Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/bootmem_info.h>
 17
 18#include "internal.h"
 19#include <asm/dma.h>
 20
 21/*
 22 * Permanent SPARSEMEM data:
 23 *
 24 * 1) mem_section	- memory sections, mem_map's for valid memory
 25 */
 26#ifdef CONFIG_SPARSEMEM_EXTREME
 27struct mem_section **mem_section;
 28#else
 29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 30	____cacheline_internodealigned_in_smp;
 31#endif
 32EXPORT_SYMBOL(mem_section);
 33
 34#ifdef NODE_NOT_IN_PAGE_FLAGS
 35/*
 36 * If we did not store the node number in the page then we have to
 37 * do a lookup in the section_to_node_table in order to find which
 38 * node the page belongs to.
 39 */
 40#if MAX_NUMNODES <= 256
 41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 42#else
 43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 44#endif
 45
 46int page_to_nid(const struct page *page)
 47{
 48	return section_to_node_table[page_to_section(page)];
 49}
 50EXPORT_SYMBOL(page_to_nid);
 51
 52static void set_section_nid(unsigned long section_nr, int nid)
 53{
 54	section_to_node_table[section_nr] = nid;
 55}
 56#else /* !NODE_NOT_IN_PAGE_FLAGS */
 57static inline void set_section_nid(unsigned long section_nr, int nid)
 58{
 59}
 60#endif
 61
 62#ifdef CONFIG_SPARSEMEM_EXTREME
 63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 64{
 65	struct mem_section *section = NULL;
 66	unsigned long array_size = SECTIONS_PER_ROOT *
 67				   sizeof(struct mem_section);
 68
 69	if (slab_is_available()) {
 70		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 71	} else {
 72		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 73					      nid);
 74		if (!section)
 75			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 76			      __func__, array_size, nid);
 77	}
 78
 79	return section;
 80}
 81
 82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 83{
 84	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 85	struct mem_section *section;
 86
 87	/*
 88	 * An existing section is possible in the sub-section hotplug
 89	 * case. First hot-add instantiates, follow-on hot-add reuses
 90	 * the existing section.
 91	 *
 92	 * The mem_hotplug_lock resolves the apparent race below.
 93	 */
 94	if (mem_section[root])
 95		return 0;
 96
 97	section = sparse_index_alloc(nid);
 98	if (!section)
 99		return -ENOMEM;
100
101	mem_section[root] = section;
102
103	return 0;
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108	return 0;
109}
110#endif
111
112/*
113 * During early boot, before section_mem_map is used for an actual
114 * mem_map, we use section_mem_map to store the section's NUMA
115 * node.  This keeps us from having to use another data structure.  The
116 * node information is cleared just before we store the real mem_map.
117 */
118static inline unsigned long sparse_encode_early_nid(int nid)
119{
120	return ((unsigned long)nid << SECTION_NID_SHIFT);
121}
122
123static inline int sparse_early_nid(struct mem_section *section)
124{
125	return (section->section_mem_map >> SECTION_NID_SHIFT);
126}
127
128/* Validate the physical addressing limitations of the model */
129static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130						unsigned long *end_pfn)
131{
132	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
133
134	/*
135	 * Sanity checks - do not allow an architecture to pass
136	 * in larger pfns than the maximum scope of sparsemem:
137	 */
138	if (*start_pfn > max_sparsemem_pfn) {
139		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141			*start_pfn, *end_pfn, max_sparsemem_pfn);
142		WARN_ON_ONCE(1);
143		*start_pfn = max_sparsemem_pfn;
144		*end_pfn = max_sparsemem_pfn;
145	} else if (*end_pfn > max_sparsemem_pfn) {
146		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148			*start_pfn, *end_pfn, max_sparsemem_pfn);
149		WARN_ON_ONCE(1);
150		*end_pfn = max_sparsemem_pfn;
151	}
152}
153
154/*
155 * There are a number of times that we loop over NR_MEM_SECTIONS,
156 * looking for section_present() on each.  But, when we have very
157 * large physical address spaces, NR_MEM_SECTIONS can also be
158 * very large which makes the loops quite long.
159 *
160 * Keeping track of this gives us an easy way to break out of
161 * those loops early.
162 */
163unsigned long __highest_present_section_nr;
164static void __section_mark_present(struct mem_section *ms,
165		unsigned long section_nr)
166{
167	if (section_nr > __highest_present_section_nr)
168		__highest_present_section_nr = section_nr;
169
170	ms->section_mem_map |= SECTION_MARKED_PRESENT;
171}
172
173#define for_each_present_section_nr(start, section_nr)		\
174	for (section_nr = next_present_section_nr(start-1);	\
175	     ((section_nr != -1) &&				\
176	      (section_nr <= __highest_present_section_nr));	\
177	     section_nr = next_present_section_nr(section_nr))
178
179static inline unsigned long first_present_section_nr(void)
180{
181	return next_present_section_nr(-1);
182}
183
184#ifdef CONFIG_SPARSEMEM_VMEMMAP
185static void subsection_mask_set(unsigned long *map, unsigned long pfn,
186		unsigned long nr_pages)
187{
188	int idx = subsection_map_index(pfn);
189	int end = subsection_map_index(pfn + nr_pages - 1);
190
191	bitmap_set(map, idx, end - idx + 1);
192}
193
194void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
195{
196	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
197	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
198
199	if (!nr_pages)
200		return;
201
202	for (nr = start_sec; nr <= end_sec; nr++) {
203		struct mem_section *ms;
204		unsigned long pfns;
205
206		pfns = min(nr_pages, PAGES_PER_SECTION
207				- (pfn & ~PAGE_SECTION_MASK));
208		ms = __nr_to_section(nr);
209		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
210
211		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
212				pfns, subsection_map_index(pfn),
213				subsection_map_index(pfn + pfns - 1));
214
215		pfn += pfns;
216		nr_pages -= pfns;
217	}
218}
219#else
220void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221{
222}
223#endif
224
225/* Record a memory area against a node. */
226static void __init memory_present(int nid, unsigned long start, unsigned long end)
227{
228	unsigned long pfn;
229
230#ifdef CONFIG_SPARSEMEM_EXTREME
231	if (unlikely(!mem_section)) {
232		unsigned long size, align;
233
234		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
235		align = 1 << (INTERNODE_CACHE_SHIFT);
236		mem_section = memblock_alloc(size, align);
237		if (!mem_section)
238			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
239			      __func__, size, align);
240	}
241#endif
242
243	start &= PAGE_SECTION_MASK;
244	mminit_validate_memmodel_limits(&start, &end);
245	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
246		unsigned long section = pfn_to_section_nr(pfn);
247		struct mem_section *ms;
248
249		sparse_index_init(section, nid);
250		set_section_nid(section, nid);
251
252		ms = __nr_to_section(section);
253		if (!ms->section_mem_map) {
254			ms->section_mem_map = sparse_encode_early_nid(nid) |
255							SECTION_IS_ONLINE;
256			__section_mark_present(ms, section);
257		}
258	}
259}
260
261/*
262 * Mark all memblocks as present using memory_present().
263 * This is a convenience function that is useful to mark all of the systems
264 * memory as present during initialization.
265 */
266static void __init memblocks_present(void)
267{
268	unsigned long start, end;
269	int i, nid;
270
 
