Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/bootmem_info.h>
 17
 18#include "internal.h"
 19#include <asm/dma.h>
 
 
 20
 21/*
 22 * Permanent SPARSEMEM data:
 23 *
 24 * 1) mem_section	- memory sections, mem_map's for valid memory
 25 */
 26#ifdef CONFIG_SPARSEMEM_EXTREME
 27struct mem_section **mem_section;
 
 28#else
 29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 30	____cacheline_internodealigned_in_smp;
 31#endif
 32EXPORT_SYMBOL(mem_section);
 33
 34#ifdef NODE_NOT_IN_PAGE_FLAGS
 35/*
 36 * If we did not store the node number in the page then we have to
 37 * do a lookup in the section_to_node_table in order to find which
 38 * node the page belongs to.
 39 */
 40#if MAX_NUMNODES <= 256
 41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 42#else
 43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 44#endif
 45
 46int page_to_nid(const struct page *page)
 47{
 48	return section_to_node_table[page_to_section(page)];
 49}
 50EXPORT_SYMBOL(page_to_nid);
 51
 52static void set_section_nid(unsigned long section_nr, int nid)
 53{
 54	section_to_node_table[section_nr] = nid;
 55}
 56#else /* !NODE_NOT_IN_PAGE_FLAGS */
 57static inline void set_section_nid(unsigned long section_nr, int nid)
 58{
 59}
 60#endif
 61
 62#ifdef CONFIG_SPARSEMEM_EXTREME
 63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 64{
 65	struct mem_section *section = NULL;
 66	unsigned long array_size = SECTIONS_PER_ROOT *
 67				   sizeof(struct mem_section);
 68
 69	if (slab_is_available()) {
 70		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 
 
 
 71	} else {
 72		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 73					      nid);
 74		if (!section)
 75			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 76			      __func__, array_size, nid);
 77	}
 78
 79	return section;
 80}
 81
 82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 83{
 84	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 85	struct mem_section *section;
 86
 87	/*
 88	 * An existing section is possible in the sub-section hotplug
 89	 * case. First hot-add instantiates, follow-on hot-add reuses
 90	 * the existing section.
 91	 *
 92	 * The mem_hotplug_lock resolves the apparent race below.
 93	 */
 94	if (mem_section[root])
 95		return 0;
 96
 97	section = sparse_index_alloc(nid);
 98	if (!section)
 99		return -ENOMEM;
100
101	mem_section[root] = section;
102
103	return 0;
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108	return 0;
109}
110#endif
111
112/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113 * During early boot, before section_mem_map is used for an actual
114 * mem_map, we use section_mem_map to store the section's NUMA
115 * node.  This keeps us from having to use another data structure.  The
116 * node information is cleared just before we store the real mem_map.
117 */
118static inline unsigned long sparse_encode_early_nid(int nid)
119{
120	return ((unsigned long)nid << SECTION_NID_SHIFT);
121}
122
123static inline int sparse_early_nid(struct mem_section *section)
124{
125	return (section->section_mem_map >> SECTION_NID_SHIFT);
126}
127
128/* Validate the physical addressing limitations of the model */
129static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130						unsigned long *end_pfn)
131{
132	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
133
134	/*
135	 * Sanity checks - do not allow an architecture to pass
136	 * in larger pfns than the maximum scope of sparsemem:
137	 */
138	if (*start_pfn > max_sparsemem_pfn) {
139		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141			*start_pfn, *end_pfn, max_sparsemem_pfn);
142		WARN_ON_ONCE(1);
143		*start_pfn = max_sparsemem_pfn;
144		*end_pfn = max_sparsemem_pfn;
145	} else if (*end_pfn > max_sparsemem_pfn) {
146		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148			*start_pfn, *end_pfn, max_sparsemem_pfn);
149		WARN_ON_ONCE(1);
150		*end_pfn = max_sparsemem_pfn;
151	}
152}
153
154/*
155 * There are a number of times that we loop over NR_MEM_SECTIONS,
156 * looking for section_present() on each.  But, when we have very
157 * large physical address spaces, NR_MEM_SECTIONS can also be
158 * very large which makes the loops quite long.
159 *
160 * Keeping track of this gives us an easy way to break out of
161 * those loops early.
162 */
163unsigned long __highest_present_section_nr;
164static void __section_mark_present(struct mem_section *ms,
165		unsigned long section_nr)
166{
167	if (section_nr > __highest_present_section_nr)
168		__highest_present_section_nr = section_nr;
169
170	ms->section_mem_map |= SECTION_MARKED_PRESENT;
171}
172
173#define for_each_present_section_nr(start, section_nr)		\
174	for (section_nr = next_present_section_nr(start-1);	\
175	     ((section_nr != -1) &&				\
176	      (section_nr <= __highest_present_section_nr));	\
177	     section_nr = next_present_section_nr(section_nr))
178
179static inline unsigned long first_present_section_nr(void)
180{
181	return next_present_section_nr(-1);
182}
183
184#ifdef CONFIG_SPARSEMEM_VMEMMAP
185static void subsection_mask_set(unsigned long *map, unsigned long pfn,
186		unsigned long nr_pages)
187{
188	int idx = subsection_map_index(pfn);
189	int end = subsection_map_index(pfn + nr_pages - 1);
190
191	bitmap_set(map, idx, end - idx + 1);
192}
193
194void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
195{
196	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
197	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
198
199	if (!nr_pages)
200		return;
201
202	for (nr = start_sec; nr <= end_sec; nr++) {
203		struct mem_section *ms;
204		unsigned long pfns;
205
206		pfns = min(nr_pages, PAGES_PER_SECTION
207				- (pfn & ~PAGE_SECTION_MASK));
208		ms = __nr_to_section(nr);
209		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
210
211		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
212				pfns, subsection_map_index(pfn),
213				subsection_map_index(pfn + pfns - 1));
214
215		pfn += pfns;
216		nr_pages -= pfns;
217	}
218}
219#else
220void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221{
222}
223#endif
224
225/* Record a memory area against a node. */
226static void __init memory_present(int nid, unsigned long start, unsigned long end)
227{
228	unsigned long pfn;
229
230#ifdef CONFIG_SPARSEMEM_EXTREME
231	if (unlikely(!mem_section)) {
232		unsigned long size, align;
233
234		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
235		align = 1 << (INTERNODE_CACHE_SHIFT);
236		mem_section = memblock_alloc(size, align);
237		if (!mem_section)
238			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
239			      __func__, size, align);
240	}
241#endif
242
243	start &= PAGE_SECTION_MASK;
244	mminit_validate_memmodel_limits(&start, &end);
245	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
246		unsigned long section = pfn_to_section_nr(pfn);
247		struct mem_section *ms;
248
249		sparse_index_init(section, nid);
250		set_section_nid(section, nid);
251
252		ms = __nr_to_section(section);
253		if (!ms->section_mem_map) {
254			ms->section_mem_map = sparse_encode_early_nid(nid) |
255							SECTION_IS_ONLINE;
256			__section_mark_present(ms, section);
257		}
258	}
259}
260
261/*
262 * Mark all memblocks as present using memory_present().
263 * This is a convenience function that is useful to mark all of the systems
264 * memory as present during initialization.
265 */
266static void __init memblocks_present(void)
 
