Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/bootmem_info.h>
 17
 18#include "internal.h"
 19#include <asm/dma.h>
 
 
 20
 21/*
 22 * Permanent SPARSEMEM data:
 23 *
 24 * 1) mem_section	- memory sections, mem_map's for valid memory
 25 */
 26#ifdef CONFIG_SPARSEMEM_EXTREME
 27struct mem_section **mem_section;
 28#else
 29struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 30	____cacheline_internodealigned_in_smp;
 31#endif
 32EXPORT_SYMBOL(mem_section);
 33
 34#ifdef NODE_NOT_IN_PAGE_FLAGS
 35/*
 36 * If we did not store the node number in the page then we have to
 37 * do a lookup in the section_to_node_table in order to find which
 38 * node the page belongs to.
 39 */
 40#if MAX_NUMNODES <= 256
 41static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 42#else
 43static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 44#endif
 45
 46int page_to_nid(const struct page *page)
 47{
 48	return section_to_node_table[page_to_section(page)];
 49}
 50EXPORT_SYMBOL(page_to_nid);
 51
 52static void set_section_nid(unsigned long section_nr, int nid)
 53{
 54	section_to_node_table[section_nr] = nid;
 55}
 56#else /* !NODE_NOT_IN_PAGE_FLAGS */
 57static inline void set_section_nid(unsigned long section_nr, int nid)
 58{
 59}
 60#endif
 61
 62#ifdef CONFIG_SPARSEMEM_EXTREME
 63static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 64{
 65	struct mem_section *section = NULL;
 66	unsigned long array_size = SECTIONS_PER_ROOT *
 67				   sizeof(struct mem_section);
 68
 69	if (slab_is_available()) {
 70		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 71	} else {
 72		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 73					      nid);
 74		if (!section)
 75			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 76			      __func__, array_size, nid);
 77	}
 78
 79	return section;
 80}
 81
 82static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 83{
 84	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 85	struct mem_section *section;
 86
 87	/*
 88	 * An existing section is possible in the sub-section hotplug
 89	 * case. First hot-add instantiates, follow-on hot-add reuses
 90	 * the existing section.
 91	 *
 92	 * The mem_hotplug_lock resolves the apparent race below.
 93	 */
 94	if (mem_section[root])
 95		return 0;
 96
 97	section = sparse_index_alloc(nid);
 98	if (!section)
 99		return -ENOMEM;
100
101	mem_section[root] = section;
102
103	return 0;
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108	return 0;
109}
110#endif
111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112/*
113 * During early boot, before section_mem_map is used for an actual
114 * mem_map, we use section_mem_map to store the section's NUMA
115 * node.  This keeps us from having to use another data structure.  The
116 * node information is cleared just before we store the real mem_map.
117 */
118static inline unsigned long sparse_encode_early_nid(int nid)
119{
120	return ((unsigned long)nid << SECTION_NID_SHIFT);
121}
122
123static inline int sparse_early_nid(struct mem_section *section)
124{
125	return (section->section_mem_map >> SECTION_NID_SHIFT);
126}
127
128/* Validate the physical addressing limitations of the model */
129static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130						unsigned long *end_pfn)
131{
132	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
133
134	/*
135	 * Sanity checks - do not allow an architecture to pass
136	 * in larger pfns than the maximum scope of sparsemem:
137	 */
138	if (*start_pfn > max_sparsemem_pfn) {
139		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141			*start_pfn, *end_pfn, max_sparsemem_pfn);
142		WARN_ON_ONCE(1);
143		*start_pfn = max_sparsemem_pfn;
144		*end_pfn = max_sparsemem_pfn;
145	} else if (*end_pfn > max_sparsemem_pfn) {
146		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148			*start_pfn, *end_pfn, max_sparsemem_pfn);
149		WARN_ON_ONCE(1);
150		*end_pfn = max_sparsemem_pfn;
151	}
152}
153
154/*
155 * There are a number of times that we loop over NR_MEM_SECTIONS,
156 * looking for section_present() on each.  But, when we have very
157 * large physical address spaces, NR_MEM_SECTIONS can also be
158 * very large which makes the loops quite long.
159 *
160 * Keeping track of this gives us an easy way to break out of
161 * those loops early.
162 */
163unsigned long __highest_present_section_nr;
164static void __section_mark_present(struct mem_section *ms,
165		unsigned long section_nr)
166{
 
 
167	if (section_nr > __highest_present_section_nr)
168		__highest_present_section_nr = section_nr;
169
170	ms->section_mem_map |= SECTION_MARKED_PRESENT;
171}
172
 
 
 
 
 
 
 
 
 
 
173#define for_each_present_section_nr(start, section_nr)		\
174	for (section_nr = next_present_section_nr(start-1);	\
175	     ((section_nr != -1) &&				\
176	      (section_nr <= __highest_present_section_nr));	\
177	     section_nr = next_present_section_nr(section_nr))
178
179static inline unsigned long first_present_section_nr(void)
180{
181	return next_present_section_nr(-1);
182}
183
184#ifdef CONFIG_SPARSEMEM_VMEMMAP
185static void subsection_mask_set(unsigned long *map, unsigned long pfn,
186		unsigned long nr_pages)
187{
188	int idx = subsection_map_index(pfn);
189	int end = subsection_map_index(pfn + nr_pages - 1);
190
191	bitmap_set(map, idx, end - idx + 1);
192}
193
194void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
195{
196	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
197	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
198
199	if (!nr_pages)
200		return;
201
202	for (nr = start_sec; nr <= end_sec; nr++) {
203		struct mem_section *ms;
204		unsigned long pfns;
205
206		pfns = min(nr_pages, PAGES_PER_SECTION
207				- (pfn & ~PAGE_SECTION_MASK));
208		ms = __nr_to_section(nr);
209		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
210
211		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
212				pfns, subsection_map_index(pfn),
213				subsection_map_index(pfn + pfns - 1));
214
215		pfn += pfns;
216		nr_pages -= pfns;
217	}
218}
219#else
220void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221{
222}
223#endif
224
225/* Record a memory area against a node. */
226static void __init memory_present(int nid, unsigned long start, unsigned long end)
227{
228	unsigned long pfn;
229
230#ifdef CONFIG_SPARSEMEM_EXTREME
231	if (unlikely(!mem_section)) {
232		unsigned long size, align;
233
234		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
235		align = 1 << (INTERNODE_CACHE_SHIFT);
236		mem_section = memblock_alloc(size, align);
237		if (!mem_section)
238			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
239			      __func__, size, align);
240	}
241#endif
242
243	start &= PAGE_SECTION_MASK;
244	mminit_validate_memmodel_limits(&start, &end);
245	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
246		unsigned long section = pfn_to_section_nr(pfn);
247		struct mem_section *ms;
248
249		sparse_index_init(section, nid);
250		set_section_nid(section, nid);
251
252		ms = __nr_to_section(section);
253		if (!ms->section_mem_map) {
254			ms->section_mem_map = sparse_encode_early_nid(nid) |
255							SECTION_IS_ONLINE;
256			__section_mark_present(ms, section);
257		}
258	}
259}
260
261/*
262 * Mark all memblocks as present using memory_present().
263 * This is a convenience function that is useful to mark all of the systems
264 * memory as present during initialization.
265 */
266static void __init memblocks_present(void)
267{
268	unsigned long start, end;
269	int i, nid;
270
271	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
272		memory_present(nid, start, end);
 
