Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * drivers/of/property.c - Procedures for accessing and interpreting
   4 *			   Devicetree properties and graphs.
   5 *
   6 * Initially created by copying procedures from drivers/of/base.c. This
   7 * file contains the OF property as well as the OF graph interface
   8 * functions.
   9 *
  10 * Paul Mackerras	August 1996.
  11 * Copyright (C) 1996-2005 Paul Mackerras.
  12 *
  13 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  14 *    {engebret|bergner}@us.ibm.com
  15 *
  16 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  17 *
  18 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  19 *  Grant Likely.
  20 */
  21
  22#define pr_fmt(fmt)	"OF: " fmt
  23
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_device.h>
  27#include <linux/of_graph.h>
  28#include <linux/of_irq.h>
  29#include <linux/string.h>
  30#include <linux/moduleparam.h>
  31
  32#include "of_private.h"
  33
  34/**
  35 * of_graph_is_present() - check graph's presence
  36 * @node: pointer to device_node containing graph port
  37 *
  38 * Return: True if @node has a port or ports (with a port) sub-node,
  39 * false otherwise.
  40 */
  41bool of_graph_is_present(const struct device_node *node)
  42{
  43	struct device_node *ports, *port;
  44
  45	ports = of_get_child_by_name(node, "ports");
  46	if (ports)
  47		node = ports;
  48
  49	port = of_get_child_by_name(node, "port");
  50	of_node_put(ports);
  51	of_node_put(port);
  52
  53	return !!port;
  54}
  55EXPORT_SYMBOL(of_graph_is_present);
  56
  57/**
  58 * of_property_count_elems_of_size - Count the number of elements in a property
  59 *
  60 * @np:		device node from which the property value is to be read.
  61 * @propname:	name of the property to be searched.
  62 * @elem_size:	size of the individual element
  63 *
  64 * Search for a property in a device node and count the number of elements of
  65 * size elem_size in it.
  66 *
  67 * Return: The number of elements on sucess, -EINVAL if the property does not
  68 * exist or its length does not match a multiple of elem_size and -ENODATA if
  69 * the property does not have a value.
  70 */
  71int of_property_count_elems_of_size(const struct device_node *np,
  72				const char *propname, int elem_size)
  73{
  74	struct property *prop = of_find_property(np, propname, NULL);
  75
  76	if (!prop)
  77		return -EINVAL;
  78	if (!prop->value)
  79		return -ENODATA;
  80
  81	if (prop->length % elem_size != 0) {
  82		pr_err("size of %s in node %pOF is not a multiple of %d\n",
  83		       propname, np, elem_size);
  84		return -EINVAL;
  85	}
  86
  87	return prop->length / elem_size;
  88}
  89EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
  90
  91/**
  92 * of_find_property_value_of_size
  93 *
  94 * @np:		device node from which the property value is to be read.
  95 * @propname:	name of the property to be searched.
  96 * @min:	minimum allowed length of property value
  97 * @max:	maximum allowed length of property value (0 means unlimited)
  98 * @len:	if !=NULL, actual length is written to here
  99 *
 100 * Search for a property in a device node and valid the requested size.
 101 *
 102 * Return: The property value on success, -EINVAL if the property does not
 103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 104 * property data is too small or too large.
 105 *
 106 */
 107static void *of_find_property_value_of_size(const struct device_node *np,
 108			const char *propname, u32 min, u32 max, size_t *len)
 109{
 110	struct property *prop = of_find_property(np, propname, NULL);
 111
 112	if (!prop)
 113		return ERR_PTR(-EINVAL);
 114	if (!prop->value)
 115		return ERR_PTR(-ENODATA);
 116	if (prop->length < min)
 117		return ERR_PTR(-EOVERFLOW);
 118	if (max && prop->length > max)
 119		return ERR_PTR(-EOVERFLOW);
 120
 121	if (len)
 122		*len = prop->length;
 123
 124	return prop->value;
 125}
 126
 127/**
 128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 129 *
 130 * @np:		device node from which the property value is to be read.
 131 * @propname:	name of the property to be searched.
 132 * @index:	index of the u32 in the list of values
 133 * @out_value:	pointer to return value, modified only if no error.
 134 *
 135 * Search for a property in a device node and read nth 32-bit value from
 136 * it.
 137 *
 138 * Return: 0 on success, -EINVAL if the property does not exist,
 139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 140 * property data isn't large enough.
 141 *
 142 * The out_value is modified only if a valid u32 value can be decoded.
 143 */
 144int of_property_read_u32_index(const struct device_node *np,
 145				       const char *propname,
 146				       u32 index, u32 *out_value)
 147{
 148	const u32 *val = of_find_property_value_of_size(np, propname,
 149					((index + 1) * sizeof(*out_value)),
 150					0,
 151					NULL);
 152
 153	if (IS_ERR(val))
 154		return PTR_ERR(val);
 155
 156	*out_value = be32_to_cpup(((__be32 *)val) + index);
 157	return 0;
 158}
 159EXPORT_SYMBOL_GPL(of_property_read_u32_index);
 160
 161/**
 162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
 163 *
 164 * @np:		device node from which the property value is to be read.
 165 * @propname:	name of the property to be searched.
 166 * @index:	index of the u64 in the list of values
 167 * @out_value:	pointer to return value, modified only if no error.
 168 *
 169 * Search for a property in a device node and read nth 64-bit value from
 170 * it.
 171 *
 172 * Return: 0 on success, -EINVAL if the property does not exist,
 173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 174 * property data isn't large enough.
 175 *
 176 * The out_value is modified only if a valid u64 value can be decoded.
 177 */
 178int of_property_read_u64_index(const struct device_node *np,
 179				       const char *propname,
 180				       u32 index, u64 *out_value)
 181{
 182	const u64 *val = of_find_property_value_of_size(np, propname,
 183					((index + 1) * sizeof(*out_value)),
 184					0, NULL);
 185
 186	if (IS_ERR(val))
 187		return PTR_ERR(val);
 188
 189	*out_value = be64_to_cpup(((__be64 *)val) + index);
 190	return 0;
 191}
 192EXPORT_SYMBOL_GPL(of_property_read_u64_index);
 193
 194/**
 195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
 196 * property, with bounds on the minimum and maximum array size.
 197 *
 198 * @np:		device node from which the property value is to be read.
 199 * @propname:	name of the property to be searched.
 200 * @out_values:	pointer to found values.
 201 * @sz_min:	minimum number of array elements to read
 202 * @sz_max:	maximum number of array elements to read, if zero there is no
 203 *		upper limit on the number of elements in the dts entry but only
 204 *		sz_min will be read.
 205 *
 206 * Search for a property in a device node and read 8-bit value(s) from
 207 * it.
 208 *
 209 * dts entry of array should be like:
 210 *  ``property = /bits/ 8 <0x50 0x60 0x70>;``
 211 *
 212 * Return: The number of elements read on success, -EINVAL if the property
 213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 214 * if the property data is smaller than sz_min or longer than sz_max.
 215 *
 
 
 
 216 * The out_values is modified only if a valid u8 value can be decoded.
 217 */
 218int of_property_read_variable_u8_array(const struct device_node *np,
 219					const char *propname, u8 *out_values,
 220					size_t sz_min, size_t sz_max)
 221{
 222	size_t sz, count;
 223	const u8 *val = of_find_property_value_of_size(np, propname,
 224						(sz_min * sizeof(*out_values)),
 225						(sz_max * sizeof(*out_values)),
 226						&sz);
 227
 228	if (IS_ERR(val))
 229		return PTR_ERR(val);
 230
 231	if (!sz_max)
 232		sz = sz_min;
 233	else
 234		sz /= sizeof(*out_values);
 235
 236	count = sz;
 237	while (count--)
 238		*out_values++ = *val++;
 239
 240	return sz;
 241}
 242EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
 243
 244/**
 245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
 246 * property, with bounds on the minimum and maximum array size.
 247 *
 248 * @np:		device node from which the property value is to be read.
 249 * @propname:	name of the property to be searched.
 250 * @out_values:	pointer to found values.
 251 * @sz_min:	minimum number of array elements to read
 252 * @sz_max:	maximum number of array elements to read, if zero there is no
 253 *		upper limit on the number of elements in the dts entry but only
 254 *		sz_min will be read.
 255 *
 256 * Search for a property in a device node and read 16-bit value(s) from
 257 * it.
 258 *
 259 * dts entry of array should be like:
 260 *  ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
 261 *
 262 * Return: The number of elements read on success, -EINVAL if the property
 263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 264 * if the property data is smaller than sz_min or longer than sz_max.
 265 *
 
 
 
