Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_device.h>
27#include <linux/of_graph.h>
28#include <linux/of_irq.h>
29#include <linux/string.h>
30#include <linux/moduleparam.h>
31
32#include "of_private.h"
33
34/**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
41bool of_graph_is_present(const struct device_node *node)
42{
43 struct device_node *ports, *port;
44
45 ports = of_get_child_by_name(node, "ports");
46 if (ports)
47 node = ports;
48
49 port = of_get_child_by_name(node, "port");
50 of_node_put(ports);
51 of_node_put(port);
52
53 return !!port;
54}
55EXPORT_SYMBOL(of_graph_is_present);
56
57/**
58 * of_property_count_elems_of_size - Count the number of elements in a property
59 *
60 * @np: device node from which the property value is to be read.
61 * @propname: name of the property to be searched.
62 * @elem_size: size of the individual element
63 *
64 * Search for a property in a device node and count the number of elements of
65 * size elem_size in it.
66 *
67 * Return: The number of elements on sucess, -EINVAL if the property does not
68 * exist or its length does not match a multiple of elem_size and -ENODATA if
69 * the property does not have a value.
70 */
71int of_property_count_elems_of_size(const struct device_node *np,
72 const char *propname, int elem_size)
73{
74 struct property *prop = of_find_property(np, propname, NULL);
75
76 if (!prop)
77 return -EINVAL;
78 if (!prop->value)
79 return -ENODATA;
80
81 if (prop->length % elem_size != 0) {
82 pr_err("size of %s in node %pOF is not a multiple of %d\n",
83 propname, np, elem_size);
84 return -EINVAL;
85 }
86
87 return prop->length / elem_size;
88}
89EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90
91/**
92 * of_find_property_value_of_size
93 *
94 * @np: device node from which the property value is to be read.
95 * @propname: name of the property to be searched.
96 * @min: minimum allowed length of property value
97 * @max: maximum allowed length of property value (0 means unlimited)
98 * @len: if !=NULL, actual length is written to here
99 *
100 * Search for a property in a device node and valid the requested size.
101 *
102 * Return: The property value on success, -EINVAL if the property does not
103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
104 * property data is too small or too large.
105 *
106 */
107static void *of_find_property_value_of_size(const struct device_node *np,
108 const char *propname, u32 min, u32 max, size_t *len)
109{
110 struct property *prop = of_find_property(np, propname, NULL);
111
112 if (!prop)
113 return ERR_PTR(-EINVAL);
114 if (!prop->value)
115 return ERR_PTR(-ENODATA);
116 if (prop->length < min)
117 return ERR_PTR(-EOVERFLOW);
118 if (max && prop->length > max)
119 return ERR_PTR(-EOVERFLOW);
120
121 if (len)
122 *len = prop->length;
123
124 return prop->value;
125}
126
127/**
128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129 *
130 * @np: device node from which the property value is to be read.
131 * @propname: name of the property to be searched.
132 * @index: index of the u32 in the list of values
133 * @out_value: pointer to return value, modified only if no error.
134 *
135 * Search for a property in a device node and read nth 32-bit value from
136 * it.
137 *
138 * Return: 0 on success, -EINVAL if the property does not exist,
139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
140 * property data isn't large enough.
141 *
142 * The out_value is modified only if a valid u32 value can be decoded.
143 */
144int of_property_read_u32_index(const struct device_node *np,
145 const char *propname,
146 u32 index, u32 *out_value)
147{
148 const u32 *val = of_find_property_value_of_size(np, propname,
149 ((index + 1) * sizeof(*out_value)),
150 0,
151 NULL);
152
153 if (IS_ERR(val))
154 return PTR_ERR(val);
155
156 *out_value = be32_to_cpup(((__be32 *)val) + index);
157 return 0;
158}
159EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160
161/**
162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163 *
164 * @np: device node from which the property value is to be read.
165 * @propname: name of the property to be searched.
166 * @index: index of the u64 in the list of values
167 * @out_value: pointer to return value, modified only if no error.
168 *
169 * Search for a property in a device node and read nth 64-bit value from
170 * it.
171 *
172 * Return: 0 on success, -EINVAL if the property does not exist,
173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
174 * property data isn't large enough.
175 *
176 * The out_value is modified only if a valid u64 value can be decoded.
177 */
178int of_property_read_u64_index(const struct device_node *np,
179 const char *propname,
180 u32 index, u64 *out_value)
181{
182 const u64 *val = of_find_property_value_of_size(np, propname,
183 ((index + 1) * sizeof(*out_value)),
184 0, NULL);
185
186 if (IS_ERR(val))
187 return PTR_ERR(val);
188
189 *out_value = be64_to_cpup(((__be64 *)val) + index);
190 return 0;
191}
192EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193
194/**
195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
196 * property, with bounds on the minimum and maximum array size.
197 *
198 * @np: device node from which the property value is to be read.
199 * @propname: name of the property to be searched.
200 * @out_values: pointer to found values.
201 * @sz_min: minimum number of array elements to read
202 * @sz_max: maximum number of array elements to read, if zero there is no
203 * upper limit on the number of elements in the dts entry but only
204 * sz_min will be read.
205 *
206 * Search for a property in a device node and read 8-bit value(s) from
207 * it.
208 *
209 * dts entry of array should be like:
210 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
211 *
212 * Return: The number of elements read on success, -EINVAL if the property
213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214 * if the property data is smaller than sz_min or longer than sz_max.
215 *
216 * The out_values is modified only if a valid u8 value can be decoded.
217 */
218int of_property_read_variable_u8_array(const struct device_node *np,
219 const char *propname, u8 *out_values,
220 size_t sz_min, size_t sz_max)
221{
222 size_t sz, count;
223 const u8 *val = of_find_property_value_of_size(np, propname,
224 (sz_min * sizeof(*out_values)),
225 (sz_max * sizeof(*out_values)),
226 &sz);
227
228 if (IS_ERR(val))
229 return PTR_ERR(val);
230
231 if (!sz_max)
232 sz = sz_min;
233 else
234 sz /= sizeof(*out_values);
235
236 count = sz;
237 while (count--)
238 *out_values++ = *val++;
239
240 return sz;
241}
242EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243
244/**
245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
246 * property, with bounds on the minimum and maximum array size.
247 *
248 * @np: device node from which the property value is to be read.
249 * @propname: name of the property to be searched.
250 * @out_values: pointer to found values.
251 * @sz_min: minimum number of array elements to read
252 * @sz_max: maximum number of array elements to read, if zero there is no
253 * upper limit on the number of elements in the dts entry but only
254 * sz_min will be read.
255 *
256 * Search for a property in a device node and read 16-bit value(s) from
257 * it.
258 *
259 * dts entry of array should be like:
260 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261 *
262 * Return: The number of elements read on success, -EINVAL if the property
263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264 * if the property data is smaller than sz_min or longer than sz_max.
265 *
266 * The out_values is modified only if a valid u16 value can be decoded.
267 */
268int of_property_read_variable_u16_array(const struct device_node *np,
269 const char *propname, u16 *out_values,
270 size_t sz_min, size_t sz_max)
271{
272 size_t sz, count;
273 const __be16 *val = of_find_property_value_of_size(np, propname,
274 (sz_min * sizeof(*out_values)),
275 (sz_max * sizeof(*out_values)),
276 &sz);
277
278 if (IS_ERR(val))
279 return PTR_ERR(val);
280
281 if (!sz_max)
282 sz = sz_min;
283 else
284 sz /= sizeof(*out_values);
285
286 count = sz;
287 while (count--)
288 *out_values++ = be16_to_cpup(val++);
289
290 return sz;
291}
292EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293
294/**
295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
296 * integers from a property, with bounds on the minimum and maximum array size.
297 *
298 * @np: device node from which the property value is to be read.
299 * @propname: name of the property to be searched.
300 * @out_values: pointer to return found values.
301 * @sz_min: minimum number of array elements to read
302 * @sz_max: maximum number of array elements to read, if zero there is no
303 * upper limit on the number of elements in the dts entry but only
304 * sz_min will be read.
305 *
306 * Search for a property in a device node and read 32-bit value(s) from
307 * it.
308 *
309 * Return: The number of elements read on success, -EINVAL if the property
310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311 * if the property data is smaller than sz_min or longer than sz_max.
312 *
313 * The out_values is modified only if a valid u32 value can be decoded.
314 */
315int of_property_read_variable_u32_array(const struct device_node *np,
316 const char *propname, u32 *out_values,
317 size_t sz_min, size_t sz_max)
318{
319 size_t sz, count;
320 const __be32 *val = of_find_property_value_of_size(np, propname,
321 (sz_min * sizeof(*out_values)),
322 (sz_max * sizeof(*out_values)),
323 &sz);
324
325 if (IS_ERR(val))
326 return PTR_ERR(val);
327
328 if (!sz_max)
329 sz = sz_min;
330 else
331 sz /= sizeof(*out_values);
332
333 count = sz;
334 while (count--)
335 *out_values++ = be32_to_cpup(val++);
336
337 return sz;
338}
339EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340
341/**
342 * of_property_read_u64 - Find and read a 64 bit integer from a property
343 * @np: device node from which the property value is to be read.
344 * @propname: name of the property to be searched.
345 * @out_value: pointer to return value, modified only if return value is 0.
346 *
347 * Search for a property in a device node and read a 64-bit value from
348 * it.
349 *
350 * Return: 0 on success, -EINVAL if the property does not exist,
351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
352 * property data isn't large enough.
353 *
354 * The out_value is modified only if a valid u64 value can be decoded.
355 */
356int of_property_read_u64(const struct device_node *np, const char *propname,
357 u64 *out_value)
358{
359 const __be32 *val = of_find_property_value_of_size(np, propname,
360 sizeof(*out_value),
361 0,
362 NULL);
363
364 if (IS_ERR(val))
365 return PTR_ERR(val);
366
367 *out_value = of_read_number(val, 2);
368 return 0;
369}
370EXPORT_SYMBOL_GPL(of_property_read_u64);
371
372/**
373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
374 * integers from a property, with bounds on the minimum and maximum array size.
375 *
376 * @np: device node from which the property value is to be read.
377 * @propname: name of the property to be searched.
378 * @out_values: pointer to found values.
379 * @sz_min: minimum number of array elements to read
380 * @sz_max: maximum number of array elements to read, if zero there is no
381 * upper limit on the number of elements in the dts entry but only
382 * sz_min will be read.
383 *
384 * Search for a property in a device node and read 64-bit value(s) from
385 * it.
386 *
387 * Return: The number of elements read on success, -EINVAL if the property
388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389 * if the property data is smaller than sz_min or longer than sz_max.
390 *
391 * The out_values is modified only if a valid u64 value can be decoded.
