Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Scheduler topology setup/handling methods
4 */
5
6DEFINE_MUTEX(sched_domains_mutex);
7
8/* Protected by sched_domains_mutex: */
9static cpumask_var_t sched_domains_tmpmask;
10static cpumask_var_t sched_domains_tmpmask2;
11
12#ifdef CONFIG_SCHED_DEBUG
13
14static int __init sched_debug_setup(char *str)
15{
16 sched_debug_verbose = true;
17
18 return 0;
19}
20early_param("sched_verbose", sched_debug_setup);
21
22static inline bool sched_debug(void)
23{
24 return sched_debug_verbose;
25}
26
27#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
28const struct sd_flag_debug sd_flag_debug[] = {
29#include <linux/sched/sd_flags.h>
30};
31#undef SD_FLAG
32
33static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
34 struct cpumask *groupmask)
35{
36 struct sched_group *group = sd->groups;
37 unsigned long flags = sd->flags;
38 unsigned int idx;
39
40 cpumask_clear(groupmask);
41
42 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
43 printk(KERN_CONT "span=%*pbl level=%s\n",
44 cpumask_pr_args(sched_domain_span(sd)), sd->name);
45
46 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
47 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
48 }
49 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
50 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
51 }
52
53 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
54 unsigned int flag = BIT(idx);
55 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
56
57 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
58 !(sd->child->flags & flag))
59 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
60 sd_flag_debug[idx].name);
61
62 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
63 !(sd->parent->flags & flag))
64 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
65 sd_flag_debug[idx].name);
66 }
67
68 printk(KERN_DEBUG "%*s groups:", level + 1, "");
69 do {
70 if (!group) {
71 printk("\n");
72 printk(KERN_ERR "ERROR: group is NULL\n");
73 break;
74 }
75
76 if (cpumask_empty(sched_group_span(group))) {
77 printk(KERN_CONT "\n");
78 printk(KERN_ERR "ERROR: empty group\n");
79 break;
80 }
81
82 if (!(sd->flags & SD_OVERLAP) &&
83 cpumask_intersects(groupmask, sched_group_span(group))) {
84 printk(KERN_CONT "\n");
85 printk(KERN_ERR "ERROR: repeated CPUs\n");
86 break;
87 }
88
89 cpumask_or(groupmask, groupmask, sched_group_span(group));
90
91 printk(KERN_CONT " %d:{ span=%*pbl",
92 group->sgc->id,
93 cpumask_pr_args(sched_group_span(group)));
94
95 if ((sd->flags & SD_OVERLAP) &&
96 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
97 printk(KERN_CONT " mask=%*pbl",
98 cpumask_pr_args(group_balance_mask(group)));
99 }
100
101 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
102 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
103
104 if (group == sd->groups && sd->child &&
105 !cpumask_equal(sched_domain_span(sd->child),
106 sched_group_span(group))) {
107 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
108 }
109
110 printk(KERN_CONT " }");
111
112 group = group->next;
113
114 if (group != sd->groups)
115 printk(KERN_CONT ",");
116
117 } while (group != sd->groups);
118 printk(KERN_CONT "\n");
119
120 if (!cpumask_equal(sched_domain_span(sd), groupmask))
121 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
122
123 if (sd->parent &&
124 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
125 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
126 return 0;
127}
128
129static void sched_domain_debug(struct sched_domain *sd, int cpu)
130{
131 int level = 0;
132
133 if (!sched_debug_verbose)
134 return;
135
136 if (!sd) {
137 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
138 return;
139 }
140
141 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
142
143 for (;;) {
144 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
145 break;
146 level++;
147 sd = sd->parent;
148 if (!sd)
149 break;
150 }
151}
152#else /* !CONFIG_SCHED_DEBUG */
153
154# define sched_debug_verbose 0
155# define sched_domain_debug(sd, cpu) do { } while (0)
156static inline bool sched_debug(void)
157{
158 return false;
159}
160#endif /* CONFIG_SCHED_DEBUG */
161
162/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
163#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
164static const unsigned int SD_DEGENERATE_GROUPS_MASK =
165#include <linux/sched/sd_flags.h>
1660;
167#undef SD_FLAG
168
169static int sd_degenerate(struct sched_domain *sd)
170{
171 if (cpumask_weight(sched_domain_span(sd)) == 1)
172 return 1;
173
174 /* Following flags need at least 2 groups */
175 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
176 (sd->groups != sd->groups->next))
177 return 0;
178
179 /* Following flags don't use groups */
180 if (sd->flags & (SD_WAKE_AFFINE))
181 return 0;
182
183 return 1;
184}
185
186static int
187sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
188{
189 unsigned long cflags = sd->flags, pflags = parent->flags;
190
191 if (sd_degenerate(parent))
192 return 1;
193
194 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
195 return 0;
196
197 /* Flags needing groups don't count if only 1 group in parent */
198 if (parent->groups == parent->groups->next)
199 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
200
201 if (~cflags & pflags)
202 return 0;
203
204 return 1;
205}
206
207#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
208DEFINE_STATIC_KEY_FALSE(sched_energy_present);
209static unsigned int sysctl_sched_energy_aware = 1;
210DEFINE_MUTEX(sched_energy_mutex);
211bool sched_energy_update;
212
213void rebuild_sched_domains_energy(void)
214{
215 mutex_lock(&sched_energy_mutex);
216 sched_energy_update = true;
217 rebuild_sched_domains();
218 sched_energy_update = false;
219 mutex_unlock(&sched_energy_mutex);
220}
221
222#ifdef CONFIG_PROC_SYSCTL
223static int sched_energy_aware_handler(struct ctl_table *table, int write,
224 void *buffer, size_t *lenp, loff_t *ppos)
225{
226 int ret, state;
227
228 if (write && !capable(CAP_SYS_ADMIN))
229 return -EPERM;
230
231 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
232 if (!ret && write) {
233 state = static_branch_unlikely(&sched_energy_present);
234 if (state != sysctl_sched_energy_aware)
235 rebuild_sched_domains_energy();
236 }
237
238 return ret;
239}
240
241static struct ctl_table sched_energy_aware_sysctls[] = {
242 {
243 .procname = "sched_energy_aware",
244 .data = &sysctl_sched_energy_aware,
245 .maxlen = sizeof(unsigned int),
246 .mode = 0644,
247 .proc_handler = sched_energy_aware_handler,
248 .extra1 = SYSCTL_ZERO,
249 .extra2 = SYSCTL_ONE,
250 },
251 {}
252};
253
254static int __init sched_energy_aware_sysctl_init(void)
255{
256 register_sysctl_init("kernel", sched_energy_aware_sysctls);
257 return 0;
258}
259
260late_initcall(sched_energy_aware_sysctl_init);
261#endif
262
263static void free_pd(struct perf_domain *pd)
264{
265 struct perf_domain *tmp;
266
267 while (pd) {
268 tmp = pd->next;
269 kfree(pd);
270 pd = tmp;
271 }
272}
273
274static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
275{
276 while (pd) {
277 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
278 return pd;
279 pd = pd->next;
280 }
281
282 return NULL;
283}
284
285static struct perf_domain *pd_init(int cpu)
286{
287 struct em_perf_domain *obj = em_cpu_get(cpu);
288 struct perf_domain *pd;
289
290 if (!obj) {
291 if (sched_debug())
292 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
293 return NULL;
294 }
295
296 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
297 if (!pd)
298 return NULL;
299 pd->em_pd = obj;
300
301 return pd;
302}
303
304static void perf_domain_debug(const struct cpumask *cpu_map,
305 struct perf_domain *pd)
306{
307 if (!sched_debug() || !pd)
308 return;
309
310 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
311
312 while (pd) {
313 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
314 cpumask_first(perf_domain_span(pd)),
315 cpumask_pr_args(perf_domain_span(pd)),
316 em_pd_nr_perf_states(pd->em_pd));
317 pd = pd->next;
318 }
319
320 printk(KERN_CONT "\n");
321}
322
323static void destroy_perf_domain_rcu(struct rcu_head *rp)
324{
325 struct perf_domain *pd;
326
327 pd = container_of(rp, struct perf_domain, rcu);
328 free_pd(pd);
329}
330
331static void sched_energy_set(bool has_eas)
332{
333 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
334 if (sched_debug())
335 pr_info("%s: stopping EAS\n", __func__);
336 static_branch_disable_cpuslocked(&sched_energy_present);
337 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
338 if (sched_debug())
339 pr_info("%s: starting EAS\n", __func__);
340 static_branch_enable_cpuslocked(&sched_energy_present);
341 }
342}
343
344/*
345 * EAS can be used on a root domain if it meets all the following conditions:
346 * 1. an Energy Model (EM) is available;
347 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
348 * 3. no SMT is detected.
349 * 4. the EM complexity is low enough to keep scheduling overheads low;
350 * 5. schedutil is driving the frequency of all CPUs of the rd;
351 * 6. frequency invariance support is present;
352 *
353 * The complexity of the Energy Model is defined as:
354 *
355 * C = nr_pd * (nr_cpus + nr_ps)
356 *
357 * with parameters defined as:
358 * - nr_pd: the number of performance domains
359 * - nr_cpus: the number of CPUs
360 * - nr_ps: the sum of the number of performance states of all performance
361 * domains (for example, on a system with 2 performance domains,
362 * with 10 performance states each, nr_ps = 2 * 10 = 20).
363 *
364 * It is generally not a good idea to use such a model in the wake-up path on
365 * very complex platforms because of the associated scheduling overheads. The
366 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
367 * with per-CPU DVFS and less than 8 performance states each, for example.
368 */
369#define EM_MAX_COMPLEXITY 2048
370
371extern struct cpufreq_governor schedutil_gov;
372static bool build_perf_domains(const struct cpumask *cpu_map)
373{
374 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
375 struct perf_domain *pd = NULL, *tmp;
376 int cpu = cpumask_first(cpu_map);
377 struct root_domain *rd = cpu_rq(cpu)->rd;
378 struct cpufreq_policy *policy;
379 struct cpufreq_governor *gov;
380
381 if (!sysctl_sched_energy_aware)
382 goto free;
383
384 /* EAS is enabled for asymmetric CPU capacity topologies. */
385 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
386 if (sched_debug()) {
387 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
388 cpumask_pr_args(cpu_map));
389 }
390 goto free;
391 }
392
393 /* EAS definitely does *not* handle SMT */
394 if (sched_smt_active()) {
395 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
396 cpumask_pr_args(cpu_map));
397 goto free;
398 }
399
400 if (!arch_scale_freq_invariant()) {
401 if (sched_debug()) {
402 pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
403 cpumask_pr_args(cpu_map));
404 }
405 goto free;
406 }
407
408 for_each_cpu(i, cpu_map) {
409 /* Skip already covered CPUs. */
410 if (find_pd(pd, i))
411 continue;
412
413 /* Do not attempt EAS if schedutil is not being used. */
414 policy = cpufreq_cpu_get(i);
415 if (!policy)
416 goto free;
417 gov = policy->governor;
418 cpufreq_cpu_put(policy);
419 if (gov != &schedutil_gov) {
420 if (rd->pd)
421 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
422 cpumask_pr_args(cpu_map));
423 goto free;
424 }
425
426 /* Create the new pd and add it to the local list. */
427 tmp = pd_init(i);
428 if (!tmp)
429 goto free;
430 tmp->next = pd;
431 pd = tmp;
432
433 /*
434 * Count performance domains and performance states for the
435 * complexity check.
436 */
437 nr_pd++;
438 nr_ps += em_pd_nr_perf_states(pd->em_pd);
439 }
440
441 /* Bail out if the Energy Model complexity is too high. */
442 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
443 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
444 cpumask_pr_args(cpu_map));
445 goto free;
446 }
447
448 perf_domain_debug(cpu_map, pd);
449
450 /* Attach the new list of performance domains to the root domain. */
451 tmp = rd->pd;
452 rcu_assign_pointer(rd->pd, pd);
453 if (tmp)
454 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
455
456 return !!pd;
457
458free:
459 free_pd(pd);
460 tmp = rd->pd;
461 rcu_assign_pointer(rd->pd, NULL);
462 if (tmp)
463 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
464
465 return false;
466}
467#else
468static void free_pd(struct perf_domain *pd) { }
469#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
470
471static void free_rootdomain(struct rcu_head *rcu)
472{
473 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
474
475 cpupri_cleanup(&rd->cpupri);
476 cpudl_cleanup(&rd->cpudl);
477 free_cpumask_var(rd->dlo_mask);
478 free_cpumask_var(rd->rto_mask);
479 free_cpumask_var(rd->online);
480 free_cpumask_var(rd->span);
481 free_pd(rd->pd);
482 kfree(rd);
483}
484
485void rq_attach_root(struct rq *rq, struct root_domain *rd)
486{
487 struct root_domain *old_rd = NULL;
488 unsigned long flags;
489
490 raw_spin_rq_lock_irqsave(rq, flags);
491
492 if (rq->rd) {
493 old_rd = rq->rd;
494
495 if (cpumask_test_cpu(rq->cpu, old_rd->online))
496 set_rq_offline(rq);
497
498 cpumask_clear_cpu(rq->cpu, old_rd->span);
499
500 /*
501 * If we dont want to free the old_rd yet then
502 * set old_rd to NULL to skip the freeing later
503 * in this function:
504 */
505 if (!atomic_dec_and_test(&old_rd->refcount))
506 old_rd = NULL;
507 }
508
509 atomic_inc(&rd->refcount);
510 rq->rd = rd;
511
512 cpumask_set_cpu(rq->cpu, rd->span);
513 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
514 set_rq_online(rq);
515
516 raw_spin_rq_unlock_irqrestore(rq, flags);
517
518 if (old_rd)
519 call_rcu(&old_rd->rcu, free_rootdomain);
520}
521
522void sched_get_rd(struct root_domain *rd)
523{
524 atomic_inc(&rd->refcount);
525}
526
527void sched_put_rd(struct root_domain *rd)
528{
529 if (!atomic_dec_and_test(&rd->refcount))
530 return;
531
532 call_rcu(&rd->rcu, free_rootdomain);
533}
534
535static int init_rootdomain(struct root_domain *rd)
536{
537 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
538 goto out;
539 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
540 goto free_span;
541 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
542 goto free_online;
543 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
544 goto free_dlo_mask;
545
546#ifdef HAVE_RT_PUSH_IPI
547 rd->rto_cpu = -1;
548 raw_spin_lock_init(&rd->rto_lock);
549 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
550#endif
551
552 rd->visit_gen = 0;
553 init_dl_bw(&rd->dl_bw);
554 if (cpudl_init(&rd->cpudl) != 0)
555 goto free_rto_mask;
556
557 if (cpupri_init(&rd->cpupri) != 0)
558 goto free_cpudl;
559 return 0;
560
561free_cpudl:
562 cpudl_cleanup(&rd->cpudl);
563free_rto_mask:
564 free_cpumask_var(rd->rto_mask);
565free_dlo_mask:
566 free_cpumask_var(rd->dlo_mask);
567free_online:
568 free_cpumask_var(rd->online);
569free_span:
570 free_cpumask_var(rd->span);
571out:
572 return -ENOMEM;
573}
574
575/*
576 * By default the system creates a single root-domain with all CPUs as
577 * members (mimicking the global state we have today).
578 */
579struct root_domain def_root_domain;
580
581void init_defrootdomain(void)
582{
583 init_rootdomain(&def_root_domain);
584
585 atomic_set(&def_root_domain.refcount, 1);
586}
587
588static struct root_domain *alloc_rootdomain(void)
589{
590 struct root_domain *rd;
591
592 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
593 if (!rd)
594 return NULL;
595
596 if (init_rootdomain(rd) != 0) {
597 kfree(rd);
598 return NULL;
599 }
600
601 return rd;
602}
603
604static void free_sched_groups(struct sched_group *sg, int free_sgc)
605{
606 struct sched_group *tmp, *first;
607
608 if (!sg)
609 return;
610
611 first = sg;
612 do {
613 tmp = sg->next;
614
615 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
616 kfree(sg->sgc);
617
618 if (atomic_dec_and_test(&sg->ref))
619 kfree(sg);
620 sg = tmp;
621 } while (sg != first);
622}
623
624static void destroy_sched_domain(struct sched_domain *sd)
625{
626 /*
627 * A normal sched domain may have multiple group references, an
628 * overlapping domain, having private groups, only one. Iterate,
629 * dropping group/capacity references, freeing where none remain.
630 */
631 free_sched_groups(sd->groups, 1);
632
633 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
634 kfree(sd->shared);
635 kfree(sd);
636}
637
638static void destroy_sched_domains_rcu(struct rcu_head *rcu)
639{
640 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
641
642 while (sd) {
643 struct sched_domain *parent = sd->parent;
644 destroy_sched_domain(sd);
645 sd = parent;
646 }
647}
648
649static void destroy_sched_domains(struct sched_domain *sd)
650{
651 if (sd)
652 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
653}
654
655/*
656 * Keep a special pointer to the highest sched_domain that has
657 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
658 * allows us to avoid some pointer chasing select_idle_sibling().
659 *
660 * Also keep a unique ID per domain (we use the first CPU number in
661 * the cpumask of the domain), this allows us to quickly tell if
662 * two CPUs are in the same cache domain, see cpus_share_cache().
663 */
664DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
665DEFINE_PER_CPU(int, sd_llc_size);
666DEFINE_PER_CPU(int, sd_llc_id);
667DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
668DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
669DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
670DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
671DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
672
673static void update_top_cache_domain(int cpu)
674{
675 struct sched_domain_shared *sds = NULL;
676 struct sched_domain *sd;
677 int id = cpu;
678 int size = 1;
679
680 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
681 if (sd) {
682 id = cpumask_first(sched_domain_span(sd));
683 size = cpumask_weight(sched_domain_span(sd));
684 sds = sd->shared;
685 }
686
687 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
688 per_cpu(sd_llc_size, cpu) = size;
689 per_cpu(sd_llc_id, cpu) = id;
690 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
691
692 sd = lowest_flag_domain(cpu, SD_NUMA);
693 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
694
695 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
696 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
697
698 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
699 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
700}
701
702/*
703 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
704 * hold the hotplug lock.