267{
268	unsigned long start, end;
269	int i, nid;
270
271	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
272		memory_present(nid, start, end);
 
 
 
 
 
 
 
 
273}
274
275/*
276 * Subtle, we encode the real pfn into the mem_map such that
277 * the identity pfn - section_mem_map will return the actual
278 * physical page frame number.
279 */
280static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
281{
282	unsigned long coded_mem_map =
283		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
284	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
285	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
286	return coded_mem_map;
287}
288
289#ifdef CONFIG_MEMORY_HOTPLUG
290/*
291 * Decode mem_map from the coded memmap
292 */
293struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
294{
295	/* mask off the extra low bits of information */
296	coded_mem_map &= SECTION_MAP_MASK;
297	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
298}
299#endif /* CONFIG_MEMORY_HOTPLUG */
300
301static void __meminit sparse_init_one_section(struct mem_section *ms,
302		unsigned long pnum, struct page *mem_map,
303		struct mem_section_usage *usage, unsigned long flags)
304{
 
 
 
305	ms->section_mem_map &= ~SECTION_MAP_MASK;
306	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
307		| SECTION_HAS_MEM_MAP | flags;
308	ms->usage = usage;
309}
310
311static unsigned long usemap_size(void)
312{
313	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
314}
315
316size_t mem_section_usage_size(void)
317{
318	return sizeof(struct mem_section_usage) + usemap_size();
 
 
 
319}
320
321static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
 
322{
323#ifndef CONFIG_NUMA
324	VM_BUG_ON(pgdat != &contig_page_data);
325	return __pa_symbol(&contig_page_data);
326#else
327	return __pa(pgdat);
328#endif
329}
 
330
331#ifdef CONFIG_MEMORY_HOTREMOVE
332static struct mem_section_usage * __init
333sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
334					 unsigned long size)
335{
336	struct mem_section_usage *usage;
337	unsigned long goal, limit;
 
338	int nid;
339	/*
340	 * A page may contain usemaps for other sections preventing the
341	 * page being freed and making a section unremovable while
342	 * other sections referencing the usemap remain active. Similarly,
343	 * a pgdat can prevent a section being removed. If section A
344	 * contains a pgdat and section B contains the usemap, both
345	 * sections become inter-dependent. This allocates usemaps
346	 * from the same section as the pgdat where possible to avoid
347	 * this problem.
348	 */
349	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
350	limit = goal + (1UL << PA_SECTION_SHIFT);
351	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
352again:
353	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
354	if (!usage && limit) {
 
 
355		limit = 0;
356		goto again;
357	}
358	return usage;
359}
360
361static void __init check_usemap_section_nr(int nid,
362		struct mem_section_usage *usage)
363{
364	unsigned long usemap_snr, pgdat_snr;
365	static unsigned long old_usemap_snr;
366	static unsigned long old_pgdat_snr;
367	struct pglist_data *pgdat = NODE_DATA(nid);
368	int usemap_nid;
369
370	/* First call */
371	if (!old_usemap_snr) {
372		old_usemap_snr = NR_MEM_SECTIONS;
373		old_pgdat_snr = NR_MEM_SECTIONS;
374	}
375
376	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
377	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
378	if (usemap_snr == pgdat_snr)
379		return;
380
381	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
382		/* skip redundant message */
383		return;
384
385	old_usemap_snr = usemap_snr;
386	old_pgdat_snr = pgdat_snr;
387
388	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
389	if (usemap_nid != nid) {
390		pr_info("node %d must be removed before remove section %ld\n",
391			nid, usemap_snr);
 
392		return;
393	}
394	/*
395	 * There is a circular dependency.
396	 * Some platforms allow un-removable section because they will just
397	 * gather other removable sections for dynamic partitioning.
398	 * Just notify un-removable section's number here.
399	 */
400	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
401		usemap_snr, pgdat_snr, nid);
 
 
402}
403#else
404static struct mem_section_usage * __init
405sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
406					 unsigned long size)
407{
408	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
409}
410
411static void __init check_usemap_section_nr(int nid,
412		struct mem_section_usage *usage)
413{
414}
415#endif /* CONFIG_MEMORY_HOTREMOVE */
416
417#ifdef CONFIG_SPARSEMEM_VMEMMAP
418static unsigned long __init section_map_size(void)
 
 
419{
420	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
421}
 
 
422
423#else
424static unsigned long __init section_map_size(void)
425{
426	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 
 
 
 
 
 
 
 
 
 
427}
428
429struct page __init *__populate_section_memmap(unsigned long pfn,
430		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
431		struct dev_pagemap *pgmap)
432{
433	unsigned long size = section_map_size();
434	struct page *map = sparse_buffer_alloc(size);
435	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
436
 
