Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_device.h>
27#include <linux/of_graph.h>
28#include <linux/of_irq.h>
29#include <linux/string.h>
30#include <linux/moduleparam.h>
31
32#include "of_private.h"
33
34/**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
41bool of_graph_is_present(const struct device_node *node)
42{
43 struct device_node *ports, *port;
44
45 ports = of_get_child_by_name(node, "ports");
46 if (ports)
47 node = ports;
48
49 port = of_get_child_by_name(node, "port");
50 of_node_put(ports);
51 of_node_put(port);
52
53 return !!port;
54}
55EXPORT_SYMBOL(of_graph_is_present);
56
57/**
58 * of_property_count_elems_of_size - Count the number of elements in a property
59 *
60 * @np: device node from which the property value is to be read.
61 * @propname: name of the property to be searched.
62 * @elem_size: size of the individual element
63 *
64 * Search for a property in a device node and count the number of elements of
65 * size elem_size in it.
66 *
67 * Return: The number of elements on sucess, -EINVAL if the property does not
68 * exist or its length does not match a multiple of elem_size and -ENODATA if
69 * the property does not have a value.
70 */
71int of_property_count_elems_of_size(const struct device_node *np,
72 const char *propname, int elem_size)
73{
74 struct property *prop = of_find_property(np, propname, NULL);
75
76 if (!prop)
77 return -EINVAL;
78 if (!prop->value)
79 return -ENODATA;
80
81 if (prop->length % elem_size != 0) {
82 pr_err("size of %s in node %pOF is not a multiple of %d\n",
83 propname, np, elem_size);
84 return -EINVAL;
85 }
86
87 return prop->length / elem_size;
88}
89EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90
91/**
92 * of_find_property_value_of_size
93 *
94 * @np: device node from which the property value is to be read.
95 * @propname: name of the property to be searched.
96 * @min: minimum allowed length of property value
97 * @max: maximum allowed length of property value (0 means unlimited)
98 * @len: if !=NULL, actual length is written to here
99 *
100 * Search for a property in a device node and valid the requested size.
101 *
102 * Return: The property value on success, -EINVAL if the property does not
103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
104 * property data is too small or too large.
105 *
106 */
107static void *of_find_property_value_of_size(const struct device_node *np,
108 const char *propname, u32 min, u32 max, size_t *len)
109{
110 struct property *prop = of_find_property(np, propname, NULL);
111
112 if (!prop)
113 return ERR_PTR(-EINVAL);
114 if (!prop->value)
115 return ERR_PTR(-ENODATA);
116 if (prop->length < min)
117 return ERR_PTR(-EOVERFLOW);
118 if (max && prop->length > max)
119 return ERR_PTR(-EOVERFLOW);
120
121 if (len)
122 *len = prop->length;
123
124 return prop->value;
125}
126
127/**
128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129 *
130 * @np: device node from which the property value is to be read.
131 * @propname: name of the property to be searched.
132 * @index: index of the u32 in the list of values
133 * @out_value: pointer to return value, modified only if no error.
134 *
135 * Search for a property in a device node and read nth 32-bit value from
136 * it.
137 *
138 * Return: 0 on success, -EINVAL if the property does not exist,
139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
140 * property data isn't large enough.
141 *
142 * The out_value is modified only if a valid u32 value can be decoded.
143 */
144int of_property_read_u32_index(const struct device_node *np,
145 const char *propname,
146 u32 index, u32 *out_value)
147{
148 const u32 *val = of_find_property_value_of_size(np, propname,
149 ((index + 1) * sizeof(*out_value)),
150 0,
151 NULL);
152
153 if (IS_ERR(val))
154 return PTR_ERR(val);
155
156 *out_value = be32_to_cpup(((__be32 *)val) + index);
157 return 0;
158}
159EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160
161/**
162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163 *
164 * @np: device node from which the property value is to be read.
165 * @propname: name of the property to be searched.
166 * @index: index of the u64 in the list of values
167 * @out_value: pointer to return value, modified only if no error.
168 *
169 * Search for a property in a device node and read nth 64-bit value from
170 * it.
171 *
172 * Return: 0 on success, -EINVAL if the property does not exist,
173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
174 * property data isn't large enough.
175 *
176 * The out_value is modified only if a valid u64 value can be decoded.
177 */
178int of_property_read_u64_index(const struct device_node *np,
179 const char *propname,
180 u32 index, u64 *out_value)
181{
182 const u64 *val = of_find_property_value_of_size(np, propname,
183 ((index + 1) * sizeof(*out_value)),
184 0, NULL);
185
186 if (IS_ERR(val))
187 return PTR_ERR(val);
188
189 *out_value = be64_to_cpup(((__be64 *)val) + index);
190 return 0;
191}
192EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193
194/**
195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
196 * property, with bounds on the minimum and maximum array size.
197 *
198 * @np: device node from which the property value is to be read.
199 * @propname: name of the property to be searched.
200 * @out_values: pointer to found values.
201 * @sz_min: minimum number of array elements to read
202 * @sz_max: maximum number of array elements to read, if zero there is no
203 * upper limit on the number of elements in the dts entry but only
204 * sz_min will be read.
205 *
206 * Search for a property in a device node and read 8-bit value(s) from
207 * it.
208 *
209 * dts entry of array should be like:
210 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
211 *
212 * Return: The number of elements read on success, -EINVAL if the property
213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214 * if the property data is smaller than sz_min or longer than sz_max.
215 *
216 * The out_values is modified only if a valid u8 value can be decoded.
217 */
218int of_property_read_variable_u8_array(const struct device_node *np,
219 const char *propname, u8 *out_values,
220 size_t sz_min, size_t sz_max)
221{
222 size_t sz, count;
223 const u8 *val = of_find_property_value_of_size(np, propname,
224 (sz_min * sizeof(*out_values)),
225 (sz_max * sizeof(*out_values)),
226 &sz);
227
228 if (IS_ERR(val))
229 return PTR_ERR(val);
230
231 if (!sz_max)
232 sz = sz_min;
233 else
234 sz /= sizeof(*out_values);
235
236 count = sz;
237 while (count--)
238 *out_values++ = *val++;
239
240 return sz;
241}
242EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243
244/**
245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
246 * property, with bounds on the minimum and maximum array size.
247 *
248 * @np: device node from which the property value is to be read.
249 * @propname: name of the property to be searched.
250 * @out_values: pointer to found values.
251 * @sz_min: minimum number of array elements to read
252 * @sz_max: maximum number of array elements to read, if zero there is no
253 * upper limit on the number of elements in the dts entry but only
254 * sz_min will be read.
255 *
256 * Search for a property in a device node and read 16-bit value(s) from
257 * it.
258 *
259 * dts entry of array should be like:
260 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261 *
262 * Return: The number of elements read on success, -EINVAL if the property
263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264 * if the property data is smaller than sz_min or longer than sz_max.
265 *
266 * The out_values is modified only if a valid u16 value can be decoded.
267 */
268int of_property_read_variable_u16_array(const struct device_node *np,
269 const char *propname, u16 *out_values,
270 size_t sz_min, size_t sz_max)
271{
272 size_t sz, count;
273 const __be16 *val = of_find_property_value_of_size(np, propname,
274 (sz_min * sizeof(*out_values)),
275 (sz_max * sizeof(*out_values)),
276 &sz);
277
278 if (IS_ERR(val))
279 return PTR_ERR(val);
280
281 if (!sz_max)
282 sz = sz_min;
283 else
284 sz /= sizeof(*out_values);
285
286 count = sz;
287 while (count--)
288 *out_values++ = be16_to_cpup(val++);
289
290 return sz;
291}
292EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293
294/**
295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
296 * integers from a property, with bounds on the minimum and maximum array size.
297 *
298 * @np: device node from which the property value is to be read.
299 * @propname: name of the property to be searched.
300 * @out_values: pointer to return found values.
301 * @sz_min: minimum number of array elements to read
302 * @sz_max: maximum number of array elements to read, if zero there is no
303 * upper limit on the number of elements in the dts entry but only
304 * sz_min will be read.
305 *
306 * Search for a property in a device node and read 32-bit value(s) from
307 * it.
308 *
309 * Return: The number of elements read on success, -EINVAL if the property
310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311 * if the property data is smaller than sz_min or longer than sz_max.
312 *
313 * The out_values is modified only if a valid u32 value can be decoded.
314 */
315int of_property_read_variable_u32_array(const struct device_node *np,
316 const char *propname, u32 *out_values,
317 size_t sz_min, size_t sz_max)
318{
319 size_t sz, count;
320 const __be32 *val = of_find_property_value_of_size(np, propname,
321 (sz_min * sizeof(*out_values)),
322 (sz_max * sizeof(*out_values)),
323 &sz);
324
325 if (IS_ERR(val))
326 return PTR_ERR(val);
327
328 if (!sz_max)
329 sz = sz_min;
330 else
331 sz /= sizeof(*out_values);
332
333 count = sz;
334 while (count--)
335 *out_values++ = be32_to_cpup(val++);
336
337 return sz;
338}
339EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340
341/**
342 * of_property_read_u64 - Find and read a 64 bit integer from a property
343 * @np: device node from which the property value is to be read.
344 * @propname: name of the property to be searched.
345 * @out_value: pointer to return value, modified only if return value is 0.
346 *
347 * Search for a property in a device node and read a 64-bit value from
348 * it.
349 *
350 * Return: 0 on success, -EINVAL if the property does not exist,
351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
352 * property data isn't large enough.
353 *
354 * The out_value is modified only if a valid u64 value can be decoded.
355 */
356int of_property_read_u64(const struct device_node *np, const char *propname,
357 u64 *out_value)
358{
359 const __be32 *val = of_find_property_value_of_size(np, propname,
360 sizeof(*out_value),
361 0,
362 NULL);
363
364 if (IS_ERR(val))
365 return PTR_ERR(val);
366
367 *out_value = of_read_number(val, 2);
368 return 0;
369}
370EXPORT_SYMBOL_GPL(of_property_read_u64);
371
372/**
373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
374 * integers from a property, with bounds on the minimum and maximum array size.
375 *
376 * @np: device node from which the property value is to be read.
377 * @propname: name of the property to be searched.
378 * @out_values: pointer to found values.
379 * @sz_min: minimum number of array elements to read
380 * @sz_max: maximum number of array elements to read, if zero there is no
381 * upper limit on the number of elements in the dts entry but only
382 * sz_min will be read.
383 *
384 * Search for a property in a device node and read 64-bit value(s) from
385 * it.
386 *
387 * Return: The number of elements read on success, -EINVAL if the property
388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389 * if the property data is smaller than sz_min or longer than sz_max.
