Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5
 
 
   6DEFINE_MUTEX(sched_domains_mutex);
   7
   8/* Protected by sched_domains_mutex: */
   9static cpumask_var_t sched_domains_tmpmask;
  10static cpumask_var_t sched_domains_tmpmask2;
  11
  12#ifdef CONFIG_SCHED_DEBUG
  13
  14static int __init sched_debug_setup(char *str)
  15{
  16	sched_debug_verbose = true;
  17
  18	return 0;
  19}
  20early_param("sched_verbose", sched_debug_setup);
  21
  22static inline bool sched_debug(void)
  23{
  24	return sched_debug_verbose;
  25}
  26
  27#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
  28const struct sd_flag_debug sd_flag_debug[] = {
  29#include <linux/sched/sd_flags.h>
  30};
  31#undef SD_FLAG
  32
  33static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  34				  struct cpumask *groupmask)
  35{
  36	struct sched_group *group = sd->groups;
  37	unsigned long flags = sd->flags;
  38	unsigned int idx;
  39
  40	cpumask_clear(groupmask);
  41
  42	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  43	printk(KERN_CONT "span=%*pbl level=%s\n",
  44	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  45
  46	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  47		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  48	}
  49	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  50		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  51	}
  52
  53	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
  54		unsigned int flag = BIT(idx);
  55		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
  56
  57		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
  58		    !(sd->child->flags & flag))
  59			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
  60			       sd_flag_debug[idx].name);
  61
  62		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
  63		    !(sd->parent->flags & flag))
  64			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
  65			       sd_flag_debug[idx].name);
  66	}
  67
  68	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  69	do {
  70		if (!group) {
  71			printk("\n");
  72			printk(KERN_ERR "ERROR: group is NULL\n");
  73			break;
  74		}
  75
  76		if (cpumask_empty(sched_group_span(group))) {
  77			printk(KERN_CONT "\n");
  78			printk(KERN_ERR "ERROR: empty group\n");
  79			break;
  80		}
  81
  82		if (!(sd->flags & SD_OVERLAP) &&
  83		    cpumask_intersects(groupmask, sched_group_span(group))) {
  84			printk(KERN_CONT "\n");
  85			printk(KERN_ERR "ERROR: repeated CPUs\n");
  86			break;
  87		}
  88
  89		cpumask_or(groupmask, groupmask, sched_group_span(group));
  90
  91		printk(KERN_CONT " %d:{ span=%*pbl",
  92				group->sgc->id,
  93				cpumask_pr_args(sched_group_span(group)));
  94
  95		if ((sd->flags & SD_OVERLAP) &&
  96		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  97			printk(KERN_CONT " mask=%*pbl",
  98				cpumask_pr_args(group_balance_mask(group)));
  99		}
 100
 101		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
 102			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
 103
 104		if (group == sd->groups && sd->child &&
 105		    !cpumask_equal(sched_domain_span(sd->child),
 106				   sched_group_span(group))) {
 107			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 108		}
 109
 110		printk(KERN_CONT " }");
 111
 112		group = group->next;
 113
 114		if (group != sd->groups)
 115			printk(KERN_CONT ",");
 116
 117	} while (group != sd->groups);
 118	printk(KERN_CONT "\n");
 119
 120	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 121		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 122
 123	if (sd->parent &&
 124	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 125		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 126	return 0;
 127}
 128
 129static void sched_domain_debug(struct sched_domain *sd, int cpu)
 130{
 131	int level = 0;
 132
 133	if (!sched_debug_verbose)
 134		return;
 135
 136	if (!sd) {
 137		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 138		return;
 139	}
 140
 141	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 142
 143	for (;;) {
 144		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 145			break;
 146		level++;
 147		sd = sd->parent;
 148		if (!sd)
 149			break;
 150	}
 151}
 152#else /* !CONFIG_SCHED_DEBUG */
 153
 154# define sched_debug_verbose 0
 155# define sched_domain_debug(sd, cpu) do { } while (0)
 156static inline bool sched_debug(void)
 157{
 158	return false;
 159}
 160#endif /* CONFIG_SCHED_DEBUG */
 161
 162/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
 163#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
 164static const unsigned int SD_DEGENERATE_GROUPS_MASK =
 165#include <linux/sched/sd_flags.h>
 1660;
 167#undef SD_FLAG
 168
 169static int sd_degenerate(struct sched_domain *sd)
 170{
 171	if (cpumask_weight(sched_domain_span(sd)) == 1)
 172		return 1;
 173
 174	/* Following flags need at least 2 groups */
 175	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
 176	    (sd->groups != sd->groups->next))
 177		return 0;
 178
 179	/* Following flags don't use groups */
 180	if (sd->flags & (SD_WAKE_AFFINE))
 181		return 0;
 182
 183	return 1;
 184}
 185
 186static int
 187sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 188{
 189	unsigned long cflags = sd->flags, pflags = parent->flags;
 190
 191	if (sd_degenerate(parent))
 192		return 1;
 193
 194	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 195		return 0;
 196
 197	/* Flags needing groups don't count if only 1 group in parent */
 198	if (parent->groups == parent->groups->next)
 199		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
 200
 201	if (~cflags & pflags)
 202		return 0;
 203
 204	return 1;
 205}
 206
 207#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 208DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 209static unsigned int sysctl_sched_energy_aware = 1;
 210DEFINE_MUTEX(sched_energy_mutex);
 211bool sched_energy_update;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212
 213void rebuild_sched_domains_energy(void)
 214{
 215	mutex_lock(&sched_energy_mutex);
 216	sched_energy_update = true;
 217	rebuild_sched_domains();
 218	sched_energy_update = false;
 219	mutex_unlock(&sched_energy_mutex);
 220}
 221
 222#ifdef CONFIG_PROC_SYSCTL
 223static int sched_energy_aware_handler(struct ctl_table *table, int write,
 224		void *buffer, size_t *lenp, loff_t *ppos)
 225{
 226	int ret, state;
 227
 228	if (write && !capable(CAP_SYS_ADMIN))
 229		return -EPERM;
 230
 
 
 
 
 
 
 
 
 
 231	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 232	if (!ret && write) {
 233		state = static_branch_unlikely(&sched_energy_present);
 234		if (state != sysctl_sched_energy_aware)
 235			rebuild_sched_domains_energy();
 236	}
 237
 238	return ret;
 239}
 240
 241static struct ctl_table sched_energy_aware_sysctls[] = {
 242	{
 243		.procname       = "sched_energy_aware",
 244		.data           = &sysctl_sched_energy_aware,
 245		.maxlen         = sizeof(unsigned int),
 246		.mode           = 0644,
 247		.proc_handler   = sched_energy_aware_handler,
 248		.extra1         = SYSCTL_ZERO,
 249		.extra2         = SYSCTL_ONE,
 250	},
 251	{}
 252};
 253
 254static int __init sched_energy_aware_sysctl_init(void)
 255{
 256	register_sysctl_init("kernel", sched_energy_aware_sysctls);
 257	return 0;
 258}
 259
 260late_initcall(sched_energy_aware_sysctl_init);
 261#endif
 262
 263static void free_pd(struct perf_domain *pd)
 264{
 265	struct perf_domain *tmp;
 266
 267	while (pd) {
 268		tmp = pd->next;
 269		kfree(pd);
 270		pd = tmp;
 271	}
 272}
 273
 274static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 275{
 276	while (pd) {
 277		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 278			return pd;
 279		pd = pd->next;
 280	}
 281
 282	return NULL;
 283}
 284
 285static struct perf_domain *pd_init(int cpu)
 286{
 287	struct em_perf_domain *obj = em_cpu_get(cpu);
 288	struct perf_domain *pd;
 289
 290	if (!obj) {
 291		if (sched_debug())
 292			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 293		return NULL;
 294	}
 295
 296	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 297	if (!pd)
 298		return NULL;
 299	pd->em_pd = obj;
 300
 301	return pd;
 302}
 303
 304static void perf_domain_debug(const struct cpumask *cpu_map,
 305						struct perf_domain *pd)
 306{
 307	if (!sched_debug() || !pd)
 308		return;
 309
 310	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 311
 312	while (pd) {
 313		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
 314				cpumask_first(perf_domain_span(pd)),
 315				cpumask_pr_args(perf_domain_span(pd)),
 316				em_pd_nr_perf_states(pd->em_pd));
 317		pd = pd->next;
 318	}
 319
 320	printk(KERN_CONT "\n");
 321}
 322
 323static void destroy_perf_domain_rcu(struct rcu_head *rp)
 324{
 325	struct perf_domain *pd;
 326
 327	pd = container_of(rp, struct perf_domain, rcu);
 328	free_pd(pd);
 329}
 330
 331static void sched_energy_set(bool has_eas)
 332{
 333	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 334		if (sched_debug())
 335			pr_info("%s: stopping EAS\n", __func__);
 336		static_branch_disable_cpuslocked(&sched_energy_present);
 337	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 338		if (sched_debug())
 339			pr_info("%s: starting EAS\n", __func__);
 340		static_branch_enable_cpuslocked(&sched_energy_present);
 341	}
 342}
 343
 344/*
 345 * EAS can be used on a root domain if it meets all the following conditions:
 346 *    1. an Energy Model (EM) is available;
 347 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 348 *    3. no SMT is detected.
 349 *    4. the EM complexity is low enough to keep scheduling overheads low;
 350 *    5. schedutil is driving the frequency of all CPUs of the rd;
 351 *    6. frequency invariance support is present;
 352 *
 353 * The complexity of the Energy Model is defined as:
 354 *
 355 *              C = nr_pd * (nr_cpus + nr_ps)
 356 *
 357 * with parameters defined as:
 358 *  - nr_pd:    the number of performance domains
 359 *  - nr_cpus:  the number of CPUs
 360 *  - nr_ps:    the sum of the number of performance states of all performance
 361 *              domains (for example, on a system with 2 performance domains,
 362 *              with 10 performance states each, nr_ps = 2 * 10 = 20).
 363 *
 364 * It is generally not a good idea to use such a model in the wake-up path on
 365 * very complex platforms because of the associated scheduling overheads. The
 366 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
 367 * with per-CPU DVFS and less than 8 performance states each, for example.
 368 */
 369#define EM_MAX_COMPLEXITY 2048
 370
 371extern struct cpufreq_governor schedutil_gov;
 372static bool build_perf_domains(const struct cpumask *cpu_map)
 373{
 374	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
 375	struct perf_domain *pd = NULL, *tmp;
 376	int cpu = cpumask_first(cpu_map);
 377	struct root_domain *rd = cpu_rq(cpu)->rd;
 378	struct cpufreq_policy *policy;
 379	struct cpufreq_governor *gov;
 380
 381	if (!sysctl_sched_energy_aware)
 382		goto free;
 383
 384	/* EAS is enabled for asymmetric CPU capacity topologies. */
 385	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
 386		if (sched_debug()) {
 387			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
 388					cpumask_pr_args(cpu_map));
 389		}
 390		goto free;
 391	}
 392
 393	/* EAS definitely does *not* handle SMT */
 394	if (sched_smt_active()) {
 395		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
 396			cpumask_pr_args(cpu_map));
 397		goto free;
 398	}
 399
 400	if (!arch_scale_freq_invariant()) {
 401		if (sched_debug()) {
 402			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
 403				cpumask_pr_args(cpu_map));
 404		}
 405		goto free;
 406	}
 407
 408	for_each_cpu(i, cpu_map) {
 409		/* Skip already covered CPUs. */
 410		if (find_pd(pd, i))
 411			continue;
 412
 413		/* Do not attempt EAS if schedutil is not being used. */
 414		policy = cpufreq_cpu_get(i);
 415		if (!policy)
 416			goto free;
 417		gov = policy->governor;
 418		cpufreq_cpu_put(policy);
 419		if (gov != &schedutil_gov) {
 420			if (rd->pd)
 421				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
 422						cpumask_pr_args(cpu_map));
 423			goto free;
 424		}
 425
 426		/* Create the new pd and add it to the local list. */
 427		tmp = pd_init(i);
 428		if (!tmp)
 429			goto free;
 430		tmp->next = pd;
 431		pd = tmp;
 432
 433		/*
 434		 * Count performance domains and performance states for the
 435		 * complexity check.
 436		 */
 437		nr_pd++;
 438		nr_ps += em_pd_nr_perf_states(pd->em_pd);
 439	}
 440
 441	/* Bail out if the Energy Model complexity is too high. */
 442	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
 443		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
 444						cpumask_pr_args(cpu_map));
 445		goto free;
 446	}
 447
 448	perf_domain_debug(cpu_map, pd);
 449
 450	/* Attach the new list of performance domains to the root domain. */
 451	tmp = rd->pd;
 452	rcu_assign_pointer(rd->pd, pd);
 453	if (tmp)
 454		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 455
 456	return !!pd;
 457
 458free:
 459	free_pd(pd);
 460	tmp = rd->pd;
 461	rcu_assign_pointer(rd->pd, NULL);
 462	if (tmp)
 463		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 464
 465	return false;
 466}
 467#else
 468static void free_pd(struct perf_domain *pd) { }
 469#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 470
 471static void free_rootdomain(struct rcu_head *rcu)
 472{
 473	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 474
 475	cpupri_cleanup(&rd->cpupri);
 476	cpudl_cleanup(&rd->cpudl);
 477	free_cpumask_var(rd->dlo_mask);
 478	free_cpumask_var(rd->rto_mask);
 479	free_cpumask_var(rd->online);
 480	free_cpumask_var(rd->span);
 481	free_pd(rd->pd);
 482	kfree(rd);
 483}
 484
 485void rq_attach_root(struct rq *rq, struct root_domain *rd)
 486{
 487	struct root_domain *old_rd = NULL;
 488	unsigned long flags;
 489
 490	raw_spin_rq_lock_irqsave(rq, flags);
 491
 492	if (rq->rd) {
 493		old_rd = rq->rd;
 494
 495		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 496			set_rq_offline(rq);
 497
 498		cpumask_clear_cpu(rq->cpu, old_rd->span);
 499
 500		/*
 501		 * If we dont want to free the old_rd yet then
 502		 * set old_rd to NULL to skip the freeing later
 503		 * in this function:
 504		 */
 505		if (!atomic_dec_and_test(&old_rd->refcount))
 506			old_rd = NULL;
 507	}
 508
 509	atomic_inc(&rd->refcount);
 510	rq->rd = rd;
 511
 512	cpumask_set_cpu(rq->cpu, rd->span);
 513	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 514		set_rq_online(rq);
 515
 516	raw_spin_rq_unlock_irqrestore(rq, flags);
 517
 518	if (old_rd)
 519		call_rcu(&old_rd->rcu, free_rootdomain);
 520}
 521
 522void sched_get_rd(struct root_domain *rd)
 523{
 524	atomic_inc(&rd->refcount);
 525}
 526
 527void sched_put_rd(struct root_domain *rd)
 528{
 529	if (!atomic_dec_and_test(&rd->refcount))
 530		return;
 531
 532	call_rcu(&rd->rcu, free_rootdomain);
 533}
 534
 535static int init_rootdomain(struct root_domain *rd)
 536{
 537	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 538		goto out;
 539	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 540		goto free_span;
 541	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 542		goto free_online;
 543	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 544		goto free_dlo_mask;
 545
 546#ifdef HAVE_RT_PUSH_IPI
 547	rd->rto_cpu = -1;
 548	raw_spin_lock_init(&rd->rto_lock);
 549	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
 550#endif
 551
 552	rd->visit_gen = 0;
 553	init_dl_bw(&rd->dl_bw);
 554	if (cpudl_init(&rd->cpudl) != 0)
 555		goto free_rto_mask;
 556
 557	if (cpupri_init(&rd->cpupri) != 0)
 558		goto free_cpudl;
 559	return 0;
 560
 561free_cpudl:
 562	cpudl_cleanup(&rd->cpudl);
 563free_rto_mask:
 564	free_cpumask_var(rd->rto_mask);
 565free_dlo_mask:
 566	free_cpumask_var(rd->dlo_mask);
 567free_online:
 568	free_cpumask_var(rd->online);
 569free_span:
 570	free_cpumask_var(rd->span);
 571out:
 572	return -ENOMEM;
 573}
 574
 575/*
 576 * By default the system creates a single root-domain with all CPUs as
 577 * members (mimicking the global state we have today).
 578 */
 579struct root_domain def_root_domain;
 580
 581void init_defrootdomain(void)
 582{
 583	init_rootdomain(&def_root_domain);
 584
 585	atomic_set(&def_root_domain.refcount, 1);
 586}
 587
 588static struct root_domain *alloc_rootdomain(void)
 589{
 590	struct root_domain *rd;
 591
 592	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 593	if (!rd)
 594		return NULL;
 595
 596	if (init_rootdomain(rd) != 0) {
 597		kfree(rd);
 598		return NULL;
 599	}
 600
 601	return rd;
 602}
 603
 604static void free_sched_groups(struct sched_group *sg, int free_sgc)
 605{
 606	struct sched_group *tmp, *first;
 607
 608	if (!sg)
 609		return;
 610
 611	first = sg;
 612	do {
 613		tmp = sg->next;
 614
 615		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 616			kfree(sg->sgc);
 617
 618		if (atomic_dec_and_test(&sg->ref))
 619			kfree(sg);
 620		sg = tmp;
 621	} while (sg != first);
 622}
 623
 624static void destroy_sched_domain(struct sched_domain *sd)
 625{
 626	/*
 627	 * A normal sched domain may have multiple group references, an
 628	 * overlapping domain, having private groups, only one.  Iterate,
 629	 * dropping group/capacity references, freeing where none remain.
 630	 */
 631	free_sched_groups(sd->groups, 1);
 632
 633	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 634		kfree(sd->shared);
 635	kfree(sd);
 636}
 637
 638static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 639{
 640	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 641
 642	while (sd) {
 643		struct sched_domain *parent = sd->parent;
 644		destroy_sched_domain(sd);
 645		sd = parent;
 646	}
 647}
 648
 649static void destroy_sched_domains(struct sched_domain *sd)
 650{
 651	if (sd)
 652		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 653}
 654
 655/*
 656 * Keep a special pointer to the highest sched_domain that has
 657 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 658 * allows us to avoid some pointer chasing select_idle_sibling().
 659 *
 660 * Also keep a unique ID per domain (we use the first CPU number in
 661 * the cpumask of the domain), this allows us to quickly tell if
 662 * two CPUs are in the same cache domain, see cpus_share_cache().
 663 */
 664DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 665DEFINE_PER_CPU(int, sd_llc_size);
 666DEFINE_PER_CPU(int, sd_llc_id);
 
 667DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 668DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 669DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 670DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 
 671DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 
 672
 673static void update_top_cache_domain(int cpu)
 674{
 675	struct sched_domain_shared *sds = NULL;
 676	struct sched_domain *sd;
 677	int id = cpu;
 678	int size = 1;
 679
 680	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 681	if (sd) {
 682		id = cpumask_first(sched_domain_span(sd));
 683		size = cpumask_weight(sched_domain_span(sd));
 684		sds = sd->shared;
 685	}
 686
 687	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 688	per_cpu(sd_llc_size, cpu) = size;
 689	per_cpu(sd_llc_id, cpu) = id;
 690	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 691
 
 
 
 
 
 
 
 
 
 
 
 692	sd = lowest_flag_domain(cpu, SD_NUMA);
 693	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 694
 695	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 696	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 697
 698	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
 699	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 700}
 701
 702/*
 703 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 704 * hold the hotplug lock.
 705 */
 706static void
 707cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 708{
 709	struct rq *rq = cpu_rq(cpu);
 710	struct sched_domain *tmp;
 711
 712	/* Remove the sched domains which do not contribute to scheduling. */
 713	for (tmp = sd; tmp; ) {
 714		struct sched_domain *parent = tmp->parent;
 715		if (!parent)
 716			break;
 717
 718		if (sd_parent_degenerate(tmp, parent)) {
 719			tmp->parent = parent->parent;
 720			if (parent->parent)
 
