Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5
   6DEFINE_MUTEX(sched_domains_mutex);
   7
   8/* Protected by sched_domains_mutex: */
   9static cpumask_var_t sched_domains_tmpmask;
  10static cpumask_var_t sched_domains_tmpmask2;
  11
  12#ifdef CONFIG_SCHED_DEBUG
  13
  14static int __init sched_debug_setup(char *str)
  15{
  16	sched_debug_verbose = true;
  17
  18	return 0;
  19}
  20early_param("sched_verbose", sched_debug_setup);
  21
  22static inline bool sched_debug(void)
  23{
  24	return sched_debug_verbose;
  25}
  26
  27#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
  28const struct sd_flag_debug sd_flag_debug[] = {
  29#include <linux/sched/sd_flags.h>
  30};
  31#undef SD_FLAG
  32
  33static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  34				  struct cpumask *groupmask)
  35{
  36	struct sched_group *group = sd->groups;
  37	unsigned long flags = sd->flags;
  38	unsigned int idx;
  39
  40	cpumask_clear(groupmask);
  41
  42	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  43	printk(KERN_CONT "span=%*pbl level=%s\n",
  44	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  45
  46	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  47		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  48	}
  49	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  50		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  51	}
  52
  53	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
  54		unsigned int flag = BIT(idx);
  55		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
  56
  57		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
  58		    !(sd->child->flags & flag))
  59			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
  60			       sd_flag_debug[idx].name);
  61
  62		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
  63		    !(sd->parent->flags & flag))
  64			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
  65			       sd_flag_debug[idx].name);
  66	}
  67
  68	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  69	do {
  70		if (!group) {
  71			printk("\n");
  72			printk(KERN_ERR "ERROR: group is NULL\n");
  73			break;
  74		}
  75
  76		if (cpumask_empty(sched_group_span(group))) {
  77			printk(KERN_CONT "\n");
  78			printk(KERN_ERR "ERROR: empty group\n");
  79			break;
  80		}
  81
  82		if (!(sd->flags & SD_OVERLAP) &&
  83		    cpumask_intersects(groupmask, sched_group_span(group))) {
  84			printk(KERN_CONT "\n");
  85			printk(KERN_ERR "ERROR: repeated CPUs\n");
  86			break;
  87		}
  88
  89		cpumask_or(groupmask, groupmask, sched_group_span(group));
  90
  91		printk(KERN_CONT " %d:{ span=%*pbl",
  92				group->sgc->id,
  93				cpumask_pr_args(sched_group_span(group)));
  94
  95		if ((sd->flags & SD_OVERLAP) &&
  96		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  97			printk(KERN_CONT " mask=%*pbl",
  98				cpumask_pr_args(group_balance_mask(group)));
  99		}
 100
 101		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
 102			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
 103
 104		if (group == sd->groups && sd->child &&
 105		    !cpumask_equal(sched_domain_span(sd->child),
 106				   sched_group_span(group))) {
 107			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 108		}
 109
 110		printk(KERN_CONT " }");
 111
 112		group = group->next;
 113
 114		if (group != sd->groups)
 115			printk(KERN_CONT ",");
 116
 117	} while (group != sd->groups);
 118	printk(KERN_CONT "\n");
 119
 120	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 121		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 122
 123	if (sd->parent &&
 124	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 125		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 126	return 0;
 127}
 128
 129static void sched_domain_debug(struct sched_domain *sd, int cpu)
 130{
 131	int level = 0;
 132
 133	if (!sched_debug_verbose)
 134		return;
 135
 136	if (!sd) {
 137		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 138		return;
 139	}
 140
 141	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 142
 143	for (;;) {
 144		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 145			break;
 146		level++;
 147		sd = sd->parent;
 148		if (!sd)
 149			break;
 150	}
 151}
 152#else /* !CONFIG_SCHED_DEBUG */
 153
 154# define sched_debug_verbose 0
 155# define sched_domain_debug(sd, cpu) do { } while (0)
 156static inline bool sched_debug(void)
 157{
 158	return false;
 159}
 160#endif /* CONFIG_SCHED_DEBUG */
 161
 162/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
 163#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
 164static const unsigned int SD_DEGENERATE_GROUPS_MASK =
 165#include <linux/sched/sd_flags.h>
 1660;
 167#undef SD_FLAG
 168
 169static int sd_degenerate(struct sched_domain *sd)
 170{
 171	if (cpumask_weight(sched_domain_span(sd)) == 1)
 172		return 1;
 173
 174	/* Following flags need at least 2 groups */
 175	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
 176	    (sd->groups != sd->groups->next))
 177		return 0;
 178
 179	/* Following flags don't use groups */
 180	if (sd->flags & (SD_WAKE_AFFINE))
 181		return 0;
 182
 183	return 1;
 184}
 185
 186static int
 187sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 188{
 189	unsigned long cflags = sd->flags, pflags = parent->flags;
 190
 191	if (sd_degenerate(parent))
 192		return 1;
 193
 194	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 195		return 0;
 196
 197	/* Flags needing groups don't count if only 1 group in parent */
 198	if (parent->groups == parent->groups->next)
 199		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
 200
 201	if (~cflags & pflags)
 202		return 0;
 203
 204	return 1;
 205}
 206
 207#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 208DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 209static unsigned int sysctl_sched_energy_aware = 1;
 210DEFINE_MUTEX(sched_energy_mutex);
 211bool sched_energy_update;
 212
 213void rebuild_sched_domains_energy(void)
 214{
 215	mutex_lock(&sched_energy_mutex);
 216	sched_energy_update = true;
 217	rebuild_sched_domains();
 218	sched_energy_update = false;
 219	mutex_unlock(&sched_energy_mutex);
 220}
 221
 222#ifdef CONFIG_PROC_SYSCTL
 223static int sched_energy_aware_handler(struct ctl_table *table, int write,
 224		void *buffer, size_t *lenp, loff_t *ppos)
 225{
 226	int ret, state;
 227
 228	if (write && !capable(CAP_SYS_ADMIN))
 229		return -EPERM;
 230
 231	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 232	if (!ret && write) {
 233		state = static_branch_unlikely(&sched_energy_present);
 234		if (state != sysctl_sched_energy_aware)
 235			rebuild_sched_domains_energy();
 236	}
 237
 238	return ret;
 239}
 240
 241static struct ctl_table sched_energy_aware_sysctls[] = {
 242	{
 243		.procname       = "sched_energy_aware",
 244		.data           = &sysctl_sched_energy_aware,
 245		.maxlen         = sizeof(unsigned int),
 246		.mode           = 0644,
 247		.proc_handler   = sched_energy_aware_handler,
 248		.extra1         = SYSCTL_ZERO,
 249		.extra2         = SYSCTL_ONE,
 250	},
 251	{}
 252};
 253
 254static int __init sched_energy_aware_sysctl_init(void)
 255{
 256	register_sysctl_init("kernel", sched_energy_aware_sysctls);
 257	return 0;
 258}
 259
 260late_initcall(sched_energy_aware_sysctl_init);
 261#endif
 262
 263static void free_pd(struct perf_domain *pd)
 264{
 265	struct perf_domain *tmp;
 266
 267	while (pd) {
 268		tmp = pd->next;
 269		kfree(pd);
 270		pd = tmp;
 271	}
 272}
 273
 274static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 275{
 276	while (pd) {
 277		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 278			return pd;
 279		pd = pd->next;
 280	}
 281
 282	return NULL;
 283}
 284
 285static struct perf_domain *pd_init(int cpu)
 286{
 287	struct em_perf_domain *obj = em_cpu_get(cpu);
 288	struct perf_domain *pd;
 289
 290	if (!obj) {
 291		if (sched_debug())
 292			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 293		return NULL;
 294	}
 295
 296	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 297	if (!pd)
 298		return NULL;
 299	pd->em_pd = obj;
 300
 301	return pd;
 302}
 303
 304static void perf_domain_debug(const struct cpumask *cpu_map,
 305						struct perf_domain *pd)
 306{
 307	if (!sched_debug() || !pd)
 308		return;
 309
 310	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 311
 312	while (pd) {
 313		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
 314				cpumask_first(perf_domain_span(pd)),
 315				cpumask_pr_args(perf_domain_span(pd)),
 316				em_pd_nr_perf_states(pd->em_pd));
 317		pd = pd->next;
 318	}
 319
 320	printk(KERN_CONT "\n");
 321}
 322
 323static void destroy_perf_domain_rcu(struct rcu_head *rp)
 324{
 325	struct perf_domain *pd;
 326
 327	pd = container_of(rp, struct perf_domain, rcu);
 328	free_pd(pd);
 329}
 330
 331static void sched_energy_set(bool has_eas)
 332{
 333	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 334		if (sched_debug())
 335			pr_info("%s: stopping EAS\n", __func__);
 336		static_branch_disable_cpuslocked(&sched_energy_present);
 337	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 338		if (sched_debug())
 339			pr_info("%s: starting EAS\n", __func__);
 340		static_branch_enable_cpuslocked(&sched_energy_present);
 341	}
 342}
 343
 344/*
 345 * EAS can be used on a root domain if it meets all the following conditions:
 346 *    1. an Energy Model (EM) is available;
 347 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 348 *    3. no SMT is detected.
 349 *    4. the EM complexity is low enough to keep scheduling overheads low;
 350 *    5. schedutil is driving the frequency of all CPUs of the rd;
 351 *    6. frequency invariance support is present;
 352 *
 353 * The complexity of the Energy Model is defined as:
 354 *
 355 *              C = nr_pd * (nr_cpus + nr_ps)
 356 *
 357 * with parameters defined as:
 358 *  - nr_pd:    the number of performance domains
 359 *  - nr_cpus:  the number of CPUs
 360 *  - nr_ps:    the sum of the number of performance states of all performance
 361 *              domains (for example, on a system with 2 performance domains,
 362 *              with 10 performance states each, nr_ps = 2 * 10 = 20).