390 *
391 * The out_values is modified only if a valid u64 value can be decoded.
392 */
393int of_property_read_variable_u64_array(const struct device_node *np,
394 const char *propname, u64 *out_values,
395 size_t sz_min, size_t sz_max)
396{
397 size_t sz, count;
398 const __be32 *val = of_find_property_value_of_size(np, propname,
399 (sz_min * sizeof(*out_values)),
400 (sz_max * sizeof(*out_values)),
401 &sz);
402
403 if (IS_ERR(val))
404 return PTR_ERR(val);
405
406 if (!sz_max)
407 sz = sz_min;
408 else
409 sz /= sizeof(*out_values);
410
411 count = sz;
412 while (count--) {
413 *out_values++ = of_read_number(val, 2);
414 val += 2;
415 }
416
417 return sz;
418}
419EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420
421/**
422 * of_property_read_string - Find and read a string from a property
423 * @np: device node from which the property value is to be read.
424 * @propname: name of the property to be searched.
425 * @out_string: pointer to null terminated return string, modified only if
426 * return value is 0.
427 *
428 * Search for a property in a device tree node and retrieve a null
429 * terminated string value (pointer to data, not a copy).
430 *
431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432 * property does not have a value, and -EILSEQ if the string is not
433 * null-terminated within the length of the property data.
434 *
435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
436 * be interpreted as an empty string.
437 *
438 * The out_string pointer is modified only if a valid string can be decoded.
439 */
440int of_property_read_string(const struct device_node *np, const char *propname,
441 const char **out_string)
442{
443 const struct property *prop = of_find_property(np, propname, NULL);
444 if (!prop)
445 return -EINVAL;
446 if (!prop->length)
447 return -ENODATA;
448 if (strnlen(prop->value, prop->length) >= prop->length)
449 return -EILSEQ;
450 *out_string = prop->value;
451 return 0;
452}
453EXPORT_SYMBOL_GPL(of_property_read_string);
454
455/**
456 * of_property_match_string() - Find string in a list and return index
457 * @np: pointer to node containing string list property
458 * @propname: string list property name
459 * @string: pointer to string to search for in string list
460 *
461 * This function searches a string list property and returns the index
462 * of a specific string value.
463 */
464int of_property_match_string(const struct device_node *np, const char *propname,
465 const char *string)
466{
467 const struct property *prop = of_find_property(np, propname, NULL);
468 size_t l;
469 int i;
470 const char *p, *end;
471
472 if (!prop)
473 return -EINVAL;
474 if (!prop->value)
475 return -ENODATA;
476
477 p = prop->value;
478 end = p + prop->length;
479
480 for (i = 0; p < end; i++, p += l) {
481 l = strnlen(p, end - p) + 1;
482 if (p + l > end)
483 return -EILSEQ;
484 pr_debug("comparing %s with %s\n", string, p);
485 if (strcmp(string, p) == 0)
486 return i; /* Found it; return index */
487 }
488 return -ENODATA;
489}
490EXPORT_SYMBOL_GPL(of_property_match_string);
491
492/**
493 * of_property_read_string_helper() - Utility helper for parsing string properties
494 * @np: device node from which the property value is to be read.
495 * @propname: name of the property to be searched.
496 * @out_strs: output array of string pointers.
497 * @sz: number of array elements to read.
498 * @skip: Number of strings to skip over at beginning of list.
499 *
500 * Don't call this function directly. It is a utility helper for the
501 * of_property_read_string*() family of functions.
502 */
503int of_property_read_string_helper(const struct device_node *np,
504 const char *propname, const char **out_strs,
505 size_t sz, int skip)
506{
507 const struct property *prop = of_find_property(np, propname, NULL);
508 int l = 0, i = 0;
509 const char *p, *end;
510
511 if (!prop)
512 return -EINVAL;
513 if (!prop->value)
514 return -ENODATA;
515 p = prop->value;
516 end = p + prop->length;
517
518 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
519 l = strnlen(p, end - p) + 1;
520 if (p + l > end)
521 return -EILSEQ;
522 if (out_strs && i >= skip)
523 *out_strs++ = p;
524 }
525 i -= skip;
526 return i <= 0 ? -ENODATA : i;
527}
528EXPORT_SYMBOL_GPL(of_property_read_string_helper);
529
530const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
531 u32 *pu)
532{
533 const void *curv = cur;
534
535 if (!prop)
536 return NULL;
537
538 if (!cur) {
539 curv = prop->value;
540 goto out_val;
541 }
542
543 curv += sizeof(*cur);
544 if (curv >= prop->value + prop->length)
545 return NULL;
546
547out_val:
548 *pu = be32_to_cpup(curv);
549 return curv;
550}
551EXPORT_SYMBOL_GPL(of_prop_next_u32);
552
553const char *of_prop_next_string(struct property *prop, const char *cur)
554{
555 const void *curv = cur;
556
557 if (!prop)
558 return NULL;
559
560 if (!cur)
561 return prop->value;
562
563 curv += strlen(cur) + 1;
564 if (curv >= prop->value + prop->length)
565 return NULL;
566
567 return curv;
568}
569EXPORT_SYMBOL_GPL(of_prop_next_string);
570
571/**
572 * of_graph_parse_endpoint() - parse common endpoint node properties
573 * @node: pointer to endpoint device_node
574 * @endpoint: pointer to the OF endpoint data structure
575 *
576 * The caller should hold a reference to @node.
577 */
578int of_graph_parse_endpoint(const struct device_node *node,
579 struct of_endpoint *endpoint)
580{
581 struct device_node *port_node = of_get_parent(node);
582
583 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
584 __func__, node);
585
586 memset(endpoint, 0, sizeof(*endpoint));
587
588 endpoint->local_node = node;
589 /*
590 * It doesn't matter whether the two calls below succeed.
591 * If they don't then the default value 0 is used.
592 */
593 of_property_read_u32(port_node, "reg", &endpoint->port);
594 of_property_read_u32(node, "reg", &endpoint->id);
595
596 of_node_put(port_node);
597
598 return 0;
599}
600EXPORT_SYMBOL(of_graph_parse_endpoint);
601
602/**
603 * of_graph_get_port_by_id() - get the port matching a given id
604 * @parent: pointer to the parent device node
605 * @id: id of the port
606 *
607 * Return: A 'port' node pointer with refcount incremented. The caller
608 * has to use of_node_put() on it when done.
609 */
610struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
611{
612 struct device_node *node, *port;
613
614 node = of_get_child_by_name(parent, "ports");
615 if (node)
616 parent = node;
617
618 for_each_child_of_node(parent, port) {
619 u32 port_id = 0;
620
621 if (!of_node_name_eq(port, "port"))
622 continue;
623 of_property_read_u32(port, "reg", &port_id);
624 if (id == port_id)
625 break;
626 }
627
628 of_node_put(node);
629
630 return port;
631}
632EXPORT_SYMBOL(of_graph_get_port_by_id);
633
634/**
635 * of_graph_get_next_endpoint() - get next endpoint node
636 * @parent: pointer to the parent device node
637 * @prev: previous endpoint node, or NULL to get first
638 *
639 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
640 * of the passed @prev node is decremented.
641 */
642struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
643 struct device_node *prev)
644{
645 struct device_node *endpoint;
646 struct device_node *port;
647
648 if (!parent)
649 return NULL;
650
651 /*
652 * Start by locating the port node. If no previous endpoint is specified
653 * search for the first port node, otherwise get the previous endpoint
654 * parent port node.
655 */
656 if (!prev) {
657 struct device_node *node;
658
659 node = of_get_child_by_name(parent, "ports");
660 if (node)
661 parent = node;
662
663 port = of_get_child_by_name(parent, "port");
664 of_node_put(node);
665
666 if (!port) {
667 pr_err("graph: no port node found in %pOF\n", parent);
668 return NULL;
669 }
670 } else {
671 port = of_get_parent(prev);
672 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
673 __func__, prev))
674 return NULL;
675 }
676
677 while (1) {
678 /*
679 * Now that we have a port node, get the next endpoint by
680 * getting the next child. If the previous endpoint is NULL this
681 * will return the first child.
682 */
683 endpoint = of_get_next_child(port, prev);
684 if (endpoint) {
685 of_node_put(port);
686 return endpoint;
687 }
688
689 /* No more endpoints under this port, try the next one. */
690 prev = NULL;
691
692 do {
693 port = of_get_next_child(parent, port);
694 if (!port)
695 return NULL;
696 } while (!of_node_name_eq(port, "port"));
697 }
698}
699EXPORT_SYMBOL(of_graph_get_next_endpoint);
700
701/**
702 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
703 * @parent: pointer to the parent device node
704 * @port_reg: identifier (value of reg property) of the parent port node
705 * @reg: identifier (value of reg property) of the endpoint node
706 *
707 * Return: An 'endpoint' node pointer which is identified by reg and at the same
708 * is the child of a port node identified by port_reg. reg and port_reg are
709 * ignored when they are -1. Use of_node_put() on the pointer when done.
710 */
711struct device_node *of_graph_get_endpoint_by_regs(
712 const struct device_node *parent, int port_reg, int reg)
713{
714 struct of_endpoint endpoint;
715 struct device_node *node = NULL;
716
717 for_each_endpoint_of_node(parent, node) {
718 of_graph_parse_endpoint(node, &endpoint);
719 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
720 ((reg == -1) || (endpoint.id == reg)))
721 return node;
722 }
723
724 return NULL;
725}
726EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
727
728/**
729 * of_graph_get_remote_endpoint() - get remote endpoint node
730 * @node: pointer to a local endpoint device_node
731 *
732 * Return: Remote endpoint node associated with remote endpoint node linked
733 * to @node. Use of_node_put() on it when done.
734 */
735struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
736{
737 /* Get remote endpoint node. */
738 return of_parse_phandle(node, "remote-endpoint", 0);
739}
740EXPORT_SYMBOL(of_graph_get_remote_endpoint);
741
742/**
743 * of_graph_get_port_parent() - get port's parent node
744 * @node: pointer to a local endpoint device_node
745 *
746 * Return: device node associated with endpoint node linked
747 * to @node. Use of_node_put() on it when done.
748 */
749struct device_node *of_graph_get_port_parent(struct device_node *node)
750{
751 unsigned int depth;
752
753 if (!node)
754 return NULL;
755
756 /*
757 * Preserve usecount for passed in node as of_get_next_parent()
758 * will do of_node_put() on it.
