Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright 2003 PathScale, Inc.
7 */
8
9#include <linux/stddef.h>
10#include <linux/err.h>
11#include <linux/hardirq.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/personality.h>
15#include <linux/proc_fs.h>
16#include <linux/ptrace.h>
17#include <linux/random.h>
18#include <linux/slab.h>
19#include <linux/sched.h>
20#include <linux/sched/debug.h>
21#include <linux/sched/task.h>
22#include <linux/sched/task_stack.h>
23#include <linux/seq_file.h>
24#include <linux/tick.h>
25#include <linux/threads.h>
26#include <linux/resume_user_mode.h>
27#include <asm/current.h>
28#include <asm/mmu_context.h>
29#include <linux/uaccess.h>
30#include <as-layout.h>
31#include <kern_util.h>
32#include <os.h>
33#include <skas.h>
34#include <registers.h>
35#include <linux/time-internal.h>
36#include <linux/elfcore.h>
37
38/*
39 * This is a per-cpu array. A processor only modifies its entry and it only
40 * cares about its entry, so it's OK if another processor is modifying its
41 * entry.
42 */
43struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
44
45static inline int external_pid(void)
46{
47 /* FIXME: Need to look up userspace_pid by cpu */
48 return userspace_pid[0];
49}
50
51int pid_to_processor_id(int pid)
52{
53 int i;
54
55 for (i = 0; i < ncpus; i++) {
56 if (cpu_tasks[i].pid == pid)
57 return i;
58 }
59 return -1;
60}
61
62void free_stack(unsigned long stack, int order)
63{
64 free_pages(stack, order);
65}
66
67unsigned long alloc_stack(int order, int atomic)
68{
69 unsigned long page;
70 gfp_t flags = GFP_KERNEL;
71
72 if (atomic)
73 flags = GFP_ATOMIC;
74 page = __get_free_pages(flags, order);
75
76 return page;
77}
78
79static inline void set_current(struct task_struct *task)
80{
81 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
82 { external_pid(), task });
83}
84
85extern void arch_switch_to(struct task_struct *to);
86
87void *__switch_to(struct task_struct *from, struct task_struct *to)
88{
89 to->thread.prev_sched = from;
90 set_current(to);
91
92 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
93 arch_switch_to(current);
94
95 return current->thread.prev_sched;
96}
97
98void interrupt_end(void)
99{
100 struct pt_regs *regs = ¤t->thread.regs;
101
102 if (need_resched())
103 schedule();
104 if (test_thread_flag(TIF_SIGPENDING) ||
105 test_thread_flag(TIF_NOTIFY_SIGNAL))
106 do_signal(regs);
107 if (test_thread_flag(TIF_NOTIFY_RESUME))
108 resume_user_mode_work(regs);
109}
110
111int get_current_pid(void)
112{
113 return task_pid_nr(current);
114}
115
116/*
117 * This is called magically, by its address being stuffed in a jmp_buf
118 * and being longjmp-d to.
119 */
120void new_thread_handler(void)
121{
122 int (*fn)(void *), n;
123 void *arg;
124
125 if (current->thread.prev_sched != NULL)
126 schedule_tail(current->thread.prev_sched);
127 current->thread.prev_sched = NULL;
128
129 fn = current->thread.request.u.thread.proc;
130 arg = current->thread.request.u.thread.arg;
131
132 /*
133 * callback returns only if the kernel thread execs a process
134 */
135 n = fn(arg);
136 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs);
137}
138
139/* Called magically, see new_thread_handler above */
140void fork_handler(void)
141{
142 force_flush_all();
143
144 schedule_tail(current->thread.prev_sched);
145
146 /*
147 * XXX: if interrupt_end() calls schedule, this call to
148 * arch_switch_to isn't needed. We could want to apply this to
149 * improve performance. -bb
150 */
151 arch_switch_to(current);
152
153 current->thread.prev_sched = NULL;
154
155 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs);
156}
157
158int copy_thread(struct task_struct * p, const struct kernel_clone_args *args)
159{
160 unsigned long clone_flags = args->flags;
161 unsigned long sp = args->stack;
162 unsigned long tls = args->tls;
163 void (*handler)(void);
164 int ret = 0;
165
166 p->thread = (struct thread_struct) INIT_THREAD;
167
168 if (!args->fn) {
169 memcpy(&p->thread.regs.regs, current_pt_regs(),
170 sizeof(p->thread.regs.regs));
171 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
172 if (sp != 0)
173 REGS_SP(p->thread.regs.regs.gp) = sp;
174
175 handler = fork_handler;
176
177 arch_copy_thread(¤t->thread.arch, &p->thread.arch);
178 } else {
179 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
180 p->thread.request.u.thread.proc = args->fn;
181 p->thread.request.u.thread.arg = args->fn_arg;
182 handler = new_thread_handler;
183 }
184
185 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
186
187 if (!args->fn) {
188 clear_flushed_tls(p);
189
190 /*
191 * Set a new TLS for the child thread?