 721				parent->parent->child = tmp;
 
 
 
 722			/*
 723			 * Transfer SD_PREFER_SIBLING down in case of a
 724			 * degenerate parent; the spans match for this
 725			 * so the property transfers.
 726			 */
 727			if (parent->flags & SD_PREFER_SIBLING)
 728				tmp->flags |= SD_PREFER_SIBLING;
 729			destroy_sched_domain(parent);
 730		} else
 731			tmp = tmp->parent;
 732	}
 733
 734	if (sd && sd_degenerate(sd)) {
 735		tmp = sd;
 736		sd = sd->parent;
 737		destroy_sched_domain(tmp);
 738		if (sd) {
 739			struct sched_group *sg = sd->groups;
 740
 741			/*
 742			 * sched groups hold the flags of the child sched
 743			 * domain for convenience. Clear such flags since
 744			 * the child is being destroyed.
 745			 */
 746			do {
 747				sg->flags = 0;
 748			} while (sg != sd->groups);
 749
 750			sd->child = NULL;
 751		}
 752	}
 753
 754	sched_domain_debug(sd, cpu);
 755
 756	rq_attach_root(rq, rd);
 757	tmp = rq->sd;
 758	rcu_assign_pointer(rq->sd, sd);
 759	dirty_sched_domain_sysctl(cpu);
 760	destroy_sched_domains(tmp);
 761
 762	update_top_cache_domain(cpu);
 763}
 764
 765struct s_data {
 766	struct sched_domain * __percpu *sd;
 767	struct root_domain	*rd;
 768};
 769
 770enum s_alloc {
 771	sa_rootdomain,
 772	sa_sd,
 773	sa_sd_storage,
 774	sa_none,
 775};
 776
 777/*
 778 * Return the canonical balance CPU for this group, this is the first CPU
 779 * of this group that's also in the balance mask.
 780 *
 781 * The balance mask are all those CPUs that could actually end up at this
 782 * group. See build_balance_mask().
 783 *
 784 * Also see should_we_balance().
 785 */
 786int group_balance_cpu(struct sched_group *sg)
 787{
 788	return cpumask_first(group_balance_mask(sg));
 789}
 790
 791
 792/*
 793 * NUMA topology (first read the regular topology blurb below)
 794 *
 795 * Given a node-distance table, for example:
 796 *
 797 *   node   0   1   2   3
 798 *     0:  10  20  30  20
 799 *     1:  20  10  20  30
 800 *     2:  30  20  10  20
 801 *     3:  20  30  20  10
 802 *
 803 * which represents a 4 node ring topology like:
 804 *
 805 *   0 ----- 1
 806 *   |       |
 807 *   |       |
 808 *   |       |
 809 *   3 ----- 2
 810 *
 811 * We want to construct domains and groups to represent this. The way we go
 812 * about doing this is to build the domains on 'hops'. For each NUMA level we
 813 * construct the mask of all nodes reachable in @level hops.
 814 *
 815 * For the above NUMA topology that gives 3 levels:
 816 *
 817 * NUMA-2	0-3		0-3		0-3		0-3
 818 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 819 *
 820 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 821 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 822 *
 823 * NUMA-0	0		1		2		3
 824 *
 825 *
 826 * As can be seen; things don't nicely line up as with the regular topology.
 827 * When we iterate a domain in child domain chunks some nodes can be
 828 * represented multiple times -- hence the "overlap" naming for this part of
 829 * the topology.
 830 *
 831 * In order to minimize this overlap, we only build enough groups to cover the
 832 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 833 *
 834 * Because:
 835 *
 836 *  - the first group of each domain is its child domain; this
 837 *    gets us the first 0-1,3
 838 *  - the only uncovered node is 2, who's child domain is 1-3.
 839 *
 840 * However, because of the overlap, computing a unique CPU for each group is
 841 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 842 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 843 * end up at those groups (they would end up in group: 0-1,3).
 844 *
 845 * To correct this we have to introduce the group balance mask. This mask
 846 * will contain those CPUs in the group that can reach this group given the
 847 * (child) domain tree.
 848 *
 849 * With this we can once again compute balance_cpu and sched_group_capacity
 850 * relations.
 851 *
 852 * XXX include words on how balance_cpu is unique and therefore can be
 853 * used for sched_group_capacity links.
 854 *
 855 *
 856 * Another 'interesting' topology is:
 857 *
 858 *   node   0   1   2   3
 859 *     0:  10  20  20  30
 860 *     1:  20  10  20  20
 861 *     2:  20  20  10  20
 862 *     3:  30  20  20  10
 863 *
 864 * Which looks a little like:
 865 *
 866 *   0 ----- 1
 867 *   |     / |
 868 *   |   /   |
 869 *   | /     |
 870 *   2 ----- 3
 871 *
 872 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 873 * are not.
 874 *
 875 * This leads to a few particularly weird cases where the sched_domain's are
 876 * not of the same number for each CPU. Consider:
 877 *
 878 * NUMA-2	0-3						0-3
 879 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 880 *
 881 * NUMA-1	0-2		0-3		0-3		1-3
 882 *
 883 * NUMA-0	0		1		2		3
 884 *
 885 */
 886
 887
 888/*
 889 * Build the balance mask; it contains only those CPUs that can arrive at this
 890 * group and should be considered to continue balancing.
 891 *
 892 * We do this during the group creation pass, therefore the group information
 893 * isn't complete yet, however since each group represents a (child) domain we
 894 * can fully construct this using the sched_domain bits (which are already
 895 * complete).
 896 */
 897static void
 898build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 899{
 900	const struct cpumask *sg_span = sched_group_span(sg);
 901	struct sd_data *sdd = sd->private;
 902	struct sched_domain *sibling;
 903	int i;
 904
 905	cpumask_clear(mask);
 906
 907	for_each_cpu(i, sg_span) {
 908		sibling = *per_cpu_ptr(sdd->sd, i);
 909
 910		/*
 911		 * Can happen in the asymmetric case, where these siblings are
 912		 * unused. The mask will not be empty because those CPUs that
 913		 * do have the top domain _should_ span the domain.
 914		 */
 915		if (!sibling->child)
 916			continue;
 917
 918		/* If we would not end up here, we can't continue from here */
 919		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 920			continue;
 921
 922		cpumask_set_cpu(i, mask);
 923	}
 924
 925	/* We must not have empty masks here */
 926	WARN_ON_ONCE(cpumask_empty(mask));
 927}
 928
 929/*
 930 * XXX: This creates per-node group entries; since the load-balancer will
 931 * immediately access remote memory to construct this group's load-balance
 932 * statistics having the groups node local is of dubious benefit.
 933 */
 934static struct sched_group *
 935build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 936{
 937	struct sched_group *sg;
 938	struct cpumask *sg_span;
 939
 940	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 941			GFP_KERNEL, cpu_to_node(cpu));
 942
 943	if (!sg)
 944		return NULL;
 945
 946	sg_span = sched_group_span(sg);
 947	if (sd->child) {
 948		cpumask_copy(sg_span, sched_domain_span(sd->child));
 949		sg->flags = sd->child->flags;
 950	} else {
 951		cpumask_copy(sg_span, sched_domain_span(sd));
 952	}
 953
 954	atomic_inc(&sg->ref);
 955	return sg;
 956}
 957
 958static void init_overlap_sched_group(struct sched_domain *sd,
 959				     struct sched_group *sg)
 960{
 961	struct cpumask *mask = sched_domains_tmpmask2;
 962	struct sd_data *sdd = sd->private;
 963	struct cpumask *sg_span;
 964	int cpu;
 965
 966	build_balance_mask(sd, sg, mask);
 967	cpu = cpumask_first(mask);
 968
 969	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 970	if (atomic_inc_return(&sg->sgc->ref) == 1)
 971		cpumask_copy(group_balance_mask(sg), mask);
 972	else
 973		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 974
 975	/*
 976	 * Initialize sgc->capacity such that even if we mess up the
 977	 * domains and no possible iteration will get us here, we won't
 978	 * die on a /0 trap.
 979	 */
 980	sg_span = sched_group_span(sg);
 981	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 982	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 983	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
 984}
 985
 986static struct sched_domain *
 987find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
 988{
 989	/*
 990	 * The proper descendant would be the one whose child won't span out
 991	 * of sd
 992	 */
 993	while (sibling->child &&
 994	       !cpumask_subset(sched_domain_span(sibling->child),
 995			       sched_domain_span(sd)))
 996		sibling = sibling->child;
 997
 998	/*
 999	 * As we are referencing sgc across different topology level, we need
1000	 * to go down to skip those sched_domains which don't contribute to
1001	 * scheduling because they will be degenerated in cpu_attach_domain
1002	 */
1003	while (sibling->child &&
1004	       cpumask_equal(sched_domain_span(sibling->child),
1005			     sched_domain_span(sibling)))
1006		sibling = sibling->child;
1007
1008	return sibling;
1009}
1010
1011static int
1012build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1013{
1014	struct sched_group *first = NULL, *last = NULL, *sg;
1015	const struct cpumask *span = sched_domain_span(sd);
1016	struct cpumask *covered = sched_domains_tmpmask;
1017	struct sd_data *sdd = sd->private;
1018	struct sched_domain *sibling;
1019	int i;
1020
1021	cpumask_clear(covered);
1022
1023	for_each_cpu_wrap(i, span, cpu) {
1024		struct cpumask *sg_span;
1025
1026		if (cpumask_test_cpu(i, covered))
1027			continue;
1028
1029		sibling = *per_cpu_ptr(sdd->sd, i);
1030
1031		/*
1032		 * Asymmetric node setups can result in situations where the
1033		 * domain tree is of unequal depth, make sure to skip domains
1034		 * that already cover the entire range.
1035		 *
1036		 * In that case build_sched_domains() will have terminated the
1037		 * iteration early and our sibling sd spans will be empty.
1038		 * Domains should always include the CPU they're built on, so
1039		 * check that.
1040		 */
1041		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1042			continue;
1043
1044		/*
1045		 * Usually we build sched_group by sibling's child sched_domain
1046		 * But for machines whose NUMA diameter are 3 or above, we move
1047		 * to build sched_group by sibling's proper descendant's child
1048		 * domain because sibling's child sched_domain will span out of
1049		 * the sched_domain being built as below.
1050		 *
1051		 * Smallest diameter=3 topology is:
1052		 *
1053		 *   node   0   1   2   3
1054		 *     0:  10  20  30  40
1055		 *     1:  20  10  20  30
1056		 *     2:  30  20  10  20
1057		 *     3:  40  30  20  10
1058		 *
1059		 *   0 --- 1 --- 2 --- 3
1060		 *
1061		 * NUMA-3       0-3             N/A             N/A             0-3
1062		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1063		 *
1064		 * NUMA-2       0-2             0-3             0-3             1-3
1065		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1066		 *
1067		 * NUMA-1       0-1             0-2             1-3             2-3
1068		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1069		 *
1070		 * NUMA-0       0               1               2               3
1071		 *
1072		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1073		 * group span isn't a subset of the domain span.
1074		 */
1075		if (sibling->child &&
1076		    !cpumask_subset(sched_domain_span(sibling->child), span))
1077			sibling = find_descended_sibling(sd, sibling);
1078
1079		sg = build_group_from_child_sched_domain(sibling, cpu);
1080		if (!sg)
1081			goto fail;
1082
1083		sg_span = sched_group_span(sg);
1084		cpumask_or(covered, covered, sg_span);
1085
1086		init_overlap_sched_group(sibling, sg);
1087
1088		if (!first)
1089			first = sg;
1090		if (last)
1091			last->next = sg;
1092		last = sg;
1093		last->next = first;
1094	}
1095	sd->groups = first;
1096
1097	return 0;
1098
1099fail:
1100	free_sched_groups(first, 0);
1101
1102	return -ENOMEM;
1103}
1104
1105
1106/*
1107 * Package topology (also see the load-balance blurb in fair.c)
1108 *
1109 * The scheduler builds a tree structure to represent a number of important
1110 * topology features. By default (default_topology[]) these include:
1111 *
1112 *  - Simultaneous multithreading (SMT)
1113 *  - Multi-Core Cache (MC)
1114 *  - Package (DIE)
1115 *
1116 * Where the last one more or less denotes everything up to a NUMA node.
1117 *
1118 * The tree consists of 3 primary data structures:
1119 *
1120 *	sched_domain -> sched_group -> sched_group_capacity
1121 *	    ^ ^             ^ ^
1122 *          `-'             `-'
1123 *
1124 * The sched_domains are per-CPU and have a two way link (parent & child) and
1125 * denote the ever growing mask of CPUs belonging to that level of topology.
1126 *
1127 * Each sched_domain has a circular (double) linked list of sched_group's, each
1128 * denoting the domains of the level below (or individual CPUs in case of the
1129 * first domain level). The sched_group linked by a sched_domain includes the
1130 * CPU of that sched_domain [*].
1131 *
1132 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1133 *
1134 * CPU   0   1   2   3   4   5   6   7
1135 *
1136 * DIE  [                             ]
1137 * MC   [             ] [             ]
1138 * SMT  [     ] [     ] [     ] [     ]
1139 *
1140 *  - or -
1141 *
1142 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1143 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1144 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1145 *
1146 * CPU   0   1   2   3   4   5   6   7
1147 *
1148 * One way to think about it is: sched_domain moves you up and down among these
1149 * topology levels, while sched_group moves you sideways through it, at child
1150 * domain granularity.
1151 *
1152 * sched_group_capacity ensures each unique sched_group has shared storage.
1153 *
1154 * There are two related construction problems, both require a CPU that
1155 * uniquely identify each group (for a given domain):
1156 *
1157 *  - The first is the balance_cpu (see should_we_balance() and the
1158 *    load-balance blub in fair.c); for each group we only want 1 CPU to
1159 *    continue balancing at a higher domain.
1160 *
1161 *  - The second is the sched_group_capacity; we want all identical groups
1162 *    to share a single sched_group_capacity.
1163 *
1164 * Since these topologies are exclusive by construction. That is, its
1165 * impossible for an SMT thread to belong to multiple cores, and cores to
1166 * be part of multiple caches. There is a very clear and unique location
1167 * for each CPU in the hierarchy.
1168 *
1169 * Therefore computing a unique CPU for each group is trivial (the iteration
1170 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1171 * group), we can simply pick the first CPU in each group.
1172 *
1173 *
1174 * [*] in other words, the first group of each domain is its child domain.
1175 */
1176
1177static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1178{
1179	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1180	struct sched_domain *child = sd->child;
1181	struct sched_group *sg;
1182	bool already_visited;
1183
1184	if (child)
1185		cpu = cpumask_first(sched_domain_span(child));
1186
1187	sg = *per_cpu_ptr(sdd->sg, cpu);
1188	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1189
1190	/* Increase refcounts for claim_allocations: */
1191	already_visited = atomic_inc_return(&sg->ref) > 1;
1192	/* sgc visits should follow a similar trend as sg */
1193	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1194
1195	/* If we have already visited that group, it's already initialized. */
1196	if (already_visited)
1197		return sg;
1198
1199	if (child) {
1200		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1201		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1202		sg->flags = child->flags;
1203	} else {
1204		cpumask_set_cpu(cpu, sched_group_span(sg));
1205		cpumask_set_cpu(cpu, group_balance_mask(sg));
1206	}
1207
1208	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1209	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1210	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1211
1212	return sg;
1213}
1214
1215/*
1216 * build_sched_groups will build a circular linked list of the groups
1217 * covered by the given span, will set each group's ->cpumask correctly,
1218 * and will initialize their ->sgc.
1219 *
1220 * Assumes the sched_domain tree is fully constructed
1221 */
1222static int
1223build_sched_groups(struct sched_domain *sd, int cpu)
1224{
1225	struct sched_group *first = NULL, *last = NULL;
1226	struct sd_data *sdd = sd->private;
1227	const struct cpumask *span = sched_domain_span(sd);
1228	struct cpumask *covered;
1229	int i;
1230
1231	lockdep_assert_held(&sched_domains_mutex);
1232	covered = sched_domains_tmpmask;
1233
1234	cpumask_clear(covered);
1235
1236	for_each_cpu_wrap(i, span, cpu) {
1237		struct sched_group *sg;
1238
1239		if (cpumask_test_cpu(i, covered))
1240			continue;
1241
1242		sg = get_group(i, sdd);
1243
1244		cpumask_or(covered, covered, sched_group_span(sg));
1245
1246		if (!first)
1247			first = sg;
1248		if (last)
1249			last->next = sg;
1250		last = sg;
1251	}
1252	last->next = first;
1253	sd->groups = first;
1254
1255	return 0;
1256}
1257
1258/*
1259 * Initialize sched groups cpu_capacity.
1260 *
1261 * cpu_capacity indicates the capacity of sched group, which is used while
1262 * distributing the load between different sched groups in a sched domain.
1263 * Typically cpu_capacity for all the groups in a sched domain will be same
1264 * unless there are asymmetries in the topology. If there are asymmetries,
1265 * group having more cpu_capacity will pickup more load compared to the
1266 * group having less cpu_capacity.
1267 */
1268static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1269{
1270	struct sched_group *sg = sd->groups;
 
1271
1272	WARN_ON(!sg);
1273
1274	do {
1275		int cpu, max_cpu = -1;
1276
1277		sg->group_weight = cpumask_weight(sched_group_span(sg));
1278
 
 
 
 
 
 
 
 
 