759 */
760 of_node_get(node);
761
762 /* Walk 3 levels up only if there is 'ports' node. */
763 for (depth = 3; depth && node; depth--) {
764 node = of_get_next_parent(node);
765 if (depth == 2 && !of_node_name_eq(node, "ports"))
766 break;
767 }
768 return node;
769}
770EXPORT_SYMBOL(of_graph_get_port_parent);
771
772/**
773 * of_graph_get_remote_port_parent() - get remote port's parent node
774 * @node: pointer to a local endpoint device_node
775 *
776 * Return: Remote device node associated with remote endpoint node linked
777 * to @node. Use of_node_put() on it when done.
778 */
779struct device_node *of_graph_get_remote_port_parent(
780 const struct device_node *node)
781{
782 struct device_node *np, *pp;
783
784 /* Get remote endpoint node. */
785 np = of_graph_get_remote_endpoint(node);
786
787 pp = of_graph_get_port_parent(np);
788
789 of_node_put(np);
790
791 return pp;
792}
793EXPORT_SYMBOL(of_graph_get_remote_port_parent);
794
795/**
796 * of_graph_get_remote_port() - get remote port node
797 * @node: pointer to a local endpoint device_node
798 *
799 * Return: Remote port node associated with remote endpoint node linked
800 * to @node. Use of_node_put() on it when done.
801 */
802struct device_node *of_graph_get_remote_port(const struct device_node *node)
803{
804 struct device_node *np;
805
806 /* Get remote endpoint node. */
807 np = of_graph_get_remote_endpoint(node);
808 if (!np)
809 return NULL;
810 return of_get_next_parent(np);
811}
812EXPORT_SYMBOL(of_graph_get_remote_port);
813
814int of_graph_get_endpoint_count(const struct device_node *np)
815{
816 struct device_node *endpoint;
817 int num = 0;
818
819 for_each_endpoint_of_node(np, endpoint)
820 num++;
821
822 return num;
823}
824EXPORT_SYMBOL(of_graph_get_endpoint_count);
825
826/**
827 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
828 * @node: pointer to parent device_node containing graph port/endpoint
829 * @port: identifier (value of reg property) of the parent port node
830 * @endpoint: identifier (value of reg property) of the endpoint node
831 *
832 * Return: Remote device node associated with remote endpoint node linked
833 * to @node. Use of_node_put() on it when done.
834 */
835struct device_node *of_graph_get_remote_node(const struct device_node *node,
836 u32 port, u32 endpoint)
837{
838 struct device_node *endpoint_node, *remote;
839
840 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
841 if (!endpoint_node) {
842 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
843 port, endpoint, node);
844 return NULL;
845 }
846
847 remote = of_graph_get_remote_port_parent(endpoint_node);
848 of_node_put(endpoint_node);
849 if (!remote) {
850 pr_debug("no valid remote node\n");
851 return NULL;
852 }
853
854 if (!of_device_is_available(remote)) {
855 pr_debug("not available for remote node\n");
856 of_node_put(remote);
857 return NULL;
858 }
859
860 return remote;
861}
862EXPORT_SYMBOL(of_graph_get_remote_node);
863
864static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
865{
866 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
867}
868
869static void of_fwnode_put(struct fwnode_handle *fwnode)
870{
871 of_node_put(to_of_node(fwnode));
872}
873
874static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
875{
876 return of_device_is_available(to_of_node(fwnode));
877}
878
879static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
880{
881 return true;
882}
883
884static enum dev_dma_attr
885of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
886{
887 if (of_dma_is_coherent(to_of_node(fwnode)))
888 return DEV_DMA_COHERENT;
889 else
890 return DEV_DMA_NON_COHERENT;
891}
892
893static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
894 const char *propname)
895{
896 return of_property_read_bool(to_of_node(fwnode), propname);
897}
898
899static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
900 const char *propname,
901 unsigned int elem_size, void *val,
902 size_t nval)
903{
904 const struct device_node *node = to_of_node(fwnode);
905
906 if (!val)
907 return of_property_count_elems_of_size(node, propname,
908 elem_size);
909
910 switch (elem_size) {
911 case sizeof(u8):
912 return of_property_read_u8_array(node, propname, val, nval);
913 case sizeof(u16):
914 return of_property_read_u16_array(node, propname, val, nval);
915 case sizeof(u32):
916 return of_property_read_u32_array(node, propname, val, nval);
917 case sizeof(u64):
918 return of_property_read_u64_array(node, propname, val, nval);
919 }
920
921 return -ENXIO;
922}
923
924static int
925of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
926 const char *propname, const char **val,
927 size_t nval)
928{
929 const struct device_node *node = to_of_node(fwnode);
930
931 return val ?
932 of_property_read_string_array(node, propname, val, nval) :
933 of_property_count_strings(node, propname);
934}
935
936static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
937{
938 return kbasename(to_of_node(fwnode)->full_name);
939}
940
941static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
942{
943 /* Root needs no prefix here (its name is "/"). */
944 if (!to_of_node(fwnode)->parent)
945 return "";
946
947 return "/";
948}
949
950static struct fwnode_handle *
951of_fwnode_get_parent(const struct fwnode_handle *fwnode)
952{
953 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
954}
955
956static struct fwnode_handle *
957of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
958 struct fwnode_handle *child)
959{
960 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
961 to_of_node(child)));
962}
963
964static struct fwnode_handle *
965of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
966 const char *childname)
967{
968 const struct device_node *node = to_of_node(fwnode);
969 struct device_node *child;
970
971 for_each_available_child_of_node(node, child)
972 if (of_node_name_eq(child, childname))
973 return of_fwnode_handle(child);
974
975 return NULL;
976}
977
978static int
979of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
980 const char *prop, const char *nargs_prop,
981 unsigned int nargs, unsigned int index,
982 struct fwnode_reference_args *args)
983{
984 struct of_phandle_args of_args;
985 unsigned int i;
986 int ret;
987
988 if (nargs_prop)
989 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
990 nargs_prop, index, &of_args);
991 else
992 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
993 nargs, index, &of_args);
994 if (ret < 0)
995 return ret;
996 if (!args) {
997 of_node_put(of_args.np);
998 return 0;
999 }
1000
1001 args->nargs = of_args.args_count;
1002 args->fwnode = of_fwnode_handle(of_args.np);
1003
1004 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1005 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1006
1007 return 0;
1008}
1009
1010static struct fwnode_handle *
1011of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1012 struct fwnode_handle *prev)
1013{
1014 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1015 to_of_node(prev)));
1016}
1017
1018static struct fwnode_handle *
1019of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1020{
1021 return of_fwnode_handle(
1022 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1023}
1024
1025static struct fwnode_handle *
1026of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1027{
1028 struct device_node *np;
1029
1030 /* Get the parent of the port */
1031 np = of_get_parent(to_of_node(fwnode));
1032 if (!np)
1033 return NULL;
1034
1035 /* Is this the "ports" node? If not, it's the port parent. */
1036 if (!of_node_name_eq(np, "ports"))
1037 return of_fwnode_handle(np);
1038
1039 return of_fwnode_handle(of_get_next_parent(np));
1040}
1041
1042static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1043 struct fwnode_endpoint *endpoint)
1044{
1045 const struct device_node *node = to_of_node(fwnode);
1046 struct device_node *port_node = of_get_parent(node);
1047
1048 endpoint->local_fwnode = fwnode;
1049
1050 of_property_read_u32(port_node, "reg", &endpoint->port);
1051 of_property_read_u32(node, "reg", &endpoint->id);
1052
1053 of_node_put(port_node);
1054
1055 return 0;
1056}
1057
1058static const void *
1059of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1060 const struct device *dev)
1061{
1062 return of_device_get_match_data(dev);
1063}
1064
1065static bool of_is_ancestor_of(struct device_node *test_ancestor,
1066 struct device_node *child)
1067{
1068 of_node_get(child);
1069 while (child) {
1070 if (child == test_ancestor) {
1071 of_node_put(child);
1072 return true;
1073 }
1074 child = of_get_next_parent(child);
1075 }
1076 return false;
1077}
1078
1079static struct device_node *of_get_compat_node(struct device_node *np)
1080{
1081 of_node_get(np);
1082
1083 while (np) {
1084 if (!of_device_is_available(np)) {
1085 of_node_put(np);
1086 np = NULL;
1087 }
1088
1089 if (of_find_property(np, "compatible", NULL))
1090 break;
1091
1092 np = of_get_next_parent(np);
1093 }
1094
1095 return np;
1096}
1097
1098static struct device_node *of_get_compat_node_parent(struct device_node *np)
1099{
1100 struct device_node *parent, *node;
1101
1102 parent = of_get_parent(np);
1103 node = of_get_compat_node(parent);
1104 of_node_put(parent);
1105
1106 return node;
1107}
1108
1109/**
1110 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1111 * @con_np: consumer device tree node
1112 * @sup_np: supplier device tree node
1113 *
1114 * Given a phandle to a supplier device tree node (@sup_np), this function
1115 * finds the device that owns the supplier device tree node and creates a
1116 * device link from @dev consumer device to the supplier device. This function
1117 * doesn't create device links for invalid scenarios such as trying to create a
1118 * link with a parent device as the consumer of its child device. In such
1119 * cases, it returns an error.
1120 *
1121 * Returns:
1122 * - 0 if fwnode link successfully created to supplier
1123 * - -EINVAL if the supplier link is invalid and should not be created
1124 * - -ENODEV if struct device will never be create for supplier
1125 */
1126static int of_link_to_phandle(struct device_node *con_np,
1127 struct device_node *sup_np)
1128{
1129 struct device *sup_dev;
1130 struct device_node *tmp_np = sup_np;
1131
1132 /*
1133 * Find the device node that contains the supplier phandle. It may be
1134 * @sup_np or it may be an ancestor of @sup_np.
1135 */
1136 sup_np = of_get_compat_node(sup_np);
1137 if (!sup_np) {
1138 pr_debug("Not linking %pOFP to %pOFP - No device\n",
1139 con_np, tmp_np);
1140 return -ENODEV;
1141 }
1142
1143 /*
1144 * Don't allow linking a device node as a consumer of one of its
1145 * descendant nodes. By definition, a child node can't be a functional
1146 * dependency for the parent node.
1147 */
1148 if (of_is_ancestor_of(con_np, sup_np)) {
1149 pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1150 con_np, sup_np);
1151 of_node_put(sup_np);
1152 return -EINVAL;
1153 }
1154
1155 /*
1156 * Don't create links to "early devices" that won't have struct devices
1157 * created for them.
1158 */
1159 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1160 if (!sup_dev &&
1161 (of_node_check_flag(sup_np, OF_POPULATED) ||
1162 sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1163 pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1164 con_np, sup_np);
1165 of_node_put(sup_np);
1166 return -ENODEV;
1167 }
1168 put_device(sup_dev);
1169
1170 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1171 of_node_put(sup_np);
1172
1173 return 0;
1174}
1175
1176/**
1177 * parse_prop_cells - Property parsing function for suppliers
1178 *
1179 * @np: Pointer to device tree node containing a list
1180 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1181 * @index: For properties holding a list of phandles, this is the index
1182 * into the list.