 
273}
274
275/*
276 * Subtle, we encode the real pfn into the mem_map such that
277 * the identity pfn - section_mem_map will return the actual
278 * physical page frame number.
279 */
280static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
281{
282	unsigned long coded_mem_map =
283		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
284	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
285	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
286	return coded_mem_map;
287}
288
289#ifdef CONFIG_MEMORY_HOTPLUG
290/*
291 * Decode mem_map from the coded memmap
292 */
293struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
294{
295	/* mask off the extra low bits of information */
296	coded_mem_map &= SECTION_MAP_MASK;
297	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
298}
299#endif /* CONFIG_MEMORY_HOTPLUG */
300
301static void __meminit sparse_init_one_section(struct mem_section *ms,
302		unsigned long pnum, struct page *mem_map,
303		struct mem_section_usage *usage, unsigned long flags)
304{
305	ms->section_mem_map &= ~SECTION_MAP_MASK;
306	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
307		| SECTION_HAS_MEM_MAP | flags;
308	ms->usage = usage;
309}
310
311static unsigned long usemap_size(void)
312{
313	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
314}
315
316size_t mem_section_usage_size(void)
317{
318	return sizeof(struct mem_section_usage) + usemap_size();
319}
320
321static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
322{
323#ifndef CONFIG_NUMA
324	VM_BUG_ON(pgdat != &contig_page_data);
325	return __pa_symbol(&contig_page_data);
326#else
327	return __pa(pgdat);
328#endif
329}
330
331#ifdef CONFIG_MEMORY_HOTREMOVE
332static struct mem_section_usage * __init
333sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
334					 unsigned long size)
335{
336	struct mem_section_usage *usage;
337	unsigned long goal, limit;
338	int nid;
339	/*
340	 * A page may contain usemaps for other sections preventing the
341	 * page being freed and making a section unremovable while
342	 * other sections referencing the usemap remain active. Similarly,
343	 * a pgdat can prevent a section being removed. If section A
344	 * contains a pgdat and section B contains the usemap, both
345	 * sections become inter-dependent. This allocates usemaps
346	 * from the same section as the pgdat where possible to avoid
347	 * this problem.
348	 */
349	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
350	limit = goal + (1UL << PA_SECTION_SHIFT);
351	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
352again:
353	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
354	if (!usage && limit) {
355		limit = 0;
356		goto again;
357	}
358	return usage;
359}
360
361static void __init check_usemap_section_nr(int nid,
362		struct mem_section_usage *usage)
363{
364	unsigned long usemap_snr, pgdat_snr;
365	static unsigned long old_usemap_snr;
366	static unsigned long old_pgdat_snr;
367	struct pglist_data *pgdat = NODE_DATA(nid);
368	int usemap_nid;
369
370	/* First call */
371	if (!old_usemap_snr) {
372		old_usemap_snr = NR_MEM_SECTIONS;
373		old_pgdat_snr = NR_MEM_SECTIONS;
374	}
375
376	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
377	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
378	if (usemap_snr == pgdat_snr)
379		return;
380
381	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
382		/* skip redundant message */
383		return;
384
385	old_usemap_snr = usemap_snr;
386	old_pgdat_snr = pgdat_snr;
387
388	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
389	if (usemap_nid != nid) {
390		pr_info("node %d must be removed before remove section %ld\n",
391			nid, usemap_snr);
392		return;
393	}
394	/*
395	 * There is a circular dependency.
396	 * Some platforms allow un-removable section because they will just
397	 * gather other removable sections for dynamic partitioning.
398	 * Just notify un-removable section's number here.
399	 */
400	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
401		usemap_snr, pgdat_snr, nid);
402}
403#else
404static struct mem_section_usage * __init
405sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
406					 unsigned long size)
407{
408	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
409}
410
411static void __init check_usemap_section_nr(int nid,
412		struct mem_section_usage *usage)
413{
414}
415#endif /* CONFIG_MEMORY_HOTREMOVE */
416
417#ifdef CONFIG_SPARSEMEM_VMEMMAP
418static unsigned long __init section_map_size(void)
419{
420	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
421}
422
423#else
424static unsigned long __init section_map_size(void)
425{
426	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
427}
428
429struct page __init *__populate_section_memmap(unsigned long pfn,
430		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
431		struct dev_pagemap *pgmap)
432{
433	unsigned long size = section_map_size();
434	struct page *map = sparse_buffer_alloc(size);
435	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
436
437	if (map)
438		return map;
439
440	map = memmap_alloc(size, size, addr, nid, false);
 