437	if (map)
438		return map;
439
440	map = memmap_alloc(size, size, addr, nid, false);
441	if (!map)
442		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
443		      __func__, size, PAGE_SIZE, nid, &addr);
444
445	return map;
446}
447#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
448
449static void *sparsemap_buf __meminitdata;
450static void *sparsemap_buf_end __meminitdata;
451
452static inline void __meminit sparse_buffer_free(unsigned long size)
453{
454	WARN_ON(!sparsemap_buf || size == 0);
455	memblock_free(sparsemap_buf, size);
456}
457
458static void __init sparse_buffer_init(unsigned long size, int nid)
459{
460	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
461	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
462	/*
463	 * Pre-allocated buffer is mainly used by __populate_section_memmap
464	 * and we want it to be properly aligned to the section size - this is
465	 * especially the case for VMEMMAP which maps memmap to PMDs
466	 */
467	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
468	sparsemap_buf_end = sparsemap_buf + size;
469}
470
471static void __init sparse_buffer_fini(void)
472{
473	unsigned long size = sparsemap_buf_end - sparsemap_buf;
 
 
 
 
 
 
 
 
 
 
474
475	if (sparsemap_buf && size > 0)
476		sparse_buffer_free(size);
477	sparsemap_buf = NULL;
 
 
 
 
 
 
 
 
 
 
 
478}
 
479
480void * __meminit sparse_buffer_alloc(unsigned long size)
 
 
 
 
 
 
 
 
 
 
 
481{
482	void *ptr = NULL;
 
 
483
484	if (sparsemap_buf) {
485		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
486		if (ptr + size > sparsemap_buf_end)
487			ptr = NULL;
488		else {
489			/* Free redundant aligned space */
490			if ((unsigned long)(ptr - sparsemap_buf) > 0)
491				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
492			sparsemap_buf = ptr + size;
493		}
494	}
495	return ptr;
496}
 
497
498void __weak __meminit vmemmap_populate_print_last(void)
499{
500}
501
502/*
503 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
504 * And number of present sections in this node is map_count.
505 */
506static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
507				   unsigned long pnum_end,
508				   unsigned long map_count)
509{
510	struct mem_section_usage *usage;
511	unsigned long pnum;
512	struct page *map;
 
 
513
514	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
515			mem_section_usage_size() * map_count);
516	if (!usage) {
517		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
518		goto failed;
519	}
520	sparse_buffer_init(map_count * section_map_size(), nid);
521	for_each_present_section_nr(pnum_begin, pnum) {
522		unsigned long pfn = section_nr_to_pfn(pnum);
523
524		if (pnum >= pnum_end)
525			break;
526
527		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
528				nid, NULL, NULL);
529		if (!map) {
530			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
531			       __func__, nid);
532			pnum_begin = pnum;
533			sparse_buffer_fini();
534			goto failed;
535		}
536		check_usemap_section_nr(nid, usage);
537		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
538				SECTION_IS_EARLY);
539		usage = (void *) usage + mem_section_usage_size();
540	}
541	sparse_buffer_fini();
542	return;
543failed:
544	/* We failed to allocate, mark all the following pnums as not present */
545	for_each_present_section_nr(pnum_begin, pnum) {
546		struct mem_section *ms;
547
548		if (pnum >= pnum_end)
549			break;
550		ms = __nr_to_section(pnum);
551		ms->section_mem_map = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552	}
 
 
 
553}
554
555/*
556 * Allocate the accumulated non-linear sections, allocate a mem_map
557 * for each and record the physical to section mapping.
558 */
559void __init sparse_init(void)
560{
561	unsigned long pnum_end, pnum_begin, map_count = 1;
562	int nid_begin;
563
564	memblocks_present();
 
 
 
 
 
565
566	pnum_begin = first_present_section_nr();
567	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
568
569	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
570	set_pageblock_order();
571
572	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
573		int nid = sparse_early_nid(__nr_to_section(pnum_end));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574
575		if (nid == nid_begin) {
576			map_count++;
577			continue;
578		}
579		/* Init node with sections in range [pnum_begin, pnum_end) */
580		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
581		nid_begin = nid;
582		pnum_begin = pnum_end;
583		map_count = 1;
584	}
585	/* cover the last node */
586	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
587	vmemmap_populate_print_last();
588}
589
590#ifdef CONFIG_MEMORY_HOTPLUG
591
592/* Mark all memory sections within the pfn range as online */
593void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
594{
595	unsigned long pfn;
596
597	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
598		unsigned long section_nr = pfn_to_section_nr(pfn);
599		struct mem_section *ms;
600
601		/* onlining code should never touch invalid ranges */
602		if (WARN_ON(!valid_section_nr(section_nr)))
 
 
 
 
603			continue;
604
605		ms = __nr_to_section(section_nr);
606		ms->section_mem_map |= SECTION_IS_ONLINE;
607	}
608}
609
610/* Mark all memory sections within the pfn range as offline */
611void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
612{
613	unsigned long pfn;
614
615	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
616		unsigned long section_nr = pfn_to_section_nr(pfn);
617		struct mem_section *ms;
618
619		/*
620		 * TODO this needs some double checking. Offlining code makes
621		 * sure to check pfn_valid but those checks might be just bogus
622		 */
623		if (WARN_ON(!valid_section_nr(section_nr)))
624			continue;
625
626		ms = __nr_to_section(section_nr);
627		ms->section_mem_map &= ~SECTION_IS_ONLINE;
628	}
 
629}
630
 
631#ifdef CONFIG_SPARSEMEM_VMEMMAP
632static struct page * __meminit populate_section_memmap(unsigned long pfn,
633		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
634		struct dev_pagemap *pgmap)
635{
636	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
 
637}
638
639static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
640		struct vmem_altmap *altmap)
641{
642	unsigned long start = (unsigned long) pfn_to_page(pfn);
643	unsigned long end = start + nr_pages * sizeof(struct page);
644
645	vmemmap_free(start, end, altmap);
646}
 