 266 * The out_values is modified only if a valid u16 value can be decoded.
 267 */
 268int of_property_read_variable_u16_array(const struct device_node *np,
 269					const char *propname, u16 *out_values,
 270					size_t sz_min, size_t sz_max)
 271{
 272	size_t sz, count;
 273	const __be16 *val = of_find_property_value_of_size(np, propname,
 274						(sz_min * sizeof(*out_values)),
 275						(sz_max * sizeof(*out_values)),
 276						&sz);
 277
 278	if (IS_ERR(val))
 279		return PTR_ERR(val);
 280
 281	if (!sz_max)
 282		sz = sz_min;
 283	else
 284		sz /= sizeof(*out_values);
 285
 286	count = sz;
 287	while (count--)
 288		*out_values++ = be16_to_cpup(val++);
 289
 290	return sz;
 291}
 292EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
 293
 294/**
 295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
 296 * integers from a property, with bounds on the minimum and maximum array size.
 297 *
 298 * @np:		device node from which the property value is to be read.
 299 * @propname:	name of the property to be searched.
 300 * @out_values:	pointer to return found values.
 301 * @sz_min:	minimum number of array elements to read
 302 * @sz_max:	maximum number of array elements to read, if zero there is no
 303 *		upper limit on the number of elements in the dts entry but only
 304 *		sz_min will be read.
 305 *
 306 * Search for a property in a device node and read 32-bit value(s) from
 307 * it.
 308 *
 309 * Return: The number of elements read on success, -EINVAL if the property
 310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 311 * if the property data is smaller than sz_min or longer than sz_max.
 312 *
 313 * The out_values is modified only if a valid u32 value can be decoded.
 314 */
 315int of_property_read_variable_u32_array(const struct device_node *np,
 316			       const char *propname, u32 *out_values,
 317			       size_t sz_min, size_t sz_max)
 318{
 319	size_t sz, count;
 320	const __be32 *val = of_find_property_value_of_size(np, propname,
 321						(sz_min * sizeof(*out_values)),
 322						(sz_max * sizeof(*out_values)),
 323						&sz);
 324
 325	if (IS_ERR(val))
 326		return PTR_ERR(val);
 327
 328	if (!sz_max)
 329		sz = sz_min;
 330	else
 331		sz /= sizeof(*out_values);
 332
 333	count = sz;
 334	while (count--)
 335		*out_values++ = be32_to_cpup(val++);
 336
 337	return sz;
 338}
 339EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
 340
 341/**
 342 * of_property_read_u64 - Find and read a 64 bit integer from a property
 343 * @np:		device node from which the property value is to be read.
 344 * @propname:	name of the property to be searched.
 345 * @out_value:	pointer to return value, modified only if return value is 0.
 346 *
 347 * Search for a property in a device node and read a 64-bit value from
 348 * it.
 349 *
 350 * Return: 0 on success, -EINVAL if the property does not exist,
 351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 352 * property data isn't large enough.
 353 *
 354 * The out_value is modified only if a valid u64 value can be decoded.
 355 */
 356int of_property_read_u64(const struct device_node *np, const char *propname,
 357			 u64 *out_value)
 358{
 359	const __be32 *val = of_find_property_value_of_size(np, propname,
 360						sizeof(*out_value),
 361						0,
 362						NULL);
 363
 364	if (IS_ERR(val))
 365		return PTR_ERR(val);
 366
 367	*out_value = of_read_number(val, 2);
 368	return 0;
 369}
 370EXPORT_SYMBOL_GPL(of_property_read_u64);
 371
 372/**
 373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
 374 * integers from a property, with bounds on the minimum and maximum array size.
 375 *
 376 * @np:		device node from which the property value is to be read.
 377 * @propname:	name of the property to be searched.
 378 * @out_values:	pointer to found values.
 379 * @sz_min:	minimum number of array elements to read
 380 * @sz_max:	maximum number of array elements to read, if zero there is no
 381 *		upper limit on the number of elements in the dts entry but only
 382 *		sz_min will be read.
 383 *
 384 * Search for a property in a device node and read 64-bit value(s) from
 385 * it.
 386 *
 387 * Return: The number of elements read on success, -EINVAL if the property
 388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 389 * if the property data is smaller than sz_min or longer than sz_max.
 390 *
 391 * The out_values is modified only if a valid u64 value can be decoded.
 392 */
 393int of_property_read_variable_u64_array(const struct device_node *np,
 394			       const char *propname, u64 *out_values,
 395			       size_t sz_min, size_t sz_max)
 396{
 397	size_t sz, count;
 398	const __be32 *val = of_find_property_value_of_size(np, propname,
 399						(sz_min * sizeof(*out_values)),
 400						(sz_max * sizeof(*out_values)),
 401						&sz);
 402
 403	if (IS_ERR(val))
 404		return PTR_ERR(val);
 405
 406	if (!sz_max)
 407		sz = sz_min;
 408	else
 409		sz /= sizeof(*out_values);
 410
 411	count = sz;
 412	while (count--) {
 413		*out_values++ = of_read_number(val, 2);
 414		val += 2;
 415	}
 416
 417	return sz;
 418}
 419EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
 420
 421/**
 422 * of_property_read_string - Find and read a string from a property
 423 * @np:		device node from which the property value is to be read.
 424 * @propname:	name of the property to be searched.
 425 * @out_string:	pointer to null terminated return string, modified only if
 426 *		return value is 0.
 427 *
 428 * Search for a property in a device tree node and retrieve a null
 429 * terminated string value (pointer to data, not a copy).
 430 *
 431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
 432 * property does not have a value, and -EILSEQ if the string is not
 433 * null-terminated within the length of the property data.
 434 *
 435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
 436 * be interpreted as an empty string.
 437 *
 438 * The out_string pointer is modified only if a valid string can be decoded.
 439 */
 440int of_property_read_string(const struct device_node *np, const char *propname,
 441				const char **out_string)
 442{
 443	const struct property *prop = of_find_property(np, propname, NULL);
 444	if (!prop)
 445		return -EINVAL;
 446	if (!prop->length)
 447		return -ENODATA;
 448	if (strnlen(prop->value, prop->length) >= prop->length)
 449		return -EILSEQ;
 450	*out_string = prop->value;
 451	return 0;
 452}
 453EXPORT_SYMBOL_GPL(of_property_read_string);
 454
 455/**
 456 * of_property_match_string() - Find string in a list and return index
 457 * @np: pointer to node containing string list property
 458 * @propname: string list property name
 459 * @string: pointer to string to search for in string list
 460 *
 461 * This function searches a string list property and returns the index
 462 * of a specific string value.
 463 */
 464int of_property_match_string(const struct device_node *np, const char *propname,
 465			     const char *string)
 466{
 467	const struct property *prop = of_find_property(np, propname, NULL);
 468	size_t l;
 469	int i;
 470	const char *p, *end;
 471
 472	if (!prop)
 473		return -EINVAL;
 474	if (!prop->value)
 475		return -ENODATA;
 476
 477	p = prop->value;
 478	end = p + prop->length;
 479
 480	for (i = 0; p < end; i++, p += l) {
 481		l = strnlen(p, end - p) + 1;
 482		if (p + l > end)
 483			return -EILSEQ;
 484		pr_debug("comparing %s with %s\n", string, p);
 485		if (strcmp(string, p) == 0)
 486			return i; /* Found it; return index */
 487	}
 488	return -ENODATA;
 489}
 490EXPORT_SYMBOL_GPL(of_property_match_string);
 491
 492/**
 493 * of_property_read_string_helper() - Utility helper for parsing string properties
 494 * @np:		device node from which the property value is to be read.
 495 * @propname:	name of the property to be searched.
 496 * @out_strs:	output array of string pointers.
 497 * @sz:		number of array elements to read.
 498 * @skip:	Number of strings to skip over at beginning of list.
 499 *
 500 * Don't call this function directly. It is a utility helper for the
 501 * of_property_read_string*() family of functions.
 502 */
 503int of_property_read_string_helper(const struct device_node *np,
 504				   const char *propname, const char **out_strs,
 505				   size_t sz, int skip)
 506{
 507	const struct property *prop = of_find_property(np, propname, NULL);
 508	int l = 0, i = 0;
 509	const char *p, *end;
 510
 511	if (!prop)
 512		return -EINVAL;
 513	if (!prop->value)
 514		return -ENODATA;
 515	p = prop->value;
 516	end = p + prop->length;
 517
 518	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
 519		l = strnlen(p, end - p) + 1;
 520		if (p + l > end)
 521			return -EILSEQ;
 522		if (out_strs && i >= skip)
 523			*out_strs++ = p;
 524	}
 525	i -= skip;
 526	return i <= 0 ? -ENODATA : i;
 527}
 528EXPORT_SYMBOL_GPL(of_property_read_string_helper);
 529
 530const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
 531			       u32 *pu)
 532{
 533	const void *curv = cur;
 534
 535	if (!prop)
 536		return NULL;
 537
 538	if (!cur) {
 539		curv = prop->value;
 540		goto out_val;
 541	}
 542
 543	curv += sizeof(*cur);
 544	if (curv >= prop->value + prop->length)
 545		return NULL;
 546
 547out_val:
 548	*pu = be32_to_cpup(curv);
 549	return curv;
 550}
 551EXPORT_SYMBOL_GPL(of_prop_next_u32);
 552
 553const char *of_prop_next_string(struct property *prop, const char *cur)
 554{
 555	const void *curv = cur;
 556
 557	if (!prop)
 558		return NULL;
 559
 560	if (!cur)
 561		return prop->value;
 562
 563	curv += strlen(cur) + 1;
 564	if (curv >= prop->value + prop->length)
 565		return NULL;
 566
 567	return curv;
 568}
 569EXPORT_SYMBOL_GPL(of_prop_next_string);
 570
 571/**
 572 * of_graph_parse_endpoint() - parse common endpoint node properties
 573 * @node: pointer to endpoint device_node
 574 * @endpoint: pointer to the OF endpoint data structure
 575 *
 576 * The caller should hold a reference to @node.
 577 */
 578int of_graph_parse_endpoint(const struct device_node *node,
 579			    struct of_endpoint *endpoint)
 580{
 581	struct device_node *port_node = of_get_parent(node);
 582
 583	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
 584		  __func__, node);
 585
 586	memset(endpoint, 0, sizeof(*endpoint));
 587
 588	endpoint->local_node = node;
 589	/*
 590	 * It doesn't matter whether the two calls below succeed.
 591	 * If they don't then the default value 0 is used.
 592	 */
 593	of_property_read_u32(port_node, "reg", &endpoint->port);
 594	of_property_read_u32(node, "reg", &endpoint->id);
 595
 596	of_node_put(port_node);
 597
 598	return 0;
 599}
 600EXPORT_SYMBOL(of_graph_parse_endpoint);
 601
 602/**
 603 * of_graph_get_port_by_id() - get the port matching a given id
 604 * @parent: pointer to the parent device node
 605 * @id: id of the port
 606 *
 607 * Return: A 'port' node pointer with refcount incremented. The caller
 608 * has to use of_node_put() on it when done.
 609 */
 610struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
 611{
 612	struct device_node *node, *port;
 613
 614	node = of_get_child_by_name(parent, "ports");
 615	if (node)
 616		parent = node;
 617
 618	for_each_child_of_node(parent, port) {
 619		u32 port_id = 0;
 620
 621		if (!of_node_name_eq(port, "port"))
 622			continue;
 623		of_property_read_u32(port, "reg", &port_id);
 624		if (id == port_id)
 625			break;
 626	}
 627
 628	of_node_put(node);
 629
 630	return port;
 631}
 632EXPORT_SYMBOL(of_graph_get_port_by_id);
 633
 634/**
 635 * of_graph_get_next_endpoint() - get next endpoint node
 636 * @parent: pointer to the parent device node
 637 * @prev: previous endpoint node, or NULL to get first
 638 *
 639 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
 640 * of the passed @prev node is decremented.
 641 */
 642struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
 643					struct device_node *prev)
 644{
 645	struct device_node *endpoint;
 646	struct device_node *port;
 647
 648	if (!parent)
 649		return NULL;
 650
 651	/*
 652	 * Start by locating the port node. If no previous endpoint is specified
 653	 * search for the first port node, otherwise get the previous endpoint
 654	 * parent port node.
 655	 */
 656	if (!prev) {
 657		struct device_node *node;
 658
 659		node = of_get_child_by_name(parent, "ports");
 660		if (node)
 661			parent = node;
 662
 663		port = of_get_child_by_name(parent, "port");
 664		of_node_put(node);
 665
 666		if (!port) {
 667			pr_err("graph: no port node found in %pOF\n", parent);
 668			return NULL;
 669		}
 670	} else {
 671		port = of_get_parent(prev);
 672		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
 673			      __func__, prev))
 674			return NULL;
 675	}
 676
 677	while (1) {
 678		/*
 679		 * Now that we have a port node, get the next endpoint by
 680		 * getting the next child. If the previous endpoint is NULL this
 681		 * will return the first child.
 682		 */
 683		endpoint = of_get_next_child(port, prev);
 684		if (endpoint) {
 685			of_node_put(port);
 686			return endpoint;
 687		}
 688
 689		/* No more endpoints under this port, try the next one. */
 690		prev = NULL;
 691
 692		do {
 693			port = of_get_next_child(parent, port);
 694			if (!port)
 695				return NULL;
 696		} while (!of_node_name_eq(port, "port"));
 697	}
 698}
 699EXPORT_SYMBOL(of_graph_get_next_endpoint);
 700
 701/**
 702 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
 703 * @parent: pointer to the parent device node
 704 * @port_reg: identifier (value of reg property) of the parent port node
 705 * @reg: identifier (value of reg property) of the endpoint node
 706 *
 707 * Return: An 'endpoint' node pointer which is identified by reg and at the same
 708 * is the child of a port node identified by port_reg. reg and port_reg are
 709 * ignored when they are -1. Use of_node_put() on the pointer when done.
 710 */
 711struct device_node *of_graph_get_endpoint_by_regs(
 712	const struct device_node *parent, int port_reg, int reg)
 713{
 714	struct of_endpoint endpoint;
 715	struct device_node *node = NULL;
 716
 717	for_each_endpoint_of_node(parent, node) {
 718		of_graph_parse_endpoint(node, &endpoint);
 719		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
 720			((reg == -1) || (endpoint.id == reg)))
 721			return node;
 722	}
 723
 724	return NULL;
 725}
 726EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
 727
 728/**
 729 * of_graph_get_remote_endpoint() - get remote endpoint node
 730 * @node: pointer to a local endpoint device_node
 731 *
 732 * Return: Remote endpoint node associated with remote endpoint node linked
 733 *	   to @node. Use of_node_put() on it when done.
 734 */
 735struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
 736{
 737	/* Get remote endpoint node. */
 738	return of_parse_phandle(node, "remote-endpoint", 0);
 739}
 740EXPORT_SYMBOL(of_graph_get_remote_endpoint);
 741
 742/**
 743 * of_graph_get_port_parent() - get port's parent node
 744 * @node: pointer to a local endpoint device_node
 745 *
 746 * Return: device node associated with endpoint node linked
 747 *	   to @node. Use of_node_put() on it when done.
 748 */
 749struct device_node *of_graph_get_port_parent(struct device_node *node)
 750{
 751	unsigned int depth;
 752
 753	if (!node)
 754		return NULL;
 755
 756	/*
 757	 * Preserve usecount for passed in node as of_get_next_parent()
 758	 * will do of_node_put() on it.
 759	 */
 760	of_node_get(node);
 761
 762	/* Walk 3 levels up only if there is 'ports' node. */
 763	for (depth = 3; depth && node; depth--) {
 764		node = of_get_next_parent(node);
 765		if (depth == 2 && !of_node_name_eq(node, "ports"))
 766			break;
 767	}
 768	return node;
 769}
 770EXPORT_SYMBOL(of_graph_get_port_parent);
 771
 772/**
 773 * of_graph_get_remote_port_parent() - get remote port's parent node
 774 * @node: pointer to a local endpoint device_node
 775 *
 776 * Return: Remote device node associated with remote endpoint node linked
 777 *	   to @node. Use of_node_put() on it when done.
 778 */
 779struct device_node *of_graph_get_remote_port_parent(
 780			       const struct device_node *node)
 781{
 782	struct device_node *np, *pp;
 783
 784	/* Get remote endpoint node. */
 785	np = of_graph_get_remote_endpoint(node);
 786
 787	pp = of_graph_get_port_parent(np);
 788
 789	of_node_put(np);
 790
 791	return pp;
 792}
 793EXPORT_SYMBOL(of_graph_get_remote_port_parent);
 794
 795/**
 796 * of_graph_get_remote_port() - get remote port node
 797 * @node: pointer to a local endpoint device_node
 798 *
 799 * Return: Remote port node associated with remote endpoint node linked
 800 * to @node. Use of_node_put() on it when done.
 801 */
 802struct device_node *of_graph_get_remote_port(const struct device_node *node)
 803{
 804	struct device_node *np;
 805
 806	/* Get remote endpoint node. */
 807	np = of_graph_get_remote_endpoint(node);
 808	if (!np)
 809		return NULL;
 810	return of_get_next_parent(np);
 811}
 812EXPORT_SYMBOL(of_graph_get_remote_port);
 813
 814int of_graph_get_endpoint_count(const struct device_node *np)
 815{
 816	struct device_node *endpoint;
 817	int num = 0;
 818
 819	for_each_endpoint_of_node(np, endpoint)
 820		num++;
 821
 822	return num;
 823}
 824EXPORT_SYMBOL(of_graph_get_endpoint_count);
 825
 826/**
 827 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
 828 * @node: pointer to parent device_node containing graph port/endpoint
 829 * @port: identifier (value of reg property) of the parent port node
 830 * @endpoint: identifier (value of reg property) of the endpoint node
 831 *
 832 * Return: Remote device node associated with remote endpoint node linked
 833 * to @node. Use of_node_put() on it when done.
 834 */
 835struct device_node *of_graph_get_remote_node(const struct device_node *node,
 836					     u32 port, u32 endpoint)
 837{
 838	struct device_node *endpoint_node, *remote;
 839
 840	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
 841	if (!endpoint_node) {
 842		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
 843			 port, endpoint, node);
 844		return NULL;
 845	}
 846
 847	remote = of_graph_get_remote_port_parent(endpoint_node);
 848	of_node_put(endpoint_node);
 849	if (!remote) {
 850		pr_debug("no valid remote node\n");
 851		return NULL;
 852	}
 853
 854	if (!of_device_is_available(remote)) {
 855		pr_debug("not available for remote node\n");
 856		of_node_put(remote);
 857		return NULL;
 858	}
 859
 860	return remote;
 861}
 862EXPORT_SYMBOL(of_graph_get_remote_node);
 863
 864static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
 865{
 866	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
 867}
 868
 869static void of_fwnode_put(struct fwnode_handle *fwnode)
 870{
 871	of_node_put(to_of_node(fwnode));
 872}
 873
 874static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
 875{
 876	return of_device_is_available(to_of_node(fwnode));
 877}
 878
 879static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
 880{
 881	return true;
 882}
 883
 884static enum dev_dma_attr
 885of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
 886{
 887	if (of_dma_is_coherent(to_of_node(fwnode)))
 888		return DEV_DMA_COHERENT;
 889	else
 890		return DEV_DMA_NON_COHERENT;
 891}
 892
 893static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
 894				       const char *propname)
 895{
 896	return of_property_read_bool(to_of_node(fwnode), propname);
 897}
 898
 899static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 900					     const char *propname,
 901					     unsigned int elem_size, void *val,
 902					     size_t nval)
 903{
 904	const struct device_node *node = to_of_node(fwnode);
 905
 906	if (!val)
 907		return of_property_count_elems_of_size(node, propname,
 908						       elem_size);
 909
 910	switch (elem_size) {
 911	case sizeof(u8):
 912		return of_property_read_u8_array(node, propname, val, nval);
 913	case sizeof(u16):
 914		return of_property_read_u16_array(node, propname, val, nval);
 915	case sizeof(u32):
 916		return of_property_read_u32_array(node, propname, val, nval);
 917	case sizeof(u64):
 918		return of_property_read_u64_array(node, propname, val, nval);
 919	}
 920
 921	return -ENXIO;
 922}
 923
 924static int
 925of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 926				     const char *propname, const char **val,
 927				     size_t nval)
 928{
 929	const struct device_node *node = to_of_node(fwnode);
 930
 931	return val ?
 932		of_property_read_string_array(node, propname, val, nval) :
 933		of_property_count_strings(node, propname);
 934}
 935
 936static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
 937{
 938	return kbasename(to_of_node(fwnode)->full_name);
 939}
 940
 941static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 942{
 943	/* Root needs no prefix here (its name is "/"). */
 944	if (!to_of_node(fwnode)->parent)
 945		return "";
 946
 947	return "/";
 948}
 949
 950static struct fwnode_handle *
 951of_fwnode_get_parent(const struct fwnode_handle *fwnode)
 952{
 953	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
 954}
 955
 956static struct fwnode_handle *
 957of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 958			      struct fwnode_handle *child)
 959{
 960	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
 961							    to_of_node(child)));
 962}
 963
 964static struct fwnode_handle *
 965of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 966			       const char *childname)
 967{
 968	const struct device_node *node = to_of_node(fwnode);
 969	struct device_node *child;
 970
 971	for_each_available_child_of_node(node, child)
 972		if (of_node_name_eq(child, childname))
 973			return of_fwnode_handle(child);
 974
 975	return NULL;
 976}
 977
 978static int
 979of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
 980			     const char *prop, const char *nargs_prop,
 981			     unsigned int nargs, unsigned int index,
 982			     struct fwnode_reference_args *args)
 983{
 984	struct of_phandle_args of_args;
 985	unsigned int i;
 986	int ret;
 987
 988	if (nargs_prop)
 989		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
 990						 nargs_prop, index, &of_args);
 991	else
 992		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
 993						       nargs, index, &of_args);
 994	if (ret < 0)
 995		return ret;
 996	if (!args) {
 997		of_node_put(of_args.np);
 998		return 0;
 999	}
1000
1001	args->nargs = of_args.args_count;
1002	args->fwnode = of_fwnode_handle(of_args.np);
1003
1004	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1005		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1006
1007	return 0;
1008}
1009
1010static struct fwnode_handle *
1011of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1012				  struct fwnode_handle *prev)
1013{
1014	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1015							   to_of_node(prev)));
1016}
1017
1018static struct fwnode_handle *
1019of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1020{
1021	return of_fwnode_handle(
1022		of_graph_get_remote_endpoint(to_of_node(fwnode)));
1023}
1024
1025static struct fwnode_handle *
1026of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1027{
1028	struct device_node *np;
1029
1030	/* Get the parent of the port */
1031	np = of_get_parent(to_of_node(fwnode));
1032	if (!np)
1033		return NULL;
1034
1035	/* Is this the "ports" node? If not, it's the port parent. */
1036	if (!of_node_name_eq(np, "ports"))
1037		return of_fwnode_handle(np);
1038
1039	return of_fwnode_handle(of_get_next_parent(np));
1040}
1041
1042static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1043					  struct fwnode_endpoint *endpoint)
1044{
1045	const struct device_node *node = to_of_node(fwnode);
1046	struct device_node *port_node = of_get_parent(node);
1047
1048	endpoint->local_fwnode = fwnode;
1049
1050	of_property_read_u32(port_node, "reg", &endpoint->port);
1051	of_property_read_u32(node, "reg", &endpoint->id);
1052
1053	of_node_put(port_node);
1054
1055	return 0;
1056}
1057
1058static const void *
1059of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1060				const struct device *dev)
1061{
1062	return of_device_get_match_data(dev);
1063}
1064
1065static bool of_is_ancestor_of(struct device_node *test_ancestor,
1066			      struct device_node *child)
1067{
1068	of_node_get(child);
1069	while (child) {
1070		if (child == test_ancestor) {
1071			of_node_put(child);
1072			return true;
1073		}
1074		child = of_get_next_parent(child);
1075	}
1076	return false;
1077}
1078
1079static struct device_node *of_get_compat_node(struct device_node *np)
 