 
441	if (!map)
442		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
443		      __func__, size, PAGE_SIZE, nid, &addr);
444
445	return map;
446}
447#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
448
449static void *sparsemap_buf __meminitdata;
450static void *sparsemap_buf_end __meminitdata;
451
452static inline void __meminit sparse_buffer_free(unsigned long size)
453{
454	WARN_ON(!sparsemap_buf || size == 0);
455	memblock_free(sparsemap_buf, size);
456}
457
458static void __init sparse_buffer_init(unsigned long size, int nid)
459{
460	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
461	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
462	/*
463	 * Pre-allocated buffer is mainly used by __populate_section_memmap
464	 * and we want it to be properly aligned to the section size - this is
465	 * especially the case for VMEMMAP which maps memmap to PMDs
466	 */
467	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
468	sparsemap_buf_end = sparsemap_buf + size;
469}
470
471static void __init sparse_buffer_fini(void)
472{
473	unsigned long size = sparsemap_buf_end - sparsemap_buf;
474
475	if (sparsemap_buf && size > 0)
476		sparse_buffer_free(size);
477	sparsemap_buf = NULL;
478}
479
480void * __meminit sparse_buffer_alloc(unsigned long size)
481{
482	void *ptr = NULL;
483
484	if (sparsemap_buf) {
485		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
486		if (ptr + size > sparsemap_buf_end)
487			ptr = NULL;
488		else {
489			/* Free redundant aligned space */
490			if ((unsigned long)(ptr - sparsemap_buf) > 0)
491				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
492			sparsemap_buf = ptr + size;
493		}
494	}
495	return ptr;
496}
497
498void __weak __meminit vmemmap_populate_print_last(void)
499{
500}
501
502/*
503 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
504 * And number of present sections in this node is map_count.
505 */
506static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
507				   unsigned long pnum_end,
508				   unsigned long map_count)
509{
510	struct mem_section_usage *usage;
511	unsigned long pnum;
512	struct page *map;
513
514	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
515			mem_section_usage_size() * map_count);
516	if (!usage) {
517		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
518		goto failed;
519	}
520	sparse_buffer_init(map_count * section_map_size(), nid);
521	for_each_present_section_nr(pnum_begin, pnum) {
522		unsigned long pfn = section_nr_to_pfn(pnum);
523
524		if (pnum >= pnum_end)
525			break;
526
527		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
528				nid, NULL, NULL);
529		if (!map) {
530			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
531			       __func__, nid);
532			pnum_begin = pnum;
533			sparse_buffer_fini();
534			goto failed;
535		}
536		check_usemap_section_nr(nid, usage);
537		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
538				SECTION_IS_EARLY);
539		usage = (void *) usage + mem_section_usage_size();
540	}
541	sparse_buffer_fini();
542	return;
543failed:
544	/* We failed to allocate, mark all the following pnums as not present */
545	for_each_present_section_nr(pnum_begin, pnum) {
546		struct mem_section *ms;
547
548		if (pnum >= pnum_end)
549			break;
550		ms = __nr_to_section(pnum);
551		ms->section_mem_map = 0;
552	}
553}
554
555/*
556 * Allocate the accumulated non-linear sections, allocate a mem_map
557 * for each and record the physical to section mapping.
558 */
559void __init sparse_init(void)
560{
561	unsigned long pnum_end, pnum_begin, map_count = 1;
562	int nid_begin;
563
564	memblocks_present();
565
566	pnum_begin = first_present_section_nr();
567	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
568
569	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
570	set_pageblock_order();
571
572	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
573		int nid = sparse_early_nid(__nr_to_section(pnum_end));
574
575		if (nid == nid_begin) {
576			map_count++;
577			continue;
578		}
579		/* Init node with sections in range [pnum_begin, pnum_end) */
580		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
581		nid_begin = nid;
582		pnum_begin = pnum_end;
583		map_count = 1;
584	}
585	/* cover the last node */
586	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
587	vmemmap_populate_print_last();
588}
589
590#ifdef CONFIG_MEMORY_HOTPLUG
591
592/* Mark all memory sections within the pfn range as online */
593void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
594{
595	unsigned long pfn;
596
597	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
598		unsigned long section_nr = pfn_to_section_nr(pfn);
599		struct mem_section *ms;
600
601		/* onlining code should never touch invalid ranges */
602		if (WARN_ON(!valid_section_nr(section_nr)))
603			continue;
604
605		ms = __nr_to_section(section_nr);
606		ms->section_mem_map |= SECTION_IS_ONLINE;
607	}
608}
609
 
610/* Mark all memory sections within the pfn range as offline */
611void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
612{
613	unsigned long pfn;
614
615	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
616		unsigned long section_nr = pfn_to_section_nr(pfn);
617		struct mem_section *ms;
618
619		/*
620		 * TODO this needs some double checking. Offlining code makes
621		 * sure to check pfn_valid but those checks might be just bogus
622		 */
623		if (WARN_ON(!valid_section_nr(section_nr)))
624			continue;
625
626		ms = __nr_to_section(section_nr);
627		ms->section_mem_map &= ~SECTION_IS_ONLINE;
628	}
629}
 
630
631#ifdef CONFIG_SPARSEMEM_VMEMMAP
632static struct page * __meminit populate_section_memmap(unsigned long pfn,
633		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
634		struct dev_pagemap *pgmap)
635{
636	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
637}
638
639static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
640		struct vmem_altmap *altmap)
641{
642	unsigned long start = (unsigned long) pfn_to_page(pfn);
643	unsigned long end = start + nr_pages * sizeof(struct page);
644
645	vmemmap_free(start, end, altmap);
646}
647static void free_map_bootmem(struct page *memmap)
648{
649	unsigned long start = (unsigned long)memmap;
650	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
651
652	vmemmap_free(start, end, NULL);
653}
654
655static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
656{
657	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
658	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
659	struct mem_section *ms = __pfn_to_section(pfn);
660	unsigned long *subsection_map = ms->usage
661		? &ms->usage->subsection_map[0] : NULL;
662
663	subsection_mask_set(map, pfn, nr_pages);
664	if (subsection_map)
665		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
666
667	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
668				"section already deactivated (%#lx + %ld)\n",
669				pfn, nr_pages))
670		return -EINVAL;
671
672	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
673	return 0;
674}
675
676static bool is_subsection_map_empty(struct mem_section *ms)
677{
678	return bitmap_empty(&ms->usage->subsection_map[0],
679			    SUBSECTIONS_PER_SECTION);
680}
681
682static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
683{
684	struct mem_section *ms = __pfn_to_section(pfn);
685	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
686	unsigned long *subsection_map;
687	int rc = 0;
688
689	subsection_mask_set(map, pfn, nr_pages);
690
691	subsection_map = &ms->usage->subsection_map[0];
692
693	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
694		rc = -EINVAL;
695	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
696		rc = -EEXIST;
697	else
698		bitmap_or(subsection_map, map, subsection_map,
699				SUBSECTIONS_PER_SECTION);
 
700
701	return rc;
702}
703#else
704struct page * __meminit populate_section_memmap(unsigned long pfn,
705		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
706		struct dev_pagemap *pgmap)
707{
708	return kvmalloc_node(array_size(sizeof(struct page),
709					PAGES_PER_SECTION), GFP_KERNEL, nid);
710}
711
712static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
713		struct vmem_altmap *altmap)
714{
715	kvfree(pfn_to_page(pfn));
 
 
 
 
 