1183 * @list_name: Property name that is known to contain list of phandle(s) to
1184 * supplier(s)
1185 * @cells_name: property name that specifies phandles' arguments count
1186 *
1187 * This is a helper function to parse properties that have a known fixed name
1188 * and are a list of phandles and phandle arguments.
1189 *
1190 * Returns:
1191 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1192 * on it when done.
1193 * - NULL if no phandle found at index
1194 */
1195static struct device_node *parse_prop_cells(struct device_node *np,
1196 const char *prop_name, int index,
1197 const char *list_name,
1198 const char *cells_name)
1199{
1200 struct of_phandle_args sup_args;
1201
1202 if (strcmp(prop_name, list_name))
1203 return NULL;
1204
1205 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1206 &sup_args))
1207 return NULL;
1208
1209 return sup_args.np;
1210}
1211
1212#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1213static struct device_node *parse_##fname(struct device_node *np, \
1214 const char *prop_name, int index) \
1215{ \
1216 return parse_prop_cells(np, prop_name, index, name, cells); \
1217}
1218
1219static int strcmp_suffix(const char *str, const char *suffix)
1220{
1221 unsigned int len, suffix_len;
1222
1223 len = strlen(str);
1224 suffix_len = strlen(suffix);
1225 if (len <= suffix_len)
1226 return -1;
1227 return strcmp(str + len - suffix_len, suffix);
1228}
1229
1230/**
1231 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1232 *
1233 * @np: Pointer to device tree node containing a list
1234 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1235 * @index: For properties holding a list of phandles, this is the index
1236 * into the list.
1237 * @suffix: Property suffix that is known to contain list of phandle(s) to
1238 * supplier(s)
1239 * @cells_name: property name that specifies phandles' arguments count
1240 *
1241 * This is a helper function to parse properties that have a known fixed suffix
1242 * and are a list of phandles and phandle arguments.
1243 *
1244 * Returns:
1245 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1246 * on it when done.
1247 * - NULL if no phandle found at index
1248 */
1249static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1250 const char *prop_name, int index,
1251 const char *suffix,
1252 const char *cells_name)
1253{
1254 struct of_phandle_args sup_args;
1255
1256 if (strcmp_suffix(prop_name, suffix))
1257 return NULL;
1258
1259 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1260 &sup_args))
1261 return NULL;
1262
1263 return sup_args.np;
1264}
1265
1266#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1267static struct device_node *parse_##fname(struct device_node *np, \
1268 const char *prop_name, int index) \
1269{ \
1270 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1271}
1272
1273/**
1274 * struct supplier_bindings - Property parsing functions for suppliers
1275 *
1276 * @parse_prop: function name
1277 * parse_prop() finds the node corresponding to a supplier phandle
1278 * @parse_prop.np: Pointer to device node holding supplier phandle property
1279 * @parse_prop.prop_name: Name of property holding a phandle value
1280 * @parse_prop.index: For properties holding a list of phandles, this is the
1281 * index into the list
1282 * @optional: Describes whether a supplier is mandatory or not
1283 * @node_not_dev: The consumer node containing the property is never converted
1284 * to a struct device. Instead, parse ancestor nodes for the
1285 * compatible property to find a node corresponding to a device.
1286 *
1287 * Returns:
1288 * parse_prop() return values are
1289 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1290 * on it when done.
1291 * - NULL if no phandle found at index
1292 */
1293struct supplier_bindings {
1294 struct device_node *(*parse_prop)(struct device_node *np,
1295 const char *prop_name, int index);
1296 bool optional;
1297 bool node_not_dev;
1298};
1299
1300DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1301DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1302DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1303DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1304DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1305DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1306DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1307DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1308DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1309DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1310DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1311DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1312DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1313DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1314DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1315DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1316DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1317DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1318DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1319DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1320DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1321DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1322DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL)
1323DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1324DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1325DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1326DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1327DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1328DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1329
1330static struct device_node *parse_gpios(struct device_node *np,
1331 const char *prop_name, int index)
1332{
1333 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1334 return NULL;
1335
1336 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1337 "#gpio-cells");
1338}
1339
1340static struct device_node *parse_iommu_maps(struct device_node *np,
1341 const char *prop_name, int index)
1342{
1343 if (strcmp(prop_name, "iommu-map"))
1344 return NULL;
1345
1346 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1347}
1348
1349static struct device_node *parse_gpio_compat(struct device_node *np,
1350 const char *prop_name, int index)
1351{
1352 struct of_phandle_args sup_args;
1353
1354 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1355 return NULL;
1356
1357 /*
1358 * Ignore node with gpio-hog property since its gpios are all provided
1359 * by its parent.
1360 */
1361 if (of_find_property(np, "gpio-hog", NULL))
1362 return NULL;
1363
1364 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1365 &sup_args))
1366 return NULL;
1367
1368 return sup_args.np;
1369}
1370
1371static struct device_node *parse_interrupts(struct device_node *np,
1372 const char *prop_name, int index)
1373{
1374 struct of_phandle_args sup_args;
1375
1376 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1377 return NULL;
1378
1379 if (strcmp(prop_name, "interrupts") &&
1380 strcmp(prop_name, "interrupts-extended"))
1381 return NULL;
1382
1383 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1384}
1385
1386static const struct supplier_bindings of_supplier_bindings[] = {
1387 { .parse_prop = parse_clocks, },
1388 { .parse_prop = parse_interconnects, },
1389 { .parse_prop = parse_iommus, .optional = true, },
1390 { .parse_prop = parse_iommu_maps, .optional = true, },
1391 { .parse_prop = parse_mboxes, },
1392 { .parse_prop = parse_io_channels, },
1393 { .parse_prop = parse_interrupt_parent, },
1394 { .parse_prop = parse_dmas, .optional = true, },
1395 { .parse_prop = parse_power_domains, },
1396 { .parse_prop = parse_hwlocks, },
1397 { .parse_prop = parse_extcon, },
1398 { .parse_prop = parse_nvmem_cells, },
1399 { .parse_prop = parse_phys, },
1400 { .parse_prop = parse_wakeup_parent, },
1401 { .parse_prop = parse_pinctrl0, },
1402 { .parse_prop = parse_pinctrl1, },
1403 { .parse_prop = parse_pinctrl2, },
1404 { .parse_prop = parse_pinctrl3, },
1405 { .parse_prop = parse_pinctrl4, },
1406 { .parse_prop = parse_pinctrl5, },
1407 { .parse_prop = parse_pinctrl6, },
1408 { .parse_prop = parse_pinctrl7, },
1409 { .parse_prop = parse_pinctrl8, },
1410 { .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
1411 { .parse_prop = parse_pwms, },
1412 { .parse_prop = parse_resets, },
1413 { .parse_prop = parse_leds, },
1414 { .parse_prop = parse_backlight, },
1415 { .parse_prop = parse_gpio_compat, },
1416 { .parse_prop = parse_interrupts, },
1417 { .parse_prop = parse_regulators, },
1418 { .parse_prop = parse_gpio, },
1419 { .parse_prop = parse_gpios, },
1420 {}
1421};
1422
1423/**
1424 * of_link_property - Create device links to suppliers listed in a property
1425 * @con_np: The consumer device tree node which contains the property
1426 * @prop_name: Name of property to be parsed
1427 *
1428 * This function checks if the property @prop_name that is present in the
1429 * @con_np device tree node is one of the known common device tree bindings
1430 * that list phandles to suppliers. If @prop_name isn't one, this function
1431 * doesn't do anything.
1432 *
1433 * If @prop_name is one, this function attempts to create fwnode links from the
1434 * consumer device tree node @con_np to all the suppliers device tree nodes
1435 * listed in @prop_name.
1436 *
1437 * Any failed attempt to create a fwnode link will NOT result in an immediate
1438 * return. of_link_property() must create links to all the available supplier
1439 * device tree nodes even when attempts to create a link to one or more
1440 * suppliers fail.
1441 */
1442static int of_link_property(struct device_node *con_np, const char *prop_name)
1443{
1444 struct device_node *phandle;
1445 const struct supplier_bindings *s = of_supplier_bindings;
1446 unsigned int i = 0;
1447 bool matched = false;
1448
1449 /* Do not stop at first failed link, link all available suppliers. */
1450 while (!matched && s->parse_prop) {
1451 if (s->optional && !fw_devlink_is_strict()) {
1452 s++;
1453 continue;
1454 }
1455
1456 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1457 struct device_node *con_dev_np;
1458
1459 con_dev_np = s->node_not_dev
1460 ? of_get_compat_node_parent(con_np)
1461 : of_node_get(con_np);
1462 matched = true;
1463 i++;
1464 of_link_to_phandle(con_dev_np, phandle);
1465 of_node_put(phandle);
1466 of_node_put(con_dev_np);
1467 }
1468 s++;
1469 }
1470 return 0;
1471}
1472
1473static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1474{
1475#ifdef CONFIG_OF_ADDRESS
1476 return of_iomap(to_of_node(fwnode), index);
1477#else
1478 return NULL;
1479#endif
1480}
1481
1482static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1483 unsigned int index)
1484{
1485 return of_irq_get(to_of_node(fwnode), index);
1486}
1487
1488static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1489{
1490 struct property *p;
1491 struct device_node *con_np = to_of_node(fwnode);
1492
1493 if (IS_ENABLED(CONFIG_X86))
1494 return 0;
1495
1496 if (!con_np)
1497 return -EINVAL;
1498
1499 for_each_property_of_node(con_np, p)
1500 of_link_property(con_np, p->name);
1501
1502 return 0;
1503}
1504
1505const struct fwnode_operations of_fwnode_ops = {
1506 .get = of_fwnode_get,
1507 .put = of_fwnode_put,
1508 .device_is_available = of_fwnode_device_is_available,
1509 .device_get_match_data = of_fwnode_device_get_match_data,
1510 .device_dma_supported = of_fwnode_device_dma_supported,
1511 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1512 .property_present = of_fwnode_property_present,
1513 .property_read_int_array = of_fwnode_property_read_int_array,
1514 .property_read_string_array = of_fwnode_property_read_string_array,
1515 .get_name = of_fwnode_get_name,
1516 .get_name_prefix = of_fwnode_get_name_prefix,
1517 .get_parent = of_fwnode_get_parent,
1518 .get_next_child_node = of_fwnode_get_next_child_node,
1519 .get_named_child_node = of_fwnode_get_named_child_node,
1520 .get_reference_args = of_fwnode_get_reference_args,
1521 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1522 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1523 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1524 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1525 .iomap = of_fwnode_iomap,
1526 .irq_get = of_fwnode_irq_get,
1527 .add_links = of_fwnode_add_links,
1528};
1529EXPORT_SYMBOL_GPL(of_fwnode_ops);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/of_irq.h>
28#include <linux/string.h>
29#include <linux/moduleparam.h>
30
31#include "of_private.h"
32
33/**
34 * of_graph_is_present() - check graph's presence
35 * @node: pointer to device_node containing graph port
36 *
37 * Return: True if @node has a port or ports (with a port) sub-node,
38 * false otherwise.