192 */
193 if (clone_flags & CLONE_SETTLS)
194 ret = arch_set_tls(p, tls);
195 }
196
197 return ret;
198}
199
200void initial_thread_cb(void (*proc)(void *), void *arg)
201{
202 int save_kmalloc_ok = kmalloc_ok;
203
204 kmalloc_ok = 0;
205 initial_thread_cb_skas(proc, arg);
206 kmalloc_ok = save_kmalloc_ok;
207}
208
209void um_idle_sleep(void)
210{
211 if (time_travel_mode != TT_MODE_OFF)
212 time_travel_sleep();
213 else
214 os_idle_sleep();
215}
216
217void arch_cpu_idle(void)
218{
219 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
220 um_idle_sleep();
221 raw_local_irq_enable();
222}
223
224int __cant_sleep(void) {
225 return in_atomic() || irqs_disabled() || in_interrupt();
226 /* Is in_interrupt() really needed? */
227}
228
229int user_context(unsigned long sp)
230{
231 unsigned long stack;
232
233 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
234 return stack != (unsigned long) current_thread_info();
235}
236
237extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
238
239void do_uml_exitcalls(void)
240{
241 exitcall_t *call;
242
243 call = &__uml_exitcall_end;
244 while (--call >= &__uml_exitcall_begin)
245 (*call)();
246}
247
248char *uml_strdup(const char *string)
249{
250 return kstrdup(string, GFP_KERNEL);
251}
252EXPORT_SYMBOL(uml_strdup);
253
254int copy_to_user_proc(void __user *to, void *from, int size)
255{
256 return copy_to_user(to, from, size);
257}
258
259int copy_from_user_proc(void *to, void __user *from, int size)
260{
261 return copy_from_user(to, from, size);
262}
263
264int clear_user_proc(void __user *buf, int size)
265{
266 return clear_user(buf, size);
267}
268
269static atomic_t using_sysemu = ATOMIC_INIT(0);
270int sysemu_supported;
271
272void set_using_sysemu(int value)
273{
274 if (value > sysemu_supported)
275 return;
276 atomic_set(&using_sysemu, value);
277}
278
279int get_using_sysemu(void)
280{
281 return atomic_read(&using_sysemu);
282}
283
284static int sysemu_proc_show(struct seq_file *m, void *v)
285{
286 seq_printf(m, "%d\n", get_using_sysemu());
287 return 0;
288}
289
290static int sysemu_proc_open(struct inode *inode, struct file *file)
291{
292 return single_open(file, sysemu_proc_show, NULL);
293}
294
295static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
296 size_t count, loff_t *pos)
297{
298 char tmp[2];
299
300 if (copy_from_user(tmp, buf, 1))
301 return -EFAULT;
302
303 if (tmp[0] >= '0' && tmp[0] <= '2')
304 set_using_sysemu(tmp[0] - '0');
305 /* We use the first char, but pretend to write everything */
306 return count;
307}
308
309static const struct proc_ops sysemu_proc_ops = {
310 .proc_open = sysemu_proc_open,
311 .proc_read = seq_read,
312 .proc_lseek = seq_lseek,
313 .proc_release = single_release,
314 .proc_write = sysemu_proc_write,
315};
316
317int __init make_proc_sysemu(void)
318{
319 struct proc_dir_entry *ent;
320 if (!sysemu_supported)
321 return 0;
322
323 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
324
325 if (ent == NULL)
326 {
327 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
328 return 0;
329 }
330
331 return 0;
332}
333
334late_initcall(make_proc_sysemu);
335
336int singlestepping(void * t)
337{
338 struct task_struct *task = t ? t : current;
339
340 if (!test_thread_flag(TIF_SINGLESTEP))
341 return 0;
342
343 if (task->thread.singlestep_syscall)
344 return 1;
345
346 return 2;
347}
348
349/*
350 * Only x86 and x86_64 have an arch_align_stack().