 363 *
 364 * It is generally not a good idea to use such a model in the wake-up path on
 365 * very complex platforms because of the associated scheduling overheads. The
 366 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
 367 * with per-CPU DVFS and less than 8 performance states each, for example.
 368 */
 369#define EM_MAX_COMPLEXITY 2048
 370
 371extern struct cpufreq_governor schedutil_gov;
 372static bool build_perf_domains(const struct cpumask *cpu_map)
 373{
 374	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
 375	struct perf_domain *pd = NULL, *tmp;
 376	int cpu = cpumask_first(cpu_map);
 377	struct root_domain *rd = cpu_rq(cpu)->rd;
 378	struct cpufreq_policy *policy;
 379	struct cpufreq_governor *gov;
 380
 381	if (!sysctl_sched_energy_aware)
 382		goto free;
 383
 384	/* EAS is enabled for asymmetric CPU capacity topologies. */
 385	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
 386		if (sched_debug()) {
 387			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
 388					cpumask_pr_args(cpu_map));
 389		}
 390		goto free;
 391	}
 392
 393	/* EAS definitely does *not* handle SMT */
 394	if (sched_smt_active()) {
 395		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
 396			cpumask_pr_args(cpu_map));
 397		goto free;
 398	}
 399
 400	if (!arch_scale_freq_invariant()) {
 401		if (sched_debug()) {
 402			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
 403				cpumask_pr_args(cpu_map));
 404		}
 405		goto free;
 406	}
 407
 408	for_each_cpu(i, cpu_map) {
 409		/* Skip already covered CPUs. */
 410		if (find_pd(pd, i))
 411			continue;
 412
 413		/* Do not attempt EAS if schedutil is not being used. */
 414		policy = cpufreq_cpu_get(i);
 415		if (!policy)
 416			goto free;
 417		gov = policy->governor;
 418		cpufreq_cpu_put(policy);
 419		if (gov != &schedutil_gov) {
 420			if (rd->pd)
 421				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
 422						cpumask_pr_args(cpu_map));
 423			goto free;
 424		}
 425
 426		/* Create the new pd and add it to the local list. */
 427		tmp = pd_init(i);
 428		if (!tmp)
 429			goto free;
 430		tmp->next = pd;
 431		pd = tmp;
 432
 433		/*
 434		 * Count performance domains and performance states for the
 435		 * complexity check.
 436		 */
 437		nr_pd++;
 438		nr_ps += em_pd_nr_perf_states(pd->em_pd);
 439	}
 440
 441	/* Bail out if the Energy Model complexity is too high. */
 442	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
 443		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
 444						cpumask_pr_args(cpu_map));
 445		goto free;
 446	}
 447
 448	perf_domain_debug(cpu_map, pd);
 449
 450	/* Attach the new list of performance domains to the root domain. */
 451	tmp = rd->pd;
 452	rcu_assign_pointer(rd->pd, pd);
 453	if (tmp)
 454		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 455
 456	return !!pd;
 457
 458free:
 459	free_pd(pd);
 460	tmp = rd->pd;
 461	rcu_assign_pointer(rd->pd, NULL);
 462	if (tmp)
 463		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 464
 465	return false;
 466}
 467#else
 468static void free_pd(struct perf_domain *pd) { }
 469#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 470
 471static void free_rootdomain(struct rcu_head *rcu)
 472{
 473	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 474
 475	cpupri_cleanup(&rd->cpupri);
 476	cpudl_cleanup(&rd->cpudl);
 477	free_cpumask_var(rd->dlo_mask);
 478	free_cpumask_var(rd->rto_mask);
 479	free_cpumask_var(rd->online);
 480	free_cpumask_var(rd->span);
 481	free_pd(rd->pd);
 482	kfree(rd);
 483}
 484
 485void rq_attach_root(struct rq *rq, struct root_domain *rd)
 486{
 487	struct root_domain *old_rd = NULL;
 488	unsigned long flags;
 489
 490	raw_spin_rq_lock_irqsave(rq, flags);
 491
 492	if (rq->rd) {
 493		old_rd = rq->rd;
 494
 495		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 496			set_rq_offline(rq);
 497
 498		cpumask_clear_cpu(rq->cpu, old_rd->span);
 499
 500		/*
 501		 * If we dont want to free the old_rd yet then
 502		 * set old_rd to NULL to skip the freeing later
 503		 * in this function:
 504		 */
 505		if (!atomic_dec_and_test(&old_rd->refcount))
 506			old_rd = NULL;
 507	}
 508
 509	atomic_inc(&rd->refcount);
 510	rq->rd = rd;
 511
 512	cpumask_set_cpu(rq->cpu, rd->span);
 513	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 514		set_rq_online(rq);
 515
 516	raw_spin_rq_unlock_irqrestore(rq, flags);
 517
 518	if (old_rd)
 519		call_rcu(&old_rd->rcu, free_rootdomain);
 520}
 521
 522void sched_get_rd(struct root_domain *rd)
 523{
 524	atomic_inc(&rd->refcount);
 525}
 526
 527void sched_put_rd(struct root_domain *rd)
 528{
 529	if (!atomic_dec_and_test(&rd->refcount))
 530		return;
 531
 532	call_rcu(&rd->rcu, free_rootdomain);
 533}
 534
 535static int init_rootdomain(struct root_domain *rd)
 536{
 537	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 538		goto out;
 539	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 540		goto free_span;
 541	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 542		goto free_online;
 543	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 544		goto free_dlo_mask;
 545
 546#ifdef HAVE_RT_PUSH_IPI
 547	rd->rto_cpu = -1;
 548	raw_spin_lock_init(&rd->rto_lock);
 549	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
 550#endif
 551
 552	rd->visit_gen = 0;
 553	init_dl_bw(&rd->dl_bw);
 554	if (cpudl_init(&rd->cpudl) != 0)
 555		goto free_rto_mask;
 556
 557	if (cpupri_init(&rd->cpupri) != 0)
 558		goto free_cpudl;
 559	return 0;
 560
 561free_cpudl:
 562	cpudl_cleanup(&rd->cpudl);
 563free_rto_mask:
 564	free_cpumask_var(rd->rto_mask);
 565free_dlo_mask:
 566	free_cpumask_var(rd->dlo_mask);
 567free_online:
 568	free_cpumask_var(rd->online);
 569free_span:
 570	free_cpumask_var(rd->span);
 571out:
 572	return -ENOMEM;
 573}
 574
 575/*
 576 * By default the system creates a single root-domain with all CPUs as
 577 * members (mimicking the global state we have today).
 578 */
 579struct root_domain def_root_domain;
 580
 581void init_defrootdomain(void)
 582{
 583	init_rootdomain(&def_root_domain);
 584
 585	atomic_set(&def_root_domain.refcount, 1);
 586}
 587
 588static struct root_domain *alloc_rootdomain(void)
 589{
 590	struct root_domain *rd;
 591
 592	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 593	if (!rd)
 594		return NULL;
 595
 596	if (init_rootdomain(rd) != 0) {
 597		kfree(rd);
 598		return NULL;
 599	}
 600
 601	return rd;
 602}
 603
 604static void free_sched_groups(struct sched_group *sg, int free_sgc)
 605{
 606	struct sched_group *tmp, *first;
 607
 608	if (!sg)
 609		return;
 610
 611	first = sg;
 612	do {
 613		tmp = sg->next;
 614
 615		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 616			kfree(sg->sgc);
 617
 618		if (atomic_dec_and_test(&sg->ref))
 619			kfree(sg);
 620		sg = tmp;
 621	} while (sg != first);
 622}
 623
 624static void destroy_sched_domain(struct sched_domain *sd)
 625{
 626	/*
 627	 * A normal sched domain may have multiple group references, an
 628	 * overlapping domain, having private groups, only one.  Iterate,
 629	 * dropping group/capacity references, freeing where none remain.
 630	 */
 631	free_sched_groups(sd->groups, 1);
 632
 633	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 634		kfree(sd->shared);
 635	kfree(sd);
 636}
 637
 638static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 639{
 640	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 641
 642	while (sd) {
 643		struct sched_domain *parent = sd->parent;
 644		destroy_sched_domain(sd);
 645		sd = parent;
 646	}
 647}
 648
 649static void destroy_sched_domains(struct sched_domain *sd)
 650{
 651	if (sd)
 652		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 653}
 654
 655/*
 656 * Keep a special pointer to the highest sched_domain that has
 657 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 658 * allows us to avoid some pointer chasing select_idle_sibling().
 659 *
 660 * Also keep a unique ID per domain (we use the first CPU number in
 661 * the cpumask of the domain), this allows us to quickly tell if
 662 * two CPUs are in the same cache domain, see cpus_share_cache().
 663 */
 664DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 665DEFINE_PER_CPU(int, sd_llc_size);
 666DEFINE_PER_CPU(int, sd_llc_id);
 667DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 668DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 669DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 670DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 671DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 672
 673static void update_top_cache_domain(int cpu)
 674{
 675	struct sched_domain_shared *sds = NULL;
 676	struct sched_domain *sd;
 677	int id = cpu;
 678	int size = 1;
 679
 680	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 681	if (sd) {
 682		id = cpumask_first(sched_domain_span(sd));
 683		size = cpumask_weight(sched_domain_span(sd));
 684		sds = sd->shared;
 685	}
 686
 687	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 688	per_cpu(sd_llc_size, cpu) = size;
 689	per_cpu(sd_llc_id, cpu) = id;
 690	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 691
 692	sd = lowest_flag_domain(cpu, SD_NUMA);
 693	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 694
 695	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 696	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 697
 698	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
 699	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 700}
 701
 702/*
 703 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 704 * hold the hotplug lock.