1279		if (!(sd->flags & SD_ASYM_PACKING))
1280			goto next;
1281
1282		for_each_cpu(cpu, sched_group_span(sg)) {
1283			if (max_cpu < 0)
1284				max_cpu = cpu;
1285			else if (sched_asym_prefer(cpu, max_cpu))
1286				max_cpu = cpu;
1287		}
1288		sg->asym_prefer_cpu = max_cpu;
1289
1290next:
1291		sg = sg->next;
1292	} while (sg != sd->groups);
1293
1294	if (cpu != group_balance_cpu(sg))
1295		return;
1296
1297	update_group_capacity(sd, cpu);
1298}
1299
1300/*
1301 * Asymmetric CPU capacity bits
1302 */
1303struct asym_cap_data {
1304	struct list_head link;
1305	unsigned long capacity;
1306	unsigned long cpus[];
1307};
1308
1309/*
1310 * Set of available CPUs grouped by their corresponding capacities
1311 * Each list entry contains a CPU mask reflecting CPUs that share the same
1312 * capacity.
1313 * The lifespan of data is unlimited.
1314 */
1315static LIST_HEAD(asym_cap_list);
1316
1317#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1318
1319/*
1320 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1321 * Provides sd_flags reflecting the asymmetry scope.
1322 */
1323static inline int
1324asym_cpu_capacity_classify(const struct cpumask *sd_span,
1325			   const struct cpumask *cpu_map)
1326{
1327	struct asym_cap_data *entry;
1328	int count = 0, miss = 0;
1329
1330	/*
1331	 * Count how many unique CPU capacities this domain spans across
1332	 * (compare sched_domain CPUs mask with ones representing  available
1333	 * CPUs capacities). Take into account CPUs that might be offline:
1334	 * skip those.
1335	 */
1336	list_for_each_entry(entry, &asym_cap_list, link) {
1337		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1338			++count;
1339		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1340			++miss;
1341	}
1342
1343	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1344
1345	/* No asymmetry detected */
1346	if (count < 2)
1347		return 0;
1348	/* Some of the available CPU capacity values have not been detected */
1349	if (miss)
1350		return SD_ASYM_CPUCAPACITY;
1351
1352	/* Full asymmetry */
1353	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1354
1355}
1356
1357static inline void asym_cpu_capacity_update_data(int cpu)
1358{
1359	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1360	struct asym_cap_data *entry = NULL;
1361
1362	list_for_each_entry(entry, &asym_cap_list, link) {
1363		if (capacity == entry->capacity)
1364			goto done;
1365	}
1366
1367	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1368	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1369		return;
1370	entry->capacity = capacity;
1371	list_add(&entry->link, &asym_cap_list);
1372done:
1373	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1374}
1375
1376/*
1377 * Build-up/update list of CPUs grouped by their capacities
1378 * An update requires explicit request to rebuild sched domains
1379 * with state indicating CPU topology changes.
1380 */
1381static void asym_cpu_capacity_scan(void)
1382{
1383	struct asym_cap_data *entry, *next;
1384	int cpu;
1385
1386	list_for_each_entry(entry, &asym_cap_list, link)
1387		cpumask_clear(cpu_capacity_span(entry));
1388
1389	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1390		asym_cpu_capacity_update_data(cpu);
1391
1392	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1393		if (cpumask_empty(cpu_capacity_span(entry))) {
1394			list_del(&entry->link);
1395			kfree(entry);
1396		}
1397	}
1398
1399	/*
1400	 * Only one capacity value has been detected i.e. this system is symmetric.
1401	 * No need to keep this data around.
1402	 */
1403	if (list_is_singular(&asym_cap_list)) {
1404		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1405		list_del(&entry->link);
1406		kfree(entry);
1407	}
1408}
1409
1410/*
1411 * Initializers for schedule domains
1412 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1413 */
1414
1415static int default_relax_domain_level = -1;
1416int sched_domain_level_max;
1417
1418static int __init setup_relax_domain_level(char *str)
1419{
1420	if (kstrtoint(str, 0, &default_relax_domain_level))
1421		pr_warn("Unable to set relax_domain_level\n");
1422
1423	return 1;
1424}
1425__setup("relax_domain_level=", setup_relax_domain_level);
1426
1427static void set_domain_attribute(struct sched_domain *sd,
1428				 struct sched_domain_attr *attr)
1429{
1430	int request;
1431
1432	if (!attr || attr->relax_domain_level < 0) {
1433		if (default_relax_domain_level < 0)
1434			return;
1435		request = default_relax_domain_level;
1436	} else
1437		request = attr->relax_domain_level;
1438
1439	if (sd->level > request) {
1440		/* Turn off idle balance on this domain: */
1441		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1442	}
1443}
1444
1445static void __sdt_free(const struct cpumask *cpu_map);
1446static int __sdt_alloc(const struct cpumask *cpu_map);
1447
1448static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1449				 const struct cpumask *cpu_map)
1450{
1451	switch (what) {
1452	case sa_rootdomain:
1453		if (!atomic_read(&d->rd->refcount))
1454			free_rootdomain(&d->rd->rcu);
1455		fallthrough;
1456	case sa_sd:
1457		free_percpu(d->sd);
1458		fallthrough;
1459	case sa_sd_storage:
1460		__sdt_free(cpu_map);
1461		fallthrough;
1462	case sa_none:
1463		break;
1464	}
1465}
1466
1467static enum s_alloc
1468__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1469{
1470	memset(d, 0, sizeof(*d));
1471
1472	if (__sdt_alloc(cpu_map))
1473		return sa_sd_storage;
1474	d->sd = alloc_percpu(struct sched_domain *);
1475	if (!d->sd)
1476		return sa_sd_storage;
1477	d->rd = alloc_rootdomain();
1478	if (!d->rd)
1479		return sa_sd;
1480
1481	return sa_rootdomain;
1482}
1483
1484/*
1485 * NULL the sd_data elements we've used to build the sched_domain and
1486 * sched_group structure so that the subsequent __free_domain_allocs()
1487 * will not free the data we're using.
1488 */
1489static void claim_allocations(int cpu, struct sched_domain *sd)
1490{
1491	struct sd_data *sdd = sd->private;
1492
1493	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1494	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1495
1496	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1497		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1498
1499	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1500		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1501
1502	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1503		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1504}
1505
1506#ifdef CONFIG_NUMA
1507enum numa_topology_type sched_numa_topology_type;
1508
1509static int			sched_domains_numa_levels;
1510static int			sched_domains_curr_level;
1511
1512int				sched_max_numa_distance;
1513static int			*sched_domains_numa_distance;
1514static struct cpumask		***sched_domains_numa_masks;
1515#endif
1516
1517/*
1518 * SD_flags allowed in topology descriptions.
1519 *
1520 * These flags are purely descriptive of the topology and do not prescribe
1521 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1522 * function:
1523 *
1524 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1525 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1526 *   SD_NUMA                - describes NUMA topologies
 
1527 *
1528 * Odd one out, which beside describing the topology has a quirk also
1529 * prescribes the desired behaviour that goes along with it:
1530 *
1531 *   SD_ASYM_PACKING        - describes SMT quirks
1532 */
1533#define TOPOLOGY_SD_FLAGS		\
1534	(SD_SHARE_CPUCAPACITY	|	\
1535	 SD_SHARE_PKG_RESOURCES |	\
 
1536	 SD_NUMA		|	\
1537	 SD_ASYM_PACKING)
1538
1539static struct sched_domain *
1540sd_init(struct sched_domain_topology_level *tl,
1541	const struct cpumask *cpu_map,
1542	struct sched_domain *child, int cpu)
1543{
1544	struct sd_data *sdd = &tl->data;
1545	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1546	int sd_id, sd_weight, sd_flags = 0;
1547	struct cpumask *sd_span;
1548
1549#ifdef CONFIG_NUMA
1550	/*
1551	 * Ugly hack to pass state to sd_numa_mask()...
1552	 */
1553	sched_domains_curr_level = tl->numa_level;
1554#endif
1555
1556	sd_weight = cpumask_weight(tl->mask(cpu));
1557
1558	if (tl->sd_flags)
1559		sd_flags = (*tl->sd_flags)();
1560	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1561			"wrong sd_flags in topology description\n"))
1562		sd_flags &= TOPOLOGY_SD_FLAGS;
1563
1564	*sd = (struct sched_domain){
1565		.min_interval		= sd_weight,
1566		.max_interval		= 2*sd_weight,
1567		.busy_factor		= 16,
1568		.imbalance_pct		= 117,
1569
1570		.cache_nice_tries	= 0,
1571
1572		.flags			= 1*SD_BALANCE_NEWIDLE
1573					| 1*SD_BALANCE_EXEC
1574					| 1*SD_BALANCE_FORK
1575					| 0*SD_BALANCE_WAKE
1576					| 1*SD_WAKE_AFFINE
1577					| 0*SD_SHARE_CPUCAPACITY
1578					| 0*SD_SHARE_PKG_RESOURCES
1579					| 0*SD_SERIALIZE
1580					| 1*SD_PREFER_SIBLING
1581					| 0*SD_NUMA
1582					| sd_flags
1583					,
1584
1585		.last_balance		= jiffies,
1586		.balance_interval	= sd_weight,
1587		.max_newidle_lb_cost	= 0,
1588		.last_decay_max_lb_cost	= jiffies,
1589		.child			= child,
1590#ifdef CONFIG_SCHED_DEBUG
1591		.name			= tl->name,
1592#endif
1593	};
1594
1595	sd_span = sched_domain_span(sd);
1596	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1597	sd_id = cpumask_first(sd_span);
1598
1599	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1600
1601	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1602		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1603		  "CPU capacity asymmetry not supported on SMT\n");
1604
1605	/*
1606	 * Convert topological properties into behaviour.
1607	 */
1608	/* Don't attempt to spread across CPUs of different capacities. */
1609	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1610		sd->child->flags &= ~SD_PREFER_SIBLING;
1611
1612	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1613		sd->imbalance_pct = 110;
1614
1615	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1616		sd->imbalance_pct = 117;
1617		sd->cache_nice_tries = 1;
1618
1619#ifdef CONFIG_NUMA
1620	} else if (sd->flags & SD_NUMA) {
1621		sd->cache_nice_tries = 2;
1622
1623		sd->flags &= ~SD_PREFER_SIBLING;
1624		sd->flags |= SD_SERIALIZE;
1625		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1626			sd->flags &= ~(SD_BALANCE_EXEC |
1627				       SD_BALANCE_FORK |
1628				       SD_WAKE_AFFINE);
1629		}
1630
1631#endif
1632	} else {
1633		sd->cache_nice_tries = 1;
1634	}
1635
1636	/*
1637	 * For all levels sharing cache; connect a sched_domain_shared
1638	 * instance.
1639	 */
1640	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1641		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1642		atomic_inc(&sd->shared->ref);
1643		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1644	}
1645
1646	sd->private = sdd;
1647
1648	return sd;
1649}
1650
1651/*
1652 * Topology list, bottom-up.
1653 */
1654static struct sched_domain_topology_level default_topology[] = {
1655#ifdef CONFIG_SCHED_SMT
1656	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1657#endif
1658
1659#ifdef CONFIG_SCHED_CLUSTER
1660	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1661#endif
1662
1663#ifdef CONFIG_SCHED_MC
1664	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1665#endif
1666	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1667	{ NULL, },
1668};
1669
1670static struct sched_domain_topology_level *sched_domain_topology =
1671	default_topology;
1672static struct sched_domain_topology_level *sched_domain_topology_saved;
1673
1674#define for_each_sd_topology(tl)			\
1675	for (tl = sched_domain_topology; tl->mask; tl++)
1676
1677void set_sched_topology(struct sched_domain_topology_level *tl)
1678{
1679	if (WARN_ON_ONCE(sched_smp_initialized))
1680		return;
1681
1682	sched_domain_topology = tl;
1683	sched_domain_topology_saved = NULL;
1684}
1685
1686#ifdef CONFIG_NUMA
1687
1688static const struct cpumask *sd_numa_mask(int cpu)
1689{
1690	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1691}
1692
1693static void sched_numa_warn(const char *str)
1694{
1695	static int done = false;
1696	int i,j;
1697
1698	if (done)
1699		return;
1700
1701	done = true;
1702
1703	printk(KERN_WARNING "ERROR: %s\n\n", str);
1704
1705	for (i = 0; i < nr_node_ids; i++) {
1706		printk(KERN_WARNING "  ");
1707		for (j = 0; j < nr_node_ids; j++) {
1708			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1709				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1710			else
1711				printk(KERN_CONT " %02d  ", node_distance(i,j));
1712		}
1713		printk(KERN_CONT "\n");
1714	}
1715	printk(KERN_WARNING "\n");
1716}
1717
1718bool find_numa_distance(int distance)
1719{
1720	bool found = false;
1721	int i, *distances;
1722
1723	if (distance == node_distance(0, 0))
1724		return true;
1725
1726	rcu_read_lock();
1727	distances = rcu_dereference(sched_domains_numa_distance);
1728	if (!distances)
1729		goto unlock;
1730	for (i = 0; i < sched_domains_numa_levels; i++) {
1731		if (distances[i] == distance) {
1732			found = true;
1733			break;
1734		}
1735	}
1736unlock:
1737	rcu_read_unlock();
1738
1739	return found;
1740}
1741
1742#define for_each_cpu_node_but(n, nbut)		\
1743	for_each_node_state(n, N_CPU)		\
1744		if (n == nbut)			\
1745			continue;		\
1746		else
1747
1748/*
1749 * A system can have three types of NUMA topology:
1750 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1751 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1752 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1753 *
1754 * The difference between a glueless mesh topology and a backplane
1755 * topology lies in whether communication between not directly
1756 * connected nodes goes through intermediary nodes (where programs
1757 * could run), or through backplane controllers. This affects
1758 * placement of programs.
1759 *
1760 * The type of topology can be discerned with the following tests:
1761 * - If the maximum distance between any nodes is 1 hop, the system
1762 *   is directly connected.
1763 * - If for two nodes A and B, located N > 1 hops away from each other,
1764 *   there is an intermediary node C, which is < N hops away from both
1765 *   nodes A and B, the system is a glueless mesh.
1766 */
1767static void init_numa_topology_type(int offline_node)
1768{
1769	int a, b, c, n;
1770
1771	n = sched_max_numa_distance;
1772
1773	if (sched_domains_numa_levels <= 2) {
1774		sched_numa_topology_type = NUMA_DIRECT;
1775		return;
1776	}
1777
1778	for_each_cpu_node_but(a, offline_node) {
1779		for_each_cpu_node_but(b, offline_node) {
1780			/* Find two nodes furthest removed from each other. */
1781			if (node_distance(a, b) < n)
1782				continue;
1783
1784			/* Is there an intermediary node between a and b? */
1785			for_each_cpu_node_but(c, offline_node) {
1786				if (node_distance(a, c) < n &&
1787				    node_distance(b, c) < n) {
1788					sched_numa_topology_type =
1789							NUMA_GLUELESS_MESH;
1790					return;
1791				}
1792			}
1793
1794			sched_numa_topology_type = NUMA_BACKPLANE;
1795			return;
1796		}
1797	}
1798
1799	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1800	sched_numa_topology_type = NUMA_DIRECT;
1801}
1802
1803
1804#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1805
1806void sched_init_numa(int offline_node)
1807{
1808	struct sched_domain_topology_level *tl;
1809	unsigned long *distance_map;
1810	int nr_levels = 0;
1811	int i, j;
1812	int *distances;
1813	struct cpumask ***masks;
1814
1815	/*
1816	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1817	 * unique distances in the node_distance() table.
1818	 */
1819	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1820	if (!distance_map)
1821		return;
1822
1823	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1824	for_each_cpu_node_but(i, offline_node) {
1825		for_each_cpu_node_but(j, offline_node) {
1826			int distance = node_distance(i, j);
1827
1828			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1829				sched_numa_warn("Invalid distance value range");
1830				bitmap_free(distance_map);
1831				return;
1832			}
1833
1834			bitmap_set(distance_map, distance, 1);
1835		}
1836	}
1837	/*
1838	 * We can now figure out how many unique distance values there are and
1839	 * allocate memory accordingly.
1840	 */
1841	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1842
1843	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1844	if (!distances) {
1845		bitmap_free(distance_map);
1846		return;
1847	}
1848
1849	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1850		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1851		distances[i] = j;
1852	}
1853	rcu_assign_pointer(sched_domains_numa_distance, distances);
1854
1855	bitmap_free(distance_map);
1856
1857	/*
1858	 * 'nr_levels' contains the number of unique distances
1859	 *
1860	 * The sched_domains_numa_distance[] array includes the actual distance
1861	 * numbers.
1862	 */
1863
1864	/*
1865	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1866	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1867	 * the array will contain less then 'nr_levels' members. This could be
1868	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1869	 * in other functions.
1870	 *
1871	 * We reset it to 'nr_levels' at the end of this function.
1872	 */
1873	sched_domains_numa_levels = 0;
1874
1875	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1876	if (!masks)
1877		return;
1878
1879	/*
1880	 * Now for each level, construct a mask per node which contains all
1881	 * CPUs of nodes that are that many hops away from us.
1882	 */
1883	for (i = 0; i < nr_levels; i++) {
1884		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1885		if (!masks[i])
1886			return;
1887
1888		for_each_cpu_node_but(j, offline_node) {
1889			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1890			int k;
1891
1892			if (!mask)
1893				return;
1894
1895			masks[i][j] = mask;
1896
1897			for_each_cpu_node_but(k, offline_node) {
1898				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1899					sched_numa_warn("Node-distance not symmetric");
1900
1901				if (node_distance(j, k) > sched_domains_numa_distance[i])
1902					continue;
1903
1904				cpumask_or(mask, mask, cpumask_of_node(k));
1905			}
1906		}
1907	}
1908	rcu_assign_pointer(sched_domains_numa_masks, masks);
1909
1910	/* Compute default topology size */
1911	for (i = 0; sched_domain_topology[i].mask; i++);
1912
1913	tl = kzalloc((i + nr_levels + 1) *
1914			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1915	if (!tl)
1916		return;
1917
1918	/*
1919	 * Copy the default topology bits..
1920	 */
1921	for (i = 0; sched_domain_topology[i].mask; i++)
1922		tl[i] = sched_domain_topology[i];
1923
1924	/*
1925	 * Add the NUMA identity distance, aka single NODE.
1926	 */
1927	tl[i++] = (struct sched_domain_topology_level){
1928		.mask = sd_numa_mask,
1929		.numa_level = 0,
1930		SD_INIT_NAME(NODE)
1931	};
1932
1933	/*
1934	 * .. and append 'j' levels of NUMA goodness.
1935	 */
1936	for (j = 1; j < nr_levels; i++, j++) {
1937		tl[i] = (struct sched_domain_topology_level){
1938			.mask = sd_numa_mask,
1939			.sd_flags = cpu_numa_flags,
1940			.flags = SDTL_OVERLAP,
1941			.numa_level = j,
1942			SD_INIT_NAME(NUMA)
1943		};
1944	}
1945
1946	sched_domain_topology_saved = sched_domain_topology;
1947	sched_domain_topology = tl;
1948
1949	sched_domains_numa_levels = nr_levels;
1950	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1951
1952	init_numa_topology_type(offline_node);
1953}
1954
1955
1956static void sched_reset_numa(void)
1957{
1958	int nr_levels, *distances;
1959	struct cpumask ***masks;
1960
1961	nr_levels = sched_domains_numa_levels;
1962	sched_domains_numa_levels = 0;
1963	sched_max_numa_distance = 0;
1964	sched_numa_topology_type = NUMA_DIRECT;
1965	distances = sched_domains_numa_distance;
1966	rcu_assign_pointer(sched_domains_numa_distance, NULL);
1967	masks = sched_domains_numa_masks;
1968	rcu_assign_pointer(sched_domains_numa_masks, NULL);
1969	if (distances || masks) {
1970		int i, j;
1971
1972		synchronize_rcu();
1973		kfree(distances);
1974		for (i = 0; i < nr_levels && masks; i++) {
1975			if (!masks[i])
1976				continue;
1977			for_each_node(j)
1978				kfree(masks[i][j]);
1979			kfree(masks[i]);
1980		}
1981		kfree(masks);
1982	}
1983	if (sched_domain_topology_saved) {
1984		kfree(sched_domain_topology);
1985		sched_domain_topology = sched_domain_topology_saved;
1986		sched_domain_topology_saved = NULL;
1987	}
1988}
1989
1990/*
1991 * Call with hotplug lock held
1992 */
1993void sched_update_numa(int cpu, bool online)
1994{
1995	int node;
1996
1997	node = cpu_to_node(cpu);
1998	/*
1999	 * Scheduler NUMA topology is updated when the first CPU of a
2000	 * node is onlined or the last CPU of a node is offlined.
2001	 */
2002	if (cpumask_weight(cpumask_of_node(node)) != 1)
2003		return;
2004
2005	sched_reset_numa();
2006	sched_init_numa(online ? NUMA_NO_NODE : node);
2007}
2008
2009void sched_domains_numa_masks_set(unsigned int cpu)
2010{
2011	int node = cpu_to_node(cpu);
2012	int i, j;
2013
2014	for (i = 0; i < sched_domains_numa_levels; i++) {
2015		for (j = 0; j < nr_node_ids; j++) {
2016			if (!node_state(j, N_CPU))
2017				continue;
2018
2019			/* Set ourselves in the remote node's masks */
2020			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2021				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2022		}
2023	}
2024}
2025
2026void sched_domains_numa_masks_clear(unsigned int cpu)
2027{
2028	int i, j;
2029
2030	for (i = 0; i < sched_domains_numa_levels; i++) {
2031		for (j = 0; j < nr_node_ids; j++) {
2032			if (sched_domains_numa_masks[i][j])
2033				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2034		}
2035	}
2036}
2037
2038/*
2039 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2040 *                             closest to @cpu from @cpumask.
2041 * cpumask: cpumask to find a cpu from
2042 * cpu: cpu to be close to
2043 *
2044 * returns: cpu, or nr_cpu_ids when nothing found.
2045 */
2046int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2047{
2048	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2049	struct cpumask ***masks;
2050
2051	rcu_read_lock();
2052	masks = rcu_dereference(sched_domains_numa_masks);
2053	if (!masks)
2054		goto unlock;
2055	for (i = 0; i < sched_domains_numa_levels; i++) {
2056		if (!masks[i][j])
2057			break;
2058		cpu = cpumask_any_and(cpus, masks[i][j]);
2059		if (cpu < nr_cpu_ids) {
2060			found = cpu;
2061			break;
2062		}
2063	}
2064unlock:
2065	rcu_read_unlock();
2066
2067	return found;
2068}
2069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2070#endif /* CONFIG_NUMA */
2071
2072static int __sdt_alloc(const struct cpumask *cpu_map)
2073{
2074	struct sched_domain_topology_level *tl;
2075	int j;
2076
2077	for_each_sd_topology(tl) {
2078		struct sd_data *sdd = &tl->data;
2079
2080		sdd->sd = alloc_percpu(struct sched_domain *);
2081		if (!sdd->sd)
2082			return -ENOMEM;
2083
2084		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2085		if (!sdd->sds)
2086			return -ENOMEM;
2087
2088		sdd->sg = alloc_percpu(struct sched_group *);
2089		if (!sdd->sg)
2090			return -ENOMEM;
2091
2092		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2093		if (!sdd->sgc)
2094			return -ENOMEM;
2095
2096		for_each_cpu(j, cpu_map) {
2097			struct sched_domain *sd;
2098			struct sched_domain_shared *sds;
2099			struct sched_group *sg;
2100			struct sched_group_capacity *sgc;
2101
2102			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2103					GFP_KERNEL, cpu_to_node(j));
2104			if (!sd)
2105				return -ENOMEM;
2106
2107			*per_cpu_ptr(sdd->sd, j) = sd;
2108
2109			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2110					GFP_KERNEL, cpu_to_node(j));
2111			if (!sds)
2112				return -ENOMEM;
2113
2114			*per_cpu_ptr(sdd->sds, j) = sds;
2115
2116			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2117					GFP_KERNEL, cpu_to_node(j));
2118			if (!sg)
2119				return -ENOMEM;
2120
2121			sg->next = sg;
2122
2123			*per_cpu_ptr(sdd->sg, j) = sg;
2124
2125			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2126					GFP_KERNEL, cpu_to_node(j));
2127			if (!sgc)
2128				return -ENOMEM;
2129
2130#ifdef CONFIG_SCHED_DEBUG
2131			sgc->id = j;
2132#endif
2133
2134			*per_cpu_ptr(sdd->sgc, j) = sgc;
2135		}
2136	}
2137
2138	return 0;
2139}
2140
2141static void __sdt_free(const struct cpumask *cpu_map)
2142{
2143	struct sched_domain_topology_level *tl;
2144	int j;
2145
2146	for_each_sd_topology(tl) {
2147		struct sd_data *sdd = &tl->data;
2148
2149		for_each_cpu(j, cpu_map) {
2150			struct sched_domain *sd;
2151
2152			if (sdd->sd) {
2153				sd = *per_cpu_ptr(sdd->sd, j);
2154				if (sd && (sd->flags & SD_OVERLAP))
2155					free_sched_groups(sd->groups, 0);
2156				kfree(*per_cpu_ptr(sdd->sd, j));
2157			}
2158
2159			if (sdd->sds)
2160				kfree(*per_cpu_ptr(sdd->sds, j));
2161			if (sdd->sg)
2162				kfree(*per_cpu_ptr(sdd->sg, j));
2163			if (sdd->sgc)
2164				kfree(*per_cpu_ptr(sdd->sgc, j));
2165		}
2166		free_percpu(sdd->sd);
2167		sdd->sd = NULL;
2168		free_percpu(sdd->sds);
2169		sdd->sds = NULL;
2170		free_percpu(sdd->sg);
2171		sdd->sg = NULL;
2172		free_percpu(sdd->sgc);
2173		sdd->sgc = NULL;
2174	}
2175}
2176
2177static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2178		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2179		struct sched_domain *child, int cpu)
2180{
2181	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2182
2183	if (child) {
2184		sd->level = child->level + 1;
2185		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2186		child->parent = sd;
2187
2188		if (!cpumask_subset(sched_domain_span(child),
2189				    sched_domain_span(sd))) {
2190			pr_err("BUG: arch topology borken\n");
2191#ifdef CONFIG_SCHED_DEBUG
2192			pr_err("     the %s domain not a subset of the %s domain\n",
2193					child->name, sd->name);
2194#endif
2195			/* Fixup, ensure @sd has at least @child CPUs. */
2196			cpumask_or(sched_domain_span(sd),
2197				   sched_domain_span(sd),
2198				   sched_domain_span(child));
2199		}
2200
2201	}
2202	set_domain_attribute(sd, attr);
2203
2204	return sd;
2205}
2206
2207/*
2208 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2209 * any two given CPUs at this (non-NUMA) topology level.
2210 */
2211static bool topology_span_sane(struct sched_domain_topology_level *tl,
2212			      const struct cpumask *cpu_map, int cpu)
2213{
2214	int i;
2215
2216	/* NUMA levels are allowed to overlap */
2217	if (tl->flags & SDTL_OVERLAP)
2218		return true;
2219
2220	/*
2221	 * Non-NUMA levels cannot partially overlap - they must be either
2222	 * completely equal or completely disjoint. Otherwise we can end up
2223	 * breaking the sched_group lists - i.e. a later get_group() pass
2224	 * breaks the linking done for an earlier span.
2225	 */
2226	for_each_cpu(i, cpu_map) {
2227		if (i == cpu)
2228			continue;
2229		/*
2230		 * We should 'and' all those masks with 'cpu_map' to exactly
2231		 * match the topology we're about to build, but that can only
2232		 * remove CPUs, which only lessens our ability to detect
2233		 * overlaps
2234		 */
2235		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2236		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2237			return false;
2238	}
2239
2240	return true;
2241}
2242
2243/*
2244 * Build sched domains for a given set of CPUs and attach the sched domains
2245 * to the individual CPUs
2246 */
2247static int
2248build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2249{
2250	enum s_alloc alloc_state = sa_none;
2251	struct sched_domain *sd;
2252	struct s_data d;
2253	struct rq *rq = NULL;
2254	int i, ret = -ENOMEM;
2255	bool has_asym = false;
 
