */
393	if (sp < stack_page)
394		return 0;
395
396	while (sp < stack_page + THREAD_SIZE) {
397		ip = *((unsigned long *) sp);
398		if (in_sched_functions(ip))
399			/* Ignore everything until we're above the scheduler */
400			seen_sched = 1;
401		else if (kernel_text_address(ip) && seen_sched)
402			return ip;
403
404		sp += sizeof(unsigned long);
405	}
406
407	return 0;
408}
409
410int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
411{
412	int cpu = current_thread_info()->cpu;
413
414	return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
415}
416