705 */
706static void
707cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
708{
709 struct rq *rq = cpu_rq(cpu);
710 struct sched_domain *tmp;
711
712 /* Remove the sched domains which do not contribute to scheduling. */
713 for (tmp = sd; tmp; ) {
714 struct sched_domain *parent = tmp->parent;
715 if (!parent)
716 break;
717
718 if (sd_parent_degenerate(tmp, parent)) {
719 tmp->parent = parent->parent;
720 if (parent->parent)
721 parent->parent->child = tmp;
722 /*
723 * Transfer SD_PREFER_SIBLING down in case of a
724 * degenerate parent; the spans match for this
725 * so the property transfers.
726 */
727 if (parent->flags & SD_PREFER_SIBLING)
728 tmp->flags |= SD_PREFER_SIBLING;
729 destroy_sched_domain(parent);
730 } else
731 tmp = tmp->parent;
732 }
733
734 if (sd && sd_degenerate(sd)) {
735 tmp = sd;
736 sd = sd->parent;
737 destroy_sched_domain(tmp);
738 if (sd) {
739 struct sched_group *sg = sd->groups;
740
741 /*
742 * sched groups hold the flags of the child sched
743 * domain for convenience. Clear such flags since
744 * the child is being destroyed.
745 */
746 do {
747 sg->flags = 0;
748 } while (sg != sd->groups);
749
750 sd->child = NULL;
751 }
752 }
753
754 sched_domain_debug(sd, cpu);
755
756 rq_attach_root(rq, rd);
757 tmp = rq->sd;
758 rcu_assign_pointer(rq->sd, sd);
759 dirty_sched_domain_sysctl(cpu);
760 destroy_sched_domains(tmp);
761
762 update_top_cache_domain(cpu);
763}
764
765struct s_data {
766 struct sched_domain * __percpu *sd;
767 struct root_domain *rd;
768};
769
770enum s_alloc {
771 sa_rootdomain,
772 sa_sd,
773 sa_sd_storage,
774 sa_none,
775};
776
777/*
778 * Return the canonical balance CPU for this group, this is the first CPU
779 * of this group that's also in the balance mask.
780 *
781 * The balance mask are all those CPUs that could actually end up at this
782 * group. See build_balance_mask().
783 *
784 * Also see should_we_balance().
785 */
786int group_balance_cpu(struct sched_group *sg)
787{
788 return cpumask_first(group_balance_mask(sg));
789}
790
791
792/*
793 * NUMA topology (first read the regular topology blurb below)
794 *
795 * Given a node-distance table, for example:
796 *
797 * node 0 1 2 3
798 * 0: 10 20 30 20
799 * 1: 20 10 20 30
800 * 2: 30 20 10 20
801 * 3: 20 30 20 10
802 *
803 * which represents a 4 node ring topology like:
804 *
805 * 0 ----- 1
806 * | |
807 * | |
808 * | |
809 * 3 ----- 2
810 *
811 * We want to construct domains and groups to represent this. The way we go
812 * about doing this is to build the domains on 'hops'. For each NUMA level we
813 * construct the mask of all nodes reachable in @level hops.
814 *
815 * For the above NUMA topology that gives 3 levels:
816 *
817 * NUMA-2 0-3 0-3 0-3 0-3
818 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
819 *
820 * NUMA-1 0-1,3 0-2 1-3 0,2-3
821 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
822 *
823 * NUMA-0 0 1 2 3
824 *
825 *
826 * As can be seen; things don't nicely line up as with the regular topology.
827 * When we iterate a domain in child domain chunks some nodes can be
828 * represented multiple times -- hence the "overlap" naming for this part of
829 * the topology.
830 *
831 * In order to minimize this overlap, we only build enough groups to cover the
832 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
833 *
834 * Because:
835 *
836 * - the first group of each domain is its child domain; this
837 * gets us the first 0-1,3
838 * - the only uncovered node is 2, who's child domain is 1-3.
839 *
840 * However, because of the overlap, computing a unique CPU for each group is
841 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
842 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
843 * end up at those groups (they would end up in group: 0-1,3).
844 *
845 * To correct this we have to introduce the group balance mask. This mask
846 * will contain those CPUs in the group that can reach this group given the
847 * (child) domain tree.
848 *
849 * With this we can once again compute balance_cpu and sched_group_capacity
850 * relations.
851 *
852 * XXX include words on how balance_cpu is unique and therefore can be
853 * used for sched_group_capacity links.
854 *
855 *
856 * Another 'interesting' topology is:
857 *
858 * node 0 1 2 3
859 * 0: 10 20 20 30
860 * 1: 20 10 20 20
861 * 2: 20 20 10 20
862 * 3: 30 20 20 10
863 *
864 * Which looks a little like:
865 *
866 * 0 ----- 1
867 * | / |
868 * | / |
869 * | / |
870 * 2 ----- 3
871 *
872 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
873 * are not.
874 *
875 * This leads to a few particularly weird cases where the sched_domain's are
876 * not of the same number for each CPU. Consider:
877 *
878 * NUMA-2 0-3 0-3
879 * groups: {0-2},{1-3} {1-3},{0-2}
880 *
881 * NUMA-1 0-2 0-3 0-3 1-3
882 *
883 * NUMA-0 0 1 2 3
884 *
885 */
886
887
888/*
889 * Build the balance mask; it contains only those CPUs that can arrive at this
890 * group and should be considered to continue balancing.
891 *
892 * We do this during the group creation pass, therefore the group information
893 * isn't complete yet, however since each group represents a (child) domain we
894 * can fully construct this using the sched_domain bits (which are already
895 * complete).
896 */
897static void
898build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
899{
900 const struct cpumask *sg_span = sched_group_span(sg);
901 struct sd_data *sdd = sd->private;
902 struct sched_domain *sibling;
903 int i;
904
905 cpumask_clear(mask);
906
907 for_each_cpu(i, sg_span) {
908 sibling = *per_cpu_ptr(sdd->sd, i);
909
910 /*
911 * Can happen in the asymmetric case, where these siblings are
912 * unused. The mask will not be empty because those CPUs that
913 * do have the top domain _should_ span the domain.
914 */
915 if (!sibling->child)
916 continue;
917
918 /* If we would not end up here, we can't continue from here */
919 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
920 continue;
921
922 cpumask_set_cpu(i, mask);
923 }
924
925 /* We must not have empty masks here */
926 WARN_ON_ONCE(cpumask_empty(mask));
927}
928
929/*
930 * XXX: This creates per-node group entries; since the load-balancer will
931 * immediately access remote memory to construct this group's load-balance
932 * statistics having the groups node local is of dubious benefit.
933 */
934static struct sched_group *
935build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
936{
937 struct sched_group *sg;
938 struct cpumask *sg_span;
939
940 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
941 GFP_KERNEL, cpu_to_node(cpu));
942
943 if (!sg)
944 return NULL;
945
946 sg_span = sched_group_span(sg);
947 if (sd->child) {
948 cpumask_copy(sg_span, sched_domain_span(sd->child));
949 sg->flags = sd->child->flags;
950 } else {
951 cpumask_copy(sg_span, sched_domain_span(sd));
952 }
953
954 atomic_inc(&sg->ref);
955 return sg;
956}
957
958static void init_overlap_sched_group(struct sched_domain *sd,
959 struct sched_group *sg)
960{
961 struct cpumask *mask = sched_domains_tmpmask2;
962 struct sd_data *sdd = sd->private;
963 struct cpumask *sg_span;
964 int cpu;
965
966 build_balance_mask(sd, sg, mask);
967 cpu = cpumask_first(mask);
968
969 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
970 if (atomic_inc_return(&sg->sgc->ref) == 1)
971 cpumask_copy(group_balance_mask(sg), mask);
972 else
973 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
974
975 /*
976 * Initialize sgc->capacity such that even if we mess up the
977 * domains and no possible iteration will get us here, we won't
978 * die on a /0 trap.
979 */
980 sg_span = sched_group_span(sg);
981 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
982 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
983 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
984}
985
986static struct sched_domain *
987find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
988{
989 /*
990 * The proper descendant would be the one whose child won't span out
991 * of sd
992 */
993 while (sibling->child &&
994 !cpumask_subset(sched_domain_span(sibling->child),
995 sched_domain_span(sd)))
996 sibling = sibling->child;
997
998 /*
999 * As we are referencing sgc across different topology level, we need
1000 * to go down to skip those sched_domains which don't contribute to
1001 * scheduling because they will be degenerated in cpu_attach_domain
1002 */
1003 while (sibling->child &&
1004 cpumask_equal(sched_domain_span(sibling->child),
1005 sched_domain_span(sibling)))
1006 sibling = sibling->child;
1007
1008 return sibling;
1009}
1010
1011static int
1012build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1013{
1014 struct sched_group *first = NULL, *last = NULL, *sg;
1015 const struct cpumask *span = sched_domain_span(sd);
1016 struct cpumask *covered = sched_domains_tmpmask;
1017 struct sd_data *sdd = sd->private;
1018 struct sched_domain *sibling;
1019 int i;
1020
1021 cpumask_clear(covered);
1022
1023 for_each_cpu_wrap(i, span, cpu) {
1024 struct cpumask *sg_span;
1025
1026 if (cpumask_test_cpu(i, covered))
1027 continue;
1028
1029 sibling = *per_cpu_ptr(sdd->sd, i);
1030
1031 /*
1032 * Asymmetric node setups can result in situations where the
1033 * domain tree is of unequal depth, make sure to skip domains
1034 * that already cover the entire range.
1035 *
1036 * In that case build_sched_domains() will have terminated the
1037 * iteration early and our sibling sd spans will be empty.
1038 * Domains should always include the CPU they're built on, so
1039 * check that.
1040 */
1041 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1042 continue;
1043
1044 /*
1045 * Usually we build sched_group by sibling's child sched_domain
1046 * But for machines whose NUMA diameter are 3 or above, we move
1047 * to build sched_group by sibling's proper descendant's child
1048 * domain because sibling's child sched_domain will span out of
1049 * the sched_domain being built as below.
1050 *
1051 * Smallest diameter=3 topology is:
1052 *
1053 * node 0 1 2 3
1054 * 0: 10 20 30 40
1055 * 1: 20 10 20 30
1056 * 2: 30 20 10 20
1057 * 3: 40 30 20 10
1058 *
1059 * 0 --- 1 --- 2 --- 3
1060 *
1061 * NUMA-3 0-3 N/A N/A 0-3
1062 * groups: {0-2},{1-3} {1-3},{0-2}
1063 *
1064 * NUMA-2 0-2 0-3 0-3 1-3
1065 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
1066 *
1067 * NUMA-1 0-1 0-2 1-3 2-3
1068 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
1069 *
1070 * NUMA-0 0 1 2 3
1071 *
1072 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1073 * group span isn't a subset of the domain span.
1074 */
1075 if (sibling->child &&
1076 !cpumask_subset(sched_domain_span(sibling->child), span))
1077 sibling = find_descended_sibling(sd, sibling);
1078
1079 sg = build_group_from_child_sched_domain(sibling, cpu);
1080 if (!sg)
1081 goto fail;
1082
1083 sg_span = sched_group_span(sg);
1084 cpumask_or(covered, covered, sg_span);
1085
1086 init_overlap_sched_group(sibling, sg);
1087
1088 if (!first)
1089 first = sg;
1090 if (last)
1091 last->next = sg;
1092 last = sg;
1093 last->next = first;
1094 }
1095 sd->groups = first;
1096
1097 return 0;
1098
1099fail:
1100 free_sched_groups(first, 0);
1101
1102 return -ENOMEM;
1103}
1104
1105
1106/*
1107 * Package topology (also see the load-balance blurb in fair.c)
1108 *
1109 * The scheduler builds a tree structure to represent a number of important
1110 * topology features. By default (default_topology[]) these include:
1111 *
1112 * - Simultaneous multithreading (SMT)
1113 * - Multi-Core Cache (MC)
1114 * - Package (DIE)
1115 *
1116 * Where the last one more or less denotes everything up to a NUMA node.
1117 *
1118 * The tree consists of 3 primary data structures:
1119 *
1120 * sched_domain -> sched_group -> sched_group_capacity
1121 * ^ ^ ^ ^
1122 * `-' `-'
1123 *
1124 * The sched_domains are per-CPU and have a two way link (parent & child) and
1125 * denote the ever growing mask of CPUs belonging to that level of topology.
1126 *
1127 * Each sched_domain has a circular (double) linked list of sched_group's, each
1128 * denoting the domains of the level below (or individual CPUs in case of the
1129 * first domain level). The sched_group linked by a sched_domain includes the
1130 * CPU of that sched_domain [*].
1131 *
1132 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1133 *
1134 * CPU 0 1 2 3 4 5 6 7
1135 *
1136 * DIE [ ]
1137 * MC [ ] [ ]
1138 * SMT [ ] [ ] [ ] [ ]
1139 *
1140 * - or -
1141 *
1142 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1143 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1144 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1145 *
1146 * CPU 0 1 2 3 4 5 6 7
1147 *
1148 * One way to think about it is: sched_domain moves you up and down among these
1149 * topology levels, while sched_group moves you sideways through it, at child
1150 * domain granularity.
1151 *
1152 * sched_group_capacity ensures each unique sched_group has shared storage.
1153 *
1154 * There are two related construction problems, both require a CPU that
1155 * uniquely identify each group (for a given domain):
1156 *
1157 * - The first is the balance_cpu (see should_we_balance() and the
1158 * load-balance blub in fair.c); for each group we only want 1 CPU to
1159 * continue balancing at a higher domain.
1160 *
1161 * - The second is the sched_group_capacity; we want all identical groups
1162 * to share a single sched_group_capacity.
1163 *
1164 * Since these topologies are exclusive by construction. That is, its
1165 * impossible for an SMT thread to belong to multiple cores, and cores to
1166 * be part of multiple caches. There is a very clear and unique location
1167 * for each CPU in the hierarchy.
1168 *
1169 * Therefore computing a unique CPU for each group is trivial (the iteration
1170 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1171 * group), we can simply pick the first CPU in each group.
1172 *
1173 *
1174 * [*] in other words, the first group of each domain is its child domain.
1175 */
1176
1177static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1178{
1179 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1180 struct sched_domain *child = sd->child;
1181 struct sched_group *sg;
1182 bool already_visited;
1183
1184 if (child)
1185 cpu = cpumask_first(sched_domain_span(child));
1186
1187 sg = *per_cpu_ptr(sdd->sg, cpu);
1188 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1189
1190 /* Increase refcounts for claim_allocations: */
1191 already_visited = atomic_inc_return(&sg->ref) > 1;
1192 /* sgc visits should follow a similar trend as sg */
1193 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1194
1195 /* If we have already visited that group, it's already initialized. */
1196 if (already_visited)
1197 return sg;
1198
1199 if (child) {
1200 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1201 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1202 sg->flags = child->flags;
1203 } else {
1204 cpumask_set_cpu(cpu, sched_group_span(sg));
1205 cpumask_set_cpu(cpu, group_balance_mask(sg));
1206 }
1207
1208 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1209 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1210 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1211
1212 return sg;
1213}
1214
1215/*
1216 * build_sched_groups will build a circular linked list of the groups
1217 * covered by the given span, will set each group's ->cpumask correctly,
1218 * and will initialize their ->sgc.
1219 *
1220 * Assumes the sched_domain tree is fully constructed
1221 */
1222static int
1223build_sched_groups(struct sched_domain *sd, int cpu)
1224{
1225 struct sched_group *first = NULL, *last = NULL;
1226 struct sd_data *sdd = sd->private;
1227 const struct cpumask *span = sched_domain_span(sd);
1228 struct cpumask *covered;
1229 int i;
1230
1231 lockdep_assert_held(&sched_domains_mutex);
1232 covered = sched_domains_tmpmask;
1233
1234 cpumask_clear(covered);
1235
1236 for_each_cpu_wrap(i, span, cpu) {
1237 struct sched_group *sg;
1238
1239 if (cpumask_test_cpu(i, covered))
1240 continue;
1241
1242 sg = get_group(i, sdd);
1243
1244 cpumask_or(covered, covered, sched_group_span(sg));
1245
1246 if (!first)
1247 first = sg;
1248 if (last)
1249 last->next = sg;
1250 last = sg;
1251 }
1252 last->next = first;
1253 sd->groups = first;
1254
1255 return 0;
1256}
1257
1258/*
1259 * Initialize sched groups cpu_capacity.
1260 *
1261 * cpu_capacity indicates the capacity of sched group, which is used while
1262 * distributing the load between different sched groups in a sched domain.
1263 * Typically cpu_capacity for all the groups in a sched domain will be same
1264 * unless there are asymmetries in the topology. If there are asymmetries,
1265 * group having more cpu_capacity will pickup more load compared to the
1266 * group having less cpu_capacity.