 
 
 
 
 
 
 
 
 
1080{
1081	of_node_get(np);
1082
1083	while (np) {
1084		if (!of_device_is_available(np)) {
1085			of_node_put(np);
1086			np = NULL;
1087		}
1088
1089		if (of_find_property(np, "compatible", NULL))
1090			break;
1091
 
 
1092		np = of_get_next_parent(np);
1093	}
1094
1095	return np;
1096}
1097
1098static struct device_node *of_get_compat_node_parent(struct device_node *np)
1099{
1100	struct device_node *parent, *node;
1101
1102	parent = of_get_parent(np);
1103	node = of_get_compat_node(parent);
1104	of_node_put(parent);
1105
1106	return node;
1107}
1108
1109/**
1110 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1111 * @con_np: consumer device tree node
1112 * @sup_np: supplier device tree node
1113 *
1114 * Given a phandle to a supplier device tree node (@sup_np), this function
1115 * finds the device that owns the supplier device tree node and creates a
1116 * device link from @dev consumer device to the supplier device. This function
1117 * doesn't create device links for invalid scenarios such as trying to create a
1118 * link with a parent device as the consumer of its child device. In such
1119 * cases, it returns an error.
1120 *
1121 * Returns:
1122 * - 0 if fwnode link successfully created to supplier
 
1123 * - -EINVAL if the supplier link is invalid and should not be created
1124 * - -ENODEV if struct device will never be create for supplier
1125 */
1126static int of_link_to_phandle(struct device_node *con_np,
1127			      struct device_node *sup_np)
1128{
1129	struct device *sup_dev;
 
1130	struct device_node *tmp_np = sup_np;
1131
 
1132	/*
1133	 * Find the device node that contains the supplier phandle.  It may be
1134	 * @sup_np or it may be an ancestor of @sup_np.
1135	 */
1136	sup_np = of_get_compat_node(sup_np);
 
 
 
 
 
 
 
 
 
 
 
 
 