 
 
 
 
 
 
 
 
 
 
 
 
271	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
272		memory_present(nid, start, end);
273}
274
275/*
276 * Subtle, we encode the real pfn into the mem_map such that
277 * the identity pfn - section_mem_map will return the actual
278 * physical page frame number.
279 */
280static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
281{
282	unsigned long coded_mem_map =
283		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
284	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
285	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
286	return coded_mem_map;
287}
288
289#ifdef CONFIG_MEMORY_HOTPLUG
290/*
291 * Decode mem_map from the coded memmap
292 */
293struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
294{
295	/* mask off the extra low bits of information */
296	coded_mem_map &= SECTION_MAP_MASK;
297	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
298}
299#endif /* CONFIG_MEMORY_HOTPLUG */
300
301static void __meminit sparse_init_one_section(struct mem_section *ms,
302		unsigned long pnum, struct page *mem_map,
303		struct mem_section_usage *usage, unsigned long flags)
304{
305	ms->section_mem_map &= ~SECTION_MAP_MASK;
306	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
307		| SECTION_HAS_MEM_MAP | flags;
308	ms->usage = usage;
309}
310
311static unsigned long usemap_size(void)
312{
313	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
314}
315
316size_t mem_section_usage_size(void)
317{
318	return sizeof(struct mem_section_usage) + usemap_size();
319}
320
 
321static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
322{
323#ifndef CONFIG_NUMA
324	VM_BUG_ON(pgdat != &contig_page_data);
325	return __pa_symbol(&contig_page_data);
326#else
327	return __pa(pgdat);
328#endif
329}
330
331#ifdef CONFIG_MEMORY_HOTREMOVE
332static struct mem_section_usage * __init
333sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
334					 unsigned long size)
335{
336	struct mem_section_usage *usage;
337	unsigned long goal, limit;
338	int nid;
339	/*
340	 * A page may contain usemaps for other sections preventing the
341	 * page being freed and making a section unremovable while
342	 * other sections referencing the usemap remain active. Similarly,
343	 * a pgdat can prevent a section being removed. If section A
344	 * contains a pgdat and section B contains the usemap, both
345	 * sections become inter-dependent. This allocates usemaps
346	 * from the same section as the pgdat where possible to avoid
347	 * this problem.
348	 */
349	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
350	limit = goal + (1UL << PA_SECTION_SHIFT);
351	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
352again:
353	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
354	if (!usage && limit) {
355		limit = 0;
356		goto again;
357	}
358	return usage;
359}
360
361static void __init check_usemap_section_nr(int nid,
362		struct mem_section_usage *usage)
363{
364	unsigned long usemap_snr, pgdat_snr;
365	static unsigned long old_usemap_snr;
366	static unsigned long old_pgdat_snr;
367	struct pglist_data *pgdat = NODE_DATA(nid);
368	int usemap_nid;
369
370	/* First call */
371	if (!old_usemap_snr) {
372		old_usemap_snr = NR_MEM_SECTIONS;
373		old_pgdat_snr = NR_MEM_SECTIONS;
374	}
375
376	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
377	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
378	if (usemap_snr == pgdat_snr)
379		return;
380
381	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
382		/* skip redundant message */
383		return;
384
385	old_usemap_snr = usemap_snr;
386	old_pgdat_snr = pgdat_snr;
387
388	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
389	if (usemap_nid != nid) {
390		pr_info("node %d must be removed before remove section %ld\n",
391			nid, usemap_snr);
392		return;
393	}
394	/*
395	 * There is a circular dependency.
396	 * Some platforms allow un-removable section because they will just
397	 * gather other removable sections for dynamic partitioning.
398	 * Just notify un-removable section's number here.
399	 */
400	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
401		usemap_snr, pgdat_snr, nid);
402}
403#else
404static struct mem_section_usage * __init
405sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
406					 unsigned long size)
407{
408	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
409}
410
411static void __init check_usemap_section_nr(int nid,
412		struct mem_section_usage *usage)
413{
414}
415#endif /* CONFIG_MEMORY_HOTREMOVE */
416
417#ifdef CONFIG_SPARSEMEM_VMEMMAP
418static unsigned long __init section_map_size(void)
419{
420	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
421}
422
423#else
424static unsigned long __init section_map_size(void)
425{
426	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
427}
428
429struct page __init *__populate_section_memmap(unsigned long pfn,
430		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
431		struct dev_pagemap *pgmap)
432{
433	unsigned long size = section_map_size();
434	struct page *map = sparse_buffer_alloc(size);
435	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
436
437	if (map)
438		return map;
439
440	map = memmap_alloc(size, size, addr, nid, false);
441	if (!map)
442		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
443		      __func__, size, PAGE_SIZE, nid, &addr);
444
445	return map;
446}
447#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
448
449static void *sparsemap_buf __meminitdata;
450static void *sparsemap_buf_end __meminitdata;
451
452static inline void __meminit sparse_buffer_free(unsigned long size)
453{
454	WARN_ON(!sparsemap_buf || size == 0);
455	memblock_free(sparsemap_buf, size);
456}
457
458static void __init sparse_buffer_init(unsigned long size, int nid)
459{
460	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
461	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
462	/*
463	 * Pre-allocated buffer is mainly used by __populate_section_memmap
464	 * and we want it to be properly aligned to the section size - this is
465	 * especially the case for VMEMMAP which maps memmap to PMDs
466	 */
467	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
468	sparsemap_buf_end = sparsemap_buf + size;
 
 
 