647static void free_map_bootmem(struct page *memmap)
648{
649	unsigned long start = (unsigned long)memmap;
650	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
651
652	vmemmap_free(start, end, NULL);
653}
654
655static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
 
656{
657	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
658	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
659	struct mem_section *ms = __pfn_to_section(pfn);
660	unsigned long *subsection_map = ms->usage
661		? &ms->usage->subsection_map[0] : NULL;
662
663	subsection_mask_set(map, pfn, nr_pages);
664	if (subsection_map)
665		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
666
667	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
668				"section already deactivated (%#lx + %ld)\n",
669				pfn, nr_pages))
670		return -EINVAL;
671
672	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
673	return 0;
674}
 
675
676static bool is_subsection_map_empty(struct mem_section *ms)
677{
678	return bitmap_empty(&ms->usage->subsection_map[0],
679			    SUBSECTIONS_PER_SECTION);
680}
681
682static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
683{
684	struct mem_section *ms = __pfn_to_section(pfn);
685	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
686	unsigned long *subsection_map;
687	int rc = 0;
688
689	subsection_mask_set(map, pfn, nr_pages);
690
691	subsection_map = &ms->usage->subsection_map[0];
692
693	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
694		rc = -EINVAL;
695	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
696		rc = -EEXIST;
697	else
698		bitmap_or(subsection_map, map, subsection_map,
699				SUBSECTIONS_PER_SECTION);
700
701	return rc;
702}
703#else
704struct page * __meminit populate_section_memmap(unsigned long pfn,
705		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
706		struct dev_pagemap *pgmap)
707{
708	return kvmalloc_node(array_size(sizeof(struct page),
709					PAGES_PER_SECTION), GFP_KERNEL, nid);
710}
711
712static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
713		struct vmem_altmap *altmap)
714{
715	kvfree(pfn_to_page(pfn));
 
 
 
 
716}
717
 
718static void free_map_bootmem(struct page *memmap)
719{
720	unsigned long maps_section_nr, removing_section_nr, i;
721	unsigned long magic, nr_pages;
722	struct page *page = virt_to_page(memmap);
723
724	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
725		>> PAGE_SHIFT;
726
727	for (i = 0; i < nr_pages; i++, page++) {
728		magic = page->index;
729
730		BUG_ON(magic == NODE_INFO);
731
732		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
733		removing_section_nr = page_private(page);
734
735		/*
736		 * When this function is called, the removing section is
737		 * logical offlined state. This means all pages are isolated
738		 * from page allocator. If removing section's memmap is placed
739		 * on the same section, it must not be freed.
740		 * If it is freed, page allocator may allocate it which will
741		 * be removed physically soon.
742		 */
743		if (maps_section_nr != removing_section_nr)
744			put_page_bootmem(page);
745	}
746}
747
748static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
749{
750	return 0;
751}
752
753static bool is_subsection_map_empty(struct mem_section *ms)
754{
755	return true;
756}
757
758static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
759{
760	return 0;
761}
762#endif /* CONFIG_SPARSEMEM_VMEMMAP */
763
764/*
765 * To deactivate a memory region, there are 3 cases to handle across
766 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
767 *
768 * 1. deactivation of a partial hot-added section (only possible in
769 *    the SPARSEMEM_VMEMMAP=y case).
770 *      a) section was present at memory init.
771 *      b) section was hot-added post memory init.
772 * 2. deactivation of a complete hot-added section.
773 * 3. deactivation of a complete section from memory init.
774 *
775 * For 1, when subsection_map does not empty we will not be freeing the
776 * usage map, but still need to free the vmemmap range.
777 *
778 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
779 */
780static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
781		struct vmem_altmap *altmap)
782{
783	struct mem_section *ms = __pfn_to_section(pfn);
784	bool section_is_early = early_section(ms);
785	struct page *memmap = NULL;
786	bool empty;
 
 
 
787
788	if (clear_subsection_map(pfn, nr_pages))
789		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
790
791	empty = is_subsection_map_empty(ms);
792	if (empty) {
793		unsigned long section_nr = pfn_to_section_nr(pfn);
794
795		/*
796		 * When removing an early section, the usage map is kept (as the
797		 * usage maps of other sections fall into the same page). It
798		 * will be re-used when re-adding the section - which is then no
799		 * longer an early section. If the usage map is PageReserved, it
800		 * was allocated during boot.
801		 */
802		if (!PageReserved(virt_to_page(ms->usage))) {
803			kfree(ms->usage);
804			ms->usage = NULL;
805		}
806		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
807		/*
808		 * Mark the section invalid so that valid_section()
809		 * return false. This prevents code from dereferencing
810		 * ms->usage array.
811		 */
812		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
813	}
814
815	/*
816	 * The memmap of early sections is always fully populated. See
817	 * section_activate() and pfn_valid() .
818	 */
819	if (!section_is_early)
820		depopulate_section_memmap(pfn, nr_pages, altmap);
821	else if (memmap)
822		free_map_bootmem(memmap);
823
824	if (empty)
825		ms->section_mem_map = (unsigned long)NULL;
826}
827
828static struct page * __meminit section_activate(int nid, unsigned long pfn,
829		unsigned long nr_pages, struct vmem_altmap *altmap,
830		struct dev_pagemap *pgmap)
831{
832	struct mem_section *ms = __pfn_to_section(pfn);
833	struct mem_section_usage *usage = NULL;
834	struct page *memmap;
835	int rc = 0;
836
837	if (!ms->usage) {
838		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
839		if (!usage)
840			return ERR_PTR(-ENOMEM);
841		ms->usage = usage;
842	}
 