392 */
393int of_property_read_variable_u64_array(const struct device_node *np,
394 const char *propname, u64 *out_values,
395 size_t sz_min, size_t sz_max)
396{
397 size_t sz, count;
398 const __be32 *val = of_find_property_value_of_size(np, propname,
399 (sz_min * sizeof(*out_values)),
400 (sz_max * sizeof(*out_values)),
401 &sz);
402
403 if (IS_ERR(val))
404 return PTR_ERR(val);
405
406 if (!sz_max)
407 sz = sz_min;
408 else
409 sz /= sizeof(*out_values);
410
411 count = sz;
412 while (count--) {
413 *out_values++ = of_read_number(val, 2);
414 val += 2;
415 }
416
417 return sz;
418}
419EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420
421/**
422 * of_property_read_string - Find and read a string from a property
423 * @np: device node from which the property value is to be read.
424 * @propname: name of the property to be searched.
425 * @out_string: pointer to null terminated return string, modified only if
426 * return value is 0.
427 *
428 * Search for a property in a device tree node and retrieve a null
429 * terminated string value (pointer to data, not a copy).
430 *
431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432 * property does not have a value, and -EILSEQ if the string is not
433 * null-terminated within the length of the property data.
434 *
435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
436 * be interpreted as an empty string.
437 *
438 * The out_string pointer is modified only if a valid string can be decoded.
439 */
440int of_property_read_string(const struct device_node *np, const char *propname,
441 const char **out_string)
442{
443 const struct property *prop = of_find_property(np, propname, NULL);
444 if (!prop)
445 return -EINVAL;
446 if (!prop->length)
447 return -ENODATA;
448 if (strnlen(prop->value, prop->length) >= prop->length)
449 return -EILSEQ;
450 *out_string = prop->value;
451 return 0;
452}
453EXPORT_SYMBOL_GPL(of_property_read_string);
454
455/**
456 * of_property_match_string() - Find string in a list and return index
457 * @np: pointer to node containing string list property
458 * @propname: string list property name
459 * @string: pointer to string to search for in string list
460 *
461 * This function searches a string list property and returns the index
462 * of a specific string value.
463 */
464int of_property_match_string(const struct device_node *np, const char *propname,
465 const char *string)
466{
467 const struct property *prop = of_find_property(np, propname, NULL);
468 size_t l;
469 int i;
470 const char *p, *end;
471
472 if (!prop)
473 return -EINVAL;
474 if (!prop->value)
475 return -ENODATA;
476
477 p = prop->value;
478 end = p + prop->length;
479
480 for (i = 0; p < end; i++, p += l) {
481 l = strnlen(p, end - p) + 1;
482 if (p + l > end)
483 return -EILSEQ;
484 pr_debug("comparing %s with %s\n", string, p);
485 if (strcmp(string, p) == 0)
486 return i; /* Found it; return index */
487 }
488 return -ENODATA;
489}
490EXPORT_SYMBOL_GPL(of_property_match_string);
491
492/**
493 * of_property_read_string_helper() - Utility helper for parsing string properties
494 * @np: device node from which the property value is to be read.
495 * @propname: name of the property to be searched.
496 * @out_strs: output array of string pointers.
497 * @sz: number of array elements to read.
498 * @skip: Number of strings to skip over at beginning of list.
499 *
500 * Don't call this function directly. It is a utility helper for the
501 * of_property_read_string*() family of functions.
502 */
503int of_property_read_string_helper(const struct device_node *np,
504 const char *propname, const char **out_strs,
505 size_t sz, int skip)
506{
507 const struct property *prop = of_find_property(np, propname, NULL);
508 int l = 0, i = 0;
509 const char *p, *end;
510
511 if (!prop)
512 return -EINVAL;
513 if (!prop->value)
514 return -ENODATA;
515 p = prop->value;
516 end = p + prop->length;
517
518 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
519 l = strnlen(p, end - p) + 1;
520 if (p + l > end)
521 return -EILSEQ;
522 if (out_strs && i >= skip)
523 *out_strs++ = p;
524 }
525 i -= skip;
526 return i <= 0 ? -ENODATA : i;
527}
528EXPORT_SYMBOL_GPL(of_property_read_string_helper);
529
530const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
531 u32 *pu)
532{
533 const void *curv = cur;
534
535 if (!prop)
536 return NULL;
537
538 if (!cur) {
539 curv = prop->value;
540 goto out_val;
541 }
542
543 curv += sizeof(*cur);
544 if (curv >= prop->value + prop->length)
545 return NULL;
546
547out_val:
548 *pu = be32_to_cpup(curv);
549 return curv;
550}
551EXPORT_SYMBOL_GPL(of_prop_next_u32);
552
553const char *of_prop_next_string(struct property *prop, const char *cur)
554{
555 const void *curv = cur;
556
557 if (!prop)
558 return NULL;
559
560 if (!cur)
561 return prop->value;
562
563 curv += strlen(cur) + 1;
564 if (curv >= prop->value + prop->length)
565 return NULL;
566
567 return curv;
568}
569EXPORT_SYMBOL_GPL(of_prop_next_string);
570
571/**
572 * of_graph_parse_endpoint() - parse common endpoint node properties
573 * @node: pointer to endpoint device_node
574 * @endpoint: pointer to the OF endpoint data structure
575 *
576 * The caller should hold a reference to @node.
577 */
578int of_graph_parse_endpoint(const struct device_node *node,
579 struct of_endpoint *endpoint)
580{
581 struct device_node *port_node = of_get_parent(node);
582
583 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
584 __func__, node);
585
586 memset(endpoint, 0, sizeof(*endpoint));
587
588 endpoint->local_node = node;
589 /*
590 * It doesn't matter whether the two calls below succeed.
591 * If they don't then the default value 0 is used.
592 */
593 of_property_read_u32(port_node, "reg", &endpoint->port);
594 of_property_read_u32(node, "reg", &endpoint->id);
595
596 of_node_put(port_node);
597
598 return 0;
599}
600EXPORT_SYMBOL(of_graph_parse_endpoint);
601
602/**
603 * of_graph_get_port_by_id() - get the port matching a given id
604 * @parent: pointer to the parent device node
605 * @id: id of the port
606 *
607 * Return: A 'port' node pointer with refcount incremented. The caller
608 * has to use of_node_put() on it when done.
609 */
610struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
611{
612 struct device_node *node, *port;
613
614 node = of_get_child_by_name(parent, "ports");
615 if (node)
616 parent = node;
617
618 for_each_child_of_node(parent, port) {
619 u32 port_id = 0;
620
621 if (!of_node_name_eq(port, "port"))
622 continue;
623 of_property_read_u32(port, "reg", &port_id);
624 if (id == port_id)
625 break;
626 }
627
628 of_node_put(node);
629
630 return port;
631}
632EXPORT_SYMBOL(of_graph_get_port_by_id);
633
634/**
635 * of_graph_get_next_endpoint() - get next endpoint node
636 * @parent: pointer to the parent device node
637 * @prev: previous endpoint node, or NULL to get first
638 *
639 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
640 * of the passed @prev node is decremented.
641 */
642struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
643 struct device_node *prev)
644{
645 struct device_node *endpoint;
646 struct device_node *port;
647
648 if (!parent)
649 return NULL;
650
651 /*
652 * Start by locating the port node. If no previous endpoint is specified
653 * search for the first port node, otherwise get the previous endpoint
654 * parent port node.
655 */
656 if (!prev) {
657 struct device_node *node;
658
659 node = of_get_child_by_name(parent, "ports");
660 if (node)
661 parent = node;
662
663 port = of_get_child_by_name(parent, "port");
664 of_node_put(node);
665
666 if (!port) {
667 pr_err("graph: no port node found in %pOF\n", parent);
668 return NULL;
669 }
670 } else {
671 port = of_get_parent(prev);
672 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
673 __func__, prev))
674 return NULL;
675 }
676
677 while (1) {
678 /*
679 * Now that we have a port node, get the next endpoint by
680 * getting the next child. If the previous endpoint is NULL this
681 * will return the first child.
682 */
683 endpoint = of_get_next_child(port, prev);
684 if (endpoint) {
685 of_node_put(port);
686 return endpoint;
687 }
688
689 /* No more endpoints under this port, try the next one. */
690 prev = NULL;
691
692 do {
693 port = of_get_next_child(parent, port);
694 if (!port)
695 return NULL;
696 } while (!of_node_name_eq(port, "port"));
697 }
698}
699EXPORT_SYMBOL(of_graph_get_next_endpoint);
700
701/**
702 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
703 * @parent: pointer to the parent device node
704 * @port_reg: identifier (value of reg property) of the parent port node
705 * @reg: identifier (value of reg property) of the endpoint node
706 *
707 * Return: An 'endpoint' node pointer which is identified by reg and at the same
708 * is the child of a port node identified by port_reg. reg and port_reg are
709 * ignored when they are -1. Use of_node_put() on the pointer when done.
710 */
711struct device_node *of_graph_get_endpoint_by_regs(
712 const struct device_node *parent, int port_reg, int reg)
713{
714 struct of_endpoint endpoint;
715 struct device_node *node = NULL;
716
717 for_each_endpoint_of_node(parent, node) {
718 of_graph_parse_endpoint(node, &endpoint);
719 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
720 ((reg == -1) || (endpoint.id == reg)))
721 return node;
722 }
723
724 return NULL;
725}
726EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
727
728/**
729 * of_graph_get_remote_endpoint() - get remote endpoint node
730 * @node: pointer to a local endpoint device_node
731 *
732 * Return: Remote endpoint node associated with remote endpoint node linked
733 * to @node. Use of_node_put() on it when done.
734 */
735struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
736{
737 /* Get remote endpoint node. */
738 return of_parse_phandle(node, "remote-endpoint", 0);
739}
740EXPORT_SYMBOL(of_graph_get_remote_endpoint);
741
742/**
743 * of_graph_get_port_parent() - get port's parent node
744 * @node: pointer to a local endpoint device_node
745 *
746 * Return: device node associated with endpoint node linked
747 * to @node. Use of_node_put() on it when done.
748 */
749struct device_node *of_graph_get_port_parent(struct device_node *node)
750{
751 unsigned int depth;
752
753 if (!node)
754 return NULL;
755
756 /*
757 * Preserve usecount for passed in node as of_get_next_parent()
758 * will do of_node_put() on it.
759 */
760 of_node_get(node);
761
762 /* Walk 3 levels up only if there is 'ports' node. */
763 for (depth = 3; depth && node; depth--) {
764 node = of_get_next_parent(node);
765 if (depth == 2 && !of_node_name_eq(node, "ports"))
766 break;
767 }
768 return node;
769}
770EXPORT_SYMBOL(of_graph_get_port_parent);
771
772/**
773 * of_graph_get_remote_port_parent() - get remote port's parent node
774 * @node: pointer to a local endpoint device_node
775 *
776 * Return: Remote device node associated with remote endpoint node linked
777 * to @node. Use of_node_put() on it when done.
778 */
779struct device_node *of_graph_get_remote_port_parent(
780 const struct device_node *node)
781{
782 struct device_node *np, *pp;
783
784 /* Get remote endpoint node. */
785 np = of_graph_get_remote_endpoint(node);
786
787 pp = of_graph_get_port_parent(np);
788
789 of_node_put(np);
790
791 return pp;
792}
793EXPORT_SYMBOL(of_graph_get_remote_port_parent);
794
795/**
796 * of_graph_get_remote_port() - get remote port node
797 * @node: pointer to a local endpoint device_node
798 *
799 * Return: Remote port node associated with remote endpoint node linked
800 * to @node. Use of_node_put() on it when done.