 
716}
717
718static void free_map_bootmem(struct page *memmap)
719{
720	unsigned long maps_section_nr, removing_section_nr, i;
721	unsigned long magic, nr_pages;
722	struct page *page = virt_to_page(memmap);
723
724	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
725		>> PAGE_SHIFT;
726
727	for (i = 0; i < nr_pages; i++, page++) {
728		magic = page->index;
729
730		BUG_ON(magic == NODE_INFO);
731
732		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
733		removing_section_nr = page_private(page);
734
735		/*
736		 * When this function is called, the removing section is
737		 * logical offlined state. This means all pages are isolated
738		 * from page allocator. If removing section's memmap is placed
739		 * on the same section, it must not be freed.
740		 * If it is freed, page allocator may allocate it which will
741		 * be removed physically soon.
742		 */
743		if (maps_section_nr != removing_section_nr)
744			put_page_bootmem(page);
745	}
746}
747
748static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
749{
750	return 0;
751}
752
753static bool is_subsection_map_empty(struct mem_section *ms)
754{
755	return true;
756}
757
758static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
759{
760	return 0;
761}
762#endif /* CONFIG_SPARSEMEM_VMEMMAP */
763
764/*
765 * To deactivate a memory region, there are 3 cases to handle across
766 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
767 *
768 * 1. deactivation of a partial hot-added section (only possible in
769 *    the SPARSEMEM_VMEMMAP=y case).
770 *      a) section was present at memory init.
771 *      b) section was hot-added post memory init.
772 * 2. deactivation of a complete hot-added section.
773 * 3. deactivation of a complete section from memory init.
774 *
775 * For 1, when subsection_map does not empty we will not be freeing the
776 * usage map, but still need to free the vmemmap range.
777 *
778 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
779 */
780static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
781		struct vmem_altmap *altmap)
782{
 
 
783	struct mem_section *ms = __pfn_to_section(pfn);
784	bool section_is_early = early_section(ms);
785	struct page *memmap = NULL;
786	bool empty;
 
 
 
 
 
787
788	if (clear_subsection_map(pfn, nr_pages))
 
 
789		return;
790
791	empty = is_subsection_map_empty(ms);
792	if (empty) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
793		unsigned long section_nr = pfn_to_section_nr(pfn);
794
795		/*
796		 * When removing an early section, the usage map is kept (as the
797		 * usage maps of other sections fall into the same page). It
798		 * will be re-used when re-adding the section - which is then no
799		 * longer an early section. If the usage map is PageReserved, it
800		 * was allocated during boot.
801		 */
802		if (!PageReserved(virt_to_page(ms->usage))) {
803			kfree(ms->usage);
804			ms->usage = NULL;
805		}
806		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
807		/*
808		 * Mark the section invalid so that valid_section()
809		 * return false. This prevents code from dereferencing
810		 * ms->usage array.
811		 */
812		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
813	}
814
815	/*
816	 * The memmap of early sections is always fully populated. See
817	 * section_activate() and pfn_valid() .
818	 */
819	if (!section_is_early)
820		depopulate_section_memmap(pfn, nr_pages, altmap);
821	else if (memmap)
822		free_map_bootmem(memmap);
823
824	if (empty)
825		ms->section_mem_map = (unsigned long)NULL;
826}
827
828static struct page * __meminit section_activate(int nid, unsigned long pfn,
829		unsigned long nr_pages, struct vmem_altmap *altmap,
830		struct dev_pagemap *pgmap)
831{
 
832	struct mem_section *ms = __pfn_to_section(pfn);
833	struct mem_section_usage *usage = NULL;
 
834	struct page *memmap;
835	int rc = 0;
836
 
 
837	if (!ms->usage) {
838		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
839		if (!usage)
840			return ERR_PTR(-ENOMEM);
841		ms->usage = usage;
842	}
 
 
 
 
 
 
 
 
 
843
844	rc = fill_subsection_map(pfn, nr_pages);
845	if (rc) {
846		if (usage)
847			ms->usage = NULL;
848		kfree(usage);
849		return ERR_PTR(rc);
850	}
851
852	/*
853	 * The early init code does not consider partially populated
854	 * initial sections, it simply assumes that memory will never be
855	 * referenced.  If we hot-add memory into such a section then we
856	 * do not need to populate the memmap and can simply reuse what
857	 * is already there.
858	 */
859	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
860		return pfn_to_page(pfn);
861
862	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
863	if (!memmap) {
864		section_deactivate(pfn, nr_pages, altmap);
865		return ERR_PTR(-ENOMEM);
866	}
867
868	return memmap;
869}
870
871/**
872 * sparse_add_section - add a memory section, or populate an existing one
873 * @nid: The node to add section on
874 * @start_pfn: start pfn of the memory range
875 * @nr_pages: number of pfns to add in the section
876 * @altmap: alternate pfns to allocate the memmap backing store
877 * @pgmap: alternate compound page geometry for devmap mappings
878 *
879 * This is only intended for hotplug.
880 *
881 * Note that only VMEMMAP supports sub-section aligned hotplug,
882 * the proper alignment and size are gated by check_pfn_span().
883 *
884 *
885 * Return:
886 * * 0		- On success.
887 * * -EEXIST	- Section has been present.
888 * * -ENOMEM	- Out of memory.
889 */
890int __meminit sparse_add_section(int nid, unsigned long start_pfn,
891		unsigned long nr_pages, struct vmem_altmap *altmap,
892		struct dev_pagemap *pgmap)
893{
894	unsigned long section_nr = pfn_to_section_nr(start_pfn);
895	struct mem_section *ms;
896	struct page *memmap;
897	int ret;
898
899	ret = sparse_index_init(section_nr, nid);
900	if (ret < 0)
901		return ret;
902
903	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
904	if (IS_ERR(memmap))
905		return PTR_ERR(memmap);
906
907	/*
908	 * Poison uninitialized struct pages in order to catch invalid flags
909	 * combinations.
910	 */
911	page_init_poison(memmap, sizeof(struct page) * nr_pages);
912
913	ms = __nr_to_section(section_nr);
914	set_section_nid(section_nr, nid);
915	__section_mark_present(ms, section_nr);
916
917	/* Align memmap to section boundary in the subsection case */
918	if (section_nr_to_pfn(section_nr) != start_pfn)
919		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
920	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
921
922	return 0;
923}
924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
926		unsigned long nr_pages, unsigned long map_offset,
927		struct vmem_altmap *altmap)
928{
 