39 */
40bool of_graph_is_present(const struct device_node *node)
41{
42 struct device_node *ports, *port;
43
44 ports = of_get_child_by_name(node, "ports");
45 if (ports)
46 node = ports;
47
48 port = of_get_child_by_name(node, "port");
49 of_node_put(ports);
50 of_node_put(port);
51
52 return !!port;
53}
54EXPORT_SYMBOL(of_graph_is_present);
55
56/**
57 * of_property_count_elems_of_size - Count the number of elements in a property
58 *
59 * @np: device node from which the property value is to be read.
60 * @propname: name of the property to be searched.
61 * @elem_size: size of the individual element
62 *
63 * Search for a property in a device node and count the number of elements of
64 * size elem_size in it.
65 *
66 * Return: The number of elements on sucess, -EINVAL if the property does not
67 * exist or its length does not match a multiple of elem_size and -ENODATA if
68 * the property does not have a value.
69 */
70int of_property_count_elems_of_size(const struct device_node *np,
71 const char *propname, int elem_size)
72{
73 struct property *prop = of_find_property(np, propname, NULL);
74
75 if (!prop)
76 return -EINVAL;
77 if (!prop->value)
78 return -ENODATA;
79
80 if (prop->length % elem_size != 0) {
81 pr_err("size of %s in node %pOF is not a multiple of %d\n",
82 propname, np, elem_size);
83 return -EINVAL;
84 }
85
86 return prop->length / elem_size;
87}
88EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
89
90/**
91 * of_find_property_value_of_size
92 *
93 * @np: device node from which the property value is to be read.
94 * @propname: name of the property to be searched.
95 * @min: minimum allowed length of property value
96 * @max: maximum allowed length of property value (0 means unlimited)
97 * @len: if !=NULL, actual length is written to here
98 *
99 * Search for a property in a device node and valid the requested size.
100 *
101 * Return: The property value on success, -EINVAL if the property does not
102 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
103 * property data is too small or too large.
104 *
105 */
106static void *of_find_property_value_of_size(const struct device_node *np,
107 const char *propname, u32 min, u32 max, size_t *len)
108{
109 struct property *prop = of_find_property(np, propname, NULL);
110
111 if (!prop)
112 return ERR_PTR(-EINVAL);
113 if (!prop->value)
114 return ERR_PTR(-ENODATA);
115 if (prop->length < min)
116 return ERR_PTR(-EOVERFLOW);
117 if (max && prop->length > max)
118 return ERR_PTR(-EOVERFLOW);
119
120 if (len)
121 *len = prop->length;
122
123 return prop->value;
124}
125
126/**
127 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
128 *
129 * @np: device node from which the property value is to be read.
130 * @propname: name of the property to be searched.
131 * @index: index of the u32 in the list of values
132 * @out_value: pointer to return value, modified only if no error.
133 *
134 * Search for a property in a device node and read nth 32-bit value from
135 * it.
136 *
137 * Return: 0 on success, -EINVAL if the property does not exist,
138 * -ENODATA if property does not have a value, and -EOVERFLOW if the
139 * property data isn't large enough.
140 *
141 * The out_value is modified only if a valid u32 value can be decoded.
142 */
143int of_property_read_u32_index(const struct device_node *np,
144 const char *propname,
145 u32 index, u32 *out_value)
146{
147 const u32 *val = of_find_property_value_of_size(np, propname,
148 ((index + 1) * sizeof(*out_value)),
149 0,
150 NULL);
151
152 if (IS_ERR(val))
153 return PTR_ERR(val);
154
155 *out_value = be32_to_cpup(((__be32 *)val) + index);
156 return 0;
157}
158EXPORT_SYMBOL_GPL(of_property_read_u32_index);
159
160/**
161 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
162 *
163 * @np: device node from which the property value is to be read.
164 * @propname: name of the property to be searched.
165 * @index: index of the u64 in the list of values
166 * @out_value: pointer to return value, modified only if no error.
167 *
168 * Search for a property in a device node and read nth 64-bit value from
169 * it.
170 *
171 * Return: 0 on success, -EINVAL if the property does not exist,
172 * -ENODATA if property does not have a value, and -EOVERFLOW if the
173 * property data isn't large enough.
174 *
175 * The out_value is modified only if a valid u64 value can be decoded.
176 */
177int of_property_read_u64_index(const struct device_node *np,
178 const char *propname,
179 u32 index, u64 *out_value)
180{
181 const u64 *val = of_find_property_value_of_size(np, propname,
182 ((index + 1) * sizeof(*out_value)),
183 0, NULL);
184
185 if (IS_ERR(val))
186 return PTR_ERR(val);
187
188 *out_value = be64_to_cpup(((__be64 *)val) + index);
189 return 0;
190}
191EXPORT_SYMBOL_GPL(of_property_read_u64_index);
192
193/**
194 * of_property_read_variable_u8_array - Find and read an array of u8 from a
195 * property, with bounds on the minimum and maximum array size.
196 *
197 * @np: device node from which the property value is to be read.
198 * @propname: name of the property to be searched.
199 * @out_values: pointer to found values.
200 * @sz_min: minimum number of array elements to read
201 * @sz_max: maximum number of array elements to read, if zero there is no
202 * upper limit on the number of elements in the dts entry but only
203 * sz_min will be read.
204 *
205 * Search for a property in a device node and read 8-bit value(s) from
206 * it.
207 *
208 * dts entry of array should be like:
209 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
210 *
211 * Return: The number of elements read on success, -EINVAL if the property
212 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
213 * if the property data is smaller than sz_min or longer than sz_max.
214 *
215 * The out_values is modified only if a valid u8 value can be decoded.
216 */
217int of_property_read_variable_u8_array(const struct device_node *np,
218 const char *propname, u8 *out_values,
219 size_t sz_min, size_t sz_max)
220{
221 size_t sz, count;
222 const u8 *val = of_find_property_value_of_size(np, propname,
223 (sz_min * sizeof(*out_values)),
224 (sz_max * sizeof(*out_values)),
225 &sz);
226
227 if (IS_ERR(val))
228 return PTR_ERR(val);
229
230 if (!sz_max)
231 sz = sz_min;
232 else
233 sz /= sizeof(*out_values);
234
235 count = sz;
236 while (count--)
237 *out_values++ = *val++;
238
239 return sz;
240}
241EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
242
243/**
244 * of_property_read_variable_u16_array - Find and read an array of u16 from a
245 * property, with bounds on the minimum and maximum array size.
246 *
247 * @np: device node from which the property value is to be read.
248 * @propname: name of the property to be searched.
249 * @out_values: pointer to found values.
250 * @sz_min: minimum number of array elements to read
251 * @sz_max: maximum number of array elements to read, if zero there is no
252 * upper limit on the number of elements in the dts entry but only
253 * sz_min will be read.
254 *
255 * Search for a property in a device node and read 16-bit value(s) from
256 * it.
257 *
258 * dts entry of array should be like:
259 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
260 *
261 * Return: The number of elements read on success, -EINVAL if the property
262 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
263 * if the property data is smaller than sz_min or longer than sz_max.
264 *
265 * The out_values is modified only if a valid u16 value can be decoded.
266 */
267int of_property_read_variable_u16_array(const struct device_node *np,
268 const char *propname, u16 *out_values,
269 size_t sz_min, size_t sz_max)
270{
271 size_t sz, count;
272 const __be16 *val = of_find_property_value_of_size(np, propname,
273 (sz_min * sizeof(*out_values)),
274 (sz_max * sizeof(*out_values)),
275 &sz);
276
277 if (IS_ERR(val))
278 return PTR_ERR(val);
279
280 if (!sz_max)
281 sz = sz_min;
282 else
283 sz /= sizeof(*out_values);
284
285 count = sz;
286 while (count--)
287 *out_values++ = be16_to_cpup(val++);
288
289 return sz;
290}
291EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
292
293/**
294 * of_property_read_variable_u32_array - Find and read an array of 32 bit
295 * integers from a property, with bounds on the minimum and maximum array size.
296 *
297 * @np: device node from which the property value is to be read.
298 * @propname: name of the property to be searched.
299 * @out_values: pointer to return found values.
300 * @sz_min: minimum number of array elements to read
301 * @sz_max: maximum number of array elements to read, if zero there is no
302 * upper limit on the number of elements in the dts entry but only
303 * sz_min will be read.
304 *
305 * Search for a property in a device node and read 32-bit value(s) from
306 * it.
307 *
308 * Return: The number of elements read on success, -EINVAL if the property
309 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
310 * if the property data is smaller than sz_min or longer than sz_max.
311 *
312 * The out_values is modified only if a valid u32 value can be decoded.
313 */
314int of_property_read_variable_u32_array(const struct device_node *np,
315 const char *propname, u32 *out_values,
316 size_t sz_min, size_t sz_max)
317{
318 size_t sz, count;
319 const __be32 *val = of_find_property_value_of_size(np, propname,
320 (sz_min * sizeof(*out_values)),
321 (sz_max * sizeof(*out_values)),
322 &sz);
323
324 if (IS_ERR(val))
325 return PTR_ERR(val);
326
327 if (!sz_max)
328 sz = sz_min;
329 else
330 sz /= sizeof(*out_values);
331
332 count = sz;
333 while (count--)
334 *out_values++ = be32_to_cpup(val++);
335
336 return sz;
337}
338EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
339
340/**
341 * of_property_read_u64 - Find and read a 64 bit integer from a property
342 * @np: device node from which the property value is to be read.
343 * @propname: name of the property to be searched.
344 * @out_value: pointer to return value, modified only if return value is 0.
345 *
346 * Search for a property in a device node and read a 64-bit value from
347 * it.
348 *
349 * Return: 0 on success, -EINVAL if the property does not exist,
350 * -ENODATA if property does not have a value, and -EOVERFLOW if the
351 * property data isn't large enough.
352 *
353 * The out_value is modified only if a valid u64 value can be decoded.