1267 */
1268static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1269{
1270 struct sched_group *sg = sd->groups;
1271
1272 WARN_ON(!sg);
1273
1274 do {
1275 int cpu, max_cpu = -1;
1276
1277 sg->group_weight = cpumask_weight(sched_group_span(sg));
1278
1279 if (!(sd->flags & SD_ASYM_PACKING))
1280 goto next;
1281
1282 for_each_cpu(cpu, sched_group_span(sg)) {
1283 if (max_cpu < 0)
1284 max_cpu = cpu;
1285 else if (sched_asym_prefer(cpu, max_cpu))
1286 max_cpu = cpu;
1287 }
1288 sg->asym_prefer_cpu = max_cpu;
1289
1290next:
1291 sg = sg->next;
1292 } while (sg != sd->groups);
1293
1294 if (cpu != group_balance_cpu(sg))
1295 return;
1296
1297 update_group_capacity(sd, cpu);
1298}
1299
1300/*
1301 * Asymmetric CPU capacity bits
1302 */
1303struct asym_cap_data {
1304 struct list_head link;
1305 unsigned long capacity;
1306 unsigned long cpus[];
1307};
1308
1309/*
1310 * Set of available CPUs grouped by their corresponding capacities
1311 * Each list entry contains a CPU mask reflecting CPUs that share the same
1312 * capacity.
1313 * The lifespan of data is unlimited.
1314 */
1315static LIST_HEAD(asym_cap_list);
1316
1317#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1318
1319/*
1320 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1321 * Provides sd_flags reflecting the asymmetry scope.
1322 */
1323static inline int
1324asym_cpu_capacity_classify(const struct cpumask *sd_span,
1325 const struct cpumask *cpu_map)
1326{
1327 struct asym_cap_data *entry;
1328 int count = 0, miss = 0;
1329
1330 /*
1331 * Count how many unique CPU capacities this domain spans across
1332 * (compare sched_domain CPUs mask with ones representing available
1333 * CPUs capacities). Take into account CPUs that might be offline:
1334 * skip those.
1335 */
1336 list_for_each_entry(entry, &asym_cap_list, link) {
1337 if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1338 ++count;
1339 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1340 ++miss;
1341 }
1342
1343 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1344
1345 /* No asymmetry detected */
1346 if (count < 2)
1347 return 0;
1348 /* Some of the available CPU capacity values have not been detected */
1349 if (miss)
1350 return SD_ASYM_CPUCAPACITY;
1351
1352 /* Full asymmetry */
1353 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1354
1355}
1356
1357static inline void asym_cpu_capacity_update_data(int cpu)
1358{
1359 unsigned long capacity = arch_scale_cpu_capacity(cpu);
1360 struct asym_cap_data *entry = NULL;
1361
1362 list_for_each_entry(entry, &asym_cap_list, link) {
1363 if (capacity == entry->capacity)
1364 goto done;
1365 }
1366
1367 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1368 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1369 return;
1370 entry->capacity = capacity;
1371 list_add(&entry->link, &asym_cap_list);
1372done:
1373 __cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1374}
1375
1376/*
1377 * Build-up/update list of CPUs grouped by their capacities
1378 * An update requires explicit request to rebuild sched domains
1379 * with state indicating CPU topology changes.
1380 */
1381static void asym_cpu_capacity_scan(void)
1382{
1383 struct asym_cap_data *entry, *next;
1384 int cpu;
1385
1386 list_for_each_entry(entry, &asym_cap_list, link)
1387 cpumask_clear(cpu_capacity_span(entry));
1388
1389 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1390 asym_cpu_capacity_update_data(cpu);
1391
1392 list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1393 if (cpumask_empty(cpu_capacity_span(entry))) {
1394 list_del(&entry->link);
1395 kfree(entry);
1396 }
1397 }
1398
1399 /*
1400 * Only one capacity value has been detected i.e. this system is symmetric.
1401 * No need to keep this data around.
1402 */
1403 if (list_is_singular(&asym_cap_list)) {
1404 entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1405 list_del(&entry->link);
1406 kfree(entry);
1407 }
1408}
1409
1410/*
1411 * Initializers for schedule domains
1412 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1413 */
1414
1415static int default_relax_domain_level = -1;
1416int sched_domain_level_max;
1417
1418static int __init setup_relax_domain_level(char *str)
1419{
1420 if (kstrtoint(str, 0, &default_relax_domain_level))
1421 pr_warn("Unable to set relax_domain_level\n");
1422
1423 return 1;
1424}
1425__setup("relax_domain_level=", setup_relax_domain_level);
1426
1427static void set_domain_attribute(struct sched_domain *sd,
1428 struct sched_domain_attr *attr)
1429{
1430 int request;
1431
1432 if (!attr || attr->relax_domain_level < 0) {
1433 if (default_relax_domain_level < 0)
1434 return;
1435 request = default_relax_domain_level;
1436 } else
1437 request = attr->relax_domain_level;
1438
1439 if (sd->level > request) {
1440 /* Turn off idle balance on this domain: */
1441 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1442 }
1443}
1444
1445static void __sdt_free(const struct cpumask *cpu_map);
1446static int __sdt_alloc(const struct cpumask *cpu_map);
1447
1448static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1449 const struct cpumask *cpu_map)
1450{
1451 switch (what) {
1452 case sa_rootdomain:
1453 if (!atomic_read(&d->rd->refcount))
1454 free_rootdomain(&d->rd->rcu);
1455 fallthrough;
1456 case sa_sd:
1457 free_percpu(d->sd);
1458 fallthrough;
1459 case sa_sd_storage:
1460 __sdt_free(cpu_map);
1461 fallthrough;
1462 case sa_none:
1463 break;
1464 }
1465}
1466
1467static enum s_alloc
1468__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1469{
1470 memset(d, 0, sizeof(*d));
1471
1472 if (__sdt_alloc(cpu_map))
1473 return sa_sd_storage;
1474 d->sd = alloc_percpu(struct sched_domain *);
1475 if (!d->sd)
1476 return sa_sd_storage;
1477 d->rd = alloc_rootdomain();
1478 if (!d->rd)
1479 return sa_sd;
1480
1481 return sa_rootdomain;
1482}
1483
1484/*
1485 * NULL the sd_data elements we've used to build the sched_domain and
1486 * sched_group structure so that the subsequent __free_domain_allocs()
1487 * will not free the data we're using.
1488 */
1489static void claim_allocations(int cpu, struct sched_domain *sd)
1490{
1491 struct sd_data *sdd = sd->private;
1492
1493 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1494 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1495
1496 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1497 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1498
1499 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1500 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1501
1502 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1503 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1504}
1505
1506#ifdef CONFIG_NUMA
1507enum numa_topology_type sched_numa_topology_type;
1508
1509static int sched_domains_numa_levels;
1510static int sched_domains_curr_level;
1511
1512int sched_max_numa_distance;
1513static int *sched_domains_numa_distance;
1514static struct cpumask ***sched_domains_numa_masks;
1515#endif
1516
1517/*
1518 * SD_flags allowed in topology descriptions.
1519 *
1520 * These flags are purely descriptive of the topology and do not prescribe
1521 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1522 * function:
1523 *
1524 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1525 * SD_SHARE_PKG_RESOURCES - describes shared caches
1526 * SD_NUMA - describes NUMA topologies
1527 *
1528 * Odd one out, which beside describing the topology has a quirk also
1529 * prescribes the desired behaviour that goes along with it:
1530 *
1531 * SD_ASYM_PACKING - describes SMT quirks
1532 */
1533#define TOPOLOGY_SD_FLAGS \
1534 (SD_SHARE_CPUCAPACITY | \
1535 SD_SHARE_PKG_RESOURCES | \
1536 SD_NUMA | \
1537 SD_ASYM_PACKING)
1538
1539static struct sched_domain *
1540sd_init(struct sched_domain_topology_level *tl,
1541 const struct cpumask *cpu_map,
1542 struct sched_domain *child, int cpu)
1543{
1544 struct sd_data *sdd = &tl->data;
1545 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1546 int sd_id, sd_weight, sd_flags = 0;
1547 struct cpumask *sd_span;
1548
1549#ifdef CONFIG_NUMA
1550 /*
1551 * Ugly hack to pass state to sd_numa_mask()...
1552 */
1553 sched_domains_curr_level = tl->numa_level;
1554#endif
1555
1556 sd_weight = cpumask_weight(tl->mask(cpu));
1557
1558 if (tl->sd_flags)
1559 sd_flags = (*tl->sd_flags)();
1560 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1561 "wrong sd_flags in topology description\n"))
1562 sd_flags &= TOPOLOGY_SD_FLAGS;
1563
1564 *sd = (struct sched_domain){
1565 .min_interval = sd_weight,
1566 .max_interval = 2*sd_weight,
1567 .busy_factor = 16,
1568 .imbalance_pct = 117,
1569
1570 .cache_nice_tries = 0,
1571
1572 .flags = 1*SD_BALANCE_NEWIDLE
1573 | 1*SD_BALANCE_EXEC
1574 | 1*SD_BALANCE_FORK
1575 | 0*SD_BALANCE_WAKE
1576 | 1*SD_WAKE_AFFINE
1577 | 0*SD_SHARE_CPUCAPACITY
1578 | 0*SD_SHARE_PKG_RESOURCES
1579 | 0*SD_SERIALIZE
1580 | 1*SD_PREFER_SIBLING
1581 | 0*SD_NUMA
1582 | sd_flags
1583 ,
1584
1585 .last_balance = jiffies,
1586 .balance_interval = sd_weight,
1587 .max_newidle_lb_cost = 0,
1588 .last_decay_max_lb_cost = jiffies,
1589 .child = child,
1590#ifdef CONFIG_SCHED_DEBUG
1591 .name = tl->name,
1592#endif
1593 };
1594
1595 sd_span = sched_domain_span(sd);
1596 cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1597 sd_id = cpumask_first(sd_span);
1598
1599 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1600
1601 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1602 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1603 "CPU capacity asymmetry not supported on SMT\n");
1604
1605 /*
1606 * Convert topological properties into behaviour.
1607 */
1608 /* Don't attempt to spread across CPUs of different capacities. */
1609 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1610 sd->child->flags &= ~SD_PREFER_SIBLING;
1611
1612 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1613 sd->imbalance_pct = 110;
1614
1615 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1616 sd->imbalance_pct = 117;
1617 sd->cache_nice_tries = 1;
1618
1619#ifdef CONFIG_NUMA
1620 } else if (sd->flags & SD_NUMA) {
1621 sd->cache_nice_tries = 2;
1622
1623 sd->flags &= ~SD_PREFER_SIBLING;
1624 sd->flags |= SD_SERIALIZE;
1625 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1626 sd->flags &= ~(SD_BALANCE_EXEC |
1627 SD_BALANCE_FORK |
1628 SD_WAKE_AFFINE);
1629 }
1630
1631#endif
1632 } else {
1633 sd->cache_nice_tries = 1;
1634 }
1635
1636 /*
1637 * For all levels sharing cache; connect a sched_domain_shared
1638 * instance.
1639 */
1640 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1641 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1642 atomic_inc(&sd->shared->ref);
1643 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1644 }
1645
1646 sd->private = sdd;
1647
1648 return sd;
1649}
1650
1651/*
1652 * Topology list, bottom-up.
1653 */
1654static struct sched_domain_topology_level default_topology[] = {
1655#ifdef CONFIG_SCHED_SMT
1656 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1657#endif
1658
1659#ifdef CONFIG_SCHED_CLUSTER
1660 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1661#endif
1662
1663#ifdef CONFIG_SCHED_MC
1664 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1665#endif
1666 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1667 { NULL, },
1668};
1669
1670static struct sched_domain_topology_level *sched_domain_topology =
1671 default_topology;
1672static struct sched_domain_topology_level *sched_domain_topology_saved;
1673
1674#define for_each_sd_topology(tl) \
1675 for (tl = sched_domain_topology; tl->mask; tl++)
1676
1677void set_sched_topology(struct sched_domain_topology_level *tl)
1678{
1679 if (WARN_ON_ONCE(sched_smp_initialized))
1680 return;
1681
1682 sched_domain_topology = tl;
1683 sched_domain_topology_saved = NULL;
1684}
1685
1686#ifdef CONFIG_NUMA
1687
1688static const struct cpumask *sd_numa_mask(int cpu)
1689{
1690 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1691}
1692
1693static void sched_numa_warn(const char *str)
1694{
1695 static int done = false;
1696 int i,j;
1697
1698 if (done)
1699 return;
1700
1701 done = true;
1702
1703 printk(KERN_WARNING "ERROR: %s\n\n", str);
1704
1705 for (i = 0; i < nr_node_ids; i++) {
1706 printk(KERN_WARNING " ");
1707 for (j = 0; j < nr_node_ids; j++) {
1708 if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1709 printk(KERN_CONT "(%02d) ", node_distance(i,j));
1710 else
1711 printk(KERN_CONT " %02d ", node_distance(i,j));
1712 }
1713 printk(KERN_CONT "\n");
1714 }
1715 printk(KERN_WARNING "\n");
1716}
1717
1718bool find_numa_distance(int distance)
1719{
1720 bool found = false;
1721 int i, *distances;
1722
1723 if (distance == node_distance(0, 0))
1724 return true;
1725
1726 rcu_read_lock();
1727 distances = rcu_dereference(sched_domains_numa_distance);
1728 if (!distances)
1729 goto unlock;
1730 for (i = 0; i < sched_domains_numa_levels; i++) {
1731 if (distances[i] == distance) {
1732 found = true;
1733 break;
1734 }
1735 }
1736unlock:
1737 rcu_read_unlock();
1738
1739 return found;
1740}
1741
1742#define for_each_cpu_node_but(n, nbut) \
1743 for_each_node_state(n, N_CPU) \
1744 if (n == nbut) \
1745 continue; \
1746 else
1747
1748/*
1749 * A system can have three types of NUMA topology:
1750 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1751 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1752 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1753 *
1754 * The difference between a glueless mesh topology and a backplane
1755 * topology lies in whether communication between not directly
1756 * connected nodes goes through intermediary nodes (where programs
1757 * could run), or through backplane controllers. This affects
1758 * placement of programs.
1759 *
1760 * The type of topology can be discerned with the following tests:
1761 * - If the maximum distance between any nodes is 1 hop, the system
1762 * is directly connected.
1763 * - If for two nodes A and B, located N > 1 hops away from each other,
1764 * there is an intermediary node C, which is < N hops away from both
1765 * nodes A and B, the system is a glueless mesh.
1766 */
1767static void init_numa_topology_type(int offline_node)
1768{
1769 int a, b, c, n;
1770
1771 n = sched_max_numa_distance;
1772
1773 if (sched_domains_numa_levels <= 2) {
1774 sched_numa_topology_type = NUMA_DIRECT;
1775 return;
1776 }
1777
1778 for_each_cpu_node_but(a, offline_node) {
1779 for_each_cpu_node_but(b, offline_node) {
1780 /* Find two nodes furthest removed from each other. */
1781 if (node_distance(a, b) < n)
1782 continue;
1783
1784 /* Is there an intermediary node between a and b? */
1785 for_each_cpu_node_but(c, offline_node) {
1786 if (node_distance(a, c) < n &&
1787 node_distance(b, c) < n) {
1788 sched_numa_topology_type =
1789 NUMA_GLUELESS_MESH;
1790 return;
1791 }
1792 }
1793
1794 sched_numa_topology_type = NUMA_BACKPLANE;
1795 return;
1796 }
1797 }
1798
1799 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1800 sched_numa_topology_type = NUMA_DIRECT;
1801}
1802
1803
1804#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1805
1806void sched_init_numa(int offline_node)
1807{
1808 struct sched_domain_topology_level *tl;
1809 unsigned long *distance_map;
1810 int nr_levels = 0;
1811 int i, j;
1812 int *distances;
1813 struct cpumask ***masks;
1814
1815 /*
1816 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1817 * unique distances in the node_distance() table.
1818 */
1819 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1820 if (!distance_map)
1821 return;
1822
1823 bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1824 for_each_cpu_node_but(i, offline_node) {
1825 for_each_cpu_node_but(j, offline_node) {
1826 int distance = node_distance(i, j);
1827
1828 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1829 sched_numa_warn("Invalid distance value range");
1830 bitmap_free(distance_map);
1831 return;
1832 }
1833
1834 bitmap_set(distance_map, distance, 1);
1835 }
1836 }
1837 /*
1838 * We can now figure out how many unique distance values there are and
1839 * allocate memory accordingly.
1840 */
1841 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1842
1843 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1844 if (!distances) {
1845 bitmap_free(distance_map);
1846 return;
1847 }
1848
1849 for (i = 0, j = 0; i < nr_levels; i++, j++) {
1850 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1851 distances[i] = j;
1852 }
1853 rcu_assign_pointer(sched_domains_numa_distance, distances);
1854
1855 bitmap_free(distance_map);
1856
1857 /*
1858 * 'nr_levels' contains the number of unique distances
1859 *
1860 * The sched_domains_numa_distance[] array includes the actual distance
1861 * numbers.
1862 */
1863
1864 /*
1865 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1866 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1867 * the array will contain less then 'nr_levels' members. This could be
1868 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1869 * in other functions.
1870 *
1871 * We reset it to 'nr_levels' at the end of this function.
1872 */
1873 sched_domains_numa_levels = 0;
1874
1875 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1876 if (!masks)
1877 return;
1878
1879 /*
1880 * Now for each level, construct a mask per node which contains all
1881 * CPUs of nodes that are that many hops away from us.
1882 */
1883 for (i = 0; i < nr_levels; i++) {
1884 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1885 if (!masks[i])
1886 return;
1887
1888 for_each_cpu_node_but(j, offline_node) {
1889 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1890 int k;
1891
1892 if (!mask)
1893 return;
1894
1895 masks[i][j] = mask;
1896
1897 for_each_cpu_node_but(k, offline_node) {
1898 if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1899 sched_numa_warn("Node-distance not symmetric");
1900
1901 if (node_distance(j, k) > sched_domains_numa_distance[i])
1902 continue;
1903
1904 cpumask_or(mask, mask, cpumask_of_node(k));
1905 }
1906 }
1907 }
1908 rcu_assign_pointer(sched_domains_numa_masks, masks);
1909
1910 /* Compute default topology size */
1911 for (i = 0; sched_domain_topology[i].mask; i++);
1912
1913 tl = kzalloc((i + nr_levels + 1) *
1914 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1915 if (!tl)
1916 return;
1917
1918 /*
1919 * Copy the default topology bits..