 
929	section_deactivate(pfn, nr_pages, altmap);
930}
931#endif /* CONFIG_MEMORY_HOTPLUG */
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * sparse memory mappings.
  4 */
  5#include <linux/mm.h>
  6#include <linux/slab.h>
  7#include <linux/mmzone.h>
  8#include <linux/memblock.h>
  9#include <linux/compiler.h>
 10#include <linux/highmem.h>
 11#include <linux/export.h>
 12#include <linux/spinlock.h>
 13#include <linux/vmalloc.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 
 16
 17#include "internal.h"
 18#include <asm/dma.h>
 19#include <asm/pgalloc.h>
 20#include <asm/pgtable.h>
 21
 22/*
 23 * Permanent SPARSEMEM data:
 24 *
 25 * 1) mem_section	- memory sections, mem_map's for valid memory
 26 */
 27#ifdef CONFIG_SPARSEMEM_EXTREME
 28struct mem_section **mem_section;
 29#else
 30struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 31	____cacheline_internodealigned_in_smp;
 32#endif
 33EXPORT_SYMBOL(mem_section);
 34
 35#ifdef NODE_NOT_IN_PAGE_FLAGS
 36/*
 37 * If we did not store the node number in the page then we have to
 38 * do a lookup in the section_to_node_table in order to find which
 39 * node the page belongs to.
 40 */
 41#if MAX_NUMNODES <= 256
 42static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#else
 44static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 45#endif
 46
 47int page_to_nid(const struct page *page)
 48{
 49	return section_to_node_table[page_to_section(page)];
 50}
 51EXPORT_SYMBOL(page_to_nid);
 52
 53static void set_section_nid(unsigned long section_nr, int nid)
 54{
 55	section_to_node_table[section_nr] = nid;
 56}
 57#else /* !NODE_NOT_IN_PAGE_FLAGS */
 58static inline void set_section_nid(unsigned long section_nr, int nid)
 59{
 60}
 61#endif
 62
 63#ifdef CONFIG_SPARSEMEM_EXTREME
 64static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 65{
 66	struct mem_section *section = NULL;
 67	unsigned long array_size = SECTIONS_PER_ROOT *
 68				   sizeof(struct mem_section);
 69
 70	if (slab_is_available()) {
 71		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 72	} else {
 73		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 74					      nid);
 75		if (!section)
 76			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 77			      __func__, array_size, nid);
 78	}
 79
 80	return section;
 81}
 82
 83static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 84{
 85	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 86	struct mem_section *section;
 87
 88	/*
 89	 * An existing section is possible in the sub-section hotplug
 90	 * case. First hot-add instantiates, follow-on hot-add reuses
 91	 * the existing section.
 92	 *
 93	 * The mem_hotplug_lock resolves the apparent race below.
 94	 */
 95	if (mem_section[root])
 96		return 0;
 97
 98	section = sparse_index_alloc(nid);
 99	if (!section)
100		return -ENOMEM;
101
102	mem_section[root] = section;
103
104	return 0;
105}
106#else /* !SPARSEMEM_EXTREME */
107static inline int sparse_index_init(unsigned long section_nr, int nid)
108{
109	return 0;
110}
111#endif
112
113#ifdef CONFIG_SPARSEMEM_EXTREME
114unsigned long __section_nr(struct mem_section *ms)
115{
116	unsigned long root_nr;
117	struct mem_section *root = NULL;
118
119	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121		if (!root)
122			continue;
123
124		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125		     break;
126	}
127
128	VM_BUG_ON(!root);
129
130	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131}
132#else
133unsigned long __section_nr(struct mem_section *ms)
134{
135	return (unsigned long)(ms - mem_section[0]);
136}
137#endif
138
139/*
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node.  This keeps us from having to use another data structure.  The
143 * node information is cleared just before we store the real mem_map.
144 */
145static inline unsigned long sparse_encode_early_nid(int nid)
146{
147	return (nid << SECTION_NID_SHIFT);
148}
149
150static inline int sparse_early_nid(struct mem_section *section)
151{
152	return (section->section_mem_map >> SECTION_NID_SHIFT);
153}
154
155/* Validate the physical addressing limitations of the model */
156void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157						unsigned long *end_pfn)
158{
159	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160
161	/*
162	 * Sanity checks - do not allow an architecture to pass
163	 * in larger pfns than the maximum scope of sparsemem:
164	 */
165	if (*start_pfn > max_sparsemem_pfn) {
166		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168			*start_pfn, *end_pfn, max_sparsemem_pfn);
169		WARN_ON_ONCE(1);
170		*start_pfn = max_sparsemem_pfn;
171		*end_pfn = max_sparsemem_pfn;
172	} else if (*end_pfn > max_sparsemem_pfn) {
173		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175			*start_pfn, *end_pfn, max_sparsemem_pfn);
176		WARN_ON_ONCE(1);
177		*end_pfn = max_sparsemem_pfn;
178	}
179}
180
181/*
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each.  But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
186 *
187 * Keeping track of this gives us an easy way to break out of
188 * those loops early.
189 */
190unsigned long __highest_present_section_nr;
191static void section_mark_present(struct mem_section *ms)
 
192{
193	unsigned long section_nr = __section_nr(ms);
194
195	if (section_nr > __highest_present_section_nr)
196		__highest_present_section_nr = section_nr;
197
198	ms->section_mem_map |= SECTION_MARKED_PRESENT;
199}
200
201static inline unsigned long next_present_section_nr(unsigned long section_nr)
202{
203	do {
204		section_nr++;
205		if (present_section_nr(section_nr))
206			return section_nr;
207	} while ((section_nr <= __highest_present_section_nr));
208
209	return -1;
210}
211#define for_each_present_section_nr(start, section_nr)		\
212	for (section_nr = next_present_section_nr(start-1);	\
213	     ((section_nr != -1) &&				\
214	      (section_nr <= __highest_present_section_nr));	\
215	     section_nr = next_present_section_nr(section_nr))
216
217static inline unsigned long first_present_section_nr(void)
218{
219	return next_present_section_nr(-1);
220}
221
 