354 */
355int of_property_read_u64(const struct device_node *np, const char *propname,
356 u64 *out_value)
357{
358 const __be32 *val = of_find_property_value_of_size(np, propname,
359 sizeof(*out_value),
360 0,
361 NULL);
362
363 if (IS_ERR(val))
364 return PTR_ERR(val);
365
366 *out_value = of_read_number(val, 2);
367 return 0;
368}
369EXPORT_SYMBOL_GPL(of_property_read_u64);
370
371/**
372 * of_property_read_variable_u64_array - Find and read an array of 64 bit
373 * integers from a property, with bounds on the minimum and maximum array size.
374 *
375 * @np: device node from which the property value is to be read.
376 * @propname: name of the property to be searched.
377 * @out_values: pointer to found values.
378 * @sz_min: minimum number of array elements to read
379 * @sz_max: maximum number of array elements to read, if zero there is no
380 * upper limit on the number of elements in the dts entry but only
381 * sz_min will be read.
382 *
383 * Search for a property in a device node and read 64-bit value(s) from
384 * it.
385 *
386 * Return: The number of elements read on success, -EINVAL if the property
387 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
388 * if the property data is smaller than sz_min or longer than sz_max.
389 *
390 * The out_values is modified only if a valid u64 value can be decoded.
391 */
392int of_property_read_variable_u64_array(const struct device_node *np,
393 const char *propname, u64 *out_values,
394 size_t sz_min, size_t sz_max)
395{
396 size_t sz, count;
397 const __be32 *val = of_find_property_value_of_size(np, propname,
398 (sz_min * sizeof(*out_values)),
399 (sz_max * sizeof(*out_values)),
400 &sz);
401
402 if (IS_ERR(val))
403 return PTR_ERR(val);
404
405 if (!sz_max)
406 sz = sz_min;
407 else
408 sz /= sizeof(*out_values);
409
410 count = sz;
411 while (count--) {
412 *out_values++ = of_read_number(val, 2);
413 val += 2;
414 }
415
416 return sz;
417}
418EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
419
420/**
421 * of_property_read_string - Find and read a string from a property
422 * @np: device node from which the property value is to be read.
423 * @propname: name of the property to be searched.
424 * @out_string: pointer to null terminated return string, modified only if
425 * return value is 0.
426 *
427 * Search for a property in a device tree node and retrieve a null
428 * terminated string value (pointer to data, not a copy).
429 *
430 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
431 * property does not have a value, and -EILSEQ if the string is not
432 * null-terminated within the length of the property data.
433 *
434 * The out_string pointer is modified only if a valid string can be decoded.
435 */
436int of_property_read_string(const struct device_node *np, const char *propname,
437 const char **out_string)
438{
439 const struct property *prop = of_find_property(np, propname, NULL);
440 if (!prop)
441 return -EINVAL;
442 if (!prop->value)
443 return -ENODATA;
444 if (strnlen(prop->value, prop->length) >= prop->length)
445 return -EILSEQ;
446 *out_string = prop->value;
447 return 0;
448}
449EXPORT_SYMBOL_GPL(of_property_read_string);
450
451/**
452 * of_property_match_string() - Find string in a list and return index
453 * @np: pointer to node containing string list property
454 * @propname: string list property name
455 * @string: pointer to string to search for in string list
456 *
457 * This function searches a string list property and returns the index
458 * of a specific string value.
459 */
460int of_property_match_string(const struct device_node *np, const char *propname,
461 const char *string)
462{
463 const struct property *prop = of_find_property(np, propname, NULL);
464 size_t l;
465 int i;
466 const char *p, *end;
467
468 if (!prop)
469 return -EINVAL;
470 if (!prop->value)
471 return -ENODATA;
472
473 p = prop->value;
474 end = p + prop->length;
475
476 for (i = 0; p < end; i++, p += l) {
477 l = strnlen(p, end - p) + 1;
478 if (p + l > end)
479 return -EILSEQ;
480 pr_debug("comparing %s with %s\n", string, p);
481 if (strcmp(string, p) == 0)
482 return i; /* Found it; return index */
483 }
484 return -ENODATA;
485}
486EXPORT_SYMBOL_GPL(of_property_match_string);
487
488/**
489 * of_property_read_string_helper() - Utility helper for parsing string properties
490 * @np: device node from which the property value is to be read.
491 * @propname: name of the property to be searched.
492 * @out_strs: output array of string pointers.
493 * @sz: number of array elements to read.
494 * @skip: Number of strings to skip over at beginning of list.
495 *
496 * Don't call this function directly. It is a utility helper for the
497 * of_property_read_string*() family of functions.
498 */
499int of_property_read_string_helper(const struct device_node *np,
500 const char *propname, const char **out_strs,
501 size_t sz, int skip)
502{
503 const struct property *prop = of_find_property(np, propname, NULL);
504 int l = 0, i = 0;
505 const char *p, *end;
506
507 if (!prop)
508 return -EINVAL;
509 if (!prop->value)
510 return -ENODATA;
511 p = prop->value;
512 end = p + prop->length;
513
514 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
515 l = strnlen(p, end - p) + 1;
516 if (p + l > end)
517 return -EILSEQ;
518 if (out_strs && i >= skip)
519 *out_strs++ = p;
520 }
521 i -= skip;
522 return i <= 0 ? -ENODATA : i;
523}
524EXPORT_SYMBOL_GPL(of_property_read_string_helper);
525
526const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
527 u32 *pu)
528{
529 const void *curv = cur;
530
531 if (!prop)
532 return NULL;
533
534 if (!cur) {
535 curv = prop->value;
536 goto out_val;
537 }
538
539 curv += sizeof(*cur);
540 if (curv >= prop->value + prop->length)
541 return NULL;
542
543out_val:
544 *pu = be32_to_cpup(curv);
545 return curv;
546}
547EXPORT_SYMBOL_GPL(of_prop_next_u32);
548
549const char *of_prop_next_string(struct property *prop, const char *cur)
550{
551 const void *curv = cur;
552
553 if (!prop)
554 return NULL;
555
556 if (!cur)
557 return prop->value;
558
559 curv += strlen(cur) + 1;
560 if (curv >= prop->value + prop->length)
561 return NULL;
562
563 return curv;
564}
565EXPORT_SYMBOL_GPL(of_prop_next_string);
566
567/**
568 * of_graph_parse_endpoint() - parse common endpoint node properties
569 * @node: pointer to endpoint device_node
570 * @endpoint: pointer to the OF endpoint data structure
571 *
572 * The caller should hold a reference to @node.
573 */
574int of_graph_parse_endpoint(const struct device_node *node,
575 struct of_endpoint *endpoint)
576{
577 struct device_node *port_node = of_get_parent(node);
578
579 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
580 __func__, node);
581
582 memset(endpoint, 0, sizeof(*endpoint));
583
584 endpoint->local_node = node;
585 /*
586 * It doesn't matter whether the two calls below succeed.
587 * If they don't then the default value 0 is used.
588 */
589 of_property_read_u32(port_node, "reg", &endpoint->port);
590 of_property_read_u32(node, "reg", &endpoint->id);
591
592 of_node_put(port_node);
593
594 return 0;
595}
596EXPORT_SYMBOL(of_graph_parse_endpoint);
597
598/**
599 * of_graph_get_port_by_id() - get the port matching a given id
600 * @parent: pointer to the parent device node
601 * @id: id of the port
602 *
603 * Return: A 'port' node pointer with refcount incremented. The caller
604 * has to use of_node_put() on it when done.
605 */
606struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
607{
608 struct device_node *node, *port;
609
610 node = of_get_child_by_name(parent, "ports");
611 if (node)
612 parent = node;
613
614 for_each_child_of_node(parent, port) {
615 u32 port_id = 0;
616
617 if (!of_node_name_eq(port, "port"))
618 continue;
619 of_property_read_u32(port, "reg", &port_id);
620 if (id == port_id)
621 break;
622 }
623
624 of_node_put(node);
625
626 return port;
627}
628EXPORT_SYMBOL(of_graph_get_port_by_id);
629
630/**
631 * of_graph_get_next_endpoint() - get next endpoint node
632 * @parent: pointer to the parent device node
633 * @prev: previous endpoint node, or NULL to get first
634 *
635 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
636 * of the passed @prev node is decremented.
637 */
638struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
639 struct device_node *prev)
640{
641 struct device_node *endpoint;
642 struct device_node *port;
643
644 if (!parent)
645 return NULL;
646
647 /*
648 * Start by locating the port node. If no previous endpoint is specified
649 * search for the first port node, otherwise get the previous endpoint
650 * parent port node.
651 */
652 if (!prev) {
653 struct device_node *node;
654
655 node = of_get_child_by_name(parent, "ports");
656 if (node)
657 parent = node;
658
659 port = of_get_child_by_name(parent, "port");
660 of_node_put(node);
661
662 if (!port) {
663 pr_err("graph: no port node found in %pOF\n", parent);
664 return NULL;
665 }
666 } else {
667 port = of_get_parent(prev);
668 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
669 __func__, prev))
670 return NULL;
671 }
672
673 while (1) {
674 /*
675 * Now that we have a port node, get the next endpoint by
676 * getting the next child. If the previous endpoint is NULL this
677 * will return the first child.
678 */
679 endpoint = of_get_next_child(port, prev);
680 if (endpoint) {
681 of_node_put(port);
682 return endpoint;
683 }
684
685 /* No more endpoints under this port, try the next one. */
686 prev = NULL;
687
688 do {
689 port = of_get_next_child(parent, port);
690 if (!port)
691 return NULL;
692 } while (!of_node_name_eq(port, "port"));
693 }
694}
695EXPORT_SYMBOL(of_graph_get_next_endpoint);
696
697/**
698 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
699 * @parent: pointer to the parent device node
700 * @port_reg: identifier (value of reg property) of the parent port node
701 * @reg: identifier (value of reg property) of the endpoint node
702 *
703 * Return: An 'endpoint' node pointer which is identified by reg and at the same
704 * is the child of a port node identified by port_reg. reg and port_reg are
705 * ignored when they are -1. Use of_node_put() on the pointer when done.
706 */
707struct device_node *of_graph_get_endpoint_by_regs(
708 const struct device_node *parent, int port_reg, int reg)
709{
710 struct of_endpoint endpoint;
711 struct device_node *node = NULL;
712
713 for_each_endpoint_of_node(parent, node) {
714 of_graph_parse_endpoint(node, &endpoint);
715 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
716 ((reg == -1) || (endpoint.id == reg)))
717 return node;
718 }
719
720 return NULL;
721}
722EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
723
724/**
725 * of_graph_get_remote_endpoint() - get remote endpoint node
726 * @node: pointer to a local endpoint device_node
727 *
728 * Return: Remote endpoint node associated with remote endpoint node linked
729 * to @node. Use of_node_put() on it when done.