 
843
844	rc = fill_subsection_map(pfn, nr_pages);
845	if (rc) {
846		if (usage)
847			ms->usage = NULL;
848		kfree(usage);
849		return ERR_PTR(rc);
850	}
851
852	/*
853	 * The early init code does not consider partially populated
854	 * initial sections, it simply assumes that memory will never be
855	 * referenced.  If we hot-add memory into such a section then we
856	 * do not need to populate the memmap and can simply reuse what
857	 * is already there.
858	 */
859	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
860		return pfn_to_page(pfn);
861
862	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
863	if (!memmap) {
864		section_deactivate(pfn, nr_pages, altmap);
865		return ERR_PTR(-ENOMEM);
 
866	}
867
868	return memmap;
869}
870
871/**
872 * sparse_add_section - add a memory section, or populate an existing one
873 * @nid: The node to add section on
874 * @start_pfn: start pfn of the memory range
875 * @nr_pages: number of pfns to add in the section
876 * @altmap: alternate pfns to allocate the memmap backing store
877 * @pgmap: alternate compound page geometry for devmap mappings
878 *
879 * This is only intended for hotplug.
880 *
881 * Note that only VMEMMAP supports sub-section aligned hotplug,
882 * the proper alignment and size are gated by check_pfn_span().
883 *
884 *
885 * Return:
886 * * 0		- On success.
887 * * -EEXIST	- Section has been present.
888 * * -ENOMEM	- Out of memory.
889 */
890int __meminit sparse_add_section(int nid, unsigned long start_pfn,
891		unsigned long nr_pages, struct vmem_altmap *altmap,
892		struct dev_pagemap *pgmap)
893{
894	unsigned long section_nr = pfn_to_section_nr(start_pfn);
895	struct mem_section *ms;
896	struct page *memmap;
897	int ret;
898
899	ret = sparse_index_init(section_nr, nid);
900	if (ret < 0)
901		return ret;
902
903	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
904	if (IS_ERR(memmap))
905		return PTR_ERR(memmap);
906
 
907	/*
908	 * Poison uninitialized struct pages in order to catch invalid flags
909	 * combinations.
910	 */
911	page_init_poison(memmap, sizeof(struct page) * nr_pages);
 
 
 
 
 
912
913	ms = __nr_to_section(section_nr);
914	set_section_nid(section_nr, nid);
915	__section_mark_present(ms, section_nr);
916
917	/* Align memmap to section boundary in the subsection case */
918	if (section_nr_to_pfn(section_nr) != start_pfn)
919		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
920	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
921
922	return 0;
 
923}
924
925void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
926		unsigned long nr_pages, unsigned long map_offset,
927		struct vmem_altmap *altmap)
928{
929	section_deactivate(pfn, nr_pages, altmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930}
 
931#endif /* CONFIG_MEMORY_HOTPLUG */
v3.15
 
  1/*
  2 * sparse memory mappings.
  3 */
  4#include <linux/mm.h>
  5#include <linux/slab.h>
  6#include <linux/mmzone.h>
  7#include <linux/bootmem.h>
  8#include <linux/compiler.h>
  9#include <linux/highmem.h>
 10#include <linux/export.h>
 11#include <linux/spinlock.h>
 12#include <linux/vmalloc.h>
 
 
 
 13
 14#include "internal.h"
 15#include <asm/dma.h>
 16#include <asm/pgalloc.h>
 17#include <asm/pgtable.h>
 18
 19/*
 20 * Permanent SPARSEMEM data:
 21 *
 22 * 1) mem_section	- memory sections, mem_map's for valid memory
 23 */
 24#ifdef CONFIG_SPARSEMEM_EXTREME
 25struct mem_section *mem_section[NR_SECTION_ROOTS]
 26	____cacheline_internodealigned_in_smp;
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available()) {
 69		if (node_state(nid, N_HIGH_MEMORY))
 70			section = kzalloc_node(array_size, GFP_KERNEL, nid);
 71		else
 72			section = kzalloc(array_size, GFP_KERNEL);
 73	} else {
 74		section = memblock_virt_alloc_node(array_size, nid);
 
 
 
 
 75	}
 76
 77	return section;
 78}
 79
 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 81{
 82	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 83	struct mem_section *section;
 84
 
 
 
 
 
 
 
 85	if (mem_section[root])
 86		return -EEXIST;
 87
 88	section = sparse_index_alloc(nid);
 89	if (!section)
 90		return -ENOMEM;
 91
 92	mem_section[root] = section;
 93
 94	return 0;
 95}
 96#else /* !SPARSEMEM_EXTREME */
 97static inline int sparse_index_init(unsigned long section_nr, int nid)
 98{
 99	return 0;
100}
101#endif
102
103/*
104 * Although written for the SPARSEMEM_EXTREME case, this happens
105 * to also work for the flat array case because
106 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107 */
108int __section_nr(struct mem_section* ms)
109{
110	unsigned long root_nr;
111	struct mem_section* root;
112
113	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
114		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
115		if (!root)
116			continue;
117
118		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
119		     break;
120	}
121
122	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
123
124	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
125}
126
127/*
128 * During early boot, before section_mem_map is used for an actual
129 * mem_map, we use section_mem_map to store the section's NUMA
130 * node.  This keeps us from having to use another data structure.  The
131 * node information is cleared just before we store the real mem_map.
132 */
133static inline unsigned long sparse_encode_early_nid(int nid)
134{
135	return (nid << SECTION_NID_SHIFT);
136}
137
138static inline int sparse_early_nid(struct mem_section *section)
139{
140	return (section->section_mem_map >> SECTION_NID_SHIFT);
141}
142
143/* Validate the physical addressing limitations of the model */
144void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
145						unsigned long *end_pfn)
146{
147	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
148
149	/*
150	 * Sanity checks - do not allow an architecture to pass
151	 * in larger pfns than the maximum scope of sparsemem:
152	 */
153	if (*start_pfn > max_sparsemem_pfn) {
154		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
155			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
156			*start_pfn, *end_pfn, max_sparsemem_pfn);
157		WARN_ON_ONCE(1);
158		*start_pfn = max_sparsemem_pfn;
159		*end_pfn = max_sparsemem_pfn;
160	} else if (*end_pfn > max_sparsemem_pfn) {
161		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163			*start_pfn, *end_pfn, max_sparsemem_pfn);
164		WARN_ON_ONCE(1);
165		*end_pfn = max_sparsemem_pfn;
166	}
167}
168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169/* Record a memory area against a node. */
170void __init memory_present(int nid, unsigned long start, unsigned long end)
171{
172	unsigned long pfn;
173
 
