Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to read_folio,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 
 
 308		if (result == IO_ERROR)
 309			return -EIO;
 310		/*
 311		 * We do not return -ENOENT if there is a hole but page is
 312		 * uptodate, because it means that there is some MMAPED data
 313		 * associated with it that is yet to be written to disk.
 314		 */
 315		if ((args & GET_BLOCK_NO_HOLE)
 316		    && !PageUptodate(bh_result->b_page)) {
 317			return -ENOENT;
 318		}
 319		return 0;
 320	}
 321
 322	bh = get_last_bh(&path);
 323	ih = tp_item_head(&path);
 324	if (is_indirect_le_ih(ih)) {
 325		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 326
 327		/*
 328		 * FIXME: here we could cache indirect item or part of it in
 329		 * the inode to avoid search_by_key in case of subsequent
 330		 * access to file
 331		 */
 332		blocknr = get_block_num(ind_item, path.pos_in_item);
 333		ret = 0;
 334		if (blocknr) {
 335			map_bh(bh_result, inode->i_sb, blocknr);
 336			if (path.pos_in_item ==
 337			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 338				set_buffer_boundary(bh_result);
 339			}
 340		} else
 341			/*
 342			 * We do not return -ENOENT if there is a hole but
 343			 * page is uptodate, because it means that there is
 344			 * some MMAPED data associated with it that is
 345			 * yet to be written to disk.
 346			 */
 347		if ((args & GET_BLOCK_NO_HOLE)
 348			    && !PageUptodate(bh_result->b_page)) {
 349			ret = -ENOENT;
 350		}
 351
 352		pathrelse(&path);
 
 
 353		return ret;
 354	}
 355	/* requested data are in direct item(s) */
 356	if (!(args & GET_BLOCK_READ_DIRECT)) {
 357		/*
 358		 * we are called by bmap. FIXME: we can not map block of file
 359		 * when it is stored in direct item(s)
 360		 */
 361		pathrelse(&path);
 
 
 362		return -ENOENT;
 363	}
 364
 365	/*
 366	 * if we've got a direct item, and the buffer or page was uptodate,
 367	 * we don't want to pull data off disk again.  skip to the
 368	 * end, where we map the buffer and return
 369	 */
 370	if (buffer_uptodate(bh_result)) {
 371		goto finished;
 372	} else
 373		/*
 374		 * grab_tail_page can trigger calls to reiserfs_get_block on
 375		 * up to date pages without any buffers.  If the page is up
 376		 * to date, we don't want read old data off disk.  Set the up
 377		 * to date bit on the buffer instead and jump to the end
 378		 */
 379	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 380		set_buffer_uptodate(bh_result);
 381		goto finished;
 382	}
 383	/* read file tail into part of page */
 384	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 385	copy_item_head(&tmp_ih, ih);
 386
 387	/*
 388	 * we only want to kmap if we are reading the tail into the page.
 389	 * this is not the common case, so we don't kmap until we are
 390	 * sure we need to.  But, this means the item might move if
 391	 * kmap schedules
 392	 */
 393	p = (char *)kmap(bh_result->b_page);
 