2256
2257	if (WARN_ON(cpumask_empty(cpu_map)))
2258		goto error;
2259
2260	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2261	if (alloc_state != sa_rootdomain)
2262		goto error;
2263
2264	/* Set up domains for CPUs specified by the cpu_map: */
2265	for_each_cpu(i, cpu_map) {
2266		struct sched_domain_topology_level *tl;
2267
2268		sd = NULL;
2269		for_each_sd_topology(tl) {
2270
2271			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2272				goto error;
2273
2274			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2275
2276			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2277
2278			if (tl == sched_domain_topology)
2279				*per_cpu_ptr(d.sd, i) = sd;
2280			if (tl->flags & SDTL_OVERLAP)
2281				sd->flags |= SD_OVERLAP;
2282			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2283				break;
2284		}
2285	}
2286
2287	/* Build the groups for the domains */
2288	for_each_cpu(i, cpu_map) {
2289		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2290			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2291			if (sd->flags & SD_OVERLAP) {
2292				if (build_overlap_sched_groups(sd, i))
2293					goto error;
2294			} else {
2295				if (build_sched_groups(sd, i))
2296					goto error;
2297			}
2298		}
2299	}
2300
2301	/*
2302	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2303	 * imbalanced.
2304	 */
2305	for_each_cpu(i, cpu_map) {
2306		unsigned int imb = 0;
2307		unsigned int imb_span = 1;
2308
2309		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2310			struct sched_domain *child = sd->child;
2311
2312			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2313			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
2314				struct sched_domain __rcu *top_p;
2315				unsigned int nr_llcs;
2316
2317				/*
2318				 * For a single LLC per node, allow an
2319				 * imbalance up to 12.5% of the node. This is
2320				 * arbitrary cutoff based two factors -- SMT and
2321				 * memory channels. For SMT-2, the intent is to
2322				 * avoid premature sharing of HT resources but
2323				 * SMT-4 or SMT-8 *may* benefit from a different
2324				 * cutoff. For memory channels, this is a very
2325				 * rough estimate of how many channels may be
2326				 * active and is based on recent CPUs with
2327				 * many cores.
2328				 *
2329				 * For multiple LLCs, allow an imbalance
2330				 * until multiple tasks would share an LLC
2331				 * on one node while LLCs on another node
2332				 * remain idle. This assumes that there are
2333				 * enough logical CPUs per LLC to avoid SMT
2334				 * factors and that there is a correlation
2335				 * between LLCs and memory channels.
2336				 */
2337				nr_llcs = sd->span_weight / child->span_weight;
2338				if (nr_llcs == 1)
2339					imb = sd->span_weight >> 3;
2340				else
2341					imb = nr_llcs;
2342				imb = max(1U, imb);
2343				sd->imb_numa_nr = imb;
2344
2345				/* Set span based on the first NUMA domain. */
2346				top_p = sd->parent;
2347				while (top_p && !(top_p->flags & SD_NUMA)) {
2348					top_p = top_p->parent;
2349				}
2350				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2351			} else {
2352				int factor = max(1U, (sd->span_weight / imb_span));
2353
2354				sd->imb_numa_nr = imb * factor;
2355			}
2356		}
2357	}
2358
2359	/* Calculate CPU capacity for physical packages and nodes */
2360	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2361		if (!cpumask_test_cpu(i, cpu_map))
2362			continue;
2363
2364		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2365			claim_allocations(i, sd);
2366			init_sched_groups_capacity(i, sd);
2367		}
2368	}
2369
2370	/* Attach the domains */
2371	rcu_read_lock();
2372	for_each_cpu(i, cpu_map) {
 
 
2373		rq = cpu_rq(i);
2374		sd = *per_cpu_ptr(d.sd, i);
2375
 
2376		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2377		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2378			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2379
2380		cpu_attach_domain(sd, d.rd, i);
 
 
 
2381	}
2382	rcu_read_unlock();
2383
2384	if (has_asym)
2385		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2386
 
 
 
2387	if (rq && sched_debug_verbose) {
2388		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2389			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2390	}
2391
2392	ret = 0;
2393error:
2394	__free_domain_allocs(&d, alloc_state, cpu_map);
2395
2396	return ret;
2397}
2398
2399/* Current sched domains: */
2400static cpumask_var_t			*doms_cur;
2401
2402/* Number of sched domains in 'doms_cur': */
2403static int				ndoms_cur;
2404
2405/* Attributes of custom domains in 'doms_cur' */
2406static struct sched_domain_attr		*dattr_cur;
2407
2408/*
2409 * Special case: If a kmalloc() of a doms_cur partition (array of
2410 * cpumask) fails, then fallback to a single sched domain,
2411 * as determined by the single cpumask fallback_doms.
2412 */
2413static cpumask_var_t			fallback_doms;
2414
2415/*
2416 * arch_update_cpu_topology lets virtualized architectures update the
2417 * CPU core maps. It is supposed to return 1 if the topology changed
2418 * or 0 if it stayed the same.
2419 */
2420int __weak arch_update_cpu_topology(void)
2421{
2422	return 0;
2423}
2424
2425cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2426{
2427	int i;
2428	cpumask_var_t *doms;
2429
2430	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2431	if (!doms)
2432		return NULL;
2433	for (i = 0; i < ndoms; i++) {
2434		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2435			free_sched_domains(doms, i);
2436			return NULL;
2437		}
2438	}
2439	return doms;
2440}
2441
2442void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2443{
2444	unsigned int i;
2445	for (i = 0; i < ndoms; i++)
2446		free_cpumask_var(doms[i]);
2447	kfree(doms);
2448}
2449
2450/*
2451 * Set up scheduler domains and groups.  For now this just excludes isolated
2452 * CPUs, but could be used to exclude other special cases in the future.
2453 */
2454int sched_init_domains(const struct cpumask *cpu_map)
2455{
2456	int err;
2457
2458	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2459	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2460	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2461
2462	arch_update_cpu_topology();
2463	asym_cpu_capacity_scan();
2464	ndoms_cur = 1;
2465	doms_cur = alloc_sched_domains(ndoms_cur);
2466	if (!doms_cur)
2467		doms_cur = &fallback_doms;
2468	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2469	err = build_sched_domains(doms_cur[0], NULL);
2470
2471	return err;
2472}
2473
2474/*
2475 * Detach sched domains from a group of CPUs specified in cpu_map
2476 * These CPUs will now be attached to the NULL domain
2477 */
2478static void detach_destroy_domains(const struct cpumask *cpu_map)
2479{
2480	unsigned int cpu = cpumask_any(cpu_map);
2481	int i;
2482
2483	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2484		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
 
 
 