 705 */
 706static void
 707cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 708{
 709	struct rq *rq = cpu_rq(cpu);
 710	struct sched_domain *tmp;
 711
 712	/* Remove the sched domains which do not contribute to scheduling. */
 713	for (tmp = sd; tmp; ) {
 714		struct sched_domain *parent = tmp->parent;
 715		if (!parent)
 716			break;
 717
 718		if (sd_parent_degenerate(tmp, parent)) {
 719			tmp->parent = parent->parent;
 720			if (parent->parent)
 721				parent->parent->child = tmp;
 722			/*
 723			 * Transfer SD_PREFER_SIBLING down in case of a
 724			 * degenerate parent; the spans match for this
 725			 * so the property transfers.
 726			 */
 727			if (parent->flags & SD_PREFER_SIBLING)
 728				tmp->flags |= SD_PREFER_SIBLING;
 729			destroy_sched_domain(parent);
 730		} else
 731			tmp = tmp->parent;
 732	}
 733
 734	if (sd && sd_degenerate(sd)) {
 735		tmp = sd;
 736		sd = sd->parent;
 737		destroy_sched_domain(tmp);
 738		if (sd) {
 739			struct sched_group *sg = sd->groups;
 740
 741			/*
 742			 * sched groups hold the flags of the child sched
 743			 * domain for convenience. Clear such flags since
 744			 * the child is being destroyed.
 745			 */
 746			do {
 747				sg->flags = 0;
 748			} while (sg != sd->groups);
 749
 750			sd->child = NULL;
 751		}
 752	}
 753
 754	sched_domain_debug(sd, cpu);
 755
 756	rq_attach_root(rq, rd);
 757	tmp = rq->sd;
 758	rcu_assign_pointer(rq->sd, sd);
 759	dirty_sched_domain_sysctl(cpu);
 760	destroy_sched_domains(tmp);
 761
 762	update_top_cache_domain(cpu);
 763}
 764
 765struct s_data {
 766	struct sched_domain * __percpu *sd;
 767	struct root_domain	*rd;
 768};
 769
 770enum s_alloc {
 771	sa_rootdomain,
 772	sa_sd,
 773	sa_sd_storage,
 774	sa_none,
 775};
 776
 777/*
 778 * Return the canonical balance CPU for this group, this is the first CPU
 779 * of this group that's also in the balance mask.
 780 *
 781 * The balance mask are all those CPUs that could actually end up at this
 782 * group. See build_balance_mask().
 783 *
 784 * Also see should_we_balance().
 785 */
 786int group_balance_cpu(struct sched_group *sg)
 787{
 788	return cpumask_first(group_balance_mask(sg));
 789}
 790
 791
 792/*
 793 * NUMA topology (first read the regular topology blurb below)
 794 *
 795 * Given a node-distance table, for example:
 796 *
 797 *   node   0   1   2   3
 798 *     0:  10  20  30  20
 799 *     1:  20  10  20  30
 800 *     2:  30  20  10  20
 801 *     3:  20  30  20  10
 802 *
 803 * which represents a 4 node ring topology like:
 804 *
 805 *   0 ----- 1
 806 *   |       |
 807 *   |       |
 808 *   |       |
 809 *   3 ----- 2
 810 *
 811 * We want to construct domains and groups to represent this. The way we go
 812 * about doing this is to build the domains on 'hops'. For each NUMA level we
 813 * construct the mask of all nodes reachable in @level hops.
 814 *
 815 * For the above NUMA topology that gives 3 levels:
 816 *
 817 * NUMA-2	0-3		0-3		0-3		0-3
 818 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 819 *
 820 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 821 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 822 *
 823 * NUMA-0	0		1		2		3
 824 *
 825 *
 826 * As can be seen; things don't nicely line up as with the regular topology.
 827 * When we iterate a domain in child domain chunks some nodes can be
 828 * represented multiple times -- hence the "overlap" naming for this part of
 829 * the topology.
 830 *
 831 * In order to minimize this overlap, we only build enough groups to cover the
 832 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 833 *
 834 * Because:
 835 *
 836 *  - the first group of each domain is its child domain; this
 837 *    gets us the first 0-1,3
 838 *  - the only uncovered node is 2, who's child domain is 1-3.
 839 *
 840 * However, because of the overlap, computing a unique CPU for each group is
 841 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 842 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 843 * end up at those groups (they would end up in group: 0-1,3).
 844 *
 845 * To correct this we have to introduce the group balance mask. This mask
 846 * will contain those CPUs in the group that can reach this group given the
 847 * (child) domain tree.
 848 *
 849 * With this we can once again compute balance_cpu and sched_group_capacity
 850 * relations.
 851 *
 852 * XXX include words on how balance_cpu is unique and therefore can be
 853 * used for sched_group_capacity links.
 854 *
 855 *
 856 * Another 'interesting' topology is:
 857 *
 858 *   node   0   1   2   3
 859 *     0:  10  20  20  30
 860 *     1:  20  10  20  20
 861 *     2:  20  20  10  20
 862 *     3:  30  20  20  10
 863 *
 864 * Which looks a little like:
 865 *
 866 *   0 ----- 1
 867 *   |     / |
 868 *   |   /   |
 869 *   | /     |
 870 *   2 ----- 3
 871 *
 872 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 873 * are not.
 874 *
 875 * This leads to a few particularly weird cases where the sched_domain's are
 876 * not of the same number for each CPU. Consider:
 877 *
 878 * NUMA-2	0-3						0-3
 879 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 880 *
 881 * NUMA-1	0-2		0-3		0-3		1-3
 882 *
 883 * NUMA-0	0		1		2		3
 884 *
 885 */
 886
 887
 888/*
 889 * Build the balance mask; it contains only those CPUs that can arrive at this
 890 * group and should be considered to continue balancing.
 891 *
 892 * We do this during the group creation pass, therefore the group information
 893 * isn't complete yet, however since each group represents a (child) domain we
 894 * can fully construct this using the sched_domain bits (which are already
 895 * complete).
 896 */
 897static void
 898build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 899{
 900	const struct cpumask *sg_span = sched_group_span(sg);
 901	struct sd_data *sdd = sd->private;
 902	struct sched_domain *sibling;
 903	int i;
 904
 905	cpumask_clear(mask);
 906
 907	for_each_cpu(i, sg_span) {
 908		sibling = *per_cpu_ptr(sdd->sd, i);
 909
 910		/*
 911		 * Can happen in the asymmetric case, where these siblings are
 912		 * unused. The mask will not be empty because those CPUs that
 913		 * do have the top domain _should_ span the domain.
 914		 */
 915		if (!sibling->child)
 916			continue;
 917
 918		/* If we would not end up here, we can't continue from here */
 919		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 920			continue;
 921
 922		cpumask_set_cpu(i, mask);
 923	}
 924
 925	/* We must not have empty masks here */
 926	WARN_ON_ONCE(cpumask_empty(mask));
 927}
 928
 929/*
 930 * XXX: This creates per-node group entries; since the load-balancer will
 931 * immediately access remote memory to construct this group's load-balance
 932 * statistics having the groups node local is of dubious benefit.
 933 */
 934static struct sched_group *
 935build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 936{
 937	struct sched_group *sg;
 938	struct cpumask *sg_span;
 939
 940	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 941			GFP_KERNEL, cpu_to_node(cpu));
 942
 943	if (!sg)
 944		return NULL;
 945
 946	sg_span = sched_group_span(sg);
 947	if (sd->child) {
 948		cpumask_copy(sg_span, sched_domain_span(sd->child));
 949		sg->flags = sd->child->flags;
 950	} else {
 951		cpumask_copy(sg_span, sched_domain_span(sd));
 952	}
 953
 954	atomic_inc(&sg->ref);
 955	return sg;
 956}
 957
 958static void init_overlap_sched_group(struct sched_domain *sd,
 959				     struct sched_group *sg)
 960{
 961	struct cpumask *mask = sched_domains_tmpmask2;
 962	struct sd_data *sdd = sd->private;
 963	struct cpumask *sg_span;
 964	int cpu;
 965
 966	build_balance_mask(sd, sg, mask);
 967	cpu = cpumask_first(mask);
 968
 969	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 970	if (atomic_inc_return(&sg->sgc->ref) == 1)
 971		cpumask_copy(group_balance_mask(sg), mask);
 972	else
 973		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 974
 975	/*
 976	 * Initialize sgc->capacity such that even if we mess up the
 977	 * domains and no possible iteration will get us here, we won't
 978	 * die on a /0 trap.
 979	 */
 980	sg_span = sched_group_span(sg);
 981	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 982	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 983	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
 984}
 985
 986static struct sched_domain *
 987find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
 988{
 989	/*
 990	 * The proper descendant would be the one whose child won't span out
 991	 * of sd
 992	 */
 993	while (sibling->child &&
 994	       !cpumask_subset(sched_domain_span(sibling->child),
 995			       sched_domain_span(sd)))
 996		sibling = sibling->child;
 997
 998	/*
 999	 * As we are referencing sgc across different topology level, we need
1000	 * to go down to skip those sched_domains which don't contribute to
1001	 * scheduling because they will be degenerated in cpu_attach_domain
1002	 */
1003	while (sibling->child &&
1004	       cpumask_equal(sched_domain_span(sibling->child),
1005			     sched_domain_span(sibling)))
1006		sibling = sibling->child;
1007
1008	return sibling;
1009}
1010
1011static int
1012build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1013{
1014	struct sched_group *first = NULL, *last = NULL, *sg;
1015	const struct cpumask *span = sched_domain_span(sd);
1016	struct cpumask *covered = sched_domains_tmpmask;
1017	struct sd_data *sdd = sd->private;
1018	struct sched_domain *sibling;
1019	int i;
1020
1021	cpumask_clear(covered);
1022
1023	for_each_cpu_wrap(i, span, cpu) {
1024		struct cpumask *sg_span;
1025
1026		if (cpumask_test_cpu(i, covered))
1027			continue;
1028
1029		sibling = *per_cpu_ptr(sdd->sd, i);
1030
1031		/*
1032		 * Asymmetric node setups can result in situations where the
1033		 * domain tree is of unequal depth, make sure to skip domains
1034		 * that already cover the entire range.