 
 394	p += offset;
 395	memset(p, 0, inode->i_sb->s_blocksize);
 396	do {
 397		if (!is_direct_le_ih(ih)) {
 398			BUG();
 399		}
 400		/*
 401		 * make sure we don't read more bytes than actually exist in
 402		 * the file.  This can happen in odd cases where i_size isn't
 403		 * correct, and when direct item padding results in a few
 404		 * extra bytes at the end of the direct item
 405		 */
 406		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 407			break;
 408		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 409			chars =
 410			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 411			    path.pos_in_item;
 412			done = 1;
 413		} else {
 414			chars = ih_item_len(ih) - path.pos_in_item;
 415		}
 416		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 417
 418		if (done)
 419			break;
 420
 421		p += chars;
 422
 423		/*
 424		 * we done, if read direct item is not the last item of
 425		 * node FIXME: we could try to check right delimiting key
 426		 * to see whether direct item continues in the right
 427		 * neighbor or rely on i_size
 428		 */
 429		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 430			break;
 431
 432		/* update key to look for the next piece */
 433		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 434		result = search_for_position_by_key(inode->i_sb, &key, &path);
 435		if (result != POSITION_FOUND)
 436			/* i/o error most likely */
 437			break;
 438		bh = get_last_bh(&path);
 439		ih = tp_item_head(&path);
 440	} while (1);
 441
 442	flush_dcache_page(bh_result->b_page);
 443	kunmap(bh_result->b_page);
 444
 445finished:
 446	pathrelse(&path);
 447
 448	if (result == IO_ERROR)
 449		return -EIO;
 450
 451	/*
 452	 * this buffer has valid data, but isn't valid for io.  mapping it to
 453	 * block #0 tells the rest of reiserfs it just has a tail in it
 454	 */
 455	map_bh(bh_result, inode->i_sb, 0);
 456	set_buffer_uptodate(bh_result);
 457	return 0;
 458}
 459
 460/*
 461 * this is called to create file map. So, _get_block_create_0 will not
 462 * read direct item
 463 */
 464static int reiserfs_bmap(struct inode *inode, sector_t block,
 465			 struct buffer_head *bh_result, int create)
 466{
 467	if (!file_capable(inode, block))
 468		return -EFBIG;
 469
 470	reiserfs_write_lock(inode->i_sb);
 471	/* do not read the direct item */
 472	_get_block_create_0(inode, block, bh_result, 0);
 473	reiserfs_write_unlock(inode->i_sb);
 474	return 0;
 475}
 476
 477/*
 478 * special version of get_block that is only used by grab_tail_page right
 479 * now.  It is sent to __block_write_begin, and when you try to get a
 480 * block past the end of the file (or a block from a hole) it returns
 481 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 482 * be able to do i/o on the buffers returned, unless an error value
 483 * is also returned.
 484 *
 485 * So, this allows __block_write_begin to be used for reading a single block
 486 * in a page.  Where it does not produce a valid page for holes, or past the
 487 * end of the file.  This turns out to be exactly what we need for reading
 488 * tails for conversion.
 489 *
 490 * The point of the wrapper is forcing a certain value for create, even
 491 * though the VFS layer is calling this function with create==1.  If you
 492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 493 * don't use this function.
 494*/
 495static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 496				       struct buffer_head *bh_result,
 497				       int create)
 498{
 499	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 500}
 501
 502/*
 503 * This is special helper for reiserfs_get_block in case we are executing
 504 * direct_IO request.
 505 */
 506static int reiserfs_get_blocks_direct_io(struct inode *inode,
 507					 sector_t iblock,
 508					 struct buffer_head *bh_result,
 509					 int create)
 510{
 511	int ret;
 512
 513	bh_result->b_page = NULL;
 514
 515	/*
 516	 * We set the b_size before reiserfs_get_block call since it is
 517	 * referenced in convert_tail_for_hole() that may be called from
 518	 * reiserfs_get_block()
 519	 */
 520	bh_result->b_size = i_blocksize(inode);
 521
 522	ret = reiserfs_get_block(inode, iblock, bh_result,
 523				 create | GET_BLOCK_NO_DANGLE);
 524	if (ret)
 525		goto out;
 526
 527	/* don't allow direct io onto tail pages */
 528	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 529		/*
 530		 * make sure future calls to the direct io funcs for this
 531		 * offset in the file fail by unmapping the buffer
 532		 */
 533		clear_buffer_mapped(bh_result);
 534		ret = -EINVAL;
 535	}
 536
 537	/*
 538	 * Possible unpacked tail. Flush the data before pages have
 539	 * disappeared
 540	 */
 541	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 542		int err;
 543
 544		reiserfs_write_lock(inode->i_sb);
 545
 546		err = reiserfs_commit_for_inode(inode);
 547		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 548
 549		reiserfs_write_unlock(inode->i_sb);
 550
 551		if (err < 0)
 552			ret = err;
 553	}
 554out:
 555	return ret;
 556}
 557
 558/*
 559 * helper function for when reiserfs_get_block is called for a hole
 560 * but the file tail is still in a direct item
 561 * bh_result is the buffer head for the hole
 562 * tail_offset is the offset of the start of the tail in the file
 563 *
 564 * This calls prepare_write, which will start a new transaction
 565 * you should not be in a transaction, or have any paths held when you
 566 * call this.
 567 */
 568static int convert_tail_for_hole(struct inode *inode,
 569				 struct buffer_head *bh_result,
 570				 loff_t tail_offset)
 571{
 572	unsigned long index;
 573	unsigned long tail_end;
 574	unsigned long tail_start;
 575	struct page *tail_page;
 576	struct page *hole_page = bh_result->b_page;
 577	int retval = 0;
 578
 579	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 580		return -EIO;
 581
 582	/* always try to read until the end of the block */
 583	tail_start = tail_offset & (PAGE_SIZE - 1);
 584	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 585
 586	index = tail_offset >> PAGE_SHIFT;
 587	/*
 588	 * hole_page can be zero in case of direct_io, we are sure
 589	 * that we cannot get here if we write with O_DIRECT into tail page
 590	 */
 591	if (!hole_page || index != hole_page->index) {
 592		tail_page = grab_cache_page(inode->i_mapping, index);
 593		retval = -ENOMEM;
 594		if (!tail_page) {
 595			goto out;
 596		}
 597	} else {
 598		tail_page = hole_page;
 599	}
 600
 601	/*
 602	 * we don't have to make sure the conversion did not happen while
 603	 * we were locking the page because anyone that could convert
 604	 * must first take i_mutex.
 605	 *
 606	 * We must fix the tail page for writing because it might have buffers
 607	 * that are mapped, but have a block number of 0.  This indicates tail
 608	 * data that has been read directly into the page, and
 609	 * __block_write_begin won't trigger a get_block in this case.
 610	 */
 611	fix_tail_page_for_writing(tail_page);
 612	retval = __reiserfs_write_begin(tail_page, tail_start,
 613				      tail_end - tail_start);
 614	if (retval)
 615		goto unlock;
 616
 617	/* tail conversion might change the data in the page */
 618	flush_dcache_page(tail_page);
 619
 620	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 621
 622unlock:
 623	if (tail_page != hole_page) {
 624		unlock_page(tail_page);
 625		put_page(tail_page);
 626	}
 627out:
 628	return retval;
 629}
 630
 631static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 632				  sector_t block,
 633				  struct inode *inode,
 634				  b_blocknr_t * allocated_block_nr,
 635				  struct treepath *path, int flags)
 636{
 637	BUG_ON(!th->t_trans_id);
 638
 639#ifdef REISERFS_PREALLOCATE
 640	if (!(flags & GET_BLOCK_NO_IMUX)) {
 641		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 642						  path, block);
 643	}
 644#endif
 645	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 646					 block);
 647}
 648
 649int reiserfs_get_block(struct inode *inode, sector_t block,
 650		       struct buffer_head *bh_result, int create)
 651{
 652	int repeat, retval = 0;
 653	/* b_blocknr_t is (unsigned) 32 bit int*/
 654	b_blocknr_t allocated_block_nr = 0;
 655	INITIALIZE_PATH(path);
 656	int pos_in_item;
 657	struct cpu_key key;
 658	struct buffer_head *bh, *unbh = NULL;
 659	struct item_head *ih, tmp_ih;
 660	__le32 *item;
 661	int done;
 662	int fs_gen;
 663	struct reiserfs_transaction_handle *th = NULL;
 664	/*
 665	 * space reserved in transaction batch:
 666	 * . 3 balancings in direct->indirect conversion
 667	 * . 1 block involved into reiserfs_update_sd()
 668	 * XXX in practically impossible worst case direct2indirect()
 669	 * can incur (much) more than 3 balancings.
 670	 * quota update for user, group
 671	 */
 672	int jbegin_count =
 673	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 674	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 675	int version;
 676	int dangle = 1;
 677	loff_t new_offset =
 678	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 679
 680	reiserfs_write_lock(inode->i_sb);
 681	version = get_inode_item_key_version(inode);
 682
 683	if (!file_capable(inode, block)) {
 684		reiserfs_write_unlock(inode->i_sb);
 685		return -EFBIG;
 686	}
 687
 688	/*
 689	 * if !create, we aren't changing the FS, so we don't need to
 690	 * log anything, so we don't need to start a transaction
 691	 */
 692	if (!(create & GET_BLOCK_CREATE)) {
 693		int ret;
 694		/* find number of block-th logical block of the file */
 695		ret = _get_block_create_0(inode, block, bh_result,
 696					  create | GET_BLOCK_READ_DIRECT);
 697		reiserfs_write_unlock(inode->i_sb);
 698		return ret;
 699	}
 700
 701	/*
 702	 * if we're already in a transaction, make sure to close
 703	 * any new transactions we start in this func
 704	 */
 705	if ((create & GET_BLOCK_NO_DANGLE) ||
 706	    reiserfs_transaction_running(inode->i_sb))
 707		dangle = 0;
 708
 709	/*
 710	 * If file is of such a size, that it might have a tail and
 711	 * tails are enabled  we should mark it as possibly needing
 712	 * tail packing on close
 713	 */
 714	if ((have_large_tails(inode->i_sb)
 715	     && inode->i_size < i_block_size(inode) * 4)
 716	    || (have_small_tails(inode->i_sb)
 717		&& inode->i_size < i_block_size(inode)))
 718		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 719
 720	/* set the key of the first byte in the 'block'-th block of file */
 721	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 722	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 723start_trans:
 724		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 725		if (!th) {
 726			retval = -ENOMEM;
 727			goto failure;
 728		}
 729		reiserfs_update_inode_transaction(inode);
 730	}
 731research:
 732
 733	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 734	if (retval == IO_ERROR) {
 735		retval = -EIO;
 736		goto failure;
 737	}
 738
 739	bh = get_last_bh(&path);
 740	ih = tp_item_head(&path);
 741	item = tp_item_body(&path);
 742	pos_in_item = path.pos_in_item;
 743
 744	fs_gen = get_generation(inode->i_sb);
 745	copy_item_head(&tmp_ih, ih);
 746
 747	if (allocation_needed
 748	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 749		/* we have to allocate block for the unformatted node */
 750		if (!th) {
 751			pathrelse(&path);
 752			goto start_trans;
 753		}
 754
 755		repeat =
 756		    _allocate_block(th, block, inode, &allocated_block_nr,
 757				    &path, create);
 758
 759		/*
 760		 * restart the transaction to give the journal a chance to free
 761		 * some blocks.  releases the path, so we have to go back to
 762		 * research if we succeed on the second try
 763		 */
 764		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 765			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 766			retval = restart_transaction(th, inode, &path);
 767			if (retval)
 768				goto failure;
 769			repeat =
 770			    _allocate_block(th, block, inode,
 771					    &allocated_block_nr, NULL, create);
 772
 773			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 774				goto research;
 775			}
 776			if (repeat == QUOTA_EXCEEDED)
 777				retval = -EDQUOT;
 778			else
 779				retval = -ENOSPC;
 780			goto failure;
 781		}
 782
 783		if (fs_changed(fs_gen, inode->i_sb)
 784		    && item_moved(&tmp_ih, &path)) {
 785			goto research;
 786		}
 787	}
 788
 789	if (indirect_item_found(retval, ih)) {
 790		b_blocknr_t unfm_ptr;
 791		/*
 792		 * 'block'-th block is in the file already (there is
 793		 * corresponding cell in some indirect item). But it may be
 794		 * zero unformatted node pointer (hole)
 795		 */
 796		unfm_ptr = get_block_num(item, pos_in_item);
 797		if (unfm_ptr == 0) {
 798			/* use allocated block to plug the hole */
 799			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 800			if (fs_changed(fs_gen, inode->i_sb)
 801			    && item_moved(&tmp_ih, &path)) {
 802				reiserfs_restore_prepared_buffer(inode->i_sb,
 803								 bh);
 804				goto research;
 805			}
 806			set_buffer_new(bh_result);
 807			if (buffer_dirty(bh_result)
 808			    && reiserfs_data_ordered(inode->i_sb))
 809				reiserfs_add_ordered_list(inode, bh_result);
 810			put_block_num(item, pos_in_item, allocated_block_nr);
 811			unfm_ptr = allocated_block_nr;
 812			journal_mark_dirty(th, bh);
 813			reiserfs_update_sd(th, inode);
 814		}
 815		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 816		pathrelse(&path);
 817		retval = 0;
 818		if (!dangle && th)
 819			retval = reiserfs_end_persistent_transaction(th);
 820
 821		reiserfs_write_unlock(inode->i_sb);
 822
 823		/*
 824		 * the item was found, so new blocks were not added to the file
 825		 * there is no need to make sure the inode is updated with this
 826		 * transaction
 827		 */
 828		return retval;
 829	}
 830
 831	if (!th) {
 832		pathrelse(&path);
 833		goto start_trans;
 834	}
 835
 836	/*
 837	 * desired position is not found or is in the direct item. We have
 838	 * to append file with holes up to 'block'-th block converting
 839	 * direct items to indirect one if necessary
 840	 */
 841	done = 0;
 842	do {
 843		if (is_statdata_le_ih(ih)) {
 844			__le32 unp = 0;
 845			struct cpu_key tmp_key;
 846
 847			/* indirect item has to be inserted */
 848			make_le_item_head(&tmp_ih, &key, version, 1,
 849					  TYPE_INDIRECT, UNFM_P_SIZE,
 850					  0 /* free_space */ );
 851
 852			/*
 853			 * we are going to add 'block'-th block to the file.
 854			 * Use allocated block for that
 855			 */
 856			if (cpu_key_k_offset(&key) == 1) {
 857				unp = cpu_to_le32(allocated_block_nr);
 858				set_block_dev_mapped(bh_result,
 859						     allocated_block_nr, inode);
 860				set_buffer_new(bh_result);
 861				done = 1;
 862			}
 863			tmp_key = key;	/* ;) */
 864			set_cpu_key_k_offset(&tmp_key, 1);
 865			PATH_LAST_POSITION(&path)++;
 866
 867			retval =
 868			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 869						 inode, (char *)&unp);
 870			if (retval) {
 871				reiserfs_free_block(th, inode,
 872						    allocated_block_nr, 1);
 873				/*
 874				 * retval == -ENOSPC, -EDQUOT or -EIO
 875				 * or -EEXIST
 876				 */
 877				goto failure;
 878			}
 879		} else if (is_direct_le_ih(ih)) {
 880			/* direct item has to be converted */
 881			loff_t tail_offset;
 882
 883			tail_offset =
 884			    ((le_ih_k_offset(ih) -
 885			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 886
 887			/*
 888			 * direct item we just found fits into block we have
 889			 * to map. Convert it into unformatted node: use
 890			 * bh_result for the conversion
 891			 */
 892			if (tail_offset == cpu_key_k_offset(&key)) {
 893				set_block_dev_mapped(bh_result,
 894						     allocated_block_nr, inode);
 895				unbh = bh_result;
 896				done = 1;
 897			} else {
 898				/*
 899				 * we have to pad file tail stored in direct
 900				 * item(s) up to block size and convert it
 901				 * to unformatted node. FIXME: this should
 902				 * also get into page cache
 903				 */
 904
 905				pathrelse(&path);
 906				/*
 907				 * ugly, but we can only end the transaction if
 908				 * we aren't nested
 909				 */
 910				BUG_ON(!th->t_refcount);
 911				if (th->t_refcount == 1) {
 912					retval =
 913					    reiserfs_end_persistent_transaction
 914					    (th);
 915					th = NULL;
 916					if (retval)
 917						goto failure;
 918				}
 919
 920				retval =
 921				    convert_tail_for_hole(inode, bh_result,
 922							  tail_offset);
 923				if (retval) {
 924					if (retval != -ENOSPC)
 925						reiserfs_error(inode->i_sb,
 926							"clm-6004",
 927							"convert tail failed "
 928							"inode %lu, error %d",
 929							inode->i_ino,
 930							retval);
 931					if (allocated_block_nr) {
 932						/*
 933						 * the bitmap, the super,
 934						 * and the stat data == 3
 935						 */
 936						if (!th)
 937							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 938						if (th)
 939							reiserfs_free_block(th,
 940									    inode,
 941									    allocated_block_nr,
 942									    1);
 943					}
 944					goto failure;
 945				}
 946				goto research;
 947			}
 948			retval =
 949			    direct2indirect(th, inode, &path, unbh,
 950					    tail_offset);
 951			if (retval) {
 952				reiserfs_unmap_buffer(unbh);
 953				reiserfs_free_block(th, inode,
 954						    allocated_block_nr, 1);
 955				goto failure;
 956			}
 957			/*
 958			 * it is important the set_buffer_uptodate is done
 959			 * after the direct2indirect.  The buffer might
 960			 * contain valid data newer than the data on disk
 961			 * (read by read_folio, changed, and then sent here by
 962			 * writepage).  direct2indirect needs to know if unbh
 963			 * was already up to date, so it can decide if the
 964			 * data in unbh needs to be replaced with data from
 965			 * the disk
 966			 */
 967			set_buffer_uptodate(unbh);
 968
 969			/*
 970			 * unbh->b_page == NULL in case of DIRECT_IO request,
 971			 * this means buffer will disappear shortly, so it
 972			 * should not be added to
 973			 */
 974			if (unbh->b_page) {
 975				/*
 976				 * we've converted the tail, so we must