469}
470
471static void __init sparse_buffer_fini(void)
472{
473	unsigned long size = sparsemap_buf_end - sparsemap_buf;
474
475	if (sparsemap_buf && size > 0)
476		sparse_buffer_free(size);
477	sparsemap_buf = NULL;
478}
479
480void * __meminit sparse_buffer_alloc(unsigned long size)
481{
482	void *ptr = NULL;
483
484	if (sparsemap_buf) {
485		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
486		if (ptr + size > sparsemap_buf_end)
487			ptr = NULL;
488		else {
489			/* Free redundant aligned space */
490			if ((unsigned long)(ptr - sparsemap_buf) > 0)
491				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
492			sparsemap_buf = ptr + size;
493		}
494	}
495	return ptr;
496}
497
498void __weak __meminit vmemmap_populate_print_last(void)
499{
500}
501
502/*
503 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
504 * And number of present sections in this node is map_count.
505 */
506static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
507				   unsigned long pnum_end,
508				   unsigned long map_count)
509{
510	struct mem_section_usage *usage;
511	unsigned long pnum;
512	struct page *map;
513
514	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
515			mem_section_usage_size() * map_count);
516	if (!usage) {
517		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
518		goto failed;
519	}
520	sparse_buffer_init(map_count * section_map_size(), nid);
521	for_each_present_section_nr(pnum_begin, pnum) {
522		unsigned long pfn = section_nr_to_pfn(pnum);
523
524		if (pnum >= pnum_end)
525			break;
526
527		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
528				nid, NULL, NULL);
529		if (!map) {
530			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
531			       __func__, nid);
532			pnum_begin = pnum;
533			sparse_buffer_fini();
534			goto failed;
535		}
536		check_usemap_section_nr(nid, usage);
537		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
538				SECTION_IS_EARLY);
539		usage = (void *) usage + mem_section_usage_size();
540	}
541	sparse_buffer_fini();
542	return;
543failed:
544	/* We failed to allocate, mark all the following pnums as not present */
545	for_each_present_section_nr(pnum_begin, pnum) {
546		struct mem_section *ms;
547
548		if (pnum >= pnum_end)
549			break;
550		ms = __nr_to_section(pnum);
551		ms->section_mem_map = 0;
552	}
553}
554
555/*
556 * Allocate the accumulated non-linear sections, allocate a mem_map
557 * for each and record the physical to section mapping.
558 */
559void __init sparse_init(void)
560{
561	unsigned long pnum_end, pnum_begin, map_count = 1;
562	int nid_begin;
563
 
 
564	memblocks_present();
565
566	pnum_begin = first_present_section_nr();
567	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
568
569	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
570	set_pageblock_order();
571
572	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
573		int nid = sparse_early_nid(__nr_to_section(pnum_end));
574
575		if (nid == nid_begin) {
576			map_count++;
577			continue;
578		}
579		/* Init node with sections in range [pnum_begin, pnum_end) */
580		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
581		nid_begin = nid;
582		pnum_begin = pnum_end;
583		map_count = 1;
584	}
585	/* cover the last node */
586	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
587	vmemmap_populate_print_last();
588}
589
590#ifdef CONFIG_MEMORY_HOTPLUG
591
592/* Mark all memory sections within the pfn range as online */
593void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
594{
595	unsigned long pfn;
596
597	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
598		unsigned long section_nr = pfn_to_section_nr(pfn);
599		struct mem_section *ms;
600
601		/* onlining code should never touch invalid ranges */
602		if (WARN_ON(!valid_section_nr(section_nr)))
603			continue;
604
605		ms = __nr_to_section(section_nr);
606		ms->section_mem_map |= SECTION_IS_ONLINE;
607	}
608}
609
610/* Mark all memory sections within the pfn range as offline */
611void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
612{
613	unsigned long pfn;
614
615	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
616		unsigned long section_nr = pfn_to_section_nr(pfn);
617		struct mem_section *ms;
618
619		/*
620		 * TODO this needs some double checking. Offlining code makes
621		 * sure to check pfn_valid but those checks might be just bogus
622		 */
623		if (WARN_ON(!valid_section_nr(section_nr)))
624			continue;
625
626		ms = __nr_to_section(section_nr);
627		ms->section_mem_map &= ~SECTION_IS_ONLINE;
628	}
629}
630
631#ifdef CONFIG_SPARSEMEM_VMEMMAP
632static struct page * __meminit populate_section_memmap(unsigned long pfn,
633		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
634		struct dev_pagemap *pgmap)
635{
636	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
637}
638
639static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
640		struct vmem_altmap *altmap)
641{
642	unsigned long start = (unsigned long) pfn_to_page(pfn);
643	unsigned long end = start + nr_pages * sizeof(struct page);
644
 
645	vmemmap_free(start, end, altmap);
646}
647static void free_map_bootmem(struct page *memmap)
648{
649	unsigned long start = (unsigned long)memmap;
650	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
651
652	vmemmap_free(start, end, NULL);
653}
654
655static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
656{
657	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
658	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
659	struct mem_section *ms = __pfn_to_section(pfn);
660	unsigned long *subsection_map = ms->usage
661		? &ms->usage->subsection_map[0] : NULL;
662
663	subsection_mask_set(map, pfn, nr_pages);
664	if (subsection_map)
665		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
666
667	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
668				"section already deactivated (%#lx + %ld)\n",
669				pfn, nr_pages))
670		return -EINVAL;
671
672	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
673	return 0;
674}
675
676static bool is_subsection_map_empty(struct mem_section *ms)
677{
678	return bitmap_empty(&ms->usage->subsection_map[0],
679			    SUBSECTIONS_PER_SECTION);
680}
681
682static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
683{
684	struct mem_section *ms = __pfn_to_section(pfn);
685	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
686	unsigned long *subsection_map;
687	int rc = 0;
688
689	subsection_mask_set(map, pfn, nr_pages);
690
691	subsection_map = &ms->usage->subsection_map[0];
692
693	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
694		rc = -EINVAL;
695	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
696		rc = -EEXIST;
697	else
698		bitmap_or(subsection_map, map, subsection_map,
699				SUBSECTIONS_PER_SECTION);
700
701	return rc;
702}
703#else
704struct page * __meminit populate_section_memmap(unsigned long pfn,
705		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
706		struct dev_pagemap *pgmap)
707{
708	return kvmalloc_node(array_size(sizeof(struct page),
709					PAGES_PER_SECTION), GFP_KERNEL, nid);
710}
711
712static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
713		struct vmem_altmap *altmap)
714{
715	kvfree(pfn_to_page(pfn));
716}
717
718static void free_map_bootmem(struct page *memmap)
719{
720	unsigned long maps_section_nr, removing_section_nr, i;
721	unsigned long magic, nr_pages;
722	struct page *page = virt_to_page(memmap);
723
724	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
725		>> PAGE_SHIFT;
726
727	for (i = 0; i < nr_pages; i++, page++) {
728		magic = page->index;
729
730		BUG_ON(magic == NODE_INFO);
731
732		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
733		removing_section_nr = page_private(page);
734
735		/*
736		 * When this function is called, the removing section is
737		 * logical offlined state. This means all pages are isolated
738		 * from page allocator. If removing section's memmap is placed
739		 * on the same section, it must not be freed.
740		 * If it is freed, page allocator may allocate it which will
741		 * be removed physically soon.
742		 */
743		if (maps_section_nr != removing_section_nr)
744			put_page_bootmem(page);
745	}
746}
747
748static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
749{
750	return 0;
751}
752
753static bool is_subsection_map_empty(struct mem_section *ms)
754{
755	return true;
756}
757
758static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
759{
760	return 0;
761}
762#endif /* CONFIG_SPARSEMEM_VMEMMAP */
763
764/*
765 * To deactivate a memory region, there are 3 cases to handle across
766 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
767 *
768 * 1. deactivation of a partial hot-added section (only possible in
769 *    the SPARSEMEM_VMEMMAP=y case).
770 *      a) section was present at memory init.
771 *      b) section was hot-added post memory init.
772 * 2. deactivation of a complete hot-added section.
773 * 3. deactivation of a complete section from memory init.
774 *
775 * For 1, when subsection_map does not empty we will not be freeing the
776 * usage map, but still need to free the vmemmap range.
777 *
778 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
779 */
780static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
781		struct vmem_altmap *altmap)
782{
783	struct mem_section *ms = __pfn_to_section(pfn);
784	bool section_is_early = early_section(ms);
785	struct page *memmap = NULL;
786	bool empty;
787
788	if (clear_subsection_map(pfn, nr_pages))
789		return;
790
791	empty = is_subsection_map_empty(ms);
792	if (empty) {
793		unsigned long section_nr = pfn_to_section_nr(pfn);
794
795		/*
 