1035		 *
1036		 * In that case build_sched_domains() will have terminated the
1037		 * iteration early and our sibling sd spans will be empty.
1038		 * Domains should always include the CPU they're built on, so
1039		 * check that.
1040		 */
1041		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1042			continue;
1043
1044		/*
1045		 * Usually we build sched_group by sibling's child sched_domain
1046		 * But for machines whose NUMA diameter are 3 or above, we move
1047		 * to build sched_group by sibling's proper descendant's child
1048		 * domain because sibling's child sched_domain will span out of
1049		 * the sched_domain being built as below.
1050		 *
1051		 * Smallest diameter=3 topology is:
1052		 *
1053		 *   node   0   1   2   3
1054		 *     0:  10  20  30  40
1055		 *     1:  20  10  20  30
1056		 *     2:  30  20  10  20
1057		 *     3:  40  30  20  10
1058		 *
1059		 *   0 --- 1 --- 2 --- 3
1060		 *
1061		 * NUMA-3       0-3             N/A             N/A             0-3
1062		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1063		 *
1064		 * NUMA-2       0-2             0-3             0-3             1-3
1065		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1066		 *
1067		 * NUMA-1       0-1             0-2             1-3             2-3
1068		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1069		 *
1070		 * NUMA-0       0               1               2               3
1071		 *
1072		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1073		 * group span isn't a subset of the domain span.
1074		 */
1075		if (sibling->child &&
1076		    !cpumask_subset(sched_domain_span(sibling->child), span))
1077			sibling = find_descended_sibling(sd, sibling);
1078
1079		sg = build_group_from_child_sched_domain(sibling, cpu);
1080		if (!sg)
1081			goto fail;
1082
1083		sg_span = sched_group_span(sg);
1084		cpumask_or(covered, covered, sg_span);
1085
1086		init_overlap_sched_group(sibling, sg);
1087
1088		if (!first)
1089			first = sg;
1090		if (last)
1091			last->next = sg;
1092		last = sg;
1093		last->next = first;
1094	}
1095	sd->groups = first;
1096
1097	return 0;
1098
1099fail:
1100	free_sched_groups(first, 0);
1101
1102	return -ENOMEM;
1103}
1104
1105
1106/*
1107 * Package topology (also see the load-balance blurb in fair.c)
1108 *
1109 * The scheduler builds a tree structure to represent a number of important
1110 * topology features. By default (default_topology[]) these include:
1111 *
1112 *  - Simultaneous multithreading (SMT)
1113 *  - Multi-Core Cache (MC)
1114 *  - Package (DIE)
1115 *
1116 * Where the last one more or less denotes everything up to a NUMA node.
1117 *
1118 * The tree consists of 3 primary data structures:
1119 *
1120 *	sched_domain -> sched_group -> sched_group_capacity
1121 *	    ^ ^             ^ ^
1122 *          `-'             `-'
1123 *
1124 * The sched_domains are per-CPU and have a two way link (parent & child) and
1125 * denote the ever growing mask of CPUs belonging to that level of topology.
1126 *
1127 * Each sched_domain has a circular (double) linked list of sched_group's, each
1128 * denoting the domains of the level below (or individual CPUs in case of the
1129 * first domain level). The sched_group linked by a sched_domain includes the
1130 * CPU of that sched_domain [*].
1131 *
1132 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1133 *
1134 * CPU   0   1   2   3   4   5   6   7
1135 *
1136 * DIE  [                             ]
1137 * MC   [             ] [             ]
1138 * SMT  [     ] [     ] [     ] [     ]
1139 *
1140 *  - or -
1141 *
1142 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1143 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1144 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1145 *
1146 * CPU   0   1   2   3   4   5   6   7
1147 *
1148 * One way to think about it is: sched_domain moves you up and down among these
1149 * topology levels, while sched_group moves you sideways through it, at child
1150 * domain granularity.
1151 *
1152 * sched_group_capacity ensures each unique sched_group has shared storage.
1153 *
1154 * There are two related construction problems, both require a CPU that
1155 * uniquely identify each group (for a given domain):
1156 *
1157 *  - The first is the balance_cpu (see should_we_balance() and the
1158 *    load-balance blub in fair.c); for each group we only want 1 CPU to
1159 *    continue balancing at a higher domain.
1160 *
1161 *  - The second is the sched_group_capacity; we want all identical groups
1162 *    to share a single sched_group_capacity.
1163 *
1164 * Since these topologies are exclusive by construction. That is, its
1165 * impossible for an SMT thread to belong to multiple cores, and cores to
1166 * be part of multiple caches. There is a very clear and unique location
1167 * for each CPU in the hierarchy.
1168 *
1169 * Therefore computing a unique CPU for each group is trivial (the iteration
1170 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1171 * group), we can simply pick the first CPU in each group.
1172 *
1173 *
1174 * [*] in other words, the first group of each domain is its child domain.
1175 */
1176
1177static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1178{
1179	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1180	struct sched_domain *child = sd->child;
1181	struct sched_group *sg;
1182	bool already_visited;
1183
1184	if (child)
1185		cpu = cpumask_first(sched_domain_span(child));
1186
1187	sg = *per_cpu_ptr(sdd->sg, cpu);
1188	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1189
1190	/* Increase refcounts for claim_allocations: */
1191	already_visited = atomic_inc_return(&sg->ref) > 1;
1192	/* sgc visits should follow a similar trend as sg */
1193	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1194
1195	/* If we have already visited that group, it's already initialized. */
1196	if (already_visited)
1197		return sg;
1198
1199	if (child) {
1200		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1201		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1202		sg->flags = child->flags;
1203	} else {
1204		cpumask_set_cpu(cpu, sched_group_span(sg));
1205		cpumask_set_cpu(cpu, group_balance_mask(sg));
1206	}
1207
1208	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1209	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1210	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1211
1212	return sg;
1213}
1214
1215/*
1216 * build_sched_groups will build a circular linked list of the groups
1217 * covered by the given span, will set each group's ->cpumask correctly,
1218 * and will initialize their ->sgc.
1219 *
1220 * Assumes the sched_domain tree is fully constructed
1221 */
1222static int
1223build_sched_groups(struct sched_domain *sd, int cpu)
1224{
1225	struct sched_group *first = NULL, *last = NULL;
1226	struct sd_data *sdd = sd->private;
1227	const struct cpumask *span = sched_domain_span(sd);
1228	struct cpumask *covered;
1229	int i;
1230
1231	lockdep_assert_held(&sched_domains_mutex);
1232	covered = sched_domains_tmpmask;
1233
1234	cpumask_clear(covered);
1235
1236	for_each_cpu_wrap(i, span, cpu) {
1237		struct sched_group *sg;
1238
1239		if (cpumask_test_cpu(i, covered))
1240			continue;
1241
1242		sg = get_group(i, sdd);
1243
1244		cpumask_or(covered, covered, sched_group_span(sg));
1245
1246		if (!first)
1247			first = sg;
1248		if (last)
1249			last->next = sg;
1250		last = sg;
1251	}
1252	last->next = first;
1253	sd->groups = first;
1254
1255	return 0;
1256}
1257
1258/*
1259 * Initialize sched groups cpu_capacity.
1260 *
1261 * cpu_capacity indicates the capacity of sched group, which is used while
1262 * distributing the load between different sched groups in a sched domain.
1263 * Typically cpu_capacity for all the groups in a sched domain will be same
1264 * unless there are asymmetries in the topology. If there are asymmetries,
1265 * group having more cpu_capacity will pickup more load compared to the
1266 * group having less cpu_capacity.
1267 */
1268static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1269{
1270	struct sched_group *sg = sd->groups;
1271
1272	WARN_ON(!sg);
1273
1274	do {
1275		int cpu, max_cpu = -1;
1276
1277		sg->group_weight = cpumask_weight(sched_group_span(sg));
1278
1279		if (!(sd->flags & SD_ASYM_PACKING))
1280			goto next;
1281
1282		for_each_cpu(cpu, sched_group_span(sg)) {
1283			if (max_cpu < 0)
1284				max_cpu = cpu;
1285			else if (sched_asym_prefer(cpu, max_cpu))
1286				max_cpu = cpu;
1287		}
1288		sg->asym_prefer_cpu = max_cpu;
1289
1290next:
1291		sg = sg->next;
1292	} while (sg != sd->groups);
1293
1294	if (cpu != group_balance_cpu(sg))
1295		return;
1296
1297	update_group_capacity(sd, cpu);
1298}
1299
1300/*
1301 * Asymmetric CPU capacity bits
1302 */
1303struct asym_cap_data {
1304	struct list_head link;
1305	unsigned long capacity;
1306	unsigned long cpus[];
1307};
1308
1309/*
1310 * Set of available CPUs grouped by their corresponding capacities
1311 * Each list entry contains a CPU mask reflecting CPUs that share the same
1312 * capacity.
1313 * The lifespan of data is unlimited.
1314 */
1315static LIST_HEAD(asym_cap_list);
1316
1317#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1318
1319/*
1320 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1321 * Provides sd_flags reflecting the asymmetry scope.