 977				 * flush unbh before the transaction commits
 978				 */
 979				reiserfs_add_tail_list(inode, unbh);
 980
 981				/*
 982				 * mark it dirty now to prevent commit_write
 983				 * from adding this buffer to the inode's
 984				 * dirty buffer list
 985				 */
 986				/*
 987				 * AKPM: changed __mark_buffer_dirty to
 988				 * mark_buffer_dirty().  It's still atomic,
 989				 * but it sets the page dirty too, which makes
 990				 * it eligible for writeback at any time by the
 991				 * VM (which was also the case with
 992				 * __mark_buffer_dirty())
 993				 */
 994				mark_buffer_dirty(unbh);
 995			}
 996		} else {
 997			/*
 998			 * append indirect item with holes if needed, when
 999			 * appending pointer to 'block'-th block use block,
1000			 * which is already allocated
1001			 */
1002			struct cpu_key tmp_key;
1003			/*
1004			 * We use this in case we need to allocate
1005			 * only one block which is a fastpath
1006			 */
1007			unp_t unf_single = 0;
1008			unp_t *un;
1009			__u64 max_to_insert =
1010			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011			    UNFM_P_SIZE;
1012			__u64 blocks_needed;
1013
1014			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015			       "vs-804: invalid position for append");
1016			/*
1017			 * indirect item has to be appended,
1018			 * set up key of that position
1019			 * (key type is unimportant)
1020			 */
1021			make_cpu_key(&tmp_key, inode,
1022				     le_key_k_offset(version,
1023						     &ih->ih_key) +
1024				     op_bytes_number(ih,
1025						     inode->i_sb->s_blocksize),
1026				     TYPE_INDIRECT, 3);
1027
1028			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029			       "green-805: invalid offset");
1030			blocks_needed =
1031			    1 +
1032			    ((cpu_key_k_offset(&key) -
1033			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034			     s_blocksize_bits);
1035
1036			if (blocks_needed == 1) {
1037				un = &unf_single;
1038			} else {
1039				un = kcalloc(min(blocks_needed, max_to_insert),
1040					     UNFM_P_SIZE, GFP_NOFS);
1041				if (!un) {
1042					un = &unf_single;
1043					blocks_needed = 1;
1044					max_to_insert = 0;
1045				}
1046			}
1047			if (blocks_needed <= max_to_insert) {
1048				/*
1049				 * we are going to add target block to
1050				 * the file. Use allocated block for that
1051				 */
1052				un[blocks_needed - 1] =
1053				    cpu_to_le32(allocated_block_nr);
1054				set_block_dev_mapped(bh_result,
1055						     allocated_block_nr, inode);
1056				set_buffer_new(bh_result);
1057				done = 1;
1058			} else {
1059				/* paste hole to the indirect item */
1060				/*
1061				 * If kcalloc failed, max_to_insert becomes
1062				 * zero and it means we only have space for
1063				 * one block
1064				 */
1065				blocks_needed =
1066				    max_to_insert ? max_to_insert : 1;
1067			}
1068			retval =
1069			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070						     (char *)un,
1071						     UNFM_P_SIZE *
1072						     blocks_needed);
1073
1074			if (blocks_needed != 1)
1075				kfree(un);
1076
1077			if (retval) {
1078				reiserfs_free_block(th, inode,
1079						    allocated_block_nr, 1);
1080				goto failure;
1081			}
1082			if (!done) {
1083				/*
1084				 * We need to mark new file size in case
1085				 * this function will be interrupted/aborted
1086				 * later on. And we may do this only for
1087				 * holes.
1088				 */
1089				inode->i_size +=
1090				    inode->i_sb->s_blocksize * blocks_needed;
1091			}
1092		}
1093
1094		if (done == 1)
1095			break;
1096
1097		/*
1098		 * this loop could log more blocks than we had originally
1099		 * asked for.  So, we have to allow the transaction to end
1100		 * if it is too big or too full.  Update the inode so things
1101		 * are consistent if we crash before the function returns
1102		 * release the path so that anybody waiting on the path before
1103		 * ending their transaction will be able to continue.
1104		 */
1105		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106			retval = restart_transaction(th, inode, &path);
1107			if (retval)
1108				goto failure;
1109		}
1110		/*
1111		 * inserting indirect pointers for a hole can take a
1112		 * long time.  reschedule if needed and also release the write
1113		 * lock for others.
1114		 */
1115		reiserfs_cond_resched(inode->i_sb);
1116
1117		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118		if (retval == IO_ERROR) {
1119			retval = -EIO;
1120			goto failure;
1121		}
1122		if (retval == POSITION_FOUND) {
1123			reiserfs_warning(inode->i_sb, "vs-825",
1124					 "%K should not be found", &key);
1125			retval = -EEXIST;
1126			if (allocated_block_nr)
1127				reiserfs_free_block(th, inode,
1128						    allocated_block_nr, 1);
1129			pathrelse(&path);
1130			goto failure;
1131		}
1132		bh = get_last_bh(&path);
1133		ih = tp_item_head(&path);
1134		item = tp_item_body(&path);
1135		pos_in_item = path.pos_in_item;
1136	} while (1);
1137
1138	retval = 0;
1139
1140failure:
1141	if (th && (!dangle || (retval && !th->t_trans_id))) {
1142		int err;
1143		if (th->t_trans_id)
1144			reiserfs_update_sd(th, inode);
1145		err = reiserfs_end_persistent_transaction(th);
1146		if (err)
1147			retval = err;
1148	}
1149
1150	reiserfs_write_unlock(inode->i_sb);
1151	reiserfs_check_path(&path);
1152	return retval;
1153}
1154
1155static void reiserfs_readahead(struct readahead_control *rac)
1156{
1157	mpage_readahead(rac, reiserfs_get_block);
1158}
1159
1160/*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
1165static int real_space_diff(struct inode *inode, int sd_size)
1166{
1167	int bytes;
1168	loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171		return sd_size;
1172
1173	/*
1174	 * End of file is also in full block with indirect reference, so round
1175	 * up to the next block.
1176	 *
1177	 * there is just no way to know if the tail is actually packed
1178	 * on the file, so we have to assume it isn't.  When we pack the
1179	 * tail, we add 4 bytes to pretend there really is an unformatted
1180	 * node pointer
1181	 */
1182	bytes =
1183	    ((inode->i_size +
1184	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185	    sd_size;
1186	return bytes;
1187}
1188
1189static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190					int sd_size)
1191{
1192	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193		return inode->i_size +
1194		    (loff_t) (real_space_diff(inode, sd_size));
1195	}
1196	return ((loff_t) real_space_diff(inode, sd_size)) +
1197	    (((loff_t) blocks) << 9);
1198}
1199
1200/* Compute number of blocks used by file in ReiserFS counting */
1201static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202{
1203	loff_t bytes = inode_get_bytes(inode);
1204	loff_t real_space = real_space_diff(inode, sd_size);
1205
1206	/* keeps fsck and non-quota versions of reiserfs happy */
1207	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208		bytes += (loff_t) 511;
1209	}
1210
1211	/*
1212	 * files from before the quota patch might i_blocks such that
1213	 * bytes < real_space.  Deal with that here to prevent it from
1214	 * going negative.
1215	 */
1216	if (bytes < real_space)
1217		return 0;
1218	return (bytes - real_space) >> 9;
1219}
1220
1221/*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228/* called by read_locked_inode */
1229static void init_inode(struct inode *inode, struct treepath *path)
1230{
1231	struct buffer_head *bh;
1232	struct item_head *ih;
1233	__u32 rdev;
1234
1235	bh = PATH_PLAST_BUFFER(path);
1236	ih = tp_item_head(path);
1237
1238	copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241	REISERFS_I(inode)->i_flags = 0;
1242	REISERFS_I(inode)->i_prealloc_block = 0;
1243	REISERFS_I(inode)->i_prealloc_count = 0;
1244	REISERFS_I(inode)->i_trans_id = 0;
1245	REISERFS_I(inode)->i_jl = NULL;
1246	reiserfs_init_xattr_rwsem(inode);
1247
1248	if (stat_data_v1(ih)) {
1249		struct stat_data_v1 *sd =
1250		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1251		unsigned long blocks;
1252
1253		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254		set_inode_sd_version(inode, STAT_DATA_V1);
1255		inode->i_mode = sd_v1_mode(sd);
1256		set_nlink(inode, sd_v1_nlink(sd));
1257		i_uid_write(inode, sd_v1_uid(sd));
1258		i_gid_write(inode, sd_v1_gid(sd));
1259		inode->i_size = sd_v1_size(sd);
1260		inode->i_atime.tv_sec = sd_v1_atime(sd);
1261		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1262		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1263		inode->i_atime.tv_nsec = 0;
1264		inode->i_ctime.tv_nsec = 0;
1265		inode->i_mtime.tv_nsec = 0;
1266
1267		inode->i_blocks = sd_v1_blocks(sd);
1268		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1269		blocks = (inode->i_size + 511) >> 9;
1270		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1271
1272		/*
1273		 * there was a bug in <=3.5.23 when i_blocks could take
1274		 * negative values. Starting from 3.5.17 this value could
1275		 * even be stored in stat data. For such files we set
1276		 * i_blocks based on file size. Just 2 notes: this can be
1277		 * wrong for sparse files. On-disk value will be only
1278		 * updated if file's inode will ever change
1279		 */
1280		if (inode->i_blocks > blocks) {
1281			inode->i_blocks = blocks;
1282		}
1283
1284		rdev = sd_v1_rdev(sd);
1285		REISERFS_I(inode)->i_first_direct_byte =
1286		    sd_v1_first_direct_byte(sd);
1287
1288		/*
1289		 * an early bug in the quota code can give us an odd
1290		 * number for the block count.  This is incorrect, fix it here.
1291		 */
1292		if (inode->i_blocks & 1) {
1293			inode->i_blocks++;
1294		}
1295		inode_set_bytes(inode,
1296				to_real_used_space(inode, inode->i_blocks,
1297						   SD_V1_SIZE));
1298		/*
1299		 * nopack is initially zero for v1 objects. For v2 objects,
1300		 * nopack is initialised from sd_attrs
1301		 */
1302		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1303	} else {
1304		/*
1305		 * new stat data found, but object may have old items
1306		 * (directories and symlinks)
1307		 */
1308		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1309
1310		inode->i_mode = sd_v2_mode(sd);
1311		set_nlink(inode, sd_v2_nlink(sd));
1312		i_uid_write(inode, sd_v2_uid(sd));
1313		inode->i_size = sd_v2_size(sd);
1314		i_gid_write(inode, sd_v2_gid(sd));
1315		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1316		inode->i_atime.tv_sec = sd_v2_atime(sd);
1317		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1318		inode->i_ctime.tv_nsec = 0;
1319		inode->i_mtime.tv_nsec = 0;
1320		inode->i_atime.tv_nsec = 0;
1321		inode->i_blocks = sd_v2_blocks(sd);
1322		rdev = sd_v2_rdev(sd);
1323		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1324			inode->i_generation =
1325			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1326		else
1327			inode->i_generation = sd_v2_generation(sd);
1328
1329		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1330			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1331		else
1332			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1333		REISERFS_I(inode)->i_first_direct_byte = 0;
1334		set_inode_sd_version(inode, STAT_DATA_V2);
1335		inode_set_bytes(inode,
1336				to_real_used_space(inode, inode->i_blocks,
1337						   SD_V2_SIZE));
1338		/*
1339		 * read persistent inode attributes from sd and initialise
1340		 * generic inode flags from them
1341		 */
1342		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1343		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1344	}
1345
1346	pathrelse(path);
1347	if (S_ISREG(inode->i_mode)) {
1348		inode->i_op = &reiserfs_file_inode_operations;
1349		inode->i_fop = &reiserfs_file_operations;
1350		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1351	} else if (S_ISDIR(inode->i_mode)) {
1352		inode->i_op = &reiserfs_dir_inode_operations;
1353		inode->i_fop = &reiserfs_dir_operations;
1354	} else if (S_ISLNK(inode->i_mode)) {
1355		inode->i_op = &reiserfs_symlink_inode_operations;
1356		inode_nohighmem(inode);
1357		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1358	} else {
1359		inode->i_blocks = 0;
1360		inode->i_op = &reiserfs_special_inode_operations;
1361		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1362	}
1363}
1364
1365/* update new stat data with inode fields */
1366static void inode2sd(void *sd, struct inode *inode, loff_t size)
1367{
1368	struct stat_data *sd_v2 = (struct stat_data *)sd;
1369
1370	set_sd_v2_mode(sd_v2, inode->i_mode);
1371	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1372	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1373	set_sd_v2_size(sd_v2, size);
1374	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1375	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1376	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1377	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1378	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1379	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1380		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1381	else
1382		set_sd_v2_generation(sd_v2, inode->i_generation);
1383	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1384}
1385
1386/* used to copy inode's fields to old stat data */
1387static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1388{
1389	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1390
1391	set_sd_v1_mode(sd_v1, inode->i_mode);
1392	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1393	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1394	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1395	set_sd_v1_size(sd_v1, size);
1396	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1397	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1398	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1399
1400	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1401		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1402	else
1403		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1404
1405	/* Sigh. i_first_direct_byte is back */
1406	set_sd_v1_first_direct_byte(sd_v1,
1407				    REISERFS_I(inode)->i_first_direct_byte);
1408}
1409
1410/*
1411 * NOTE, you must prepare the buffer head before sending it here,
1412 * and then log it after the call
1413 */
1414static void update_stat_data(struct treepath *path, struct inode *inode,
1415			     loff_t size)
1416{
1417	struct buffer_head *bh;
1418	struct item_head *ih;
1419
1420	bh = PATH_PLAST_BUFFER(path);
1421	ih = tp_item_head(path);
1422
1423	if (!is_statdata_le_ih(ih))
1424		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1425			       INODE_PKEY(inode), ih);
1426
1427	/* path points to old stat data */
1428	if (stat_data_v1(ih)) {
1429		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1430	} else {
1431		inode2sd(ih_item_body(bh, ih), inode, size);
1432	}
1433
1434	return;
1435}
1436
1437void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1438			     struct inode *inode, loff_t size)
1439{
1440	struct cpu_key key;
1441	INITIALIZE_PATH(path);
1442	struct buffer_head *bh;
1443	int fs_gen;
1444	struct item_head *ih, tmp_ih;
1445	int retval;
1446
1447	BUG_ON(!th->t_trans_id);
1448
1449	/* key type is unimportant */
1450	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1451
1452	for (;;) {
1453		int pos;
1454		/* look for the object's stat data */
1455		retval = search_item(inode->i_sb, &key, &path);
1456		if (retval == IO_ERROR) {
1457			reiserfs_error(inode->i_sb, "vs-13050",
1458				       "i/o failure occurred trying to "
1459				       "update %K stat data", &key);
1460			return;
1461		}
1462		if (retval == ITEM_NOT_FOUND) {
1463			pos = PATH_LAST_POSITION(&path);
1464			pathrelse(&path);
1465			if (inode->i_nlink == 0) {
1466				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1467				return;
1468			}
1469			reiserfs_warning(inode->i_sb, "vs-13060",
1470					 "stat data of object %k (nlink == %d) "
1471					 "not found (pos %d)",
1472					 INODE_PKEY(inode), inode->i_nlink,
1473					 pos);
1474			reiserfs_check_path(&path);
1475			return;
1476		}
1477
1478		/*
1479		 * sigh, prepare_for_journal might schedule.  When it
1480		 * schedules the FS might change.  We have to detect that,
1481		 * and loop back to the search if the stat data item has moved
1482		 */
1483		bh = get_last_bh(&path);
1484		ih = tp_item_head(&path);
1485		copy_item_head(&tmp_ih, ih);
1486		fs_gen = get_generation(inode->i_sb);
1487		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1488
1489		/* Stat_data item has been moved after scheduling. */
1490		if (fs_changed(fs_gen, inode->i_sb)
1491		    && item_moved(&tmp_ih, &path)) {
1492			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1493			continue;
1494		}
1495		break;
1496	}
1497	update_stat_data(&path, inode, size);
1498	journal_mark_dirty(th, bh);
1499	pathrelse(&path);
1500	return;
1501}
1502
1503/*
1504 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1505 * does a make_bad_inode when things go wrong.  But, we need to make sure
1506 * and clear the key in the private portion of the inode, otherwise a
1507 * corresponding iput might try to delete whatever object the inode last
1508 * represented.
1509 */
1510static void reiserfs_make_bad_inode(struct inode *inode)
1511{
1512	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1513	make_bad_inode(inode);
1514}
1515
1516/*
1517 * initially this function was derived from minix or ext2's analog and
1518 * evolved as the prototype did
1519 */
1520int reiserfs_init_locked_inode(struct inode *inode, void *p)
1521{
1522	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1523	inode->i_ino = args->objectid;
1524	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1525	return 0;
1526}
1527
1528/*
1529 * looks for stat data in the tree, and fills up the fields of in-core
1530 * inode stat data fields
1531 */
1532void reiserfs_read_locked_inode(struct inode *inode,
1533				struct reiserfs_iget_args *args)
1534{
1535	INITIALIZE_PATH(path_to_sd);
1536	struct cpu_key key;
1537	unsigned long dirino;
1538	int retval;
1539
1540	dirino = args->dirid;
1541
1542	/*
1543	 * set version 1, version 2 could be used too, because stat data
1544	 * key is the same in both versions
1545	 */
1546	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
 