 
 
 
 
 
 
796		 * When removing an early section, the usage map is kept (as the
797		 * usage maps of other sections fall into the same page). It
798		 * will be re-used when re-adding the section - which is then no
799		 * longer an early section. If the usage map is PageReserved, it
800		 * was allocated during boot.
801		 */
802		if (!PageReserved(virt_to_page(ms->usage))) {
803			kfree(ms->usage);
804			ms->usage = NULL;
805		}
806		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
807		/*
808		 * Mark the section invalid so that valid_section()
809		 * return false. This prevents code from dereferencing
810		 * ms->usage array.
811		 */
812		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
813	}
814
815	/*
816	 * The memmap of early sections is always fully populated. See
817	 * section_activate() and pfn_valid() .
818	 */
819	if (!section_is_early)
820		depopulate_section_memmap(pfn, nr_pages, altmap);
821	else if (memmap)
822		free_map_bootmem(memmap);
823
824	if (empty)
825		ms->section_mem_map = (unsigned long)NULL;
826}
827
828static struct page * __meminit section_activate(int nid, unsigned long pfn,
829		unsigned long nr_pages, struct vmem_altmap *altmap,
830		struct dev_pagemap *pgmap)
831{
832	struct mem_section *ms = __pfn_to_section(pfn);
833	struct mem_section_usage *usage = NULL;
834	struct page *memmap;
835	int rc = 0;
836
837	if (!ms->usage) {
838		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
839		if (!usage)
840			return ERR_PTR(-ENOMEM);
841		ms->usage = usage;
842	}
843
844	rc = fill_subsection_map(pfn, nr_pages);
845	if (rc) {
846		if (usage)
847			ms->usage = NULL;
848		kfree(usage);
849		return ERR_PTR(rc);
850	}
851
852	/*
853	 * The early init code does not consider partially populated
854	 * initial sections, it simply assumes that memory will never be
855	 * referenced.  If we hot-add memory into such a section then we
856	 * do not need to populate the memmap and can simply reuse what
857	 * is already there.
858	 */
859	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
860		return pfn_to_page(pfn);
861
862	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
863	if (!memmap) {
864		section_deactivate(pfn, nr_pages, altmap);
865		return ERR_PTR(-ENOMEM);
866	}
867
868	return memmap;
869}
870
871/**
872 * sparse_add_section - add a memory section, or populate an existing one
873 * @nid: The node to add section on
874 * @start_pfn: start pfn of the memory range
875 * @nr_pages: number of pfns to add in the section
876 * @altmap: alternate pfns to allocate the memmap backing store
877 * @pgmap: alternate compound page geometry for devmap mappings
878 *
879 * This is only intended for hotplug.
880 *
881 * Note that only VMEMMAP supports sub-section aligned hotplug,
882 * the proper alignment and size are gated by check_pfn_span().
883 *
884 *
885 * Return:
886 * * 0		- On success.
887 * * -EEXIST	- Section has been present.
888 * * -ENOMEM	- Out of memory.
889 */
890int __meminit sparse_add_section(int nid, unsigned long start_pfn,
891		unsigned long nr_pages, struct vmem_altmap *altmap,
892		struct dev_pagemap *pgmap)
893{
894	unsigned long section_nr = pfn_to_section_nr(start_pfn);
895	struct mem_section *ms;
896	struct page *memmap;
897	int ret;
898
899	ret = sparse_index_init(section_nr, nid);
900	if (ret < 0)
901		return ret;
902
903	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
904	if (IS_ERR(memmap))
905		return PTR_ERR(memmap);
906
907	/*
908	 * Poison uninitialized struct pages in order to catch invalid flags
909	 * combinations.
910	 */
911	page_init_poison(memmap, sizeof(struct page) * nr_pages);
 
912
913	ms = __nr_to_section(section_nr);
914	set_section_nid(section_nr, nid);
915	__section_mark_present(ms, section_nr);
916
917	/* Align memmap to section boundary in the subsection case */
918	if (section_nr_to_pfn(section_nr) != start_pfn)
919		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
920	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
921
922	return 0;
923}
924
925void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
926		unsigned long nr_pages, unsigned long map_offset,
927		struct vmem_altmap *altmap)
928{
 
 
 
 
 