1920 */
1921 for (i = 0; sched_domain_topology[i].mask; i++)
1922 tl[i] = sched_domain_topology[i];
1923
1924 /*
1925 * Add the NUMA identity distance, aka single NODE.
1926 */
1927 tl[i++] = (struct sched_domain_topology_level){
1928 .mask = sd_numa_mask,
1929 .numa_level = 0,
1930 SD_INIT_NAME(NODE)
1931 };
1932
1933 /*
1934 * .. and append 'j' levels of NUMA goodness.
1935 */
1936 for (j = 1; j < nr_levels; i++, j++) {
1937 tl[i] = (struct sched_domain_topology_level){
1938 .mask = sd_numa_mask,
1939 .sd_flags = cpu_numa_flags,
1940 .flags = SDTL_OVERLAP,
1941 .numa_level = j,
1942 SD_INIT_NAME(NUMA)
1943 };
1944 }
1945
1946 sched_domain_topology_saved = sched_domain_topology;
1947 sched_domain_topology = tl;
1948
1949 sched_domains_numa_levels = nr_levels;
1950 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1951
1952 init_numa_topology_type(offline_node);
1953}
1954
1955
1956static void sched_reset_numa(void)
1957{
1958 int nr_levels, *distances;
1959 struct cpumask ***masks;
1960
1961 nr_levels = sched_domains_numa_levels;
1962 sched_domains_numa_levels = 0;
1963 sched_max_numa_distance = 0;
1964 sched_numa_topology_type = NUMA_DIRECT;
1965 distances = sched_domains_numa_distance;
1966 rcu_assign_pointer(sched_domains_numa_distance, NULL);
1967 masks = sched_domains_numa_masks;
1968 rcu_assign_pointer(sched_domains_numa_masks, NULL);
1969 if (distances || masks) {
1970 int i, j;
1971
1972 synchronize_rcu();
1973 kfree(distances);
1974 for (i = 0; i < nr_levels && masks; i++) {
1975 if (!masks[i])
1976 continue;
1977 for_each_node(j)
1978 kfree(masks[i][j]);
1979 kfree(masks[i]);
1980 }
1981 kfree(masks);
1982 }
1983 if (sched_domain_topology_saved) {
1984 kfree(sched_domain_topology);
1985 sched_domain_topology = sched_domain_topology_saved;
1986 sched_domain_topology_saved = NULL;
1987 }
1988}
1989
1990/*
1991 * Call with hotplug lock held
1992 */
1993void sched_update_numa(int cpu, bool online)
1994{
1995 int node;
1996
1997 node = cpu_to_node(cpu);
1998 /*
1999 * Scheduler NUMA topology is updated when the first CPU of a
2000 * node is onlined or the last CPU of a node is offlined.
2001 */
2002 if (cpumask_weight(cpumask_of_node(node)) != 1)
2003 return;
2004
2005 sched_reset_numa();
2006 sched_init_numa(online ? NUMA_NO_NODE : node);
2007}
2008
2009void sched_domains_numa_masks_set(unsigned int cpu)
2010{
2011 int node = cpu_to_node(cpu);
2012 int i, j;
2013
2014 for (i = 0; i < sched_domains_numa_levels; i++) {
2015 for (j = 0; j < nr_node_ids; j++) {
2016 if (!node_state(j, N_CPU))
2017 continue;
2018
2019 /* Set ourselves in the remote node's masks */
2020 if (node_distance(j, node) <= sched_domains_numa_distance[i])
2021 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2022 }
2023 }
2024}
2025
2026void sched_domains_numa_masks_clear(unsigned int cpu)
2027{
2028 int i, j;
2029
2030 for (i = 0; i < sched_domains_numa_levels; i++) {
2031 for (j = 0; j < nr_node_ids; j++) {
2032 if (sched_domains_numa_masks[i][j])
2033 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2034 }
2035 }
2036}
2037
2038/*
2039 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2040 * closest to @cpu from @cpumask.
2041 * cpumask: cpumask to find a cpu from
2042 * cpu: cpu to be close to
2043 *
2044 * returns: cpu, or nr_cpu_ids when nothing found.
2045 */
2046int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2047{
2048 int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2049 struct cpumask ***masks;
2050
2051 rcu_read_lock();
2052 masks = rcu_dereference(sched_domains_numa_masks);
2053 if (!masks)
2054 goto unlock;
2055 for (i = 0; i < sched_domains_numa_levels; i++) {
2056 if (!masks[i][j])
2057 break;
2058 cpu = cpumask_any_and(cpus, masks[i][j]);
2059 if (cpu < nr_cpu_ids) {
2060 found = cpu;
2061 break;
2062 }
2063 }
2064unlock:
2065 rcu_read_unlock();
2066
2067 return found;
2068}
2069
2070#endif /* CONFIG_NUMA */
2071
2072static int __sdt_alloc(const struct cpumask *cpu_map)
2073{
2074 struct sched_domain_topology_level *tl;
2075 int j;
2076
2077 for_each_sd_topology(tl) {
2078 struct sd_data *sdd = &tl->data;
2079
2080 sdd->sd = alloc_percpu(struct sched_domain *);
2081 if (!sdd->sd)
2082 return -ENOMEM;
2083
2084 sdd->sds = alloc_percpu(struct sched_domain_shared *);
2085 if (!sdd->sds)
2086 return -ENOMEM;
2087
2088 sdd->sg = alloc_percpu(struct sched_group *);
2089 if (!sdd->sg)
2090 return -ENOMEM;
2091
2092 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2093 if (!sdd->sgc)
2094 return -ENOMEM;
2095
2096 for_each_cpu(j, cpu_map) {
2097 struct sched_domain *sd;
2098 struct sched_domain_shared *sds;
2099 struct sched_group *sg;
2100 struct sched_group_capacity *sgc;
2101
2102 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2103 GFP_KERNEL, cpu_to_node(j));
2104 if (!sd)
2105 return -ENOMEM;
2106
2107 *per_cpu_ptr(sdd->sd, j) = sd;
2108
2109 sds = kzalloc_node(sizeof(struct sched_domain_shared),
2110 GFP_KERNEL, cpu_to_node(j));
2111 if (!sds)
2112 return -ENOMEM;
2113
2114 *per_cpu_ptr(sdd->sds, j) = sds;
2115
2116 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2117 GFP_KERNEL, cpu_to_node(j));
2118 if (!sg)
2119 return -ENOMEM;
2120
2121 sg->next = sg;
2122
2123 *per_cpu_ptr(sdd->sg, j) = sg;
2124
2125 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2126 GFP_KERNEL, cpu_to_node(j));
2127 if (!sgc)
2128 return -ENOMEM;
2129
2130#ifdef CONFIG_SCHED_DEBUG
2131 sgc->id = j;
2132#endif
2133
2134 *per_cpu_ptr(sdd->sgc, j) = sgc;
2135 }
2136 }
2137
2138 return 0;
2139}
2140
2141static void __sdt_free(const struct cpumask *cpu_map)
2142{
2143 struct sched_domain_topology_level *tl;
2144 int j;
2145
2146 for_each_sd_topology(tl) {
2147 struct sd_data *sdd = &tl->data;
2148
2149 for_each_cpu(j, cpu_map) {
2150 struct sched_domain *sd;
2151
2152 if (sdd->sd) {
2153 sd = *per_cpu_ptr(sdd->sd, j);
2154 if (sd && (sd->flags & SD_OVERLAP))
2155 free_sched_groups(sd->groups, 0);
2156 kfree(*per_cpu_ptr(sdd->sd, j));
2157 }
2158
2159 if (sdd->sds)
2160 kfree(*per_cpu_ptr(sdd->sds, j));
2161 if (sdd->sg)
2162 kfree(*per_cpu_ptr(sdd->sg, j));
2163 if (sdd->sgc)
2164 kfree(*per_cpu_ptr(sdd->sgc, j));
2165 }
2166 free_percpu(sdd->sd);
2167 sdd->sd = NULL;
2168 free_percpu(sdd->sds);
2169 sdd->sds = NULL;
2170 free_percpu(sdd->sg);
2171 sdd->sg = NULL;
2172 free_percpu(sdd->sgc);
2173 sdd->sgc = NULL;
2174 }
2175}
2176
2177static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2178 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2179 struct sched_domain *child, int cpu)
2180{
2181 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2182
2183 if (child) {
2184 sd->level = child->level + 1;
2185 sched_domain_level_max = max(sched_domain_level_max, sd->level);
2186 child->parent = sd;
2187
2188 if (!cpumask_subset(sched_domain_span(child),
2189 sched_domain_span(sd))) {
2190 pr_err("BUG: arch topology borken\n");
2191#ifdef CONFIG_SCHED_DEBUG
2192 pr_err(" the %s domain not a subset of the %s domain\n",
2193 child->name, sd->name);
2194#endif
2195 /* Fixup, ensure @sd has at least @child CPUs. */
2196 cpumask_or(sched_domain_span(sd),
2197 sched_domain_span(sd),
2198 sched_domain_span(child));
2199 }
2200
2201 }
2202 set_domain_attribute(sd, attr);
2203
2204 return sd;
2205}
2206
2207/*
2208 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2209 * any two given CPUs at this (non-NUMA) topology level.
2210 */
2211static bool topology_span_sane(struct sched_domain_topology_level *tl,
2212 const struct cpumask *cpu_map, int cpu)
2213{
2214 int i;
2215
2216 /* NUMA levels are allowed to overlap */
2217 if (tl->flags & SDTL_OVERLAP)
2218 return true;
2219
2220 /*
2221 * Non-NUMA levels cannot partially overlap - they must be either
2222 * completely equal or completely disjoint. Otherwise we can end up
2223 * breaking the sched_group lists - i.e. a later get_group() pass
2224 * breaks the linking done for an earlier span.
2225 */
2226 for_each_cpu(i, cpu_map) {
2227 if (i == cpu)
2228 continue;
2229 /*
2230 * We should 'and' all those masks with 'cpu_map' to exactly
2231 * match the topology we're about to build, but that can only
2232 * remove CPUs, which only lessens our ability to detect
2233 * overlaps
2234 */
2235 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2236 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2237 return false;
2238 }
2239
2240 return true;
2241}
2242
2243/*
2244 * Build sched domains for a given set of CPUs and attach the sched domains
2245 * to the individual CPUs
2246 */
2247static int
2248build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2249{
2250 enum s_alloc alloc_state = sa_none;
2251 struct sched_domain *sd;
2252 struct s_data d;
2253 struct rq *rq = NULL;
2254 int i, ret = -ENOMEM;
2255 bool has_asym = false;
2256
2257 if (WARN_ON(cpumask_empty(cpu_map)))
2258 goto error;
2259
2260 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2261 if (alloc_state != sa_rootdomain)
2262 goto error;
2263
2264 /* Set up domains for CPUs specified by the cpu_map: */
2265 for_each_cpu(i, cpu_map) {
2266 struct sched_domain_topology_level *tl;
2267
2268 sd = NULL;
2269 for_each_sd_topology(tl) {
2270
2271 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2272 goto error;
2273
2274 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2275
2276 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2277
2278 if (tl == sched_domain_topology)
2279 *per_cpu_ptr(d.sd, i) = sd;
2280 if (tl->flags & SDTL_OVERLAP)
2281 sd->flags |= SD_OVERLAP;
2282 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2283 break;
2284 }
2285 }
2286
2287 /* Build the groups for the domains */
2288 for_each_cpu(i, cpu_map) {
2289 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2290 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2291 if (sd->flags & SD_OVERLAP) {
2292 if (build_overlap_sched_groups(sd, i))
2293 goto error;
2294 } else {
2295 if (build_sched_groups(sd, i))
2296 goto error;
2297 }
2298 }
2299 }
2300
2301 /*
2302 * Calculate an allowed NUMA imbalance such that LLCs do not get
2303 * imbalanced.
2304 */
2305 for_each_cpu(i, cpu_map) {
2306 unsigned int imb = 0;
2307 unsigned int imb_span = 1;
2308
2309 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2310 struct sched_domain *child = sd->child;
2311
2312 if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2313 (child->flags & SD_SHARE_PKG_RESOURCES)) {
2314 struct sched_domain __rcu *top_p;
2315 unsigned int nr_llcs;
2316
2317 /*
2318 * For a single LLC per node, allow an
2319 * imbalance up to 12.5% of the node. This is
2320 * arbitrary cutoff based two factors -- SMT and
2321 * memory channels. For SMT-2, the intent is to
2322 * avoid premature sharing of HT resources but
2323 * SMT-4 or SMT-8 *may* benefit from a different
2324 * cutoff. For memory channels, this is a very
2325 * rough estimate of how many channels may be
2326 * active and is based on recent CPUs with
2327 * many cores.
2328 *
2329 * For multiple LLCs, allow an imbalance
2330 * until multiple tasks would share an LLC
2331 * on one node while LLCs on another node
2332 * remain idle. This assumes that there are
2333 * enough logical CPUs per LLC to avoid SMT
2334 * factors and that there is a correlation
2335 * between LLCs and memory channels.
2336 */
2337 nr_llcs = sd->span_weight / child->span_weight;
2338 if (nr_llcs == 1)
2339 imb = sd->span_weight >> 3;
2340 else
2341 imb = nr_llcs;
2342 imb = max(1U, imb);
2343 sd->imb_numa_nr = imb;
2344
2345 /* Set span based on the first NUMA domain. */
2346 top_p = sd->parent;
2347 while (top_p && !(top_p->flags & SD_NUMA)) {
2348 top_p = top_p->parent;
2349 }
2350 imb_span = top_p ? top_p->span_weight : sd->span_weight;
2351 } else {
2352 int factor = max(1U, (sd->span_weight / imb_span));
2353
2354 sd->imb_numa_nr = imb * factor;
2355 }
2356 }
2357 }
2358
2359 /* Calculate CPU capacity for physical packages and nodes */
2360 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2361 if (!cpumask_test_cpu(i, cpu_map))
2362 continue;
2363
2364 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2365 claim_allocations(i, sd);
2366 init_sched_groups_capacity(i, sd);
2367 }
2368 }
2369
2370 /* Attach the domains */
2371 rcu_read_lock();
2372 for_each_cpu(i, cpu_map) {
2373 rq = cpu_rq(i);
2374 sd = *per_cpu_ptr(d.sd, i);
2375
2376 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2377 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2378 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2379
2380 cpu_attach_domain(sd, d.rd, i);
2381 }
2382 rcu_read_unlock();
2383
2384 if (has_asym)
2385 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2386
2387 if (rq && sched_debug_verbose) {
2388 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2389 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2390 }
2391
2392 ret = 0;
2393error:
2394 __free_domain_allocs(&d, alloc_state, cpu_map);
2395
2396 return ret;
2397}
2398
2399/* Current sched domains: */
2400static cpumask_var_t *doms_cur;
2401
2402/* Number of sched domains in 'doms_cur': */
2403static int ndoms_cur;
2404
2405/* Attributes of custom domains in 'doms_cur' */
2406static struct sched_domain_attr *dattr_cur;
2407
2408/*
2409 * Special case: If a kmalloc() of a doms_cur partition (array of
2410 * cpumask) fails, then fallback to a single sched domain,
2411 * as determined by the single cpumask fallback_doms.
2412 */
2413static cpumask_var_t fallback_doms;
2414
2415/*
2416 * arch_update_cpu_topology lets virtualized architectures update the
2417 * CPU core maps. It is supposed to return 1 if the topology changed
2418 * or 0 if it stayed the same.
2419 */
2420int __weak arch_update_cpu_topology(void)
2421{
2422 return 0;
2423}
2424
2425cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2426{
2427 int i;
2428 cpumask_var_t *doms;
2429
2430 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2431 if (!doms)
2432 return NULL;
2433 for (i = 0; i < ndoms; i++) {
2434 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2435 free_sched_domains(doms, i);
2436 return NULL;
2437 }
2438 }
2439 return doms;
2440}
2441
2442void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2443{
2444 unsigned int i;
2445 for (i = 0; i < ndoms; i++)
2446 free_cpumask_var(doms[i]);
2447 kfree(doms);
2448}
2449
2450/*
2451 * Set up scheduler domains and groups. For now this just excludes isolated
2452 * CPUs, but could be used to exclude other special cases in the future.
2453 */
2454int sched_init_domains(const struct cpumask *cpu_map)
2455{
2456 int err;
2457
2458 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2459 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2460 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2461
2462 arch_update_cpu_topology();
2463 asym_cpu_capacity_scan();
2464 ndoms_cur = 1;
2465 doms_cur = alloc_sched_domains(ndoms_cur);
2466 if (!doms_cur)
2467 doms_cur = &fallback_doms;
2468 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2469 err = build_sched_domains(doms_cur[0], NULL);
2470
2471 return err;
2472}
2473
2474/*
2475 * Detach sched domains from a group of CPUs specified in cpu_map
2476 * These CPUs will now be attached to the NULL domain
2477 */
2478static void detach_destroy_domains(const struct cpumask *cpu_map)
2479{
2480 unsigned int cpu = cpumask_any(cpu_map);
2481 int i;
2482
2483 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2484 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2485
2486 rcu_read_lock();
2487 for_each_cpu(i, cpu_map)
2488 cpu_attach_domain(NULL, &def_root_domain, i);
2489 rcu_read_unlock();
2490}
2491
2492/* handle null as "default" */
2493static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2494 struct sched_domain_attr *new, int idx_new)
2495{
2496 struct sched_domain_attr tmp;
2497
2498 /* Fast path: */
2499 if (!new && !cur)
2500 return 1;
2501
2502 tmp = SD_ATTR_INIT;
2503
2504 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2505 new ? (new + idx_new) : &tmp,
2506 sizeof(struct sched_domain_attr));
2507}
2508
2509/*
2510 * Partition sched domains as specified by the 'ndoms_new'
2511 * cpumasks in the array doms_new[] of cpumasks. This compares
2512 * doms_new[] to the current sched domain partitioning, doms_cur[].