222static void subsection_mask_set(unsigned long *map, unsigned long pfn,
223		unsigned long nr_pages)
224{
225	int idx = subsection_map_index(pfn);
226	int end = subsection_map_index(pfn + nr_pages - 1);
227
228	bitmap_set(map, idx, end - idx + 1);
229}
230
231void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
232{
233	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
234	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
235
236	if (!nr_pages)
237		return;
238
239	for (nr = start_sec; nr <= end_sec; nr++) {
240		struct mem_section *ms;
241		unsigned long pfns;
242
243		pfns = min(nr_pages, PAGES_PER_SECTION
244				- (pfn & ~PAGE_SECTION_MASK));
245		ms = __nr_to_section(nr);
246		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
247
248		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
249				pfns, subsection_map_index(pfn),
250				subsection_map_index(pfn + pfns - 1));
251
252		pfn += pfns;
253		nr_pages -= pfns;
254	}
255}
 
 
 
 
 
256
257/* Record a memory area against a node. */
258void __init memory_present(int nid, unsigned long start, unsigned long end)
259{
260	unsigned long pfn;
261
262#ifdef CONFIG_SPARSEMEM_EXTREME
263	if (unlikely(!mem_section)) {
264		unsigned long size, align;
265
266		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
267		align = 1 << (INTERNODE_CACHE_SHIFT);
268		mem_section = memblock_alloc(size, align);
269		if (!mem_section)
270			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
271			      __func__, size, align);
272	}
273#endif
274
275	start &= PAGE_SECTION_MASK;
276	mminit_validate_memmodel_limits(&start, &end);
277	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
278		unsigned long section = pfn_to_section_nr(pfn);
279		struct mem_section *ms;
280
281		sparse_index_init(section, nid);
282		set_section_nid(section, nid);
283
284		ms = __nr_to_section(section);
285		if (!ms->section_mem_map) {
286			ms->section_mem_map = sparse_encode_early_nid(nid) |
287							SECTION_IS_ONLINE;
288			section_mark_present(ms);
289		}
290	}
291}
292
293/*
294 * Mark all memblocks as present using memory_present(). This is a
295 * convienence function that is useful for a number of arches
296 * to mark all of the systems memory as present during initialization.
297 */
298void __init memblocks_present(void)
299{
300	struct memblock_region *reg;
301
302	for_each_memblock(memory, reg) {
303		memory_present(memblock_get_region_node(reg),
304			       memblock_region_memory_base_pfn(reg),
305			       memblock_region_memory_end_pfn(reg));
306	}
307}
308
309/*
310 * Subtle, we encode the real pfn into the mem_map such that
311 * the identity pfn - section_mem_map will return the actual
312 * physical page frame number.
313 */
314static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
315{
316	unsigned long coded_mem_map =
317		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
318	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
319	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
320	return coded_mem_map;
321}
322
 
323/*
324 * Decode mem_map from the coded memmap
325 */
326struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
327{
328	/* mask off the extra low bits of information */
329	coded_mem_map &= SECTION_MAP_MASK;
330	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
331}
 
332
333static void __meminit sparse_init_one_section(struct mem_section *ms,
334		unsigned long pnum, struct page *mem_map,
335		struct mem_section_usage *usage, unsigned long flags)
336{
337	ms->section_mem_map &= ~SECTION_MAP_MASK;
338	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
339		| SECTION_HAS_MEM_MAP | flags;
340	ms->usage = usage;
341}
342
343static unsigned long usemap_size(void)
344{
345	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
346}
347
348size_t mem_section_usage_size(void)
349{
350	return sizeof(struct mem_section_usage) + usemap_size();
351}
352
 
 
 
 
 
 
 
 
 
 
353#ifdef CONFIG_MEMORY_HOTREMOVE
354static struct mem_section_usage * __init
355sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
356					 unsigned long size)
357{
358	struct mem_section_usage *usage;
359	unsigned long goal, limit;
360	int nid;
361	/*
362	 * A page may contain usemaps for other sections preventing the
363	 * page being freed and making a section unremovable while
364	 * other sections referencing the usemap remain active. Similarly,
365	 * a pgdat can prevent a section being removed. If section A
366	 * contains a pgdat and section B contains the usemap, both
367	 * sections become inter-dependent. This allocates usemaps
368	 * from the same section as the pgdat where possible to avoid
369	 * this problem.
370	 */
371	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
372	limit = goal + (1UL << PA_SECTION_SHIFT);
373	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
374again:
375	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
376	if (!usage && limit) {
377		limit = 0;
378		goto again;
379	}
380	return usage;
381}
382
383static void __init check_usemap_section_nr(int nid,
384		struct mem_section_usage *usage)
385{
386	unsigned long usemap_snr, pgdat_snr;
387	static unsigned long old_usemap_snr;
388	static unsigned long old_pgdat_snr;
389	struct pglist_data *pgdat = NODE_DATA(nid);
390	int usemap_nid;
391
392	/* First call */
393	if (!old_usemap_snr) {
394		old_usemap_snr = NR_MEM_SECTIONS;
395		old_pgdat_snr = NR_MEM_SECTIONS;
396	}
397
398	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
399	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
400	if (usemap_snr == pgdat_snr)
401		return;
402
403	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
404		/* skip redundant message */
405		return;
406
407	old_usemap_snr = usemap_snr;
408	old_pgdat_snr = pgdat_snr;
409
410	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
411	if (usemap_nid != nid) {
412		pr_info("node %d must be removed before remove section %ld\n",
413			nid, usemap_snr);
414		return;
415	}
416	/*
417	 * There is a circular dependency.
418	 * Some platforms allow un-removable section because they will just
419	 * gather other removable sections for dynamic partitioning.
420	 * Just notify un-removable section's number here.
421	 */
422	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
423		usemap_snr, pgdat_snr, nid);
424}
425#else
426static struct mem_section_usage * __init
427sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
428					 unsigned long size)
429{
430	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
431}
432
433static void __init check_usemap_section_nr(int nid,
434		struct mem_section_usage *usage)
435{
436}
437#endif /* CONFIG_MEMORY_HOTREMOVE */
438
439#ifdef CONFIG_SPARSEMEM_VMEMMAP
440static unsigned long __init section_map_size(void)
441{
442	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
443}
444
445#else
446static unsigned long __init section_map_size(void)
447{
448	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
449}
450
451struct page __init *__populate_section_memmap(unsigned long pfn,
452		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
 