351 * All other arches have "#define arch_align_stack(x) (x)"
352 * in their asm/exec.h
353 * As this is included in UML from asm-um/system-generic.h,
354 * we can use it to behave as the subarch does.
355 */
356#ifndef arch_align_stack
357unsigned long arch_align_stack(unsigned long sp)
358{
359 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
360 sp -= get_random_u32_below(8192);
361 return sp & ~0xf;
362}
363#endif
364
365unsigned long __get_wchan(struct task_struct *p)
366{
367 unsigned long stack_page, sp, ip;
368 bool seen_sched = 0;
369
370 stack_page = (unsigned long) task_stack_page(p);
371 /* Bail if the process has no kernel stack for some reason */
372 if (stack_page == 0)
373 return 0;
374
375 sp = p->thread.switch_buf->JB_SP;
376 /*
377 * Bail if the stack pointer is below the bottom of the kernel
378 * stack for some reason
379 */
380 if (sp < stack_page)
381 return 0;
382
383 while (sp < stack_page + THREAD_SIZE) {
384 ip = *((unsigned long *) sp);
385 if (in_sched_functions(ip))
386 /* Ignore everything until we're above the scheduler */
387 seen_sched = 1;
388 else if (kernel_text_address(ip) && seen_sched)
389 return ip;
390
391 sp += sizeof(unsigned long);
392 }
393
394 return 0;
395}
396
397int elf_core_copy_task_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
398{
399 int cpu = current_thread_info()->cpu;
400
401 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
402}
403
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright 2003 PathScale, Inc.
7 */
8
9#include <linux/stddef.h>
10#include <linux/err.h>
11#include <linux/hardirq.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/personality.h>
15#include <linux/proc_fs.h>
16#include <linux/ptrace.h>
17#include <linux/random.h>
18#include <linux/slab.h>
19#include <linux/sched.h>
20#include <linux/sched/debug.h>
21#include <linux/sched/task.h>
22#include <linux/sched/task_stack.h>
23#include <linux/seq_file.h>
24#include <linux/tick.h>
25#include <linux/threads.h>
26#include <linux/tracehook.h>
27#include <asm/current.h>
28#include <asm/mmu_context.h>
29#include <linux/uaccess.h>
30#include <as-layout.h>
31#include <kern_util.h>
32#include <os.h>
33#include <skas.h>
34#include <linux/time-internal.h>
35
36/*
37 * This is a per-cpu array. A processor only modifies its entry and it only
38 * cares about its entry, so it's OK if another processor is modifying its
39 * entry.
40 */
41struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
42
43static inline int external_pid(void)
44{
45 /* FIXME: Need to look up userspace_pid by cpu */
46 return userspace_pid[0];
47}
48
49int pid_to_processor_id(int pid)
50{
51 int i;
52
53 for (i = 0; i < ncpus; i++) {
54 if (cpu_tasks[i].pid == pid)
55 return i;
56 }
57 return -1;
58}
59
60void free_stack(unsigned long stack, int order)
61{
62 free_pages(stack, order);
63}
64
65unsigned long alloc_stack(int order, int atomic)
66{
67 unsigned long page;
68 gfp_t flags = GFP_KERNEL;
69
70 if (atomic)
71 flags = GFP_ATOMIC;
72 page = __get_free_pages(flags, order);
73
74 return page;
75}
76
77static inline void set_current(struct task_struct *task)
78{
79 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
80 { external_pid(), task });
81}
82
83extern void arch_switch_to(struct task_struct *to);
84
85void *__switch_to(struct task_struct *from, struct task_struct *to)
86{
87 to->thread.prev_sched = from;
88 set_current(to);
89
90 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
91 arch_switch_to(current);
92
93 return current->thread.prev_sched;
94}
95
96void interrupt_end(void)
97{
98 struct pt_regs *regs = ¤t->thread.regs;
99
100 if (need_resched())
101 schedule();
102 if (test_thread_flag(TIF_SIGPENDING) ||
103 test_thread_flag(TIF_NOTIFY_SIGNAL))
104 do_signal(regs);
105 if (test_thread_flag(TIF_NOTIFY_RESUME))
106 tracehook_notify_resume(regs);
107}
108
109int get_current_pid(void)
110{
111 return task_pid_nr(current);
112}
113
114/*
115 * This is called magically, by its address being stuffed in a jmp_buf
116 * and being longjmp-d to.