 
 
 
1547
1548	/* look for the object's stat data */
1549	retval = search_item(inode->i_sb, &key, &path_to_sd);
1550	if (retval == IO_ERROR) {
1551		reiserfs_error(inode->i_sb, "vs-13070",
1552			       "i/o failure occurred trying to find "
1553			       "stat data of %K", &key);
1554		reiserfs_make_bad_inode(inode);
1555		return;
1556	}
1557
1558	/* a stale NFS handle can trigger this without it being an error */
1559	if (retval != ITEM_FOUND) {
1560		pathrelse(&path_to_sd);
1561		reiserfs_make_bad_inode(inode);
1562		clear_nlink(inode);
1563		return;
1564	}
1565
1566	init_inode(inode, &path_to_sd);
1567
1568	/*
1569	 * It is possible that knfsd is trying to access inode of a file
1570	 * that is being removed from the disk by some other thread. As we
1571	 * update sd on unlink all that is required is to check for nlink
1572	 * here. This bug was first found by Sizif when debugging
1573	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1574	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1575
1576	 * More logical fix would require changes in fs/inode.c:iput() to
1577	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1578	 * in iget() to return NULL if I_FREEING inode is found in
1579	 * hash-table.
1580	 */
1581
1582	/*
1583	 * Currently there is one place where it's ok to meet inode with
1584	 * nlink==0: processing of open-unlinked and half-truncated files
1585	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1586	 */
1587	if ((inode->i_nlink == 0) &&
1588	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1589		reiserfs_warning(inode->i_sb, "vs-13075",
1590				 "dead inode read from disk %K. "
1591				 "This is likely to be race with knfsd. Ignore",
1592				 &key);
1593		reiserfs_make_bad_inode(inode);
1594	}
1595
1596	/* init inode should be relsing */
1597	reiserfs_check_path(&path_to_sd);
1598
1599	/*
1600	 * Stat data v1 doesn't support ACLs.
1601	 */
1602	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1603		cache_no_acl(inode);
1604}
1605
1606/*
1607 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1608 *
1609 * @inode:    inode from hash table to check
1610 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1611 *
1612 * This function is called by iget5_locked() to distinguish reiserfs inodes
1613 * having the same inode numbers. Such inodes can only exist due to some
1614 * error condition. One of them should be bad. Inodes with identical
1615 * inode numbers (objectids) are distinguished by parent directory ids.
1616 *
1617 */
1618int reiserfs_find_actor(struct inode *inode, void *opaque)
1619{
1620	struct reiserfs_iget_args *args;
1621
1622	args = opaque;
1623	/* args is already in CPU order */
1624	return (inode->i_ino == args->objectid) &&
1625	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1626}
1627
1628struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1629{
1630	struct inode *inode;
1631	struct reiserfs_iget_args args;
1632	int depth;
1633
1634	args.objectid = key->on_disk_key.k_objectid;
1635	args.dirid = key->on_disk_key.k_dir_id;
1636	depth = reiserfs_write_unlock_nested(s);
1637	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1638			     reiserfs_find_actor, reiserfs_init_locked_inode,
1639			     (void *)(&args));
1640	reiserfs_write_lock_nested(s, depth);
1641	if (!inode)
1642		return ERR_PTR(-ENOMEM);
1643
1644	if (inode->i_state & I_NEW) {
1645		reiserfs_read_locked_inode(inode, &args);
1646		unlock_new_inode(inode);
1647	}
1648
1649	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1650		/* either due to i/o error or a stale NFS handle */
1651		iput(inode);
1652		inode = NULL;
1653	}
1654	return inode;
1655}
1656
1657static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1658	u32 objectid, u32 dir_id, u32 generation)
1659
1660{
1661	struct cpu_key key;
1662	struct inode *inode;
1663
1664	key.on_disk_key.k_objectid = objectid;
1665	key.on_disk_key.k_dir_id = dir_id;
1666	reiserfs_write_lock(sb);
1667	inode = reiserfs_iget(sb, &key);
1668	if (inode && !IS_ERR(inode) && generation != 0 &&
1669	    generation != inode->i_generation) {
1670		iput(inode);
1671		inode = NULL;
1672	}
1673	reiserfs_write_unlock(sb);
1674
1675	return d_obtain_alias(inode);
1676}
1677
1678struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1679		int fh_len, int fh_type)
1680{
1681	/*
1682	 * fhtype happens to reflect the number of u32s encoded.
1683	 * due to a bug in earlier code, fhtype might indicate there
1684	 * are more u32s then actually fitted.
1685	 * so if fhtype seems to be more than len, reduce fhtype.
1686	 * Valid types are:
1687	 *   2 - objectid + dir_id - legacy support
1688	 *   3 - objectid + dir_id + generation
1689	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1690	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1691	 *   6 - as above plus generation of directory
1692	 * 6 does not fit in NFSv2 handles
1693	 */
1694	if (fh_type > fh_len) {
1695		if (fh_type != 6 || fh_len != 5)
1696			reiserfs_warning(sb, "reiserfs-13077",
1697				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1698				fh_type, fh_len);
1699		fh_type = fh_len;
1700	}
1701	if (fh_len < 2)
1702		return NULL;
1703
1704	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1705		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1706}
1707
1708struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1709		int fh_len, int fh_type)
1710{
1711	if (fh_type > fh_len)
1712		fh_type = fh_len;
1713	if (fh_type < 4)
1714		return NULL;
1715
1716	return reiserfs_get_dentry(sb,
1717		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1718		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1719		(fh_type == 6) ? fid->raw[5] : 0);
1720}
1721
1722int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1723		       struct inode *parent)
1724{
1725	int maxlen = *lenp;
1726
1727	if (parent && (maxlen < 5)) {
1728		*lenp = 5;
1729		return FILEID_INVALID;
1730	} else if (maxlen < 3) {
1731		*lenp = 3;
1732		return FILEID_INVALID;
1733	}
1734
1735	data[0] = inode->i_ino;
1736	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1737	data[2] = inode->i_generation;
1738	*lenp = 3;
1739	if (parent) {
1740		data[3] = parent->i_ino;
1741		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1742		*lenp = 5;
1743		if (maxlen >= 6) {
1744			data[5] = parent->i_generation;
1745			*lenp = 6;
1746		}
1747	}
1748	return *lenp;
1749}
1750
1751/*
1752 * looks for stat data, then copies fields to it, marks the buffer
1753 * containing stat data as dirty
1754 */
1755/*
1756 * reiserfs inodes are never really dirty, since the dirty inode call
1757 * always logs them.  This call allows the VFS inode marking routines
1758 * to properly mark inodes for datasync and such, but only actually
1759 * does something when called for a synchronous update.
1760 */
1761int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1762{
1763	struct reiserfs_transaction_handle th;
1764	int jbegin_count = 1;
1765
1766	if (sb_rdonly(inode->i_sb))
1767		return -EROFS;
1768	/*
1769	 * memory pressure can sometimes initiate write_inode calls with
1770	 * sync == 1,
1771	 * these cases are just when the system needs ram, not when the
1772	 * inode needs to reach disk for safety, and they can safely be
1773	 * ignored because the altered inode has already been logged.
1774	 */
1775	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1776		reiserfs_write_lock(inode->i_sb);
1777		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1778			reiserfs_update_sd(&th, inode);
1779			journal_end_sync(&th);
1780		}
1781		reiserfs_write_unlock(inode->i_sb);
1782	}
1783	return 0;
1784}
1785
1786/*
1787 * stat data of new object is inserted already, this inserts the item
1788 * containing "." and ".." entries
1789 */
1790static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1791				  struct inode *inode,
1792				  struct item_head *ih, struct treepath *path,
1793				  struct inode *dir)
1794{
1795	struct super_block *sb = th->t_super;
1796	char empty_dir[EMPTY_DIR_SIZE];
1797	char *body = empty_dir;
1798	struct cpu_key key;
1799	int retval;
1800
1801	BUG_ON(!th->t_trans_id);
1802
1803	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1804		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1805		      TYPE_DIRENTRY, 3 /*key length */ );
1806
1807	/*
1808	 * compose item head for new item. Directories consist of items of
1809	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1810	 * is done by reiserfs_new_inode
1811	 */
1812	if (old_format_only(sb)) {
1813		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1814				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1815
1816		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1817				       ih->ih_key.k_objectid,
1818				       INODE_PKEY(dir)->k_dir_id,
1819				       INODE_PKEY(dir)->k_objectid);
1820	} else {
1821		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1822				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1823
1824		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1825				    ih->ih_key.k_objectid,
1826				    INODE_PKEY(dir)->k_dir_id,
1827				    INODE_PKEY(dir)->k_objectid);
1828	}
1829
1830	/* look for place in the tree for new item */
1831	retval = search_item(sb, &key, path);
1832	if (retval == IO_ERROR) {
1833		reiserfs_error(sb, "vs-13080",
1834			       "i/o failure occurred creating new directory");
1835		return -EIO;
1836	}
1837	if (retval == ITEM_FOUND) {
1838		pathrelse(path);
1839		reiserfs_warning(sb, "vs-13070",
1840				 "object with this key exists (%k)",
1841				 &(ih->ih_key));
1842		return -EEXIST;
1843	}
1844
1845	/* insert item, that is empty directory item */
1846	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1847}
1848
1849/*
1850 * stat data of object has been inserted, this inserts the item
1851 * containing the body of symlink
1852 */
1853static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1854				struct inode *inode,
1855				struct item_head *ih,
1856				struct treepath *path, const char *symname,
1857				int item_len)
1858{
1859	struct super_block *sb = th->t_super;
1860	struct cpu_key key;
1861	int retval;
1862
1863	BUG_ON(!th->t_trans_id);
1864
1865	_make_cpu_key(&key, KEY_FORMAT_3_5,
1866		      le32_to_cpu(ih->ih_key.k_dir_id),
1867		      le32_to_cpu(ih->ih_key.k_objectid),
1868		      1, TYPE_DIRECT, 3 /*key length */ );
1869
1870	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1871			  0 /*free_space */ );
1872
1873	/* look for place in the tree for new item */
1874	retval = search_item(sb, &key, path);
1875	if (retval == IO_ERROR) {
1876		reiserfs_error(sb, "vs-13080",
1877			       "i/o failure occurred creating new symlink");
1878		return -EIO;
1879	}
1880	if (retval == ITEM_FOUND) {
1881		pathrelse(path);
1882		reiserfs_warning(sb, "vs-13080",
1883				 "object with this key exists (%k)",
1884				 &(ih->ih_key));
1885		return -EEXIST;
1886	}
1887
1888	/* insert item, that is body of symlink */
1889	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1890}
1891
1892/*
1893 * inserts the stat data into the tree, and then calls
1894 * reiserfs_new_directory (to insert ".", ".." item if new object is
1895 * directory) or reiserfs_new_symlink (to insert symlink body if new
1896 * object is symlink) or nothing (if new object is regular file)
1897
1898 * NOTE! uid and gid must already be set in the inode.  If we return
1899 * non-zero due to an error, we have to drop the quota previously allocated
1900 * for the fresh inode.  This can only be done outside a transaction, so
1901 * if we return non-zero, we also end the transaction.
1902 *
1903 * @th: active transaction handle
1904 * @dir: parent directory for new inode
1905 * @mode: mode of new inode
1906 * @symname: symlink contents if inode is symlink
1907 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1908 *         symlinks
1909 * @inode: inode to be filled
1910 * @security: optional security context to associate with this inode
1911 */
1912int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1913		       struct inode *dir, umode_t mode, const char *symname,
1914		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1915		          strlen (symname) for symlinks) */
1916		       loff_t i_size, struct dentry *dentry,
1917		       struct inode *inode,
1918		       struct reiserfs_security_handle *security)
1919{
1920	struct super_block *sb = dir->i_sb;
1921	struct reiserfs_iget_args args;
1922	INITIALIZE_PATH(path_to_key);
1923	struct cpu_key key;
1924	struct item_head ih;
1925	struct stat_data sd;
1926	int retval;
1927	int err;
1928	int depth;
1929
1930	BUG_ON(!th->t_trans_id);
1931
1932	depth = reiserfs_write_unlock_nested(sb);
1933	err = dquot_alloc_inode(inode);
1934	reiserfs_write_lock_nested(sb, depth);
1935	if (err)
1936		goto out_end_trans;
1937	if (!dir->i_nlink) {
1938		err = -EPERM;
1939		goto out_bad_inode;
1940	}
1941
1942	/* item head of new item */
1943	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1944	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1945	if (!ih.ih_key.k_objectid) {
1946		err = -ENOMEM;
1947		goto out_bad_inode;
1948	}
1949	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1950	if (old_format_only(sb))
1951		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1952				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1953	else
1954		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1955				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1956	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1957	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1958
1959	depth = reiserfs_write_unlock_nested(inode->i_sb);
1960	err = insert_inode_locked4(inode, args.objectid,
1961			     reiserfs_find_actor, &args);
1962	reiserfs_write_lock_nested(inode->i_sb, depth);
1963	if (err) {
1964		err = -EINVAL;
1965		goto out_bad_inode;
1966	}
1967
1968	if (old_format_only(sb))
1969		/*
1970		 * not a perfect generation count, as object ids can be reused,
1971		 * but this is as good as reiserfs can do right now.
1972		 * note that the private part of inode isn't filled in yet,
1973		 * we have to use the directory.
1974		 */
1975		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1976	else
1977#if defined( USE_INODE_GENERATION_COUNTER )
1978		inode->i_generation =
1979		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1980#else
1981		inode->i_generation = ++event;
1982#endif
1983
1984	/* fill stat data */
1985	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1986
1987	/* uid and gid must already be set by the caller for quota init */
1988
1989	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1990	inode->i_size = i_size;
1991	inode->i_blocks = 0;
1992	inode->i_bytes = 0;
1993	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1994	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1995
1996	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1997	REISERFS_I(inode)->i_flags = 0;
1998	REISERFS_I(inode)->i_prealloc_block = 0;
1999	REISERFS_I(inode)->i_prealloc_count = 0;
2000	REISERFS_I(inode)->i_trans_id = 0;
2001	REISERFS_I(inode)->i_jl = NULL;
2002	REISERFS_I(inode)->i_attrs =
2003	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2004	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2005	reiserfs_init_xattr_rwsem(inode);
2006
2007	/* key to search for correct place for new stat data */
2008	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2009		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2010		      TYPE_STAT_DATA, 3 /*key length */ );
2011
2012	/* find proper place for inserting of stat data */
2013	retval = search_item(sb, &key, &path_to_key);
2014	if (retval == IO_ERROR) {
2015		err = -EIO;
2016		goto out_bad_inode;
2017	}
2018	if (retval == ITEM_FOUND) {
2019		pathrelse(&path_to_key);
2020		err = -EEXIST;
2021		goto out_bad_inode;
2022	}
2023	if (old_format_only(sb)) {
2024		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2025		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2026			pathrelse(&path_to_key);
2027			err = -EINVAL;
2028			goto out_bad_inode;
2029		}
2030		inode2sd_v1(&sd, inode, inode->i_size);
2031	} else {
2032		inode2sd(&sd, inode, inode->i_size);
2033	}
2034	/*
2035	 * store in in-core inode the key of stat data and version all
2036	 * object items will have (directory items will have old offset
2037	 * format, other new objects will consist of new items)