1137	if (!sup_np) {
1138		pr_debug("Not linking %pOFP to %pOFP - No device\n",
1139			 con_np, tmp_np);
1140		return -ENODEV;
1141	}
1142
1143	/*
1144	 * Don't allow linking a device node as a consumer of one of its
1145	 * descendant nodes. By definition, a child node can't be a functional
1146	 * dependency for the parent node.
1147	 */
1148	if (of_is_ancestor_of(con_np, sup_np)) {
1149		pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1150			 con_np, sup_np);
1151		of_node_put(sup_np);
1152		return -EINVAL;
1153	}
1154
1155	/*
1156	 * Don't create links to "early devices" that won't have struct devices
1157	 * created for them.
1158	 */
1159	sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1160	if (!sup_dev &&
1161	    (of_node_check_flag(sup_np, OF_POPULATED) ||
1162	     sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1163		pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1164			 con_np, sup_np);
1165		of_node_put(sup_np);
1166		return -ENODEV;
1167	}
1168	put_device(sup_dev);
 
 
 
 
 
 
 
 
1169
1170	fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1171	of_node_put(sup_np);
1172
1173	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174}
1175
1176/**
1177 * parse_prop_cells - Property parsing function for suppliers
1178 *
1179 * @np:		Pointer to device tree node containing a list
1180 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1181 * @index:	For properties holding a list of phandles, this is the index
1182 *		into the list.
1183 * @list_name:	Property name that is known to contain list of phandle(s) to
1184 *		supplier(s)
1185 * @cells_name:	property name that specifies phandles' arguments count
1186 *
1187 * This is a helper function to parse properties that have a known fixed name
1188 * and are a list of phandles and phandle arguments.
1189 *
1190 * Returns:
1191 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1192 *   on it when done.
1193 * - NULL if no phandle found at index
1194 */
1195static struct device_node *parse_prop_cells(struct device_node *np,
1196					    const char *prop_name, int index,
1197					    const char *list_name,
1198					    const char *cells_name)
1199{
1200	struct of_phandle_args sup_args;
1201
1202	if (strcmp(prop_name, list_name))
1203		return NULL;
1204
1205	if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1206				       &sup_args))
1207		return NULL;
1208
1209	return sup_args.np;
1210}
1211
1212#define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1213static struct device_node *parse_##fname(struct device_node *np,	  \
1214					const char *prop_name, int index) \
1215{									  \
1216	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1217}
1218
1219static int strcmp_suffix(const char *str, const char *suffix)
1220{
1221	unsigned int len, suffix_len;
1222
1223	len = strlen(str);
1224	suffix_len = strlen(suffix);
1225	if (len <= suffix_len)
1226		return -1;
1227	return strcmp(str + len - suffix_len, suffix);
1228}
1229
1230/**
1231 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1232 *
1233 * @np:		Pointer to device tree node containing a list
1234 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1235 * @index:	For properties holding a list of phandles, this is the index
1236 *		into the list.
1237 * @suffix:	Property suffix that is known to contain list of phandle(s) to
1238 *		supplier(s)
1239 * @cells_name:	property name that specifies phandles' arguments count
1240 *
1241 * This is a helper function to parse properties that have a known fixed suffix
1242 * and are a list of phandles and phandle arguments.
1243 *
1244 * Returns:
1245 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1246 *   on it when done.
1247 * - NULL if no phandle found at index
1248 */
1249static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1250					    const char *prop_name, int index,
1251					    const char *suffix,
1252					    const char *cells_name)
1253{
1254	struct of_phandle_args sup_args;
1255
1256	if (strcmp_suffix(prop_name, suffix))
1257		return NULL;
1258
1259	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1260				       &sup_args))
1261		return NULL;
1262
1263	return sup_args.np;
1264}
1265
1266#define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1267static struct device_node *parse_##fname(struct device_node *np,	     \
1268					const char *prop_name, int index)    \
1269{									     \
1270	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1271}
1272
1273/**
1274 * struct supplier_bindings - Property parsing functions for suppliers
1275 *
1276 * @parse_prop: function name
1277 *	parse_prop() finds the node corresponding to a supplier phandle
1278 * @parse_prop.np: Pointer to device node holding supplier phandle property
1279 * @parse_prop.prop_name: Name of property holding a phandle value
1280 * @parse_prop.index: For properties holding a list of phandles, this is the
1281 *		      index into the list
1282 * @optional: Describes whether a supplier is mandatory or not
1283 * @node_not_dev: The consumer node containing the property is never converted
1284 *		  to a struct device. Instead, parse ancestor nodes for the
1285 *		  compatible property to find a node corresponding to a device.
1286 *
1287 * Returns:
1288 * parse_prop() return values are
1289 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1290 *   on it when done.
1291 * - NULL if no phandle found at index
1292 */
1293struct supplier_bindings {
1294	struct device_node *(*parse_prop)(struct device_node *np,
1295					  const char *prop_name, int index);
1296	bool optional;
1297	bool node_not_dev;
1298};
1299
1300DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1301DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1302DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1303DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1304DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1305DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1306DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1307DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1308DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1309DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
 
 
1310DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1311DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1312DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1313DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1314DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1315DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1316DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1317DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1318DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1319DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1320DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1321DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1322DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL)
1323DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1324DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1325DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1326DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1327DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1328DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1329
1330static struct device_node *parse_gpios(struct device_node *np,
1331				       const char *prop_name, int index)
1332{
1333	if (!strcmp_suffix(prop_name, ",nr-gpios"))
1334		return NULL;
1335
1336	return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1337				       "#gpio-cells");
1338}
1339
1340static struct device_node *parse_iommu_maps(struct device_node *np,
1341					    const char *prop_name, int index)
1342{
1343	if (strcmp(prop_name, "iommu-map"))
1344		return NULL;
1345
1346	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1347}
1348
1349static struct device_node *parse_gpio_compat(struct device_node *np,
1350					     const char *prop_name, int index)
1351{
1352	struct of_phandle_args sup_args;
1353
1354	if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1355		return NULL;
1356
1357	/*
1358	 * Ignore node with gpio-hog property since its gpios are all provided
1359	 * by its parent.
1360	 */
1361	if (of_find_property(np, "gpio-hog", NULL))
1362		return NULL;
1363
1364	if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1365				       &sup_args))
1366		return NULL;
1367
1368	return sup_args.np;
1369}
1370
1371static struct device_node *parse_interrupts(struct device_node *np,
1372					    const char *prop_name, int index)
1373{
1374	struct of_phandle_args sup_args;
1375
1376	if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1377		return NULL;
1378
1379	if (strcmp(prop_name, "interrupts") &&
1380	    strcmp(prop_name, "interrupts-extended"))
1381		return NULL;
1382
1383	return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1384}
1385
1386static const struct supplier_bindings of_supplier_bindings[] = {
1387	{ .parse_prop = parse_clocks, },
1388	{ .parse_prop = parse_interconnects, },
1389	{ .parse_prop = parse_iommus, .optional = true, },
1390	{ .parse_prop = parse_iommu_maps, .optional = true, },
1391	{ .parse_prop = parse_mboxes, },
1392	{ .parse_prop = parse_io_channels, },
1393	{ .parse_prop = parse_interrupt_parent, },
1394	{ .parse_prop = parse_dmas, .optional = true, },
1395	{ .parse_prop = parse_power_domains, },
1396	{ .parse_prop = parse_hwlocks, },
1397	{ .parse_prop = parse_extcon, },
 
1398	{ .parse_prop = parse_nvmem_cells, },
1399	{ .parse_prop = parse_phys, },
1400	{ .parse_prop = parse_wakeup_parent, },
1401	{ .parse_prop = parse_pinctrl0, },
1402	{ .parse_prop = parse_pinctrl1, },
1403	{ .parse_prop = parse_pinctrl2, },
1404	{ .parse_prop = parse_pinctrl3, },
1405	{ .parse_prop = parse_pinctrl4, },
1406	{ .parse_prop = parse_pinctrl5, },
1407	{ .parse_prop = parse_pinctrl6, },
1408	{ .parse_prop = parse_pinctrl7, },
1409	{ .parse_prop = parse_pinctrl8, },
1410	{ .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
1411	{ .parse_prop = parse_pwms, },
1412	{ .parse_prop = parse_resets, },
1413	{ .parse_prop = parse_leds, },
1414	{ .parse_prop = parse_backlight, },
1415	{ .parse_prop = parse_gpio_compat, },
1416	{ .parse_prop = parse_interrupts, },
1417	{ .parse_prop = parse_regulators, },
1418	{ .parse_prop = parse_gpio, },
1419	{ .parse_prop = parse_gpios, },
1420	{}
1421};
1422
1423/**
1424 * of_link_property - Create device links to suppliers listed in a property
 
1425 * @con_np: The consumer device tree node which contains the property
1426 * @prop_name: Name of property to be parsed
1427 *
1428 * This function checks if the property @prop_name that is present in the
1429 * @con_np device tree node is one of the known common device tree bindings
1430 * that list phandles to suppliers. If @prop_name isn't one, this function
1431 * doesn't do anything.
1432 *
1433 * If @prop_name is one, this function attempts to create fwnode links from the
1434 * consumer device tree node @con_np to all the suppliers device tree nodes
1435 * listed in @prop_name.
1436 *
1437 * Any failed attempt to create a fwnode link will NOT result in an immediate
1438 * return.  of_link_property() must create links to all the available supplier
1439 * device tree nodes even when attempts to create a link to one or more
1440 * suppliers fail.
1441 */
1442static int of_link_property(struct device_node *con_np, const char *prop_name)
 
1443{
1444	struct device_node *phandle;
1445	const struct supplier_bindings *s = of_supplier_bindings;
1446	unsigned int i = 0;
1447	bool matched = false;
 
 
 
 
 
 
 
1448
1449	/* Do not stop at first failed link, link all available suppliers. */
1450	while (!matched && s->parse_prop) {
1451		if (s->optional && !fw_devlink_is_strict()) {
1452			s++;
1453			continue;
1454		}
1455
1456		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1457			struct device_node *con_dev_np;
1458
1459			con_dev_np = s->node_not_dev
1460					? of_get_compat_node_parent(con_np)
1461					: of_node_get(con_np);
1462			matched = true;
1463			i++;
1464			of_link_to_phandle(con_dev_np, phandle);
 
 
1465			of_node_put(phandle);
1466			of_node_put(con_dev_np);
1467		}
1468		s++;
1469	}
1470	return 0;
1471}
1472
1473static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
 
1474{
1475#ifdef CONFIG_OF_ADDRESS
1476	return of_iomap(to_of_node(fwnode), index);
1477#else
1478	return NULL;
1479#endif
1480}
1481
1482static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1483			     unsigned int index)
1484{
1485	return of_irq_get(to_of_node(fwnode), index);
 
 
 
 
 
1486}
1487
1488static int of_fwnode_add_links(struct fwnode_handle *fwnode)
 
1489{
1490	struct property *p;
1491	struct device_node *con_np = to_of_node(fwnode);
1492
1493	if (IS_ENABLED(CONFIG_X86))
1494		return 0;
1495
1496	if (!con_np)
1497		return -EINVAL;
1498
1499	for_each_property_of_node(con_np, p)
1500		of_link_property(con_np, p->name);
1501
1502	return 0;
1503}
1504
1505const struct fwnode_operations of_fwnode_ops = {
1506	.get = of_fwnode_get,
1507	.put = of_fwnode_put,
1508	.device_is_available = of_fwnode_device_is_available,
1509	.device_get_match_data = of_fwnode_device_get_match_data,
1510	.device_dma_supported = of_fwnode_device_dma_supported,
1511	.device_get_dma_attr = of_fwnode_device_get_dma_attr,
1512	.property_present = of_fwnode_property_present,
1513	.property_read_int_array = of_fwnode_property_read_int_array,
1514	.property_read_string_array = of_fwnode_property_read_string_array,
1515	.get_name = of_fwnode_get_name,
1516	.get_name_prefix = of_fwnode_get_name_prefix,
1517	.get_parent = of_fwnode_get_parent,
1518	.get_next_child_node = of_fwnode_get_next_child_node,
1519	.get_named_child_node = of_fwnode_get_named_child_node,
1520	.get_reference_args = of_fwnode_get_reference_args,
1521	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1522	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1523	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1524	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1525	.iomap = of_fwnode_iomap,
1526	.irq_get = of_fwnode_irq_get,
1527	.add_links = of_fwnode_add_links,
1528};
1529EXPORT_SYMBOL_GPL(of_fwnode_ops);
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * drivers/of/property.c - Procedures for accessing and interpreting
   4 *			   Devicetree properties and graphs.
   5 *
   6 * Initially created by copying procedures from drivers/of/base.c. This
   7 * file contains the OF property as well as the OF graph interface
   8 * functions.
   9 *
  10 * Paul Mackerras	August 1996.
  11 * Copyright (C) 1996-2005 Paul Mackerras.
  12 *
  13 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  14 *    {engebret|bergner}@us.ibm.com
  15 *
  16 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  17 *
  18 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  19 *  Grant Likely.
  20 */
  21
  22#define pr_fmt(fmt)	"OF: " fmt
  23
  24#include <linux/of.h>
 