 
 
 
 
 
 
 
 
 
 
 
 
174	start &= PAGE_SECTION_MASK;
175	mminit_validate_memmodel_limits(&start, &end);
176	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
177		unsigned long section = pfn_to_section_nr(pfn);
178		struct mem_section *ms;
179
180		sparse_index_init(section, nid);
181		set_section_nid(section, nid);
182
183		ms = __nr_to_section(section);
184		if (!ms->section_mem_map)
185			ms->section_mem_map = sparse_encode_early_nid(nid) |
186							SECTION_MARKED_PRESENT;
 
 
187	}
188}
189
190/*
191 * Only used by the i386 NUMA architecures, but relatively
192 * generic code.
 
193 */
194unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
195						     unsigned long end_pfn)
196{
197	unsigned long pfn;
198	unsigned long nr_pages = 0;
199
200	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
201	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
202		if (nid != early_pfn_to_nid(pfn))
203			continue;
204
205		if (pfn_present(pfn))
206			nr_pages += PAGES_PER_SECTION;
207	}
208
209	return nr_pages * sizeof(struct page);
210}
211
212/*
213 * Subtle, we encode the real pfn into the mem_map such that
214 * the identity pfn - section_mem_map will return the actual
215 * physical page frame number.
216 */
217static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
218{
219	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 
 
 
 
220}
221
 
222/*
223 * Decode mem_map from the coded memmap
224 */
225struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
226{
227	/* mask off the extra low bits of information */
228	coded_mem_map &= SECTION_MAP_MASK;
229	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
230}
 
231
232static int __meminit sparse_init_one_section(struct mem_section *ms,
233		unsigned long pnum, struct page *mem_map,
234		unsigned long *pageblock_bitmap)
235{
236	if (!present_section(ms))
237		return -EINVAL;
238
239	ms->section_mem_map &= ~SECTION_MAP_MASK;
240	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
241							SECTION_HAS_MEM_MAP;
242 	ms->pageblock_flags = pageblock_bitmap;
 
243
244	return 1;
 
 
245}
246
247unsigned long usemap_size(void)
248{
249	unsigned long size_bytes;
250	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
251	size_bytes = roundup(size_bytes, sizeof(unsigned long));
252	return size_bytes;
253}
254
255#ifdef CONFIG_MEMORY_HOTPLUG
256static unsigned long *__kmalloc_section_usemap(void)
257{
258	return kmalloc(usemap_size(), GFP_KERNEL);
 
 
 
 
 
259}
260#endif /* CONFIG_MEMORY_HOTPLUG */
261
262#ifdef CONFIG_MEMORY_HOTREMOVE
263static unsigned long * __init
264sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
265					 unsigned long size)
266{
 
267	unsigned long goal, limit;
268	unsigned long *p;
269	int nid;
270	/*
271	 * A page may contain usemaps for other sections preventing the
272	 * page being freed and making a section unremovable while
273	 * other sections referencing the usemap remain active. Similarly,
274	 * a pgdat can prevent a section being removed. If section A
275	 * contains a pgdat and section B contains the usemap, both
276	 * sections become inter-dependent. This allocates usemaps
277	 * from the same section as the pgdat where possible to avoid
278	 * this problem.
279	 */
280	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
281	limit = goal + (1UL << PA_SECTION_SHIFT);
282	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
283again:
284	p = memblock_virt_alloc_try_nid_nopanic(size,
285						SMP_CACHE_BYTES, goal, limit,
286						nid);
287	if (!p && limit) {
288		limit = 0;
289		goto again;
290	}
291	return p;
292}
293
294static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 
295{
296	unsigned long usemap_snr, pgdat_snr;
297	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299	struct pglist_data *pgdat = NODE_DATA(nid);
300	int usemap_nid;
301
302	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
 
 
 
 
 
 
304	if (usemap_snr == pgdat_snr)
305		return;
306
307	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308		/* skip redundant message */
309		return;
310
311	old_usemap_snr = usemap_snr;
312	old_pgdat_snr = pgdat_snr;
313
314	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315	if (usemap_nid != nid) {
316		printk(KERN_INFO
317		       "node %d must be removed before remove section %ld\n",
318		       nid, usemap_snr);
319		return;
320	}
321	/*
322	 * There is a circular dependency.
323	 * Some platforms allow un-removable section because they will just
324	 * gather other removable sections for dynamic partitioning.
325	 * Just notify un-removable section's number here.
326	 */
327	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328	       pgdat_snr, nid);
329	printk(KERN_CONT
330	       " have a circular dependency on usemap and pgdat allocations\n");
331}
332#else
333static unsigned long * __init
334sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335					 unsigned long size)
336{
337	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
338}
339
340static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 
341{
342}
343#endif /* CONFIG_MEMORY_HOTREMOVE */
344
345static void __init sparse_early_usemaps_alloc_node(void *data,
346				 unsigned long pnum_begin,
347				 unsigned long pnum_end,
348				 unsigned long usemap_count, int nodeid)
349{
350	void *usemap;
351	unsigned long pnum;
352	unsigned long **usemap_map = (unsigned long **)data;
353	int size = usemap_size();
354
355	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
356							  size * usemap_count);
357	if (!usemap) {
358		printk(KERN_WARNING "%s: allocation failed\n", __func__);
359		return;
360	}
361
362	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
363		if (!present_section_nr(pnum))
364			continue;
365		usemap_map[pnum] = usemap;
366		usemap += size;
367		check_usemap_section_nr(nodeid, usemap_map[pnum]);
368	}
369}
370
371#ifndef CONFIG_SPARSEMEM_VMEMMAP
372struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
 
373{
374	struct page *map;
375	unsigned long size;
 