2038	 */
2039	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2040		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2041	else
2042		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2043	if (old_format_only(sb))
2044		set_inode_sd_version(inode, STAT_DATA_V1);
2045	else
2046		set_inode_sd_version(inode, STAT_DATA_V2);
2047
2048	/* insert the stat data into the tree */
2049#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2050	if (REISERFS_I(dir)->new_packing_locality)
2051		th->displace_new_blocks = 1;
2052#endif
2053	retval =
2054	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2055				 (char *)(&sd));
2056	if (retval) {
2057		err = retval;
2058		reiserfs_check_path(&path_to_key);
2059		goto out_bad_inode;
2060	}
2061#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2062	if (!th->displace_new_blocks)
2063		REISERFS_I(dir)->new_packing_locality = 0;
2064#endif
2065	if (S_ISDIR(mode)) {
2066		/* insert item with "." and ".." */
2067		retval =
2068		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2069	}
2070
2071	if (S_ISLNK(mode)) {
2072		/* insert body of symlink */
2073		if (!old_format_only(sb))
2074			i_size = ROUND_UP(i_size);
2075		retval =
2076		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2077					 i_size);
2078	}
2079	if (retval) {
2080		err = retval;
2081		reiserfs_check_path(&path_to_key);
2082		journal_end(th);
2083		goto out_inserted_sd;
2084	}
2085
2086	/*
2087	 * Mark it private if we're creating the privroot
2088	 * or something under it.
2089	 */
2090	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
2091		inode->i_flags |= S_PRIVATE;
2092		inode->i_opflags &= ~IOP_XATTR;
2093	}
2094
2095	if (reiserfs_posixacl(inode->i_sb)) {
2096		reiserfs_write_unlock(inode->i_sb);
2097		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2098		reiserfs_write_lock(inode->i_sb);
2099		if (retval) {
2100			err = retval;
2101			reiserfs_check_path(&path_to_key);
2102			journal_end(th);
2103			goto out_inserted_sd;
2104		}
2105	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2106		reiserfs_warning(inode->i_sb, "jdm-13090",
2107				 "ACLs aren't enabled in the fs, "
2108				 "but vfs thinks they are!");
2109	}
2110
2111	if (security->name) {
2112		reiserfs_write_unlock(inode->i_sb);
2113		retval = reiserfs_security_write(th, inode, security);
2114		reiserfs_write_lock(inode->i_sb);
2115		if (retval) {
2116			err = retval;
2117			reiserfs_check_path(&path_to_key);
2118			retval = journal_end(th);
2119			if (retval)
2120				err = retval;
2121			goto out_inserted_sd;
2122		}
2123	}
2124
2125	reiserfs_update_sd(th, inode);
2126	reiserfs_check_path(&path_to_key);
2127
2128	return 0;
2129
2130out_bad_inode:
2131	/* Invalidate the object, nothing was inserted yet */
2132	INODE_PKEY(inode)->k_objectid = 0;
2133
2134	/* Quota change must be inside a transaction for journaling */
2135	depth = reiserfs_write_unlock_nested(inode->i_sb);
2136	dquot_free_inode(inode);
2137	reiserfs_write_lock_nested(inode->i_sb, depth);
2138
2139out_end_trans:
2140	journal_end(th);
2141	/*
2142	 * Drop can be outside and it needs more credits so it's better
2143	 * to have it outside
2144	 */
2145	depth = reiserfs_write_unlock_nested(inode->i_sb);
2146	dquot_drop(inode);
2147	reiserfs_write_lock_nested(inode->i_sb, depth);
2148	inode->i_flags |= S_NOQUOTA;
2149	make_bad_inode(inode);
2150
2151out_inserted_sd:
2152	clear_nlink(inode);
2153	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2154	if (inode->i_state & I_NEW)
2155		unlock_new_inode(inode);
2156	iput(inode);
2157	return err;
2158}
2159
2160/*
2161 * finds the tail page in the page cache,
2162 * reads the last block in.
2163 *
2164 * On success, page_result is set to a locked, pinned page, and bh_result
2165 * is set to an up to date buffer for the last block in the file.  returns 0.
2166 *
2167 * tail conversion is not done, so bh_result might not be valid for writing
2168 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2169 * trying to write the block.
2170 *
2171 * on failure, nonzero is returned, page_result and bh_result are untouched.
2172 */
2173static int grab_tail_page(struct inode *inode,
2174			  struct page **page_result,
2175			  struct buffer_head **bh_result)
2176{
2177
2178	/*
2179	 * we want the page with the last byte in the file,
2180	 * not the page that will hold the next byte for appending
2181	 */
2182	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2183	unsigned long pos = 0;
2184	unsigned long start = 0;
2185	unsigned long blocksize = inode->i_sb->s_blocksize;
2186	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2187	struct buffer_head *bh;
2188	struct buffer_head *head;
2189	struct page *page;
2190	int error;
2191
2192	/*
2193	 * we know that we are only called with inode->i_size > 0.
2194	 * we also know that a file tail can never be as big as a block
2195	 * If i_size % blocksize == 0, our file is currently block aligned
2196	 * and it won't need converting or zeroing after a truncate.
2197	 */
2198	if ((offset & (blocksize - 1)) == 0) {
2199		return -ENOENT;
2200	}
2201	page = grab_cache_page(inode->i_mapping, index);
2202	error = -ENOMEM;
2203	if (!page) {
2204		goto out;
2205	}
2206	/* start within the page of the last block in the file */
2207	start = (offset / blocksize) * blocksize;
2208
2209	error = __block_write_begin(page, start, offset - start,
2210				    reiserfs_get_block_create_0);
2211	if (error)
2212		goto unlock;
2213
2214	head = page_buffers(page);
2215	bh = head;
2216	do {
2217		if (pos >= start) {
2218			break;
2219		}
2220		bh = bh->b_this_page;
2221		pos += blocksize;
2222	} while (bh != head);
2223
2224	if (!buffer_uptodate(bh)) {
2225		/*
2226		 * note, this should never happen, prepare_write should be
2227		 * taking care of this for us.  If the buffer isn't up to
2228		 * date, I've screwed up the code to find the buffer, or the
2229		 * code to call prepare_write
2230		 */
2231		reiserfs_error(inode->i_sb, "clm-6000",
2232			       "error reading block %lu", bh->b_blocknr);
2233		error = -EIO;
2234		goto unlock;
2235	}
2236	*bh_result = bh;
2237	*page_result = page;
2238
2239out:
2240	return error;
2241
2242unlock:
2243	unlock_page(page);
2244	put_page(page);
2245	return error;
2246}
2247
2248/*
2249 * vfs version of truncate file.  Must NOT be called with
2250 * a transaction already started.
2251 *
2252 * some code taken from block_truncate_page
2253 */
2254int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2255{
2256	struct reiserfs_transaction_handle th;
2257	/* we want the offset for the first byte after the end of the file */
2258	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2259	unsigned blocksize = inode->i_sb->s_blocksize;
2260	unsigned length;
2261	struct page *page = NULL;
2262	int error;
2263	struct buffer_head *bh = NULL;
2264	int err2;
2265
2266	reiserfs_write_lock(inode->i_sb);
2267
2268	if (inode->i_size > 0) {
2269		error = grab_tail_page(inode, &page, &bh);
2270		if (error) {
2271			/*
2272			 * -ENOENT means we truncated past the end of the
2273			 * file, and get_block_create_0 could not find a
2274			 * block to read in, which is ok.
2275			 */
2276			if (error != -ENOENT)
2277				reiserfs_error(inode->i_sb, "clm-6001",
2278					       "grab_tail_page failed %d",
2279					       error);
2280			page = NULL;
2281			bh = NULL;
2282		}
2283	}
2284
2285	/*
2286	 * so, if page != NULL, we have a buffer head for the offset at
2287	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2288	 * then we have an unformatted node.  Otherwise, we have a direct item,
2289	 * and no zeroing is required on disk.  We zero after the truncate,
2290	 * because the truncate might pack the item anyway
2291	 * (it will unmap bh if it packs).
2292	 *
2293	 * it is enough to reserve space in transaction for 2 balancings:
2294	 * one for "save" link adding and another for the first
2295	 * cut_from_item. 1 is for update_sd
2296	 */
2297	error = journal_begin(&th, inode->i_sb,
2298			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2299	if (error)
2300		goto out;
2301	reiserfs_update_inode_transaction(inode);
2302	if (update_timestamps)
2303		/*
2304		 * we are doing real truncate: if the system crashes
2305		 * before the last transaction of truncating gets committed
2306		 * - on reboot the file either appears truncated properly
2307		 * or not truncated at all
2308		 */
2309		add_save_link(&th, inode, 1);
2310	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2311	error = journal_end(&th);
2312	if (error)
2313		goto out;
2314
2315	/* check reiserfs_do_truncate after ending the transaction */
2316	if (err2) {
2317		error = err2;
2318  		goto out;
2319	}
2320	
2321	if (update_timestamps) {
2322		error = remove_save_link(inode, 1 /* truncate */);
2323		if (error)
2324			goto out;
2325	}
2326
2327	if (page) {
2328		length = offset & (blocksize - 1);
2329		/* if we are not on a block boundary */
2330		if (length) {
2331			length = blocksize - length;
2332			zero_user(page, offset, length);
2333			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2334				mark_buffer_dirty(bh);
2335			}
2336		}
2337		unlock_page(page);
2338		put_page(page);
2339	}
2340
2341	reiserfs_write_unlock(inode->i_sb);
2342
2343	return 0;
2344out:
2345	if (page) {
2346		unlock_page(page);
2347		put_page(page);
2348	}
2349
2350	reiserfs_write_unlock(inode->i_sb);
2351
2352	return error;
2353}
2354
2355static int map_block_for_writepage(struct inode *inode,
2356				   struct buffer_head *bh_result,
2357				   unsigned long block)
2358{
2359	struct reiserfs_transaction_handle th;
2360	int fs_gen;
2361	struct item_head tmp_ih;
2362	struct item_head *ih;
2363	struct buffer_head *bh;
2364	__le32 *item;
2365	struct cpu_key key;
2366	INITIALIZE_PATH(path);
2367	int pos_in_item;
2368	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2369	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2370	int retval;
2371	int use_get_block = 0;
2372	int bytes_copied = 0;
2373	int copy_size;
2374	int trans_running = 0;
2375
2376	/*
2377	 * catch places below that try to log something without
2378	 * starting a trans
2379	 */
2380	th.t_trans_id = 0;
2381
2382	if (!buffer_uptodate(bh_result)) {
2383		return -EIO;
2384	}
2385
2386	kmap(bh_result->b_page);
2387start_over:
2388	reiserfs_write_lock(inode->i_sb);
2389	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2390
2391research:
2392	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2393	if (retval != POSITION_FOUND) {
2394		use_get_block = 1;
2395		goto out;
2396	}
2397
2398	bh = get_last_bh(&path);
2399	ih = tp_item_head(&path);
2400	item = tp_item_body(&path);
2401	pos_in_item = path.pos_in_item;
2402
2403	/* we've found an unformatted node */
2404	if (indirect_item_found(retval, ih)) {
2405		if (bytes_copied > 0) {
2406			reiserfs_warning(inode->i_sb, "clm-6002",
2407					 "bytes_copied %d", bytes_copied);
2408		}
2409		if (!get_block_num(item, pos_in_item)) {
2410			/* crap, we are writing to a hole */
2411			use_get_block = 1;
2412			goto out;
2413		}
2414		set_block_dev_mapped(bh_result,
2415				     get_block_num(item, pos_in_item), inode);
2416	} else if (is_direct_le_ih(ih)) {
2417		char *p;
2418		p = page_address(bh_result->b_page);
2419		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2420		copy_size = ih_item_len(ih) - pos_in_item;
2421
2422		fs_gen = get_generation(inode->i_sb);
2423		copy_item_head(&tmp_ih, ih);
2424
2425		if (!trans_running) {
2426			/* vs-3050 is gone, no need to drop the path */
2427			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2428			if (retval)
2429				goto out;
2430			reiserfs_update_inode_transaction(inode);
2431			trans_running = 1;
2432			if (fs_changed(fs_gen, inode->i_sb)
2433			    && item_moved(&tmp_ih, &path)) {
2434				reiserfs_restore_prepared_buffer(inode->i_sb,
2435								 bh);
2436				goto research;
2437			}
2438		}
2439
2440		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2441
2442		if (fs_changed(fs_gen, inode->i_sb)
2443		    && item_moved(&tmp_ih, &path)) {
2444			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2445			goto research;
2446		}
2447
2448		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2449		       copy_size);
2450
2451		journal_mark_dirty(&th, bh);
2452		bytes_copied += copy_size;
2453		set_block_dev_mapped(bh_result, 0, inode);
2454
2455		/* are there still bytes left? */
2456		if (bytes_copied < bh_result->b_size &&
2457		    (byte_offset + bytes_copied) < inode->i_size) {
2458			set_cpu_key_k_offset(&key,
2459					     cpu_key_k_offset(&key) +
2460					     copy_size);
2461			goto research;
2462		}
2463	} else {
2464		reiserfs_warning(inode->i_sb, "clm-6003",
2465				 "bad item inode %lu", inode->i_ino);
2466		retval = -EIO;
2467		goto out;
2468	}
2469	retval = 0;
2470
2471out:
2472	pathrelse(&path);
2473	if (trans_running) {
2474		int err = journal_end(&th);
2475		if (err)
2476			retval = err;
2477		trans_running = 0;
2478	}
2479	reiserfs_write_unlock(inode->i_sb);
2480
2481	/* this is where we fill in holes in the file. */
2482	if (use_get_block) {
2483		retval = reiserfs_get_block(inode, block, bh_result,
2484					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2485					    | GET_BLOCK_NO_DANGLE);
2486		if (!retval) {
2487			if (!buffer_mapped(bh_result)
2488			    || bh_result->b_blocknr == 0) {
2489				/* get_block failed to find a mapped unformatted node. */
2490				use_get_block = 0;
2491				goto start_over;
2492			}
2493		}
2494	}
2495	kunmap(bh_result->b_page);
2496
2497	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2498		/*
2499		 * we've copied data from the page into the direct item, so the
2500		 * buffer in the page is now clean, mark it to reflect that.
2501		 */
2502		lock_buffer(bh_result);
2503		clear_buffer_dirty(bh_result);
2504		unlock_buffer(bh_result);
2505	}
2506	return retval;
2507}
2508
2509/*
2510 * mason@suse.com: updated in 2.5.54 to follow the same general io
2511 * start/recovery path as __block_write_full_page, along with special
2512 * code to handle reiserfs tails.
2513 */
2514static int reiserfs_write_full_page(struct page *page,
2515				    struct writeback_control *wbc)
2516{
2517	struct inode *inode = page->mapping->host;
2518	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2519	int error = 0;
2520	unsigned long block;
2521	sector_t last_block;
2522	struct buffer_head *head, *bh;
2523	int partial = 0;
2524	int nr = 0;
2525	int checked = PageChecked(page);
2526	struct reiserfs_transaction_handle th;
2527	struct super_block *s = inode->i_sb;
2528	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2529	th.t_trans_id = 0;
2530
2531	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2532	if (checked && (current->flags & PF_MEMALLOC)) {
2533		redirty_page_for_writepage(wbc, page);
2534		unlock_page(page);
2535		return 0;
2536	}
2537
2538	/*
2539	 * The page dirty bit is cleared before writepage is called, which
2540	 * means we have to tell create_empty_buffers to make dirty buffers
2541	 * The page really should be up to date at this point, so tossing
2542	 * in the BH_Uptodate is just a sanity check.
2543	 */
2544	if (!page_has_buffers(page)) {
2545		create_empty_buffers(page, s->s_blocksize,
2546				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2547	}
2548	head = page_buffers(page);
2549
2550	/*
2551	 * last page in the file, zero out any contents past the
2552	 * last byte in the file
2553	 */
2554	if (page->index >= end_index) {
2555		unsigned last_offset;
2556
2557		last_offset = inode->i_size & (PAGE_SIZE - 1);
2558		/* no file contents in this page */
2559		if (page->index >= end_index + 1 || !last_offset) {
2560			unlock_page(page);
2561			return 0;
2562		}
2563		zero_user_segment(page, last_offset, PAGE_SIZE);
2564	}
2565	bh = head;
2566	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2567	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2568	/* first map all the buffers, logging any direct items we find */
2569	do {
2570		if (block > last_block) {
2571			/*
2572			 * This can happen when the block size is less than
2573			 * the page size.  The corresponding bytes in the page
2574			 * were zero filled above
2575			 */
2576			clear_buffer_dirty(bh);
2577			set_buffer_uptodate(bh);
2578		} else if ((checked || buffer_dirty(bh)) &&
2579			   (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
 