117 */
118void new_thread_handler(void)
119{
120 int (*fn)(void *), n;
121 void *arg;
122
123 if (current->thread.prev_sched != NULL)
124 schedule_tail(current->thread.prev_sched);
125 current->thread.prev_sched = NULL;
126
127 fn = current->thread.request.u.thread.proc;
128 arg = current->thread.request.u.thread.arg;
129
130 /*
131 * callback returns only if the kernel thread execs a process
132 */
133 n = fn(arg);
134 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs);
135}
136
137/* Called magically, see new_thread_handler above */
138void fork_handler(void)
139{
140 force_flush_all();
141
142 schedule_tail(current->thread.prev_sched);
143
144 /*
145 * XXX: if interrupt_end() calls schedule, this call to
146 * arch_switch_to isn't needed. We could want to apply this to
147 * improve performance. -bb
148 */
149 arch_switch_to(current);
150
151 current->thread.prev_sched = NULL;
152
153 userspace(¤t->thread.regs.regs, current_thread_info()->aux_fp_regs);
154}
155
156int copy_thread(unsigned long clone_flags, unsigned long sp,
157 unsigned long arg, struct task_struct * p, unsigned long tls)
158{
159 void (*handler)(void);
160 int kthread = current->flags & (PF_KTHREAD | PF_IO_WORKER);
161 int ret = 0;
162
163 p->thread = (struct thread_struct) INIT_THREAD;
164
165 if (!kthread) {
166 memcpy(&p->thread.regs.regs, current_pt_regs(),
167 sizeof(p->thread.regs.regs));
168 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
169 if (sp != 0)
170 REGS_SP(p->thread.regs.regs.gp) = sp;
171
172 handler = fork_handler;
173
174 arch_copy_thread(¤t->thread.arch, &p->thread.arch);
175 } else {
176 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
177 p->thread.request.u.thread.proc = (int (*)(void *))sp;
178 p->thread.request.u.thread.arg = (void *)arg;
179 handler = new_thread_handler;
180 }
181
182 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
183
184 if (!kthread) {
185 clear_flushed_tls(p);
186
187 /*
188 * Set a new TLS for the child thread?
189 */
190 if (clone_flags & CLONE_SETTLS)
191 ret = arch_set_tls(p, tls);
192 }
193
194 return ret;
195}
196
197void initial_thread_cb(void (*proc)(void *), void *arg)
198{
199 int save_kmalloc_ok = kmalloc_ok;
200
201 kmalloc_ok = 0;
202 initial_thread_cb_skas(proc, arg);
203 kmalloc_ok = save_kmalloc_ok;
204}
205
206void um_idle_sleep(void)
207{
208 if (time_travel_mode != TT_MODE_OFF)
209 time_travel_sleep();
210 else
211 os_idle_sleep();
212}
213
214void arch_cpu_idle(void)
215{
216 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
217 um_idle_sleep();
218 raw_local_irq_enable();
219}
220
221int __cant_sleep(void) {
222 return in_atomic() || irqs_disabled() || in_interrupt();
223 /* Is in_interrupt() really needed? */
224}
225
226int user_context(unsigned long sp)
227{
228 unsigned long stack;
229
230 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
231 return stack != (unsigned long) current_thread_info();
232}
233
234extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
235
236void do_uml_exitcalls(void)
237{
238 exitcall_t *call;
239
240 call = &__uml_exitcall_end;
241 while (--call >= &__uml_exitcall_begin)
242 (*call)();
243}
244
245char *uml_strdup(const char *string)
246{
247 return kstrdup(string, GFP_KERNEL);
248}
249EXPORT_SYMBOL(uml_strdup);
250
251int copy_to_user_proc(void __user *to, void *from, int size)
252{
253 return copy_to_user(to, from, size);
254}
255
256int copy_from_user_proc(void *to, void __user *from, int size)
257{