2485
2486	rcu_read_lock();
2487	for_each_cpu(i, cpu_map)
2488		cpu_attach_domain(NULL, &def_root_domain, i);
2489	rcu_read_unlock();
2490}
2491
2492/* handle null as "default" */
2493static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2494			struct sched_domain_attr *new, int idx_new)
2495{
2496	struct sched_domain_attr tmp;
2497
2498	/* Fast path: */
2499	if (!new && !cur)
2500		return 1;
2501
2502	tmp = SD_ATTR_INIT;
2503
2504	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2505			new ? (new + idx_new) : &tmp,
2506			sizeof(struct sched_domain_attr));
2507}
2508
2509/*
2510 * Partition sched domains as specified by the 'ndoms_new'
2511 * cpumasks in the array doms_new[] of cpumasks. This compares
2512 * doms_new[] to the current sched domain partitioning, doms_cur[].
2513 * It destroys each deleted domain and builds each new domain.
2514 *
2515 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2516 * The masks don't intersect (don't overlap.) We should setup one
2517 * sched domain for each mask. CPUs not in any of the cpumasks will
2518 * not be load balanced. If the same cpumask appears both in the
2519 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2520 * it as it is.
2521 *
2522 * The passed in 'doms_new' should be allocated using
2523 * alloc_sched_domains.  This routine takes ownership of it and will
2524 * free_sched_domains it when done with it. If the caller failed the
2525 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2526 * and partition_sched_domains() will fallback to the single partition
2527 * 'fallback_doms', it also forces the domains to be rebuilt.
2528 *
2529 * If doms_new == NULL it will be replaced with cpu_online_mask.
2530 * ndoms_new == 0 is a special case for destroying existing domains,
2531 * and it will not create the default domain.
2532 *
2533 * Call with hotplug lock and sched_domains_mutex held
2534 */
2535void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2536				    struct sched_domain_attr *dattr_new)
2537{
2538	bool __maybe_unused has_eas = false;
2539	int i, j, n;
2540	int new_topology;
2541
2542	lockdep_assert_held(&sched_domains_mutex);
2543
2544	/* Let the architecture update CPU core mappings: */
2545	new_topology = arch_update_cpu_topology();
2546	/* Trigger rebuilding CPU capacity asymmetry data */
2547	if (new_topology)
2548		asym_cpu_capacity_scan();
2549
2550	if (!doms_new) {
2551		WARN_ON_ONCE(dattr_new);
2552		n = 0;
2553		doms_new = alloc_sched_domains(1);
2554		if (doms_new) {
2555			n = 1;
2556			cpumask_and(doms_new[0], cpu_active_mask,
2557				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2558		}
2559	} else {
2560		n = ndoms_new;
2561	}
2562
2563	/* Destroy deleted domains: */
2564	for (i = 0; i < ndoms_cur; i++) {
2565		for (j = 0; j < n && !new_topology; j++) {
2566			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2567			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2568				struct root_domain *rd;
2569
2570				/*
2571				 * This domain won't be destroyed and as such
2572				 * its dl_bw->total_bw needs to be cleared.  It
2573				 * will be recomputed in function
2574				 * update_tasks_root_domain().
2575				 */
2576				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2577				dl_clear_root_domain(rd);
2578				goto match1;
2579			}
2580		}
2581		/* No match - a current sched domain not in new doms_new[] */
2582		detach_destroy_domains(doms_cur[i]);
2583match1:
2584		;
2585	}
2586
2587	n = ndoms_cur;
2588	if (!doms_new) {
2589		n = 0;
2590		doms_new = &fallback_doms;
2591		cpumask_and(doms_new[0], cpu_active_mask,
2592			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2593	}
2594
2595	/* Build new domains: */
2596	for (i = 0; i < ndoms_new; i++) {
2597		for (j = 0; j < n && !new_topology; j++) {
2598			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2599			    dattrs_equal(dattr_new, i, dattr_cur, j))
2600				goto match2;
2601		}
2602		/* No match - add a new doms_new */
2603		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2604match2:
2605		;
2606	}
2607
2608#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2609	/* Build perf. domains: */
2610	for (i = 0; i < ndoms_new; i++) {
2611		for (j = 0; j < n && !sched_energy_update; j++) {
2612			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2613			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2614				has_eas = true;
2615				goto match3;
2616			}
2617		}
2618		/* No match - add perf. domains for a new rd */
2619		has_eas |= build_perf_domains(doms_new[i]);
2620match3:
2621		;
2622	}
2623	sched_energy_set(has_eas);
2624#endif
2625
2626	/* Remember the new sched domains: */
2627	if (doms_cur != &fallback_doms)
2628		free_sched_domains(doms_cur, ndoms_cur);
2629
2630	kfree(dattr_cur);
2631	doms_cur = doms_new;
2632	dattr_cur = dattr_new;
2633	ndoms_cur = ndoms_new;
2634
2635	update_sched_domain_debugfs();
2636}
2637
2638/*
2639 * Call with hotplug lock held
2640 */
2641void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2642			     struct sched_domain_attr *dattr_new)
2643{
2644	mutex_lock(&sched_domains_mutex);
2645	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2646	mutex_unlock(&sched_domains_mutex);
2647}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5
   6#include <linux/bsearch.h>
   7
   8DEFINE_MUTEX(sched_domains_mutex);
   9
  10/* Protected by sched_domains_mutex: */
  11static cpumask_var_t sched_domains_tmpmask;
  12static cpumask_var_t sched_domains_tmpmask2;
  13
  14#ifdef CONFIG_SCHED_DEBUG
  15
  16static int __init sched_debug_setup(char *str)
  17{
  18	sched_debug_verbose = true;
  19
  20	return 0;
  21}
  22early_param("sched_verbose", sched_debug_setup);
  23
  24static inline bool sched_debug(void)
  25{
  26	return sched_debug_verbose;
  27}
  28
  29#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
  30const struct sd_flag_debug sd_flag_debug[] = {
  31#include <linux/sched/sd_flags.h>
  32};
  33#undef SD_FLAG
  34
  35static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  36				  struct cpumask *groupmask)
  37{
  38	struct sched_group *group = sd->groups;
  39	unsigned long flags = sd->flags;
  40	unsigned int idx;
  41
  42	cpumask_clear(groupmask);
  43
  44	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  45	printk(KERN_CONT "span=%*pbl level=%s\n",
  46	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
  47
  48	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  49		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  50	}
  51	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
  52		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  53	}
  54
  55	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
  56		unsigned int flag = BIT(idx);
  57		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
  58
  59		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
  60		    !(sd->child->flags & flag))
  61			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
  62			       sd_flag_debug[idx].name);
  63
  64		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
  65		    !(sd->parent->flags & flag))
  66			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
  67			       sd_flag_debug[idx].name);
  68	}
  69
  70	printk(KERN_DEBUG "%*s groups:", level + 1, "");
  71	do {
  72		if (!group) {
  73			printk("\n");
  74			printk(KERN_ERR "ERROR: group is NULL\n");
  75			break;
  76		}
  77
  78		if (cpumask_empty(sched_group_span(group))) {
  79			printk(KERN_CONT "\n");
  80			printk(KERN_ERR "ERROR: empty group\n");
  81			break;
  82		}
  83
  84		if (!(sd->flags & SD_OVERLAP) &&
  85		    cpumask_intersects(groupmask, sched_group_span(group))) {
  86			printk(KERN_CONT "\n");
  87			printk(KERN_ERR "ERROR: repeated CPUs\n");
  88			break;
  89		}
  90
  91		cpumask_or(groupmask, groupmask, sched_group_span(group));
  92
  93		printk(KERN_CONT " %d:{ span=%*pbl",
  94				group->sgc->id,
  95				cpumask_pr_args(sched_group_span(group)));
  96
  97		if ((sd->flags & SD_OVERLAP) &&
  98		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  99			printk(KERN_CONT " mask=%*pbl",
 100				cpumask_pr_args(group_balance_mask(group)));
 101		}
 102
 103		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
 104			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
 105
 106		if (group == sd->groups && sd->child &&
 107		    !cpumask_equal(sched_domain_span(sd->child),
 108				   sched_group_span(group))) {
 109			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 110		}
 111
 112		printk(KERN_CONT " }");
 113
 114		group = group->next;
 115
 116		if (group != sd->groups)
 117			printk(KERN_CONT ",");
 118
 119	} while (group != sd->groups);
 120	printk(KERN_CONT "\n");
 121
 122	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 123		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 124
 125	if (sd->parent &&
 126	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 127		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 128	return 0;
 129}
 130
 131static void sched_domain_debug(struct sched_domain *sd, int cpu)
 132{
 133	int level = 0;
 134
 135	if (!sched_debug_verbose)
 136		return;
 137
 138	if (!sd) {
 139		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 140		return;
 141	}
 142
 143	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 144
 145	for (;;) {
 146		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 147			break;
 148		level++;
 149		sd = sd->parent;
 150		if (!sd)
 151			break;
 152	}
 153}
 154#else /* !CONFIG_SCHED_DEBUG */
 155
 156# define sched_debug_verbose 0
 157# define sched_domain_debug(sd, cpu) do { } while (0)
 158static inline bool sched_debug(void)
 159{
 160	return false;
 161}
 162#endif /* CONFIG_SCHED_DEBUG */
 163
 164/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
 165#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
 166static const unsigned int SD_DEGENERATE_GROUPS_MASK =
 167#include <linux/sched/sd_flags.h>
 1680;
 169#undef SD_FLAG
 170
 171static int sd_degenerate(struct sched_domain *sd)
 172{
 173	if (cpumask_weight(sched_domain_span(sd)) == 1)
 174		return 1;
 175
 176	/* Following flags need at least 2 groups */
 177	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
 178	    (sd->groups != sd->groups->next))
 179		return 0;
 180
 181	/* Following flags don't use groups */
 182	if (sd->flags & (SD_WAKE_AFFINE))
 183		return 0;
 184
 185	return 1;
 186}
 187
 188static int
 189sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 190{
 191	unsigned long cflags = sd->flags, pflags = parent->flags;
 192
 193	if (sd_degenerate(parent))
 194		return 1;
 195
 196	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 197		return 0;
 198
 199	/* Flags needing groups don't count if only 1 group in parent */
 200	if (parent->groups == parent->groups->next)
 201		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
 202
 203	if (~cflags & pflags)
 204		return 0;
 205
 206	return 1;
 207}
 208
 209#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
 210DEFINE_STATIC_KEY_FALSE(sched_energy_present);
 211static unsigned int sysctl_sched_energy_aware = 1;
 212static DEFINE_MUTEX(sched_energy_mutex);
 213static bool sched_energy_update;
 214
 215static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
 216{
 217	bool any_asym_capacity = false;
 218	struct cpufreq_policy *policy;
 219	struct cpufreq_governor *gov;
 220	int i;
 221
 222	/* EAS is enabled for asymmetric CPU capacity topologies. */
 223	for_each_cpu(i, cpu_mask) {
 224		if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
 225			any_asym_capacity = true;
 226			break;
 227		}
 228	}
 229	if (!any_asym_capacity) {
 230		if (sched_debug()) {
 231			pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
 232				cpumask_pr_args(cpu_mask));
 233		}
 234		return false;
 235	}
 236
 237	/* EAS definitely does *not* handle SMT */
 238	if (sched_smt_active()) {
 239		if (sched_debug()) {
 240			pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
 241				cpumask_pr_args(cpu_mask));
 242		}
 243		return false;
 244	}
 245
 246	if (!arch_scale_freq_invariant()) {
 247		if (sched_debug()) {
 248			pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
 249				cpumask_pr_args(cpu_mask));
 250		}
 251		return false;
 252	}
 253
 254	/* Do not attempt EAS if schedutil is not being used. */
 255	for_each_cpu(i, cpu_mask) {
 256		policy = cpufreq_cpu_get(i);
 257		if (!policy) {
 258			if (sched_debug()) {
 259				pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
 260					cpumask_pr_args(cpu_mask), i);
 261			}
 262			return false;
 263		}
 264		gov = policy->governor;
 265		cpufreq_cpu_put(policy);
 266		if (gov != &schedutil_gov) {
 267			if (sched_debug()) {
 268				pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
 269					cpumask_pr_args(cpu_mask));
 270			}
 271			return false;
 272		}
 273	}
 274
 275	return true;
 276}
 277
 278void rebuild_sched_domains_energy(void)
 279{
 280	mutex_lock(&sched_energy_mutex);
 281	sched_energy_update = true;
 282	rebuild_sched_domains();
 283	sched_energy_update = false;
 284	mutex_unlock(&sched_energy_mutex);
 285}
 286
 287#ifdef CONFIG_PROC_SYSCTL
 288static int sched_energy_aware_handler(struct ctl_table *table, int write,
 289		void *buffer, size_t *lenp, loff_t *ppos)
 290{
 291	int ret, state;
 292
 293	if (write && !capable(CAP_SYS_ADMIN))
 294		return -EPERM;
 295
 296	if (!sched_is_eas_possible(cpu_active_mask)) {
 297		if (write) {
 298			return -EOPNOTSUPP;
 299		} else {
 300			*lenp = 0;
 301			return 0;
 302		}
 303	}
 304
 305	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 306	if (!ret && write) {
 307		state = static_branch_unlikely(&sched_energy_present);
 308		if (state != sysctl_sched_energy_aware)
 309			rebuild_sched_domains_energy();
 310	}
 311
 312	return ret;
 313}
 314
 315static struct ctl_table sched_energy_aware_sysctls[] = {
 316	{
 317		.procname       = "sched_energy_aware",
 318		.data           = &sysctl_sched_energy_aware,
 319		.maxlen         = sizeof(unsigned int),
 320		.mode           = 0644,
 321		.proc_handler   = sched_energy_aware_handler,
 322		.extra1         = SYSCTL_ZERO,
 323		.extra2         = SYSCTL_ONE,
 324	},
 325	{}
 326};
 327
 328static int __init sched_energy_aware_sysctl_init(void)
 329{
 330	register_sysctl_init("kernel", sched_energy_aware_sysctls);
 331	return 0;
 332}
 333
 334late_initcall(sched_energy_aware_sysctl_init);
 335#endif
 336
 337static void free_pd(struct perf_domain *pd)
 338{
 339	struct perf_domain *tmp;
 340
 341	while (pd) {
 342		tmp = pd->next;
 343		kfree(pd);
 344		pd = tmp;
 345	}
 346}
 347
 348static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
 349{
 350	while (pd) {
 351		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
 352			return pd;
 353		pd = pd->next;
 354	}
 355
 356	return NULL;
 357}
 358
 359static struct perf_domain *pd_init(int cpu)
 360{
 361	struct em_perf_domain *obj = em_cpu_get(cpu);
 362	struct perf_domain *pd;
 363
 364	if (!obj) {
 365		if (sched_debug())
 366			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
 367		return NULL;
 368	}
 369
 370	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 371	if (!pd)
 372		return NULL;
 373	pd->em_pd = obj;
 374
 375	return pd;
 376}
 377
 378static void perf_domain_debug(const struct cpumask *cpu_map,
 379						struct perf_domain *pd)
 380{
 381	if (!sched_debug() || !pd)
 382		return;
 383
 384	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
 385
 386	while (pd) {
 387		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
 388				cpumask_first(perf_domain_span(pd)),
 389				cpumask_pr_args(perf_domain_span(pd)),
 390				em_pd_nr_perf_states(pd->em_pd));
 391		pd = pd->next;
 392	}
 393
 394	printk(KERN_CONT "\n");
 395}
 396
 397static void destroy_perf_domain_rcu(struct rcu_head *rp)
 398{
 399	struct perf_domain *pd;
 400
 401	pd = container_of(rp, struct perf_domain, rcu);
 402	free_pd(pd);
 403}
 404
 405static void sched_energy_set(bool has_eas)
 406{
 407	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
 408		if (sched_debug())
 409			pr_info("%s: stopping EAS\n", __func__);
 410		static_branch_disable_cpuslocked(&sched_energy_present);
 411	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
 412		if (sched_debug())
 413			pr_info("%s: starting EAS\n", __func__);
 414		static_branch_enable_cpuslocked(&sched_energy_present);
 415	}
 416}
 417
 418/*
 419 * EAS can be used on a root domain if it meets all the following conditions:
 420 *    1. an Energy Model (EM) is available;
 421 *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
 422 *    3. no SMT is detected.
 423 *    4. schedutil is driving the frequency of all CPUs of the rd;
 424 *    5. frequency invariance support is present;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425 */
 
 
 
 426static bool build_perf_domains(const struct cpumask *cpu_map)
 427{
 428	int i;
 429	struct perf_domain *pd = NULL, *tmp;
 430	int cpu = cpumask_first(cpu_map);
 431	struct root_domain *rd = cpu_rq(cpu)->rd;
 
 
 432
 433	if (!sysctl_sched_energy_aware)
 434		goto free;
 435
 436	if (!sched_is_eas_possible(cpu_map))
 
 
 
 
 
 437		goto free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438
 439	for_each_cpu(i, cpu_map) {
 440		/* Skip already covered CPUs. */
 441		if (find_pd(pd, i))
 442			continue;
 443
 
 
 
 
 
 
 
 
 
 
 
 
 