929	section_deactivate(pfn, nr_pages, altmap);
930}
931#endif /* CONFIG_MEMORY_HOTPLUG */
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/bootmem_info.h>
 17#include <linux/vmstat.h>
 18#include "internal.h"
 19#include <asm/dma.h>
 20
 21/*
 22 * Permanent SPARSEMEM data:
 23 *
 24 * 1) mem_section	- memory sections, mem_map's for valid memory
 25 */
 26#ifdef CONFIG_SPARSEMEM_EXTREME
 27struct mem_section **mem_section;
 28#else
 29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 30	____cacheline_internodealigned_in_smp;
 31#endif
 32EXPORT_SYMBOL(mem_section);
 33
 34#ifdef NODE_NOT_IN_PAGE_FLAGS
 35/*
 36 * If we did not store the node number in the page then we have to
 37 * do a lookup in the section_to_node_table in order to find which
 38 * node the page belongs to.
 39 */
 40#if MAX_NUMNODES <= 256
 41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 42#else
 43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 44#endif
 45
 46int page_to_nid(const struct page *page)
 47{
 48	return section_to_node_table[page_to_section(page)];
 49}
 50EXPORT_SYMBOL(page_to_nid);
 51
 52static void set_section_nid(unsigned long section_nr, int nid)
 53{
 54	section_to_node_table[section_nr] = nid;
 55}
 56#else /* !NODE_NOT_IN_PAGE_FLAGS */
 57static inline void set_section_nid(unsigned long section_nr, int nid)
 58{
 59}
 60#endif
 61
 62#ifdef CONFIG_SPARSEMEM_EXTREME
 63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 64{
 65	struct mem_section *section = NULL;
 66	unsigned long array_size = SECTIONS_PER_ROOT *
 67				   sizeof(struct mem_section);
 68
 69	if (slab_is_available()) {
 70		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 71	} else {
 72		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 73					      nid);
 74		if (!section)
 75			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 76			      __func__, array_size, nid);
 77	}
 78
 79	return section;
 80}
 81
 82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 83{
 84	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 85	struct mem_section *section;
 86
 87	/*
 88	 * An existing section is possible in the sub-section hotplug
 89	 * case. First hot-add instantiates, follow-on hot-add reuses
 90	 * the existing section.
 91	 *
 92	 * The mem_hotplug_lock resolves the apparent race below.
 93	 */
 94	if (mem_section[root])
 95		return 0;
 96
 97	section = sparse_index_alloc(nid);
 98	if (!section)
 99		return -ENOMEM;
100
101	mem_section[root] = section;
102
103	return 0;
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108	return 0;
109}
110#endif
111
112/*
113 * During early boot, before section_mem_map is used for an actual
114 * mem_map, we use section_mem_map to store the section's NUMA
115 * node.  This keeps us from having to use another data structure.  The
116 * node information is cleared just before we store the real mem_map.
117 */
118static inline unsigned long sparse_encode_early_nid(int nid)
119{
120	return ((unsigned long)nid << SECTION_NID_SHIFT);
121}
122
123static inline int sparse_early_nid(struct mem_section *section)
124{
125	return (section->section_mem_map >> SECTION_NID_SHIFT);
126}
127
128/* Validate the physical addressing limitations of the model */
129static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130						unsigned long *end_pfn)
131{
132	unsigned long max_sparsemem_pfn = (DIRECT_MAP_PHYSMEM_END + 1) >> PAGE_SHIFT;
133
134	/*
135	 * Sanity checks - do not allow an architecture to pass
136	 * in larger pfns than the maximum scope of sparsemem:
137	 */
138	if (*start_pfn > max_sparsemem_pfn) {
139		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141			*start_pfn, *end_pfn, max_sparsemem_pfn);
142		WARN_ON_ONCE(1);
143		*start_pfn = max_sparsemem_pfn;
144		*end_pfn = max_sparsemem_pfn;
145	} else if (*end_pfn > max_sparsemem_pfn) {
146		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148			*start_pfn, *end_pfn, max_sparsemem_pfn);
149		WARN_ON_ONCE(1);
150		*end_pfn = max_sparsemem_pfn;
151	}
152}
153
154/*
155 * There are a number of times that we loop over NR_MEM_SECTIONS,
156 * looking for section_present() on each.  But, when we have very
157 * large physical address spaces, NR_MEM_SECTIONS can also be
158 * very large which makes the loops quite long.
159 *
160 * Keeping track of this gives us an easy way to break out of
161 * those loops early.
162 */
163unsigned long __highest_present_section_nr;
164static void __section_mark_present(struct mem_section *ms,
165		unsigned long section_nr)
166{
167	if (section_nr > __highest_present_section_nr)
168		__highest_present_section_nr = section_nr;
169
170	ms->section_mem_map |= SECTION_MARKED_PRESENT;
171}
172
173#define for_each_present_section_nr(start, section_nr)		\
174	for (section_nr = next_present_section_nr(start-1);	\
175	     section_nr != -1;								\
 
176	     section_nr = next_present_section_nr(section_nr))
177
178static inline unsigned long first_present_section_nr(void)
179{
180	return next_present_section_nr(-1);
181}
182
183#ifdef CONFIG_SPARSEMEM_VMEMMAP
184static void subsection_mask_set(unsigned long *map, unsigned long pfn,
185		unsigned long nr_pages)
186{
187	int idx = subsection_map_index(pfn);
188	int end = subsection_map_index(pfn + nr_pages - 1);
189
190	bitmap_set(map, idx, end - idx + 1);
191}
192
193void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
194{
195	int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
196	unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
 
 
 
197
198	for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
199		struct mem_section *ms;
200		unsigned long pfns;
201
202		pfns = min(nr_pages, PAGES_PER_SECTION
203				- (pfn & ~PAGE_SECTION_MASK));
204		ms = __nr_to_section(nr);
205		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
206
207		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
208				pfns, subsection_map_index(pfn),
209				subsection_map_index(pfn + pfns - 1));
210
211		pfn += pfns;
212		nr_pages -= pfns;
213	}
214}
215#else
216void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
217{
218}
219#endif
220
221/* Record a memory area against a node. */
222static void __init memory_present(int nid, unsigned long start, unsigned long end)
223{
224	unsigned long pfn;
225
 
 
 
 
 
 
 
 
 
 
 
 
 