  25#include <linux/of_device.h>
  26#include <linux/of_graph.h>
 
  27#include <linux/string.h>
  28#include <linux/moduleparam.h>
  29
  30#include "of_private.h"
  31
  32/**
  33 * of_graph_is_present() - check graph's presence
  34 * @node: pointer to device_node containing graph port
  35 *
  36 * Return: True if @node has a port or ports (with a port) sub-node,
  37 * false otherwise.
  38 */
  39bool of_graph_is_present(const struct device_node *node)
  40{
  41	struct device_node *ports, *port;
  42
  43	ports = of_get_child_by_name(node, "ports");
  44	if (ports)
  45		node = ports;
  46
  47	port = of_get_child_by_name(node, "port");
  48	of_node_put(ports);
  49	of_node_put(port);
  50
  51	return !!port;
  52}
  53EXPORT_SYMBOL(of_graph_is_present);
  54
  55/**
  56 * of_property_count_elems_of_size - Count the number of elements in a property
  57 *
  58 * @np:		device node from which the property value is to be read.
  59 * @propname:	name of the property to be searched.
  60 * @elem_size:	size of the individual element
  61 *
  62 * Search for a property in a device node and count the number of elements of
  63 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
  64 * property does not exist or its length does not match a multiple of elem_size
  65 * and -ENODATA if the property does not have a value.
 
 
  66 */
  67int of_property_count_elems_of_size(const struct device_node *np,
  68				const char *propname, int elem_size)
  69{
  70	struct property *prop = of_find_property(np, propname, NULL);
  71
  72	if (!prop)
  73		return -EINVAL;
  74	if (!prop->value)
  75		return -ENODATA;
  76
  77	if (prop->length % elem_size != 0) {
  78		pr_err("size of %s in node %pOF is not a multiple of %d\n",
  79		       propname, np, elem_size);
  80		return -EINVAL;
  81	}
  82
  83	return prop->length / elem_size;
  84}
  85EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
  86
  87/**
  88 * of_find_property_value_of_size
  89 *
  90 * @np:		device node from which the property value is to be read.
  91 * @propname:	name of the property to be searched.
  92 * @min:	minimum allowed length of property value
  93 * @max:	maximum allowed length of property value (0 means unlimited)
  94 * @len:	if !=NULL, actual length is written to here
  95 *
  96 * Search for a property in a device node and valid the requested size.
  97 * Returns the property value on success, -EINVAL if the property does not
  98 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 
  99 * property data is too small or too large.
 100 *
 101 */
 102static void *of_find_property_value_of_size(const struct device_node *np,
 103			const char *propname, u32 min, u32 max, size_t *len)
 104{
 105	struct property *prop = of_find_property(np, propname, NULL);
 106
 107	if (!prop)
 108		return ERR_PTR(-EINVAL);
 109	if (!prop->value)
 110		return ERR_PTR(-ENODATA);
 111	if (prop->length < min)
 112		return ERR_PTR(-EOVERFLOW);
 113	if (max && prop->length > max)
 114		return ERR_PTR(-EOVERFLOW);
 115
 116	if (len)
 117		*len = prop->length;
 118
 119	return prop->value;
 120}
 121
 122/**
 123 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 124 *
 125 * @np:		device node from which the property value is to be read.
 126 * @propname:	name of the property to be searched.
 127 * @index:	index of the u32 in the list of values
 128 * @out_value:	pointer to return value, modified only if no error.
 129 *
 130 * Search for a property in a device node and read nth 32-bit value from
 131 * it. Returns 0 on success, -EINVAL if the property does not exist,
 
 
 132 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 133 * property data isn't large enough.
 134 *
 135 * The out_value is modified only if a valid u32 value can be decoded.
 136 */
 137int of_property_read_u32_index(const struct device_node *np,
 138				       const char *propname,
 139				       u32 index, u32 *out_value)
 140{
 141	const u32 *val = of_find_property_value_of_size(np, propname,
 142					((index + 1) * sizeof(*out_value)),
 143					0,
 144					NULL);
 145
 146	if (IS_ERR(val))
 147		return PTR_ERR(val);
 148
 149	*out_value = be32_to_cpup(((__be32 *)val) + index);
 150	return 0;
 151}
 152EXPORT_SYMBOL_GPL(of_property_read_u32_index);
 153
 154/**
 155 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
 156 *
 157 * @np:		device node from which the property value is to be read.
 158 * @propname:	name of the property to be searched.
 159 * @index:	index of the u64 in the list of values
 160 * @out_value:	pointer to return value, modified only if no error.
 161 *
 162 * Search for a property in a device node and read nth 64-bit value from
 163 * it. Returns 0 on success, -EINVAL if the property does not exist,
 
 
 164 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 165 * property data isn't large enough.
 166 *
 167 * The out_value is modified only if a valid u64 value can be decoded.
 168 */
 169int of_property_read_u64_index(const struct device_node *np,
 170				       const char *propname,
 171				       u32 index, u64 *out_value)
 172{
 173	const u64 *val = of_find_property_value_of_size(np, propname,
 174					((index + 1) * sizeof(*out_value)),
 175					0, NULL);
 176
 177	if (IS_ERR(val))
 178		return PTR_ERR(val);
 179
 180	*out_value = be64_to_cpup(((__be64 *)val) + index);
 181	return 0;
 182}
 183EXPORT_SYMBOL_GPL(of_property_read_u64_index);
 184
 185/**
 186 * of_property_read_variable_u8_array - Find and read an array of u8 from a
 187 * property, with bounds on the minimum and maximum array size.
 188 *
 189 * @np:		device node from which the property value is to be read.
 190 * @propname:	name of the property to be searched.
 191 * @out_values:	pointer to found values.
 192 * @sz_min:	minimum number of array elements to read
 193 * @sz_max:	maximum number of array elements to read, if zero there is no
 194 *		upper limit on the number of elements in the dts entry but only
 195 *		sz_min will be read.
 196 *
 197 * Search for a property in a device node and read 8-bit value(s) from
 198 * it. Returns number of elements read on success, -EINVAL if the property
 
 
 
 
 
 199 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 200 * if the property data is smaller than sz_min or longer than sz_max.
 201 *
 202 * dts entry of array should be like:
 203 *	property = /bits/ 8 <0x50 0x60 0x70>;
 204 *
 205 * The out_values is modified only if a valid u8 value can be decoded.
 206 */
 207int of_property_read_variable_u8_array(const struct device_node *np,
 208					const char *propname, u8 *out_values,
 209					size_t sz_min, size_t sz_max)
 210{
 211	size_t sz, count;
 212	const u8 *val = of_find_property_value_of_size(np, propname,
 213						(sz_min * sizeof(*out_values)),
 214						(sz_max * sizeof(*out_values)),
 215						&sz);
 216
 217	if (IS_ERR(val))
 218		return PTR_ERR(val);
 219
 220	if (!sz_max)
 221		sz = sz_min;
 222	else
 223		sz /= sizeof(*out_values);
 224
 225	count = sz;
 226	while (count--)
 227		*out_values++ = *val++;
 228
 229	return sz;
 230}
 231EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
 232
 233/**
 234 * of_property_read_variable_u16_array - Find and read an array of u16 from a
 235 * property, with bounds on the minimum and maximum array size.
 236 *
 237 * @np:		device node from which the property value is to be read.
 238 * @propname:	name of the property to be searched.
 239 * @out_values:	pointer to found values.
 240 * @sz_min:	minimum number of array elements to read
 241 * @sz_max:	maximum number of array elements to read, if zero there is no
 242 *		upper limit on the number of elements in the dts entry but only
 243 *		sz_min will be read.
 244 *
 245 * Search for a property in a device node and read 16-bit value(s) from
 246 * it. Returns number of elements read on success, -EINVAL if the property
 
 
 
 
 
 247 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 248 * if the property data is smaller than sz_min or longer than sz_max.
 249 *
 250 * dts entry of array should be like:
 251 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
 252 *
 253 * The out_values is modified only if a valid u16 value can be decoded.
 254 */
 255int of_property_read_variable_u16_array(const struct device_node *np,
 256					const char *propname, u16 *out_values,
 257					size_t sz_min, size_t sz_max)
 258{
 259	size_t sz, count;
 260	const __be16 *val = of_find_property_value_of_size(np, propname,
 261						(sz_min * sizeof(*out_values)),
 262						(sz_max * sizeof(*out_values)),
 263						&sz);
 264
 265	if (IS_ERR(val))
 266		return PTR_ERR(val);
 267
 268	if (!sz_max)
 269		sz = sz_min;
 270	else
 271		sz /= sizeof(*out_values);
 272
 273	count = sz;
 274	while (count--)
 275		*out_values++ = be16_to_cpup(val++);
 276
 277	return sz;
 278}
 279EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
 280
 281/**
 282 * of_property_read_variable_u32_array - Find and read an array of 32 bit
 283 * integers from a property, with bounds on the minimum and maximum array size.
 284 *
 285 * @np:		device node from which the property value is to be read.
 286 * @propname:	name of the property to be searched.
 287 * @out_values:	pointer to return found values.
 288 * @sz_min:	minimum number of array elements to read
 289 * @sz_max:	maximum number of array elements to read, if zero there is no
 290 *		upper limit on the number of elements in the dts entry but only
 291 *		sz_min will be read.
 292 *
 293 * Search for a property in a device node and read 32-bit value(s) from
 294 * it. Returns number of elements read on success, -EINVAL if the property
 
 
 295 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 296 * if the property data is smaller than sz_min or longer than sz_max.
 297 *
 298 * The out_values is modified only if a valid u32 value can be decoded.
 299 */
 300int of_property_read_variable_u32_array(const struct device_node *np,
 301			       const char *propname, u32 *out_values,
 302			       size_t sz_min, size_t sz_max)
 303{
 304	size_t sz, count;
 305	const __be32 *val = of_find_property_value_of_size(np, propname,
 306						(sz_min * sizeof(*out_values)),
 307						(sz_max * sizeof(*out_values)),
 308						&sz);
 309
 310	if (IS_ERR(val))
 311		return PTR_ERR(val);
 312
 313	if (!sz_max)
 314		sz = sz_min;
 315	else
 316		sz /= sizeof(*out_values);
 317
 318	count = sz;
 319	while (count--)
 320		*out_values++ = be32_to_cpup(val++);
 321
 322	return sz;
 323}
 324EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
 325
 326/**
 327 * of_property_read_u64 - Find and read a 64 bit integer from a property
 328 * @np:		device node from which the property value is to be read.
 329 * @propname:	name of the property to be searched.
 330 * @out_value:	pointer to return value, modified only if return value is 0.
 331 *
 332 * Search for a property in a device node and read a 64-bit value from
 333 * it. Returns 0 on success, -EINVAL if the property does not exist,
 