 
2580			/*
2581			 * not mapped yet, or it points to a direct item, search
2582			 * the btree for the mapping info, and log any direct
2583			 * items found
2584			 */
2585			if ((error = map_block_for_writepage(inode, bh, block))) {
2586				goto fail;
2587			}
2588		}
2589		bh = bh->b_this_page;
2590		block++;
2591	} while (bh != head);
2592
2593	/*
2594	 * we start the transaction after map_block_for_writepage,
2595	 * because it can create holes in the file (an unbounded operation).
2596	 * starting it here, we can make a reliable estimate for how many
2597	 * blocks we're going to log
2598	 */
2599	if (checked) {
2600		ClearPageChecked(page);
2601		reiserfs_write_lock(s);
2602		error = journal_begin(&th, s, bh_per_page + 1);
2603		if (error) {
2604			reiserfs_write_unlock(s);
2605			goto fail;
2606		}
2607		reiserfs_update_inode_transaction(inode);
2608	}
2609	/* now go through and lock any dirty buffers on the page */
2610	do {
2611		get_bh(bh);
2612		if (!buffer_mapped(bh))
2613			continue;
2614		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2615			continue;
2616
2617		if (checked) {
2618			reiserfs_prepare_for_journal(s, bh, 1);
2619			journal_mark_dirty(&th, bh);
2620			continue;
2621		}
2622		/*
2623		 * from this point on, we know the buffer is mapped to a
2624		 * real block and not a direct item
2625		 */
2626		if (wbc->sync_mode != WB_SYNC_NONE) {
2627			lock_buffer(bh);
2628		} else {
2629			if (!trylock_buffer(bh)) {
2630				redirty_page_for_writepage(wbc, page);
2631				continue;
2632			}
2633		}
2634		if (test_clear_buffer_dirty(bh)) {
2635			mark_buffer_async_write(bh);
2636		} else {
2637			unlock_buffer(bh);
2638		}
2639	} while ((bh = bh->b_this_page) != head);
2640
2641	if (checked) {
2642		error = journal_end(&th);
2643		reiserfs_write_unlock(s);
2644		if (error)
2645			goto fail;
2646	}
2647	BUG_ON(PageWriteback(page));
2648	set_page_writeback(page);
2649	unlock_page(page);
2650
2651	/*
2652	 * since any buffer might be the only dirty buffer on the page,
2653	 * the first submit_bh can bring the page out of writeback.
2654	 * be careful with the buffers.
2655	 */
2656	do {
2657		struct buffer_head *next = bh->b_this_page;
2658		if (buffer_async_write(bh)) {
2659			submit_bh(REQ_OP_WRITE, bh);
2660			nr++;
2661		}
2662		put_bh(bh);
2663		bh = next;
2664	} while (bh != head);
2665
2666	error = 0;
2667done:
2668	if (nr == 0) {
2669		/*
2670		 * if this page only had a direct item, it is very possible for
2671		 * no io to be required without there being an error.  Or,
2672		 * someone else could have locked them and sent them down the
2673		 * pipe without locking the page
2674		 */
2675		bh = head;
2676		do {
2677			if (!buffer_uptodate(bh)) {
2678				partial = 1;
2679				break;
2680			}
2681			bh = bh->b_this_page;
2682		} while (bh != head);
2683		if (!partial)
2684			SetPageUptodate(page);
2685		end_page_writeback(page);
2686	}
2687	return error;
2688
2689fail:
2690	/*
2691	 * catches various errors, we need to make sure any valid dirty blocks
2692	 * get to the media.  The page is currently locked and not marked for
2693	 * writeback
2694	 */
2695	ClearPageUptodate(page);
2696	bh = head;
2697	do {
2698		get_bh(bh);
2699		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2700			lock_buffer(bh);
2701			mark_buffer_async_write(bh);
2702		} else {
2703			/*
2704			 * clear any dirty bits that might have come from
2705			 * getting attached to a dirty page
2706			 */
2707			clear_buffer_dirty(bh);
2708		}
2709		bh = bh->b_this_page;
2710	} while (bh != head);
2711	SetPageError(page);
2712	BUG_ON(PageWriteback(page));
2713	set_page_writeback(page);
2714	unlock_page(page);
2715	do {
2716		struct buffer_head *next = bh->b_this_page;
2717		if (buffer_async_write(bh)) {
2718			clear_buffer_dirty(bh);
2719			submit_bh(REQ_OP_WRITE, bh);
2720			nr++;
2721		}
2722		put_bh(bh);
2723		bh = next;
2724	} while (bh != head);
2725	goto done;
2726}
2727
2728static int reiserfs_read_folio(struct file *f, struct folio *folio)
2729{
2730	return block_read_full_folio(folio, reiserfs_get_block);
2731}
2732
2733static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2734{
2735	struct inode *inode = page->mapping->host;
2736	reiserfs_wait_on_write_block(inode->i_sb);
2737	return reiserfs_write_full_page(page, wbc);
2738}
2739
2740static void reiserfs_truncate_failed_write(struct inode *inode)
2741{
2742	truncate_inode_pages(inode->i_mapping, inode->i_size);
2743	reiserfs_truncate_file(inode, 0);
2744}
2745
2746static int reiserfs_write_begin(struct file *file,
2747				struct address_space *mapping,
2748				loff_t pos, unsigned len,
2749				struct page **pagep, void **fsdata)
2750{
2751	struct inode *inode;
2752	struct page *page;
2753	pgoff_t index;
2754	int ret;
2755	int old_ref = 0;
2756
2757 	inode = mapping->host;
 
 
 
 
 
 
 
2758	index = pos >> PAGE_SHIFT;
2759	page = grab_cache_page_write_begin(mapping, index);
2760	if (!page)
2761		return -ENOMEM;
2762	*pagep = page;
2763
2764	reiserfs_wait_on_write_block(inode->i_sb);
2765	fix_tail_page_for_writing(page);
2766	if (reiserfs_transaction_running(inode->i_sb)) {
2767		struct reiserfs_transaction_handle *th;
2768		th = (struct reiserfs_transaction_handle *)current->
2769		    journal_info;
2770		BUG_ON(!th->t_refcount);
2771		BUG_ON(!th->t_trans_id);
2772		old_ref = th->t_refcount;
2773		th->t_refcount++;
2774	}
2775	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2776	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2777		struct reiserfs_transaction_handle *th = current->journal_info;
2778		/*
2779		 * this gets a little ugly.  If reiserfs_get_block returned an
2780		 * error and left a transacstion running, we've got to close
2781		 * it, and we've got to free handle if it was a persistent
2782		 * transaction.
2783		 *
2784		 * But, if we had nested into an existing transaction, we need
2785		 * to just drop the ref count on the handle.
2786		 *
2787		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2788		 * and it was a persistent trans.  Otherwise, it was nested
2789		 * above.
2790		 */
2791		if (th->t_refcount > old_ref) {
2792			if (old_ref)
2793				th->t_refcount--;
2794			else {
2795				int err;
2796				reiserfs_write_lock(inode->i_sb);
2797				err = reiserfs_end_persistent_transaction(th);
2798				reiserfs_write_unlock(inode->i_sb);
2799				if (err)
2800					ret = err;
2801			}
2802		}
2803	}
2804	if (ret) {
2805		unlock_page(page);
2806		put_page(page);
2807		/* Truncate allocated blocks */
2808		reiserfs_truncate_failed_write(inode);
2809	}
2810	return ret;
2811}
2812
2813int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2814{
2815	struct inode *inode = page->mapping->host;
2816	int ret;
2817	int old_ref = 0;
2818	int depth;
2819
2820	depth = reiserfs_write_unlock_nested(inode->i_sb);
2821	reiserfs_wait_on_write_block(inode->i_sb);
2822	reiserfs_write_lock_nested(inode->i_sb, depth);
2823
2824	fix_tail_page_for_writing(page);
2825	if (reiserfs_transaction_running(inode->i_sb)) {
2826		struct reiserfs_transaction_handle *th;
2827		th = (struct reiserfs_transaction_handle *)current->
2828		    journal_info;
2829		BUG_ON(!th->t_refcount);
2830		BUG_ON(!th->t_trans_id);
2831		old_ref = th->t_refcount;
2832		th->t_refcount++;
2833	}
2834
2835	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2836	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2837		struct reiserfs_transaction_handle *th = current->journal_info;
2838		/*
2839		 * this gets a little ugly.  If reiserfs_get_block returned an
2840		 * error and left a transacstion running, we've got to close
2841		 * it, and we've got to free handle if it was a persistent
2842		 * transaction.
2843		 *
2844		 * But, if we had nested into an existing transaction, we need
2845		 * to just drop the ref count on the handle.
2846		 *
2847		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2848		 * and it was a persistent trans.  Otherwise, it was nested
2849		 * above.
2850		 */
2851		if (th->t_refcount > old_ref) {
2852			if (old_ref)
2853				th->t_refcount--;
2854			else {
2855				int err;
2856				reiserfs_write_lock(inode->i_sb);
2857				err = reiserfs_end_persistent_transaction(th);
2858				reiserfs_write_unlock(inode->i_sb);
2859				if (err)
2860					ret = err;
2861			}
2862		}
2863	}
2864	return ret;
2865
2866}
2867
2868static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2869{
2870	return generic_block_bmap(as, block, reiserfs_bmap);
2871}
2872
2873static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2874			      loff_t pos, unsigned len, unsigned copied,
2875			      struct page *page, void *fsdata)
2876{
2877	struct inode *inode = page->mapping->host;
2878	int ret = 0;
2879	int update_sd = 0;
2880	struct reiserfs_transaction_handle *th;
2881	unsigned start;
2882	bool locked = false;
2883
 
 
 
2884	reiserfs_wait_on_write_block(inode->i_sb);
2885	if (reiserfs_transaction_running(inode->i_sb))
2886		th = current->journal_info;
2887	else
2888		th = NULL;
2889
2890	start = pos & (PAGE_SIZE - 1);
2891	if (unlikely(copied < len)) {
2892		if (!PageUptodate(page))
2893			copied = 0;
2894
2895		page_zero_new_buffers(page, start + copied, start + len);
2896	}
2897	flush_dcache_page(page);
2898
2899	reiserfs_commit_page(inode, page, start, start + copied);
2900
2901	/*
2902	 * generic_commit_write does this for us, but does not update the
2903	 * transaction tracking stuff when the size changes.  So, we have
2904	 * to do the i_size updates here.
2905	 */
2906	if (pos + copied > inode->i_size) {
2907		struct reiserfs_transaction_handle myth;
2908		reiserfs_write_lock(inode->i_sb);
2909		locked = true;
2910		/*
2911		 * If the file have grown beyond the border where it
2912		 * can have a tail, unmark it as needing a tail
2913		 * packing
2914		 */
2915		if ((have_large_tails(inode->i_sb)
2916		     && inode->i_size > i_block_size(inode) * 4)
2917		    || (have_small_tails(inode->i_sb)
2918			&& inode->i_size > i_block_size(inode)))
2919			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2920
2921		ret = journal_begin(&myth, inode->i_sb, 1);
2922		if (ret)
2923			goto journal_error;
2924
2925		reiserfs_update_inode_transaction(inode);
2926		inode->i_size = pos + copied;
2927		/*
2928		 * this will just nest into our transaction.  It's important
2929		 * to use mark_inode_dirty so the inode gets pushed around on
2930		 * the dirty lists, and so that O_SYNC works as expected
2931		 */
2932		mark_inode_dirty(inode);
2933		reiserfs_update_sd(&myth, inode);
2934		update_sd = 1;
2935		ret = journal_end(&myth);
2936		if (ret)
2937			goto journal_error;
2938	}
2939	if (th) {
2940		if (!locked) {
2941			reiserfs_write_lock(inode->i_sb);
2942			locked = true;
2943		}
2944		if (!update_sd)
2945			mark_inode_dirty(inode);
2946		ret = reiserfs_end_persistent_transaction(th);
2947		if (ret)
2948			goto out;
2949	}
2950
2951out:
2952	if (locked)
2953		reiserfs_write_unlock(inode->i_sb);
2954	unlock_page(page);
2955	put_page(page);
2956
2957	if (pos + len > inode->i_size)
2958		reiserfs_truncate_failed_write(inode);
2959
2960	return ret == 0 ? copied : ret;
2961
2962journal_error:
2963	reiserfs_write_unlock(inode->i_sb);
2964	locked = false;
2965	if (th) {
2966		if (!update_sd)
2967			reiserfs_update_sd(th, inode);
2968		ret = reiserfs_end_persistent_transaction(th);
2969	}
2970	goto out;
2971}
2972
2973int reiserfs_commit_write(struct file *f, struct page *page,
2974			  unsigned from, unsigned to)
2975{
2976	struct inode *inode = page->mapping->host;
2977	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2978	int ret = 0;
2979	int update_sd = 0;
2980	struct reiserfs_transaction_handle *th = NULL;
2981	int depth;
2982
2983	depth = reiserfs_write_unlock_nested(inode->i_sb);
2984	reiserfs_wait_on_write_block(inode->i_sb);
2985	reiserfs_write_lock_nested(inode->i_sb, depth);
2986
2987	if (reiserfs_transaction_running(inode->i_sb)) {
2988		th = current->journal_info;
2989	}
2990	reiserfs_commit_page(inode, page, from, to);
2991
2992	/*
2993	 * generic_commit_write does this for us, but does not update the
2994	 * transaction tracking stuff when the size changes.  So, we have
2995	 * to do the i_size updates here.
2996	 */
2997	if (pos > inode->i_size) {
2998		struct reiserfs_transaction_handle myth;
2999		/*
3000		 * If the file have grown beyond the border where it
3001		 * can have a tail, unmark it as needing a tail
3002		 * packing
3003		 */
3004		if ((have_large_tails(inode->i_sb)
3005		     && inode->i_size > i_block_size(inode) * 4)
3006		    || (have_small_tails(inode->i_sb)
3007			&& inode->i_size > i_block_size(inode)))
3008			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3009
3010		ret = journal_begin(&myth, inode->i_sb, 1);
3011		if (ret)
3012			goto journal_error;
3013
3014		reiserfs_update_inode_transaction(inode);
3015		inode->i_size = pos;
3016		/*
3017		 * this will just nest into our transaction.  It's important
3018		 * to use mark_inode_dirty so the inode gets pushed around
3019		 * on the dirty lists, and so that O_SYNC works as expected
3020		 */
3021		mark_inode_dirty(inode);
3022		reiserfs_update_sd(&myth, inode);
3023		update_sd = 1;
3024		ret = journal_end(&myth);
3025		if (ret)
3026			goto journal_error;
3027	}
3028	if (th) {
3029		if (!update_sd)
3030			mark_inode_dirty(inode);
3031		ret = reiserfs_end_persistent_transaction(th);
3032		if (ret)
3033			goto out;
3034	}
3035
3036out:
3037	return ret;
3038
3039journal_error:
3040	if (th) {
3041		if (!update_sd)
3042			reiserfs_update_sd(th, inode);
3043		ret = reiserfs_end_persistent_transaction(th);
3044	}
3045
3046	return ret;
3047}
3048
3049void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3050{
3051	if (reiserfs_attrs(inode->i_sb)) {
3052		if (sd_attrs & REISERFS_SYNC_FL)
3053			inode->i_flags |= S_SYNC;
3054		else
3055			inode->i_flags &= ~S_SYNC;
3056		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3057			inode->i_flags |= S_IMMUTABLE;
3058		else
3059			inode->i_flags &= ~S_IMMUTABLE;
3060		if (sd_attrs & REISERFS_APPEND_FL)
3061			inode->i_flags |= S_APPEND;
3062		else
3063			inode->i_flags &= ~S_APPEND;
3064		if (sd_attrs & REISERFS_NOATIME_FL)
3065			inode->i_flags |= S_NOATIME;
3066		else
3067			inode->i_flags &= ~S_NOATIME;
3068		if (sd_attrs & REISERFS_NOTAIL_FL)
3069			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3070		else
3071			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3072	}
3073}
3074
3075/*
3076 * decide if this buffer needs to stay around for data logging or ordered
3077 * write purposes
3078 */
3079static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
3080{
3081	int ret = 1;
3082	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3083
3084	lock_buffer(bh);
3085	spin_lock(&j->j_dirty_buffers_lock);
3086	if (!buffer_mapped(bh)) {
3087		goto free_jh;
3088	}
3089	/*
3090	 * the page is locked, and the only places that log a data buffer
3091	 * also lock the page.
3092	 */
3093	if (reiserfs_file_data_log(inode)) {
3094		/*
3095		 * very conservative, leave the buffer pinned if
3096		 * anyone might need it.
3097		 */
3098		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3099			ret = 0;
3100		}
3101	} else  if (buffer_dirty(bh)) {
3102		struct reiserfs_journal_list *jl;
3103		struct reiserfs_jh *jh = bh->b_private;
3104
3105		/*
3106		 * why is this safe?
3107		 * reiserfs_setattr updates i_size in the on disk
3108		 * stat data before allowing vmtruncate to be called.
3109		 *
3110		 * If buffer was put onto the ordered list for this
3111		 * transaction, we know for sure either this transaction
3112		 * or an older one already has updated i_size on disk,
3113		 * and this ordered data won't be referenced in the file
3114		 * if we crash.
3115		 *
3116		 * if the buffer was put onto the ordered list for an older
3117		 * transaction, we need to leave it around
3118		 */
3119		if (jh && (jl = jh->jl)
3120		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3121			ret = 0;
3122	}
3123free_jh:
3124	if (ret && bh->b_private) {
3125		reiserfs_free_jh(bh);
3126	}
3127	spin_unlock(&j->j_dirty_buffers_lock);
3128	unlock_buffer(bh);
3129	return ret;
3130}
3131
3132/* clm -- taken from fs/buffer.c:block_invalidate_folio */
3133static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3134				    size_t length)
3135{
3136	struct buffer_head *head, *bh, *next;
3137	struct inode *inode = folio->mapping->host;
3138	unsigned int curr_off = 0;
3139	unsigned int stop = offset + length;
3140	int partial_page = (offset || length < folio_size(folio));
3141	int ret = 1;
3142
3143	BUG_ON(!folio_test_locked(folio));
3144
3145	if (!partial_page)
3146		folio_clear_checked(folio);
3147
3148	head = folio_buffers(folio);
3149	if (!head)
3150		goto out;
3151
 