 444		/* Create the new pd and add it to the local list. */
 445		tmp = pd_init(i);
 446		if (!tmp)
 447			goto free;
 448		tmp->next = pd;
 449		pd = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450	}
 451
 452	perf_domain_debug(cpu_map, pd);
 453
 454	/* Attach the new list of performance domains to the root domain. */
 455	tmp = rd->pd;
 456	rcu_assign_pointer(rd->pd, pd);
 457	if (tmp)
 458		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 459
 460	return !!pd;
 461
 462free:
 463	free_pd(pd);
 464	tmp = rd->pd;
 465	rcu_assign_pointer(rd->pd, NULL);
 466	if (tmp)
 467		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
 468
 469	return false;
 470}
 471#else
 472static void free_pd(struct perf_domain *pd) { }
 473#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
 474
 475static void free_rootdomain(struct rcu_head *rcu)
 476{
 477	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 478
 479	cpupri_cleanup(&rd->cpupri);
 480	cpudl_cleanup(&rd->cpudl);
 481	free_cpumask_var(rd->dlo_mask);
 482	free_cpumask_var(rd->rto_mask);
 483	free_cpumask_var(rd->online);
 484	free_cpumask_var(rd->span);
 485	free_pd(rd->pd);
 486	kfree(rd);
 487}
 488
 489void rq_attach_root(struct rq *rq, struct root_domain *rd)
 490{
 491	struct root_domain *old_rd = NULL;
 492	struct rq_flags rf;
 493
 494	rq_lock_irqsave(rq, &rf);
 495
 496	if (rq->rd) {
 497		old_rd = rq->rd;
 498
 499		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 500			set_rq_offline(rq);
 501
 502		cpumask_clear_cpu(rq->cpu, old_rd->span);
 503
 504		/*
 505		 * If we dont want to free the old_rd yet then
 506		 * set old_rd to NULL to skip the freeing later
 507		 * in this function:
 508		 */
 509		if (!atomic_dec_and_test(&old_rd->refcount))
 510			old_rd = NULL;
 511	}
 512
 513	atomic_inc(&rd->refcount);
 514	rq->rd = rd;
 515
 516	cpumask_set_cpu(rq->cpu, rd->span);
 517	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 518		set_rq_online(rq);
 519
 520	rq_unlock_irqrestore(rq, &rf);
 521
 522	if (old_rd)
 523		call_rcu(&old_rd->rcu, free_rootdomain);
 524}
 525
 526void sched_get_rd(struct root_domain *rd)
 527{
 528	atomic_inc(&rd->refcount);
 529}
 530
 531void sched_put_rd(struct root_domain *rd)
 532{
 533	if (!atomic_dec_and_test(&rd->refcount))
 534		return;
 535
 536	call_rcu(&rd->rcu, free_rootdomain);
 537}
 538
 539static int init_rootdomain(struct root_domain *rd)
 540{
 541	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 542		goto out;
 543	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 544		goto free_span;
 545	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 546		goto free_online;
 547	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 548		goto free_dlo_mask;
 549
 550#ifdef HAVE_RT_PUSH_IPI
 551	rd->rto_cpu = -1;
 552	raw_spin_lock_init(&rd->rto_lock);
 553	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
 554#endif
 555
 556	rd->visit_gen = 0;
 557	init_dl_bw(&rd->dl_bw);
 558	if (cpudl_init(&rd->cpudl) != 0)
 559		goto free_rto_mask;
 560
 561	if (cpupri_init(&rd->cpupri) != 0)
 562		goto free_cpudl;
 563	return 0;
 564
 565free_cpudl:
 566	cpudl_cleanup(&rd->cpudl);
 567free_rto_mask:
 568	free_cpumask_var(rd->rto_mask);
 569free_dlo_mask:
 570	free_cpumask_var(rd->dlo_mask);
 571free_online:
 572	free_cpumask_var(rd->online);
 573free_span:
 574	free_cpumask_var(rd->span);
 575out:
 576	return -ENOMEM;
 577}
 578
 579/*
 580 * By default the system creates a single root-domain with all CPUs as
 581 * members (mimicking the global state we have today).
 582 */
 583struct root_domain def_root_domain;
 584
 585void __init init_defrootdomain(void)
 586{
 587	init_rootdomain(&def_root_domain);
 588
 589	atomic_set(&def_root_domain.refcount, 1);
 590}
 591
 592static struct root_domain *alloc_rootdomain(void)
 593{
 594	struct root_domain *rd;
 595
 596	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 597	if (!rd)
 598		return NULL;
 599
 600	if (init_rootdomain(rd) != 0) {
 601		kfree(rd);
 602		return NULL;
 603	}
 604
 605	return rd;
 606}
 607
 608static void free_sched_groups(struct sched_group *sg, int free_sgc)
 609{
 610	struct sched_group *tmp, *first;
 611
 612	if (!sg)
 613		return;
 614
 615	first = sg;
 616	do {
 617		tmp = sg->next;
 618
 619		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 620			kfree(sg->sgc);
 621
 622		if (atomic_dec_and_test(&sg->ref))
 623			kfree(sg);
 624		sg = tmp;
 625	} while (sg != first);
 626}
 627
 628static void destroy_sched_domain(struct sched_domain *sd)
 629{
 630	/*
 631	 * A normal sched domain may have multiple group references, an
 632	 * overlapping domain, having private groups, only one.  Iterate,
 633	 * dropping group/capacity references, freeing where none remain.
 634	 */
 635	free_sched_groups(sd->groups, 1);
 636
 637	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 638		kfree(sd->shared);
 639	kfree(sd);
 640}
 641
 642static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 643{
 644	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 645
 646	while (sd) {
 647		struct sched_domain *parent = sd->parent;
 648		destroy_sched_domain(sd);
 649		sd = parent;
 650	}
 651}
 652
 653static void destroy_sched_domains(struct sched_domain *sd)
 654{
 655	if (sd)
 656		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 657}
 658
 659/*
 660 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
 661 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
 662 * select_idle_sibling().
 663 *
 664 * Also keep a unique ID per domain (we use the first CPU number in the cpumask
 665 * of the domain), this allows us to quickly tell if two CPUs are in the same
 666 * cache domain, see cpus_share_cache().
 667 */
 668DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
 669DEFINE_PER_CPU(int, sd_llc_size);
 670DEFINE_PER_CPU(int, sd_llc_id);
 671DEFINE_PER_CPU(int, sd_share_id);
 672DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
 673DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
 674DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
 675DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
 676
 677DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
 678DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
 679
 680static void update_top_cache_domain(int cpu)
 681{
 682	struct sched_domain_shared *sds = NULL;
 683	struct sched_domain *sd;
 684	int id = cpu;
 685	int size = 1;
 686
 687	sd = highest_flag_domain(cpu, SD_SHARE_LLC);
 688	if (sd) {
 689		id = cpumask_first(sched_domain_span(sd));
 690		size = cpumask_weight(sched_domain_span(sd));
 691		sds = sd->shared;
 692	}
 693
 694	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 695	per_cpu(sd_llc_size, cpu) = size;
 696	per_cpu(sd_llc_id, cpu) = id;
 697	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 698
 699	sd = lowest_flag_domain(cpu, SD_CLUSTER);
 700	if (sd)
 701		id = cpumask_first(sched_domain_span(sd));
 702
 703	/*
 704	 * This assignment should be placed after the sd_llc_id as
 705	 * we want this id equals to cluster id on cluster machines
 706	 * but equals to LLC id on non-Cluster machines.
 707	 */
 708	per_cpu(sd_share_id, cpu) = id;
 709
 710	sd = lowest_flag_domain(cpu, SD_NUMA);
 711	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 712
 713	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 714	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
 715
 716	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
 717	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
 718}
 719
 720/*
 721 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 722 * hold the hotplug lock.
 723 */
 724static void
 725cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 726{
 727	struct rq *rq = cpu_rq(cpu);
 728	struct sched_domain *tmp;
 729
 730	/* Remove the sched domains which do not contribute to scheduling. */
 731	for (tmp = sd; tmp; ) {
 732		struct sched_domain *parent = tmp->parent;
 733		if (!parent)
 734			break;
 735
 736		if (sd_parent_degenerate(tmp, parent)) {
 737			tmp->parent = parent->parent;
 738
 739			if (parent->parent) {
 740				parent->parent->child = tmp;
 741				parent->parent->groups->flags = tmp->flags;
 742			}
 743
 744			/*
 745			 * Transfer SD_PREFER_SIBLING down in case of a
 746			 * degenerate parent; the spans match for this
 747			 * so the property transfers.
 748			 */
 749			if (parent->flags & SD_PREFER_SIBLING)
 750				tmp->flags |= SD_PREFER_SIBLING;
 751			destroy_sched_domain(parent);
 752		} else
 753			tmp = tmp->parent;
 754	}
 755
 756	if (sd && sd_degenerate(sd)) {
 757		tmp = sd;
 758		sd = sd->parent;
 759		destroy_sched_domain(tmp);
 760		if (sd) {
 761			struct sched_group *sg = sd->groups;
 762
 763			/*
 764			 * sched groups hold the flags of the child sched
 765			 * domain for convenience. Clear such flags since
 766			 * the child is being destroyed.
 767			 */
 768			do {
 769				sg->flags = 0;
 770			} while (sg != sd->groups);
 771
 772			sd->child = NULL;
 773		}
 774	}
 775
 776	sched_domain_debug(sd, cpu);
 777
 778	rq_attach_root(rq, rd);
 779	tmp = rq->sd;
 780	rcu_assign_pointer(rq->sd, sd);
 781	dirty_sched_domain_sysctl(cpu);
 782	destroy_sched_domains(tmp);
 783
 784	update_top_cache_domain(cpu);
 785}
 786
 787struct s_data {
 788	struct sched_domain * __percpu *sd;
 789	struct root_domain	*rd;
 790};
 791
 792enum s_alloc {
 793	sa_rootdomain,
 794	sa_sd,
 795	sa_sd_storage,
 796	sa_none,
 797};
 798
 799/*
 800 * Return the canonical balance CPU for this group, this is the first CPU
 801 * of this group that's also in the balance mask.
 802 *
 803 * The balance mask are all those CPUs that could actually end up at this
 804 * group. See build_balance_mask().
 805 *
 806 * Also see should_we_balance().
 807 */
 808int group_balance_cpu(struct sched_group *sg)
 809{
 810	return cpumask_first(group_balance_mask(sg));
 811}
 812
 813
 814/*
 815 * NUMA topology (first read the regular topology blurb below)
 816 *
 817 * Given a node-distance table, for example:
 818 *
 819 *   node   0   1   2   3
 820 *     0:  10  20  30  20
 821 *     1:  20  10  20  30
 822 *     2:  30  20  10  20
 823 *     3:  20  30  20  10
 824 *
 825 * which represents a 4 node ring topology like:
 826 *
 827 *   0 ----- 1
 828 *   |       |
 829 *   |       |
 830 *   |       |
 831 *   3 ----- 2
 832 *
 833 * We want to construct domains and groups to represent this. The way we go
 834 * about doing this is to build the domains on 'hops'. For each NUMA level we
 835 * construct the mask of all nodes reachable in @level hops.
 836 *
 837 * For the above NUMA topology that gives 3 levels:
 838 *
 839 * NUMA-2	0-3		0-3		0-3		0-3
 840 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 841 *
 842 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 843 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 844 *
 845 * NUMA-0	0		1		2		3
 846 *
 847 *
 848 * As can be seen; things don't nicely line up as with the regular topology.
 849 * When we iterate a domain in child domain chunks some nodes can be
 850 * represented multiple times -- hence the "overlap" naming for this part of
 851 * the topology.
 852 *
 853 * In order to minimize this overlap, we only build enough groups to cover the
 854 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 855 *
 856 * Because:
 857 *
 858 *  - the first group of each domain is its child domain; this
 859 *    gets us the first 0-1,3
 860 *  - the only uncovered node is 2, who's child domain is 1-3.
 861 *
 862 * However, because of the overlap, computing a unique CPU for each group is
 863 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 864 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 865 * end up at those groups (they would end up in group: 0-1,3).
 866 *
 867 * To correct this we have to introduce the group balance mask. This mask
 868 * will contain those CPUs in the group that can reach this group given the
 869 * (child) domain tree.
 870 *
 871 * With this we can once again compute balance_cpu and sched_group_capacity
 872 * relations.
 873 *
 874 * XXX include words on how balance_cpu is unique and therefore can be
 875 * used for sched_group_capacity links.
 876 *
 877 *
 878 * Another 'interesting' topology is:
 879 *
 880 *   node   0   1   2   3
 881 *     0:  10  20  20  30
 882 *     1:  20  10  20  20
 883 *     2:  20  20  10  20
 884 *     3:  30  20  20  10
 885 *
 886 * Which looks a little like:
 887 *
 888 *   0 ----- 1
 889 *   |     / |
 890 *   |   /   |
 891 *   | /     |
 892 *   2 ----- 3
 893 *
 894 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 895 * are not.
 896 *
 897 * This leads to a few particularly weird cases where the sched_domain's are
 898 * not of the same number for each CPU. Consider:
 899 *
 900 * NUMA-2	0-3						0-3
 901 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 902 *
 903 * NUMA-1	0-2		0-3		0-3		1-3
 904 *
 905 * NUMA-0	0		1		2		3
 906 *
 907 */
 908
 909
 910/*
 911 * Build the balance mask; it contains only those CPUs that can arrive at this
 912 * group and should be considered to continue balancing.
 913 *
 914 * We do this during the group creation pass, therefore the group information
 915 * isn't complete yet, however since each group represents a (child) domain we
 916 * can fully construct this using the sched_domain bits (which are already
 917 * complete).
 918 */
 919static void
 920build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 921{
 922	const struct cpumask *sg_span = sched_group_span(sg);
 923	struct sd_data *sdd = sd->private;
 924	struct sched_domain *sibling;
 925	int i;
 926
 927	cpumask_clear(mask);
 928
 929	for_each_cpu(i, sg_span) {
 930		sibling = *per_cpu_ptr(sdd->sd, i);
 931
 932		/*
 933		 * Can happen in the asymmetric case, where these siblings are
 934		 * unused. The mask will not be empty because those CPUs that
 935		 * do have the top domain _should_ span the domain.
 936		 */
 937		if (!sibling->child)
 938			continue;
 939
 940		/* If we would not end up here, we can't continue from here */
 941		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 942			continue;
 943
 944		cpumask_set_cpu(i, mask);
 945	}
 946
 947	/* We must not have empty masks here */
 948	WARN_ON_ONCE(cpumask_empty(mask));
 949}
 950
 951/*
 952 * XXX: This creates per-node group entries; since the load-balancer will
 953 * immediately access remote memory to construct this group's load-balance
 954 * statistics having the groups node local is of dubious benefit.
 955 */
 956static struct sched_group *
 957build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 958{
 959	struct sched_group *sg;
 960	struct cpumask *sg_span;
 961
 962	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 963			GFP_KERNEL, cpu_to_node(cpu));
 964
 965	if (!sg)
 966		return NULL;
 967
 968	sg_span = sched_group_span(sg);
 969	if (sd->child) {
 970		cpumask_copy(sg_span, sched_domain_span(sd->child));
 971		sg->flags = sd->child->flags;
 972	} else {
 973		cpumask_copy(sg_span, sched_domain_span(sd));
 974	}
 975
 976	atomic_inc(&sg->ref);
 977	return sg;
 978}
 979
 980static void init_overlap_sched_group(struct sched_domain *sd,
 981				     struct sched_group *sg)
 982{
 983	struct cpumask *mask = sched_domains_tmpmask2;
 984	struct sd_data *sdd = sd->private;
 985	struct cpumask *sg_span;
 986	int cpu;
 987
 988	build_balance_mask(sd, sg, mask);
 989	cpu = cpumask_first(mask);
 990
 991	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 992	if (atomic_inc_return(&sg->sgc->ref) == 1)
 993		cpumask_copy(group_balance_mask(sg), mask);
 994	else
 995		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 996
 997	/*
 998	 * Initialize sgc->capacity such that even if we mess up the
 999	 * domains and no possible iteration will get us here, we won't
1000	 * die on a /0 trap.
1001	 */
1002	sg_span = sched_group_span(sg);
1003	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1004	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1005	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1006}
1007
1008static struct sched_domain *
1009find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1010{
1011	/*
1012	 * The proper descendant would be the one whose child won't span out
1013	 * of sd
1014	 */
1015	while (sibling->child &&
1016	       !cpumask_subset(sched_domain_span(sibling->child),
1017			       sched_domain_span(sd)))
1018		sibling = sibling->child;
1019
1020	/*
1021	 * As we are referencing sgc across different topology level, we need
1022	 * to go down to skip those sched_domains which don't contribute to
1023	 * scheduling because they will be degenerated in cpu_attach_domain
1024	 */
1025	while (sibling->child &&
1026	       cpumask_equal(sched_domain_span(sibling->child),
1027			     sched_domain_span(sibling)))
1028		sibling = sibling->child;
1029
1030	return sibling;
1031}
1032
1033static int
1034build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1035{
1036	struct sched_group *first = NULL, *last = NULL, *sg;
1037	const struct cpumask *span = sched_domain_span(sd);
1038	struct cpumask *covered = sched_domains_tmpmask;
1039	struct sd_data *sdd = sd->private;
1040	struct sched_domain *sibling;
1041	int i;
1042
1043	cpumask_clear(covered);
1044
1045	for_each_cpu_wrap(i, span, cpu) {
1046		struct cpumask *sg_span;
1047
1048		if (cpumask_test_cpu(i, covered))
1049			continue;
1050
1051		sibling = *per_cpu_ptr(sdd->sd, i);
1052
1053		/*
1054		 * Asymmetric node setups can result in situations where the
1055		 * domain tree is of unequal depth, make sure to skip domains
1056		 * that already cover the entire range.
1057		 *
1058		 * In that case build_sched_domains() will have terminated the
1059		 * iteration early and our sibling sd spans will be empty.
1060		 * Domains should always include the CPU they're built on, so
1061		 * check that.
1062		 */
1063		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1064			continue;
1065
1066		/*
1067		 * Usually we build sched_group by sibling's child sched_domain
1068		 * But for machines whose NUMA diameter are 3 or above, we move
1069		 * to build sched_group by sibling's proper descendant's child
1070		 * domain because sibling's child sched_domain will span out of
1071		 * the sched_domain being built as below.
1072		 *
1073		 * Smallest diameter=3 topology is:
1074		 *
1075		 *   node   0   1   2   3
1076		 *     0:  10  20  30  40
1077		 *     1:  20  10  20  30
1078		 *     2:  30  20  10  20
1079		 *     3:  40  30  20  10
1080		 *
1081		 *   0 --- 1 --- 2 --- 3
1082		 *
1083		 * NUMA-3       0-3             N/A             N/A             0-3
1084		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1085		 *
1086		 * NUMA-2       0-2             0-3             0-3             1-3
1087		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1088		 *
1089		 * NUMA-1       0-1             0-2             1-3             2-3
1090		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1091		 *
1092		 * NUMA-0       0               1               2               3
1093		 *
1094		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1095		 * group span isn't a subset of the domain span.
1096		 */
1097		if (sibling->child &&
1098		    !cpumask_subset(sched_domain_span(sibling->child), span))
1099			sibling = find_descended_sibling(sd, sibling);
1100
1101		sg = build_group_from_child_sched_domain(sibling, cpu);
1102		if (!sg)
1103			goto fail;
1104
1105		sg_span = sched_group_span(sg);
1106		cpumask_or(covered, covered, sg_span);
1107
1108		init_overlap_sched_group(sibling, sg);
1109
1110		if (!first)
1111			first = sg;
1112		if (last)
1113			last->next = sg;
1114		last = sg;
1115		last->next = first;
1116	}
1117	sd->groups = first;
1118
1119	return 0;
1120
1121fail:
1122	free_sched_groups(first, 0);
1123
1124	return -ENOMEM;
1125}
1126
1127
1128/*
1129 * Package topology (also see the load-balance blurb in fair.c)
1130 *
1131 * The scheduler builds a tree structure to represent a number of important
1132 * topology features. By default (default_topology[]) these include:
1133 *
1134 *  - Simultaneous multithreading (SMT)
1135 *  - Multi-Core Cache (MC)
1136 *  - Package (PKG)
1137 *
1138 * Where the last one more or less denotes everything up to a NUMA node.
1139 *
1140 * The tree consists of 3 primary data structures:
1141 *
1142 *	sched_domain -> sched_group -> sched_group_capacity
1143 *	    ^ ^             ^ ^
1144 *          `-'             `-'
1145 *
1146 * The sched_domains are per-CPU and have a two way link (parent & child) and
1147 * denote the ever growing mask of CPUs belonging to that level of topology.
1148 *
1149 * Each sched_domain has a circular (double) linked list of sched_group's, each
1150 * denoting the domains of the level below (or individual CPUs in case of the
1151 * first domain level). The sched_group linked by a sched_domain includes the
1152 * CPU of that sched_domain [*].
1153 *
1154 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1155 *
1156 * CPU   0   1   2   3   4   5   6   7
1157 *
1158 * PKG  [                             ]
1159 * MC   [             ] [             ]
1160 * SMT  [     ] [     ] [     ] [     ]
1161 *
1162 *  - or -
1163 *
1164 * PKG  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1165 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1166 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1167 *
1168 * CPU   0   1   2   3   4   5   6   7
1169 *
1170 * One way to think about it is: sched_domain moves you up and down among these
1171 * topology levels, while sched_group moves you sideways through it, at child
1172 * domain granularity.
1173 *
1174 * sched_group_capacity ensures each unique sched_group has shared storage.
1175 *
1176 * There are two related construction problems, both require a CPU that
1177 * uniquely identify each group (for a given domain):
1178 *
1179 *  - The first is the balance_cpu (see should_we_balance() and the
1180 *    load-balance blub in fair.c); for each group we only want 1 CPU to
1181 *    continue balancing at a higher domain.
1182 *
1183 *  - The second is the sched_group_capacity; we want all identical groups
1184 *    to share a single sched_group_capacity.
1185 *
1186 * Since these topologies are exclusive by construction. That is, its
1187 * impossible for an SMT thread to belong to multiple cores, and cores to
1188 * be part of multiple caches. There is a very clear and unique location
1189 * for each CPU in the hierarchy.
1190 *
1191 * Therefore computing a unique CPU for each group is trivial (the iteration
1192 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1193 * group), we can simply pick the first CPU in each group.
1194 *
1195 *
1196 * [*] in other words, the first group of each domain is its child domain.
1197 */
1198
1199static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1200{
1201	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1202	struct sched_domain *child = sd->child;
1203	struct sched_group *sg;
1204	bool already_visited;
1205
1206	if (child)