1322 */
1323static inline int
1324asym_cpu_capacity_classify(const struct cpumask *sd_span,
1325			   const struct cpumask *cpu_map)
1326{
1327	struct asym_cap_data *entry;
1328	int count = 0, miss = 0;
1329
1330	/*
1331	 * Count how many unique CPU capacities this domain spans across
1332	 * (compare sched_domain CPUs mask with ones representing  available
1333	 * CPUs capacities). Take into account CPUs that might be offline:
1334	 * skip those.
1335	 */
1336	list_for_each_entry(entry, &asym_cap_list, link) {
1337		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1338			++count;
1339		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1340			++miss;
1341	}
1342
1343	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1344
1345	/* No asymmetry detected */
1346	if (count < 2)
1347		return 0;
1348	/* Some of the available CPU capacity values have not been detected */
1349	if (miss)
1350		return SD_ASYM_CPUCAPACITY;
1351
1352	/* Full asymmetry */
1353	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1354
1355}
1356
1357static inline void asym_cpu_capacity_update_data(int cpu)
1358{
1359	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1360	struct asym_cap_data *entry = NULL;
1361
1362	list_for_each_entry(entry, &asym_cap_list, link) {
1363		if (capacity == entry->capacity)
1364			goto done;
1365	}
1366
1367	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1368	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1369		return;
1370	entry->capacity = capacity;
1371	list_add(&entry->link, &asym_cap_list);
1372done:
1373	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1374}
1375
1376/*
1377 * Build-up/update list of CPUs grouped by their capacities
1378 * An update requires explicit request to rebuild sched domains
1379 * with state indicating CPU topology changes.
1380 */
1381static void asym_cpu_capacity_scan(void)
1382{
1383	struct asym_cap_data *entry, *next;
1384	int cpu;
1385
1386	list_for_each_entry(entry, &asym_cap_list, link)
1387		cpumask_clear(cpu_capacity_span(entry));
1388
1389	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1390		asym_cpu_capacity_update_data(cpu);
1391
1392	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1393		if (cpumask_empty(cpu_capacity_span(entry))) {
1394			list_del(&entry->link);
1395			kfree(entry);
1396		}
1397	}
1398
1399	/*
1400	 * Only one capacity value has been detected i.e. this system is symmetric.
1401	 * No need to keep this data around.
1402	 */
1403	if (list_is_singular(&asym_cap_list)) {
1404		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1405		list_del(&entry->link);
1406		kfree(entry);
1407	}
1408}
1409
1410/*
1411 * Initializers for schedule domains
1412 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1413 */
1414
1415static int default_relax_domain_level = -1;
1416int sched_domain_level_max;
1417
1418static int __init setup_relax_domain_level(char *str)
1419{
1420	if (kstrtoint(str, 0, &default_relax_domain_level))
1421		pr_warn("Unable to set relax_domain_level\n");
1422
1423	return 1;
1424}
1425__setup("relax_domain_level=", setup_relax_domain_level);
1426
1427static void set_domain_attribute(struct sched_domain *sd,
1428				 struct sched_domain_attr *attr)
1429{
1430	int request;
1431
1432	if (!attr || attr->relax_domain_level < 0) {
1433		if (default_relax_domain_level < 0)
1434			return;
1435		request = default_relax_domain_level;
1436	} else
1437		request = attr->relax_domain_level;
1438
1439	if (sd->level > request) {
1440		/* Turn off idle balance on this domain: */
1441		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1442	}
1443}
1444
1445static void __sdt_free(const struct cpumask *cpu_map);
1446static int __sdt_alloc(const struct cpumask *cpu_map);
1447
1448static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1449				 const struct cpumask *cpu_map)
1450{
1451	switch (what) {
1452	case sa_rootdomain:
1453		if (!atomic_read(&d->rd->refcount))
1454			free_rootdomain(&d->rd->rcu);
1455		fallthrough;
1456	case sa_sd:
1457		free_percpu(d->sd);
1458		fallthrough;
1459	case sa_sd_storage:
1460		__sdt_free(cpu_map);
1461		fallthrough;
1462	case sa_none:
1463		break;
1464	}
1465}
1466
1467static enum s_alloc
1468__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1469{
1470	memset(d, 0, sizeof(*d));
1471
1472	if (__sdt_alloc(cpu_map))
1473		return sa_sd_storage;
1474	d->sd = alloc_percpu(struct sched_domain *);
1475	if (!d->sd)
1476		return sa_sd_storage;
1477	d->rd = alloc_rootdomain();
1478	if (!d->rd)
1479		return sa_sd;
1480
1481	return sa_rootdomain;
1482}
1483
1484/*
1485 * NULL the sd_data elements we've used to build the sched_domain and
1486 * sched_group structure so that the subsequent __free_domain_allocs()
1487 * will not free the data we're using.
1488 */
1489static void claim_allocations(int cpu, struct sched_domain *sd)
1490{
1491	struct sd_data *sdd = sd->private;
1492
1493	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1494	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1495
1496	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1497		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1498
1499	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1500		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1501
1502	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1503		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1504}
1505
1506#ifdef CONFIG_NUMA
1507enum numa_topology_type sched_numa_topology_type;
1508
1509static int			sched_domains_numa_levels;
1510static int			sched_domains_curr_level;
1511
1512int				sched_max_numa_distance;
1513static int			*sched_domains_numa_distance;
1514static struct cpumask		***sched_domains_numa_masks;
1515#endif
1516
1517/*
1518 * SD_flags allowed in topology descriptions.
1519 *
1520 * These flags are purely descriptive of the topology and do not prescribe
1521 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1522 * function:
1523 *
1524 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1525 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1526 *   SD_NUMA                - describes NUMA topologies
1527 *
1528 * Odd one out, which beside describing the topology has a quirk also
1529 * prescribes the desired behaviour that goes along with it:
1530 *
1531 *   SD_ASYM_PACKING        - describes SMT quirks
1532 */
1533#define TOPOLOGY_SD_FLAGS		\
1534	(SD_SHARE_CPUCAPACITY	|	\
1535	 SD_SHARE_PKG_RESOURCES |	\
1536	 SD_NUMA		|	\
1537	 SD_ASYM_PACKING)
1538
1539static struct sched_domain *
1540sd_init(struct sched_domain_topology_level *tl,
1541	const struct cpumask *cpu_map,
1542	struct sched_domain *child, int cpu)
1543{
1544	struct sd_data *sdd = &tl->data;
1545	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1546	int sd_id, sd_weight, sd_flags = 0;
1547	struct cpumask *sd_span;
1548
1549#ifdef CONFIG_NUMA
1550	/*
1551	 * Ugly hack to pass state to sd_numa_mask()...
1552	 */
1553	sched_domains_curr_level = tl->numa_level;
1554#endif
1555
1556	sd_weight = cpumask_weight(tl->mask(cpu));
1557
1558	if (tl->sd_flags)
1559		sd_flags = (*tl->sd_flags)();
1560	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1561			"wrong sd_flags in topology description\n"))
1562		sd_flags &= TOPOLOGY_SD_FLAGS;
1563
1564	*sd = (struct sched_domain){
1565		.min_interval		= sd_weight,
1566		.max_interval		= 2*sd_weight,
1567		.busy_factor		= 16,
1568		.imbalance_pct		= 117,
1569
1570		.cache_nice_tries	= 0,
1571
1572		.flags			= 1*SD_BALANCE_NEWIDLE
1573					| 1*SD_BALANCE_EXEC
1574					| 1*SD_BALANCE_FORK
1575					| 0*SD_BALANCE_WAKE
1576					| 1*SD_WAKE_AFFINE
1577					| 0*SD_SHARE_CPUCAPACITY
1578					| 0*SD_SHARE_PKG_RESOURCES
1579					| 0*SD_SERIALIZE
1580					| 1*SD_PREFER_SIBLING
1581					| 0*SD_NUMA
1582					| sd_flags
1583					,
1584
1585		.last_balance		= jiffies,
1586		.balance_interval	= sd_weight,
1587		.max_newidle_lb_cost	= 0,
1588		.last_decay_max_lb_cost	= jiffies,
1589		.child			= child,
1590#ifdef CONFIG_SCHED_DEBUG
1591		.name			= tl->name,
1592#endif
1593	};
1594
1595	sd_span = sched_domain_span(sd);
1596	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1597	sd_id = cpumask_first(sd_span);
1598
1599	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1600
1601	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1602		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1603		  "CPU capacity asymmetry not supported on SMT\n");
1604
1605	/*
1606	 * Convert topological properties into behaviour.
1607	 */
1608	/* Don't attempt to spread across CPUs of different capacities. */
1609	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1610		sd->child->flags &= ~SD_PREFER_SIBLING;
1611
1612	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1613		sd->imbalance_pct = 110;
1614
1615	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1616		sd->imbalance_pct = 117;
1617		sd->cache_nice_tries = 1;
1618
1619#ifdef CONFIG_NUMA
1620	} else if (sd->flags & SD_NUMA) {
1621		sd->cache_nice_tries = 2;
1622
1623		sd->flags &= ~SD_PREFER_SIBLING;
1624		sd->flags |= SD_SERIALIZE;
1625		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1626			sd->flags &= ~(SD_BALANCE_EXEC |
1627				       SD_BALANCE_FORK |
1628				       SD_WAKE_AFFINE);
1629		}
1630
1631#endif
1632	} else {
1633		sd->cache_nice_tries = 1;
1634	}
1635
1636	/*
1637	 * For all levels sharing cache; connect a sched_domain_shared
1638	 * instance.
1639	 */
1640	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1641		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1642		atomic_inc(&sd->shared->ref);
1643		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1644	}
1645
1646	sd->private = sdd;
1647
1648	return sd;
1649}
1650
1651/*
1652 * Topology list, bottom-up.