801 */
802struct device_node *of_graph_get_remote_port(const struct device_node *node)
803{
804 struct device_node *np;
805
806 /* Get remote endpoint node. */
807 np = of_graph_get_remote_endpoint(node);
808 if (!np)
809 return NULL;
810 return of_get_next_parent(np);
811}
812EXPORT_SYMBOL(of_graph_get_remote_port);
813
814int of_graph_get_endpoint_count(const struct device_node *np)
815{
816 struct device_node *endpoint;
817 int num = 0;
818
819 for_each_endpoint_of_node(np, endpoint)
820 num++;
821
822 return num;
823}
824EXPORT_SYMBOL(of_graph_get_endpoint_count);
825
826/**
827 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
828 * @node: pointer to parent device_node containing graph port/endpoint
829 * @port: identifier (value of reg property) of the parent port node
830 * @endpoint: identifier (value of reg property) of the endpoint node
831 *
832 * Return: Remote device node associated with remote endpoint node linked
833 * to @node. Use of_node_put() on it when done.
834 */
835struct device_node *of_graph_get_remote_node(const struct device_node *node,
836 u32 port, u32 endpoint)
837{
838 struct device_node *endpoint_node, *remote;
839
840 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
841 if (!endpoint_node) {
842 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
843 port, endpoint, node);
844 return NULL;
845 }
846
847 remote = of_graph_get_remote_port_parent(endpoint_node);
848 of_node_put(endpoint_node);
849 if (!remote) {
850 pr_debug("no valid remote node\n");
851 return NULL;
852 }
853
854 if (!of_device_is_available(remote)) {
855 pr_debug("not available for remote node\n");
856 of_node_put(remote);
857 return NULL;
858 }
859
860 return remote;
861}
862EXPORT_SYMBOL(of_graph_get_remote_node);
863
864static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
865{
866 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
867}
868
869static void of_fwnode_put(struct fwnode_handle *fwnode)
870{
871 of_node_put(to_of_node(fwnode));
872}
873
874static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
875{
876 return of_device_is_available(to_of_node(fwnode));
877}
878
879static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
880{
881 return true;
882}
883
884static enum dev_dma_attr
885of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
886{
887 if (of_dma_is_coherent(to_of_node(fwnode)))
888 return DEV_DMA_COHERENT;
889 else
890 return DEV_DMA_NON_COHERENT;
891}
892
893static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
894 const char *propname)
895{
896 return of_property_read_bool(to_of_node(fwnode), propname);
897}
898
899static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
900 const char *propname,
901 unsigned int elem_size, void *val,
902 size_t nval)
903{
904 const struct device_node *node = to_of_node(fwnode);
905
906 if (!val)
907 return of_property_count_elems_of_size(node, propname,
908 elem_size);
909
910 switch (elem_size) {
911 case sizeof(u8):
912 return of_property_read_u8_array(node, propname, val, nval);
913 case sizeof(u16):
914 return of_property_read_u16_array(node, propname, val, nval);
915 case sizeof(u32):
916 return of_property_read_u32_array(node, propname, val, nval);
917 case sizeof(u64):
918 return of_property_read_u64_array(node, propname, val, nval);
919 }
920
921 return -ENXIO;
922}
923
924static int
925of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
926 const char *propname, const char **val,
927 size_t nval)
928{
929 const struct device_node *node = to_of_node(fwnode);
930
931 return val ?
932 of_property_read_string_array(node, propname, val, nval) :
933 of_property_count_strings(node, propname);
934}
935
936static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
937{
938 return kbasename(to_of_node(fwnode)->full_name);
939}
940
941static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
942{
943 /* Root needs no prefix here (its name is "/"). */
944 if (!to_of_node(fwnode)->parent)
945 return "";
946
947 return "/";
948}
949
950static struct fwnode_handle *
951of_fwnode_get_parent(const struct fwnode_handle *fwnode)
952{
953 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
954}
955
956static struct fwnode_handle *
957of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
958 struct fwnode_handle *child)
959{
960 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
961 to_of_node(child)));
962}
963
964static struct fwnode_handle *
965of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
966 const char *childname)
967{
968 const struct device_node *node = to_of_node(fwnode);
969 struct device_node *child;
970
971 for_each_available_child_of_node(node, child)
972 if (of_node_name_eq(child, childname))
973 return of_fwnode_handle(child);
974
975 return NULL;
976}
977
978static int
979of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
980 const char *prop, const char *nargs_prop,
981 unsigned int nargs, unsigned int index,
982 struct fwnode_reference_args *args)
983{
984 struct of_phandle_args of_args;
985 unsigned int i;
986 int ret;
987
988 if (nargs_prop)
989 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
990 nargs_prop, index, &of_args);
991 else
992 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
993 nargs, index, &of_args);
994 if (ret < 0)
995 return ret;
996 if (!args) {
997 of_node_put(of_args.np);
998 return 0;
999 }
1000
1001 args->nargs = of_args.args_count;
1002 args->fwnode = of_fwnode_handle(of_args.np);
1003
1004 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1005 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1006
1007 return 0;
1008}
1009
1010static struct fwnode_handle *
1011of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1012 struct fwnode_handle *prev)
1013{
1014 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1015 to_of_node(prev)));
1016}
1017
1018static struct fwnode_handle *
1019of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1020{
1021 return of_fwnode_handle(
1022 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1023}
1024
1025static struct fwnode_handle *
1026of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1027{
1028 struct device_node *np;
1029
1030 /* Get the parent of the port */
1031 np = of_get_parent(to_of_node(fwnode));
1032 if (!np)
1033 return NULL;
1034
1035 /* Is this the "ports" node? If not, it's the port parent. */
1036 if (!of_node_name_eq(np, "ports"))
1037 return of_fwnode_handle(np);
1038
1039 return of_fwnode_handle(of_get_next_parent(np));
1040}
1041
1042static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1043 struct fwnode_endpoint *endpoint)
1044{
1045 const struct device_node *node = to_of_node(fwnode);
1046 struct device_node *port_node = of_get_parent(node);
1047
1048 endpoint->local_fwnode = fwnode;
1049
1050 of_property_read_u32(port_node, "reg", &endpoint->port);
1051 of_property_read_u32(node, "reg", &endpoint->id);
1052
1053 of_node_put(port_node);
1054
1055 return 0;
1056}
1057
1058static const void *
1059of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1060 const struct device *dev)
1061{
1062 return of_device_get_match_data(dev);
1063}
1064
1065static bool of_is_ancestor_of(struct device_node *test_ancestor,
1066 struct device_node *child)
1067{
1068 of_node_get(child);
1069 while (child) {
1070 if (child == test_ancestor) {
1071 of_node_put(child);
1072 return true;
1073 }
1074 child = of_get_next_parent(child);
1075 }
1076 return false;
1077}
1078
1079static struct device_node *of_get_compat_node(struct device_node *np)
1080{
1081 of_node_get(np);
1082
1083 while (np) {
1084 if (!of_device_is_available(np)) {
1085 of_node_put(np);
1086 np = NULL;
1087 }
1088
1089 if (of_find_property(np, "compatible", NULL))
1090 break;
1091
1092 np = of_get_next_parent(np);
1093 }
1094
1095 return np;
1096}
1097
1098static struct device_node *of_get_compat_node_parent(struct device_node *np)
1099{
1100 struct device_node *parent, *node;
1101
1102 parent = of_get_parent(np);
1103 node = of_get_compat_node(parent);
1104 of_node_put(parent);
1105
1106 return node;
1107}
1108
1109/**
1110 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1111 * @con_np: consumer device tree node
1112 * @sup_np: supplier device tree node
1113 *
1114 * Given a phandle to a supplier device tree node (@sup_np), this function
1115 * finds the device that owns the supplier device tree node and creates a
1116 * device link from @dev consumer device to the supplier device. This function
1117 * doesn't create device links for invalid scenarios such as trying to create a
1118 * link with a parent device as the consumer of its child device. In such
1119 * cases, it returns an error.
1120 *
1121 * Returns:
1122 * - 0 if fwnode link successfully created to supplier
1123 * - -EINVAL if the supplier link is invalid and should not be created
1124 * - -ENODEV if struct device will never be create for supplier
1125 */
1126static int of_link_to_phandle(struct device_node *con_np,
1127 struct device_node *sup_np)
1128{
1129 struct device *sup_dev;
1130 struct device_node *tmp_np = sup_np;
1131
1132 /*
1133 * Find the device node that contains the supplier phandle. It may be
1134 * @sup_np or it may be an ancestor of @sup_np.
1135 */
1136 sup_np = of_get_compat_node(sup_np);
1137 if (!sup_np) {
1138 pr_debug("Not linking %pOFP to %pOFP - No device\n",
1139 con_np, tmp_np);
1140 return -ENODEV;
1141 }
1142
1143 /*
1144 * Don't allow linking a device node as a consumer of one of its
1145 * descendant nodes. By definition, a child node can't be a functional
1146 * dependency for the parent node.
1147 */
1148 if (of_is_ancestor_of(con_np, sup_np)) {
1149 pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1150 con_np, sup_np);
1151 of_node_put(sup_np);
1152 return -EINVAL;
1153 }
1154
1155 /*
1156 * Don't create links to "early devices" that won't have struct devices
1157 * created for them.
1158 */
1159 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1160 if (!sup_dev &&
1161 (of_node_check_flag(sup_np, OF_POPULATED) ||
1162 sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1163 pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1164 con_np, sup_np);
1165 of_node_put(sup_np);
1166 return -ENODEV;
1167 }
1168 put_device(sup_dev);
1169
1170 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1171 of_node_put(sup_np);
1172
1173 return 0;
1174}
1175
1176/**
1177 * parse_prop_cells - Property parsing function for suppliers
1178 *
1179 * @np: Pointer to device tree node containing a list
1180 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1181 * @index: For properties holding a list of phandles, this is the index
1182 * into the list.
1183 * @list_name: Property name that is known to contain list of phandle(s) to
1184 * supplier(s)
1185 * @cells_name: property name that specifies phandles' arguments count
1186 *
1187 * This is a helper function to parse properties that have a known fixed name
1188 * and are a list of phandles and phandle arguments.
1189 *
1190 * Returns:
1191 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1192 * on it when done.