258 return copy_from_user(to, from, size);
259}
260
261int clear_user_proc(void __user *buf, int size)
262{
263 return clear_user(buf, size);
264}
265
266int cpu(void)
267{
268 return current_thread_info()->cpu;
269}
270
271static atomic_t using_sysemu = ATOMIC_INIT(0);
272int sysemu_supported;
273
274void set_using_sysemu(int value)
275{
276 if (value > sysemu_supported)
277 return;
278 atomic_set(&using_sysemu, value);
279}
280
281int get_using_sysemu(void)
282{
283 return atomic_read(&using_sysemu);
284}
285
286static int sysemu_proc_show(struct seq_file *m, void *v)
287{
288 seq_printf(m, "%d\n", get_using_sysemu());
289 return 0;
290}
291
292static int sysemu_proc_open(struct inode *inode, struct file *file)
293{
294 return single_open(file, sysemu_proc_show, NULL);
295}
296
297static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
298 size_t count, loff_t *pos)
299{
300 char tmp[2];
301
302 if (copy_from_user(tmp, buf, 1))
303 return -EFAULT;
304
305 if (tmp[0] >= '0' && tmp[0] <= '2')
306 set_using_sysemu(tmp[0] - '0');
307 /* We use the first char, but pretend to write everything */
308 return count;
309}
310
311static const struct proc_ops sysemu_proc_ops = {
312 .proc_open = sysemu_proc_open,
313 .proc_read = seq_read,
314 .proc_lseek = seq_lseek,
315 .proc_release = single_release,
316 .proc_write = sysemu_proc_write,
317};
318
319int __init make_proc_sysemu(void)
320{
321 struct proc_dir_entry *ent;
322 if (!sysemu_supported)
323 return 0;
324
325 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
326
327 if (ent == NULL)
328 {
329 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
330 return 0;
331 }
332
333 return 0;
334}
335
336late_initcall(make_proc_sysemu);
337
338int singlestepping(void * t)
339{
340 struct task_struct *task = t ? t : current;
341
342 if (!(task->ptrace & PT_DTRACE))
343 return 0;
344
345 if (task->thread.singlestep_syscall)
346 return 1;
347
348 return 2;
349}
350
351/*
352 * Only x86 and x86_64 have an arch_align_stack().
353 * All other arches have "#define arch_align_stack(x) (x)"
354 * in their asm/exec.h
355 * As this is included in UML from asm-um/system-generic.h,
356 * we can use it to behave as the subarch does.
357 */
358#ifndef arch_align_stack
359unsigned long arch_align_stack(unsigned long sp)
360{
361 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
362 sp -= get_random_int() % 8192;
363 return sp & ~0xf;
364}
365#endif
366
367unsigned long get_wchan(struct task_struct *p)
368{
369 unsigned long stack_page, sp, ip;
370 bool seen_sched = 0;
371
372 if ((p == NULL) || (p == current) || task_is_running(p))
373 return 0;
374
375 stack_page = (unsigned long) task_stack_page(p);
376 /* Bail if the process has no kernel stack for some reason */
377 if (stack_page == 0)
378 return 0;
379
380 sp = p->thread.switch_buf->JB_SP;
381 /*
382 * Bail if the stack pointer is below the bottom of the kernel
383 * stack for some reason
384 */
385 if (sp < stack_page)
386 return 0;
387
388 while (sp < stack_page + THREAD_SIZE) {
389 ip = *((unsigned long *) sp);
390 if (in_sched_functions(ip))
391 /* Ignore everything until we're above the scheduler */
392 seen_sched = 1;
393 else if (kernel_text_address(ip) && seen_sched)
394 return ip;
395
396 sp += sizeof(unsigned long);
397 }
398
399 return 0;
400}
401
402int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
403{
404 int cpu = current_thread_info()->cpu;
405
406 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
407}
408