3152	bh = head;
3153	do {
3154		unsigned int next_off = curr_off + bh->b_size;
3155		next = bh->b_this_page;
3156
3157		if (next_off > stop)
3158			goto out;
3159
3160		/*
3161		 * is this block fully invalidated?
3162		 */
3163		if (offset <= curr_off) {
3164			if (invalidate_folio_can_drop(inode, bh))
3165				reiserfs_unmap_buffer(bh);
3166			else
3167				ret = 0;
3168		}
3169		curr_off = next_off;
3170		bh = next;
3171	} while (bh != head);
3172
3173	/*
3174	 * We release buffers only if the entire page is being invalidated.
3175	 * The get_block cached value has been unconditionally invalidated,
3176	 * so real IO is not possible anymore.
3177	 */
3178	if (!partial_page && ret) {
3179		ret = filemap_release_folio(folio, 0);
3180		/* maybe should BUG_ON(!ret); - neilb */
3181	}
3182out:
3183	return;
3184}
3185
3186static bool reiserfs_dirty_folio(struct address_space *mapping,
3187		struct folio *folio)
3188{
3189	if (reiserfs_file_data_log(mapping->host)) {
3190		folio_set_checked(folio);
3191		return filemap_dirty_folio(mapping, folio);
 
3192	}
3193	return block_dirty_folio(mapping, folio);
3194}
3195
3196/*
3197 * Returns true if the folio's buffers were dropped.  The folio is locked.
3198 *
3199 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3200 * in the buffers at folio_buffers(folio).
3201 *
3202 * even in -o notail mode, we can't be sure an old mount without -o notail
3203 * didn't create files with tails.
3204 */
3205static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3206{
3207	struct inode *inode = folio->mapping->host;
3208	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3209	struct buffer_head *head;
3210	struct buffer_head *bh;
3211	bool ret = true;
3212
3213	WARN_ON(folio_test_checked(folio));
3214	spin_lock(&j->j_dirty_buffers_lock);
3215	head = folio_buffers(folio);
3216	bh = head;
3217	do {
3218		if (bh->b_private) {
3219			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3220				reiserfs_free_jh(bh);
3221			} else {
3222				ret = false;
3223				break;
3224			}
3225		}
3226		bh = bh->b_this_page;
3227	} while (bh != head);
3228	if (ret)
3229		ret = try_to_free_buffers(folio);
3230	spin_unlock(&j->j_dirty_buffers_lock);
3231	return ret;
3232}
3233
3234/*
3235 * We thank Mingming Cao for helping us understand in great detail what
3236 * to do in this section of the code.
3237 */
3238static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3239{
3240	struct file *file = iocb->ki_filp;
3241	struct inode *inode = file->f_mapping->host;
3242	size_t count = iov_iter_count(iter);
3243	ssize_t ret;
3244
3245	ret = blockdev_direct_IO(iocb, inode, iter,
3246				 reiserfs_get_blocks_direct_io);
3247
3248	/*
3249	 * In case of error extending write may have instantiated a few
3250	 * blocks outside i_size. Trim these off again.
3251	 */
3252	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3253		loff_t isize = i_size_read(inode);
3254		loff_t end = iocb->ki_pos + count;
3255
3256		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3257			truncate_setsize(inode, isize);
3258			reiserfs_vfs_truncate_file(inode);
3259		}
3260	}
3261
3262	return ret;
3263}
3264
3265int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3266		     struct iattr *attr)
3267{
3268	struct inode *inode = d_inode(dentry);
3269	unsigned int ia_valid;
3270	int error;
3271
3272	error = setattr_prepare(&init_user_ns, dentry, attr);
3273	if (error)
3274		return error;
3275
3276	/* must be turned off for recursive notify_change calls */
3277	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3278
3279	if (is_quota_modification(mnt_userns, inode, attr)) {
3280		error = dquot_initialize(inode);
3281		if (error)
3282			return error;
3283	}
3284	reiserfs_write_lock(inode->i_sb);
3285	if (attr->ia_valid & ATTR_SIZE) {
3286		/*
3287		 * version 2 items will be caught by the s_maxbytes check
3288		 * done for us in vmtruncate
3289		 */
3290		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3291		    attr->ia_size > MAX_NON_LFS) {
3292			reiserfs_write_unlock(inode->i_sb);
3293			error = -EFBIG;
3294			goto out;
3295		}
3296
3297		inode_dio_wait(inode);
3298
3299		/* fill in hole pointers in the expanding truncate case. */
3300		if (attr->ia_size > inode->i_size) {
3301			loff_t pos = attr->ia_size;
3302
3303			if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3304				pos++;
3305			error = generic_cont_expand_simple(inode, pos);
3306			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3307				int err;
3308				struct reiserfs_transaction_handle th;
3309				/* we're changing at most 2 bitmaps, inode + super */
3310				err = journal_begin(&th, inode->i_sb, 4);
3311				if (!err) {
3312					reiserfs_discard_prealloc(&th, inode);
3313					err = journal_end(&th);
3314				}
3315				if (err)
3316					error = err;
3317			}
3318			if (error) {
3319				reiserfs_write_unlock(inode->i_sb);
3320				goto out;
3321			}
3322			/*
3323			 * file size is changed, ctime and mtime are
3324			 * to be updated
3325			 */
3326			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3327		}
3328	}
3329	reiserfs_write_unlock(inode->i_sb);
3330
3331	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3332	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3333	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3334		/* stat data of format v3.5 has 16 bit uid and gid */
3335		error = -EINVAL;
3336		goto out;
3337	}
3338
3339	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3340	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3341		struct reiserfs_transaction_handle th;
3342		int jbegin_count =
3343		    2 *
3344		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3345		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3346		    2;
3347
3348		error = reiserfs_chown_xattrs(inode, attr);
3349
3350		if (error)
3351			return error;
3352
3353		/*
3354		 * (user+group)*(old+new) structure - we count quota
3355		 * info and , inode write (sb, inode)
3356		 */
3357		reiserfs_write_lock(inode->i_sb);
3358		error = journal_begin(&th, inode->i_sb, jbegin_count);
3359		reiserfs_write_unlock(inode->i_sb);
3360		if (error)
3361			goto out;
3362		error = dquot_transfer(mnt_userns, inode, attr);
3363		reiserfs_write_lock(inode->i_sb);
3364		if (error) {
3365			journal_end(&th);
3366			reiserfs_write_unlock(inode->i_sb);
3367			goto out;
3368		}
3369
3370		/*
3371		 * Update corresponding info in inode so that everything
3372		 * is in one transaction
3373		 */
3374		if (attr->ia_valid & ATTR_UID)
3375			inode->i_uid = attr->ia_uid;
3376		if (attr->ia_valid & ATTR_GID)
3377			inode->i_gid = attr->ia_gid;
3378		mark_inode_dirty(inode);
3379		error = journal_end(&th);
3380		reiserfs_write_unlock(inode->i_sb);
3381		if (error)
3382			goto out;
3383	}
3384
3385	if ((attr->ia_valid & ATTR_SIZE) &&
3386	    attr->ia_size != i_size_read(inode)) {
3387		error = inode_newsize_ok(inode, attr->ia_size);
3388		if (!error) {
3389			/*
3390			 * Could race against reiserfs_file_release
3391			 * if called from NFS, so take tailpack mutex.
3392			 */
3393			mutex_lock(&REISERFS_I(inode)->tailpack);
3394			truncate_setsize(inode, attr->ia_size);
3395			reiserfs_truncate_file(inode, 1);
3396			mutex_unlock(&REISERFS_I(inode)->tailpack);
3397		}
3398	}
3399
3400	if (!error) {
3401		setattr_copy(&init_user_ns, inode, attr);
3402		mark_inode_dirty(inode);
3403	}
3404
3405	if (!error && reiserfs_posixacl(inode->i_sb)) {
3406		if (attr->ia_valid & ATTR_MODE)
3407			error = reiserfs_acl_chmod(dentry);
3408	}
3409
3410out:
3411	return error;
3412}
3413
3414const struct address_space_operations reiserfs_address_space_operations = {
3415	.writepage = reiserfs_writepage,
3416	.read_folio = reiserfs_read_folio,
3417	.readahead = reiserfs_readahead,
3418	.release_folio = reiserfs_release_folio,
3419	.invalidate_folio = reiserfs_invalidate_folio,
3420	.write_begin = reiserfs_write_begin,
3421	.write_end = reiserfs_write_end,
3422	.bmap = reiserfs_aop_bmap,
3423	.direct_IO = reiserfs_direct_IO,
3424	.dirty_folio = reiserfs_dirty_folio,
3425};
v5.9
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_readpage, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to readpage,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p = NULL;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 308		if (p)
 309			kunmap(bh_result->b_page);
 310		if (result == IO_ERROR)
 311			return -EIO;
 312		/*
 313		 * We do not return -ENOENT if there is a hole but page is
 314		 * uptodate, because it means that there is some MMAPED data
 315		 * associated with it that is yet to be written to disk.
 316		 */
 317		if ((args & GET_BLOCK_NO_HOLE)
 318		    && !PageUptodate(bh_result->b_page)) {
 319			return -ENOENT;
 320		}
 321		return 0;
 322	}
 323
 324	bh = get_last_bh(&path);
 325	ih = tp_item_head(&path);
 326	if (is_indirect_le_ih(ih)) {
 327		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 328
 329		/*
 330		 * FIXME: here we could cache indirect item or part of it in
 331		 * the inode to avoid search_by_key in case of subsequent
 332		 * access to file
 333		 */
 334		blocknr = get_block_num(ind_item, path.pos_in_item);
 335		ret = 0;
 336		if (blocknr) {
 337			map_bh(bh_result, inode->i_sb, blocknr);
 338			if (path.pos_in_item ==
 339			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 340				set_buffer_boundary(bh_result);
 341			}
 342		} else
 343			/*
 344			 * We do not return -ENOENT if there is a hole but
 345			 * page is uptodate, because it means that there is
 346			 * some MMAPED data associated with it that is
 347			 * yet to be written to disk.
 348			 */
 349		if ((args & GET_BLOCK_NO_HOLE)
 350			    && !PageUptodate(bh_result->b_page)) {
 351			ret = -ENOENT;
 352		}
 353
 354		pathrelse(&path);
 355		if (p)
 356			kunmap(bh_result->b_page);
 357		return ret;
 358	}
 359	/* requested data are in direct item(s) */
 360	if (!(args & GET_BLOCK_READ_DIRECT)) {
 361		/*
 362		 * we are called by bmap. FIXME: we can not map block of file
 363		 * when it is stored in direct item(s)
 364		 */
 365		pathrelse(&path);
 366		if (p)
 367			kunmap(bh_result->b_page);
 368		return -ENOENT;
 369	}
 370
 371	/*
 372	 * if we've got a direct item, and the buffer or page was uptodate,
 373	 * we don't want to pull data off disk again.  skip to the
 374	 * end, where we map the buffer and return
 375	 */
 376	if (buffer_uptodate(bh_result)) {
 377		goto finished;
 378	} else
 379		/*
 380		 * grab_tail_page can trigger calls to reiserfs_get_block on
 381		 * up to date pages without any buffers.  If the page is up
 382		 * to date, we don't want read old data off disk.  Set the up
 383		 * to date bit on the buffer instead and jump to the end
 384		 */
 385	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 386		set_buffer_uptodate(bh_result);
 387		goto finished;
 388	}
 389	/* read file tail into part of page */
 390	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 391	copy_item_head(&tmp_ih, ih);
 392
 393	/*
 394	 * we only want to kmap if we are reading the tail into the page.
 395	 * this is not the common case, so we don't kmap until we are
 396	 * sure we need to.  But, this means the item might move if
 397	 * kmap schedules
 398	 */
 399	if (!p)
 400		p = (char *)kmap(bh_result->b_page);
 401
 402	p += offset;
 403	memset(p, 0, inode->i_sb->s_blocksize);
 404	do {
 405		if (!is_direct_le_ih(ih)) {
 406			BUG();
 407		}
 408		/*
 409		 * make sure we don't read more bytes than actually exist in
 410		 * the file.  This can happen in odd cases where i_size isn't
 411		 * correct, and when direct item padding results in a few
 412		 * extra bytes at the end of the direct item
 413		 */
 414		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 415			break;
 416		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 417			chars =
 418			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 419			    path.pos_in_item;
 420			done = 1;
 421		} else {
 422			chars = ih_item_len(ih) - path.pos_in_item;
 423		}
 424		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 425
 426		if (done)
 427			break;
 428
 429		p += chars;
 430
 431		/*
 432		 * we done, if read direct item is not the last item of
 433		 * node FIXME: we could try to check right delimiting key
 434		 * to see whether direct item continues in the right
 435		 * neighbor or rely on i_size
 436		 */
 437		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 438			break;
 439
 440		/* update key to look for the next piece */
 441		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 442		result = search_for_position_by_key(inode->i_sb, &key, &path);
 443		if (result != POSITION_FOUND)
 444			/* i/o error most likely */
 445			break;
 446		bh = get_last_bh(&path);
 447		ih = tp_item_head(&path);
 448	} while (1);
 449
 450	flush_dcache_page(bh_result->b_page);
 451	kunmap(bh_result->b_page);
 452
 453finished:
 454	pathrelse(&path);
 455
 456	if (result == IO_ERROR)
 457		return -EIO;
 458
 459	/*
 460	 * this buffer has valid data, but isn't valid for io.  mapping it to
 461	 * block #0 tells the rest of reiserfs it just has a tail in it
 462	 */
 463	map_bh(bh_result, inode->i_sb, 0);
 464	set_buffer_uptodate(bh_result);
 465	return 0;
 466}
 467
 468/*
 469 * this is called to create file map. So, _get_block_create_0 will not
 470 * read direct item
 471 */
 472static int reiserfs_bmap(struct inode *inode, sector_t block,
 473			 struct buffer_head *bh_result, int create)
 474{
 475	if (!file_capable(inode, block))
 476		return -EFBIG;
 477
 478	reiserfs_write_lock(inode->i_sb);
 479	/* do not read the direct item */
 480	_get_block_create_0(inode, block, bh_result, 0);
 481	reiserfs_write_unlock(inode->i_sb);
 482	return 0;
 483}
 484
 485/*
 486 * special version of get_block that is only used by grab_tail_page right
 487 * now.  It is sent to __block_write_begin, and when you try to get a
 488 * block past the end of the file (or a block from a hole) it returns
 489 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 490 * be able to do i/o on the buffers returned, unless an error value
 491 * is also returned.
 492 *
 493 * So, this allows __block_write_begin to be used for reading a single block
 494 * in a page.  Where it does not produce a valid page for holes, or past the
 495 * end of the file.  This turns out to be exactly what we need for reading
 496 * tails for conversion.
 497 *
 498 * The point of the wrapper is forcing a certain value for create, even
 499 * though the VFS layer is calling this function with create==1.  If you
 500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 501 * don't use this function.
 502*/
 503static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 504				       struct buffer_head *bh_result,
 505				       int create)
 506{
 507	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 508}
 509
 510/*
 511 * This is special helper for reiserfs_get_block in case we are executing
 512 * direct_IO request.
 513 */
 514static int reiserfs_get_blocks_direct_io(struct inode *inode,
 515					 sector_t iblock,
 516					 struct buffer_head *bh_result,
 517					 int create)
 518{
 519	int ret;
 520
 521	bh_result->b_page = NULL;
 522
 523	/*
 524	 * We set the b_size before reiserfs_get_block call since it is
 525	 * referenced in convert_tail_for_hole() that may be called from
 526	 * reiserfs_get_block()
 527	 */
 528	bh_result->b_size = i_blocksize(inode);
 529
 530	ret = reiserfs_get_block(inode, iblock, bh_result,
 531				 create | GET_BLOCK_NO_DANGLE);
 532	if (ret)
 533		goto out;
 534
 535	/* don't allow direct io onto tail pages */
 536	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 537		/*
 538		 * make sure future calls to the direct io funcs for this
 539		 * offset in the file fail by unmapping the buffer
 540		 */
 541		clear_buffer_mapped(bh_result);
 542		ret = -EINVAL;
 543	}
 544
 545	/*
 546	 * Possible unpacked tail. Flush the data before pages have
 547	 * disappeared
 548	 */
 549	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 550		int err;
 551
 552		reiserfs_write_lock(inode->i_sb);
 553
 554		err = reiserfs_commit_for_inode(inode);
 555		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 556
 557		reiserfs_write_unlock(inode->i_sb);
 558
 559		if (err < 0)
 560			ret = err;
 561	}
 562out:
 563	return ret;
 564}
 565
 566/*
 567 * helper function for when reiserfs_get_block is called for a hole
 568 * but the file tail is still in a direct item
 569 * bh_result is the buffer head for the hole
 570 * tail_offset is the offset of the start of the tail in the file
 571 *
 572 * This calls prepare_write, which will start a new transaction
 573 * you should not be in a transaction, or have any paths held when you
 574 * call this.
 575 */
 576static int convert_tail_for_hole(struct inode *inode,
 577				 struct buffer_head *bh_result,
 578				 loff_t tail_offset)
 579{
 580	unsigned long index;
 581	unsigned long tail_end;
 582	unsigned long tail_start;
 583	struct page *tail_page;
 584	struct page *hole_page = bh_result->b_page;
 585	int retval = 0;
 586
 587	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 588		return -EIO;
 589
 590	/* always try to read until the end of the block */
 591	tail_start = tail_offset & (PAGE_SIZE - 1);
 592	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 593
 594	index = tail_offset >> PAGE_SHIFT;
 595	/*
 596	 * hole_page can be zero in case of direct_io, we are sure
 597	 * that we cannot get here if we write with O_DIRECT into tail page
 598	 */
 599	if (!hole_page || index != hole_page->index) {
 600		tail_page = grab_cache_page(inode->i_mapping, index);
 601		retval = -ENOMEM;
 602		if (!tail_page) {
 603			goto out;
 604		}
 605	} else {
 606		tail_page = hole_page;
 607	}
 608
 609	/*
 610	 * we don't have to make sure the conversion did not happen while
 611	 * we were locking the page because anyone that could convert
 612	 * must first take i_mutex.
 613	 *
 614	 * We must fix the tail page for writing because it might have buffers
 615	 * that are mapped, but have a block number of 0.  This indicates tail
 616	 * data that has been read directly into the page, and
 617	 * __block_write_begin won't trigger a get_block in this case.
 618	 */
 619	fix_tail_page_for_writing(tail_page);
 620	retval = __reiserfs_write_begin(tail_page, tail_start,
 621				      tail_end - tail_start);
 622	if (retval)
 623		goto unlock;
 624
 625	/* tail conversion might change the data in the page */
 626	flush_dcache_page(tail_page);
 627
 628	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 629
 630unlock:
 631	if (tail_page != hole_page) {
 632		unlock_page(tail_page);
 633		put_page(tail_page);
 634	}
 635out:
 636	return retval;
 637}
 638
 639static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 640				  sector_t block,
 641				  struct inode *inode,
 642				  b_blocknr_t * allocated_block_nr,
 643				  struct treepath *path, int flags)
 644{
 645	BUG_ON(!th->t_trans_id);
 646
 647#ifdef REISERFS_PREALLOCATE
 648	if (!(flags & GET_BLOCK_NO_IMUX)) {
 649		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 650						  path, block);
 651	}
 652#endif
 653	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 654					 block);
 655}
 656
 657int reiserfs_get_block(struct inode *inode, sector_t block,
 658		       struct buffer_head *bh_result, int create)
 659{
 660	int repeat, retval = 0;
 661	/* b_blocknr_t is (unsigned) 32 bit int*/
 662	b_blocknr_t allocated_block_nr = 0;
 663	INITIALIZE_PATH(path);
 664	int pos_in_item;
 665	struct cpu_key key;
 666	struct buffer_head *bh, *unbh = NULL;
 667	struct item_head *ih, tmp_ih;
 668	__le32 *item;
 669	int done;
 670	int fs_gen;
 671	struct reiserfs_transaction_handle *th = NULL;
 672	/*
 673	 * space reserved in transaction batch:
 674	 * . 3 balancings in direct->indirect conversion
 675	 * . 1 block involved into reiserfs_update_sd()
 676	 * XXX in practically impossible worst case direct2indirect()
 677	 * can incur (much) more than 3 balancings.
 678	 * quota update for user, group
 679	 */
 680	int jbegin_count =
 681	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 682	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 683	int version;
 684	int dangle = 1;
 685	loff_t new_offset =
 686	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 687
 688	reiserfs_write_lock(inode->i_sb);
 689	version = get_inode_item_key_version(inode);
 690
 691	if (!file_capable(inode, block)) {
 692		reiserfs_write_unlock(inode->i_sb);
 693		return -EFBIG;
 694	}
 695
 696	/*
 697	 * if !create, we aren't changing the FS, so we don't need to
 698	 * log anything, so we don't need to start a transaction
 699	 */
 700	if (!(create & GET_BLOCK_CREATE)) {
 701		int ret;
 702		/* find number of block-th logical block of the file */
 703		ret = _get_block_create_0(inode, block, bh_result,
 704					  create | GET_BLOCK_READ_DIRECT);
 705		reiserfs_write_unlock(inode->i_sb);
 706		return ret;
 707	}
 708
 709	/*
 710	 * if we're already in a transaction, make sure to close
 711	 * any new transactions we start in this func
 712	 */
 713	if ((create & GET_BLOCK_NO_DANGLE) ||
 714	    reiserfs_transaction_running(inode->i_sb))
 715		dangle = 0;
 716
 717	/*
 718	 * If file is of such a size, that it might have a tail and
 719	 * tails are enabled  we should mark it as possibly needing
 720	 * tail packing on close
 721	 */
 722	if ((have_large_tails(inode->i_sb)
 723	     && inode->i_size < i_block_size(inode) * 4)
 724	    || (have_small_tails(inode->i_sb)
 725		&& inode->i_size < i_block_size(inode)))
 726		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 727
 728	/* set the key of the first byte in the 'block'-th block of file */
 729	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 730	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 731start_trans:
 732		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 733		if (!th) {
 734			retval = -ENOMEM;
 735			goto failure;
 736		}
 737		reiserfs_update_inode_transaction(inode);
 738	}
 739research:
 740
 741	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 742	if (retval == IO_ERROR) {
 743		retval = -EIO;
 744		goto failure;
 745	}
 746
 747	bh = get_last_bh(&path);
 748	ih = tp_item_head(&path);
 749	item = tp_item_body(&path);
 750	pos_in_item = path.pos_in_item;
 751
 752	fs_gen = get_generation(inode->i_sb);
 753	copy_item_head(&tmp_ih, ih);
 754
 755	if (allocation_needed
 756	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 757		/* we have to allocate block for the unformatted node */
 758		if (!th) {
 759			pathrelse(&path);
 760			goto start_trans;
 761		}
 762
 763		repeat =
 764		    _allocate_block(th, block, inode, &allocated_block_nr,
 765				    &path, create);
 766
 767		/*
 768		 * restart the transaction to give the journal a chance to free
 769		 * some blocks.  releases the path, so we have to go back to
 770		 * research if we succeed on the second try
 771		 */
 772		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 773			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 774			retval = restart_transaction(th, inode, &path);
 775			if (retval)
 776				goto failure;
 777			repeat =
 778			    _allocate_block(th, block, inode,
 779					    &allocated_block_nr, NULL, create);
 780
 781			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 782				goto research;
 783			}
 784			if (repeat == QUOTA_EXCEEDED)
 785				retval = -EDQUOT;