 
 334 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 335 * property data isn't large enough.
 336 *
 337 * The out_value is modified only if a valid u64 value can be decoded.
 338 */
 339int of_property_read_u64(const struct device_node *np, const char *propname,
 340			 u64 *out_value)
 341{
 342	const __be32 *val = of_find_property_value_of_size(np, propname,
 343						sizeof(*out_value),
 344						0,
 345						NULL);
 346
 347	if (IS_ERR(val))
 348		return PTR_ERR(val);
 349
 350	*out_value = of_read_number(val, 2);
 351	return 0;
 352}
 353EXPORT_SYMBOL_GPL(of_property_read_u64);
 354
 355/**
 356 * of_property_read_variable_u64_array - Find and read an array of 64 bit
 357 * integers from a property, with bounds on the minimum and maximum array size.
 358 *
 359 * @np:		device node from which the property value is to be read.
 360 * @propname:	name of the property to be searched.
 361 * @out_values:	pointer to found values.
 362 * @sz_min:	minimum number of array elements to read
 363 * @sz_max:	maximum number of array elements to read, if zero there is no
 364 *		upper limit on the number of elements in the dts entry but only
 365 *		sz_min will be read.
 366 *
 367 * Search for a property in a device node and read 64-bit value(s) from
 368 * it. Returns number of elements read on success, -EINVAL if the property
 
 
 369 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 370 * if the property data is smaller than sz_min or longer than sz_max.
 371 *
 372 * The out_values is modified only if a valid u64 value can be decoded.
 373 */
 374int of_property_read_variable_u64_array(const struct device_node *np,
 375			       const char *propname, u64 *out_values,
 376			       size_t sz_min, size_t sz_max)
 377{
 378	size_t sz, count;
 379	const __be32 *val = of_find_property_value_of_size(np, propname,
 380						(sz_min * sizeof(*out_values)),
 381						(sz_max * sizeof(*out_values)),
 382						&sz);
 383
 384	if (IS_ERR(val))
 385		return PTR_ERR(val);
 386
 387	if (!sz_max)
 388		sz = sz_min;
 389	else
 390		sz /= sizeof(*out_values);
 391
 392	count = sz;
 393	while (count--) {
 394		*out_values++ = of_read_number(val, 2);
 395		val += 2;
 396	}
 397
 398	return sz;
 399}
 400EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
 401
 402/**
 403 * of_property_read_string - Find and read a string from a property
 404 * @np:		device node from which the property value is to be read.
 405 * @propname:	name of the property to be searched.
 406 * @out_string:	pointer to null terminated return string, modified only if
 407 *		return value is 0.
 408 *
 409 * Search for a property in a device tree node and retrieve a null
 410 * terminated string value (pointer to data, not a copy). Returns 0 on
 411 * success, -EINVAL if the property does not exist, -ENODATA if property
 412 * does not have a value, and -EILSEQ if the string is not null-terminated
 413 * within the length of the property data.
 
 
 
 
 414 *
 415 * The out_string pointer is modified only if a valid string can be decoded.
 416 */
 417int of_property_read_string(const struct device_node *np, const char *propname,
 418				const char **out_string)
 419{
 420	const struct property *prop = of_find_property(np, propname, NULL);
 421	if (!prop)
 422		return -EINVAL;
 423	if (!prop->value)
 424		return -ENODATA;
 425	if (strnlen(prop->value, prop->length) >= prop->length)
 426		return -EILSEQ;
 427	*out_string = prop->value;
 428	return 0;
 429}
 430EXPORT_SYMBOL_GPL(of_property_read_string);
 431
 432/**
 433 * of_property_match_string() - Find string in a list and return index
 434 * @np: pointer to node containing string list property
 435 * @propname: string list property name
 436 * @string: pointer to string to search for in string list
 437 *
 438 * This function searches a string list property and returns the index
 439 * of a specific string value.
 440 */
 441int of_property_match_string(const struct device_node *np, const char *propname,
 442			     const char *string)
 443{
 444	const struct property *prop = of_find_property(np, propname, NULL);
 445	size_t l;
 446	int i;
 447	const char *p, *end;
 448
 449	if (!prop)
 450		return -EINVAL;
 451	if (!prop->value)
 452		return -ENODATA;
 453
 454	p = prop->value;
 455	end = p + prop->length;
 456
 457	for (i = 0; p < end; i++, p += l) {
 458		l = strnlen(p, end - p) + 1;
 459		if (p + l > end)
 460			return -EILSEQ;
 461		pr_debug("comparing %s with %s\n", string, p);
 462		if (strcmp(string, p) == 0)
 463			return i; /* Found it; return index */
 464	}
 465	return -ENODATA;
 466}
 467EXPORT_SYMBOL_GPL(of_property_match_string);
 468
 469/**
 470 * of_property_read_string_helper() - Utility helper for parsing string properties
 471 * @np:		device node from which the property value is to be read.
 472 * @propname:	name of the property to be searched.
 473 * @out_strs:	output array of string pointers.
 474 * @sz:		number of array elements to read.
 475 * @skip:	Number of strings to skip over at beginning of list.
 476 *
 477 * Don't call this function directly. It is a utility helper for the
 478 * of_property_read_string*() family of functions.
 479 */
 480int of_property_read_string_helper(const struct device_node *np,
 481				   const char *propname, const char **out_strs,
 482				   size_t sz, int skip)
 483{
 484	const struct property *prop = of_find_property(np, propname, NULL);
 485	int l = 0, i = 0;
 486	const char *p, *end;
 487
 488	if (!prop)
 489		return -EINVAL;
 490	if (!prop->value)
 491		return -ENODATA;
 492	p = prop->value;
 493	end = p + prop->length;
 494
 495	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
 496		l = strnlen(p, end - p) + 1;
 497		if (p + l > end)
 498			return -EILSEQ;
 499		if (out_strs && i >= skip)
 500			*out_strs++ = p;
 501	}
 502	i -= skip;
 503	return i <= 0 ? -ENODATA : i;
 504}
 505EXPORT_SYMBOL_GPL(of_property_read_string_helper);
 506
 507const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
 508			       u32 *pu)
 509{
 510	const void *curv = cur;
 511
 512	if (!prop)
 513		return NULL;
 514
 515	if (!cur) {
 516		curv = prop->value;
 517		goto out_val;
 518	}
 519
 520	curv += sizeof(*cur);
 521	if (curv >= prop->value + prop->length)
 522		return NULL;
 523
 524out_val:
 525	*pu = be32_to_cpup(curv);
 526	return curv;
 527}
 528EXPORT_SYMBOL_GPL(of_prop_next_u32);
 529
 530const char *of_prop_next_string(struct property *prop, const char *cur)
 531{
 532	const void *curv = cur;
 533
 534	if (!prop)
 535		return NULL;
 536
 537	if (!cur)
 538		return prop->value;
 539
 540	curv += strlen(cur) + 1;
 541	if (curv >= prop->value + prop->length)
 542		return NULL;
 543
 544	return curv;
 545}
 546EXPORT_SYMBOL_GPL(of_prop_next_string);
 547
 548/**
 549 * of_graph_parse_endpoint() - parse common endpoint node properties
 550 * @node: pointer to endpoint device_node
 551 * @endpoint: pointer to the OF endpoint data structure
 552 *
 553 * The caller should hold a reference to @node.
 554 */
 555int of_graph_parse_endpoint(const struct device_node *node,
 556			    struct of_endpoint *endpoint)
 557{
 558	struct device_node *port_node = of_get_parent(node);
 559
 560	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
 561		  __func__, node);
 562
 563	memset(endpoint, 0, sizeof(*endpoint));
 564
 565	endpoint->local_node = node;
 566	/*
 567	 * It doesn't matter whether the two calls below succeed.
 568	 * If they don't then the default value 0 is used.
 569	 */
 570	of_property_read_u32(port_node, "reg", &endpoint->port);
 571	of_property_read_u32(node, "reg", &endpoint->id);
 572
 573	of_node_put(port_node);
 574
 575	return 0;
 576}
 577EXPORT_SYMBOL(of_graph_parse_endpoint);
 578
 579/**
 580 * of_graph_get_port_by_id() - get the port matching a given id
 581 * @parent: pointer to the parent device node
 582 * @id: id of the port
 583 *
 584 * Return: A 'port' node pointer with refcount incremented. The caller
 585 * has to use of_node_put() on it when done.
 586 */
 587struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
 588{
 589	struct device_node *node, *port;
 590
 591	node = of_get_child_by_name(parent, "ports");
 592	if (node)
 593		parent = node;
 594
 595	for_each_child_of_node(parent, port) {
 596		u32 port_id = 0;
 597
 598		if (!of_node_name_eq(port, "port"))
 599			continue;
 600		of_property_read_u32(port, "reg", &port_id);
 601		if (id == port_id)
 602			break;
 603	}
 604
 605	of_node_put(node);
 606
 607	return port;
 608}
 609EXPORT_SYMBOL(of_graph_get_port_by_id);
 610
 611/**
 612 * of_graph_get_next_endpoint() - get next endpoint node
 613 * @parent: pointer to the parent device node
 614 * @prev: previous endpoint node, or NULL to get first
 615 *
 616 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
 617 * of the passed @prev node is decremented.
 618 */
 619struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
 620					struct device_node *prev)
 621{
 622	struct device_node *endpoint;
 623	struct device_node *port;
 624
 625	if (!parent)
 626		return NULL;
 627
 628	/*
 629	 * Start by locating the port node. If no previous endpoint is specified
 630	 * search for the first port node, otherwise get the previous endpoint
 631	 * parent port node.
 632	 */
 633	if (!prev) {
 634		struct device_node *node;
 635
 636		node = of_get_child_by_name(parent, "ports");
 637		if (node)
 638			parent = node;
 639
 640		port = of_get_child_by_name(parent, "port");
 641		of_node_put(node);
 642
 643		if (!port) {
 644			pr_err("graph: no port node found in %pOF\n", parent);
 645			return NULL;
 646		}
 647	} else {
 648		port = of_get_parent(prev);
 649		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
 650			      __func__, prev))
 651			return NULL;
 652	}
 653
 654	while (1) {
 655		/*
 656		 * Now that we have a port node, get the next endpoint by
 657		 * getting the next child. If the previous endpoint is NULL this
 658		 * will return the first child.
 659		 */
 660		endpoint = of_get_next_child(port, prev);
 661		if (endpoint) {
 662			of_node_put(port);
 663			return endpoint;
 664		}
 665
 666		/* No more endpoints under this port, try the next one. */
 667		prev = NULL;
 668
 669		do {
 670			port = of_get_next_child(parent, port);
 671			if (!port)
 672				return NULL;
 673		} while (!of_node_name_eq(port, "port"));
 674	}
 675}
 676EXPORT_SYMBOL(of_graph_get_next_endpoint);
 677
 678/**
 679 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
 680 * @parent: pointer to the parent device node
 681 * @port_reg: identifier (value of reg property) of the parent port node
 682 * @reg: identifier (value of reg property) of the endpoint node
 683 *
 684 * Return: An 'endpoint' node pointer which is identified by reg and at the same
 685 * is the child of a port node identified by port_reg. reg and port_reg are
 686 * ignored when they are -1. Use of_node_put() on the pointer when done.
 687 */
 688struct device_node *of_graph_get_endpoint_by_regs(
 689	const struct device_node *parent, int port_reg, int reg)
 690{
 691	struct of_endpoint endpoint;
 692	struct device_node *node = NULL;
 693
 694	for_each_endpoint_of_node(parent, node) {
 695		of_graph_parse_endpoint(node, &endpoint);
 696		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
 697			((reg == -1) || (endpoint.id == reg)))
 698			return node;
 699	}
 700
 701	return NULL;
 702}
 703EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
 704
 705/**
 706 * of_graph_get_remote_endpoint() - get remote endpoint node
 707 * @node: pointer to a local endpoint device_node
 708 *
 709 * Return: Remote endpoint node associated with remote endpoint node linked
 710 *	   to @node. Use of_node_put() on it when done.
 711 */
 712struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
 713{
 714	/* Get remote endpoint node. */
 715	return of_parse_phandle(node, "remote-endpoint", 0);
 716}
 717EXPORT_SYMBOL(of_graph_get_remote_endpoint);
 718
 719/**
 720 * of_graph_get_port_parent() - get port's parent node
 721 * @node: pointer to a local endpoint device_node
 722 *
 723 * Return: device node associated with endpoint node linked
 724 *	   to @node. Use of_node_put() on it when done.
 725 */
 726struct device_node *of_graph_get_port_parent(struct device_node *node)
 727{
 728	unsigned int depth;
 729
 730	if (!node)
 731		return NULL;
 732
 733	/*
 734	 * Preserve usecount for passed in node as of_get_next_parent()
 735	 * will do of_node_put() on it.
 736	 */
 737	of_node_get(node);
 738
 739	/* Walk 3 levels up only if there is 'ports' node. */
 740	for (depth = 3; depth && node; depth--) {
 741		node = of_get_next_parent(node);
 742		if (depth == 2 && !of_node_name_eq(node, "ports"))
 743			break;
 744	}
 745	return node;
 746}
 747EXPORT_SYMBOL(of_graph_get_port_parent);
 748
 749/**
 750 * of_graph_get_remote_port_parent() - get remote port's parent node
 751 * @node: pointer to a local endpoint device_node
 752 *
 753 * Return: Remote device node associated with remote endpoint node linked
 754 *	   to @node. Use of_node_put() on it when done.
 755 */
 756struct device_node *of_graph_get_remote_port_parent(
 757			       const struct device_node *node)
 758{
 759	struct device_node *np, *pp;
 760
 761	/* Get remote endpoint node. */
 762	np = of_graph_get_remote_endpoint(node);
 763
 764	pp = of_graph_get_port_parent(np);
 765
 766	of_node_put(np);
 767
 768	return pp;
 769}
 770EXPORT_SYMBOL(of_graph_get_remote_port_parent);
 771
 772/**
 773 * of_graph_get_remote_port() - get remote port node
 774 * @node: pointer to a local endpoint device_node
 775 *
 776 * Return: Remote port node associated with remote endpoint node linked
 777 *	   to @node. Use of_node_put() on it when done.
 778 */
 779struct device_node *of_graph_get_remote_port(const struct device_node *node)
 780{
 781	struct device_node *np;
 782
 783	/* Get remote endpoint node. */
 784	np = of_graph_get_remote_endpoint(node);
 785	if (!np)
 786		return NULL;
 787	return of_get_next_parent(np);
 788}
 789EXPORT_SYMBOL(of_graph_get_remote_port);
 790
 791int of_graph_get_endpoint_count(const struct device_node *np)
 792{
 793	struct device_node *endpoint;
 794	int num = 0;
 795
 796	for_each_endpoint_of_node(np, endpoint)
 797		num++;
 798
 799	return num;
 800}
 801EXPORT_SYMBOL(of_graph_get_endpoint_count);
 802
 803/**
 804 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
 805 * @node: pointer to parent device_node containing graph port/endpoint
 806 * @port: identifier (value of reg property) of the parent port node
 807 * @endpoint: identifier (value of reg property) of the endpoint node
 808 *
 809 * Return: Remote device node associated with remote endpoint node linked
 810 *	   to @node. Use of_node_put() on it when done.
 811 */
 812struct device_node *of_graph_get_remote_node(const struct device_node *node,
 813					     u32 port, u32 endpoint)
 814{
 815	struct device_node *endpoint_node, *remote;
 816
 817	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
 818	if (!endpoint_node) {
 819		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
 820			 port, endpoint, node);
 821		return NULL;
 822	}
 823
 824	remote = of_graph_get_remote_port_parent(endpoint_node);
 825	of_node_put(endpoint_node);
 826	if (!remote) {
 827		pr_debug("no valid remote node\n");
 828		return NULL;
 829	}
 830
 831	if (!of_device_is_available(remote)) {
 832		pr_debug("not available for remote node\n");
 833		of_node_put(remote);
 834		return NULL;
 835	}
 836
 837	return remote;
 838}
 839EXPORT_SYMBOL(of_graph_get_remote_node);
 840
 841static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
 842{
 843	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
 844}
 845
 846static void of_fwnode_put(struct fwnode_handle *fwnode)
 847{
 848	of_node_put(to_of_node(fwnode));
 849}
 850
 851static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
 852{
 853	return of_device_is_available(to_of_node(fwnode));
 854}
 855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
 857				       const char *propname)
 858{
 859	return of_property_read_bool(to_of_node(fwnode), propname);
 860}
 861
 862static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 863					     const char *propname,
 864					     unsigned int elem_size, void *val,
 865					     size_t nval)
 866{
 867	const struct device_node *node = to_of_node(fwnode);
 868
 869	if (!val)
 870		return of_property_count_elems_of_size(node, propname,
 871						       elem_size);
 872
 873	switch (elem_size) {
 874	case sizeof(u8):
 875		return of_property_read_u8_array(node, propname, val, nval);
 876	case sizeof(u16):
 877		return of_property_read_u16_array(node, propname, val, nval);
 878	case sizeof(u32):
 879		return of_property_read_u32_array(node, propname, val, nval);
 880	case sizeof(u64):
 881		return of_property_read_u64_array(node, propname, val, nval);
 882	}
 883
 884	return -ENXIO;
 885}
 886
 887static int
 888of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 889				     const char *propname, const char **val,
 890				     size_t nval)
 891{
 892	const struct device_node *node = to_of_node(fwnode);
 893
 894	return val ?
 895		of_property_read_string_array(node, propname, val, nval) :
 896		of_property_count_strings(node, propname);
 897}
 898
 899static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
 900{
 901	return kbasename(to_of_node(fwnode)->full_name);
 902}
 903
 904static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 905{
 906	/* Root needs no prefix here (its name is "/"). */
 907	if (!to_of_node(fwnode)->parent)
 908		return "";
 909
 910	return "/";
 911}
 912
 913static struct fwnode_handle *
 914of_fwnode_get_parent(const struct fwnode_handle *fwnode)
 915{
 916	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
 917}
 918
 919static struct fwnode_handle *
 920of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 921			      struct fwnode_handle *child)
 922{
 923	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
 924							    to_of_node(child)));
 925}
 926
 927static struct fwnode_handle *
 928of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 929			       const char *childname)
 930{
 931	const struct device_node *node = to_of_node(fwnode);
 932	struct device_node *child;
 933
 934	for_each_available_child_of_node(node, child)
 935		if (of_node_name_eq(child, childname))
 936			return of_fwnode_handle(child);
 937
 938	return NULL;
 939}
 940
 941static int
 942of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
 943			     const char *prop, const char *nargs_prop,
 944			     unsigned int nargs, unsigned int index,
 945			     struct fwnode_reference_args *args)
 946{
 947	struct of_phandle_args of_args;
 948	unsigned int i;
 949	int ret;
 950
 951	if (nargs_prop)
 952		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
 953						 nargs_prop, index, &of_args);
 954	else
 955		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
 956						       nargs, index, &of_args);
 957	if (ret < 0)
 958		return ret;
 959	if (!args)
 