1193 * - NULL if no phandle found at index
1194 */
1195static struct device_node *parse_prop_cells(struct device_node *np,
1196 const char *prop_name, int index,
1197 const char *list_name,
1198 const char *cells_name)
1199{
1200 struct of_phandle_args sup_args;
1201
1202 if (strcmp(prop_name, list_name))
1203 return NULL;
1204
1205 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1206 &sup_args))
1207 return NULL;
1208
1209 return sup_args.np;
1210}
1211
1212#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1213static struct device_node *parse_##fname(struct device_node *np, \
1214 const char *prop_name, int index) \
1215{ \
1216 return parse_prop_cells(np, prop_name, index, name, cells); \
1217}
1218
1219static int strcmp_suffix(const char *str, const char *suffix)
1220{
1221 unsigned int len, suffix_len;
1222
1223 len = strlen(str);
1224 suffix_len = strlen(suffix);
1225 if (len <= suffix_len)
1226 return -1;
1227 return strcmp(str + len - suffix_len, suffix);
1228}
1229
1230/**
1231 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1232 *
1233 * @np: Pointer to device tree node containing a list
1234 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1235 * @index: For properties holding a list of phandles, this is the index
1236 * into the list.
1237 * @suffix: Property suffix that is known to contain list of phandle(s) to
1238 * supplier(s)
1239 * @cells_name: property name that specifies phandles' arguments count
1240 *
1241 * This is a helper function to parse properties that have a known fixed suffix
1242 * and are a list of phandles and phandle arguments.
1243 *
1244 * Returns:
1245 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1246 * on it when done.
1247 * - NULL if no phandle found at index
1248 */
1249static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1250 const char *prop_name, int index,
1251 const char *suffix,
1252 const char *cells_name)
1253{
1254 struct of_phandle_args sup_args;
1255
1256 if (strcmp_suffix(prop_name, suffix))
1257 return NULL;
1258
1259 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1260 &sup_args))
1261 return NULL;
1262
1263 return sup_args.np;
1264}
1265
1266#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1267static struct device_node *parse_##fname(struct device_node *np, \
1268 const char *prop_name, int index) \
1269{ \
1270 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1271}
1272
1273/**
1274 * struct supplier_bindings - Property parsing functions for suppliers
1275 *
1276 * @parse_prop: function name
1277 * parse_prop() finds the node corresponding to a supplier phandle
1278 * @parse_prop.np: Pointer to device node holding supplier phandle property
1279 * @parse_prop.prop_name: Name of property holding a phandle value
1280 * @parse_prop.index: For properties holding a list of phandles, this is the
1281 * index into the list
1282 * @optional: Describes whether a supplier is mandatory or not
1283 * @node_not_dev: The consumer node containing the property is never converted
1284 * to a struct device. Instead, parse ancestor nodes for the
1285 * compatible property to find a node corresponding to a device.
1286 *
1287 * Returns:
1288 * parse_prop() return values are
1289 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1290 * on it when done.
1291 * - NULL if no phandle found at index
1292 */
1293struct supplier_bindings {
1294 struct device_node *(*parse_prop)(struct device_node *np,
1295 const char *prop_name, int index);
1296 bool optional;
1297 bool node_not_dev;
1298};
1299
1300DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1301DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1302DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1303DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1304DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1305DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1306DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1307DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1308DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1309DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1310DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1311DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1312DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1313DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1314DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1315DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1316DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1317DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1318DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1319DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1320DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1321DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1322DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL)
1323DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1324DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1325DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1326DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1327DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1328DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1329
1330static struct device_node *parse_gpios(struct device_node *np,
1331 const char *prop_name, int index)
1332{
1333 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1334 return NULL;
1335
1336 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1337 "#gpio-cells");
1338}
1339
1340static struct device_node *parse_iommu_maps(struct device_node *np,
1341 const char *prop_name, int index)
1342{
1343 if (strcmp(prop_name, "iommu-map"))
1344 return NULL;
1345
1346 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1347}
1348
1349static struct device_node *parse_gpio_compat(struct device_node *np,
1350 const char *prop_name, int index)
1351{
1352 struct of_phandle_args sup_args;
1353
1354 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1355 return NULL;
1356
1357 /*
1358 * Ignore node with gpio-hog property since its gpios are all provided
1359 * by its parent.
1360 */
1361 if (of_find_property(np, "gpio-hog", NULL))
1362 return NULL;
1363
1364 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1365 &sup_args))
1366 return NULL;
1367
1368 return sup_args.np;
1369}
1370
1371static struct device_node *parse_interrupts(struct device_node *np,
1372 const char *prop_name, int index)
1373{
1374 struct of_phandle_args sup_args;
1375
1376 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1377 return NULL;
1378
1379 if (strcmp(prop_name, "interrupts") &&
1380 strcmp(prop_name, "interrupts-extended"))
1381 return NULL;
1382
1383 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1384}
1385
1386static const struct supplier_bindings of_supplier_bindings[] = {
1387 { .parse_prop = parse_clocks, },
1388 { .parse_prop = parse_interconnects, },
1389 { .parse_prop = parse_iommus, .optional = true, },
1390 { .parse_prop = parse_iommu_maps, .optional = true, },
1391 { .parse_prop = parse_mboxes, },
1392 { .parse_prop = parse_io_channels, },
1393 { .parse_prop = parse_interrupt_parent, },
1394 { .parse_prop = parse_dmas, .optional = true, },
1395 { .parse_prop = parse_power_domains, },
1396 { .parse_prop = parse_hwlocks, },
1397 { .parse_prop = parse_extcon, },
1398 { .parse_prop = parse_nvmem_cells, },
1399 { .parse_prop = parse_phys, },
1400 { .parse_prop = parse_wakeup_parent, },
1401 { .parse_prop = parse_pinctrl0, },
1402 { .parse_prop = parse_pinctrl1, },
1403 { .parse_prop = parse_pinctrl2, },
1404 { .parse_prop = parse_pinctrl3, },
1405 { .parse_prop = parse_pinctrl4, },
1406 { .parse_prop = parse_pinctrl5, },
1407 { .parse_prop = parse_pinctrl6, },
1408 { .parse_prop = parse_pinctrl7, },
1409 { .parse_prop = parse_pinctrl8, },
1410 { .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
1411 { .parse_prop = parse_pwms, },
1412 { .parse_prop = parse_resets, },
1413 { .parse_prop = parse_leds, },
1414 { .parse_prop = parse_backlight, },
1415 { .parse_prop = parse_gpio_compat, },
1416 { .parse_prop = parse_interrupts, },
1417 { .parse_prop = parse_regulators, },
1418 { .parse_prop = parse_gpio, },
1419 { .parse_prop = parse_gpios, },
1420 {}
1421};
1422
1423/**
1424 * of_link_property - Create device links to suppliers listed in a property
1425 * @con_np: The consumer device tree node which contains the property
1426 * @prop_name: Name of property to be parsed
1427 *
1428 * This function checks if the property @prop_name that is present in the
1429 * @con_np device tree node is one of the known common device tree bindings
1430 * that list phandles to suppliers. If @prop_name isn't one, this function
1431 * doesn't do anything.
1432 *
1433 * If @prop_name is one, this function attempts to create fwnode links from the
1434 * consumer device tree node @con_np to all the suppliers device tree nodes
1435 * listed in @prop_name.
1436 *
1437 * Any failed attempt to create a fwnode link will NOT result in an immediate
1438 * return. of_link_property() must create links to all the available supplier
1439 * device tree nodes even when attempts to create a link to one or more
1440 * suppliers fail.
1441 */
1442static int of_link_property(struct device_node *con_np, const char *prop_name)
1443{
1444 struct device_node *phandle;
1445 const struct supplier_bindings *s = of_supplier_bindings;
1446 unsigned int i = 0;
1447 bool matched = false;
1448
1449 /* Do not stop at first failed link, link all available suppliers. */
1450 while (!matched && s->parse_prop) {
1451 if (s->optional && !fw_devlink_is_strict()) {
1452 s++;
1453 continue;
1454 }
1455
1456 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1457 struct device_node *con_dev_np;
1458
1459 con_dev_np = s->node_not_dev
1460 ? of_get_compat_node_parent(con_np)
1461 : of_node_get(con_np);
1462 matched = true;
1463 i++;
1464 of_link_to_phandle(con_dev_np, phandle);
1465 of_node_put(phandle);
1466 of_node_put(con_dev_np);
1467 }
1468 s++;
1469 }
1470 return 0;
1471}
1472
1473static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1474{
1475#ifdef CONFIG_OF_ADDRESS
1476 return of_iomap(to_of_node(fwnode), index);
1477#else
1478 return NULL;
1479#endif
1480}
1481
1482static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1483 unsigned int index)
1484{
1485 return of_irq_get(to_of_node(fwnode), index);
1486}
1487
1488static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1489{
1490 struct property *p;
1491 struct device_node *con_np = to_of_node(fwnode);
1492
1493 if (IS_ENABLED(CONFIG_X86))
1494 return 0;
1495
1496 if (!con_np)
1497 return -EINVAL;
1498
1499 for_each_property_of_node(con_np, p)
1500 of_link_property(con_np, p->name);
1501
1502 return 0;
1503}
1504
1505const struct fwnode_operations of_fwnode_ops = {
1506 .get = of_fwnode_get,
1507 .put = of_fwnode_put,
1508 .device_is_available = of_fwnode_device_is_available,
1509 .device_get_match_data = of_fwnode_device_get_match_data,
1510 .device_dma_supported = of_fwnode_device_dma_supported,
1511 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1512 .property_present = of_fwnode_property_present,
1513 .property_read_int_array = of_fwnode_property_read_int_array,
1514 .property_read_string_array = of_fwnode_property_read_string_array,
1515 .get_name = of_fwnode_get_name,
1516 .get_name_prefix = of_fwnode_get_name_prefix,
1517 .get_parent = of_fwnode_get_parent,
1518 .get_next_child_node = of_fwnode_get_next_child_node,
1519 .get_named_child_node = of_fwnode_get_named_child_node,
1520 .get_reference_args = of_fwnode_get_reference_args,
1521 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1522 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1523 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1524 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1525 .iomap = of_fwnode_iomap,
1526 .irq_get = of_fwnode_irq_get,
1527 .add_links = of_fwnode_add_links,
1528};
1529EXPORT_SYMBOL_GPL(of_fwnode_ops);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_device.h>
27#include <linux/of_graph.h>
28#include <linux/of_irq.h>
29#include <linux/string.h>
30#include <linux/moduleparam.h>
31
32#include "of_private.h"
33
34/**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
41bool of_graph_is_present(const struct device_node *node)
42{
43 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports");
44
45 if (ports)
46 node = ports;
47
48 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port");
49
50 return !!port;
51}
52EXPORT_SYMBOL(of_graph_is_present);
53
54/**
55 * of_property_count_elems_of_size - Count the number of elements in a property
56 *
57 * @np: device node from which the property value is to be read.
58 * @propname: name of the property to be searched.
59 * @elem_size: size of the individual element
60 *
61 * Search for a property in a device node and count the number of elements of
62 * size elem_size in it.
63 *
64 * Return: The number of elements on sucess, -EINVAL if the property does not
65 * exist or its length does not match a multiple of elem_size and -ENODATA if
66 * the property does not have a value.