1207		cpu = cpumask_first(sched_domain_span(child));
1208
1209	sg = *per_cpu_ptr(sdd->sg, cpu);
1210	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1211
1212	/* Increase refcounts for claim_allocations: */
1213	already_visited = atomic_inc_return(&sg->ref) > 1;
1214	/* sgc visits should follow a similar trend as sg */
1215	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1216
1217	/* If we have already visited that group, it's already initialized. */
1218	if (already_visited)
1219		return sg;
1220
1221	if (child) {
1222		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1223		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1224		sg->flags = child->flags;
1225	} else {
1226		cpumask_set_cpu(cpu, sched_group_span(sg));
1227		cpumask_set_cpu(cpu, group_balance_mask(sg));
1228	}
1229
1230	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1231	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1232	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1233
1234	return sg;
1235}
1236
1237/*
1238 * build_sched_groups will build a circular linked list of the groups
1239 * covered by the given span, will set each group's ->cpumask correctly,
1240 * and will initialize their ->sgc.
1241 *
1242 * Assumes the sched_domain tree is fully constructed
1243 */
1244static int
1245build_sched_groups(struct sched_domain *sd, int cpu)
1246{
1247	struct sched_group *first = NULL, *last = NULL;
1248	struct sd_data *sdd = sd->private;
1249	const struct cpumask *span = sched_domain_span(sd);
1250	struct cpumask *covered;
1251	int i;
1252
1253	lockdep_assert_held(&sched_domains_mutex);
1254	covered = sched_domains_tmpmask;
1255
1256	cpumask_clear(covered);
1257
1258	for_each_cpu_wrap(i, span, cpu) {
1259		struct sched_group *sg;
1260
1261		if (cpumask_test_cpu(i, covered))
1262			continue;
1263
1264		sg = get_group(i, sdd);
1265
1266		cpumask_or(covered, covered, sched_group_span(sg));
1267
1268		if (!first)
1269			first = sg;
1270		if (last)
1271			last->next = sg;
1272		last = sg;
1273	}
1274	last->next = first;
1275	sd->groups = first;
1276
1277	return 0;
1278}
1279
1280/*
1281 * Initialize sched groups cpu_capacity.
1282 *
1283 * cpu_capacity indicates the capacity of sched group, which is used while
1284 * distributing the load between different sched groups in a sched domain.
1285 * Typically cpu_capacity for all the groups in a sched domain will be same
1286 * unless there are asymmetries in the topology. If there are asymmetries,
1287 * group having more cpu_capacity will pickup more load compared to the
1288 * group having less cpu_capacity.
1289 */
1290static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1291{
1292	struct sched_group *sg = sd->groups;
1293	struct cpumask *mask = sched_domains_tmpmask2;
1294
1295	WARN_ON(!sg);
1296
1297	do {
1298		int cpu, cores = 0, max_cpu = -1;
1299
1300		sg->group_weight = cpumask_weight(sched_group_span(sg));
1301
1302		cpumask_copy(mask, sched_group_span(sg));
1303		for_each_cpu(cpu, mask) {
1304			cores++;
1305#ifdef CONFIG_SCHED_SMT
1306			cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1307#endif
1308		}
1309		sg->cores = cores;
1310
1311		if (!(sd->flags & SD_ASYM_PACKING))
1312			goto next;
1313
1314		for_each_cpu(cpu, sched_group_span(sg)) {
1315			if (max_cpu < 0)
1316				max_cpu = cpu;
1317			else if (sched_asym_prefer(cpu, max_cpu))
1318				max_cpu = cpu;
1319		}
1320		sg->asym_prefer_cpu = max_cpu;
1321
1322next:
1323		sg = sg->next;
1324	} while (sg != sd->groups);
1325
1326	if (cpu != group_balance_cpu(sg))
1327		return;
1328
1329	update_group_capacity(sd, cpu);
1330}
1331
1332/*
1333 * Asymmetric CPU capacity bits
1334 */
1335struct asym_cap_data {
1336	struct list_head link;
1337	unsigned long capacity;
1338	unsigned long cpus[];
1339};
1340
1341/*
1342 * Set of available CPUs grouped by their corresponding capacities
1343 * Each list entry contains a CPU mask reflecting CPUs that share the same
1344 * capacity.
1345 * The lifespan of data is unlimited.
1346 */
1347static LIST_HEAD(asym_cap_list);
1348
1349#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1350
1351/*
1352 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1353 * Provides sd_flags reflecting the asymmetry scope.
1354 */
1355static inline int
1356asym_cpu_capacity_classify(const struct cpumask *sd_span,
1357			   const struct cpumask *cpu_map)
1358{
1359	struct asym_cap_data *entry;
1360	int count = 0, miss = 0;
1361
1362	/*
1363	 * Count how many unique CPU capacities this domain spans across
1364	 * (compare sched_domain CPUs mask with ones representing  available
1365	 * CPUs capacities). Take into account CPUs that might be offline:
1366	 * skip those.
1367	 */
1368	list_for_each_entry(entry, &asym_cap_list, link) {
1369		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1370			++count;
1371		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1372			++miss;
1373	}
1374
1375	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1376
1377	/* No asymmetry detected */
1378	if (count < 2)
1379		return 0;
1380	/* Some of the available CPU capacity values have not been detected */
1381	if (miss)
1382		return SD_ASYM_CPUCAPACITY;
1383
1384	/* Full asymmetry */
1385	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1386
1387}
1388
1389static inline void asym_cpu_capacity_update_data(int cpu)
1390{
1391	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1392	struct asym_cap_data *entry = NULL;
1393
1394	list_for_each_entry(entry, &asym_cap_list, link) {
1395		if (capacity == entry->capacity)
1396			goto done;
1397	}
1398
1399	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1400	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1401		return;
1402	entry->capacity = capacity;
1403	list_add(&entry->link, &asym_cap_list);
1404done:
1405	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1406}
1407
1408/*
1409 * Build-up/update list of CPUs grouped by their capacities
1410 * An update requires explicit request to rebuild sched domains
1411 * with state indicating CPU topology changes.
1412 */
1413static void asym_cpu_capacity_scan(void)
1414{
1415	struct asym_cap_data *entry, *next;
1416	int cpu;
1417
1418	list_for_each_entry(entry, &asym_cap_list, link)
1419		cpumask_clear(cpu_capacity_span(entry));
1420
1421	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1422		asym_cpu_capacity_update_data(cpu);
1423
1424	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1425		if (cpumask_empty(cpu_capacity_span(entry))) {
1426			list_del(&entry->link);
1427			kfree(entry);
1428		}
1429	}
1430
1431	/*
1432	 * Only one capacity value has been detected i.e. this system is symmetric.
1433	 * No need to keep this data around.
1434	 */
1435	if (list_is_singular(&asym_cap_list)) {
1436		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1437		list_del(&entry->link);
1438		kfree(entry);
1439	}
1440}
1441
1442/*
1443 * Initializers for schedule domains
1444 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1445 */
1446
1447static int default_relax_domain_level = -1;
1448int sched_domain_level_max;
1449
1450static int __init setup_relax_domain_level(char *str)
1451{
1452	if (kstrtoint(str, 0, &default_relax_domain_level))
1453		pr_warn("Unable to set relax_domain_level\n");
1454
1455	return 1;
1456}
1457__setup("relax_domain_level=", setup_relax_domain_level);
1458
1459static void set_domain_attribute(struct sched_domain *sd,
1460				 struct sched_domain_attr *attr)
1461{
1462	int request;
1463
1464	if (!attr || attr->relax_domain_level < 0) {
1465		if (default_relax_domain_level < 0)
1466			return;
1467		request = default_relax_domain_level;
1468	} else
1469		request = attr->relax_domain_level;
1470
1471	if (sd->level >= request) {
1472		/* Turn off idle balance on this domain: */
1473		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1474	}
1475}
1476
1477static void __sdt_free(const struct cpumask *cpu_map);
1478static int __sdt_alloc(const struct cpumask *cpu_map);
1479
1480static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1481				 const struct cpumask *cpu_map)
1482{
1483	switch (what) {
1484	case sa_rootdomain:
1485		if (!atomic_read(&d->rd->refcount))
1486			free_rootdomain(&d->rd->rcu);
1487		fallthrough;
1488	case sa_sd:
1489		free_percpu(d->sd);
1490		fallthrough;
1491	case sa_sd_storage:
1492		__sdt_free(cpu_map);
1493		fallthrough;
1494	case sa_none:
1495		break;
1496	}
1497}
1498
1499static enum s_alloc
1500__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1501{
1502	memset(d, 0, sizeof(*d));
1503
1504	if (__sdt_alloc(cpu_map))
1505		return sa_sd_storage;
1506	d->sd = alloc_percpu(struct sched_domain *);
1507	if (!d->sd)
1508		return sa_sd_storage;
1509	d->rd = alloc_rootdomain();
1510	if (!d->rd)
1511		return sa_sd;
1512
1513	return sa_rootdomain;
1514}
1515
1516/*
1517 * NULL the sd_data elements we've used to build the sched_domain and
1518 * sched_group structure so that the subsequent __free_domain_allocs()
1519 * will not free the data we're using.
1520 */
1521static void claim_allocations(int cpu, struct sched_domain *sd)
1522{
1523	struct sd_data *sdd = sd->private;
1524
1525	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1526	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1527
1528	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1529		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1530
1531	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1532		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1533
1534	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1535		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1536}
1537
1538#ifdef CONFIG_NUMA
1539enum numa_topology_type sched_numa_topology_type;
1540
1541static int			sched_domains_numa_levels;
1542static int			sched_domains_curr_level;
1543
1544int				sched_max_numa_distance;
1545static int			*sched_domains_numa_distance;
1546static struct cpumask		***sched_domains_numa_masks;
1547#endif
1548
1549/*
1550 * SD_flags allowed in topology descriptions.
1551 *
1552 * These flags are purely descriptive of the topology and do not prescribe
1553 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1554 * function. For details, see include/linux/sched/sd_flags.h.
1555 *
1556 *   SD_SHARE_CPUCAPACITY
1557 *   SD_SHARE_LLC
1558 *   SD_CLUSTER
1559 *   SD_NUMA
1560 *
1561 * Odd one out, which beside describing the topology has a quirk also
1562 * prescribes the desired behaviour that goes along with it:
1563 *
1564 *   SD_ASYM_PACKING        - describes SMT quirks
1565 */
1566#define TOPOLOGY_SD_FLAGS		\
1567	(SD_SHARE_CPUCAPACITY	|	\
1568	 SD_CLUSTER		|	\
1569	 SD_SHARE_LLC		|	\
1570	 SD_NUMA		|	\
1571	 SD_ASYM_PACKING)
1572
1573static struct sched_domain *
1574sd_init(struct sched_domain_topology_level *tl,
1575	const struct cpumask *cpu_map,
1576	struct sched_domain *child, int cpu)
1577{
1578	struct sd_data *sdd = &tl->data;
1579	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1580	int sd_id, sd_weight, sd_flags = 0;
1581	struct cpumask *sd_span;
1582
1583#ifdef CONFIG_NUMA
1584	/*
1585	 * Ugly hack to pass state to sd_numa_mask()...
1586	 */
1587	sched_domains_curr_level = tl->numa_level;
1588#endif
1589
1590	sd_weight = cpumask_weight(tl->mask(cpu));
1591
1592	if (tl->sd_flags)
1593		sd_flags = (*tl->sd_flags)();
1594	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1595			"wrong sd_flags in topology description\n"))
1596		sd_flags &= TOPOLOGY_SD_FLAGS;
1597
1598	*sd = (struct sched_domain){
1599		.min_interval		= sd_weight,
1600		.max_interval		= 2*sd_weight,
1601		.busy_factor		= 16,
1602		.imbalance_pct		= 117,
1603
1604		.cache_nice_tries	= 0,
1605
1606		.flags			= 1*SD_BALANCE_NEWIDLE
1607					| 1*SD_BALANCE_EXEC
1608					| 1*SD_BALANCE_FORK
1609					| 0*SD_BALANCE_WAKE
1610					| 1*SD_WAKE_AFFINE
1611					| 0*SD_SHARE_CPUCAPACITY
1612					| 0*SD_SHARE_LLC
1613					| 0*SD_SERIALIZE
1614					| 1*SD_PREFER_SIBLING
1615					| 0*SD_NUMA
1616					| sd_flags
1617					,
1618
1619		.last_balance		= jiffies,
1620		.balance_interval	= sd_weight,
1621		.max_newidle_lb_cost	= 0,
1622		.last_decay_max_lb_cost	= jiffies,
1623		.child			= child,
1624#ifdef CONFIG_SCHED_DEBUG
1625		.name			= tl->name,
1626#endif
1627	};
1628
1629	sd_span = sched_domain_span(sd);
1630	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1631	sd_id = cpumask_first(sd_span);
1632
1633	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1634
1635	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1636		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1637		  "CPU capacity asymmetry not supported on SMT\n");
1638
1639	/*
1640	 * Convert topological properties into behaviour.
1641	 */
1642	/* Don't attempt to spread across CPUs of different capacities. */
1643	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1644		sd->child->flags &= ~SD_PREFER_SIBLING;
1645
1646	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1647		sd->imbalance_pct = 110;
1648
1649	} else if (sd->flags & SD_SHARE_LLC) {
1650		sd->imbalance_pct = 117;
1651		sd->cache_nice_tries = 1;
1652
1653#ifdef CONFIG_NUMA
1654	} else if (sd->flags & SD_NUMA) {
1655		sd->cache_nice_tries = 2;
1656
1657		sd->flags &= ~SD_PREFER_SIBLING;
1658		sd->flags |= SD_SERIALIZE;
1659		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1660			sd->flags &= ~(SD_BALANCE_EXEC |
1661				       SD_BALANCE_FORK |
1662				       SD_WAKE_AFFINE);
1663		}
1664
1665#endif
1666	} else {
1667		sd->cache_nice_tries = 1;
1668	}
1669
1670	/*
1671	 * For all levels sharing cache; connect a sched_domain_shared
1672	 * instance.
1673	 */
1674	if (sd->flags & SD_SHARE_LLC) {
1675		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1676		atomic_inc(&sd->shared->ref);
1677		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1678	}
1679
1680	sd->private = sdd;
1681
1682	return sd;
1683}
1684
1685/*
1686 * Topology list, bottom-up.
1687 */
1688static struct sched_domain_topology_level default_topology[] = {
1689#ifdef CONFIG_SCHED_SMT
1690	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1691#endif
1692
1693#ifdef CONFIG_SCHED_CLUSTER
1694	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1695#endif
1696
1697#ifdef CONFIG_SCHED_MC
1698	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1699#endif
1700	{ cpu_cpu_mask, SD_INIT_NAME(PKG) },
1701	{ NULL, },
1702};
1703
1704static struct sched_domain_topology_level *sched_domain_topology =
1705	default_topology;
1706static struct sched_domain_topology_level *sched_domain_topology_saved;
1707
1708#define for_each_sd_topology(tl)			\
1709	for (tl = sched_domain_topology; tl->mask; tl++)
1710
1711void __init set_sched_topology(struct sched_domain_topology_level *tl)
1712{
1713	if (WARN_ON_ONCE(sched_smp_initialized))
1714		return;
1715
1716	sched_domain_topology = tl;
1717	sched_domain_topology_saved = NULL;
1718}
1719
1720#ifdef CONFIG_NUMA
1721
1722static const struct cpumask *sd_numa_mask(int cpu)
1723{
1724	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1725}
1726
1727static void sched_numa_warn(const char *str)
1728{
1729	static int done = false;
1730	int i,j;
1731
1732	if (done)
1733		return;
1734
1735	done = true;
1736
1737	printk(KERN_WARNING "ERROR: %s\n\n", str);
1738
1739	for (i = 0; i < nr_node_ids; i++) {
1740		printk(KERN_WARNING "  ");
1741		for (j = 0; j < nr_node_ids; j++) {
1742			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1743				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1744			else
1745				printk(KERN_CONT " %02d  ", node_distance(i,j));
1746		}
1747		printk(KERN_CONT "\n");
1748	}
1749	printk(KERN_WARNING "\n");
1750}
1751
1752bool find_numa_distance(int distance)
1753{
1754	bool found = false;
1755	int i, *distances;
1756
1757	if (distance == node_distance(0, 0))
1758		return true;
1759
1760	rcu_read_lock();
1761	distances = rcu_dereference(sched_domains_numa_distance);
1762	if (!distances)
1763		goto unlock;
1764	for (i = 0; i < sched_domains_numa_levels; i++) {
1765		if (distances[i] == distance) {
1766			found = true;
1767			break;
1768		}
1769	}
1770unlock:
1771	rcu_read_unlock();
1772
1773	return found;
1774}
1775
1776#define for_each_cpu_node_but(n, nbut)		\
1777	for_each_node_state(n, N_CPU)		\
1778		if (n == nbut)			\
1779			continue;		\
1780		else
1781
1782/*
1783 * A system can have three types of NUMA topology:
1784 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1785 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1786 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1787 *
1788 * The difference between a glueless mesh topology and a backplane
1789 * topology lies in whether communication between not directly
1790 * connected nodes goes through intermediary nodes (where programs
1791 * could run), or through backplane controllers. This affects
1792 * placement of programs.
1793 *
1794 * The type of topology can be discerned with the following tests:
1795 * - If the maximum distance between any nodes is 1 hop, the system
1796 *   is directly connected.
1797 * - If for two nodes A and B, located N > 1 hops away from each other,
1798 *   there is an intermediary node C, which is < N hops away from both
1799 *   nodes A and B, the system is a glueless mesh.
1800 */
1801static void init_numa_topology_type(int offline_node)
1802{
1803	int a, b, c, n;
1804
1805	n = sched_max_numa_distance;
1806
1807	if (sched_domains_numa_levels <= 2) {
1808		sched_numa_topology_type = NUMA_DIRECT;
1809		return;
1810	}
1811
1812	for_each_cpu_node_but(a, offline_node) {
1813		for_each_cpu_node_but(b, offline_node) {
1814			/* Find two nodes furthest removed from each other. */
1815			if (node_distance(a, b) < n)
1816				continue;
1817
1818			/* Is there an intermediary node between a and b? */
1819			for_each_cpu_node_but(c, offline_node) {
1820				if (node_distance(a, c) < n &&
1821				    node_distance(b, c) < n) {
1822					sched_numa_topology_type =
1823							NUMA_GLUELESS_MESH;
1824					return;
1825				}
1826			}
1827
1828			sched_numa_topology_type = NUMA_BACKPLANE;
1829			return;
1830		}
1831	}
1832
1833	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1834	sched_numa_topology_type = NUMA_DIRECT;
1835}
1836
1837
1838#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1839
1840void sched_init_numa(int offline_node)
1841{
1842	struct sched_domain_topology_level *tl;
1843	unsigned long *distance_map;
1844	int nr_levels = 0;
1845	int i, j;
1846	int *distances;
1847	struct cpumask ***masks;
1848
1849	/*
1850	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1851	 * unique distances in the node_distance() table.
1852	 */
1853	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1854	if (!distance_map)
1855		return;
1856
1857	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1858	for_each_cpu_node_but(i, offline_node) {
1859		for_each_cpu_node_but(j, offline_node) {
1860			int distance = node_distance(i, j);
1861
1862			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1863				sched_numa_warn("Invalid distance value range");
1864				bitmap_free(distance_map);
1865				return;
1866			}
1867
1868			bitmap_set(distance_map, distance, 1);
1869		}
1870	}
1871	/*
1872	 * We can now figure out how many unique distance values there are and
1873	 * allocate memory accordingly.
1874	 */
1875	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1876
1877	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1878	if (!distances) {
1879		bitmap_free(distance_map);
1880		return;
1881	}
1882
1883	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1884		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1885		distances[i] = j;
1886	}
1887	rcu_assign_pointer(sched_domains_numa_distance, distances);
1888
1889	bitmap_free(distance_map);
1890
1891	/*
1892	 * 'nr_levels' contains the number of unique distances
1893	 *
1894	 * The sched_domains_numa_distance[] array includes the actual distance
1895	 * numbers.
1896	 */
1897
1898	/*
1899	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1900	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1901	 * the array will contain less then 'nr_levels' members. This could be
1902	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1903	 * in other functions.
1904	 *
1905	 * We reset it to 'nr_levels' at the end of this function.
1906	 */
1907	sched_domains_numa_levels = 0;
1908
1909	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1910	if (!masks)
1911		return;
1912
1913	/*
1914	 * Now for each level, construct a mask per node which contains all
1915	 * CPUs of nodes that are that many hops away from us.
1916	 */
1917	for (i = 0; i < nr_levels; i++) {
1918		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1919		if (!masks[i])
1920			return;
1921
1922		for_each_cpu_node_but(j, offline_node) {
1923			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1924			int k;
1925
1926			if (!mask)
1927				return;
1928
1929			masks[i][j] = mask;
1930
1931			for_each_cpu_node_but(k, offline_node) {
1932				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1933					sched_numa_warn("Node-distance not symmetric");
1934
1935				if (node_distance(j, k) > sched_domains_numa_distance[i])
1936					continue;
1937
1938				cpumask_or(mask, mask, cpumask_of_node(k));
1939			}
1940		}
1941	}
1942	rcu_assign_pointer(sched_domains_numa_masks, masks);
1943
1944	/* Compute default topology size */
1945	for (i = 0; sched_domain_topology[i].mask; i++);
1946
1947	tl = kzalloc((i + nr_levels + 1) *
1948			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1949	if (!tl)
1950		return;
1951
1952	/*
1953	 * Copy the default topology bits..
1954	 */
1955	for (i = 0; sched_domain_topology[i].mask; i++)
1956		tl[i] = sched_domain_topology[i];
1957
1958	/*
1959	 * Add the NUMA identity distance, aka single NODE.
1960	 */
1961	tl[i++] = (struct sched_domain_topology_level){
1962		.mask = sd_numa_mask,
1963		.numa_level = 0,
1964		SD_INIT_NAME(NODE)
1965	};
1966
1967	/*
1968	 * .. and append 'j' levels of NUMA goodness.
1969	 */
1970	for (j = 1; j < nr_levels; i++, j++) {
1971		tl[i] = (struct sched_domain_topology_level){
1972			.mask = sd_numa_mask,
1973			.sd_flags = cpu_numa_flags,
1974			.flags = SDTL_OVERLAP,
1975			.numa_level = j,
1976			SD_INIT_NAME(NUMA)
1977		};
1978	}
1979
1980	sched_domain_topology_saved = sched_domain_topology;
1981	sched_domain_topology = tl;
1982
1983	sched_domains_numa_levels = nr_levels;
1984	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1985
1986	init_numa_topology_type(offline_node);
1987}
1988
1989
1990static void sched_reset_numa(void)
1991{
1992	int nr_levels, *distances;
1993	struct cpumask ***masks;
1994
1995	nr_levels = sched_domains_numa_levels;
1996	sched_domains_numa_levels = 0;
1997	sched_max_numa_distance = 0;
1998	sched_numa_topology_type = NUMA_DIRECT;
1999	distances = sched_domains_numa_distance;
2000	rcu_assign_pointer(sched_domains_numa_distance, NULL);
2001	masks = sched_domains_numa_masks;
2002	rcu_assign_pointer(sched_domains_numa_masks, NULL);
2003	if (distances || masks) {
2004		int i, j;
2005
2006		synchronize_rcu();
2007		kfree(distances);
2008		for (i = 0; i < nr_levels && masks; i++) {