 960		return 0;
 
 961
 962	args->nargs = of_args.args_count;
 963	args->fwnode = of_fwnode_handle(of_args.np);
 964
 965	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
 966		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
 967
 968	return 0;
 969}
 970
 971static struct fwnode_handle *
 972of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
 973				  struct fwnode_handle *prev)
 974{
 975	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
 976							   to_of_node(prev)));
 977}
 978
 979static struct fwnode_handle *
 980of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
 981{
 982	return of_fwnode_handle(
 983		of_graph_get_remote_endpoint(to_of_node(fwnode)));
 984}
 985
 986static struct fwnode_handle *
 987of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
 988{
 989	struct device_node *np;
 990
 991	/* Get the parent of the port */
 992	np = of_get_parent(to_of_node(fwnode));
 993	if (!np)
 994		return NULL;
 995
 996	/* Is this the "ports" node? If not, it's the port parent. */
 997	if (!of_node_name_eq(np, "ports"))
 998		return of_fwnode_handle(np);
 999
1000	return of_fwnode_handle(of_get_next_parent(np));
1001}
1002
1003static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1004					  struct fwnode_endpoint *endpoint)
1005{
1006	const struct device_node *node = to_of_node(fwnode);
1007	struct device_node *port_node = of_get_parent(node);
1008
1009	endpoint->local_fwnode = fwnode;
1010
1011	of_property_read_u32(port_node, "reg", &endpoint->port);
1012	of_property_read_u32(node, "reg", &endpoint->id);
1013
1014	of_node_put(port_node);
1015
1016	return 0;
1017}
1018
1019static const void *
1020of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1021				const struct device *dev)
1022{
1023	return of_device_get_match_data(dev);
1024}
1025
1026static bool of_is_ancestor_of(struct device_node *test_ancestor,
1027			      struct device_node *child)
1028{
1029	of_node_get(child);
1030	while (child) {
1031		if (child == test_ancestor) {
1032			of_node_put(child);
1033			return true;
1034		}
1035		child = of_get_next_parent(child);
1036	}
1037	return false;
1038}
1039
1040/**
1041 * of_get_next_parent_dev - Add device link to supplier from supplier phandle
1042 * @np: device tree node
1043 *
1044 * Given a device tree node (@np), this function finds its closest ancestor
1045 * device tree node that has a corresponding struct device.
1046 *
1047 * The caller of this function is expected to call put_device() on the returned
1048 * device when they are done.
1049 */
1050static struct device *of_get_next_parent_dev(struct device_node *np)
1051{
1052	struct device *dev = NULL;
 
 
 
 
 
 
 
 
 
1053
1054	of_node_get(np);
1055	do {
1056		np = of_get_next_parent(np);
1057		if (np)
1058			dev = get_dev_from_fwnode(&np->fwnode);
1059	} while (np && !dev);
1060	of_node_put(np);
1061	return dev;
 
 
 
 
 
 
 
 
 
1062}
1063
1064/**
1065 * of_link_to_phandle - Add device link to supplier from supplier phandle
1066 * @dev: consumer device
1067 * @sup_np: phandle to supplier device tree node
1068 *
1069 * Given a phandle to a supplier device tree node (@sup_np), this function
1070 * finds the device that owns the supplier device tree node and creates a
1071 * device link from @dev consumer device to the supplier device. This function
1072 * doesn't create device links for invalid scenarios such as trying to create a
1073 * link with a parent device as the consumer of its child device. In such
1074 * cases, it returns an error.
1075 *
1076 * Returns:
1077 * - 0 if link successfully created to supplier
1078 * - -EAGAIN if linking to the supplier should be reattempted
1079 * - -EINVAL if the supplier link is invalid and should not be created
1080 * - -ENODEV if there is no device that corresponds to the supplier phandle
1081 */
1082static int of_link_to_phandle(struct device *dev, struct device_node *sup_np,
1083			      u32 dl_flags)
1084{
1085	struct device *sup_dev, *sup_par_dev;
1086	int ret = 0;
1087	struct device_node *tmp_np = sup_np;
1088
1089	of_node_get(sup_np);
1090	/*
1091	 * Find the device node that contains the supplier phandle.  It may be
1092	 * @sup_np or it may be an ancestor of @sup_np.
1093	 */
1094	while (sup_np) {
1095
1096		/* Don't allow linking to a disabled supplier */
1097		if (!of_device_is_available(sup_np)) {
1098			of_node_put(sup_np);
1099			sup_np = NULL;
1100		}
1101
1102		if (of_find_property(sup_np, "compatible", NULL))
1103			break;
1104
1105		sup_np = of_get_next_parent(sup_np);
1106	}
1107
1108	if (!sup_np) {
1109		dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np);
 