67 */
68int of_property_count_elems_of_size(const struct device_node *np,
69 const char *propname, int elem_size)
70{
71 const struct property *prop = of_find_property(np, propname, NULL);
72
73 if (!prop)
74 return -EINVAL;
75 if (!prop->value)
76 return -ENODATA;
77
78 if (prop->length % elem_size != 0) {
79 pr_err("size of %s in node %pOF is not a multiple of %d\n",
80 propname, np, elem_size);
81 return -EINVAL;
82 }
83
84 return prop->length / elem_size;
85}
86EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
87
88/**
89 * of_find_property_value_of_size
90 *
91 * @np: device node from which the property value is to be read.
92 * @propname: name of the property to be searched.
93 * @min: minimum allowed length of property value
94 * @max: maximum allowed length of property value (0 means unlimited)
95 * @len: if !=NULL, actual length is written to here
96 *
97 * Search for a property in a device node and valid the requested size.
98 *
99 * Return: The property value on success, -EINVAL if the property does not
100 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
101 * property data is too small or too large.
102 *
103 */
104static void *of_find_property_value_of_size(const struct device_node *np,
105 const char *propname, u32 min, u32 max, size_t *len)
106{
107 const struct property *prop = of_find_property(np, propname, NULL);
108
109 if (!prop)
110 return ERR_PTR(-EINVAL);
111 if (!prop->value)
112 return ERR_PTR(-ENODATA);
113 if (prop->length < min)
114 return ERR_PTR(-EOVERFLOW);
115 if (max && prop->length > max)
116 return ERR_PTR(-EOVERFLOW);
117
118 if (len)
119 *len = prop->length;
120
121 return prop->value;
122}
123
124/**
125 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
126 *
127 * @np: device node from which the property value is to be read.
128 * @propname: name of the property to be searched.
129 * @index: index of the u32 in the list of values
130 * @out_value: pointer to return value, modified only if no error.
131 *
132 * Search for a property in a device node and read nth 32-bit value from
133 * it.
134 *
135 * Return: 0 on success, -EINVAL if the property does not exist,
136 * -ENODATA if property does not have a value, and -EOVERFLOW if the
137 * property data isn't large enough.
138 *
139 * The out_value is modified only if a valid u32 value can be decoded.
140 */
141int of_property_read_u32_index(const struct device_node *np,
142 const char *propname,
143 u32 index, u32 *out_value)
144{
145 const u32 *val = of_find_property_value_of_size(np, propname,
146 ((index + 1) * sizeof(*out_value)),
147 0,
148 NULL);
149
150 if (IS_ERR(val))
151 return PTR_ERR(val);
152
153 *out_value = be32_to_cpup(((__be32 *)val) + index);
154 return 0;
155}
156EXPORT_SYMBOL_GPL(of_property_read_u32_index);
157
158/**
159 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
160 *
161 * @np: device node from which the property value is to be read.
162 * @propname: name of the property to be searched.
163 * @index: index of the u64 in the list of values
164 * @out_value: pointer to return value, modified only if no error.
165 *
166 * Search for a property in a device node and read nth 64-bit value from
167 * it.
168 *
169 * Return: 0 on success, -EINVAL if the property does not exist,
170 * -ENODATA if property does not have a value, and -EOVERFLOW if the
171 * property data isn't large enough.
172 *
173 * The out_value is modified only if a valid u64 value can be decoded.
174 */
175int of_property_read_u64_index(const struct device_node *np,
176 const char *propname,
177 u32 index, u64 *out_value)
178{
179 const u64 *val = of_find_property_value_of_size(np, propname,
180 ((index + 1) * sizeof(*out_value)),
181 0, NULL);
182
183 if (IS_ERR(val))
184 return PTR_ERR(val);
185
186 *out_value = be64_to_cpup(((__be64 *)val) + index);
187 return 0;
188}
189EXPORT_SYMBOL_GPL(of_property_read_u64_index);
190
191/**
192 * of_property_read_variable_u8_array - Find and read an array of u8 from a
193 * property, with bounds on the minimum and maximum array size.
194 *
195 * @np: device node from which the property value is to be read.
196 * @propname: name of the property to be searched.
197 * @out_values: pointer to found values.
198 * @sz_min: minimum number of array elements to read
199 * @sz_max: maximum number of array elements to read, if zero there is no
200 * upper limit on the number of elements in the dts entry but only
201 * sz_min will be read.
202 *
203 * Search for a property in a device node and read 8-bit value(s) from
204 * it.
205 *
206 * dts entry of array should be like:
207 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
208 *
209 * Return: The number of elements read on success, -EINVAL if the property
210 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
211 * if the property data is smaller than sz_min or longer than sz_max.
212 *
213 * The out_values is modified only if a valid u8 value can be decoded.
214 */
215int of_property_read_variable_u8_array(const struct device_node *np,
216 const char *propname, u8 *out_values,
217 size_t sz_min, size_t sz_max)
218{
219 size_t sz, count;
220 const u8 *val = of_find_property_value_of_size(np, propname,
221 (sz_min * sizeof(*out_values)),
222 (sz_max * sizeof(*out_values)),
223 &sz);
224
225 if (IS_ERR(val))
226 return PTR_ERR(val);
227
228 if (!sz_max)
229 sz = sz_min;
230 else
231 sz /= sizeof(*out_values);
232
233 count = sz;
234 while (count--)
235 *out_values++ = *val++;
236
237 return sz;
238}
239EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
240
241/**
242 * of_property_read_variable_u16_array - Find and read an array of u16 from a
243 * property, with bounds on the minimum and maximum array size.
244 *
245 * @np: device node from which the property value is to be read.
246 * @propname: name of the property to be searched.
247 * @out_values: pointer to found values.
248 * @sz_min: minimum number of array elements to read
249 * @sz_max: maximum number of array elements to read, if zero there is no
250 * upper limit on the number of elements in the dts entry but only
251 * sz_min will be read.
252 *
253 * Search for a property in a device node and read 16-bit value(s) from
254 * it.
255 *
256 * dts entry of array should be like:
257 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
258 *
259 * Return: The number of elements read on success, -EINVAL if the property
260 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
261 * if the property data is smaller than sz_min or longer than sz_max.
262 *
263 * The out_values is modified only if a valid u16 value can be decoded.
264 */
265int of_property_read_variable_u16_array(const struct device_node *np,
266 const char *propname, u16 *out_values,
267 size_t sz_min, size_t sz_max)
268{
269 size_t sz, count;
270 const __be16 *val = of_find_property_value_of_size(np, propname,
271 (sz_min * sizeof(*out_values)),
272 (sz_max * sizeof(*out_values)),
273 &sz);
274
275 if (IS_ERR(val))
276 return PTR_ERR(val);
277
278 if (!sz_max)
279 sz = sz_min;
280 else
281 sz /= sizeof(*out_values);
282
283 count = sz;
284 while (count--)
285 *out_values++ = be16_to_cpup(val++);
286
287 return sz;
288}
289EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
290
291/**
292 * of_property_read_variable_u32_array - Find and read an array of 32 bit
293 * integers from a property, with bounds on the minimum and maximum array size.
294 *
295 * @np: device node from which the property value is to be read.
296 * @propname: name of the property to be searched.
297 * @out_values: pointer to return found values.
298 * @sz_min: minimum number of array elements to read
299 * @sz_max: maximum number of array elements to read, if zero there is no
300 * upper limit on the number of elements in the dts entry but only
301 * sz_min will be read.
302 *
303 * Search for a property in a device node and read 32-bit value(s) from
304 * it.
305 *
306 * Return: The number of elements read on success, -EINVAL if the property
307 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
308 * if the property data is smaller than sz_min or longer than sz_max.
309 *
310 * The out_values is modified only if a valid u32 value can be decoded.
311 */
312int of_property_read_variable_u32_array(const struct device_node *np,
313 const char *propname, u32 *out_values,
314 size_t sz_min, size_t sz_max)
315{
316 size_t sz, count;
317 const __be32 *val = of_find_property_value_of_size(np, propname,
318 (sz_min * sizeof(*out_values)),
319 (sz_max * sizeof(*out_values)),
320 &sz);
321
322 if (IS_ERR(val))
323 return PTR_ERR(val);
324
325 if (!sz_max)
326 sz = sz_min;
327 else
328 sz /= sizeof(*out_values);
329
330 count = sz;
331 while (count--)
332 *out_values++ = be32_to_cpup(val++);
333
334 return sz;
335}
336EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
337
338/**
339 * of_property_read_u64 - Find and read a 64 bit integer from a property
340 * @np: device node from which the property value is to be read.
341 * @propname: name of the property to be searched.
342 * @out_value: pointer to return value, modified only if return value is 0.
343 *
344 * Search for a property in a device node and read a 64-bit value from
345 * it.
346 *
347 * Return: 0 on success, -EINVAL if the property does not exist,
348 * -ENODATA if property does not have a value, and -EOVERFLOW if the
349 * property data isn't large enough.
350 *
351 * The out_value is modified only if a valid u64 value can be decoded.
352 */
353int of_property_read_u64(const struct device_node *np, const char *propname,
354 u64 *out_value)
355{
356 const __be32 *val = of_find_property_value_of_size(np, propname,
357 sizeof(*out_value),
358 0,
359 NULL);
360
361 if (IS_ERR(val))
362 return PTR_ERR(val);
363
364 *out_value = of_read_number(val, 2);
365 return 0;
366}
367EXPORT_SYMBOL_GPL(of_property_read_u64);
368
369/**
370 * of_property_read_variable_u64_array - Find and read an array of 64 bit
371 * integers from a property, with bounds on the minimum and maximum array size.
372 *
373 * @np: device node from which the property value is to be read.
374 * @propname: name of the property to be searched.
375 * @out_values: pointer to found values.
376 * @sz_min: minimum number of array elements to read
377 * @sz_max: maximum number of array elements to read, if zero there is no
378 * upper limit on the number of elements in the dts entry but only
379 * sz_min will be read.
380 *
381 * Search for a property in a device node and read 64-bit value(s) from
382 * it.
383 *
384 * Return: The number of elements read on success, -EINVAL if the property
385 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
386 * if the property data is smaller than sz_min or longer than sz_max.
387 *
388 * The out_values is modified only if a valid u64 value can be decoded.
389 */
390int of_property_read_variable_u64_array(const struct device_node *np,
391 const char *propname, u64 *out_values,
392 size_t sz_min, size_t sz_max)
393{
394 size_t sz, count;
395 const __be32 *val = of_find_property_value_of_size(np, propname,
396 (sz_min * sizeof(*out_values)),
397 (sz_max * sizeof(*out_values)),
398 &sz);
399
400 if (IS_ERR(val))
401 return PTR_ERR(val);
402
403 if (!sz_max)
404 sz = sz_min;
405 else
406 sz /= sizeof(*out_values);
407
408 count = sz;
409 while (count--) {
410 *out_values++ = of_read_number(val, 2);
411 val += 2;
412 }
413
414 return sz;
415}
416EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
417
418/**
419 * of_property_read_string - Find and read a string from a property
420 * @np: device node from which the property value is to be read.
421 * @propname: name of the property to be searched.
422 * @out_string: pointer to null terminated return string, modified only if
423 * return value is 0.
424 *
425 * Search for a property in a device tree node and retrieve a null
426 * terminated string value (pointer to data, not a copy).