2513 * It destroys each deleted domain and builds each new domain.
2514 *
2515 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2516 * The masks don't intersect (don't overlap.) We should setup one
2517 * sched domain for each mask. CPUs not in any of the cpumasks will
2518 * not be load balanced. If the same cpumask appears both in the
2519 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2520 * it as it is.
2521 *
2522 * The passed in 'doms_new' should be allocated using
2523 * alloc_sched_domains. This routine takes ownership of it and will
2524 * free_sched_domains it when done with it. If the caller failed the
2525 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2526 * and partition_sched_domains() will fallback to the single partition
2527 * 'fallback_doms', it also forces the domains to be rebuilt.
2528 *
2529 * If doms_new == NULL it will be replaced with cpu_online_mask.
2530 * ndoms_new == 0 is a special case for destroying existing domains,
2531 * and it will not create the default domain.
2532 *
2533 * Call with hotplug lock and sched_domains_mutex held
2534 */
2535void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2536 struct sched_domain_attr *dattr_new)
2537{
2538 bool __maybe_unused has_eas = false;
2539 int i, j, n;
2540 int new_topology;
2541
2542 lockdep_assert_held(&sched_domains_mutex);
2543
2544 /* Let the architecture update CPU core mappings: */
2545 new_topology = arch_update_cpu_topology();
2546 /* Trigger rebuilding CPU capacity asymmetry data */
2547 if (new_topology)
2548 asym_cpu_capacity_scan();
2549
2550 if (!doms_new) {
2551 WARN_ON_ONCE(dattr_new);
2552 n = 0;
2553 doms_new = alloc_sched_domains(1);
2554 if (doms_new) {
2555 n = 1;
2556 cpumask_and(doms_new[0], cpu_active_mask,
2557 housekeeping_cpumask(HK_TYPE_DOMAIN));
2558 }
2559 } else {
2560 n = ndoms_new;
2561 }
2562
2563 /* Destroy deleted domains: */
2564 for (i = 0; i < ndoms_cur; i++) {
2565 for (j = 0; j < n && !new_topology; j++) {
2566 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2567 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2568 struct root_domain *rd;
2569
2570 /*
2571 * This domain won't be destroyed and as such
2572 * its dl_bw->total_bw needs to be cleared. It
2573 * will be recomputed in function
2574 * update_tasks_root_domain().
2575 */
2576 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2577 dl_clear_root_domain(rd);
2578 goto match1;
2579 }
2580 }
2581 /* No match - a current sched domain not in new doms_new[] */
2582 detach_destroy_domains(doms_cur[i]);
2583match1:
2584 ;
2585 }
2586
2587 n = ndoms_cur;
2588 if (!doms_new) {
2589 n = 0;
2590 doms_new = &fallback_doms;
2591 cpumask_and(doms_new[0], cpu_active_mask,
2592 housekeeping_cpumask(HK_TYPE_DOMAIN));
2593 }
2594
2595 /* Build new domains: */
2596 for (i = 0; i < ndoms_new; i++) {
2597 for (j = 0; j < n && !new_topology; j++) {
2598 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2599 dattrs_equal(dattr_new, i, dattr_cur, j))
2600 goto match2;
2601 }
2602 /* No match - add a new doms_new */
2603 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2604match2:
2605 ;
2606 }
2607
2608#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2609 /* Build perf. domains: */
2610 for (i = 0; i < ndoms_new; i++) {
2611 for (j = 0; j < n && !sched_energy_update; j++) {
2612 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2613 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2614 has_eas = true;
2615 goto match3;
2616 }
2617 }
2618 /* No match - add perf. domains for a new rd */
2619 has_eas |= build_perf_domains(doms_new[i]);
2620match3:
2621 ;
2622 }
2623 sched_energy_set(has_eas);
2624#endif
2625
2626 /* Remember the new sched domains: */
2627 if (doms_cur != &fallback_doms)
2628 free_sched_domains(doms_cur, ndoms_cur);
2629
2630 kfree(dattr_cur);
2631 doms_cur = doms_new;
2632 dattr_cur = dattr_new;
2633 ndoms_cur = ndoms_new;
2634
2635 update_sched_domain_debugfs();
2636}
2637
2638/*
2639 * Call with hotplug lock held
2640 */
2641void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2642 struct sched_domain_attr *dattr_new)
2643{
2644 mutex_lock(&sched_domains_mutex);
2645 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2646 mutex_unlock(&sched_domains_mutex);
2647}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Scheduler topology setup/handling methods
4 */
5#include "sched.h"
6
7DEFINE_MUTEX(sched_domains_mutex);
8
9/* Protected by sched_domains_mutex: */
10static cpumask_var_t sched_domains_tmpmask;
11static cpumask_var_t sched_domains_tmpmask2;
12
13#ifdef CONFIG_SCHED_DEBUG
14
15static int __init sched_debug_setup(char *str)
16{
17 sched_debug_enabled = true;
18
19 return 0;
20}
21early_param("sched_debug", sched_debug_setup);
22
23static inline bool sched_debug(void)
24{
25 return sched_debug_enabled;
26}
27
28static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 struct cpumask *groupmask)
30{
31 struct sched_group *group = sd->groups;
32
33 cpumask_clear(groupmask);
34
35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36 printk(KERN_CONT "span=%*pbl level=%s\n",
37 cpumask_pr_args(sched_domain_span(sd)), sd->name);
38
39 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
40 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
41 }
42 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
43 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
44 }
45
46 printk(KERN_DEBUG "%*s groups:", level + 1, "");
47 do {
48 if (!group) {
49 printk("\n");
50 printk(KERN_ERR "ERROR: group is NULL\n");
51 break;
52 }
53
54 if (!cpumask_weight(sched_group_span(group))) {
55 printk(KERN_CONT "\n");
56 printk(KERN_ERR "ERROR: empty group\n");
57 break;
58 }
59
60 if (!(sd->flags & SD_OVERLAP) &&
61 cpumask_intersects(groupmask, sched_group_span(group))) {
62 printk(KERN_CONT "\n");
63 printk(KERN_ERR "ERROR: repeated CPUs\n");
64 break;
65 }
66
67 cpumask_or(groupmask, groupmask, sched_group_span(group));
68
69 printk(KERN_CONT " %d:{ span=%*pbl",
70 group->sgc->id,
71 cpumask_pr_args(sched_group_span(group)));
72
73 if ((sd->flags & SD_OVERLAP) &&
74 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
75 printk(KERN_CONT " mask=%*pbl",
76 cpumask_pr_args(group_balance_mask(group)));
77 }
78
79 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
80 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
81
82 if (group == sd->groups && sd->child &&
83 !cpumask_equal(sched_domain_span(sd->child),
84 sched_group_span(group))) {
85 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
86 }
87
88 printk(KERN_CONT " }");
89
90 group = group->next;
91
92 if (group != sd->groups)
93 printk(KERN_CONT ",");
94
95 } while (group != sd->groups);
96 printk(KERN_CONT "\n");
97
98 if (!cpumask_equal(sched_domain_span(sd), groupmask))
99 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
100
101 if (sd->parent &&
102 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
103 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
104 return 0;
105}
106
107static void sched_domain_debug(struct sched_domain *sd, int cpu)
108{
109 int level = 0;
110
111 if (!sched_debug_enabled)
112 return;
113
114 if (!sd) {
115 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
116 return;
117 }
118
119 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
120
121 for (;;) {
122 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
123 break;
124 level++;
125 sd = sd->parent;
126 if (!sd)
127 break;
128 }
129}
130#else /* !CONFIG_SCHED_DEBUG */
131
132# define sched_debug_enabled 0
133# define sched_domain_debug(sd, cpu) do { } while (0)
134static inline bool sched_debug(void)
135{
136 return false;
137}
138#endif /* CONFIG_SCHED_DEBUG */
139
140static int sd_degenerate(struct sched_domain *sd)
141{
142 if (cpumask_weight(sched_domain_span(sd)) == 1)
143 return 1;
144
145 /* Following flags need at least 2 groups */
146 if (sd->flags & (SD_BALANCE_NEWIDLE |
147 SD_BALANCE_FORK |
148 SD_BALANCE_EXEC |
149 SD_SHARE_CPUCAPACITY |
150 SD_ASYM_CPUCAPACITY |
151 SD_SHARE_PKG_RESOURCES |
152 SD_SHARE_POWERDOMAIN)) {
153 if (sd->groups != sd->groups->next)
154 return 0;
155 }
156
157 /* Following flags don't use groups */
158 if (sd->flags & (SD_WAKE_AFFINE))
159 return 0;
160
161 return 1;
162}
163
164static int
165sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
166{
167 unsigned long cflags = sd->flags, pflags = parent->flags;
168
169 if (sd_degenerate(parent))
170 return 1;
171
172 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
173 return 0;
174
175 /* Flags needing groups don't count if only 1 group in parent */
176 if (parent->groups == parent->groups->next) {
177 pflags &= ~(SD_BALANCE_NEWIDLE |
178 SD_BALANCE_FORK |
179 SD_BALANCE_EXEC |
180 SD_ASYM_CPUCAPACITY |
181 SD_SHARE_CPUCAPACITY |
182 SD_SHARE_PKG_RESOURCES |
183 SD_PREFER_SIBLING |
184 SD_SHARE_POWERDOMAIN);
185 if (nr_node_ids == 1)
186 pflags &= ~SD_SERIALIZE;
187 }
188 if (~cflags & pflags)
189 return 0;
190
191 return 1;
192}
193
194#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
195DEFINE_STATIC_KEY_FALSE(sched_energy_present);
196unsigned int sysctl_sched_energy_aware = 1;
197DEFINE_MUTEX(sched_energy_mutex);
198bool sched_energy_update;
199
200#ifdef CONFIG_PROC_SYSCTL
201int sched_energy_aware_handler(struct ctl_table *table, int write,
202 void *buffer, size_t *lenp, loff_t *ppos)
203{
204 int ret, state;
205
206 if (write && !capable(CAP_SYS_ADMIN))
207 return -EPERM;
208
209 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210 if (!ret && write) {
211 state = static_branch_unlikely(&sched_energy_present);
212 if (state != sysctl_sched_energy_aware) {
213 mutex_lock(&sched_energy_mutex);
214 sched_energy_update = 1;
215 rebuild_sched_domains();
216 sched_energy_update = 0;
217 mutex_unlock(&sched_energy_mutex);
218 }
219 }
220
221 return ret;
222}
223#endif
224
225static void free_pd(struct perf_domain *pd)
226{
227 struct perf_domain *tmp;
228
229 while (pd) {
230 tmp = pd->next;
231 kfree(pd);
232 pd = tmp;
233 }
234}
235
236static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
237{
238 while (pd) {
239 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
240 return pd;
241 pd = pd->next;
242 }
243
244 return NULL;
245}
246
247static struct perf_domain *pd_init(int cpu)
248{
249 struct em_perf_domain *obj = em_cpu_get(cpu);
250 struct perf_domain *pd;
251
252 if (!obj) {
253 if (sched_debug())
254 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
255 return NULL;
256 }
257
258 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
259 if (!pd)
260 return NULL;
261 pd->em_pd = obj;
262
263 return pd;
264}
265
266static void perf_domain_debug(const struct cpumask *cpu_map,
267 struct perf_domain *pd)
268{
269 if (!sched_debug() || !pd)
270 return;
271
272 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
273
274 while (pd) {
275 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
276 cpumask_first(perf_domain_span(pd)),
277 cpumask_pr_args(perf_domain_span(pd)),
278 em_pd_nr_perf_states(pd->em_pd));
279 pd = pd->next;
280 }
281
282 printk(KERN_CONT "\n");
283}
284
285static void destroy_perf_domain_rcu(struct rcu_head *rp)
286{
287 struct perf_domain *pd;
288
289 pd = container_of(rp, struct perf_domain, rcu);
290 free_pd(pd);
291}
292
293static void sched_energy_set(bool has_eas)
294{
295 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
296 if (sched_debug())
297 pr_info("%s: stopping EAS\n", __func__);
298 static_branch_disable_cpuslocked(&sched_energy_present);
299 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
300 if (sched_debug())
301 pr_info("%s: starting EAS\n", __func__);
302 static_branch_enable_cpuslocked(&sched_energy_present);
303 }
304}
305
306/*
307 * EAS can be used on a root domain if it meets all the following conditions:
308 * 1. an Energy Model (EM) is available;
309 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
310 * 3. no SMT is detected.
311 * 4. the EM complexity is low enough to keep scheduling overheads low;
312 * 5. schedutil is driving the frequency of all CPUs of the rd;
313 *
314 * The complexity of the Energy Model is defined as:
315 *
316 * C = nr_pd * (nr_cpus + nr_ps)
317 *
318 * with parameters defined as:
319 * - nr_pd: the number of performance domains
320 * - nr_cpus: the number of CPUs
321 * - nr_ps: the sum of the number of performance states of all performance
322 * domains (for example, on a system with 2 performance domains,
323 * with 10 performance states each, nr_ps = 2 * 10 = 20).
324 *
325 * It is generally not a good idea to use such a model in the wake-up path on
326 * very complex platforms because of the associated scheduling overheads. The
327 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
328 * with per-CPU DVFS and less than 8 performance states each, for example.
329 */
330#define EM_MAX_COMPLEXITY 2048
331
332extern struct cpufreq_governor schedutil_gov;
333static bool build_perf_domains(const struct cpumask *cpu_map)
334{
335 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
336 struct perf_domain *pd = NULL, *tmp;
337 int cpu = cpumask_first(cpu_map);
338 struct root_domain *rd = cpu_rq(cpu)->rd;
339 struct cpufreq_policy *policy;
340 struct cpufreq_governor *gov;
341
342 if (!sysctl_sched_energy_aware)
343 goto free;
344
345 /* EAS is enabled for asymmetric CPU capacity topologies. */
346 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
347 if (sched_debug()) {
348 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
349 cpumask_pr_args(cpu_map));
350 }
351 goto free;
352 }
353
354 /* EAS definitely does *not* handle SMT */
355 if (sched_smt_active()) {
356 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
357 cpumask_pr_args(cpu_map));
358 goto free;
359 }
360
361 for_each_cpu(i, cpu_map) {
362 /* Skip already covered CPUs. */
363 if (find_pd(pd, i))
364 continue;
365
366 /* Do not attempt EAS if schedutil is not being used. */
367 policy = cpufreq_cpu_get(i);
368 if (!policy)
369 goto free;
370 gov = policy->governor;
371 cpufreq_cpu_put(policy);
372 if (gov != &schedutil_gov) {
373 if (rd->pd)
374 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
375 cpumask_pr_args(cpu_map));
376 goto free;
377 }
378
379 /* Create the new pd and add it to the local list. */
380 tmp = pd_init(i);
381 if (!tmp)
382 goto free;
383 tmp->next = pd;
384 pd = tmp;
385
386 /*
387 * Count performance domains and performance states for the
388 * complexity check.
389 */
390 nr_pd++;
391 nr_ps += em_pd_nr_perf_states(pd->em_pd);
392 }
393
394 /* Bail out if the Energy Model complexity is too high. */
395 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
396 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
397 cpumask_pr_args(cpu_map));
398 goto free;
399 }
400
401 perf_domain_debug(cpu_map, pd);
402
403 /* Attach the new list of performance domains to the root domain. */
404 tmp = rd->pd;
405 rcu_assign_pointer(rd->pd, pd);
406 if (tmp)
407 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
408
409 return !!pd;
410
411free:
412 free_pd(pd);
413 tmp = rd->pd;
414 rcu_assign_pointer(rd->pd, NULL);
415 if (tmp)
416 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
417
418 return false;
419}
420#else
421static void free_pd(struct perf_domain *pd) { }
422#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
423
424static void free_rootdomain(struct rcu_head *rcu)
425{
426 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
427
428 cpupri_cleanup(&rd->cpupri);
429 cpudl_cleanup(&rd->cpudl);
430 free_cpumask_var(rd->dlo_mask);
431 free_cpumask_var(rd->rto_mask);
432 free_cpumask_var(rd->online);
433 free_cpumask_var(rd->span);
434 free_pd(rd->pd);
435 kfree(rd);
436}
437
438void rq_attach_root(struct rq *rq, struct root_domain *rd)
439{
440 struct root_domain *old_rd = NULL;
441 unsigned long flags;
442
443 raw_spin_lock_irqsave(&rq->lock, flags);
444
445 if (rq->rd) {
446 old_rd = rq->rd;
447
448 if (cpumask_test_cpu(rq->cpu, old_rd->online))
449 set_rq_offline(rq);
450
451 cpumask_clear_cpu(rq->cpu, old_rd->span);
452
453 /*
454 * If we dont want to free the old_rd yet then
455 * set old_rd to NULL to skip the freeing later
456 * in this function:
457 */
458 if (!atomic_dec_and_test(&old_rd->refcount))
459 old_rd = NULL;
460 }
461
462 atomic_inc(&rd->refcount);
463 rq->rd = rd;
464
465 cpumask_set_cpu(rq->cpu, rd->span);
466 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
467 set_rq_online(rq);
468
469 raw_spin_unlock_irqrestore(&rq->lock, flags);
470
471 if (old_rd)
472 call_rcu(&old_rd->rcu, free_rootdomain);
473}
474
475void sched_get_rd(struct root_domain *rd)
476{
477 atomic_inc(&rd->refcount);
478}
479
480void sched_put_rd(struct root_domain *rd)
481{
482 if (!atomic_dec_and_test(&rd->refcount))
483 return;
484
485 call_rcu(&rd->rcu, free_rootdomain);
486}
487
488static int init_rootdomain(struct root_domain *rd)
489{
490 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
491 goto out;
492 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
493 goto free_span;
494 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
495 goto free_online;
496 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
497 goto free_dlo_mask;
498
499#ifdef HAVE_RT_PUSH_IPI
500 rd->rto_cpu = -1;
501 raw_spin_lock_init(&rd->rto_lock);
502 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
503#endif
504
505 init_dl_bw(&rd->dl_bw);
506 if (cpudl_init(&rd->cpudl) != 0)
507 goto free_rto_mask;
508
509 if (cpupri_init(&rd->cpupri) != 0)
510 goto free_cpudl;
511 return 0;
512
513free_cpudl:
514 cpudl_cleanup(&rd->cpudl);
515free_rto_mask:
516 free_cpumask_var(rd->rto_mask);
517free_dlo_mask:
518 free_cpumask_var(rd->dlo_mask);
519free_online:
520 free_cpumask_var(rd->online);
521free_span:
522 free_cpumask_var(rd->span);
523out:
524 return -ENOMEM;
525}
526
527/*
528 * By default the system creates a single root-domain with all CPUs as
529 * members (mimicking the global state we have today).