1110		return -ENODEV;
1111	}
1112
1113	/*
1114	 * Don't allow linking a device node as a consumer of one of its
1115	 * descendant nodes. By definition, a child node can't be a functional
1116	 * dependency for the parent node.
1117	 */
1118	if (of_is_ancestor_of(dev->of_node, sup_np)) {
1119		dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np);
 
1120		of_node_put(sup_np);
1121		return -EINVAL;
1122	}
 
 
 
 
 
1123	sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1124	if (!sup_dev && of_node_check_flag(sup_np, OF_POPULATED)) {
1125		/* Early device without struct device. */
1126		dev_dbg(dev, "Not linking to %pOFP - No struct device\n",
1127			sup_np);
 
1128		of_node_put(sup_np);
1129		return -ENODEV;
1130	} else if (!sup_dev) {
1131		/*
1132		 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1133		 * cycles. So cycle detection isn't necessary and shouldn't be
1134		 * done.
1135		 */
1136		if (dl_flags & DL_FLAG_SYNC_STATE_ONLY) {
1137			of_node_put(sup_np);
1138			return -EAGAIN;
1139		}
1140
1141		sup_par_dev = of_get_next_parent_dev(sup_np);
 
1142
1143		if (sup_par_dev && device_is_dependent(dev, sup_par_dev)) {
1144			/* Cyclic dependency detected, don't try to link */
1145			dev_dbg(dev, "Not linking to %pOFP - cycle detected\n",
1146				sup_np);
1147			ret = -EINVAL;
1148		} else {
1149			/*
1150			 * Can't check for cycles or no cycles. So let's try
1151			 * again later.
1152			 */
1153			ret = -EAGAIN;
1154		}
1155
1156		of_node_put(sup_np);
1157		put_device(sup_par_dev);
1158		return ret;
1159	}
1160	of_node_put(sup_np);
1161	if (!device_link_add(dev, sup_dev, dl_flags))
1162		ret = -EINVAL;
1163	put_device(sup_dev);
1164	return ret;
1165}
1166
1167/**
1168 * parse_prop_cells - Property parsing function for suppliers
1169 *
1170 * @np:		Pointer to device tree node containing a list
1171 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1172 * @index:	For properties holding a list of phandles, this is the index
1173 *		into the list.
1174 * @list_name:	Property name that is known to contain list of phandle(s) to
1175 *		supplier(s)
1176 * @cells_name:	property name that specifies phandles' arguments count
1177 *
1178 * This is a helper function to parse properties that have a known fixed name
1179 * and are a list of phandles and phandle arguments.
1180 *
1181 * Returns:
1182 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1183 *   on it when done.
1184 * - NULL if no phandle found at index
1185 */
1186static struct device_node *parse_prop_cells(struct device_node *np,
1187					    const char *prop_name, int index,
1188					    const char *list_name,
1189					    const char *cells_name)
1190{
1191	struct of_phandle_args sup_args;
1192
1193	if (strcmp(prop_name, list_name))
1194		return NULL;
1195
1196	if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1197				       &sup_args))
1198		return NULL;
1199
1200	return sup_args.np;
1201}
1202
1203#define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1204static struct device_node *parse_##fname(struct device_node *np,	  \
1205					const char *prop_name, int index) \
1206{									  \
1207	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1208}
1209
1210static int strcmp_suffix(const char *str, const char *suffix)
1211{
1212	unsigned int len, suffix_len;
1213
1214	len = strlen(str);
1215	suffix_len = strlen(suffix);
1216	if (len <= suffix_len)
1217		return -1;
1218	return strcmp(str + len - suffix_len, suffix);
1219}
1220
1221/**
1222 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1223 *
1224 * @np:		Pointer to device tree node containing a list
1225 * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1226 * @index:	For properties holding a list of phandles, this is the index
1227 *		into the list.
1228 * @suffix:	Property suffix that is known to contain list of phandle(s) to
1229 *		supplier(s)
1230 * @cells_name:	property name that specifies phandles' arguments count
1231 *
1232 * This is a helper function to parse properties that have a known fixed suffix
1233 * and are a list of phandles and phandle arguments.
1234 *
1235 * Returns:
1236 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1237 *   on it when done.
1238 * - NULL if no phandle found at index
1239 */
1240static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1241					    const char *prop_name, int index,
1242					    const char *suffix,
1243					    const char *cells_name)
1244{
1245	struct of_phandle_args sup_args;
1246
1247	if (strcmp_suffix(prop_name, suffix))
1248		return NULL;
1249
1250	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1251				       &sup_args))
1252		return NULL;
1253
1254	return sup_args.np;
1255}
1256
1257#define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1258static struct device_node *parse_##fname(struct device_node *np,	     \
1259					const char *prop_name, int index)    \
1260{									     \
1261	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1262}
1263
1264/**
1265 * struct supplier_bindings - Property parsing functions for suppliers
1266 *
1267 * @parse_prop: function name
1268 *	parse_prop() finds the node corresponding to a supplier phandle
1269 * @parse_prop.np: Pointer to device node holding supplier phandle property
1270 * @parse_prop.prop_name: Name of property holding a phandle value
1271 * @parse_prop.index: For properties holding a list of phandles, this is the
1272 *		      index into the list
 
 
 
 
1273 *
1274 * Returns:
1275 * parse_prop() return values are
1276 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1277 *   on it when done.
1278 * - NULL if no phandle found at index
1279 */
1280struct supplier_bindings {
1281	struct device_node *(*parse_prop)(struct device_node *np,
1282					  const char *prop_name, int index);
 
 
1283};
1284
1285DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1286DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1287DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1288DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1289DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1290DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1291DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1292DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1293DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1294DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1295DEFINE_SIMPLE_PROP(interrupts_extended, "interrupts-extended",
1296					"#interrupt-cells")
1297DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1298DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1299DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1300DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1301DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1302DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1303DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1304DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1305DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1306DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1307DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1308DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
 
 
 
 
 
1309DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1310DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1311DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells")
 
 
 
 
 
 
 
 
 
1312
1313static struct device_node *parse_iommu_maps(struct device_node *np,
1314					    const char *prop_name, int index)
1315{
1316	if (strcmp(prop_name, "iommu-map"))
1317		return NULL;
1318
1319	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1320}
1321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322static const struct supplier_bindings of_supplier_bindings[] = {
1323	{ .parse_prop = parse_clocks, },
1324	{ .parse_prop = parse_interconnects, },
1325	{ .parse_prop = parse_iommus, },
1326	{ .parse_prop = parse_iommu_maps, },
1327	{ .parse_prop = parse_mboxes, },
1328	{ .parse_prop = parse_io_channels, },
1329	{ .parse_prop = parse_interrupt_parent, },
1330	{ .parse_prop = parse_dmas, },
1331	{ .parse_prop = parse_power_domains, },
1332	{ .parse_prop = parse_hwlocks, },
1333	{ .parse_prop = parse_extcon, },
1334	{ .parse_prop = parse_interrupts_extended, },
1335	{ .parse_prop = parse_nvmem_cells, },
1336	{ .parse_prop = parse_phys, },
1337	{ .parse_prop = parse_wakeup_parent, },
1338	{ .parse_prop = parse_pinctrl0, },
1339	{ .parse_prop = parse_pinctrl1, },
1340	{ .parse_prop = parse_pinctrl2, },
1341	{ .parse_prop = parse_pinctrl3, },
1342	{ .parse_prop = parse_pinctrl4, },
1343	{ .parse_prop = parse_pinctrl5, },
1344	{ .parse_prop = parse_pinctrl6, },
1345	{ .parse_prop = parse_pinctrl7, },
1346	{ .parse_prop = parse_pinctrl8, },
 
 
 
 
 
 
 
1347	{ .parse_prop = parse_regulators, },
1348	{ .parse_prop = parse_gpio, },
1349	{ .parse_prop = parse_gpios, },
1350	{}
1351};
1352
1353/**
1354 * of_link_property - Create device links to suppliers listed in a property
1355 * @dev: Consumer device
1356 * @con_np: The consumer device tree node which contains the property
1357 * @prop_name: Name of property to be parsed
1358 *
1359 * This function checks if the property @prop_name that is present in the
1360 * @con_np device tree node is one of the known common device tree bindings
1361 * that list phandles to suppliers. If @prop_name isn't one, this function
1362 * doesn't do anything.
1363 *
1364 * If @prop_name is one, this function attempts to create device links from the
1365 * consumer device @dev to all the devices of the suppliers listed in
1366 * @prop_name.
1367 *
1368 * Any failed attempt to create a device link will NOT result in an immediate
1369 * return.  of_link_property() must create links to all the available supplier
1370 * devices even when attempts to create a link to one or more suppliers fail.
 
1371 */
1372static int of_link_property(struct device *dev, struct device_node *con_np,
1373			     const char *prop_name)
1374{
1375	struct device_node *phandle;
1376	const struct supplier_bindings *s = of_supplier_bindings;
1377	unsigned int i = 0;
1378	bool matched = false;
1379	int ret = 0;
1380	u32 dl_flags;
1381
1382	if (dev->of_node == con_np)
1383		dl_flags = fw_devlink_get_flags();
1384	else
1385		dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1386
1387	/* Do not stop at first failed link, link all available suppliers. */
1388	while (!matched && s->parse_prop) {
 
 
 
 
 
1389		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
 
 
 
 
 
1390			matched = true;
1391			i++;
1392			if (of_link_to_phandle(dev, phandle, dl_flags)
1393								== -EAGAIN)
1394				ret = -EAGAIN;
1395			of_node_put(phandle);
 
1396		}
1397		s++;
1398	}
1399	return ret;
1400}
1401
1402static int of_link_to_suppliers(struct device *dev,
1403				  struct device_node *con_np)
1404{
1405	struct device_node *child;
1406	struct property *p;
1407	int ret = 0;
 
 
 
1408
1409	for_each_property_of_node(con_np, p)
1410		if (of_link_property(dev, con_np, p->name))
1411			ret = -ENODEV;
1412
1413	for_each_available_child_of_node(con_np, child)
1414		if (of_link_to_suppliers(dev, child) && !ret)
1415			ret = -EAGAIN;
1416
1417	return ret;
1418}
1419
1420static int of_fwnode_add_links(const struct fwnode_handle *fwnode,
1421			       struct device *dev)
1422{
1423	if (unlikely(!is_of_node(fwnode)))
 
 
 
1424		return 0;
1425
1426	return of_link_to_suppliers(dev, to_of_node(fwnode));
 
 
 
 
 
 
1427}
1428
1429const struct fwnode_operations of_fwnode_ops = {
1430	.get = of_fwnode_get,
1431	.put = of_fwnode_put,
1432	.device_is_available = of_fwnode_device_is_available,
1433	.device_get_match_data = of_fwnode_device_get_match_data,
 
 
1434	.property_present = of_fwnode_property_present,
1435	.property_read_int_array = of_fwnode_property_read_int_array,
1436	.property_read_string_array = of_fwnode_property_read_string_array,
1437	.get_name = of_fwnode_get_name,
1438	.get_name_prefix = of_fwnode_get_name_prefix,
1439	.get_parent = of_fwnode_get_parent,
1440	.get_next_child_node = of_fwnode_get_next_child_node,
1441	.get_named_child_node = of_fwnode_get_named_child_node,
1442	.get_reference_args = of_fwnode_get_reference_args,
1443	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1444	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1445	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1446	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
 
 
1447	.add_links = of_fwnode_add_links,
1448};
1449EXPORT_SYMBOL_GPL(of_fwnode_ops);