730 */
731struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
732{
733 /* Get remote endpoint node. */
734 return of_parse_phandle(node, "remote-endpoint", 0);
735}
736EXPORT_SYMBOL(of_graph_get_remote_endpoint);
737
738/**
739 * of_graph_get_port_parent() - get port's parent node
740 * @node: pointer to a local endpoint device_node
741 *
742 * Return: device node associated with endpoint node linked
743 * to @node. Use of_node_put() on it when done.
744 */
745struct device_node *of_graph_get_port_parent(struct device_node *node)
746{
747 unsigned int depth;
748
749 if (!node)
750 return NULL;
751
752 /*
753 * Preserve usecount for passed in node as of_get_next_parent()
754 * will do of_node_put() on it.
755 */
756 of_node_get(node);
757
758 /* Walk 3 levels up only if there is 'ports' node. */
759 for (depth = 3; depth && node; depth--) {
760 node = of_get_next_parent(node);
761 if (depth == 2 && !of_node_name_eq(node, "ports"))
762 break;
763 }
764 return node;
765}
766EXPORT_SYMBOL(of_graph_get_port_parent);
767
768/**
769 * of_graph_get_remote_port_parent() - get remote port's parent node
770 * @node: pointer to a local endpoint device_node
771 *
772 * Return: Remote device node associated with remote endpoint node linked
773 * to @node. Use of_node_put() on it when done.
774 */
775struct device_node *of_graph_get_remote_port_parent(
776 const struct device_node *node)
777{
778 struct device_node *np, *pp;
779
780 /* Get remote endpoint node. */
781 np = of_graph_get_remote_endpoint(node);
782
783 pp = of_graph_get_port_parent(np);
784
785 of_node_put(np);
786
787 return pp;
788}
789EXPORT_SYMBOL(of_graph_get_remote_port_parent);
790
791/**
792 * of_graph_get_remote_port() - get remote port node
793 * @node: pointer to a local endpoint device_node
794 *
795 * Return: Remote port node associated with remote endpoint node linked
796 * to @node. Use of_node_put() on it when done.
797 */
798struct device_node *of_graph_get_remote_port(const struct device_node *node)
799{
800 struct device_node *np;
801
802 /* Get remote endpoint node. */
803 np = of_graph_get_remote_endpoint(node);
804 if (!np)
805 return NULL;
806 return of_get_next_parent(np);
807}
808EXPORT_SYMBOL(of_graph_get_remote_port);
809
810int of_graph_get_endpoint_count(const struct device_node *np)
811{
812 struct device_node *endpoint;
813 int num = 0;
814
815 for_each_endpoint_of_node(np, endpoint)
816 num++;
817
818 return num;
819}
820EXPORT_SYMBOL(of_graph_get_endpoint_count);
821
822/**
823 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
824 * @node: pointer to parent device_node containing graph port/endpoint
825 * @port: identifier (value of reg property) of the parent port node
826 * @endpoint: identifier (value of reg property) of the endpoint node
827 *
828 * Return: Remote device node associated with remote endpoint node linked
829 * to @node. Use of_node_put() on it when done.
830 */
831struct device_node *of_graph_get_remote_node(const struct device_node *node,
832 u32 port, u32 endpoint)
833{
834 struct device_node *endpoint_node, *remote;
835
836 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
837 if (!endpoint_node) {
838 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
839 port, endpoint, node);
840 return NULL;
841 }
842
843 remote = of_graph_get_remote_port_parent(endpoint_node);
844 of_node_put(endpoint_node);
845 if (!remote) {
846 pr_debug("no valid remote node\n");
847 return NULL;
848 }
849
850 if (!of_device_is_available(remote)) {
851 pr_debug("not available for remote node\n");
852 of_node_put(remote);
853 return NULL;
854 }
855
856 return remote;
857}
858EXPORT_SYMBOL(of_graph_get_remote_node);
859
860static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
861{
862 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
863}
864
865static void of_fwnode_put(struct fwnode_handle *fwnode)
866{
867 of_node_put(to_of_node(fwnode));
868}
869
870static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
871{
872 return of_device_is_available(to_of_node(fwnode));
873}
874
875static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
876 const char *propname)
877{
878 return of_property_read_bool(to_of_node(fwnode), propname);
879}
880
881static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
882 const char *propname,
883 unsigned int elem_size, void *val,
884 size_t nval)
885{
886 const struct device_node *node = to_of_node(fwnode);
887
888 if (!val)
889 return of_property_count_elems_of_size(node, propname,
890 elem_size);
891
892 switch (elem_size) {
893 case sizeof(u8):
894 return of_property_read_u8_array(node, propname, val, nval);
895 case sizeof(u16):
896 return of_property_read_u16_array(node, propname, val, nval);
897 case sizeof(u32):
898 return of_property_read_u32_array(node, propname, val, nval);
899 case sizeof(u64):
900 return of_property_read_u64_array(node, propname, val, nval);
901 }
902
903 return -ENXIO;
904}
905
906static int
907of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
908 const char *propname, const char **val,
909 size_t nval)
910{
911 const struct device_node *node = to_of_node(fwnode);
912
913 return val ?
914 of_property_read_string_array(node, propname, val, nval) :
915 of_property_count_strings(node, propname);
916}
917
918static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
919{
920 return kbasename(to_of_node(fwnode)->full_name);
921}
922
923static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
924{
925 /* Root needs no prefix here (its name is "/"). */
926 if (!to_of_node(fwnode)->parent)
927 return "";
928
929 return "/";
930}
931
932static struct fwnode_handle *
933of_fwnode_get_parent(const struct fwnode_handle *fwnode)
934{
935 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
936}
937
938static struct fwnode_handle *
939of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
940 struct fwnode_handle *child)
941{
942 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
943 to_of_node(child)));
944}
945
946static struct fwnode_handle *
947of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
948 const char *childname)
949{
950 const struct device_node *node = to_of_node(fwnode);
951 struct device_node *child;
952
953 for_each_available_child_of_node(node, child)
954 if (of_node_name_eq(child, childname))
955 return of_fwnode_handle(child);
956
957 return NULL;
958}
959
960static int
961of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
962 const char *prop, const char *nargs_prop,
963 unsigned int nargs, unsigned int index,
964 struct fwnode_reference_args *args)
965{
966 struct of_phandle_args of_args;
967 unsigned int i;
968 int ret;
969
970 if (nargs_prop)
971 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
972 nargs_prop, index, &of_args);
973 else
974 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
975 nargs, index, &of_args);
976 if (ret < 0)
977 return ret;
978 if (!args)
979 return 0;
980
981 args->nargs = of_args.args_count;
982 args->fwnode = of_fwnode_handle(of_args.np);
983
984 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
985 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
986
987 return 0;
988}
989
990static struct fwnode_handle *
991of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
992 struct fwnode_handle *prev)
993{
994 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
995 to_of_node(prev)));
996}
997
998static struct fwnode_handle *
999of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1000{
1001 return of_fwnode_handle(
1002 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1003}
1004
1005static struct fwnode_handle *
1006of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1007{
1008 struct device_node *np;
1009
1010 /* Get the parent of the port */
1011 np = of_get_parent(to_of_node(fwnode));
1012 if (!np)
1013 return NULL;
1014
1015 /* Is this the "ports" node? If not, it's the port parent. */
1016 if (!of_node_name_eq(np, "ports"))
1017 return of_fwnode_handle(np);
1018
1019 return of_fwnode_handle(of_get_next_parent(np));
1020}
1021
1022static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1023 struct fwnode_endpoint *endpoint)
1024{
1025 const struct device_node *node = to_of_node(fwnode);
1026 struct device_node *port_node = of_get_parent(node);
1027
1028 endpoint->local_fwnode = fwnode;
1029
1030 of_property_read_u32(port_node, "reg", &endpoint->port);
1031 of_property_read_u32(node, "reg", &endpoint->id);
1032
1033 of_node_put(port_node);
1034
1035 return 0;
1036}
1037
1038static const void *
1039of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1040 const struct device *dev)
1041{
1042 return of_device_get_match_data(dev);
1043}
1044
1045static bool of_is_ancestor_of(struct device_node *test_ancestor,
1046 struct device_node *child)
1047{
1048 of_node_get(child);
1049 while (child) {
1050 if (child == test_ancestor) {
1051 of_node_put(child);
1052 return true;
1053 }
1054 child = of_get_next_parent(child);
1055 }
1056 return false;
1057}
1058
1059static struct device_node *of_get_compat_node(struct device_node *np)
1060{
1061 of_node_get(np);
1062
1063 while (np) {
1064 if (!of_device_is_available(np)) {
1065 of_node_put(np);
1066 np = NULL;
1067 }
1068
1069 if (of_find_property(np, "compatible", NULL))
1070 break;
1071
1072 np = of_get_next_parent(np);
1073 }
1074
1075 return np;
1076}
1077
1078/**
1079 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1080 * @con_np: consumer device tree node
1081 * @sup_np: supplier device tree node
1082 *
1083 * Given a phandle to a supplier device tree node (@sup_np), this function
1084 * finds the device that owns the supplier device tree node and creates a
1085 * device link from @dev consumer device to the supplier device. This function
1086 * doesn't create device links for invalid scenarios such as trying to create a
1087 * link with a parent device as the consumer of its child device. In such
1088 * cases, it returns an error.
1089 *
1090 * Returns:
1091 * - 0 if fwnode link successfully created to supplier
1092 * - -EINVAL if the supplier link is invalid and should not be created
1093 * - -ENODEV if struct device will never be create for supplier
1094 */
1095static int of_link_to_phandle(struct device_node *con_np,
1096 struct device_node *sup_np)
1097{
1098 struct device *sup_dev;
1099 struct device_node *tmp_np = sup_np;
1100
1101 /*
1102 * Find the device node that contains the supplier phandle. It may be
1103 * @sup_np or it may be an ancestor of @sup_np.
1104 */
1105 sup_np = of_get_compat_node(sup_np);
1106 if (!sup_np) {
1107 pr_debug("Not linking %pOFP to %pOFP - No device\n",
1108 con_np, tmp_np);
1109 return -ENODEV;
1110 }
1111
1112 /*
1113 * Don't allow linking a device node as a consumer of one of its
1114 * descendant nodes. By definition, a child node can't be a functional
1115 * dependency for the parent node.
1116 */
1117 if (of_is_ancestor_of(con_np, sup_np)) {
1118 pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1119 con_np, sup_np);
1120 of_node_put(sup_np);
1121 return -EINVAL;
1122 }
1123
1124 /*
1125 * Don't create links to "early devices" that won't have struct devices
1126 * created for them.