427 *
428 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
429 * property does not have a value, and -EILSEQ if the string is not
430 * null-terminated within the length of the property data.
431 *
432 * Note that the empty string "" has length of 1, thus -ENODATA cannot
433 * be interpreted as an empty string.
434 *
435 * The out_string pointer is modified only if a valid string can be decoded.
436 */
437int of_property_read_string(const struct device_node *np, const char *propname,
438 const char **out_string)
439{
440 const struct property *prop = of_find_property(np, propname, NULL);
441
442 if (!prop)
443 return -EINVAL;
444 if (!prop->length)
445 return -ENODATA;
446 if (strnlen(prop->value, prop->length) >= prop->length)
447 return -EILSEQ;
448 *out_string = prop->value;
449 return 0;
450}
451EXPORT_SYMBOL_GPL(of_property_read_string);
452
453/**
454 * of_property_match_string() - Find string in a list and return index
455 * @np: pointer to the node containing the string list property
456 * @propname: string list property name
457 * @string: pointer to the string to search for in the string list
458 *
459 * Search for an exact match of string in a device node property which is a
460 * string of lists.
461 *
462 * Return: the index of the first occurrence of the string on success, -EINVAL
463 * if the property does not exist, -ENODATA if the property does not have a
464 * value, and -EILSEQ if the string is not null-terminated within the length of
465 * the property data.
466 */
467int of_property_match_string(const struct device_node *np, const char *propname,
468 const char *string)
469{
470 const struct property *prop = of_find_property(np, propname, NULL);
471 size_t l;
472 int i;
473 const char *p, *end;
474
475 if (!prop)
476 return -EINVAL;
477 if (!prop->value)
478 return -ENODATA;
479
480 p = prop->value;
481 end = p + prop->length;
482
483 for (i = 0; p < end; i++, p += l) {
484 l = strnlen(p, end - p) + 1;
485 if (p + l > end)
486 return -EILSEQ;
487 pr_debug("comparing %s with %s\n", string, p);
488 if (strcmp(string, p) == 0)
489 return i; /* Found it; return index */
490 }
491 return -ENODATA;
492}
493EXPORT_SYMBOL_GPL(of_property_match_string);
494
495/**
496 * of_property_read_string_helper() - Utility helper for parsing string properties
497 * @np: device node from which the property value is to be read.
498 * @propname: name of the property to be searched.
499 * @out_strs: output array of string pointers.
500 * @sz: number of array elements to read.
501 * @skip: Number of strings to skip over at beginning of list.
502 *
503 * Don't call this function directly. It is a utility helper for the
504 * of_property_read_string*() family of functions.
505 */
506int of_property_read_string_helper(const struct device_node *np,
507 const char *propname, const char **out_strs,
508 size_t sz, int skip)
509{
510 const struct property *prop = of_find_property(np, propname, NULL);
511 int l = 0, i = 0;
512 const char *p, *end;
513
514 if (!prop)
515 return -EINVAL;
516 if (!prop->value)
517 return -ENODATA;
518 p = prop->value;
519 end = p + prop->length;
520
521 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
522 l = strnlen(p, end - p) + 1;
523 if (p + l > end)
524 return -EILSEQ;
525 if (out_strs && i >= skip)
526 *out_strs++ = p;
527 }
528 i -= skip;
529 return i <= 0 ? -ENODATA : i;
530}
531EXPORT_SYMBOL_GPL(of_property_read_string_helper);
532
533const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur,
534 u32 *pu)
535{
536 const void *curv = cur;
537
538 if (!prop)
539 return NULL;
540
541 if (!cur) {
542 curv = prop->value;
543 goto out_val;
544 }
545
546 curv += sizeof(*cur);
547 if (curv >= prop->value + prop->length)
548 return NULL;
549
550out_val:
551 *pu = be32_to_cpup(curv);
552 return curv;
553}
554EXPORT_SYMBOL_GPL(of_prop_next_u32);
555
556const char *of_prop_next_string(const struct property *prop, const char *cur)
557{
558 const void *curv = cur;
559
560 if (!prop)
561 return NULL;
562
563 if (!cur)
564 return prop->value;
565
566 curv += strlen(cur) + 1;
567 if (curv >= prop->value + prop->length)
568 return NULL;
569
570 return curv;
571}
572EXPORT_SYMBOL_GPL(of_prop_next_string);
573
574/**
575 * of_graph_parse_endpoint() - parse common endpoint node properties
576 * @node: pointer to endpoint device_node
577 * @endpoint: pointer to the OF endpoint data structure
578 *
579 * The caller should hold a reference to @node.
580 */
581int of_graph_parse_endpoint(const struct device_node *node,
582 struct of_endpoint *endpoint)
583{
584 struct device_node *port_node __free(device_node) =
585 of_get_parent(node);
586
587 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
588 __func__, node);
589
590 memset(endpoint, 0, sizeof(*endpoint));
591
592 endpoint->local_node = node;
593 /*
594 * It doesn't matter whether the two calls below succeed.
595 * If they don't then the default value 0 is used.
596 */
597 of_property_read_u32(port_node, "reg", &endpoint->port);
598 of_property_read_u32(node, "reg", &endpoint->id);
599
600 return 0;
601}
602EXPORT_SYMBOL(of_graph_parse_endpoint);
603
604/**
605 * of_graph_get_port_by_id() - get the port matching a given id
606 * @parent: pointer to the parent device node
607 * @id: id of the port
608 *
609 * Return: A 'port' node pointer with refcount incremented. The caller
610 * has to use of_node_put() on it when done.
611 */
612struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
613{
614 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports");
615
616 if (node)
617 parent = node;
618
619 for_each_child_of_node_scoped(parent, port) {
620 u32 port_id = 0;
621
622 if (!of_node_name_eq(port, "port"))
623 continue;
624 of_property_read_u32(port, "reg", &port_id);
625 if (id == port_id)
626 return_ptr(port);
627 }
628
629 return NULL;
630}
631EXPORT_SYMBOL(of_graph_get_port_by_id);
632
633/**
634 * of_graph_get_next_port() - get next port node.
635 * @parent: pointer to the parent device node, or parent ports node
636 * @prev: previous port node, or NULL to get first
637 *
638 * Parent device node can be used as @parent whether device node has ports node
639 * or not. It will work same as ports@0 node.
640 *
641 * Return: A 'port' node pointer with refcount incremented. Refcount
642 * of the passed @prev node is decremented.
643 */
644struct device_node *of_graph_get_next_port(const struct device_node *parent,
645 struct device_node *prev)
646{
647 if (!parent)
648 return NULL;
649
650 if (!prev) {
651 struct device_node *node __free(device_node) =
652 of_get_child_by_name(parent, "ports");
653
654 if (node)
655 parent = node;
656
657 return of_get_child_by_name(parent, "port");
658 }
659
660 do {
661 prev = of_get_next_child(parent, prev);
662 if (!prev)
663 break;
664 } while (!of_node_name_eq(prev, "port"));
665
666 return prev;
667}
668EXPORT_SYMBOL(of_graph_get_next_port);
669
670/**
671 * of_graph_get_next_port_endpoint() - get next endpoint node in port.
672 * If it reached to end of the port, it will return NULL.
673 * @port: pointer to the target port node
674 * @prev: previous endpoint node, or NULL to get first
675 *
676 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
677 * of the passed @prev node is decremented.
678 */
679struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port,
680 struct device_node *prev)
681{
682 while (1) {
683 prev = of_get_next_child(port, prev);
684 if (!prev)
685 break;
686 if (WARN(!of_node_name_eq(prev, "endpoint"),
687 "non endpoint node is used (%pOF)", prev))
688 continue;
689
690 break;
691 }
692
693 return prev;
694}
695EXPORT_SYMBOL(of_graph_get_next_port_endpoint);
696
697/**
698 * of_graph_get_next_endpoint() - get next endpoint node
699 * @parent: pointer to the parent device node
700 * @prev: previous endpoint node, or NULL to get first
701 *
702 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
703 * of the passed @prev node is decremented.
704 */
705struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
706 struct device_node *prev)
707{
708 struct device_node *endpoint;
709 struct device_node *port;
710
711 if (!parent)
712 return NULL;
713
714 /*
715 * Start by locating the port node. If no previous endpoint is specified
716 * search for the first port node, otherwise get the previous endpoint
717 * parent port node.
718 */
719 if (!prev) {
720 port = of_graph_get_next_port(parent, NULL);
721 if (!port) {
722 pr_debug("graph: no port node found in %pOF\n", parent);
723 return NULL;
724 }
725 } else {
726 port = of_get_parent(prev);
727 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
728 __func__, prev))
729 return NULL;
730 }
731
732 while (1) {
733 /*
734 * Now that we have a port node, get the next endpoint by
735 * getting the next child. If the previous endpoint is NULL this
736 * will return the first child.
737 */
738 endpoint = of_graph_get_next_port_endpoint(port, prev);
739 if (endpoint) {
740 of_node_put(port);
741 return endpoint;
742 }
743
744 /* No more endpoints under this port, try the next one. */
745 prev = NULL;
746
747 port = of_graph_get_next_port(parent, port);
748 if (!port)
749 return NULL;
750 }
751}
752EXPORT_SYMBOL(of_graph_get_next_endpoint);
753
754/**
755 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
756 * @parent: pointer to the parent device node
757 * @port_reg: identifier (value of reg property) of the parent port node
758 * @reg: identifier (value of reg property) of the endpoint node
759 *
760 * Return: An 'endpoint' node pointer which is identified by reg and at the same
761 * is the child of a port node identified by port_reg. reg and port_reg are
762 * ignored when they are -1. Use of_node_put() on the pointer when done.
763 */
764struct device_node *of_graph_get_endpoint_by_regs(
765 const struct device_node *parent, int port_reg, int reg)
766{
767 struct of_endpoint endpoint;
768 struct device_node *node = NULL;
769
770 for_each_endpoint_of_node(parent, node) {
771 of_graph_parse_endpoint(node, &endpoint);
772 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
773 ((reg == -1) || (endpoint.id == reg)))
774 return node;
775 }
776
777 return NULL;
778}
779EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
780
781/**
782 * of_graph_get_remote_endpoint() - get remote endpoint node
783 * @node: pointer to a local endpoint device_node
784 *
785 * Return: Remote endpoint node associated with remote endpoint node linked
786 * to @node. Use of_node_put() on it when done.
787 */
788struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
789{
790 /* Get remote endpoint node. */
791 return of_parse_phandle(node, "remote-endpoint", 0);
792}
793EXPORT_SYMBOL(of_graph_get_remote_endpoint);
794
795/**
796 * of_graph_get_port_parent() - get port's parent node
797 * @node: pointer to a local endpoint device_node
798 *
799 * Return: device node associated with endpoint node linked
800 * to @node. Use of_node_put() on it when done.
801 */
802struct device_node *of_graph_get_port_parent(struct device_node *node)
803{
804 unsigned int depth;
805
806 if (!node)
807 return NULL;
808
809 /*
810 * Preserve usecount for passed in node as of_get_next_parent()
811 * will do of_node_put() on it.