226	start &= PAGE_SECTION_MASK;
227	mminit_validate_memmodel_limits(&start, &end);
228	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
229		unsigned long section_nr = pfn_to_section_nr(pfn);
230		struct mem_section *ms;
231
232		sparse_index_init(section_nr, nid);
233		set_section_nid(section_nr, nid);
234
235		ms = __nr_to_section(section_nr);
236		if (!ms->section_mem_map) {
237			ms->section_mem_map = sparse_encode_early_nid(nid) |
238							SECTION_IS_ONLINE;
239			__section_mark_present(ms, section_nr);
240		}
241	}
242}
243
244/*
245 * Mark all memblocks as present using memory_present().
246 * This is a convenience function that is useful to mark all of the systems
247 * memory as present during initialization.
248 */
249static void __init memblocks_present(void)
250{
251	unsigned long start, end;
252	int i, nid;
253
254#ifdef CONFIG_SPARSEMEM_EXTREME
255	if (unlikely(!mem_section)) {
256		unsigned long size, align;
257
258		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
259		align = 1 << (INTERNODE_CACHE_SHIFT);
260		mem_section = memblock_alloc(size, align);
261		if (!mem_section)
262			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
263			      __func__, size, align);
264	}
265#endif
266
267	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
268		memory_present(nid, start, end);
269}
270
271/*
272 * Subtle, we encode the real pfn into the mem_map such that
273 * the identity pfn - section_mem_map will return the actual
274 * physical page frame number.
275 */
276static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
277{
278	unsigned long coded_mem_map =
279		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
280	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
281	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
282	return coded_mem_map;
283}
284
285#ifdef CONFIG_MEMORY_HOTPLUG
286/*
287 * Decode mem_map from the coded memmap
288 */
289struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
290{
291	/* mask off the extra low bits of information */
292	coded_mem_map &= SECTION_MAP_MASK;
293	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
294}
295#endif /* CONFIG_MEMORY_HOTPLUG */
296
297static void __meminit sparse_init_one_section(struct mem_section *ms,
298		unsigned long pnum, struct page *mem_map,
299		struct mem_section_usage *usage, unsigned long flags)
300{
301	ms->section_mem_map &= ~SECTION_MAP_MASK;
302	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
303		| SECTION_HAS_MEM_MAP | flags;
304	ms->usage = usage;
305}
306
307static unsigned long usemap_size(void)
308{
309	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
310}
311
312size_t mem_section_usage_size(void)
313{
314	return sizeof(struct mem_section_usage) + usemap_size();
315}
316
317#ifdef CONFIG_MEMORY_HOTREMOVE
318static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
319{
320#ifndef CONFIG_NUMA
321	VM_BUG_ON(pgdat != &contig_page_data);
322	return __pa_symbol(&contig_page_data);
323#else
324	return __pa(pgdat);
325#endif
326}
327
 