530 */
531struct root_domain def_root_domain;
532
533void init_defrootdomain(void)
534{
535 init_rootdomain(&def_root_domain);
536
537 atomic_set(&def_root_domain.refcount, 1);
538}
539
540static struct root_domain *alloc_rootdomain(void)
541{
542 struct root_domain *rd;
543
544 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
545 if (!rd)
546 return NULL;
547
548 if (init_rootdomain(rd) != 0) {
549 kfree(rd);
550 return NULL;
551 }
552
553 return rd;
554}
555
556static void free_sched_groups(struct sched_group *sg, int free_sgc)
557{
558 struct sched_group *tmp, *first;
559
560 if (!sg)
561 return;
562
563 first = sg;
564 do {
565 tmp = sg->next;
566
567 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
568 kfree(sg->sgc);
569
570 if (atomic_dec_and_test(&sg->ref))
571 kfree(sg);
572 sg = tmp;
573 } while (sg != first);
574}
575
576static void destroy_sched_domain(struct sched_domain *sd)
577{
578 /*
579 * A normal sched domain may have multiple group references, an
580 * overlapping domain, having private groups, only one. Iterate,
581 * dropping group/capacity references, freeing where none remain.
582 */
583 free_sched_groups(sd->groups, 1);
584
585 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
586 kfree(sd->shared);
587 kfree(sd);
588}
589
590static void destroy_sched_domains_rcu(struct rcu_head *rcu)
591{
592 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
593
594 while (sd) {
595 struct sched_domain *parent = sd->parent;
596 destroy_sched_domain(sd);
597 sd = parent;
598 }
599}
600
601static void destroy_sched_domains(struct sched_domain *sd)
602{
603 if (sd)
604 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
605}
606
607/*
608 * Keep a special pointer to the highest sched_domain that has
609 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
610 * allows us to avoid some pointer chasing select_idle_sibling().
611 *
612 * Also keep a unique ID per domain (we use the first CPU number in
613 * the cpumask of the domain), this allows us to quickly tell if
614 * two CPUs are in the same cache domain, see cpus_share_cache().
615 */
616DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
617DEFINE_PER_CPU(int, sd_llc_size);
618DEFINE_PER_CPU(int, sd_llc_id);
619DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
620DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
621DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
622DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
623DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
624
625static void update_top_cache_domain(int cpu)
626{
627 struct sched_domain_shared *sds = NULL;
628 struct sched_domain *sd;
629 int id = cpu;
630 int size = 1;
631
632 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
633 if (sd) {
634 id = cpumask_first(sched_domain_span(sd));
635 size = cpumask_weight(sched_domain_span(sd));
636 sds = sd->shared;
637 }
638
639 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
640 per_cpu(sd_llc_size, cpu) = size;
641 per_cpu(sd_llc_id, cpu) = id;
642 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
643
644 sd = lowest_flag_domain(cpu, SD_NUMA);
645 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
646
647 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
648 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
649
650 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
651 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
652}
653
654/*
655 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
656 * hold the hotplug lock.
657 */
658static void
659cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
660{
661 struct rq *rq = cpu_rq(cpu);
662 struct sched_domain *tmp;
663
664 /* Remove the sched domains which do not contribute to scheduling. */
665 for (tmp = sd; tmp; ) {
666 struct sched_domain *parent = tmp->parent;
667 if (!parent)
668 break;
669
670 if (sd_parent_degenerate(tmp, parent)) {
671 tmp->parent = parent->parent;
672 if (parent->parent)
673 parent->parent->child = tmp;
674 /*
675 * Transfer SD_PREFER_SIBLING down in case of a
676 * degenerate parent; the spans match for this
677 * so the property transfers.
678 */
679 if (parent->flags & SD_PREFER_SIBLING)
680 tmp->flags |= SD_PREFER_SIBLING;
681 destroy_sched_domain(parent);
682 } else
683 tmp = tmp->parent;
684 }
685
686 if (sd && sd_degenerate(sd)) {
687 tmp = sd;
688 sd = sd->parent;
689 destroy_sched_domain(tmp);
690 if (sd)
691 sd->child = NULL;
692 }
693
694 sched_domain_debug(sd, cpu);
695
696 rq_attach_root(rq, rd);
697 tmp = rq->sd;
698 rcu_assign_pointer(rq->sd, sd);
699 dirty_sched_domain_sysctl(cpu);
700 destroy_sched_domains(tmp);
701
702 update_top_cache_domain(cpu);
703}
704
705struct s_data {
706 struct sched_domain * __percpu *sd;
707 struct root_domain *rd;
708};
709
710enum s_alloc {
711 sa_rootdomain,
712 sa_sd,
713 sa_sd_storage,
714 sa_none,
715};
716
717/*
718 * Return the canonical balance CPU for this group, this is the first CPU
719 * of this group that's also in the balance mask.
720 *
721 * The balance mask are all those CPUs that could actually end up at this
722 * group. See build_balance_mask().
723 *
724 * Also see should_we_balance().
725 */
726int group_balance_cpu(struct sched_group *sg)
727{
728 return cpumask_first(group_balance_mask(sg));
729}
730
731
732/*
733 * NUMA topology (first read the regular topology blurb below)
734 *
735 * Given a node-distance table, for example:
736 *
737 * node 0 1 2 3
738 * 0: 10 20 30 20
739 * 1: 20 10 20 30
740 * 2: 30 20 10 20
741 * 3: 20 30 20 10
742 *
743 * which represents a 4 node ring topology like:
744 *
745 * 0 ----- 1
746 * | |
747 * | |
748 * | |
749 * 3 ----- 2
750 *
751 * We want to construct domains and groups to represent this. The way we go
752 * about doing this is to build the domains on 'hops'. For each NUMA level we
753 * construct the mask of all nodes reachable in @level hops.
754 *
755 * For the above NUMA topology that gives 3 levels:
756 *
757 * NUMA-2 0-3 0-3 0-3 0-3
758 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
759 *
760 * NUMA-1 0-1,3 0-2 1-3 0,2-3
761 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
762 *
763 * NUMA-0 0 1 2 3
764 *
765 *
766 * As can be seen; things don't nicely line up as with the regular topology.
767 * When we iterate a domain in child domain chunks some nodes can be
768 * represented multiple times -- hence the "overlap" naming for this part of
769 * the topology.
770 *
771 * In order to minimize this overlap, we only build enough groups to cover the
772 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
773 *
774 * Because:
775 *
776 * - the first group of each domain is its child domain; this
777 * gets us the first 0-1,3
778 * - the only uncovered node is 2, who's child domain is 1-3.
779 *
780 * However, because of the overlap, computing a unique CPU for each group is
781 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
782 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
783 * end up at those groups (they would end up in group: 0-1,3).
784 *
785 * To correct this we have to introduce the group balance mask. This mask
786 * will contain those CPUs in the group that can reach this group given the
787 * (child) domain tree.
788 *
789 * With this we can once again compute balance_cpu and sched_group_capacity
790 * relations.
791 *
792 * XXX include words on how balance_cpu is unique and therefore can be
793 * used for sched_group_capacity links.
794 *
795 *
796 * Another 'interesting' topology is:
797 *
798 * node 0 1 2 3
799 * 0: 10 20 20 30
800 * 1: 20 10 20 20
801 * 2: 20 20 10 20
802 * 3: 30 20 20 10
803 *
804 * Which looks a little like:
805 *
806 * 0 ----- 1
807 * | / |
808 * | / |
809 * | / |
810 * 2 ----- 3
811 *
812 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
813 * are not.
814 *
815 * This leads to a few particularly weird cases where the sched_domain's are
816 * not of the same number for each CPU. Consider:
817 *
818 * NUMA-2 0-3 0-3
819 * groups: {0-2},{1-3} {1-3},{0-2}
820 *
821 * NUMA-1 0-2 0-3 0-3 1-3
822 *
823 * NUMA-0 0 1 2 3
824 *
825 */
826
827
828/*
829 * Build the balance mask; it contains only those CPUs that can arrive at this
830 * group and should be considered to continue balancing.
831 *
832 * We do this during the group creation pass, therefore the group information
833 * isn't complete yet, however since each group represents a (child) domain we
834 * can fully construct this using the sched_domain bits (which are already
835 * complete).
836 */
837static void
838build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
839{
840 const struct cpumask *sg_span = sched_group_span(sg);
841 struct sd_data *sdd = sd->private;
842 struct sched_domain *sibling;
843 int i;
844
845 cpumask_clear(mask);
846
847 for_each_cpu(i, sg_span) {
848 sibling = *per_cpu_ptr(sdd->sd, i);
849
850 /*
851 * Can happen in the asymmetric case, where these siblings are
852 * unused. The mask will not be empty because those CPUs that
853 * do have the top domain _should_ span the domain.
854 */
855 if (!sibling->child)
856 continue;
857
858 /* If we would not end up here, we can't continue from here */
859 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
860 continue;
861
862 cpumask_set_cpu(i, mask);
863 }
864
865 /* We must not have empty masks here */
866 WARN_ON_ONCE(cpumask_empty(mask));
867}
868
869/*
870 * XXX: This creates per-node group entries; since the load-balancer will
871 * immediately access remote memory to construct this group's load-balance
872 * statistics having the groups node local is of dubious benefit.
873 */
874static struct sched_group *
875build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
876{
877 struct sched_group *sg;
878 struct cpumask *sg_span;
879
880 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
881 GFP_KERNEL, cpu_to_node(cpu));
882
883 if (!sg)
884 return NULL;
885
886 sg_span = sched_group_span(sg);
887 if (sd->child)
888 cpumask_copy(sg_span, sched_domain_span(sd->child));
889 else
890 cpumask_copy(sg_span, sched_domain_span(sd));
891
892 atomic_inc(&sg->ref);
893 return sg;
894}
895
896static void init_overlap_sched_group(struct sched_domain *sd,
897 struct sched_group *sg)
898{
899 struct cpumask *mask = sched_domains_tmpmask2;
900 struct sd_data *sdd = sd->private;
901 struct cpumask *sg_span;
902 int cpu;
903
904 build_balance_mask(sd, sg, mask);
905 cpu = cpumask_first_and(sched_group_span(sg), mask);
906
907 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
908 if (atomic_inc_return(&sg->sgc->ref) == 1)
909 cpumask_copy(group_balance_mask(sg), mask);
910 else
911 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
912
913 /*
914 * Initialize sgc->capacity such that even if we mess up the
915 * domains and no possible iteration will get us here, we won't
916 * die on a /0 trap.
917 */
918 sg_span = sched_group_span(sg);
919 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
920 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
921 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
922}
923
924static int
925build_overlap_sched_groups(struct sched_domain *sd, int cpu)
926{
927 struct sched_group *first = NULL, *last = NULL, *sg;
928 const struct cpumask *span = sched_domain_span(sd);
929 struct cpumask *covered = sched_domains_tmpmask;
930 struct sd_data *sdd = sd->private;
931 struct sched_domain *sibling;
932 int i;
933
934 cpumask_clear(covered);
935
936 for_each_cpu_wrap(i, span, cpu) {
937 struct cpumask *sg_span;
938
939 if (cpumask_test_cpu(i, covered))
940 continue;
941
942 sibling = *per_cpu_ptr(sdd->sd, i);
943
944 /*
945 * Asymmetric node setups can result in situations where the
946 * domain tree is of unequal depth, make sure to skip domains
947 * that already cover the entire range.
948 *
949 * In that case build_sched_domains() will have terminated the
950 * iteration early and our sibling sd spans will be empty.
951 * Domains should always include the CPU they're built on, so
952 * check that.
953 */
954 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
955 continue;
956
957 sg = build_group_from_child_sched_domain(sibling, cpu);
958 if (!sg)
959 goto fail;
960
961 sg_span = sched_group_span(sg);
962 cpumask_or(covered, covered, sg_span);
963
964 init_overlap_sched_group(sd, sg);
965
966 if (!first)
967 first = sg;
968 if (last)
969 last->next = sg;
970 last = sg;
971 last->next = first;
972 }
973 sd->groups = first;
974
975 return 0;
976
977fail:
978 free_sched_groups(first, 0);
979
980 return -ENOMEM;
981}
982
983
984/*
985 * Package topology (also see the load-balance blurb in fair.c)
986 *
987 * The scheduler builds a tree structure to represent a number of important
988 * topology features. By default (default_topology[]) these include:
989 *
990 * - Simultaneous multithreading (SMT)
991 * - Multi-Core Cache (MC)
992 * - Package (DIE)
993 *
994 * Where the last one more or less denotes everything up to a NUMA node.
995 *
996 * The tree consists of 3 primary data structures:
997 *
998 * sched_domain -> sched_group -> sched_group_capacity
999 * ^ ^ ^ ^
1000 * `-' `-'
1001 *
1002 * The sched_domains are per-CPU and have a two way link (parent & child) and
1003 * denote the ever growing mask of CPUs belonging to that level of topology.
1004 *
1005 * Each sched_domain has a circular (double) linked list of sched_group's, each
1006 * denoting the domains of the level below (or individual CPUs in case of the
1007 * first domain level). The sched_group linked by a sched_domain includes the
1008 * CPU of that sched_domain [*].
1009 *
1010 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1011 *
1012 * CPU 0 1 2 3 4 5 6 7
1013 *
1014 * DIE [ ]
1015 * MC [ ] [ ]
1016 * SMT [ ] [ ] [ ] [ ]
1017 *
1018 * - or -
1019 *
1020 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1021 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1022 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1023 *
1024 * CPU 0 1 2 3 4 5 6 7
1025 *
1026 * One way to think about it is: sched_domain moves you up and down among these
1027 * topology levels, while sched_group moves you sideways through it, at child
1028 * domain granularity.
1029 *
1030 * sched_group_capacity ensures each unique sched_group has shared storage.
1031 *
1032 * There are two related construction problems, both require a CPU that
1033 * uniquely identify each group (for a given domain):
1034 *
1035 * - The first is the balance_cpu (see should_we_balance() and the
1036 * load-balance blub in fair.c); for each group we only want 1 CPU to
1037 * continue balancing at a higher domain.
1038 *
1039 * - The second is the sched_group_capacity; we want all identical groups
1040 * to share a single sched_group_capacity.
1041 *
1042 * Since these topologies are exclusive by construction. That is, its
1043 * impossible for an SMT thread to belong to multiple cores, and cores to
1044 * be part of multiple caches. There is a very clear and unique location
1045 * for each CPU in the hierarchy.
1046 *
1047 * Therefore computing a unique CPU for each group is trivial (the iteration
1048 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1049 * group), we can simply pick the first CPU in each group.
1050 *
1051 *
1052 * [*] in other words, the first group of each domain is its child domain.
1053 */
1054
1055static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1056{
1057 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1058 struct sched_domain *child = sd->child;
1059 struct sched_group *sg;
1060 bool already_visited;
1061
1062 if (child)
1063 cpu = cpumask_first(sched_domain_span(child));
1064
1065 sg = *per_cpu_ptr(sdd->sg, cpu);
1066 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1067
1068 /* Increase refcounts for claim_allocations: */
1069 already_visited = atomic_inc_return(&sg->ref) > 1;
1070 /* sgc visits should follow a similar trend as sg */
1071 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1072
1073 /* If we have already visited that group, it's already initialized. */
1074 if (already_visited)
1075 return sg;
1076
1077 if (child) {
1078 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1079 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1080 } else {
1081 cpumask_set_cpu(cpu, sched_group_span(sg));
1082 cpumask_set_cpu(cpu, group_balance_mask(sg));
1083 }
1084
1085 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1086 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1087 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1088
1089 return sg;
1090}
1091
1092/*
1093 * build_sched_groups will build a circular linked list of the groups
1094 * covered by the given span, will set each group's ->cpumask correctly,
1095 * and will initialize their ->sgc.
1096 *
1097 * Assumes the sched_domain tree is fully constructed
1098 */
1099static int
1100build_sched_groups(struct sched_domain *sd, int cpu)
1101{
1102 struct sched_group *first = NULL, *last = NULL;
1103 struct sd_data *sdd = sd->private;
1104 const struct cpumask *span = sched_domain_span(sd);
1105 struct cpumask *covered;
1106 int i;
1107
1108 lockdep_assert_held(&sched_domains_mutex);
1109 covered = sched_domains_tmpmask;
1110
1111 cpumask_clear(covered);
1112
1113 for_each_cpu_wrap(i, span, cpu) {
1114 struct sched_group *sg;
1115
1116 if (cpumask_test_cpu(i, covered))
1117 continue;
1118
1119 sg = get_group(i, sdd);
1120
1121 cpumask_or(covered, covered, sched_group_span(sg));
1122
1123 if (!first)
1124 first = sg;
1125 if (last)
1126 last->next = sg;
1127 last = sg;
1128 }
1129 last->next = first;
1130 sd->groups = first;
1131
1132 return 0;
1133}
1134
1135/*
1136 * Initialize sched groups cpu_capacity.