376
377	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
378	if (map)
379		return map;
380
381	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
382	map = memblock_virt_alloc_try_nid(size,
383					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
384					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
 
385	return map;
386}
387void __init sparse_mem_maps_populate_node(struct page **map_map,
388					  unsigned long pnum_begin,
389					  unsigned long pnum_end,
390					  unsigned long map_count, int nodeid)
 
 
391{
392	void *map;
393	unsigned long pnum;
394	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
395
396	map = alloc_remap(nodeid, size * map_count);
397	if (map) {
398		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
399			if (!present_section_nr(pnum))
400				continue;
401			map_map[pnum] = map;
402			map += size;
403		}
404		return;
405	}
 
 
406
407	size = PAGE_ALIGN(size);
408	map = memblock_virt_alloc_try_nid(size * map_count,
409					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
410					  BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
411	if (map) {
412		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
413			if (!present_section_nr(pnum))
414				continue;
415			map_map[pnum] = map;
416			map += size;
417		}
418		return;
419	}
420
421	/* fallback */
422	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
423		struct mem_section *ms;
424
425		if (!present_section_nr(pnum))
426			continue;
427		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
428		if (map_map[pnum])
429			continue;
430		ms = __nr_to_section(pnum);
431		printk(KERN_ERR "%s: sparsemem memory map backing failed "
432			"some memory will not be available.\n", __func__);
433		ms->section_mem_map = 0;
434	}
435}
436#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
437
438#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
439static void __init sparse_early_mem_maps_alloc_node(void *data,
440				 unsigned long pnum_begin,
441				 unsigned long pnum_end,
442				 unsigned long map_count, int nodeid)
443{
444	struct page **map_map = (struct page **)data;
445	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
446					 map_count, nodeid);
447}
448#else
449static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
450{
451	struct page *map;
452	struct mem_section *ms = __nr_to_section(pnum);
453	int nid = sparse_early_nid(ms);
454
455	map = sparse_mem_map_populate(pnum, nid);
456	if (map)
457		return map;
458
459	printk(KERN_ERR "%s: sparsemem memory map backing failed "
460			"some memory will not be available.\n", __func__);
461	ms->section_mem_map = 0;
462	return NULL;
 
 
 
 
463}
464#endif
465
466void __weak __meminit vmemmap_populate_print_last(void)
467{
468}
469
470/**
471 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
472 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
473 */
474static void __init alloc_usemap_and_memmap(void (*alloc_func)
475					(void *, unsigned long, unsigned long,
476					unsigned long, int), void *data)
477{
 
478	unsigned long pnum;
479	unsigned long map_count;
480	int nodeid_begin = 0;
481	unsigned long pnum_begin = 0;
482
483	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484		struct mem_section *ms;
485
486		if (!present_section_nr(pnum))
487			continue;
488		ms = __nr_to_section(pnum);
489		nodeid_begin = sparse_early_nid(ms);
490		pnum_begin = pnum;
491		break;
492	}
493	map_count = 1;
494	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
495		struct mem_section *ms;
496		int nodeid;
497
498		if (!present_section_nr(pnum))
499			continue;
500		ms = __nr_to_section(pnum);
501		nodeid = sparse_early_nid(ms);
502		if (nodeid == nodeid_begin) {
503			map_count++;
504			continue;
505		}
506		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
507		alloc_func(data, pnum_begin, pnum,
508						map_count, nodeid_begin);
509		/* new start, update count etc*/
510		nodeid_begin = nodeid;
511		pnum_begin = pnum;
512		map_count = 1;
513	}
514	/* ok, last chunk */
515	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
516						map_count, nodeid_begin);
517}
518
519/*
520 * Allocate the accumulated non-linear sections, allocate a mem_map
521 * for each and record the physical to section mapping.
522 */
523void __init sparse_init(void)
524{
525	unsigned long pnum;
526	struct page *map;
527	unsigned long *usemap;
528	unsigned long **usemap_map;
529	int size;
530#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
531	int size2;
532	struct page **map_map;
533#endif
534
535	/* see include/linux/mmzone.h 'struct mem_section' definition */
536	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
537
538	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
539	set_pageblock_order();
540
541	/*
542	 * map is using big page (aka 2M in x86 64 bit)
543	 * usemap is less one page (aka 24 bytes)
544	 * so alloc 2M (with 2M align) and 24 bytes in turn will
545	 * make next 2M slip to one more 2M later.
546	 * then in big system, the memory will have a lot of holes...
547	 * here try to allocate 2M pages continuously.
548	 *
549	 * powerpc need to call sparse_init_one_section right after each
550	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
551	 */
552	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
553	usemap_map = memblock_virt_alloc(size, 0);
554	if (!usemap_map)
555		panic("can not allocate usemap_map\n");
556	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
557							(void *)usemap_map);
558
559#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
560	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
561	map_map = memblock_virt_alloc(size2, 0);
562	if (!map_map)
563		panic("can not allocate map_map\n");
564	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
565							(void *)map_map);
566#endif
567
568	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
569		if (!present_section_nr(pnum))
570			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571
572		usemap = usemap_map[pnum];
573		if (!usemap)
574			continue;
575
576#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
577		map = map_map[pnum];
578#else
579		map = sparse_early_mem_map_alloc(pnum);
580#endif
581		if (!map)
582			continue;
583
584		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
585								usemap);
586	}
 
 
 
 
 
 
 
 
 
 
587
588	vmemmap_populate_print_last();
 
 
 
 
 
589
590#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591	memblock_free_early(__pa(map_map), size2);
592#endif
593	memblock_free_early(__pa(usemap_map), size);
594}
595
596#ifdef CONFIG_MEMORY_HOTPLUG
597#ifdef CONFIG_SPARSEMEM_VMEMMAP
598static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
 
 
599{
600	/* This will make the necessary allocations eventually. */
601	return sparse_mem_map_populate(pnum, nid);
602}
603static void __kfree_section_memmap(struct page *memmap)
 