1653 */
1654static struct sched_domain_topology_level default_topology[] = {
1655#ifdef CONFIG_SCHED_SMT
1656	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1657#endif
1658
1659#ifdef CONFIG_SCHED_CLUSTER
1660	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1661#endif
1662
1663#ifdef CONFIG_SCHED_MC
1664	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1665#endif
1666	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1667	{ NULL, },
1668};
1669
1670static struct sched_domain_topology_level *sched_domain_topology =
1671	default_topology;
1672static struct sched_domain_topology_level *sched_domain_topology_saved;
1673
1674#define for_each_sd_topology(tl)			\
1675	for (tl = sched_domain_topology; tl->mask; tl++)
1676
1677void set_sched_topology(struct sched_domain_topology_level *tl)
1678{
1679	if (WARN_ON_ONCE(sched_smp_initialized))
1680		return;
1681
1682	sched_domain_topology = tl;
1683	sched_domain_topology_saved = NULL;
1684}
1685
1686#ifdef CONFIG_NUMA
1687
1688static const struct cpumask *sd_numa_mask(int cpu)
1689{
1690	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1691}
1692
1693static void sched_numa_warn(const char *str)
1694{
1695	static int done = false;
1696	int i,j;
1697
1698	if (done)
1699		return;
1700
1701	done = true;
1702
1703	printk(KERN_WARNING "ERROR: %s\n\n", str);
1704
1705	for (i = 0; i < nr_node_ids; i++) {
1706		printk(KERN_WARNING "  ");
1707		for (j = 0; j < nr_node_ids; j++) {
1708			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1709				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1710			else
1711				printk(KERN_CONT " %02d  ", node_distance(i,j));
1712		}
1713		printk(KERN_CONT "\n");
1714	}
1715	printk(KERN_WARNING "\n");
1716}
1717
1718bool find_numa_distance(int distance)
1719{
1720	bool found = false;
1721	int i, *distances;
1722
1723	if (distance == node_distance(0, 0))
1724		return true;
1725
1726	rcu_read_lock();
1727	distances = rcu_dereference(sched_domains_numa_distance);
1728	if (!distances)
1729		goto unlock;
1730	for (i = 0; i < sched_domains_numa_levels; i++) {
1731		if (distances[i] == distance) {
1732			found = true;
1733			break;
1734		}
1735	}
1736unlock:
1737	rcu_read_unlock();
1738
1739	return found;
1740}
1741
1742#define for_each_cpu_node_but(n, nbut)		\
1743	for_each_node_state(n, N_CPU)		\
1744		if (n == nbut)			\
1745			continue;		\
1746		else
1747
1748/*
1749 * A system can have three types of NUMA topology:
1750 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1751 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1752 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1753 *
1754 * The difference between a glueless mesh topology and a backplane
1755 * topology lies in whether communication between not directly
1756 * connected nodes goes through intermediary nodes (where programs
1757 * could run), or through backplane controllers. This affects
1758 * placement of programs.
1759 *
1760 * The type of topology can be discerned with the following tests:
1761 * - If the maximum distance between any nodes is 1 hop, the system
1762 *   is directly connected.
1763 * - If for two nodes A and B, located N > 1 hops away from each other,
1764 *   there is an intermediary node C, which is < N hops away from both
1765 *   nodes A and B, the system is a glueless mesh.
1766 */
1767static void init_numa_topology_type(int offline_node)
1768{
1769	int a, b, c, n;
1770
1771	n = sched_max_numa_distance;
1772
1773	if (sched_domains_numa_levels <= 2) {
1774		sched_numa_topology_type = NUMA_DIRECT;
1775		return;
1776	}
1777
1778	for_each_cpu_node_but(a, offline_node) {
1779		for_each_cpu_node_but(b, offline_node) {
1780			/* Find two nodes furthest removed from each other. */
1781			if (node_distance(a, b) < n)
1782				continue;
1783
1784			/* Is there an intermediary node between a and b? */
1785			for_each_cpu_node_but(c, offline_node) {
1786				if (node_distance(a, c) < n &&
1787				    node_distance(b, c) < n) {
1788					sched_numa_topology_type =
1789							NUMA_GLUELESS_MESH;
1790					return;
1791				}
1792			}
1793
1794			sched_numa_topology_type = NUMA_BACKPLANE;
1795			return;
1796		}
1797	}
1798
1799	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1800	sched_numa_topology_type = NUMA_DIRECT;
1801}
1802
1803
1804#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1805
1806void sched_init_numa(int offline_node)
1807{
1808	struct sched_domain_topology_level *tl;
1809	unsigned long *distance_map;
1810	int nr_levels = 0;
1811	int i, j;
1812	int *distances;
1813	struct cpumask ***masks;
1814
1815	/*
1816	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1817	 * unique distances in the node_distance() table.
1818	 */
1819	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1820	if (!distance_map)
1821		return;
1822
1823	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1824	for_each_cpu_node_but(i, offline_node) {
1825		for_each_cpu_node_but(j, offline_node) {
1826			int distance = node_distance(i, j);
1827
1828			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1829				sched_numa_warn("Invalid distance value range");
1830				bitmap_free(distance_map);
1831				return;
1832			}
1833
1834			bitmap_set(distance_map, distance, 1);
1835		}
1836	}
1837	/*
1838	 * We can now figure out how many unique distance values there are and
1839	 * allocate memory accordingly.
1840	 */
1841	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1842
1843	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1844	if (!distances) {
1845		bitmap_free(distance_map);
1846		return;
1847	}
1848
1849	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1850		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1851		distances[i] = j;
1852	}
1853	rcu_assign_pointer(sched_domains_numa_distance, distances);
1854
1855	bitmap_free(distance_map);
1856
1857	/*
1858	 * 'nr_levels' contains the number of unique distances
1859	 *
1860	 * The sched_domains_numa_distance[] array includes the actual distance
1861	 * numbers.
1862	 */
1863
1864	/*
1865	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1866	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1867	 * the array will contain less then 'nr_levels' members. This could be
1868	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1869	 * in other functions.
1870	 *
1871	 * We reset it to 'nr_levels' at the end of this function.
1872	 */
1873	sched_domains_numa_levels = 0;
1874
1875	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1876	if (!masks)
1877		return;
1878
1879	/*
1880	 * Now for each level, construct a mask per node which contains all
1881	 * CPUs of nodes that are that many hops away from us.
1882	 */
1883	for (i = 0; i < nr_levels; i++) {
1884		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1885		if (!masks[i])
1886			return;
1887
1888		for_each_cpu_node_but(j, offline_node) {
1889			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1890			int k;
1891
1892			if (!mask)
1893				return;
1894
1895			masks[i][j] = mask;
1896
1897			for_each_cpu_node_but(k, offline_node) {
1898				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1899					sched_numa_warn("Node-distance not symmetric");
1900
1901				if (node_distance(j, k) > sched_domains_numa_distance[i])
1902					continue;
1903
1904				cpumask_or(mask, mask, cpumask_of_node(k));
1905			}
1906		}
1907	}
1908	rcu_assign_pointer(sched_domains_numa_masks, masks);
1909
1910	/* Compute default topology size */
1911	for (i = 0; sched_domain_topology[i].mask; i++);
1912
1913	tl = kzalloc((i + nr_levels + 1) *
1914			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1915	if (!tl)
1916		return;
1917
1918	/*
1919	 * Copy the default topology bits..
1920	 */
1921	for (i = 0; sched_domain_topology[i].mask; i++)
1922		tl[i] = sched_domain_topology[i];
1923
1924	/*
1925	 * Add the NUMA identity distance, aka single NODE.
1926	 */
1927	tl[i++] = (struct sched_domain_topology_level){
1928		.mask = sd_numa_mask,
1929		.numa_level = 0,
1930		SD_INIT_NAME(NODE)
1931	};
1932
1933	/*
1934	 * .. and append 'j' levels of NUMA goodness.
1935	 */
1936	for (j = 1; j < nr_levels; i++, j++) {
1937		tl[i] = (struct sched_domain_topology_level){
1938			.mask = sd_numa_mask,
1939			.sd_flags = cpu_numa_flags,
1940			.flags = SDTL_OVERLAP,
1941			.numa_level = j,
1942			SD_INIT_NAME(NUMA)
1943		};
1944	}
1945
1946	sched_domain_topology_saved = sched_domain_topology;
1947	sched_domain_topology = tl;
1948
1949	sched_domains_numa_levels = nr_levels;
1950	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1951
1952	init_numa_topology_type(offline_node);
1953}
1954
1955
1956static void sched_reset_numa(void)
1957{
1958	int nr_levels, *distances;
1959	struct cpumask ***masks;
1960
1961	nr_levels = sched_domains_numa_levels;
1962	sched_domains_numa_levels = 0;
1963	sched_max_numa_distance = 0;
1964	sched_numa_topology_type = NUMA_DIRECT;
1965	distances = sched_domains_numa_distance;
1966	rcu_assign_pointer(sched_domains_numa_distance, NULL);
1967	masks = sched_domains_numa_masks;
1968	rcu_assign_pointer(sched_domains_numa_masks, NULL);
1969	if (distances || masks) {
1970		int i, j;
1971
1972		synchronize_rcu();
1973		kfree(distances);
1974		for (i = 0; i < nr_levels && masks; i++) {
1975			if (!masks[i])
1976				continue;
1977			for_each_node(j)
1978				kfree(masks[i][j]);
1979			kfree(masks[i]);
1980		}
1981		kfree(masks);
1982	}
1983	if (sched_domain_topology_saved) {
1984		kfree(sched_domain_topology);
1985		sched_domain_topology = sched_domain_topology_saved;
1986		sched_domain_topology_saved = NULL;
1987	}
1988}
1989
1990/*
1991 * Call with hotplug lock held
1992 */
1993void sched_update_numa(int cpu, bool online)
1994{
1995	int node;
1996
1997	node = cpu_to_node(cpu);
1998	/*
1999	 * Scheduler NUMA topology is updated when the first CPU of a
2000	 * node is onlined or the last CPU of a node is offlined.