812 */
813 of_node_get(node);
814
815 /* Walk 3 levels up only if there is 'ports' node. */
816 for (depth = 3; depth && node; depth--) {
817 node = of_get_next_parent(node);
818 if (depth == 2 && !of_node_name_eq(node, "ports") &&
819 !of_node_name_eq(node, "in-ports") &&
820 !of_node_name_eq(node, "out-ports"))
821 break;
822 }
823 return node;
824}
825EXPORT_SYMBOL(of_graph_get_port_parent);
826
827/**
828 * of_graph_get_remote_port_parent() - get remote port's parent node
829 * @node: pointer to a local endpoint device_node
830 *
831 * Return: Remote device node associated with remote endpoint node linked
832 * to @node. Use of_node_put() on it when done.
833 */
834struct device_node *of_graph_get_remote_port_parent(
835 const struct device_node *node)
836{
837 /* Get remote endpoint node. */
838 struct device_node *np __free(device_node) =
839 of_graph_get_remote_endpoint(node);
840
841 return of_graph_get_port_parent(np);
842}
843EXPORT_SYMBOL(of_graph_get_remote_port_parent);
844
845/**
846 * of_graph_get_remote_port() - get remote port node
847 * @node: pointer to a local endpoint device_node
848 *
849 * Return: Remote port node associated with remote endpoint node linked
850 * to @node. Use of_node_put() on it when done.
851 */
852struct device_node *of_graph_get_remote_port(const struct device_node *node)
853{
854 struct device_node *np;
855
856 /* Get remote endpoint node. */
857 np = of_graph_get_remote_endpoint(node);
858 if (!np)
859 return NULL;
860 return of_get_next_parent(np);
861}
862EXPORT_SYMBOL(of_graph_get_remote_port);
863
864/**
865 * of_graph_get_endpoint_count() - get the number of endpoints in a device node
866 * @np: parent device node containing ports and endpoints
867 *
868 * Return: count of endpoint of this device node
869 */
870unsigned int of_graph_get_endpoint_count(const struct device_node *np)
871{
872 struct device_node *endpoint;
873 unsigned int num = 0;
874
875 for_each_endpoint_of_node(np, endpoint)
876 num++;
877
878 return num;
879}
880EXPORT_SYMBOL(of_graph_get_endpoint_count);
881
882/**
883 * of_graph_get_port_count() - get the number of port in a device or ports node
884 * @np: pointer to the device or ports node
885 *
886 * Return: count of port of this device or ports node
887 */
888unsigned int of_graph_get_port_count(struct device_node *np)
889{
890 unsigned int num = 0;
891
892 for_each_of_graph_port(np, port)
893 num++;
894
895 return num;
896}
897EXPORT_SYMBOL(of_graph_get_port_count);
898
899/**
900 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
901 * @node: pointer to parent device_node containing graph port/endpoint
902 * @port: identifier (value of reg property) of the parent port node
903 * @endpoint: identifier (value of reg property) of the endpoint node
904 *
905 * Return: Remote device node associated with remote endpoint node linked
906 * to @node. Use of_node_put() on it when done.
907 */
908struct device_node *of_graph_get_remote_node(const struct device_node *node,
909 u32 port, u32 endpoint)
910{
911 struct device_node *endpoint_node, *remote;
912
913 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
914 if (!endpoint_node) {
915 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
916 port, endpoint, node);
917 return NULL;
918 }
919
920 remote = of_graph_get_remote_port_parent(endpoint_node);
921 of_node_put(endpoint_node);
922 if (!remote) {
923 pr_debug("no valid remote node\n");
924 return NULL;
925 }
926
927 if (!of_device_is_available(remote)) {
928 pr_debug("not available for remote node\n");
929 of_node_put(remote);
930 return NULL;
931 }
932
933 return remote;
934}
935EXPORT_SYMBOL(of_graph_get_remote_node);
936
937static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
938{
939 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
940}
941
942static void of_fwnode_put(struct fwnode_handle *fwnode)
943{
944 of_node_put(to_of_node(fwnode));
945}
946
947static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
948{
949 return of_device_is_available(to_of_node(fwnode));
950}
951
952static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
953{
954 return true;
955}
956
957static enum dev_dma_attr
958of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
959{
960 if (of_dma_is_coherent(to_of_node(fwnode)))
961 return DEV_DMA_COHERENT;
962 else
963 return DEV_DMA_NON_COHERENT;
964}
965
966static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
967 const char *propname)
968{
969 return of_property_read_bool(to_of_node(fwnode), propname);
970}
971
972static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
973 const char *propname,
974 unsigned int elem_size, void *val,
975 size_t nval)
976{
977 const struct device_node *node = to_of_node(fwnode);
978
979 if (!val)
980 return of_property_count_elems_of_size(node, propname,
981 elem_size);
982
983 switch (elem_size) {
984 case sizeof(u8):
985 return of_property_read_u8_array(node, propname, val, nval);
986 case sizeof(u16):
987 return of_property_read_u16_array(node, propname, val, nval);
988 case sizeof(u32):
989 return of_property_read_u32_array(node, propname, val, nval);
990 case sizeof(u64):
991 return of_property_read_u64_array(node, propname, val, nval);
992 }
993
994 return -ENXIO;
995}
996
997static int
998of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
999 const char *propname, const char **val,
1000 size_t nval)
1001{
1002 const struct device_node *node = to_of_node(fwnode);
1003
1004 return val ?
1005 of_property_read_string_array(node, propname, val, nval) :
1006 of_property_count_strings(node, propname);
1007}
1008
1009static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
1010{
1011 return kbasename(to_of_node(fwnode)->full_name);
1012}
1013
1014static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
1015{
1016 /* Root needs no prefix here (its name is "/"). */
1017 if (!to_of_node(fwnode)->parent)
1018 return "";
1019
1020 return "/";
1021}
1022
1023static struct fwnode_handle *
1024of_fwnode_get_parent(const struct fwnode_handle *fwnode)
1025{
1026 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
1027}
1028
1029static struct fwnode_handle *
1030of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
1031 struct fwnode_handle *child)
1032{
1033 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
1034 to_of_node(child)));
1035}
1036
1037static struct fwnode_handle *
1038of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1039 const char *childname)
1040{
1041 const struct device_node *node = to_of_node(fwnode);
1042 struct device_node *child;
1043
1044 for_each_available_child_of_node(node, child)
1045 if (of_node_name_eq(child, childname))
1046 return of_fwnode_handle(child);
1047
1048 return NULL;
1049}
1050
1051static int
1052of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
1053 const char *prop, const char *nargs_prop,
1054 unsigned int nargs, unsigned int index,
1055 struct fwnode_reference_args *args)
1056{
1057 struct of_phandle_args of_args;
1058 unsigned int i;
1059 int ret;
1060
1061 if (nargs_prop)
1062 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
1063 nargs_prop, index, &of_args);
1064 else
1065 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
1066 nargs, index, &of_args);
1067 if (ret < 0)
1068 return ret;
1069 if (!args) {
1070 of_node_put(of_args.np);
1071 return 0;
1072 }
1073
1074 args->nargs = of_args.args_count;
1075 args->fwnode = of_fwnode_handle(of_args.np);
1076
1077 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1078 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1079
1080 return 0;
1081}
1082
1083static struct fwnode_handle *
1084of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1085 struct fwnode_handle *prev)
1086{
1087 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1088 to_of_node(prev)));
1089}
1090
1091static struct fwnode_handle *
1092of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1093{
1094 return of_fwnode_handle(
1095 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1096}
1097
1098static struct fwnode_handle *
1099of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1100{
1101 struct device_node *np;
1102
1103 /* Get the parent of the port */
1104 np = of_get_parent(to_of_node(fwnode));
1105 if (!np)
1106 return NULL;
1107
1108 /* Is this the "ports" node? If not, it's the port parent. */
1109 if (!of_node_name_eq(np, "ports"))
1110 return of_fwnode_handle(np);
1111
1112 return of_fwnode_handle(of_get_next_parent(np));
1113}
1114
1115static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1116 struct fwnode_endpoint *endpoint)
1117{
1118 const struct device_node *node = to_of_node(fwnode);
1119 struct device_node *port_node __free(device_node) = of_get_parent(node);
1120
1121 endpoint->local_fwnode = fwnode;
1122
1123 of_property_read_u32(port_node, "reg", &endpoint->port);
1124 of_property_read_u32(node, "reg", &endpoint->id);
1125
1126 return 0;
1127}
1128
1129static const void *
1130of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1131 const struct device *dev)
1132{
1133 return of_device_get_match_data(dev);
1134}
1135
1136static void of_link_to_phandle(struct device_node *con_np,
1137 struct device_node *sup_np,
1138 u8 flags)
1139{
1140 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np);
1141
1142 /* Check that sup_np and its ancestors are available. */
1143 while (tmp_np) {
1144 if (of_fwnode_handle(tmp_np)->dev)
1145 break;
1146
1147 if (!of_device_is_available(tmp_np))
1148 return;
1149
1150 tmp_np = of_get_next_parent(tmp_np);
1151 }
1152
1153 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags);
1154}
1155
1156/**
1157 * parse_prop_cells - Property parsing function for suppliers
1158 *
1159 * @np: Pointer to device tree node containing a list
1160 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1161 * @index: For properties holding a list of phandles, this is the index
1162 * into the list.
1163 * @list_name: Property name that is known to contain list of phandle(s) to
1164 * supplier(s)
1165 * @cells_name: property name that specifies phandles' arguments count
1166 *
1167 * This is a helper function to parse properties that have a known fixed name
1168 * and are a list of phandles and phandle arguments.
1169 *
1170 * Returns:
1171 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1172 * on it when done.
1173 * - NULL if no phandle found at index
1174 */
1175static struct device_node *parse_prop_cells(struct device_node *np,
1176 const char *prop_name, int index,
1177 const char *list_name,
1178 const char *cells_name)
1179{
1180 struct of_phandle_args sup_args;
1181
1182 if (strcmp(prop_name, list_name))
1183 return NULL;
1184
1185 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1186 &sup_args))
1187 return NULL;
1188
1189 return sup_args.np;
1190}
1191
1192#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1193static struct device_node *parse_##fname(struct device_node *np, \
1194 const char *prop_name, int index) \
1195{ \
1196 return parse_prop_cells(np, prop_name, index, name, cells); \
1197}
1198
1199static int strcmp_suffix(const char *str, const char *suffix)
1200{
1201 unsigned int len, suffix_len;
1202
1203 len = strlen(str);
1204 suffix_len = strlen(suffix);
1205 if (len <= suffix_len)
1206 return -1;
1207 return strcmp(str + len - suffix_len, suffix);
1208}
1209
1210/**
1211 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1212 *
1213 * @np: Pointer to device tree node containing a list
1214 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1215 * @index: For properties holding a list of phandles, this is the index
1216 * into the list.