2009			if (!masks[i])
2010				continue;
2011			for_each_node(j)
2012				kfree(masks[i][j]);
2013			kfree(masks[i]);
2014		}
2015		kfree(masks);
2016	}
2017	if (sched_domain_topology_saved) {
2018		kfree(sched_domain_topology);
2019		sched_domain_topology = sched_domain_topology_saved;
2020		sched_domain_topology_saved = NULL;
2021	}
2022}
2023
2024/*
2025 * Call with hotplug lock held
2026 */
2027void sched_update_numa(int cpu, bool online)
2028{
2029	int node;
2030
2031	node = cpu_to_node(cpu);
2032	/*
2033	 * Scheduler NUMA topology is updated when the first CPU of a
2034	 * node is onlined or the last CPU of a node is offlined.
2035	 */
2036	if (cpumask_weight(cpumask_of_node(node)) != 1)
2037		return;
2038
2039	sched_reset_numa();
2040	sched_init_numa(online ? NUMA_NO_NODE : node);
2041}
2042
2043void sched_domains_numa_masks_set(unsigned int cpu)
2044{
2045	int node = cpu_to_node(cpu);
2046	int i, j;
2047
2048	for (i = 0; i < sched_domains_numa_levels; i++) {
2049		for (j = 0; j < nr_node_ids; j++) {
2050			if (!node_state(j, N_CPU))
2051				continue;
2052
2053			/* Set ourselves in the remote node's masks */
2054			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2055				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2056		}
2057	}
2058}
2059
2060void sched_domains_numa_masks_clear(unsigned int cpu)
2061{
2062	int i, j;
2063
2064	for (i = 0; i < sched_domains_numa_levels; i++) {
2065		for (j = 0; j < nr_node_ids; j++) {
2066			if (sched_domains_numa_masks[i][j])
2067				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2068		}
2069	}
2070}
2071
2072/*
2073 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2074 *                             closest to @cpu from @cpumask.
2075 * cpumask: cpumask to find a cpu from
2076 * cpu: cpu to be close to
2077 *
2078 * returns: cpu, or nr_cpu_ids when nothing found.
2079 */
2080int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2081{
2082	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2083	struct cpumask ***masks;
2084
2085	rcu_read_lock();
2086	masks = rcu_dereference(sched_domains_numa_masks);
2087	if (!masks)
2088		goto unlock;
2089	for (i = 0; i < sched_domains_numa_levels; i++) {
2090		if (!masks[i][j])
2091			break;
2092		cpu = cpumask_any_and(cpus, masks[i][j]);
2093		if (cpu < nr_cpu_ids) {
2094			found = cpu;
2095			break;
2096		}
2097	}
2098unlock:
2099	rcu_read_unlock();
2100
2101	return found;
2102}
2103
2104struct __cmp_key {
2105	const struct cpumask *cpus;
2106	struct cpumask ***masks;
2107	int node;
2108	int cpu;
2109	int w;
2110};
2111
2112static int hop_cmp(const void *a, const void *b)
2113{
2114	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2115	struct __cmp_key *k = (struct __cmp_key *)a;
2116
2117	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2118		return 1;
2119
2120	if (b == k->masks) {
2121		k->w = 0;
2122		return 0;
2123	}
2124
2125	prev_hop = *((struct cpumask ***)b - 1);
2126	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2127	if (k->w <= k->cpu)
2128		return 0;
2129
2130	return -1;
2131}
2132
2133/**
2134 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2135 *                             from @cpus to @cpu, taking into account distance
2136 *                             from a given @node.
2137 * @cpus: cpumask to find a cpu from
2138 * @cpu: CPU to start searching
2139 * @node: NUMA node to order CPUs by distance
2140 *
2141 * Return: cpu, or nr_cpu_ids when nothing found.
2142 */
2143int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2144{
2145	struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2146	struct cpumask ***hop_masks;
2147	int hop, ret = nr_cpu_ids;
2148
2149	if (node == NUMA_NO_NODE)
2150		return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2151
2152	rcu_read_lock();
2153
2154	/* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2155	node = numa_nearest_node(node, N_CPU);
2156	k.node = node;
2157
2158	k.masks = rcu_dereference(sched_domains_numa_masks);
2159	if (!k.masks)
2160		goto unlock;
2161
2162	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2163	hop = hop_masks	- k.masks;
2164
2165	ret = hop ?
2166		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2167		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2168unlock:
2169	rcu_read_unlock();
2170	return ret;
2171}
2172EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2173
2174/**
2175 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2176 *                         @node
2177 * @node: The node to count hops from.
2178 * @hops: Include CPUs up to that many hops away. 0 means local node.
2179 *
2180 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2181 * @node, an error value otherwise.
2182 *
2183 * Requires rcu_lock to be held. Returned cpumask is only valid within that
2184 * read-side section, copy it if required beyond that.
2185 *
2186 * Note that not all hops are equal in distance; see sched_init_numa() for how
2187 * distances and masks are handled.
2188 * Also note that this is a reflection of sched_domains_numa_masks, which may change
2189 * during the lifetime of the system (offline nodes are taken out of the masks).
2190 */
2191const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2192{
2193	struct cpumask ***masks;
2194
2195	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2196		return ERR_PTR(-EINVAL);
2197
2198	masks = rcu_dereference(sched_domains_numa_masks);
2199	if (!masks)
2200		return ERR_PTR(-EBUSY);
2201
2202	return masks[hops][node];
2203}
2204EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2205
2206#endif /* CONFIG_NUMA */
2207
2208static int __sdt_alloc(const struct cpumask *cpu_map)
2209{
2210	struct sched_domain_topology_level *tl;
2211	int j;
2212
2213	for_each_sd_topology(tl) {
2214		struct sd_data *sdd = &tl->data;
2215
2216		sdd->sd = alloc_percpu(struct sched_domain *);
2217		if (!sdd->sd)
2218			return -ENOMEM;
2219
2220		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2221		if (!sdd->sds)
2222			return -ENOMEM;
2223
2224		sdd->sg = alloc_percpu(struct sched_group *);
2225		if (!sdd->sg)
2226			return -ENOMEM;
2227
2228		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2229		if (!sdd->sgc)
2230			return -ENOMEM;
2231
2232		for_each_cpu(j, cpu_map) {
2233			struct sched_domain *sd;
2234			struct sched_domain_shared *sds;
2235			struct sched_group *sg;
2236			struct sched_group_capacity *sgc;
2237
2238			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2239					GFP_KERNEL, cpu_to_node(j));
2240			if (!sd)
2241				return -ENOMEM;
2242
2243			*per_cpu_ptr(sdd->sd, j) = sd;
2244
2245			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2246					GFP_KERNEL, cpu_to_node(j));
2247			if (!sds)
2248				return -ENOMEM;
2249
2250			*per_cpu_ptr(sdd->sds, j) = sds;
2251
2252			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2253					GFP_KERNEL, cpu_to_node(j));
2254			if (!sg)
2255				return -ENOMEM;
2256
2257			sg->next = sg;
2258
2259			*per_cpu_ptr(sdd->sg, j) = sg;
2260
2261			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2262					GFP_KERNEL, cpu_to_node(j));
2263			if (!sgc)
2264				return -ENOMEM;
2265
2266#ifdef CONFIG_SCHED_DEBUG
2267			sgc->id = j;
2268#endif
2269
2270			*per_cpu_ptr(sdd->sgc, j) = sgc;
2271		}
2272	}
2273
2274	return 0;
2275}
2276
2277static void __sdt_free(const struct cpumask *cpu_map)
2278{
2279	struct sched_domain_topology_level *tl;
2280	int j;
2281
2282	for_each_sd_topology(tl) {
2283		struct sd_data *sdd = &tl->data;
2284
2285		for_each_cpu(j, cpu_map) {
2286			struct sched_domain *sd;
2287
2288			if (sdd->sd) {
2289				sd = *per_cpu_ptr(sdd->sd, j);
2290				if (sd && (sd->flags & SD_OVERLAP))
2291					free_sched_groups(sd->groups, 0);
2292				kfree(*per_cpu_ptr(sdd->sd, j));
2293			}
2294
2295			if (sdd->sds)
2296				kfree(*per_cpu_ptr(sdd->sds, j));
2297			if (sdd->sg)
2298				kfree(*per_cpu_ptr(sdd->sg, j));
2299			if (sdd->sgc)
2300				kfree(*per_cpu_ptr(sdd->sgc, j));
2301		}
2302		free_percpu(sdd->sd);
2303		sdd->sd = NULL;
2304		free_percpu(sdd->sds);
2305		sdd->sds = NULL;
2306		free_percpu(sdd->sg);
2307		sdd->sg = NULL;
2308		free_percpu(sdd->sgc);
2309		sdd->sgc = NULL;
2310	}
2311}
2312
2313static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2314		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2315		struct sched_domain *child, int cpu)
2316{
2317	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2318
2319	if (child) {
2320		sd->level = child->level + 1;
2321		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2322		child->parent = sd;
2323
2324		if (!cpumask_subset(sched_domain_span(child),
2325				    sched_domain_span(sd))) {
2326			pr_err("BUG: arch topology borken\n");
2327#ifdef CONFIG_SCHED_DEBUG
2328			pr_err("     the %s domain not a subset of the %s domain\n",
2329					child->name, sd->name);
2330#endif
2331			/* Fixup, ensure @sd has at least @child CPUs. */
2332			cpumask_or(sched_domain_span(sd),
2333				   sched_domain_span(sd),
2334				   sched_domain_span(child));
2335		}
2336
2337	}
2338	set_domain_attribute(sd, attr);
2339
2340	return sd;
2341}
2342
2343/*
2344 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2345 * any two given CPUs at this (non-NUMA) topology level.
2346 */
2347static bool topology_span_sane(struct sched_domain_topology_level *tl,
2348			      const struct cpumask *cpu_map, int cpu)
2349{
2350	int i;
2351
2352	/* NUMA levels are allowed to overlap */
2353	if (tl->flags & SDTL_OVERLAP)
2354		return true;
2355
2356	/*
2357	 * Non-NUMA levels cannot partially overlap - they must be either
2358	 * completely equal or completely disjoint. Otherwise we can end up
2359	 * breaking the sched_group lists - i.e. a later get_group() pass
2360	 * breaks the linking done for an earlier span.
2361	 */
2362	for_each_cpu(i, cpu_map) {
2363		if (i == cpu)
2364			continue;
2365		/*
2366		 * We should 'and' all those masks with 'cpu_map' to exactly
2367		 * match the topology we're about to build, but that can only
2368		 * remove CPUs, which only lessens our ability to detect
2369		 * overlaps
2370		 */
2371		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2372		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2373			return false;
2374	}
2375
2376	return true;
2377}
2378
2379/*
2380 * Build sched domains for a given set of CPUs and attach the sched domains
2381 * to the individual CPUs
2382 */
2383static int
2384build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2385{
2386	enum s_alloc alloc_state = sa_none;
2387	struct sched_domain *sd;
2388	struct s_data d;
2389	struct rq *rq = NULL;
2390	int i, ret = -ENOMEM;
2391	bool has_asym = false;
2392	bool has_cluster = false;
2393
2394	if (WARN_ON(cpumask_empty(cpu_map)))
2395		goto error;
2396
2397	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2398	if (alloc_state != sa_rootdomain)
2399		goto error;
2400
2401	/* Set up domains for CPUs specified by the cpu_map: */
2402	for_each_cpu(i, cpu_map) {
2403		struct sched_domain_topology_level *tl;
2404
2405		sd = NULL;
2406		for_each_sd_topology(tl) {
2407
2408			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2409				goto error;
2410
2411			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2412
2413			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2414
2415			if (tl == sched_domain_topology)
2416				*per_cpu_ptr(d.sd, i) = sd;
2417			if (tl->flags & SDTL_OVERLAP)
2418				sd->flags |= SD_OVERLAP;
2419			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2420				break;
2421		}
2422	}
2423
2424	/* Build the groups for the domains */
2425	for_each_cpu(i, cpu_map) {
2426		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2427			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2428			if (sd->flags & SD_OVERLAP) {
2429				if (build_overlap_sched_groups(sd, i))
2430					goto error;
2431			} else {
2432				if (build_sched_groups(sd, i))
2433					goto error;
2434			}
2435		}
2436	}
2437
2438	/*
2439	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2440	 * imbalanced.
2441	 */
2442	for_each_cpu(i, cpu_map) {
2443		unsigned int imb = 0;
2444		unsigned int imb_span = 1;
2445
2446		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2447			struct sched_domain *child = sd->child;
2448
2449			if (!(sd->flags & SD_SHARE_LLC) && child &&
2450			    (child->flags & SD_SHARE_LLC)) {
2451				struct sched_domain __rcu *top_p;
2452				unsigned int nr_llcs;
2453
2454				/*
2455				 * For a single LLC per node, allow an
2456				 * imbalance up to 12.5% of the node. This is
2457				 * arbitrary cutoff based two factors -- SMT and
2458				 * memory channels. For SMT-2, the intent is to
2459				 * avoid premature sharing of HT resources but
2460				 * SMT-4 or SMT-8 *may* benefit from a different
2461				 * cutoff. For memory channels, this is a very
2462				 * rough estimate of how many channels may be
2463				 * active and is based on recent CPUs with
2464				 * many cores.
2465				 *
2466				 * For multiple LLCs, allow an imbalance
2467				 * until multiple tasks would share an LLC
2468				 * on one node while LLCs on another node
2469				 * remain idle. This assumes that there are
2470				 * enough logical CPUs per LLC to avoid SMT
2471				 * factors and that there is a correlation
2472				 * between LLCs and memory channels.
2473				 */
2474				nr_llcs = sd->span_weight / child->span_weight;
2475				if (nr_llcs == 1)
2476					imb = sd->span_weight >> 3;
2477				else
2478					imb = nr_llcs;
2479				imb = max(1U, imb);
2480				sd->imb_numa_nr = imb;
2481
2482				/* Set span based on the first NUMA domain. */
2483				top_p = sd->parent;
2484				while (top_p && !(top_p->flags & SD_NUMA)) {
2485					top_p = top_p->parent;
2486				}
2487				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2488			} else {
2489				int factor = max(1U, (sd->span_weight / imb_span));
2490
2491				sd->imb_numa_nr = imb * factor;
2492			}
2493		}
2494	}
2495
2496	/* Calculate CPU capacity for physical packages and nodes */
2497	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2498		if (!cpumask_test_cpu(i, cpu_map))
2499			continue;
2500
2501		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2502			claim_allocations(i, sd);
2503			init_sched_groups_capacity(i, sd);
2504		}
2505	}
2506
2507	/* Attach the domains */
2508	rcu_read_lock();
2509	for_each_cpu(i, cpu_map) {
2510		unsigned long capacity;
2511
2512		rq = cpu_rq(i);
2513		sd = *per_cpu_ptr(d.sd, i);
2514
2515		capacity = arch_scale_cpu_capacity(i);
2516		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2517		if (capacity > READ_ONCE(d.rd->max_cpu_capacity))
2518			WRITE_ONCE(d.rd->max_cpu_capacity, capacity);
2519
2520		cpu_attach_domain(sd, d.rd, i);
2521
2522		if (lowest_flag_domain(i, SD_CLUSTER))
2523			has_cluster = true;
2524	}
2525	rcu_read_unlock();
2526
2527	if (has_asym)
2528		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2529
2530	if (has_cluster)
2531		static_branch_inc_cpuslocked(&sched_cluster_active);
2532
2533	if (rq && sched_debug_verbose) {
2534		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2535			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2536	}
2537
2538	ret = 0;
2539error:
2540	__free_domain_allocs(&d, alloc_state, cpu_map);
2541
2542	return ret;
2543}
2544
2545/* Current sched domains: */
2546static cpumask_var_t			*doms_cur;
2547
2548/* Number of sched domains in 'doms_cur': */
2549static int				ndoms_cur;
2550
2551/* Attributes of custom domains in 'doms_cur' */
2552static struct sched_domain_attr		*dattr_cur;
2553
2554/*
2555 * Special case: If a kmalloc() of a doms_cur partition (array of
2556 * cpumask) fails, then fallback to a single sched domain,
2557 * as determined by the single cpumask fallback_doms.
2558 */
2559static cpumask_var_t			fallback_doms;
2560
2561/*
2562 * arch_update_cpu_topology lets virtualized architectures update the
2563 * CPU core maps. It is supposed to return 1 if the topology changed
2564 * or 0 if it stayed the same.
2565 */
2566int __weak arch_update_cpu_topology(void)
2567{
2568	return 0;
2569}
2570
2571cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2572{
2573	int i;
2574	cpumask_var_t *doms;
2575
2576	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2577	if (!doms)
2578		return NULL;
2579	for (i = 0; i < ndoms; i++) {
2580		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2581			free_sched_domains(doms, i);
2582			return NULL;
2583		}
2584	}
2585	return doms;
2586}
2587
2588void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2589{
2590	unsigned int i;
2591	for (i = 0; i < ndoms; i++)
2592		free_cpumask_var(doms[i]);
2593	kfree(doms);
2594}
2595
2596/*
2597 * Set up scheduler domains and groups.  For now this just excludes isolated
2598 * CPUs, but could be used to exclude other special cases in the future.
2599 */
2600int __init sched_init_domains(const struct cpumask *cpu_map)
2601{
2602	int err;
2603
2604	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2605	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2606	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2607
2608	arch_update_cpu_topology();
2609	asym_cpu_capacity_scan();
2610	ndoms_cur = 1;
2611	doms_cur = alloc_sched_domains(ndoms_cur);
2612	if (!doms_cur)
2613		doms_cur = &fallback_doms;
2614	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2615	err = build_sched_domains(doms_cur[0], NULL);
2616
2617	return err;
2618}
2619
2620/*
2621 * Detach sched domains from a group of CPUs specified in cpu_map
2622 * These CPUs will now be attached to the NULL domain
2623 */
2624static void detach_destroy_domains(const struct cpumask *cpu_map)
2625{
2626	unsigned int cpu = cpumask_any(cpu_map);
2627	int i;
2628
2629	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2630		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2631
2632	if (static_branch_unlikely(&sched_cluster_active))
2633		static_branch_dec_cpuslocked(&sched_cluster_active);
2634
2635	rcu_read_lock();
2636	for_each_cpu(i, cpu_map)
2637		cpu_attach_domain(NULL, &def_root_domain, i);
2638	rcu_read_unlock();
2639}
2640
2641/* handle null as "default" */
2642static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2643			struct sched_domain_attr *new, int idx_new)
2644{
2645	struct sched_domain_attr tmp;
2646
2647	/* Fast path: */
2648	if (!new && !cur)
2649		return 1;
2650
2651	tmp = SD_ATTR_INIT;
2652
2653	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2654			new ? (new + idx_new) : &tmp,
2655			sizeof(struct sched_domain_attr));
2656}
2657
2658/*
2659 * Partition sched domains as specified by the 'ndoms_new'
2660 * cpumasks in the array doms_new[] of cpumasks. This compares
2661 * doms_new[] to the current sched domain partitioning, doms_cur[].
2662 * It destroys each deleted domain and builds each new domain.
2663 *
2664 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2665 * The masks don't intersect (don't overlap.) We should setup one
2666 * sched domain for each mask. CPUs not in any of the cpumasks will
2667 * not be load balanced. If the same cpumask appears both in the
2668 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2669 * it as it is.
2670 *
2671 * The passed in 'doms_new' should be allocated using
2672 * alloc_sched_domains.  This routine takes ownership of it and will
2673 * free_sched_domains it when done with it. If the caller failed the
2674 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2675 * and partition_sched_domains() will fallback to the single partition
2676 * 'fallback_doms', it also forces the domains to be rebuilt.
2677 *
2678 * If doms_new == NULL it will be replaced with cpu_online_mask.
2679 * ndoms_new == 0 is a special case for destroying existing domains,
2680 * and it will not create the default domain.
2681 *
2682 * Call with hotplug lock and sched_domains_mutex held
2683 */
2684void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2685				    struct sched_domain_attr *dattr_new)
2686{
2687	bool __maybe_unused has_eas = false;
2688	int i, j, n;
2689	int new_topology;
2690
2691	lockdep_assert_held(&sched_domains_mutex);
2692
2693	/* Let the architecture update CPU core mappings: */
2694	new_topology = arch_update_cpu_topology();
2695	/* Trigger rebuilding CPU capacity asymmetry data */
2696	if (new_topology)
2697		asym_cpu_capacity_scan();
2698
2699	if (!doms_new) {
2700		WARN_ON_ONCE(dattr_new);
2701		n = 0;
2702		doms_new = alloc_sched_domains(1);
2703		if (doms_new) {
2704			n = 1;
2705			cpumask_and(doms_new[0], cpu_active_mask,
2706				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2707		}
2708	} else {
2709		n = ndoms_new;
2710	}
2711
2712	/* Destroy deleted domains: */
2713	for (i = 0; i < ndoms_cur; i++) {
2714		for (j = 0; j < n && !new_topology; j++) {
2715			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2716			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2717				struct root_domain *rd;
2718
2719				/*
2720				 * This domain won't be destroyed and as such
2721				 * its dl_bw->total_bw needs to be cleared.  It
2722				 * will be recomputed in function
2723				 * update_tasks_root_domain().
2724				 */
2725				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2726				dl_clear_root_domain(rd);
2727				goto match1;
2728			}
2729		}
2730		/* No match - a current sched domain not in new doms_new[] */
2731		detach_destroy_domains(doms_cur[i]);
2732match1:
2733		;
2734	}
2735
2736	n = ndoms_cur;
2737	if (!doms_new) {
2738		n = 0;
2739		doms_new = &fallback_doms;
2740		cpumask_and(doms_new[0], cpu_active_mask,
2741			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2742	}
2743
2744	/* Build new domains: */
2745	for (i = 0; i < ndoms_new; i++) {
2746		for (j = 0; j < n && !new_topology; j++) {
2747			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2748			    dattrs_equal(dattr_new, i, dattr_cur, j))
2749				goto match2;
2750		}
2751		/* No match - add a new doms_new */
2752		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2753match2:
2754		;
2755	}
2756
2757#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2758	/* Build perf. domains: */
2759	for (i = 0; i < ndoms_new; i++) {
2760		for (j = 0; j < n && !sched_energy_update; j++) {
2761			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2762			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2763				has_eas = true;
2764				goto match3;
2765			}
2766		}
2767		/* No match - add perf. domains for a new rd */
2768		has_eas |= build_perf_domains(doms_new[i]);
2769match3:
2770		;
2771	}
2772	sched_energy_set(has_eas);
2773#endif
2774
2775	/* Remember the new sched domains: */
2776	if (doms_cur != &fallback_doms)
2777		free_sched_domains(doms_cur, ndoms_cur);
2778
2779	kfree(dattr_cur);
2780	doms_cur = doms_new;
2781	dattr_cur = dattr_new;
2782	ndoms_cur = ndoms_new;
2783
2784	update_sched_domain_debugfs();
2785}
2786
2787/*
2788 * Call with hotplug lock held
2789 */
2790void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2791			     struct sched_domain_attr *dattr_new)
2792{
2793	mutex_lock(&sched_domains_mutex);
2794	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2795	mutex_unlock(&sched_domains_mutex);
2796}