2001	 */
2002	if (cpumask_weight(cpumask_of_node(node)) != 1)
2003		return;
2004
2005	sched_reset_numa();
2006	sched_init_numa(online ? NUMA_NO_NODE : node);
2007}
2008
2009void sched_domains_numa_masks_set(unsigned int cpu)
2010{
2011	int node = cpu_to_node(cpu);
2012	int i, j;
2013
2014	for (i = 0; i < sched_domains_numa_levels; i++) {
2015		for (j = 0; j < nr_node_ids; j++) {
2016			if (!node_state(j, N_CPU))
2017				continue;
2018
2019			/* Set ourselves in the remote node's masks */
2020			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2021				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2022		}
2023	}
2024}
2025
2026void sched_domains_numa_masks_clear(unsigned int cpu)
2027{
2028	int i, j;
2029
2030	for (i = 0; i < sched_domains_numa_levels; i++) {
2031		for (j = 0; j < nr_node_ids; j++) {
2032			if (sched_domains_numa_masks[i][j])
2033				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2034		}
2035	}
2036}
2037
2038/*
2039 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2040 *                             closest to @cpu from @cpumask.
2041 * cpumask: cpumask to find a cpu from
2042 * cpu: cpu to be close to
2043 *
2044 * returns: cpu, or nr_cpu_ids when nothing found.
2045 */
2046int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2047{
2048	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2049	struct cpumask ***masks;
2050
2051	rcu_read_lock();
2052	masks = rcu_dereference(sched_domains_numa_masks);
2053	if (!masks)
2054		goto unlock;
2055	for (i = 0; i < sched_domains_numa_levels; i++) {
2056		if (!masks[i][j])
2057			break;
2058		cpu = cpumask_any_and(cpus, masks[i][j]);
2059		if (cpu < nr_cpu_ids) {
2060			found = cpu;
2061			break;
2062		}
2063	}
2064unlock:
2065	rcu_read_unlock();
2066
2067	return found;
2068}
2069
2070#endif /* CONFIG_NUMA */
2071
2072static int __sdt_alloc(const struct cpumask *cpu_map)
2073{
2074	struct sched_domain_topology_level *tl;
2075	int j;
2076
2077	for_each_sd_topology(tl) {
2078		struct sd_data *sdd = &tl->data;
2079
2080		sdd->sd = alloc_percpu(struct sched_domain *);
2081		if (!sdd->sd)
2082			return -ENOMEM;
2083
2084		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2085		if (!sdd->sds)
2086			return -ENOMEM;
2087
2088		sdd->sg = alloc_percpu(struct sched_group *);
2089		if (!sdd->sg)
2090			return -ENOMEM;
2091
2092		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2093		if (!sdd->sgc)
2094			return -ENOMEM;
2095
2096		for_each_cpu(j, cpu_map) {
2097			struct sched_domain *sd;
2098			struct sched_domain_shared *sds;
2099			struct sched_group *sg;
2100			struct sched_group_capacity *sgc;
2101
2102			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2103					GFP_KERNEL, cpu_to_node(j));
2104			if (!sd)
2105				return -ENOMEM;
2106
2107			*per_cpu_ptr(sdd->sd, j) = sd;
2108
2109			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2110					GFP_KERNEL, cpu_to_node(j));
2111			if (!sds)
2112				return -ENOMEM;
2113
2114			*per_cpu_ptr(sdd->sds, j) = sds;
2115
2116			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2117					GFP_KERNEL, cpu_to_node(j));
2118			if (!sg)
2119				return -ENOMEM;
2120
2121			sg->next = sg;
2122
2123			*per_cpu_ptr(sdd->sg, j) = sg;
2124
2125			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2126					GFP_KERNEL, cpu_to_node(j));
2127			if (!sgc)
2128				return -ENOMEM;
2129
2130#ifdef CONFIG_SCHED_DEBUG
2131			sgc->id = j;
2132#endif
2133
2134			*per_cpu_ptr(sdd->sgc, j) = sgc;
2135		}
2136	}
2137
2138	return 0;
2139}
2140
2141static void __sdt_free(const struct cpumask *cpu_map)
2142{
2143	struct sched_domain_topology_level *tl;
2144	int j;
2145
2146	for_each_sd_topology(tl) {
2147		struct sd_data *sdd = &tl->data;
2148
2149		for_each_cpu(j, cpu_map) {
2150			struct sched_domain *sd;
2151
2152			if (sdd->sd) {
2153				sd = *per_cpu_ptr(sdd->sd, j);
2154				if (sd && (sd->flags & SD_OVERLAP))
2155					free_sched_groups(sd->groups, 0);
2156				kfree(*per_cpu_ptr(sdd->sd, j));
2157			}
2158
2159			if (sdd->sds)
2160				kfree(*per_cpu_ptr(sdd->sds, j));
2161			if (sdd->sg)
2162				kfree(*per_cpu_ptr(sdd->sg, j));
2163			if (sdd->sgc)
2164				kfree(*per_cpu_ptr(sdd->sgc, j));
2165		}
2166		free_percpu(sdd->sd);
2167		sdd->sd = NULL;
2168		free_percpu(sdd->sds);
2169		sdd->sds = NULL;
2170		free_percpu(sdd->sg);
2171		sdd->sg = NULL;
2172		free_percpu(sdd->sgc);
2173		sdd->sgc = NULL;
2174	}
2175}
2176
2177static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2178		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2179		struct sched_domain *child, int cpu)
2180{
2181	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2182
2183	if (child) {
2184		sd->level = child->level + 1;
2185		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2186		child->parent = sd;
2187
2188		if (!cpumask_subset(sched_domain_span(child),
2189				    sched_domain_span(sd))) {
2190			pr_err("BUG: arch topology borken\n");
2191#ifdef CONFIG_SCHED_DEBUG
2192			pr_err("     the %s domain not a subset of the %s domain\n",
2193					child->name, sd->name);
2194#endif
2195			/* Fixup, ensure @sd has at least @child CPUs. */
2196			cpumask_or(sched_domain_span(sd),
2197				   sched_domain_span(sd),
2198				   sched_domain_span(child));
2199		}
2200
2201	}
2202	set_domain_attribute(sd, attr);
2203
2204	return sd;
2205}
2206
2207/*
2208 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2209 * any two given CPUs at this (non-NUMA) topology level.
2210 */
2211static bool topology_span_sane(struct sched_domain_topology_level *tl,
2212			      const struct cpumask *cpu_map, int cpu)
2213{
2214	int i;
2215
2216	/* NUMA levels are allowed to overlap */
2217	if (tl->flags & SDTL_OVERLAP)
2218		return true;
2219
2220	/*
2221	 * Non-NUMA levels cannot partially overlap - they must be either
2222	 * completely equal or completely disjoint. Otherwise we can end up
2223	 * breaking the sched_group lists - i.e. a later get_group() pass
2224	 * breaks the linking done for an earlier span.
2225	 */
2226	for_each_cpu(i, cpu_map) {
2227		if (i == cpu)
2228			continue;
2229		/*
2230		 * We should 'and' all those masks with 'cpu_map' to exactly
2231		 * match the topology we're about to build, but that can only
2232		 * remove CPUs, which only lessens our ability to detect
2233		 * overlaps
2234		 */
2235		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2236		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2237			return false;
2238	}
2239
2240	return true;
2241}
2242
2243/*
2244 * Build sched domains for a given set of CPUs and attach the sched domains
2245 * to the individual CPUs
2246 */
2247static int
2248build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2249{
2250	enum s_alloc alloc_state = sa_none;
2251	struct sched_domain *sd;
2252	struct s_data d;
2253	struct rq *rq = NULL;
2254	int i, ret = -ENOMEM;
2255	bool has_asym = false;
2256
2257	if (WARN_ON(cpumask_empty(cpu_map)))
2258		goto error;
2259
2260	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2261	if (alloc_state != sa_rootdomain)
2262		goto error;
2263
2264	/* Set up domains for CPUs specified by the cpu_map: */
2265	for_each_cpu(i, cpu_map) {
2266		struct sched_domain_topology_level *tl;
2267
2268		sd = NULL;
2269		for_each_sd_topology(tl) {
2270
2271			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2272				goto error;
2273
2274			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2275
2276			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2277
2278			if (tl == sched_domain_topology)
2279				*per_cpu_ptr(d.sd, i) = sd;
2280			if (tl->flags & SDTL_OVERLAP)
2281				sd->flags |= SD_OVERLAP;
2282			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2283				break;
2284		}
2285	}
2286
2287	/* Build the groups for the domains */
2288	for_each_cpu(i, cpu_map) {
2289		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2290			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2291			if (sd->flags & SD_OVERLAP) {
2292				if (build_overlap_sched_groups(sd, i))
2293					goto error;
2294			} else {
2295				if (build_sched_groups(sd, i))
2296					goto error;
2297			}
2298		}
2299	}
2300
2301	/*
2302	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2303	 * imbalanced.
2304	 */
2305	for_each_cpu(i, cpu_map) {
2306		unsigned int imb = 0;
2307		unsigned int imb_span = 1;
2308
2309		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2310			struct sched_domain *child = sd->child;
2311
2312			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2313			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
2314				struct sched_domain __rcu *top_p;
2315				unsigned int nr_llcs;
2316
2317				/*
2318				 * For a single LLC per node, allow an
2319				 * imbalance up to 12.5% of the node. This is
2320				 * arbitrary cutoff based two factors -- SMT and
2321				 * memory channels. For SMT-2, the intent is to
2322				 * avoid premature sharing of HT resources but
2323				 * SMT-4 or SMT-8 *may* benefit from a different
2324				 * cutoff. For memory channels, this is a very
2325				 * rough estimate of how many channels may be
2326				 * active and is based on recent CPUs with
2327				 * many cores.