1137 *
1138 * cpu_capacity indicates the capacity of sched group, which is used while
1139 * distributing the load between different sched groups in a sched domain.
1140 * Typically cpu_capacity for all the groups in a sched domain will be same
1141 * unless there are asymmetries in the topology. If there are asymmetries,
1142 * group having more cpu_capacity will pickup more load compared to the
1143 * group having less cpu_capacity.
1144 */
1145static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1146{
1147 struct sched_group *sg = sd->groups;
1148
1149 WARN_ON(!sg);
1150
1151 do {
1152 int cpu, max_cpu = -1;
1153
1154 sg->group_weight = cpumask_weight(sched_group_span(sg));
1155
1156 if (!(sd->flags & SD_ASYM_PACKING))
1157 goto next;
1158
1159 for_each_cpu(cpu, sched_group_span(sg)) {
1160 if (max_cpu < 0)
1161 max_cpu = cpu;
1162 else if (sched_asym_prefer(cpu, max_cpu))
1163 max_cpu = cpu;
1164 }
1165 sg->asym_prefer_cpu = max_cpu;
1166
1167next:
1168 sg = sg->next;
1169 } while (sg != sd->groups);
1170
1171 if (cpu != group_balance_cpu(sg))
1172 return;
1173
1174 update_group_capacity(sd, cpu);
1175}
1176
1177/*
1178 * Initializers for schedule domains
1179 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1180 */
1181
1182static int default_relax_domain_level = -1;
1183int sched_domain_level_max;
1184
1185static int __init setup_relax_domain_level(char *str)
1186{
1187 if (kstrtoint(str, 0, &default_relax_domain_level))
1188 pr_warn("Unable to set relax_domain_level\n");
1189
1190 return 1;
1191}
1192__setup("relax_domain_level=", setup_relax_domain_level);
1193
1194static void set_domain_attribute(struct sched_domain *sd,
1195 struct sched_domain_attr *attr)
1196{
1197 int request;
1198
1199 if (!attr || attr->relax_domain_level < 0) {
1200 if (default_relax_domain_level < 0)
1201 return;
1202 request = default_relax_domain_level;
1203 } else
1204 request = attr->relax_domain_level;
1205
1206 if (sd->level > request) {
1207 /* Turn off idle balance on this domain: */
1208 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1209 }
1210}
1211
1212static void __sdt_free(const struct cpumask *cpu_map);
1213static int __sdt_alloc(const struct cpumask *cpu_map);
1214
1215static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1216 const struct cpumask *cpu_map)
1217{
1218 switch (what) {
1219 case sa_rootdomain:
1220 if (!atomic_read(&d->rd->refcount))
1221 free_rootdomain(&d->rd->rcu);
1222 fallthrough;
1223 case sa_sd:
1224 free_percpu(d->sd);
1225 fallthrough;
1226 case sa_sd_storage:
1227 __sdt_free(cpu_map);
1228 fallthrough;
1229 case sa_none:
1230 break;
1231 }
1232}
1233
1234static enum s_alloc
1235__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1236{
1237 memset(d, 0, sizeof(*d));
1238
1239 if (__sdt_alloc(cpu_map))
1240 return sa_sd_storage;
1241 d->sd = alloc_percpu(struct sched_domain *);
1242 if (!d->sd)
1243 return sa_sd_storage;
1244 d->rd = alloc_rootdomain();
1245 if (!d->rd)
1246 return sa_sd;
1247
1248 return sa_rootdomain;
1249}
1250
1251/*
1252 * NULL the sd_data elements we've used to build the sched_domain and
1253 * sched_group structure so that the subsequent __free_domain_allocs()
1254 * will not free the data we're using.
1255 */
1256static void claim_allocations(int cpu, struct sched_domain *sd)
1257{
1258 struct sd_data *sdd = sd->private;
1259
1260 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1261 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1262
1263 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1264 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1265
1266 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1267 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1268
1269 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1270 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1271}
1272
1273#ifdef CONFIG_NUMA
1274enum numa_topology_type sched_numa_topology_type;
1275
1276static int sched_domains_numa_levels;
1277static int sched_domains_curr_level;
1278
1279int sched_max_numa_distance;
1280static int *sched_domains_numa_distance;
1281static struct cpumask ***sched_domains_numa_masks;
1282int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
1283#endif
1284
1285/*
1286 * SD_flags allowed in topology descriptions.
1287 *
1288 * These flags are purely descriptive of the topology and do not prescribe
1289 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1290 * function:
1291 *
1292 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1293 * SD_SHARE_PKG_RESOURCES - describes shared caches
1294 * SD_NUMA - describes NUMA topologies
1295 * SD_SHARE_POWERDOMAIN - describes shared power domain
1296 *
1297 * Odd one out, which beside describing the topology has a quirk also
1298 * prescribes the desired behaviour that goes along with it:
1299 *
1300 * SD_ASYM_PACKING - describes SMT quirks
1301 */
1302#define TOPOLOGY_SD_FLAGS \
1303 (SD_SHARE_CPUCAPACITY | \
1304 SD_SHARE_PKG_RESOURCES | \
1305 SD_NUMA | \
1306 SD_ASYM_PACKING | \
1307 SD_SHARE_POWERDOMAIN)
1308
1309static struct sched_domain *
1310sd_init(struct sched_domain_topology_level *tl,
1311 const struct cpumask *cpu_map,
1312 struct sched_domain *child, int dflags, int cpu)
1313{
1314 struct sd_data *sdd = &tl->data;
1315 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1316 int sd_id, sd_weight, sd_flags = 0;
1317
1318#ifdef CONFIG_NUMA
1319 /*
1320 * Ugly hack to pass state to sd_numa_mask()...
1321 */
1322 sched_domains_curr_level = tl->numa_level;
1323#endif
1324
1325 sd_weight = cpumask_weight(tl->mask(cpu));
1326
1327 if (tl->sd_flags)
1328 sd_flags = (*tl->sd_flags)();
1329 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1330 "wrong sd_flags in topology description\n"))
1331 sd_flags &= TOPOLOGY_SD_FLAGS;
1332
1333 /* Apply detected topology flags */
1334 sd_flags |= dflags;
1335
1336 *sd = (struct sched_domain){
1337 .min_interval = sd_weight,
1338 .max_interval = 2*sd_weight,
1339 .busy_factor = 32,
1340 .imbalance_pct = 125,
1341
1342 .cache_nice_tries = 0,
1343
1344 .flags = 1*SD_BALANCE_NEWIDLE
1345 | 1*SD_BALANCE_EXEC
1346 | 1*SD_BALANCE_FORK
1347 | 0*SD_BALANCE_WAKE
1348 | 1*SD_WAKE_AFFINE
1349 | 0*SD_SHARE_CPUCAPACITY
1350 | 0*SD_SHARE_PKG_RESOURCES
1351 | 0*SD_SERIALIZE
1352 | 1*SD_PREFER_SIBLING
1353 | 0*SD_NUMA
1354 | sd_flags
1355 ,
1356
1357 .last_balance = jiffies,
1358 .balance_interval = sd_weight,
1359 .max_newidle_lb_cost = 0,
1360 .next_decay_max_lb_cost = jiffies,
1361 .child = child,
1362#ifdef CONFIG_SCHED_DEBUG
1363 .name = tl->name,
1364#endif
1365 };
1366
1367 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1368 sd_id = cpumask_first(sched_domain_span(sd));
1369
1370 /*
1371 * Convert topological properties into behaviour.
1372 */
1373
1374 /* Don't attempt to spread across CPUs of different capacities. */
1375 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1376 sd->child->flags &= ~SD_PREFER_SIBLING;
1377
1378 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1379 sd->imbalance_pct = 110;
1380
1381 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1382 sd->imbalance_pct = 117;
1383 sd->cache_nice_tries = 1;
1384
1385#ifdef CONFIG_NUMA
1386 } else if (sd->flags & SD_NUMA) {
1387 sd->cache_nice_tries = 2;
1388
1389 sd->flags &= ~SD_PREFER_SIBLING;
1390 sd->flags |= SD_SERIALIZE;
1391 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1392 sd->flags &= ~(SD_BALANCE_EXEC |
1393 SD_BALANCE_FORK |
1394 SD_WAKE_AFFINE);
1395 }
1396
1397#endif
1398 } else {
1399 sd->cache_nice_tries = 1;
1400 }
1401
1402 /*
1403 * For all levels sharing cache; connect a sched_domain_shared
1404 * instance.
1405 */
1406 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1407 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1408 atomic_inc(&sd->shared->ref);
1409 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1410 }
1411
1412 sd->private = sdd;
1413
1414 return sd;
1415}
1416
1417/*
1418 * Topology list, bottom-up.
1419 */
1420static struct sched_domain_topology_level default_topology[] = {
1421#ifdef CONFIG_SCHED_SMT
1422 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1423#endif
1424#ifdef CONFIG_SCHED_MC
1425 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1426#endif
1427 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1428 { NULL, },
1429};
1430
1431static struct sched_domain_topology_level *sched_domain_topology =
1432 default_topology;
1433
1434#define for_each_sd_topology(tl) \
1435 for (tl = sched_domain_topology; tl->mask; tl++)
1436
1437void set_sched_topology(struct sched_domain_topology_level *tl)
1438{
1439 if (WARN_ON_ONCE(sched_smp_initialized))
1440 return;
1441
1442 sched_domain_topology = tl;
1443}
1444
1445#ifdef CONFIG_NUMA
1446
1447static const struct cpumask *sd_numa_mask(int cpu)
1448{
1449 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1450}
1451
1452static void sched_numa_warn(const char *str)
1453{
1454 static int done = false;
1455 int i,j;
1456
1457 if (done)
1458 return;
1459
1460 done = true;
1461
1462 printk(KERN_WARNING "ERROR: %s\n\n", str);
1463
1464 for (i = 0; i < nr_node_ids; i++) {
1465 printk(KERN_WARNING " ");
1466 for (j = 0; j < nr_node_ids; j++)
1467 printk(KERN_CONT "%02d ", node_distance(i,j));
1468 printk(KERN_CONT "\n");
1469 }
1470 printk(KERN_WARNING "\n");
1471}
1472
1473bool find_numa_distance(int distance)
1474{
1475 int i;
1476
1477 if (distance == node_distance(0, 0))
1478 return true;
1479
1480 for (i = 0; i < sched_domains_numa_levels; i++) {
1481 if (sched_domains_numa_distance[i] == distance)
1482 return true;
1483 }
1484
1485 return false;
1486}
1487
1488/*
1489 * A system can have three types of NUMA topology:
1490 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1491 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1492 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1493 *
1494 * The difference between a glueless mesh topology and a backplane
1495 * topology lies in whether communication between not directly
1496 * connected nodes goes through intermediary nodes (where programs
1497 * could run), or through backplane controllers. This affects
1498 * placement of programs.
1499 *
1500 * The type of topology can be discerned with the following tests:
1501 * - If the maximum distance between any nodes is 1 hop, the system
1502 * is directly connected.
1503 * - If for two nodes A and B, located N > 1 hops away from each other,
1504 * there is an intermediary node C, which is < N hops away from both
1505 * nodes A and B, the system is a glueless mesh.
1506 */
1507static void init_numa_topology_type(void)
1508{
1509 int a, b, c, n;
1510
1511 n = sched_max_numa_distance;
1512
1513 if (sched_domains_numa_levels <= 2) {
1514 sched_numa_topology_type = NUMA_DIRECT;
1515 return;
1516 }
1517
1518 for_each_online_node(a) {
1519 for_each_online_node(b) {
1520 /* Find two nodes furthest removed from each other. */
1521 if (node_distance(a, b) < n)
1522 continue;
1523
1524 /* Is there an intermediary node between a and b? */
1525 for_each_online_node(c) {
1526 if (node_distance(a, c) < n &&
1527 node_distance(b, c) < n) {
1528 sched_numa_topology_type =
1529 NUMA_GLUELESS_MESH;
1530 return;
1531 }
1532 }
1533
1534 sched_numa_topology_type = NUMA_BACKPLANE;
1535 return;
1536 }
1537 }
1538}
1539
1540void sched_init_numa(void)
1541{
1542 int next_distance, curr_distance = node_distance(0, 0);
1543 struct sched_domain_topology_level *tl;
1544 int level = 0;
1545 int i, j, k;
1546
1547 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1548 if (!sched_domains_numa_distance)
1549 return;
1550
1551 /* Includes NUMA identity node at level 0. */
1552 sched_domains_numa_distance[level++] = curr_distance;
1553 sched_domains_numa_levels = level;
1554
1555 /*
1556 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1557 * unique distances in the node_distance() table.
1558 *
1559 * Assumes node_distance(0,j) includes all distances in
1560 * node_distance(i,j) in order to avoid cubic time.
1561 */
1562 next_distance = curr_distance;
1563 for (i = 0; i < nr_node_ids; i++) {
1564 for (j = 0; j < nr_node_ids; j++) {
1565 for (k = 0; k < nr_node_ids; k++) {
1566 int distance = node_distance(i, k);
1567
1568 if (distance > curr_distance &&
1569 (distance < next_distance ||
1570 next_distance == curr_distance))
1571 next_distance = distance;
1572
1573 /*
1574 * While not a strong assumption it would be nice to know
1575 * about cases where if node A is connected to B, B is not
1576 * equally connected to A.
1577 */
1578 if (sched_debug() && node_distance(k, i) != distance)
1579 sched_numa_warn("Node-distance not symmetric");
1580
1581 if (sched_debug() && i && !find_numa_distance(distance))
1582 sched_numa_warn("Node-0 not representative");
1583 }
1584 if (next_distance != curr_distance) {
1585 sched_domains_numa_distance[level++] = next_distance;
1586 sched_domains_numa_levels = level;
1587 curr_distance = next_distance;
1588 } else break;
1589 }
1590
1591 /*
1592 * In case of sched_debug() we verify the above assumption.
1593 */
1594 if (!sched_debug())
1595 break;
1596 }
1597
1598 /*
1599 * 'level' contains the number of unique distances
1600 *
1601 * The sched_domains_numa_distance[] array includes the actual distance
1602 * numbers.
1603 */
1604
1605 /*
1606 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1607 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1608 * the array will contain less then 'level' members. This could be
1609 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1610 * in other functions.
1611 *
1612 * We reset it to 'level' at the end of this function.
1613 */
1614 sched_domains_numa_levels = 0;
1615
1616 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1617 if (!sched_domains_numa_masks)
1618 return;
1619
1620 /*
1621 * Now for each level, construct a mask per node which contains all
1622 * CPUs of nodes that are that many hops away from us.
1623 */
1624 for (i = 0; i < level; i++) {
1625 sched_domains_numa_masks[i] =
1626 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1627 if (!sched_domains_numa_masks[i])
1628 return;
1629
1630 for (j = 0; j < nr_node_ids; j++) {
1631 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1632 if (!mask)
1633 return;
1634
1635 sched_domains_numa_masks[i][j] = mask;
1636
1637 for_each_node(k) {
1638 if (node_distance(j, k) > sched_domains_numa_distance[i])
1639 continue;
1640
1641 cpumask_or(mask, mask, cpumask_of_node(k));
1642 }
1643 }
1644 }
1645
1646 /* Compute default topology size */
1647 for (i = 0; sched_domain_topology[i].mask; i++);
1648
1649 tl = kzalloc((i + level + 1) *
1650 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1651 if (!tl)
1652 return;
1653
1654 /*
1655 * Copy the default topology bits..
1656 */
1657 for (i = 0; sched_domain_topology[i].mask; i++)
1658 tl[i] = sched_domain_topology[i];
1659
1660 /*
1661 * Add the NUMA identity distance, aka single NODE.
1662 */
1663 tl[i++] = (struct sched_domain_topology_level){
1664 .mask = sd_numa_mask,
1665 .numa_level = 0,
1666 SD_INIT_NAME(NODE)
1667 };
1668
1669 /*
1670 * .. and append 'j' levels of NUMA goodness.
1671 */
1672 for (j = 1; j < level; i++, j++) {
1673 tl[i] = (struct sched_domain_topology_level){
1674 .mask = sd_numa_mask,
1675 .sd_flags = cpu_numa_flags,
1676 .flags = SDTL_OVERLAP,
1677 .numa_level = j,
1678 SD_INIT_NAME(NUMA)
1679 };
1680 }
1681
1682 sched_domain_topology = tl;
1683
1684 sched_domains_numa_levels = level;
1685 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1686
1687 init_numa_topology_type();
1688}
1689
1690void sched_domains_numa_masks_set(unsigned int cpu)
1691{
1692 int node = cpu_to_node(cpu);
1693 int i, j;
1694
1695 for (i = 0; i < sched_domains_numa_levels; i++) {
1696 for (j = 0; j < nr_node_ids; j++) {
1697 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1698 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1699 }
1700 }
1701}
1702
1703void sched_domains_numa_masks_clear(unsigned int cpu)
1704{
1705 int i, j;
1706
1707 for (i = 0; i < sched_domains_numa_levels; i++) {
1708 for (j = 0; j < nr_node_ids; j++)
1709 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1710 }
1711}
1712
1713/*
1714 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1715 * closest to @cpu from @cpumask.