453{
454	unsigned long size = section_map_size();
455	struct page *map = sparse_buffer_alloc(size);
456	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457
458	if (map)
459		return map;
460
461	map = memblock_alloc_try_nid(size,
462					  PAGE_SIZE, addr,
463					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
464	if (!map)
465		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
466		      __func__, size, PAGE_SIZE, nid, &addr);
467
468	return map;
469}
470#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
471
472static void *sparsemap_buf __meminitdata;
473static void *sparsemap_buf_end __meminitdata;
474
475static inline void __meminit sparse_buffer_free(unsigned long size)
476{
477	WARN_ON(!sparsemap_buf || size == 0);
478	memblock_free_early(__pa(sparsemap_buf), size);
479}
480
481static void __init sparse_buffer_init(unsigned long size, int nid)
482{
483	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
484	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
485	sparsemap_buf =
486		memblock_alloc_try_nid_raw(size, PAGE_SIZE,
487						addr,
488						MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 
 
489	sparsemap_buf_end = sparsemap_buf + size;
490}
491
492static void __init sparse_buffer_fini(void)
493{
494	unsigned long size = sparsemap_buf_end - sparsemap_buf;
495
496	if (sparsemap_buf && size > 0)
497		sparse_buffer_free(size);
498	sparsemap_buf = NULL;
499}
500
501void * __meminit sparse_buffer_alloc(unsigned long size)
502{
503	void *ptr = NULL;
504
505	if (sparsemap_buf) {
506		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
507		if (ptr + size > sparsemap_buf_end)
508			ptr = NULL;
509		else {
510			/* Free redundant aligned space */
511			if ((unsigned long)(ptr - sparsemap_buf) > 0)
512				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
513			sparsemap_buf = ptr + size;
514		}
515	}
516	return ptr;
517}
518
519void __weak __meminit vmemmap_populate_print_last(void)
520{
521}
522
523/*
524 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
525 * And number of present sections in this node is map_count.
526 */
527static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
528				   unsigned long pnum_end,
529				   unsigned long map_count)
530{
531	struct mem_section_usage *usage;
532	unsigned long pnum;
533	struct page *map;
534
535	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
536			mem_section_usage_size() * map_count);
537	if (!usage) {
538		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
539		goto failed;
540	}
541	sparse_buffer_init(map_count * section_map_size(), nid);
542	for_each_present_section_nr(pnum_begin, pnum) {
543		unsigned long pfn = section_nr_to_pfn(pnum);
544
545		if (pnum >= pnum_end)
546			break;
547
548		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
549				nid, NULL);
550		if (!map) {
551			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
552			       __func__, nid);
553			pnum_begin = pnum;
 
554			goto failed;
555		}
556		check_usemap_section_nr(nid, usage);
557		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
558				SECTION_IS_EARLY);
559		usage = (void *) usage + mem_section_usage_size();
560	}
561	sparse_buffer_fini();
562	return;
563failed:
564	/* We failed to allocate, mark all the following pnums as not present */
565	for_each_present_section_nr(pnum_begin, pnum) {
566		struct mem_section *ms;
567
568		if (pnum >= pnum_end)
569			break;
570		ms = __nr_to_section(pnum);
571		ms->section_mem_map = 0;
572	}
573}
574
575/*
576 * Allocate the accumulated non-linear sections, allocate a mem_map
577 * for each and record the physical to section mapping.
578 */
579void __init sparse_init(void)
580{
581	unsigned long pnum_begin = first_present_section_nr();
582	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
583	unsigned long pnum_end, map_count = 1;
 
 
 
 
584
585	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
586	set_pageblock_order();
587
588	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
589		int nid = sparse_early_nid(__nr_to_section(pnum_end));
590
591		if (nid == nid_begin) {
592			map_count++;
593			continue;
594		}
595		/* Init node with sections in range [pnum_begin, pnum_end) */
596		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
597		nid_begin = nid;
598		pnum_begin = pnum_end;
599		map_count = 1;
600	}
601	/* cover the last node */
602	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
603	vmemmap_populate_print_last();
604}
605
606#ifdef CONFIG_MEMORY_HOTPLUG
607
608/* Mark all memory sections within the pfn range as online */
609void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610{
611	unsigned long pfn;
612
613	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
614		unsigned long section_nr = pfn_to_section_nr(pfn);
615		struct mem_section *ms;
616
617		/* onlining code should never touch invalid ranges */
618		if (WARN_ON(!valid_section_nr(section_nr)))
619			continue;
620
621		ms = __nr_to_section(section_nr);
622		ms->section_mem_map |= SECTION_IS_ONLINE;
623	}
624}
625
626#ifdef CONFIG_MEMORY_HOTREMOVE
627/* Mark all memory sections within the pfn range as offline */
628void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629{
630	unsigned long pfn;
631
632	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633		unsigned long section_nr = pfn_to_section_nr(pfn);
634		struct mem_section *ms;
635
636		/*
637		 * TODO this needs some double checking. Offlining code makes
638		 * sure to check pfn_valid but those checks might be just bogus
639		 */
640		if (WARN_ON(!valid_section_nr(section_nr)))
641			continue;
642
643		ms = __nr_to_section(section_nr);
644		ms->section_mem_map &= ~SECTION_IS_ONLINE;
645	}
646}
647#endif
648
649#ifdef CONFIG_SPARSEMEM_VMEMMAP
650static struct page *populate_section_memmap(unsigned long pfn,
651		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
 
652{
653	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
654}
655
656static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
657		struct vmem_altmap *altmap)
658{
659	unsigned long start = (unsigned long) pfn_to_page(pfn);
660	unsigned long end = start + nr_pages * sizeof(struct page);
661
662	vmemmap_free(start, end, altmap);
663}
664static void free_map_bootmem(struct page *memmap)
665{
666	unsigned long start = (unsigned long)memmap;
667	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669	vmemmap_free(start, end, NULL);
670}
671#else
672struct page *populate_section_memmap(unsigned long pfn,
673		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674{
675	struct page *page, *ret;
676	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
 
 
677
678	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
679	if (page)
680		goto got_map_page;
681
682	ret = vmalloc(memmap_size);
683	if (ret)
684		goto got_map_ptr;
685
686	return NULL;
687got_map_page:
688	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
689got_map_ptr:
690
691	return ret;
 
 
 
 
 
 
 