2328				 *
2329				 * For multiple LLCs, allow an imbalance
2330				 * until multiple tasks would share an LLC
2331				 * on one node while LLCs on another node
2332				 * remain idle. This assumes that there are
2333				 * enough logical CPUs per LLC to avoid SMT
2334				 * factors and that there is a correlation
2335				 * between LLCs and memory channels.
2336				 */
2337				nr_llcs = sd->span_weight / child->span_weight;
2338				if (nr_llcs == 1)
2339					imb = sd->span_weight >> 3;
2340				else
2341					imb = nr_llcs;
2342				imb = max(1U, imb);
2343				sd->imb_numa_nr = imb;
2344
2345				/* Set span based on the first NUMA domain. */
2346				top_p = sd->parent;
2347				while (top_p && !(top_p->flags & SD_NUMA)) {
2348					top_p = top_p->parent;
2349				}
2350				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2351			} else {
2352				int factor = max(1U, (sd->span_weight / imb_span));
2353
2354				sd->imb_numa_nr = imb * factor;
2355			}
2356		}
2357	}
2358
2359	/* Calculate CPU capacity for physical packages and nodes */
2360	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2361		if (!cpumask_test_cpu(i, cpu_map))
2362			continue;
2363
2364		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2365			claim_allocations(i, sd);
2366			init_sched_groups_capacity(i, sd);
2367		}
2368	}
2369
2370	/* Attach the domains */
2371	rcu_read_lock();
2372	for_each_cpu(i, cpu_map) {
2373		rq = cpu_rq(i);
2374		sd = *per_cpu_ptr(d.sd, i);
2375
2376		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2377		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2378			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2379
2380		cpu_attach_domain(sd, d.rd, i);
2381	}
2382	rcu_read_unlock();
2383
2384	if (has_asym)
2385		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2386
2387	if (rq && sched_debug_verbose) {
2388		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2389			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2390	}
2391
2392	ret = 0;
2393error:
2394	__free_domain_allocs(&d, alloc_state, cpu_map);
2395
2396	return ret;
2397}
2398
2399/* Current sched domains: */
2400static cpumask_var_t			*doms_cur;
2401
2402/* Number of sched domains in 'doms_cur': */
2403static int				ndoms_cur;
2404
2405/* Attributes of custom domains in 'doms_cur' */
2406static struct sched_domain_attr		*dattr_cur;
2407
2408/*
2409 * Special case: If a kmalloc() of a doms_cur partition (array of
2410 * cpumask) fails, then fallback to a single sched domain,
2411 * as determined by the single cpumask fallback_doms.
2412 */
2413static cpumask_var_t			fallback_doms;
2414
2415/*
2416 * arch_update_cpu_topology lets virtualized architectures update the
2417 * CPU core maps. It is supposed to return 1 if the topology changed
2418 * or 0 if it stayed the same.
2419 */
2420int __weak arch_update_cpu_topology(void)
2421{
2422	return 0;
2423}
2424
2425cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2426{
2427	int i;
2428	cpumask_var_t *doms;
2429
2430	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2431	if (!doms)
2432		return NULL;
2433	for (i = 0; i < ndoms; i++) {
2434		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2435			free_sched_domains(doms, i);
2436			return NULL;
2437		}
2438	}
2439	return doms;
2440}
2441
2442void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2443{
2444	unsigned int i;
2445	for (i = 0; i < ndoms; i++)
2446		free_cpumask_var(doms[i]);
2447	kfree(doms);
2448}
2449
2450/*
2451 * Set up scheduler domains and groups.  For now this just excludes isolated
2452 * CPUs, but could be used to exclude other special cases in the future.
2453 */
2454int sched_init_domains(const struct cpumask *cpu_map)
2455{
2456	int err;
2457
2458	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2459	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2460	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2461
2462	arch_update_cpu_topology();
2463	asym_cpu_capacity_scan();
2464	ndoms_cur = 1;
2465	doms_cur = alloc_sched_domains(ndoms_cur);
2466	if (!doms_cur)
2467		doms_cur = &fallback_doms;
2468	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2469	err = build_sched_domains(doms_cur[0], NULL);
2470
2471	return err;
2472}
2473
2474/*
2475 * Detach sched domains from a group of CPUs specified in cpu_map
2476 * These CPUs will now be attached to the NULL domain
2477 */
2478static void detach_destroy_domains(const struct cpumask *cpu_map)
2479{
2480	unsigned int cpu = cpumask_any(cpu_map);
2481	int i;
2482
2483	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2484		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2485
2486	rcu_read_lock();
2487	for_each_cpu(i, cpu_map)
2488		cpu_attach_domain(NULL, &def_root_domain, i);
2489	rcu_read_unlock();
2490}
2491
2492/* handle null as "default" */
2493static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2494			struct sched_domain_attr *new, int idx_new)
2495{
2496	struct sched_domain_attr tmp;
2497
2498	/* Fast path: */
2499	if (!new && !cur)
2500		return 1;
2501
2502	tmp = SD_ATTR_INIT;
2503
2504	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2505			new ? (new + idx_new) : &tmp,
2506			sizeof(struct sched_domain_attr));
2507}
2508
2509/*
2510 * Partition sched domains as specified by the 'ndoms_new'
2511 * cpumasks in the array doms_new[] of cpumasks. This compares
2512 * doms_new[] to the current sched domain partitioning, doms_cur[].
2513 * It destroys each deleted domain and builds each new domain.
2514 *
2515 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2516 * The masks don't intersect (don't overlap.) We should setup one
2517 * sched domain for each mask. CPUs not in any of the cpumasks will
2518 * not be load balanced. If the same cpumask appears both in the
2519 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2520 * it as it is.
2521 *
2522 * The passed in 'doms_new' should be allocated using
2523 * alloc_sched_domains.  This routine takes ownership of it and will
2524 * free_sched_domains it when done with it. If the caller failed the
2525 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2526 * and partition_sched_domains() will fallback to the single partition
2527 * 'fallback_doms', it also forces the domains to be rebuilt.
2528 *
2529 * If doms_new == NULL it will be replaced with cpu_online_mask.
2530 * ndoms_new == 0 is a special case for destroying existing domains,
2531 * and it will not create the default domain.
2532 *
2533 * Call with hotplug lock and sched_domains_mutex held
2534 */
2535void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2536				    struct sched_domain_attr *dattr_new)
2537{
2538	bool __maybe_unused has_eas = false;
2539	int i, j, n;
2540	int new_topology;
2541
2542	lockdep_assert_held(&sched_domains_mutex);
2543
2544	/* Let the architecture update CPU core mappings: */
2545	new_topology = arch_update_cpu_topology();
2546	/* Trigger rebuilding CPU capacity asymmetry data */
2547	if (new_topology)
2548		asym_cpu_capacity_scan();
2549
2550	if (!doms_new) {
2551		WARN_ON_ONCE(dattr_new);
2552		n = 0;
2553		doms_new = alloc_sched_domains(1);
2554		if (doms_new) {
2555			n = 1;
2556			cpumask_and(doms_new[0], cpu_active_mask,
2557				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2558		}
2559	} else {
2560		n = ndoms_new;
2561	}
2562
2563	/* Destroy deleted domains: */
2564	for (i = 0; i < ndoms_cur; i++) {
2565		for (j = 0; j < n && !new_topology; j++) {
2566			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2567			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2568				struct root_domain *rd;
2569
2570				/*
2571				 * This domain won't be destroyed and as such
2572				 * its dl_bw->total_bw needs to be cleared.  It
2573				 * will be recomputed in function
2574				 * update_tasks_root_domain().
2575				 */
2576				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2577				dl_clear_root_domain(rd);
2578				goto match1;
2579			}
2580		}
2581		/* No match - a current sched domain not in new doms_new[] */
2582		detach_destroy_domains(doms_cur[i]);
2583match1:
2584		;
2585	}
2586
2587	n = ndoms_cur;
2588	if (!doms_new) {
2589		n = 0;
2590		doms_new = &fallback_doms;
2591		cpumask_and(doms_new[0], cpu_active_mask,
2592			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2593	}
2594
2595	/* Build new domains: */
2596	for (i = 0; i < ndoms_new; i++) {
2597		for (j = 0; j < n && !new_topology; j++) {
2598			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2599			    dattrs_equal(dattr_new, i, dattr_cur, j))
2600				goto match2;
2601		}
2602		/* No match - add a new doms_new */
2603		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2604match2:
2605		;
2606	}
2607
2608#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2609	/* Build perf. domains: */
2610	for (i = 0; i < ndoms_new; i++) {
2611		for (j = 0; j < n && !sched_energy_update; j++) {
2612			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2613			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2614				has_eas = true;
2615				goto match3;
2616			}
2617		}
2618		/* No match - add perf. domains for a new rd */
2619		has_eas |= build_perf_domains(doms_new[i]);
2620match3:
2621		;
2622	}
2623	sched_energy_set(has_eas);
2624#endif
2625
2626	/* Remember the new sched domains: */
2627	if (doms_cur != &fallback_doms)
2628		free_sched_domains(doms_cur, ndoms_cur);
2629
2630	kfree(dattr_cur);
2631	doms_cur = doms_new;
2632	dattr_cur = dattr_new;
2633	ndoms_cur = ndoms_new;
2634
2635	update_sched_domain_debugfs();
2636}
2637
2638/*
2639 * Call with hotplug lock held
2640 */
2641void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2642			     struct sched_domain_attr *dattr_new)
2643{
2644	mutex_lock(&sched_domains_mutex);
2645	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2646	mutex_unlock(&sched_domains_mutex);
2647}