1716 * cpumask: cpumask to find a cpu from
1717 * cpu: cpu to be close to
1718 *
1719 * returns: cpu, or nr_cpu_ids when nothing found.
1720 */
1721int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1722{
1723 int i, j = cpu_to_node(cpu);
1724
1725 for (i = 0; i < sched_domains_numa_levels; i++) {
1726 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1727 if (cpu < nr_cpu_ids)
1728 return cpu;
1729 }
1730 return nr_cpu_ids;
1731}
1732
1733#endif /* CONFIG_NUMA */
1734
1735static int __sdt_alloc(const struct cpumask *cpu_map)
1736{
1737 struct sched_domain_topology_level *tl;
1738 int j;
1739
1740 for_each_sd_topology(tl) {
1741 struct sd_data *sdd = &tl->data;
1742
1743 sdd->sd = alloc_percpu(struct sched_domain *);
1744 if (!sdd->sd)
1745 return -ENOMEM;
1746
1747 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1748 if (!sdd->sds)
1749 return -ENOMEM;
1750
1751 sdd->sg = alloc_percpu(struct sched_group *);
1752 if (!sdd->sg)
1753 return -ENOMEM;
1754
1755 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1756 if (!sdd->sgc)
1757 return -ENOMEM;
1758
1759 for_each_cpu(j, cpu_map) {
1760 struct sched_domain *sd;
1761 struct sched_domain_shared *sds;
1762 struct sched_group *sg;
1763 struct sched_group_capacity *sgc;
1764
1765 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1766 GFP_KERNEL, cpu_to_node(j));
1767 if (!sd)
1768 return -ENOMEM;
1769
1770 *per_cpu_ptr(sdd->sd, j) = sd;
1771
1772 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1773 GFP_KERNEL, cpu_to_node(j));
1774 if (!sds)
1775 return -ENOMEM;
1776
1777 *per_cpu_ptr(sdd->sds, j) = sds;
1778
1779 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1780 GFP_KERNEL, cpu_to_node(j));
1781 if (!sg)
1782 return -ENOMEM;
1783
1784 sg->next = sg;
1785
1786 *per_cpu_ptr(sdd->sg, j) = sg;
1787
1788 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1789 GFP_KERNEL, cpu_to_node(j));
1790 if (!sgc)
1791 return -ENOMEM;
1792
1793#ifdef CONFIG_SCHED_DEBUG
1794 sgc->id = j;
1795#endif
1796
1797 *per_cpu_ptr(sdd->sgc, j) = sgc;
1798 }
1799 }
1800
1801 return 0;
1802}
1803
1804static void __sdt_free(const struct cpumask *cpu_map)
1805{
1806 struct sched_domain_topology_level *tl;
1807 int j;
1808
1809 for_each_sd_topology(tl) {
1810 struct sd_data *sdd = &tl->data;
1811
1812 for_each_cpu(j, cpu_map) {
1813 struct sched_domain *sd;
1814
1815 if (sdd->sd) {
1816 sd = *per_cpu_ptr(sdd->sd, j);
1817 if (sd && (sd->flags & SD_OVERLAP))
1818 free_sched_groups(sd->groups, 0);
1819 kfree(*per_cpu_ptr(sdd->sd, j));
1820 }
1821
1822 if (sdd->sds)
1823 kfree(*per_cpu_ptr(sdd->sds, j));
1824 if (sdd->sg)
1825 kfree(*per_cpu_ptr(sdd->sg, j));
1826 if (sdd->sgc)
1827 kfree(*per_cpu_ptr(sdd->sgc, j));
1828 }
1829 free_percpu(sdd->sd);
1830 sdd->sd = NULL;
1831 free_percpu(sdd->sds);
1832 sdd->sds = NULL;
1833 free_percpu(sdd->sg);
1834 sdd->sg = NULL;
1835 free_percpu(sdd->sgc);
1836 sdd->sgc = NULL;
1837 }
1838}
1839
1840static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1841 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1842 struct sched_domain *child, int dflags, int cpu)
1843{
1844 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1845
1846 if (child) {
1847 sd->level = child->level + 1;
1848 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1849 child->parent = sd;
1850
1851 if (!cpumask_subset(sched_domain_span(child),
1852 sched_domain_span(sd))) {
1853 pr_err("BUG: arch topology borken\n");
1854#ifdef CONFIG_SCHED_DEBUG
1855 pr_err(" the %s domain not a subset of the %s domain\n",
1856 child->name, sd->name);
1857#endif
1858 /* Fixup, ensure @sd has at least @child CPUs. */
1859 cpumask_or(sched_domain_span(sd),
1860 sched_domain_span(sd),
1861 sched_domain_span(child));
1862 }
1863
1864 }
1865 set_domain_attribute(sd, attr);
1866
1867 return sd;
1868}
1869
1870/*
1871 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1872 * any two given CPUs at this (non-NUMA) topology level.
1873 */
1874static bool topology_span_sane(struct sched_domain_topology_level *tl,
1875 const struct cpumask *cpu_map, int cpu)
1876{
1877 int i;
1878
1879 /* NUMA levels are allowed to overlap */
1880 if (tl->flags & SDTL_OVERLAP)
1881 return true;
1882
1883 /*
1884 * Non-NUMA levels cannot partially overlap - they must be either
1885 * completely equal or completely disjoint. Otherwise we can end up
1886 * breaking the sched_group lists - i.e. a later get_group() pass
1887 * breaks the linking done for an earlier span.
1888 */
1889 for_each_cpu(i, cpu_map) {
1890 if (i == cpu)
1891 continue;
1892 /*
1893 * We should 'and' all those masks with 'cpu_map' to exactly
1894 * match the topology we're about to build, but that can only
1895 * remove CPUs, which only lessens our ability to detect
1896 * overlaps
1897 */
1898 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1899 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1900 return false;
1901 }
1902
1903 return true;
1904}
1905
1906/*
1907 * Find the sched_domain_topology_level where all CPU capacities are visible
1908 * for all CPUs.
1909 */
1910static struct sched_domain_topology_level
1911*asym_cpu_capacity_level(const struct cpumask *cpu_map)
1912{
1913 int i, j, asym_level = 0;
1914 bool asym = false;
1915 struct sched_domain_topology_level *tl, *asym_tl = NULL;
1916 unsigned long cap;
1917
1918 /* Is there any asymmetry? */
1919 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1920
1921 for_each_cpu(i, cpu_map) {
1922 if (arch_scale_cpu_capacity(i) != cap) {
1923 asym = true;
1924 break;
1925 }
1926 }
1927
1928 if (!asym)
1929 return NULL;
1930
1931 /*
1932 * Examine topology from all CPU's point of views to detect the lowest
1933 * sched_domain_topology_level where a highest capacity CPU is visible
1934 * to everyone.
1935 */
1936 for_each_cpu(i, cpu_map) {
1937 unsigned long max_capacity = arch_scale_cpu_capacity(i);
1938 int tl_id = 0;
1939
1940 for_each_sd_topology(tl) {
1941 if (tl_id < asym_level)
1942 goto next_level;
1943
1944 for_each_cpu_and(j, tl->mask(i), cpu_map) {
1945 unsigned long capacity;
1946
1947 capacity = arch_scale_cpu_capacity(j);
1948
1949 if (capacity <= max_capacity)
1950 continue;
1951
1952 max_capacity = capacity;
1953 asym_level = tl_id;
1954 asym_tl = tl;
1955 }
1956next_level:
1957 tl_id++;
1958 }
1959 }
1960
1961 return asym_tl;
1962}
1963
1964
1965/*
1966 * Build sched domains for a given set of CPUs and attach the sched domains
1967 * to the individual CPUs
1968 */
1969static int
1970build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1971{
1972 enum s_alloc alloc_state = sa_none;
1973 struct sched_domain *sd;
1974 struct s_data d;
1975 struct rq *rq = NULL;
1976 int i, ret = -ENOMEM;
1977 struct sched_domain_topology_level *tl_asym;
1978 bool has_asym = false;
1979
1980 if (WARN_ON(cpumask_empty(cpu_map)))
1981 goto error;
1982
1983 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1984 if (alloc_state != sa_rootdomain)
1985 goto error;
1986
1987 tl_asym = asym_cpu_capacity_level(cpu_map);
1988
1989 /* Set up domains for CPUs specified by the cpu_map: */
1990 for_each_cpu(i, cpu_map) {
1991 struct sched_domain_topology_level *tl;
1992
1993 sd = NULL;
1994 for_each_sd_topology(tl) {
1995 int dflags = 0;
1996
1997 if (tl == tl_asym) {
1998 dflags |= SD_ASYM_CPUCAPACITY;
1999 has_asym = true;
2000 }
2001
2002 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2003 goto error;
2004
2005 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2006
2007 if (tl == sched_domain_topology)
2008 *per_cpu_ptr(d.sd, i) = sd;
2009 if (tl->flags & SDTL_OVERLAP)
2010 sd->flags |= SD_OVERLAP;
2011 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2012 break;
2013 }
2014 }
2015
2016 /* Build the groups for the domains */
2017 for_each_cpu(i, cpu_map) {
2018 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2019 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2020 if (sd->flags & SD_OVERLAP) {
2021 if (build_overlap_sched_groups(sd, i))
2022 goto error;
2023 } else {
2024 if (build_sched_groups(sd, i))
2025 goto error;
2026 }
2027 }
2028 }
2029
2030 /* Calculate CPU capacity for physical packages and nodes */
2031 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2032 if (!cpumask_test_cpu(i, cpu_map))
2033 continue;
2034
2035 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2036 claim_allocations(i, sd);
2037 init_sched_groups_capacity(i, sd);
2038 }
2039 }
2040
2041 /* Attach the domains */
2042 rcu_read_lock();
2043 for_each_cpu(i, cpu_map) {
2044 rq = cpu_rq(i);
2045 sd = *per_cpu_ptr(d.sd, i);
2046
2047 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2048 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2049 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2050
2051 cpu_attach_domain(sd, d.rd, i);
2052 }
2053 rcu_read_unlock();
2054
2055 if (has_asym)
2056 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2057
2058 if (rq && sched_debug_enabled) {
2059 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2060 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2061 }
2062
2063 ret = 0;
2064error:
2065 __free_domain_allocs(&d, alloc_state, cpu_map);
2066
2067 return ret;
2068}
2069
2070/* Current sched domains: */
2071static cpumask_var_t *doms_cur;
2072
2073/* Number of sched domains in 'doms_cur': */
2074static int ndoms_cur;
2075
2076/* Attribues of custom domains in 'doms_cur' */
2077static struct sched_domain_attr *dattr_cur;
2078
2079/*
2080 * Special case: If a kmalloc() of a doms_cur partition (array of
2081 * cpumask) fails, then fallback to a single sched domain,
2082 * as determined by the single cpumask fallback_doms.
2083 */
2084static cpumask_var_t fallback_doms;
2085
2086/*
2087 * arch_update_cpu_topology lets virtualized architectures update the
2088 * CPU core maps. It is supposed to return 1 if the topology changed
2089 * or 0 if it stayed the same.
2090 */
2091int __weak arch_update_cpu_topology(void)
2092{
2093 return 0;
2094}
2095
2096cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2097{
2098 int i;
2099 cpumask_var_t *doms;
2100
2101 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2102 if (!doms)
2103 return NULL;
2104 for (i = 0; i < ndoms; i++) {
2105 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2106 free_sched_domains(doms, i);
2107 return NULL;
2108 }
2109 }
2110 return doms;
2111}
2112
2113void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2114{
2115 unsigned int i;
2116 for (i = 0; i < ndoms; i++)
2117 free_cpumask_var(doms[i]);
2118 kfree(doms);
2119}
2120
2121/*
2122 * Set up scheduler domains and groups. For now this just excludes isolated
2123 * CPUs, but could be used to exclude other special cases in the future.
2124 */
2125int sched_init_domains(const struct cpumask *cpu_map)
2126{
2127 int err;
2128
2129 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2130 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2131 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2132
2133 arch_update_cpu_topology();
2134 ndoms_cur = 1;
2135 doms_cur = alloc_sched_domains(ndoms_cur);
2136 if (!doms_cur)
2137 doms_cur = &fallback_doms;
2138 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2139 err = build_sched_domains(doms_cur[0], NULL);
2140 register_sched_domain_sysctl();
2141
2142 return err;
2143}
2144
2145/*
2146 * Detach sched domains from a group of CPUs specified in cpu_map
2147 * These CPUs will now be attached to the NULL domain
2148 */
2149static void detach_destroy_domains(const struct cpumask *cpu_map)
2150{
2151 unsigned int cpu = cpumask_any(cpu_map);
2152 int i;
2153
2154 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2155 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2156
2157 rcu_read_lock();
2158 for_each_cpu(i, cpu_map)
2159 cpu_attach_domain(NULL, &def_root_domain, i);
2160 rcu_read_unlock();
2161}
2162
2163/* handle null as "default" */
2164static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2165 struct sched_domain_attr *new, int idx_new)
2166{
2167 struct sched_domain_attr tmp;
2168
2169 /* Fast path: */
2170 if (!new && !cur)
2171 return 1;
2172
2173 tmp = SD_ATTR_INIT;
2174
2175 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2176 new ? (new + idx_new) : &tmp,
2177 sizeof(struct sched_domain_attr));
2178}
2179
2180/*
2181 * Partition sched domains as specified by the 'ndoms_new'
2182 * cpumasks in the array doms_new[] of cpumasks. This compares
2183 * doms_new[] to the current sched domain partitioning, doms_cur[].
2184 * It destroys each deleted domain and builds each new domain.
2185 *
2186 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2187 * The masks don't intersect (don't overlap.) We should setup one
2188 * sched domain for each mask. CPUs not in any of the cpumasks will
2189 * not be load balanced. If the same cpumask appears both in the
2190 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2191 * it as it is.
2192 *
2193 * The passed in 'doms_new' should be allocated using
2194 * alloc_sched_domains. This routine takes ownership of it and will
2195 * free_sched_domains it when done with it. If the caller failed the
2196 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2197 * and partition_sched_domains() will fallback to the single partition
2198 * 'fallback_doms', it also forces the domains to be rebuilt.
2199 *
2200 * If doms_new == NULL it will be replaced with cpu_online_mask.
2201 * ndoms_new == 0 is a special case for destroying existing domains,
2202 * and it will not create the default domain.
2203 *
2204 * Call with hotplug lock and sched_domains_mutex held
2205 */
2206void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2207 struct sched_domain_attr *dattr_new)
2208{
2209 bool __maybe_unused has_eas = false;
2210 int i, j, n;
2211 int new_topology;
2212
2213 lockdep_assert_held(&sched_domains_mutex);
2214
2215 /* Always unregister in case we don't destroy any domains: */
2216 unregister_sched_domain_sysctl();
2217
2218 /* Let the architecture update CPU core mappings: */
2219 new_topology = arch_update_cpu_topology();
2220
2221 if (!doms_new) {
2222 WARN_ON_ONCE(dattr_new);
2223 n = 0;
2224 doms_new = alloc_sched_domains(1);
2225 if (doms_new) {
2226 n = 1;
2227 cpumask_and(doms_new[0], cpu_active_mask,
2228 housekeeping_cpumask(HK_FLAG_DOMAIN));
2229 }
2230 } else {
2231 n = ndoms_new;
2232 }
2233
2234 /* Destroy deleted domains: */
2235 for (i = 0; i < ndoms_cur; i++) {
2236 for (j = 0; j < n && !new_topology; j++) {
2237 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2238 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2239 struct root_domain *rd;
2240
2241 /*
2242 * This domain won't be destroyed and as such
2243 * its dl_bw->total_bw needs to be cleared. It
2244 * will be recomputed in function
2245 * update_tasks_root_domain().
2246 */
2247 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2248 dl_clear_root_domain(rd);
2249 goto match1;
2250 }
2251 }
2252 /* No match - a current sched domain not in new doms_new[] */
2253 detach_destroy_domains(doms_cur[i]);
2254match1:
2255 ;
2256 }
2257
2258 n = ndoms_cur;
2259 if (!doms_new) {
2260 n = 0;
2261 doms_new = &fallback_doms;
2262 cpumask_and(doms_new[0], cpu_active_mask,
2263 housekeeping_cpumask(HK_FLAG_DOMAIN));
2264 }
2265
2266 /* Build new domains: */
2267 for (i = 0; i < ndoms_new; i++) {
2268 for (j = 0; j < n && !new_topology; j++) {
2269 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2270 dattrs_equal(dattr_new, i, dattr_cur, j))
2271 goto match2;
2272 }
2273 /* No match - add a new doms_new */
2274 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2275match2:
2276 ;
2277 }
2278
2279#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2280 /* Build perf. domains: */
2281 for (i = 0; i < ndoms_new; i++) {
2282 for (j = 0; j < n && !sched_energy_update; j++) {
2283 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2284 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2285 has_eas = true;
2286 goto match3;
2287 }
2288 }
2289 /* No match - add perf. domains for a new rd */
2290 has_eas |= build_perf_domains(doms_new[i]);
2291match3:
2292 ;
2293 }
2294 sched_energy_set(has_eas);
2295#endif
2296
2297 /* Remember the new sched domains: */
2298 if (doms_cur != &fallback_doms)
2299 free_sched_domains(doms_cur, ndoms_cur);
2300
2301 kfree(dattr_cur);
2302 doms_cur = doms_new;
2303 dattr_cur = dattr_new;
2304 ndoms_cur = ndoms_new;
2305
2306 register_sched_domain_sysctl();
2307}
2308
2309/*
2310 * Call with hotplug lock held
2311 */
2312void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2313 struct sched_domain_attr *dattr_new)
2314{
2315 mutex_lock(&sched_domains_mutex);
2316 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2317 mutex_unlock(&sched_domains_mutex);
2318}