1217 * @suffix: Property suffix that is known to contain list of phandle(s) to
1218 * supplier(s)
1219 * @cells_name: property name that specifies phandles' arguments count
1220 *
1221 * This is a helper function to parse properties that have a known fixed suffix
1222 * and are a list of phandles and phandle arguments.
1223 *
1224 * Returns:
1225 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1226 * on it when done.
1227 * - NULL if no phandle found at index
1228 */
1229static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1230 const char *prop_name, int index,
1231 const char *suffix,
1232 const char *cells_name)
1233{
1234 struct of_phandle_args sup_args;
1235
1236 if (strcmp_suffix(prop_name, suffix))
1237 return NULL;
1238
1239 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1240 &sup_args))
1241 return NULL;
1242
1243 return sup_args.np;
1244}
1245
1246#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1247static struct device_node *parse_##fname(struct device_node *np, \
1248 const char *prop_name, int index) \
1249{ \
1250 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1251}
1252
1253/**
1254 * struct supplier_bindings - Property parsing functions for suppliers
1255 *
1256 * @parse_prop: function name
1257 * parse_prop() finds the node corresponding to a supplier phandle
1258 * parse_prop.np: Pointer to device node holding supplier phandle property
1259 * parse_prop.prop_name: Name of property holding a phandle value
1260 * parse_prop.index: For properties holding a list of phandles, this is the
1261 * index into the list
1262 * @get_con_dev: If the consumer node containing the property is never converted
1263 * to a struct device, implement this ops so fw_devlink can use it
1264 * to find the true consumer.
1265 * @optional: Describes whether a supplier is mandatory or not
1266 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link
1267 * for this property.
1268 *
1269 * Returns:
1270 * parse_prop() return values are
1271 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1272 * on it when done.
1273 * - NULL if no phandle found at index
1274 */
1275struct supplier_bindings {
1276 struct device_node *(*parse_prop)(struct device_node *np,
1277 const char *prop_name, int index);
1278 struct device_node *(*get_con_dev)(struct device_node *np);
1279 bool optional;
1280 u8 fwlink_flags;
1281};
1282
1283DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1284DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1285DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1286DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1287DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1288DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells")
1289DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1290DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1291DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1292DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1293DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1294DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1295DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1296DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1297DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1298DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1299DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1300DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1301DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1302DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1303DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1304DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1305DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1306DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1307DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1308DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1309DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1310DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1311DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL)
1312DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells")
1313DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells")
1314DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL)
1315DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1316DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1317
1318static struct device_node *parse_gpios(struct device_node *np,
1319 const char *prop_name, int index)
1320{
1321 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1322 return NULL;
1323
1324 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1325 "#gpio-cells");
1326}
1327
1328static struct device_node *parse_iommu_maps(struct device_node *np,
1329 const char *prop_name, int index)
1330{
1331 if (strcmp(prop_name, "iommu-map"))
1332 return NULL;
1333
1334 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1335}
1336
1337static struct device_node *parse_gpio_compat(struct device_node *np,
1338 const char *prop_name, int index)
1339{
1340 struct of_phandle_args sup_args;
1341
1342 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1343 return NULL;
1344
1345 /*
1346 * Ignore node with gpio-hog property since its gpios are all provided
1347 * by its parent.
1348 */
1349 if (of_property_read_bool(np, "gpio-hog"))
1350 return NULL;
1351
1352 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1353 &sup_args))
1354 return NULL;
1355
1356 return sup_args.np;
1357}
1358
1359static struct device_node *parse_interrupts(struct device_node *np,
1360 const char *prop_name, int index)
1361{
1362 struct of_phandle_args sup_args;
1363
1364 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1365 return NULL;
1366
1367 if (strcmp(prop_name, "interrupts") &&
1368 strcmp(prop_name, "interrupts-extended"))
1369 return NULL;
1370
1371 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1372}
1373
1374static struct device_node *parse_interrupt_map(struct device_node *np,
1375 const char *prop_name, int index)
1376{
1377 const __be32 *imap, *imap_end;
1378 struct of_phandle_args sup_args;
1379 u32 addrcells, intcells;
1380 int imaplen;
1381
1382 if (!IS_ENABLED(CONFIG_OF_IRQ))
1383 return NULL;
1384
1385 if (strcmp(prop_name, "interrupt-map"))
1386 return NULL;
1387
1388 if (of_property_read_u32(np, "#interrupt-cells", &intcells))
1389 return NULL;
1390 addrcells = of_bus_n_addr_cells(np);
1391
1392 imap = of_get_property(np, "interrupt-map", &imaplen);
1393 if (!imap)
1394 return NULL;
1395 imaplen /= sizeof(*imap);
1396
1397 imap_end = imap + imaplen;
1398
1399 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) {
1400 imap += addrcells + intcells;
1401
1402 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args);
1403 if (!imap)
1404 return NULL;
1405
1406 if (i == index)
1407 return sup_args.np;
1408
1409 of_node_put(sup_args.np);
1410 }
1411
1412 return NULL;
1413}
1414
1415static struct device_node *parse_remote_endpoint(struct device_node *np,
1416 const char *prop_name,
1417 int index)
1418{
1419 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1420 if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1421 return NULL;
1422
1423 return of_graph_get_remote_port_parent(np);
1424}
1425
1426static const struct supplier_bindings of_supplier_bindings[] = {
1427 { .parse_prop = parse_clocks, },
1428 { .parse_prop = parse_interconnects, },
1429 { .parse_prop = parse_iommus, .optional = true, },
1430 { .parse_prop = parse_iommu_maps, .optional = true, },
1431 { .parse_prop = parse_mboxes, },
1432 { .parse_prop = parse_io_channels, },
1433 { .parse_prop = parse_io_backends, },
1434 { .parse_prop = parse_dmas, .optional = true, },
1435 { .parse_prop = parse_power_domains, },
1436 { .parse_prop = parse_hwlocks, },
1437 { .parse_prop = parse_extcon, },
1438 { .parse_prop = parse_nvmem_cells, },
1439 { .parse_prop = parse_phys, },
1440 { .parse_prop = parse_wakeup_parent, },
1441 { .parse_prop = parse_pinctrl0, },
1442 { .parse_prop = parse_pinctrl1, },
1443 { .parse_prop = parse_pinctrl2, },
1444 { .parse_prop = parse_pinctrl3, },
1445 { .parse_prop = parse_pinctrl4, },
1446 { .parse_prop = parse_pinctrl5, },
1447 { .parse_prop = parse_pinctrl6, },
1448 { .parse_prop = parse_pinctrl7, },
1449 { .parse_prop = parse_pinctrl8, },
1450 {
1451 .parse_prop = parse_remote_endpoint,
1452 .get_con_dev = of_graph_get_port_parent,
1453 },
1454 { .parse_prop = parse_pwms, },
1455 { .parse_prop = parse_resets, },
1456 { .parse_prop = parse_leds, },
1457 { .parse_prop = parse_backlight, },
1458 { .parse_prop = parse_panel, },
1459 { .parse_prop = parse_msi_parent, },
1460 { .parse_prop = parse_pses, },
1461 { .parse_prop = parse_power_supplies, },
1462 { .parse_prop = parse_gpio_compat, },
1463 { .parse_prop = parse_interrupts, },
1464 { .parse_prop = parse_interrupt_map, },
1465 { .parse_prop = parse_access_controllers, },
1466 { .parse_prop = parse_regulators, },
1467 { .parse_prop = parse_gpio, },
1468 { .parse_prop = parse_gpios, },
1469 {
1470 .parse_prop = parse_post_init_providers,
1471 .fwlink_flags = FWLINK_FLAG_IGNORE,
1472 },
1473 {}
1474};
1475
1476/**
1477 * of_link_property - Create device links to suppliers listed in a property
1478 * @con_np: The consumer device tree node which contains the property
1479 * @prop_name: Name of property to be parsed
1480 *
1481 * This function checks if the property @prop_name that is present in the
1482 * @con_np device tree node is one of the known common device tree bindings
1483 * that list phandles to suppliers. If @prop_name isn't one, this function
1484 * doesn't do anything.
1485 *
1486 * If @prop_name is one, this function attempts to create fwnode links from the
1487 * consumer device tree node @con_np to all the suppliers device tree nodes
1488 * listed in @prop_name.
1489 *
1490 * Any failed attempt to create a fwnode link will NOT result in an immediate
1491 * return. of_link_property() must create links to all the available supplier
1492 * device tree nodes even when attempts to create a link to one or more
1493 * suppliers fail.
1494 */
1495static int of_link_property(struct device_node *con_np, const char *prop_name)
1496{
1497 struct device_node *phandle;
1498 const struct supplier_bindings *s = of_supplier_bindings;
1499 unsigned int i = 0;
1500 bool matched = false;
1501
1502 /* Do not stop at first failed link, link all available suppliers. */
1503 while (!matched && s->parse_prop) {
1504 if (s->optional && !fw_devlink_is_strict()) {
1505 s++;
1506 continue;
1507 }
1508
1509 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1510 struct device_node *con_dev_np __free(device_node) =
1511 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np);
1512
1513 matched = true;
1514 i++;
1515 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags);
1516 of_node_put(phandle);
1517 }
1518 s++;
1519 }
1520 return 0;
1521}
1522
1523static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1524{
1525#ifdef CONFIG_OF_ADDRESS
1526 return of_iomap(to_of_node(fwnode), index);
1527#else
1528 return NULL;
1529#endif
1530}
1531
1532static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1533 unsigned int index)
1534{
1535 return of_irq_get(to_of_node(fwnode), index);
1536}
1537
1538static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1539{
1540 const struct property *p;
1541 struct device_node *con_np = to_of_node(fwnode);
1542
1543 if (IS_ENABLED(CONFIG_X86))
1544 return 0;
1545
1546 if (!con_np)
1547 return -EINVAL;
1548
1549 for_each_property_of_node(con_np, p)
1550 of_link_property(con_np, p->name);
1551
1552 return 0;
1553}
1554
1555const struct fwnode_operations of_fwnode_ops = {
1556 .get = of_fwnode_get,
1557 .put = of_fwnode_put,
1558 .device_is_available = of_fwnode_device_is_available,
1559 .device_get_match_data = of_fwnode_device_get_match_data,
1560 .device_dma_supported = of_fwnode_device_dma_supported,
1561 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1562 .property_present = of_fwnode_property_present,
1563 .property_read_int_array = of_fwnode_property_read_int_array,
1564 .property_read_string_array = of_fwnode_property_read_string_array,
1565 .get_name = of_fwnode_get_name,
1566 .get_name_prefix = of_fwnode_get_name_prefix,
1567 .get_parent = of_fwnode_get_parent,
1568 .get_next_child_node = of_fwnode_get_next_child_node,
1569 .get_named_child_node = of_fwnode_get_named_child_node,
1570 .get_reference_args = of_fwnode_get_reference_args,
1571 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1572 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1573 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1574 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1575 .iomap = of_fwnode_iomap,
1576 .irq_get = of_fwnode_irq_get,
1577 .add_links = of_fwnode_add_links,
1578};
1579EXPORT_SYMBOL_GPL(of_fwnode_ops);