 
604{
605	unsigned long start = (unsigned long)memmap;
606	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
607
608	vmemmap_free(start, end);
609}
610#ifdef CONFIG_MEMORY_HOTREMOVE
611static void free_map_bootmem(struct page *memmap)
612{
613	unsigned long start = (unsigned long)memmap;
614	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
615
616	vmemmap_free(start, end);
617}
618#endif /* CONFIG_MEMORY_HOTREMOVE */
619#else
620static struct page *__kmalloc_section_memmap(void)
621{
622	struct page *page, *ret;
623	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
 
 
 
624
625	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
626	if (page)
627		goto got_map_page;
628
629	ret = vmalloc(memmap_size);
630	if (ret)
631		goto got_map_ptr;
 
632
633	return NULL;
634got_map_page:
635	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
636got_map_ptr:
637
638	return ret;
 
 
 
639}
640
641static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
642{
643	return __kmalloc_section_memmap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644}
645
646static void __kfree_section_memmap(struct page *memmap)
 
647{
648	if (is_vmalloc_addr(memmap))
649		vfree(memmap);
650	else
651		free_pages((unsigned long)memmap,
652			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
653}
654
655#ifdef CONFIG_MEMORY_HOTREMOVE
656static void free_map_bootmem(struct page *memmap)
657{
658	unsigned long maps_section_nr, removing_section_nr, i;
659	unsigned long magic, nr_pages;
660	struct page *page = virt_to_page(memmap);
661
662	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
663		>> PAGE_SHIFT;
664
665	for (i = 0; i < nr_pages; i++, page++) {
666		magic = (unsigned long) page->lru.next;
667
668		BUG_ON(magic == NODE_INFO);
669
670		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
671		removing_section_nr = page->private;
672
673		/*
674		 * When this function is called, the removing section is
675		 * logical offlined state. This means all pages are isolated
676		 * from page allocator. If removing section's memmap is placed
677		 * on the same section, it must not be freed.
678		 * If it is freed, page allocator may allocate it which will
679		 * be removed physically soon.
680		 */
681		if (maps_section_nr != removing_section_nr)
682			put_page_bootmem(page);
683	}
684}
685#endif /* CONFIG_MEMORY_HOTREMOVE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686#endif /* CONFIG_SPARSEMEM_VMEMMAP */
687
688/*
689 * returns the number of sections whose mem_maps were properly
690 * set.  If this is <=0, then that means that the passed-in
691 * map was not consumed and must be freed.
 
 
 
 
 
 
 
 
 
 
 
692 */
693int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
 
694{
695	unsigned long section_nr = pfn_to_section_nr(start_pfn);
696	struct pglist_data *pgdat = zone->zone_pgdat;
697	struct mem_section *ms;
698	struct page *memmap;
699	unsigned long *usemap;
700	unsigned long flags;
701	int ret;
702
703	/*
704	 * no locking for this, because it does its own
705	 * plus, it does a kmalloc
706	 */
707	ret = sparse_index_init(section_nr, pgdat->node_id);
708	if (ret < 0 && ret != -EEXIST)
709		return ret;
710	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
711	if (!memmap)
712		return -ENOMEM;
713	usemap = __kmalloc_section_usemap();
714	if (!usemap) {
715		__kfree_section_memmap(memmap);
716		return -ENOMEM;
717	}
718
719	pgdat_resize_lock(pgdat, &flags);
 
 
720
721	ms = __pfn_to_section(start_pfn);
722	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
723		ret = -EEXIST;
724		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725	}
726
727	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
 
 
 
 
 
 
 
728
729	ms->section_mem_map |= SECTION_MARKED_PRESENT;
 
 
730
731	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
 
 
 
 
 
 
 
732
733out:
734	pgdat_resize_unlock(pgdat, &flags);
735	if (ret <= 0) {
736		kfree(usemap);
737		__kfree_section_memmap(memmap);
738	}
739	return ret;
740}
741
742#ifdef CONFIG_MEMORY_HOTREMOVE
743#ifdef CONFIG_MEMORY_FAILURE
744static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
745{
746	int i;
 
 
747
748	if (!memmap)
749		return;
 
 
 
 
 
 
 
750
751	for (i = 0; i < PAGES_PER_SECTION; i++) {
752		if (PageHWPoison(&memmap[i])) {
753			atomic_long_sub(1, &num_poisoned_pages);
754			ClearPageHWPoison(&memmap[i]);
755		}
756	}
 
 
757}
758#else
759static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760{
761}
762#endif
 
 
763
764static void free_section_usemap(struct page *memmap, unsigned long *usemap)
765{
766	struct page *usemap_page;
767
768	if (!usemap)
769		return;
 
770
771	usemap_page = virt_to_page(usemap);
772	/*
773	 * Check to see if allocation came from hot-plug-add
 
774	 */
775	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
776		kfree(usemap);
777		if (memmap)
778			__kfree_section_memmap(memmap);
779		return;
780	}
781
782	/*
783	 * The usemap came from bootmem. This is packed with other usemaps
784	 * on the section which has pgdat at boot time. Just keep it as is now.
785	 */
 
 
 
 
786
787	if (memmap)
788		free_map_bootmem(memmap);
789}
790
791void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
 
 
792{
793	struct page *memmap = NULL;
794	unsigned long *usemap = NULL, flags;
795	struct pglist_data *pgdat = zone->zone_pgdat;
796
797	pgdat_resize_lock(pgdat, &flags);
798	if (ms->section_mem_map) {
799		usemap = ms->pageblock_flags;
800		memmap = sparse_decode_mem_map(ms->section_mem_map,
801						__section_nr(ms));
802		ms->section_mem_map = 0;
803		ms->pageblock_flags = NULL;
804	}
805	pgdat_resize_unlock(pgdat, &flags);
806
807	clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
808	free_section_usemap(memmap, usemap);
809}
810#endif /* CONFIG_MEMORY_HOTREMOVE */
811#endif /* CONFIG_MEMORY_HOTPLUG */