 
692}
693
694static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
695		struct vmem_altmap *altmap)
696{
697	struct page *memmap = pfn_to_page(pfn);
698
699	if (is_vmalloc_addr(memmap))
700		vfree(memmap);
701	else
702		free_pages((unsigned long)memmap,
703			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
704}
705
706static void free_map_bootmem(struct page *memmap)
707{
708	unsigned long maps_section_nr, removing_section_nr, i;
709	unsigned long magic, nr_pages;
710	struct page *page = virt_to_page(memmap);
711
712	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
713		>> PAGE_SHIFT;
714
715	for (i = 0; i < nr_pages; i++, page++) {
716		magic = (unsigned long) page->freelist;
717
718		BUG_ON(magic == NODE_INFO);
719
720		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
721		removing_section_nr = page_private(page);
722
723		/*
724		 * When this function is called, the removing section is
725		 * logical offlined state. This means all pages are isolated
726		 * from page allocator. If removing section's memmap is placed
727		 * on the same section, it must not be freed.
728		 * If it is freed, page allocator may allocate it which will
729		 * be removed physically soon.
730		 */
731		if (maps_section_nr != removing_section_nr)
732			put_page_bootmem(page);
733	}
734}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
735#endif /* CONFIG_SPARSEMEM_VMEMMAP */
736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
738		struct vmem_altmap *altmap)
739{
740	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
741	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
742	struct mem_section *ms = __pfn_to_section(pfn);
743	bool section_is_early = early_section(ms);
744	struct page *memmap = NULL;
745	unsigned long *subsection_map = ms->usage
746		? &ms->usage->subsection_map[0] : NULL;
747
748	subsection_mask_set(map, pfn, nr_pages);
749	if (subsection_map)
750		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
751
752	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
753				"section already deactivated (%#lx + %ld)\n",
754				pfn, nr_pages))
755		return;
756
757	/*
758	 * There are 3 cases to handle across two configurations
759	 * (SPARSEMEM_VMEMMAP={y,n}):
760	 *
761	 * 1/ deactivation of a partial hot-added section (only possible
762	 * in the SPARSEMEM_VMEMMAP=y case).
763	 *    a/ section was present at memory init
764	 *    b/ section was hot-added post memory init
765	 * 2/ deactivation of a complete hot-added section
766	 * 3/ deactivation of a complete section from memory init
767	 *
768	 * For 1/, when subsection_map does not empty we will not be
769	 * freeing the usage map, but still need to free the vmemmap
770	 * range.
771	 *
772	 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
773	 */
774	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
775	if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) {
776		unsigned long section_nr = pfn_to_section_nr(pfn);
777
778		if (!section_is_early) {
 
 
 
 
 
 
 
779			kfree(ms->usage);
780			ms->usage = NULL;
781		}
782		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
783		ms->section_mem_map = sparse_encode_mem_map(NULL, section_nr);
 
 
 
 
 
784	}
785
786	if (section_is_early && memmap)
 
 
 
 
 
 
787		free_map_bootmem(memmap);
788	else
789		depopulate_section_memmap(pfn, nr_pages, altmap);
 
790}
791
792static struct page * __meminit section_activate(int nid, unsigned long pfn,
793		unsigned long nr_pages, struct vmem_altmap *altmap)
 
794{
795	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
796	struct mem_section *ms = __pfn_to_section(pfn);
797	struct mem_section_usage *usage = NULL;
798	unsigned long *subsection_map;
799	struct page *memmap;
800	int rc = 0;
801
802	subsection_mask_set(map, pfn, nr_pages);
803
804	if (!ms->usage) {
805		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
806		if (!usage)
807			return ERR_PTR(-ENOMEM);
808		ms->usage = usage;
809	}
810	subsection_map = &ms->usage->subsection_map[0];
811
812	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
813		rc = -EINVAL;
814	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
815		rc = -EEXIST;
816	else
817		bitmap_or(subsection_map, map, subsection_map,
818				SUBSECTIONS_PER_SECTION);
819
 
820	if (rc) {
821		if (usage)
822			ms->usage = NULL;
823		kfree(usage);
824		return ERR_PTR(rc);
825	}
826
827	/*
828	 * The early init code does not consider partially populated
829	 * initial sections, it simply assumes that memory will never be
830	 * referenced.  If we hot-add memory into such a section then we
831	 * do not need to populate the memmap and can simply reuse what
832	 * is already there.
833	 */
834	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
835		return pfn_to_page(pfn);
836
837	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
838	if (!memmap) {
839		section_deactivate(pfn, nr_pages, altmap);
840		return ERR_PTR(-ENOMEM);
841	}
842
843	return memmap;
844}
845
846/**
847 * sparse_add_section - add a memory section, or populate an existing one
848 * @nid: The node to add section on
849 * @start_pfn: start pfn of the memory range
850 * @nr_pages: number of pfns to add in the section
851 * @altmap: device page map
 
852 *
853 * This is only intended for hotplug.
854 *
 
 
 
 
855 * Return:
856 * * 0		- On success.
857 * * -EEXIST	- Section has been present.
858 * * -ENOMEM	- Out of memory.
859 */
860int __meminit sparse_add_section(int nid, unsigned long start_pfn,
861		unsigned long nr_pages, struct vmem_altmap *altmap)
 
862{
863	unsigned long section_nr = pfn_to_section_nr(start_pfn);
864	struct mem_section *ms;
865	struct page *memmap;
866	int ret;
867
868	ret = sparse_index_init(section_nr, nid);
869	if (ret < 0)
870		return ret;
871
872	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
873	if (IS_ERR(memmap))
874		return PTR_ERR(memmap);
875
876	/*
877	 * Poison uninitialized struct pages in order to catch invalid flags
878	 * combinations.
879	 */
880	page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
881
882	ms = __nr_to_section(section_nr);
883	set_section_nid(section_nr, nid);
884	section_mark_present(ms);
885
886	/* Align memmap to section boundary in the subsection case */
887	if (section_nr_to_pfn(section_nr) != start_pfn)
888		memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
889	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
890
891	return 0;
892}
893
894#ifdef CONFIG_MEMORY_FAILURE
895static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
896{
897	int i;
898
899	/*
900	 * A further optimization is to have per section refcounted
901	 * num_poisoned_pages.  But that would need more space per memmap, so
902	 * for now just do a quick global check to speed up this routine in the
903	 * absence of bad pages.
904	 */
905	if (atomic_long_read(&num_poisoned_pages) == 0)
906		return;
907
908	for (i = 0; i < nr_pages; i++) {
909		if (PageHWPoison(&memmap[i])) {
910			num_poisoned_pages_dec();
911			ClearPageHWPoison(&memmap[i]);
912		}
913	}
914}
915#else
916static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
917{
918}
919#endif
920
921void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
922		unsigned long nr_pages, unsigned long map_offset,
923		struct vmem_altmap *altmap)
924{
925	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
926			nr_pages - map_offset);
927	section_deactivate(pfn, nr_pages, altmap);
928}
929#endif /* CONFIG_MEMORY_HOTPLUG */