1127 */
1128 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1129 if (!sup_dev &&
1130 (of_node_check_flag(sup_np, OF_POPULATED) ||
1131 sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1132 pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1133 con_np, sup_np);
1134 of_node_put(sup_np);
1135 return -ENODEV;
1136 }
1137 put_device(sup_dev);
1138
1139 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1140 of_node_put(sup_np);
1141
1142 return 0;
1143}
1144
1145/**
1146 * parse_prop_cells - Property parsing function for suppliers
1147 *
1148 * @np: Pointer to device tree node containing a list
1149 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1150 * @index: For properties holding a list of phandles, this is the index
1151 * into the list.
1152 * @list_name: Property name that is known to contain list of phandle(s) to
1153 * supplier(s)
1154 * @cells_name: property name that specifies phandles' arguments count
1155 *
1156 * This is a helper function to parse properties that have a known fixed name
1157 * and are a list of phandles and phandle arguments.
1158 *
1159 * Returns:
1160 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1161 * on it when done.
1162 * - NULL if no phandle found at index
1163 */
1164static struct device_node *parse_prop_cells(struct device_node *np,
1165 const char *prop_name, int index,
1166 const char *list_name,
1167 const char *cells_name)
1168{
1169 struct of_phandle_args sup_args;
1170
1171 if (strcmp(prop_name, list_name))
1172 return NULL;
1173
1174 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1175 &sup_args))
1176 return NULL;
1177
1178 return sup_args.np;
1179}
1180
1181#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1182static struct device_node *parse_##fname(struct device_node *np, \
1183 const char *prop_name, int index) \
1184{ \
1185 return parse_prop_cells(np, prop_name, index, name, cells); \
1186}
1187
1188static int strcmp_suffix(const char *str, const char *suffix)
1189{
1190 unsigned int len, suffix_len;
1191
1192 len = strlen(str);
1193 suffix_len = strlen(suffix);
1194 if (len <= suffix_len)
1195 return -1;
1196 return strcmp(str + len - suffix_len, suffix);
1197}
1198
1199/**
1200 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1201 *
1202 * @np: Pointer to device tree node containing a list
1203 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1204 * @index: For properties holding a list of phandles, this is the index
1205 * into the list.
1206 * @suffix: Property suffix that is known to contain list of phandle(s) to
1207 * supplier(s)
1208 * @cells_name: property name that specifies phandles' arguments count
1209 *
1210 * This is a helper function to parse properties that have a known fixed suffix
1211 * and are a list of phandles and phandle arguments.
1212 *
1213 * Returns:
1214 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1215 * on it when done.
1216 * - NULL if no phandle found at index
1217 */
1218static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1219 const char *prop_name, int index,
1220 const char *suffix,
1221 const char *cells_name)
1222{
1223 struct of_phandle_args sup_args;
1224
1225 if (strcmp_suffix(prop_name, suffix))
1226 return NULL;
1227
1228 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1229 &sup_args))
1230 return NULL;
1231
1232 return sup_args.np;
1233}
1234
1235#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1236static struct device_node *parse_##fname(struct device_node *np, \
1237 const char *prop_name, int index) \
1238{ \
1239 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1240}
1241
1242/**
1243 * struct supplier_bindings - Property parsing functions for suppliers
1244 *
1245 * @parse_prop: function name
1246 * parse_prop() finds the node corresponding to a supplier phandle
1247 * @parse_prop.np: Pointer to device node holding supplier phandle property
1248 * @parse_prop.prop_name: Name of property holding a phandle value
1249 * @parse_prop.index: For properties holding a list of phandles, this is the
1250 * index into the list
1251 * @optional: Describes whether a supplier is mandatory or not
1252 * @node_not_dev: The consumer node containing the property is never a device.
1253 *
1254 * Returns:
1255 * parse_prop() return values are
1256 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1257 * on it when done.
1258 * - NULL if no phandle found at index
1259 */
1260struct supplier_bindings {
1261 struct device_node *(*parse_prop)(struct device_node *np,
1262 const char *prop_name, int index);
1263 bool optional;
1264 bool node_not_dev;
1265};
1266
1267DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1268DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1269DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1270DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1271DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1272DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1273DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1274DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1275DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1276DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1277DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1278DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1279DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1280DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1281DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1282DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1283DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1284DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1285DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1286DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1287DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1288DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1289DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL)
1290DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1291DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1292
1293static struct device_node *parse_gpios(struct device_node *np,
1294 const char *prop_name, int index)
1295{
1296 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1297 return NULL;
1298
1299 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1300 "#gpio-cells");
1301}
1302
1303static struct device_node *parse_iommu_maps(struct device_node *np,
1304 const char *prop_name, int index)
1305{
1306 if (strcmp(prop_name, "iommu-map"))
1307 return NULL;
1308
1309 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1310}
1311
1312static struct device_node *parse_gpio_compat(struct device_node *np,
1313 const char *prop_name, int index)
1314{
1315 struct of_phandle_args sup_args;
1316
1317 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1318 return NULL;
1319
1320 /*
1321 * Ignore node with gpio-hog property since its gpios are all provided
1322 * by its parent.
1323 */
1324 if (of_find_property(np, "gpio-hog", NULL))
1325 return NULL;
1326
1327 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1328 &sup_args))
1329 return NULL;
1330
1331 return sup_args.np;
1332}
1333
1334static struct device_node *parse_interrupts(struct device_node *np,
1335 const char *prop_name, int index)
1336{
1337 struct of_phandle_args sup_args;
1338
1339 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1340 return NULL;
1341
1342 if (strcmp(prop_name, "interrupts") &&
1343 strcmp(prop_name, "interrupts-extended"))
1344 return NULL;
1345
1346 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1347}
1348
1349static const struct supplier_bindings of_supplier_bindings[] = {
1350 { .parse_prop = parse_clocks, },
1351 { .parse_prop = parse_interconnects, },
1352 { .parse_prop = parse_iommus, .optional = true, },
1353 { .parse_prop = parse_iommu_maps, .optional = true, },
1354 { .parse_prop = parse_mboxes, },
1355 { .parse_prop = parse_io_channels, },
1356 { .parse_prop = parse_interrupt_parent, },
1357 { .parse_prop = parse_dmas, .optional = true, },
1358 { .parse_prop = parse_power_domains, },
1359 { .parse_prop = parse_hwlocks, },
1360 { .parse_prop = parse_extcon, },
1361 { .parse_prop = parse_nvmem_cells, },
1362 { .parse_prop = parse_phys, },
1363 { .parse_prop = parse_wakeup_parent, },
1364 { .parse_prop = parse_pinctrl0, },
1365 { .parse_prop = parse_pinctrl1, },
1366 { .parse_prop = parse_pinctrl2, },
1367 { .parse_prop = parse_pinctrl3, },
1368 { .parse_prop = parse_pinctrl4, },
1369 { .parse_prop = parse_pinctrl5, },
1370 { .parse_prop = parse_pinctrl6, },
1371 { .parse_prop = parse_pinctrl7, },
1372 { .parse_prop = parse_pinctrl8, },
1373 { .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
1374 { .parse_prop = parse_gpio_compat, },
1375 { .parse_prop = parse_interrupts, },
1376 { .parse_prop = parse_regulators, },
1377 { .parse_prop = parse_gpio, },
1378 { .parse_prop = parse_gpios, },
1379 {}
1380};
1381
1382/**
1383 * of_link_property - Create device links to suppliers listed in a property
1384 * @con_np: The consumer device tree node which contains the property
1385 * @prop_name: Name of property to be parsed
1386 *
1387 * This function checks if the property @prop_name that is present in the
1388 * @con_np device tree node is one of the known common device tree bindings
1389 * that list phandles to suppliers. If @prop_name isn't one, this function
1390 * doesn't do anything.
1391 *
1392 * If @prop_name is one, this function attempts to create fwnode links from the
1393 * consumer device tree node @con_np to all the suppliers device tree nodes
1394 * listed in @prop_name.
1395 *
1396 * Any failed attempt to create a fwnode link will NOT result in an immediate
1397 * return. of_link_property() must create links to all the available supplier
1398 * device tree nodes even when attempts to create a link to one or more
1399 * suppliers fail.
1400 */
1401static int of_link_property(struct device_node *con_np, const char *prop_name)
1402{
1403 struct device_node *phandle;
1404 const struct supplier_bindings *s = of_supplier_bindings;
1405 unsigned int i = 0;
1406 bool matched = false;
1407
1408 /* Do not stop at first failed link, link all available suppliers. */
1409 while (!matched && s->parse_prop) {
1410 if (s->optional && !fw_devlink_is_strict()) {
1411 s++;
1412 continue;
1413 }
1414
1415 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1416 struct device_node *con_dev_np;
1417
1418 con_dev_np = s->node_not_dev
1419 ? of_get_compat_node(con_np)
1420 : of_node_get(con_np);
1421 matched = true;
1422 i++;
1423 of_link_to_phandle(con_dev_np, phandle);
1424 of_node_put(phandle);
1425 of_node_put(con_dev_np);
1426 }
1427 s++;
1428 }
1429 return 0;
1430}
1431
1432static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1433{
1434 struct property *p;
1435 struct device_node *con_np = to_of_node(fwnode);
1436
1437 if (IS_ENABLED(CONFIG_X86))
1438 return 0;
1439
1440 if (!con_np)
1441 return -EINVAL;
1442
1443 for_each_property_of_node(con_np, p)
1444 of_link_property(con_np, p->name);
1445
1446 return 0;
1447}
1448
1449const struct fwnode_operations of_fwnode_ops = {
1450 .get = of_fwnode_get,
1451 .put = of_fwnode_put,
1452 .device_is_available = of_fwnode_device_is_available,
1453 .device_get_match_data = of_fwnode_device_get_match_data,
1454 .property_present = of_fwnode_property_present,
1455 .property_read_int_array = of_fwnode_property_read_int_array,
1456 .property_read_string_array = of_fwnode_property_read_string_array,
1457 .get_name = of_fwnode_get_name,
1458 .get_name_prefix = of_fwnode_get_name_prefix,
1459 .get_parent = of_fwnode_get_parent,
1460 .get_next_child_node = of_fwnode_get_next_child_node,
1461 .get_named_child_node = of_fwnode_get_named_child_node,
1462 .get_reference_args = of_fwnode_get_reference_args,
1463 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1464 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1465 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1466 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1467 .add_links = of_fwnode_add_links,
1468};
1469EXPORT_SYMBOL_GPL(of_fwnode_ops);