328static struct mem_section_usage * __init
329sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
330					 unsigned long size)
331{
332	struct mem_section_usage *usage;
333	unsigned long goal, limit;
334	int nid;
335	/*
336	 * A page may contain usemaps for other sections preventing the
337	 * page being freed and making a section unremovable while
338	 * other sections referencing the usemap remain active. Similarly,
339	 * a pgdat can prevent a section being removed. If section A
340	 * contains a pgdat and section B contains the usemap, both
341	 * sections become inter-dependent. This allocates usemaps
342	 * from the same section as the pgdat where possible to avoid
343	 * this problem.
344	 */
345	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
346	limit = goal + (1UL << PA_SECTION_SHIFT);
347	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
348again:
349	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
350	if (!usage && limit) {
351		limit = MEMBLOCK_ALLOC_ACCESSIBLE;
352		goto again;
353	}
354	return usage;
355}
356
357static void __init check_usemap_section_nr(int nid,
358		struct mem_section_usage *usage)
359{
360	unsigned long usemap_snr, pgdat_snr;
361	static unsigned long old_usemap_snr;
362	static unsigned long old_pgdat_snr;
363	struct pglist_data *pgdat = NODE_DATA(nid);
364	int usemap_nid;
365
366	/* First call */
367	if (!old_usemap_snr) {
368		old_usemap_snr = NR_MEM_SECTIONS;
369		old_pgdat_snr = NR_MEM_SECTIONS;
370	}
371
372	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
373	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
374	if (usemap_snr == pgdat_snr)
375		return;
376
377	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
378		/* skip redundant message */
379		return;
380
381	old_usemap_snr = usemap_snr;
382	old_pgdat_snr = pgdat_snr;
383
384	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
385	if (usemap_nid != nid) {
386		pr_info("node %d must be removed before remove section %ld\n",
387			nid, usemap_snr);
388		return;
389	}
390	/*
391	 * There is a circular dependency.
392	 * Some platforms allow un-removable section because they will just
393	 * gather other removable sections for dynamic partitioning.
394	 * Just notify un-removable section's number here.
395	 */
396	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
397		usemap_snr, pgdat_snr, nid);
398}
399#else
400static struct mem_section_usage * __init
401sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
402					 unsigned long size)
403{
404	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
405}
406
407static void __init check_usemap_section_nr(int nid,
408		struct mem_section_usage *usage)
409{
410}
411#endif /* CONFIG_MEMORY_HOTREMOVE */
412
413#ifdef CONFIG_SPARSEMEM_VMEMMAP
414static unsigned long __init section_map_size(void)
415{
416	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
417}
418
419#else
420static unsigned long __init section_map_size(void)
421{
422	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
423}
424
425struct page __init *__populate_section_memmap(unsigned long pfn,
426		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
427		struct dev_pagemap *pgmap)
428{
429	unsigned long size = section_map_size();
430	struct page *map = sparse_buffer_alloc(size);
431	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
432
433	if (map)
434		return map;
435
436	map = memmap_alloc(size, size, addr, nid, false);
437	if (!map)
438		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
439		      __func__, size, PAGE_SIZE, nid, &addr);
440
441	return map;
442}
443#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444
445static void *sparsemap_buf __meminitdata;
446static void *sparsemap_buf_end __meminitdata;
447
448static inline void __meminit sparse_buffer_free(unsigned long size)
449{
450	WARN_ON(!sparsemap_buf || size == 0);
451	memblock_free(sparsemap_buf, size);
452}
453
454static void __init sparse_buffer_init(unsigned long size, int nid)
455{
456	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
458	/*
459	 * Pre-allocated buffer is mainly used by __populate_section_memmap
460	 * and we want it to be properly aligned to the section size - this is
461	 * especially the case for VMEMMAP which maps memmap to PMDs
462	 */
463	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
464	sparsemap_buf_end = sparsemap_buf + size;
465#ifndef CONFIG_SPARSEMEM_VMEMMAP
466	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
467#endif
468}
469
470static void __init sparse_buffer_fini(void)
471{
472	unsigned long size = sparsemap_buf_end - sparsemap_buf;
473
474	if (sparsemap_buf && size > 0)
475		sparse_buffer_free(size);
476	sparsemap_buf = NULL;
477}
478
479void * __meminit sparse_buffer_alloc(unsigned long size)
480{
481	void *ptr = NULL;
482
483	if (sparsemap_buf) {
484		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
485		if (ptr + size > sparsemap_buf_end)
486			ptr = NULL;
487		else {
488			/* Free redundant aligned space */
489			if ((unsigned long)(ptr - sparsemap_buf) > 0)
490				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
491			sparsemap_buf = ptr + size;
492		}
493	}
494	return ptr;
495}
496
497void __weak __meminit vmemmap_populate_print_last(void)
498{
499}
500
501/*
502 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
503 * And number of present sections in this node is map_count.
504 */
505static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
506				   unsigned long pnum_end,
507				   unsigned long map_count)
508{
509	struct mem_section_usage *usage;
510	unsigned long pnum;
511	struct page *map;
512
513	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
514			mem_section_usage_size() * map_count);
515	if (!usage) {
516		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
517		goto failed;
518	}
519	sparse_buffer_init(map_count * section_map_size(), nid);
520	for_each_present_section_nr(pnum_begin, pnum) {
521		unsigned long pfn = section_nr_to_pfn(pnum);
522
523		if (pnum >= pnum_end)
524			break;
525
526		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
527				nid, NULL, NULL);
528		if (!map) {
529			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
530			       __func__, nid);
531			pnum_begin = pnum;
532			sparse_buffer_fini();
533			goto failed;
534		}
535		check_usemap_section_nr(nid, usage);
536		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
537				SECTION_IS_EARLY);
538		usage = (void *) usage + mem_section_usage_size();
539	}
540	sparse_buffer_fini();
541	return;
542failed:
543	/* We failed to allocate, mark all the following pnums as not present */
544	for_each_present_section_nr(pnum_begin, pnum) {
545		struct mem_section *ms;
546
547		if (pnum >= pnum_end)
548			break;
549		ms = __nr_to_section(pnum);
550		ms->section_mem_map = 0;
551	}
552}
553
554/*
555 * Allocate the accumulated non-linear sections, allocate a mem_map
556 * for each and record the physical to section mapping.
557 */
558void __init sparse_init(void)
559{
560	unsigned long pnum_end, pnum_begin, map_count = 1;
561	int nid_begin;
562
563	/* see include/linux/mmzone.h 'struct mem_section' definition */
564	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
565	memblocks_present();
566
567	pnum_begin = first_present_section_nr();
568	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
569
570	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
571	set_pageblock_order();
572
573	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
574		int nid = sparse_early_nid(__nr_to_section(pnum_end));
575
576		if (nid == nid_begin) {
577			map_count++;
578			continue;
579		}
580		/* Init node with sections in range [pnum_begin, pnum_end) */
581		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
582		nid_begin = nid;
583		pnum_begin = pnum_end;
584		map_count = 1;
585	}
586	/* cover the last node */
587	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
588	vmemmap_populate_print_last();
589}
590
591#ifdef CONFIG_MEMORY_HOTPLUG
592
593/* Mark all memory sections within the pfn range as online */
594void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
595{
596	unsigned long pfn;
597
598	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
599		unsigned long section_nr = pfn_to_section_nr(pfn);
600		struct mem_section *ms;
601
602		/* onlining code should never touch invalid ranges */
603		if (WARN_ON(!valid_section_nr(section_nr)))
604			continue;
605
606		ms = __nr_to_section(section_nr);
607		ms->section_mem_map |= SECTION_IS_ONLINE;
608	}
609}
610
611/* Mark all memory sections within the pfn range as offline */
612void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
613{
614	unsigned long pfn;
615
616	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
617		unsigned long section_nr = pfn_to_section_nr(pfn);
618		struct mem_section *ms;
619
620		/*
621		 * TODO this needs some double checking. Offlining code makes
622		 * sure to check pfn_valid but those checks might be just bogus
623		 */
624		if (WARN_ON(!valid_section_nr(section_nr)))
625			continue;
626
627		ms = __nr_to_section(section_nr);
628		ms->section_mem_map &= ~SECTION_IS_ONLINE;
629	}
630}
631
632#ifdef CONFIG_SPARSEMEM_VMEMMAP
633static struct page * __meminit populate_section_memmap(unsigned long pfn,
634		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
635		struct dev_pagemap *pgmap)
636{
637	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
638}
639
640static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
641		struct vmem_altmap *altmap)
642{
643	unsigned long start = (unsigned long) pfn_to_page(pfn);
644	unsigned long end = start + nr_pages * sizeof(struct page);
645
646	memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE)));
647	vmemmap_free(start, end, altmap);
648}
649static void free_map_bootmem(struct page *memmap)
650{
651	unsigned long start = (unsigned long)memmap;
652	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
653
654	vmemmap_free(start, end, NULL);
655}
656
657static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
658{
659	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
660	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
661	struct mem_section *ms = __pfn_to_section(pfn);
662	unsigned long *subsection_map = ms->usage
663		? &ms->usage->subsection_map[0] : NULL;
664
665	subsection_mask_set(map, pfn, nr_pages);
666	if (subsection_map)
667		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
668
669	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
670				"section already deactivated (%#lx + %ld)\n",
671				pfn, nr_pages))
672		return -EINVAL;
673
674	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
675	return 0;
676}
677
678static bool is_subsection_map_empty(struct mem_section *ms)
679{
680	return bitmap_empty(&ms->usage->subsection_map[0],
681			    SUBSECTIONS_PER_SECTION);
682}
683
684static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
685{
686	struct mem_section *ms = __pfn_to_section(pfn);
687	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
688	unsigned long *subsection_map;
689	int rc = 0;
690
691	subsection_mask_set(map, pfn, nr_pages);
692
693	subsection_map = &ms->usage->subsection_map[0];
694
695	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
696		rc = -EINVAL;
697	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
698		rc = -EEXIST;
699	else
700		bitmap_or(subsection_map, map, subsection_map,
701				SUBSECTIONS_PER_SECTION);
702
703	return rc;
704}
705#else
706static struct page * __meminit populate_section_memmap(unsigned long pfn,
707		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
708		struct dev_pagemap *pgmap)
709{
710	return kvmalloc_node(array_size(sizeof(struct page),
711					PAGES_PER_SECTION), GFP_KERNEL, nid);
712}
713
714static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
715		struct vmem_altmap *altmap)
716{
717	kvfree(pfn_to_page(pfn));
718}
719
720static void free_map_bootmem(struct page *memmap)
721{
722	unsigned long maps_section_nr, removing_section_nr, i;
723	unsigned long type, nr_pages;
724	struct page *page = virt_to_page(memmap);
725
726	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
727		>> PAGE_SHIFT;
728
729	for (i = 0; i < nr_pages; i++, page++) {
730		type = bootmem_type(page);
731
732		BUG_ON(type == NODE_INFO);
733
734		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
735		removing_section_nr = bootmem_info(page);
736
737		/*
738		 * When this function is called, the removing section is
739		 * logical offlined state. This means all pages are isolated
740		 * from page allocator. If removing section's memmap is placed
741		 * on the same section, it must not be freed.
742		 * If it is freed, page allocator may allocate it which will
743		 * be removed physically soon.
744		 */
745		if (maps_section_nr != removing_section_nr)
746			put_page_bootmem(page);
747	}
748}
749
750static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
751{
752	return 0;
753}
754
755static bool is_subsection_map_empty(struct mem_section *ms)
756{
757	return true;
758}
759
760static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
761{
762	return 0;
763}
764#endif /* CONFIG_SPARSEMEM_VMEMMAP */
765
766/*
767 * To deactivate a memory region, there are 3 cases to handle across
768 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
769 *
770 * 1. deactivation of a partial hot-added section (only possible in
771 *    the SPARSEMEM_VMEMMAP=y case).
772 *      a) section was present at memory init.
773 *      b) section was hot-added post memory init.
774 * 2. deactivation of a complete hot-added section.
775 * 3. deactivation of a complete section from memory init.
776 *
777 * For 1, when subsection_map does not empty we will not be freeing the
778 * usage map, but still need to free the vmemmap range.
779 *
780 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
781 */
782static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
783		struct vmem_altmap *altmap)
784{
785	struct mem_section *ms = __pfn_to_section(pfn);
786	bool section_is_early = early_section(ms);
787	struct page *memmap = NULL;
788	bool empty;
789
790	if (clear_subsection_map(pfn, nr_pages))
791		return;
792
793	empty = is_subsection_map_empty(ms);
794	if (empty) {
795		unsigned long section_nr = pfn_to_section_nr(pfn);
796
797		/*
798		 * Mark the section invalid so that valid_section()
799		 * return false. This prevents code from dereferencing
800		 * ms->usage array.
801		 */
802		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
803
804		/*
805		 * When removing an early section, the usage map is kept (as the
806		 * usage maps of other sections fall into the same page). It
807		 * will be re-used when re-adding the section - which is then no
808		 * longer an early section. If the usage map is PageReserved, it
809		 * was allocated during boot.
810		 */
811		if (!PageReserved(virt_to_page(ms->usage))) {
812			kfree_rcu(ms->usage, rcu);
813			WRITE_ONCE(ms->usage, NULL);
814		}
815		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 
 
 
 
 
 
816	}
817
818	/*
819	 * The memmap of early sections is always fully populated. See
820	 * section_activate() and pfn_valid() .
821	 */
822	if (!section_is_early)
823		depopulate_section_memmap(pfn, nr_pages, altmap);
824	else if (memmap)
825		free_map_bootmem(memmap);
826
827	if (empty)
828		ms->section_mem_map = (unsigned long)NULL;
829}
830
831static struct page * __meminit section_activate(int nid, unsigned long pfn,
832		unsigned long nr_pages, struct vmem_altmap *altmap,
833		struct dev_pagemap *pgmap)
834{
835	struct mem_section *ms = __pfn_to_section(pfn);
836	struct mem_section_usage *usage = NULL;
837	struct page *memmap;
838	int rc;
839
840	if (!ms->usage) {
841		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
842		if (!usage)
843			return ERR_PTR(-ENOMEM);
844		ms->usage = usage;
845	}
846
847	rc = fill_subsection_map(pfn, nr_pages);
848	if (rc) {
849		if (usage)
850			ms->usage = NULL;
851		kfree(usage);
852		return ERR_PTR(rc);
853	}
854
855	/*
856	 * The early init code does not consider partially populated
857	 * initial sections, it simply assumes that memory will never be
858	 * referenced.  If we hot-add memory into such a section then we
859	 * do not need to populate the memmap and can simply reuse what
860	 * is already there.
861	 */
862	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
863		return pfn_to_page(pfn);
864
865	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
866	if (!memmap) {
867		section_deactivate(pfn, nr_pages, altmap);
868		return ERR_PTR(-ENOMEM);
869	}
870
871	return memmap;
872}
873
874/**
875 * sparse_add_section - add a memory section, or populate an existing one
876 * @nid: The node to add section on
877 * @start_pfn: start pfn of the memory range
878 * @nr_pages: number of pfns to add in the section
879 * @altmap: alternate pfns to allocate the memmap backing store
880 * @pgmap: alternate compound page geometry for devmap mappings
881 *
882 * This is only intended for hotplug.
883 *
884 * Note that only VMEMMAP supports sub-section aligned hotplug,
885 * the proper alignment and size are gated by check_pfn_span().
886 *
887 *
888 * Return:
889 * * 0		- On success.
890 * * -EEXIST	- Section has been present.
891 * * -ENOMEM	- Out of memory.
892 */
893int __meminit sparse_add_section(int nid, unsigned long start_pfn,
894		unsigned long nr_pages, struct vmem_altmap *altmap,
895		struct dev_pagemap *pgmap)
896{
897	unsigned long section_nr = pfn_to_section_nr(start_pfn);
898	struct mem_section *ms;
899	struct page *memmap;
900	int ret;
901
902	ret = sparse_index_init(section_nr, nid);
903	if (ret < 0)
904		return ret;
905
906	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
907	if (IS_ERR(memmap))
908		return PTR_ERR(memmap);
909
910	/*
911	 * Poison uninitialized struct pages in order to catch invalid flags
912	 * combinations.
913	 */
914	if (!altmap || !altmap->inaccessible)
915		page_init_poison(memmap, sizeof(struct page) * nr_pages);
916
917	ms = __nr_to_section(section_nr);
918	set_section_nid(section_nr, nid);
919	__section_mark_present(ms, section_nr);
920
921	/* Align memmap to section boundary in the subsection case */
922	if (section_nr_to_pfn(section_nr) != start_pfn)
923		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
924	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
925
926	return 0;
927}
928
929void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
930			   struct vmem_altmap *altmap)
 
931{
932	struct mem_section *ms = __pfn_to_section(pfn);
933
934	if (WARN_ON_ONCE(!valid_section(ms)))
935		return;
936
937	section_deactivate(pfn, nr_pages, altmap);
938}
939#endif /* CONFIG_MEMORY_HOTPLUG */