 786			else
 787				retval = -ENOSPC;
 788			goto failure;
 789		}
 790
 791		if (fs_changed(fs_gen, inode->i_sb)
 792		    && item_moved(&tmp_ih, &path)) {
 793			goto research;
 794		}
 795	}
 796
 797	if (indirect_item_found(retval, ih)) {
 798		b_blocknr_t unfm_ptr;
 799		/*
 800		 * 'block'-th block is in the file already (there is
 801		 * corresponding cell in some indirect item). But it may be
 802		 * zero unformatted node pointer (hole)
 803		 */
 804		unfm_ptr = get_block_num(item, pos_in_item);
 805		if (unfm_ptr == 0) {
 806			/* use allocated block to plug the hole */
 807			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 808			if (fs_changed(fs_gen, inode->i_sb)
 809			    && item_moved(&tmp_ih, &path)) {
 810				reiserfs_restore_prepared_buffer(inode->i_sb,
 811								 bh);
 812				goto research;
 813			}
 814			set_buffer_new(bh_result);
 815			if (buffer_dirty(bh_result)
 816			    && reiserfs_data_ordered(inode->i_sb))
 817				reiserfs_add_ordered_list(inode, bh_result);
 818			put_block_num(item, pos_in_item, allocated_block_nr);
 819			unfm_ptr = allocated_block_nr;
 820			journal_mark_dirty(th, bh);
 821			reiserfs_update_sd(th, inode);
 822		}
 823		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 824		pathrelse(&path);
 825		retval = 0;
 826		if (!dangle && th)
 827			retval = reiserfs_end_persistent_transaction(th);
 828
 829		reiserfs_write_unlock(inode->i_sb);
 830
 831		/*
 832		 * the item was found, so new blocks were not added to the file
 833		 * there is no need to make sure the inode is updated with this
 834		 * transaction
 835		 */
 836		return retval;
 837	}
 838
 839	if (!th) {
 840		pathrelse(&path);
 841		goto start_trans;
 842	}
 843
 844	/*
 845	 * desired position is not found or is in the direct item. We have
 846	 * to append file with holes up to 'block'-th block converting
 847	 * direct items to indirect one if necessary
 848	 */
 849	done = 0;
 850	do {
 851		if (is_statdata_le_ih(ih)) {
 852			__le32 unp = 0;
 853			struct cpu_key tmp_key;
 854
 855			/* indirect item has to be inserted */
 856			make_le_item_head(&tmp_ih, &key, version, 1,
 857					  TYPE_INDIRECT, UNFM_P_SIZE,
 858					  0 /* free_space */ );
 859
 860			/*
 861			 * we are going to add 'block'-th block to the file.
 862			 * Use allocated block for that
 863			 */
 864			if (cpu_key_k_offset(&key) == 1) {
 865				unp = cpu_to_le32(allocated_block_nr);
 866				set_block_dev_mapped(bh_result,
 867						     allocated_block_nr, inode);
 868				set_buffer_new(bh_result);
 869				done = 1;
 870			}
 871			tmp_key = key;	/* ;) */
 872			set_cpu_key_k_offset(&tmp_key, 1);
 873			PATH_LAST_POSITION(&path)++;
 874
 875			retval =
 876			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 877						 inode, (char *)&unp);
 878			if (retval) {
 879				reiserfs_free_block(th, inode,
 880						    allocated_block_nr, 1);
 881				/*
 882				 * retval == -ENOSPC, -EDQUOT or -EIO
 883				 * or -EEXIST
 884				 */
 885				goto failure;
 886			}
 887		} else if (is_direct_le_ih(ih)) {
 888			/* direct item has to be converted */
 889			loff_t tail_offset;
 890
 891			tail_offset =
 892			    ((le_ih_k_offset(ih) -
 893			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 894
 895			/*
 896			 * direct item we just found fits into block we have
 897			 * to map. Convert it into unformatted node: use
 898			 * bh_result for the conversion
 899			 */
 900			if (tail_offset == cpu_key_k_offset(&key)) {
 901				set_block_dev_mapped(bh_result,
 902						     allocated_block_nr, inode);
 903				unbh = bh_result;
 904				done = 1;
 905			} else {
 906				/*
 907				 * we have to pad file tail stored in direct
 908				 * item(s) up to block size and convert it
 909				 * to unformatted node. FIXME: this should
 910				 * also get into page cache
 911				 */
 912
 913				pathrelse(&path);
 914				/*
 915				 * ugly, but we can only end the transaction if
 916				 * we aren't nested
 917				 */
 918				BUG_ON(!th->t_refcount);
 919				if (th->t_refcount == 1) {
 920					retval =
 921					    reiserfs_end_persistent_transaction
 922					    (th);
 923					th = NULL;
 924					if (retval)
 925						goto failure;
 926				}
 927
 928				retval =
 929				    convert_tail_for_hole(inode, bh_result,
 930							  tail_offset);
 931				if (retval) {
 932					if (retval != -ENOSPC)
 933						reiserfs_error(inode->i_sb,
 934							"clm-6004",
 935							"convert tail failed "
 936							"inode %lu, error %d",
 937							inode->i_ino,
 938							retval);
 939					if (allocated_block_nr) {
 940						/*
 941						 * the bitmap, the super,
 942						 * and the stat data == 3
 943						 */
 944						if (!th)
 945							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 946						if (th)
 947							reiserfs_free_block(th,
 948									    inode,
 949									    allocated_block_nr,
 950									    1);
 951					}
 952					goto failure;
 953				}
 954				goto research;
 955			}
 956			retval =
 957			    direct2indirect(th, inode, &path, unbh,
 958					    tail_offset);
 959			if (retval) {
 960				reiserfs_unmap_buffer(unbh);
 961				reiserfs_free_block(th, inode,
 962						    allocated_block_nr, 1);
 963				goto failure;
 964			}
 965			/*
 966			 * it is important the set_buffer_uptodate is done
 967			 * after the direct2indirect.  The buffer might
 968			 * contain valid data newer than the data on disk
 969			 * (read by readpage, changed, and then sent here by
 970			 * writepage).  direct2indirect needs to know if unbh
 971			 * was already up to date, so it can decide if the
 972			 * data in unbh needs to be replaced with data from
 973			 * the disk
 974			 */
 975			set_buffer_uptodate(unbh);
 976
 977			/*
 978			 * unbh->b_page == NULL in case of DIRECT_IO request,
 979			 * this means buffer will disappear shortly, so it
 980			 * should not be added to
 981			 */
 982			if (unbh->b_page) {
 983				/*
 984				 * we've converted the tail, so we must
 985				 * flush unbh before the transaction commits
 986				 */
 987				reiserfs_add_tail_list(inode, unbh);
 988
 989				/*
 990				 * mark it dirty now to prevent commit_write
 991				 * from adding this buffer to the inode's
 992				 * dirty buffer list
 993				 */
 994				/*
 995				 * AKPM: changed __mark_buffer_dirty to
 996				 * mark_buffer_dirty().  It's still atomic,
 997				 * but it sets the page dirty too, which makes
 998				 * it eligible for writeback at any time by the
 999				 * VM (which was also the case with
1000				 * __mark_buffer_dirty())
1001				 */
1002				mark_buffer_dirty(unbh);
1003			}
1004		} else {
1005			/*
1006			 * append indirect item with holes if needed, when
1007			 * appending pointer to 'block'-th block use block,
1008			 * which is already allocated
1009			 */
1010			struct cpu_key tmp_key;
1011			/*
1012			 * We use this in case we need to allocate
1013			 * only one block which is a fastpath
1014			 */
1015			unp_t unf_single = 0;
1016			unp_t *un;
1017			__u64 max_to_insert =
1018			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1019			    UNFM_P_SIZE;
1020			__u64 blocks_needed;
1021
1022			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1023			       "vs-804: invalid position for append");
1024			/*
1025			 * indirect item has to be appended,
1026			 * set up key of that position
1027			 * (key type is unimportant)
1028			 */
1029			make_cpu_key(&tmp_key, inode,
1030				     le_key_k_offset(version,
1031						     &ih->ih_key) +
1032				     op_bytes_number(ih,
1033						     inode->i_sb->s_blocksize),
1034				     TYPE_INDIRECT, 3);
1035
1036			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1037			       "green-805: invalid offset");
1038			blocks_needed =
1039			    1 +
1040			    ((cpu_key_k_offset(&key) -
1041			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1042			     s_blocksize_bits);
1043
1044			if (blocks_needed == 1) {
1045				un = &unf_single;
1046			} else {
1047				un = kcalloc(min(blocks_needed, max_to_insert),
1048					     UNFM_P_SIZE, GFP_NOFS);
1049				if (!un) {
1050					un = &unf_single;
1051					blocks_needed = 1;
1052					max_to_insert = 0;
1053				}
1054			}
1055			if (blocks_needed <= max_to_insert) {
1056				/*
1057				 * we are going to add target block to
1058				 * the file. Use allocated block for that
1059				 */
1060				un[blocks_needed - 1] =
1061				    cpu_to_le32(allocated_block_nr);
1062				set_block_dev_mapped(bh_result,
1063						     allocated_block_nr, inode);
1064				set_buffer_new(bh_result);
1065				done = 1;
1066			} else {
1067				/* paste hole to the indirect item */
1068				/*
1069				 * If kcalloc failed, max_to_insert becomes
1070				 * zero and it means we only have space for
1071				 * one block
1072				 */
1073				blocks_needed =
1074				    max_to_insert ? max_to_insert : 1;
1075			}
1076			retval =
1077			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1078						     (char *)un,
1079						     UNFM_P_SIZE *
1080						     blocks_needed);
1081
1082			if (blocks_needed != 1)
1083				kfree(un);
1084
1085			if (retval) {
1086				reiserfs_free_block(th, inode,
1087						    allocated_block_nr, 1);
1088				goto failure;
1089			}
1090			if (!done) {
1091				/*
1092				 * We need to mark new file size in case
1093				 * this function will be interrupted/aborted
1094				 * later on. And we may do this only for
1095				 * holes.
1096				 */
1097				inode->i_size +=
1098				    inode->i_sb->s_blocksize * blocks_needed;
1099			}
1100		}
1101
1102		if (done == 1)
1103			break;
1104
1105		/*
1106		 * this loop could log more blocks than we had originally
1107		 * asked for.  So, we have to allow the transaction to end
1108		 * if it is too big or too full.  Update the inode so things
1109		 * are consistent if we crash before the function returns
1110		 * release the path so that anybody waiting on the path before
1111		 * ending their transaction will be able to continue.
1112		 */
1113		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1114			retval = restart_transaction(th, inode, &path);
1115			if (retval)
1116				goto failure;
1117		}
1118		/*
1119		 * inserting indirect pointers for a hole can take a
1120		 * long time.  reschedule if needed and also release the write
1121		 * lock for others.
1122		 */
1123		reiserfs_cond_resched(inode->i_sb);
1124
1125		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1126		if (retval == IO_ERROR) {
1127			retval = -EIO;
1128			goto failure;
1129		}
1130		if (retval == POSITION_FOUND) {
1131			reiserfs_warning(inode->i_sb, "vs-825",
1132					 "%K should not be found", &key);
1133			retval = -EEXIST;
1134			if (allocated_block_nr)
1135				reiserfs_free_block(th, inode,
1136						    allocated_block_nr, 1);
1137			pathrelse(&path);
1138			goto failure;
1139		}
1140		bh = get_last_bh(&path);
1141		ih = tp_item_head(&path);
1142		item = tp_item_body(&path);
1143		pos_in_item = path.pos_in_item;
1144	} while (1);
1145
1146	retval = 0;
1147
1148failure:
1149	if (th && (!dangle || (retval && !th->t_trans_id))) {
1150		int err;
1151		if (th->t_trans_id)
1152			reiserfs_update_sd(th, inode);
1153		err = reiserfs_end_persistent_transaction(th);
1154		if (err)
1155			retval = err;
1156	}
1157
1158	reiserfs_write_unlock(inode->i_sb);
1159	reiserfs_check_path(&path);
1160	return retval;
1161}
1162
1163static void reiserfs_readahead(struct readahead_control *rac)
1164{
1165	mpage_readahead(rac, reiserfs_get_block);
1166}
1167
1168/*
1169 * Compute real number of used bytes by file
1170 * Following three functions can go away when we'll have enough space in
1171 * stat item
1172 */
1173static int real_space_diff(struct inode *inode, int sd_size)
1174{
1175	int bytes;
1176	loff_t blocksize = inode->i_sb->s_blocksize;
1177
1178	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1179		return sd_size;
1180
1181	/*
1182	 * End of file is also in full block with indirect reference, so round
1183	 * up to the next block.
1184	 *
1185	 * there is just no way to know if the tail is actually packed
1186	 * on the file, so we have to assume it isn't.  When we pack the
1187	 * tail, we add 4 bytes to pretend there really is an unformatted
1188	 * node pointer
1189	 */
1190	bytes =
1191	    ((inode->i_size +
1192	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1193	    sd_size;
1194	return bytes;
1195}
1196
1197static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1198					int sd_size)
1199{
1200	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1201		return inode->i_size +
1202		    (loff_t) (real_space_diff(inode, sd_size));
1203	}
1204	return ((loff_t) real_space_diff(inode, sd_size)) +
1205	    (((loff_t) blocks) << 9);
1206}
1207
1208/* Compute number of blocks used by file in ReiserFS counting */
1209static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1210{
1211	loff_t bytes = inode_get_bytes(inode);
1212	loff_t real_space = real_space_diff(inode, sd_size);
1213
1214	/* keeps fsck and non-quota versions of reiserfs happy */
1215	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1216		bytes += (loff_t) 511;
1217	}
1218
1219	/*
1220	 * files from before the quota patch might i_blocks such that
1221	 * bytes < real_space.  Deal with that here to prevent it from
1222	 * going negative.
1223	 */
1224	if (bytes < real_space)
1225		return 0;
1226	return (bytes - real_space) >> 9;
1227}
1228
1229/*
1230 * BAD: new directories have stat data of new type and all other items
1231 * of old type. Version stored in the inode says about body items, so
1232 * in update_stat_data we can not rely on inode, but have to check
1233 * item version directly
1234 */
1235
1236/* called by read_locked_inode */
1237static void init_inode(struct inode *inode, struct treepath *path)
1238{
1239	struct buffer_head *bh;
1240	struct item_head *ih;
1241	__u32 rdev;
1242
1243	bh = PATH_PLAST_BUFFER(path);
1244	ih = tp_item_head(path);
1245
1246	copy_key(INODE_PKEY(inode), &ih->ih_key);
1247
1248	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1249	REISERFS_I(inode)->i_flags = 0;
1250	REISERFS_I(inode)->i_prealloc_block = 0;
1251	REISERFS_I(inode)->i_prealloc_count = 0;
1252	REISERFS_I(inode)->i_trans_id = 0;
1253	REISERFS_I(inode)->i_jl = NULL;
1254	reiserfs_init_xattr_rwsem(inode);
1255
1256	if (stat_data_v1(ih)) {
1257		struct stat_data_v1 *sd =
1258		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1259		unsigned long blocks;
1260
1261		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1262		set_inode_sd_version(inode, STAT_DATA_V1);
1263		inode->i_mode = sd_v1_mode(sd);
1264		set_nlink(inode, sd_v1_nlink(sd));
1265		i_uid_write(inode, sd_v1_uid(sd));
1266		i_gid_write(inode, sd_v1_gid(sd));
1267		inode->i_size = sd_v1_size(sd);
1268		inode->i_atime.tv_sec = sd_v1_atime(sd);
1269		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1270		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1271		inode->i_atime.tv_nsec = 0;
1272		inode->i_ctime.tv_nsec = 0;
1273		inode->i_mtime.tv_nsec = 0;
1274
1275		inode->i_blocks = sd_v1_blocks(sd);
1276		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1277		blocks = (inode->i_size + 511) >> 9;
1278		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1279
1280		/*
1281		 * there was a bug in <=3.5.23 when i_blocks could take
1282		 * negative values. Starting from 3.5.17 this value could
1283		 * even be stored in stat data. For such files we set
1284		 * i_blocks based on file size. Just 2 notes: this can be
1285		 * wrong for sparse files. On-disk value will be only
1286		 * updated if file's inode will ever change
1287		 */
1288		if (inode->i_blocks > blocks) {
1289			inode->i_blocks = blocks;
1290		}
1291
1292		rdev = sd_v1_rdev(sd);
1293		REISERFS_I(inode)->i_first_direct_byte =
1294		    sd_v1_first_direct_byte(sd);
1295
1296		/*
1297		 * an early bug in the quota code can give us an odd
1298		 * number for the block count.  This is incorrect, fix it here.
1299		 */
1300		if (inode->i_blocks & 1) {
1301			inode->i_blocks++;
1302		}
1303		inode_set_bytes(inode,
1304				to_real_used_space(inode, inode->i_blocks,
1305						   SD_V1_SIZE));
1306		/*
1307		 * nopack is initially zero for v1 objects. For v2 objects,
1308		 * nopack is initialised from sd_attrs
1309		 */
1310		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1311	} else {
1312		/*
1313		 * new stat data found, but object may have old items
1314		 * (directories and symlinks)
1315		 */
1316		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1317
1318		inode->i_mode = sd_v2_mode(sd);
1319		set_nlink(inode, sd_v2_nlink(sd));
1320		i_uid_write(inode, sd_v2_uid(sd));
1321		inode->i_size = sd_v2_size(sd);
1322		i_gid_write(inode, sd_v2_gid(sd));
1323		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1324		inode->i_atime.tv_sec = sd_v2_atime(sd);
1325		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1326		inode->i_ctime.tv_nsec = 0;
1327		inode->i_mtime.tv_nsec = 0;
1328		inode->i_atime.tv_nsec = 0;
1329		inode->i_blocks = sd_v2_blocks(sd);
1330		rdev = sd_v2_rdev(sd);
1331		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1332			inode->i_generation =
1333			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1334		else
1335			inode->i_generation = sd_v2_generation(sd);
1336
1337		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1338			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1339		else
1340			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1341		REISERFS_I(inode)->i_first_direct_byte = 0;
1342		set_inode_sd_version(inode, STAT_DATA_V2);
1343		inode_set_bytes(inode,
1344				to_real_used_space(inode, inode->i_blocks,
1345						   SD_V2_SIZE));
1346		/*
1347		 * read persistent inode attributes from sd and initialise
1348		 * generic inode flags from them
1349		 */
1350		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1351		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1352	}
1353
1354	pathrelse(path);
1355	if (S_ISREG(inode->i_mode)) {
1356		inode->i_op = &reiserfs_file_inode_operations;
1357		inode->i_fop = &reiserfs_file_operations;
1358		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1359	} else if (S_ISDIR(inode->i_mode)) {
1360		inode->i_op = &reiserfs_dir_inode_operations;
1361		inode->i_fop = &reiserfs_dir_operations;
1362	} else if (S_ISLNK(inode->i_mode)) {
1363		inode->i_op = &reiserfs_symlink_inode_operations;
1364		inode_nohighmem(inode);
1365		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1366	} else {
1367		inode->i_blocks = 0;
1368		inode->i_op = &reiserfs_special_inode_operations;
1369		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1370	}
1371}
1372
1373/* update new stat data with inode fields */
1374static void inode2sd(void *sd, struct inode *inode, loff_t size)
1375{
1376	struct stat_data *sd_v2 = (struct stat_data *)sd;
1377
1378	set_sd_v2_mode(sd_v2, inode->i_mode);
1379	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1380	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1381	set_sd_v2_size(sd_v2, size);
1382	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1383	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1384	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1385	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1386	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1387	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1388		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1389	else
1390		set_sd_v2_generation(sd_v2, inode->i_generation);
1391	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1392}
1393
1394/* used to copy inode's fields to old stat data */
1395static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1396{
1397	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1398
1399	set_sd_v1_mode(sd_v1, inode->i_mode);
1400	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1401	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1402	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1403	set_sd_v1_size(sd_v1, size);
1404	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1405	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1406	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1407
1408	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1409		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1410	else
1411		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1412
1413	/* Sigh. i_first_direct_byte is back */
1414	set_sd_v1_first_direct_byte(sd_v1,
1415				    REISERFS_I(inode)->i_first_direct_byte);
1416}
1417
1418/*
1419 * NOTE, you must prepare the buffer head before sending it here,
1420 * and then log it after the call
1421 */
1422static void update_stat_data(struct treepath *path, struct inode *inode,
1423			     loff_t size)
1424{
1425	struct buffer_head *bh;
1426	struct item_head *ih;
1427
1428	bh = PATH_PLAST_BUFFER(path);
1429	ih = tp_item_head(path);
1430
1431	if (!is_statdata_le_ih(ih))
1432		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1433			       INODE_PKEY(inode), ih);
1434
1435	/* path points to old stat data */
1436	if (stat_data_v1(ih)) {
1437		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1438	} else {
1439		inode2sd(ih_item_body(bh, ih), inode, size);
1440	}
1441
1442	return;
1443}
1444
1445void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1446			     struct inode *inode, loff_t size)
1447{
1448	struct cpu_key key;
1449	INITIALIZE_PATH(path);
1450	struct buffer_head *bh;
1451	int fs_gen;
1452	struct item_head *ih, tmp_ih;
1453	int retval;
1454
1455	BUG_ON(!th->t_trans_id);
1456
1457	/* key type is unimportant */
1458	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1459
1460	for (;;) {
1461		int pos;
1462		/* look for the object's stat data */
1463		retval = search_item(inode->i_sb, &key, &path);
1464		if (retval == IO_ERROR) {
1465			reiserfs_error(inode->i_sb, "vs-13050",
1466				       "i/o failure occurred trying to "
1467				       "update %K stat data", &key);
1468			return;
1469		}
1470		if (retval == ITEM_NOT_FOUND) {
1471			pos = PATH_LAST_POSITION(&path);
1472			pathrelse(&path);
1473			if (inode->i_nlink == 0) {
1474				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1475				return;
1476			}
1477			reiserfs_warning(inode->i_sb, "vs-13060",
1478					 "stat data of object %k (nlink == %d) "
1479					 "not found (pos %d)",
1480					 INODE_PKEY(inode), inode->i_nlink,
1481					 pos);
1482			reiserfs_check_path(&path);
1483			return;
1484		}
1485
1486		/*
1487		 * sigh, prepare_for_journal might schedule.  When it
1488		 * schedules the FS might change.  We have to detect that,
1489		 * and loop back to the search if the stat data item has moved
1490		 */
1491		bh = get_last_bh(&path);
1492		ih = tp_item_head(&path);
1493		copy_item_head(&tmp_ih, ih);
1494		fs_gen = get_generation(inode->i_sb);
1495		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1496
1497		/* Stat_data item has been moved after scheduling. */
1498		if (fs_changed(fs_gen, inode->i_sb)
1499		    && item_moved(&tmp_ih, &path)) {
1500			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1501			continue;
1502		}
1503		break;
1504	}
1505	update_stat_data(&path, inode, size);
1506	journal_mark_dirty(th, bh);
1507	pathrelse(&path);
1508	return;
1509}
1510
1511/*
1512 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1513 * does a make_bad_inode when things go wrong.  But, we need to make sure
1514 * and clear the key in the private portion of the inode, otherwise a
1515 * corresponding iput might try to delete whatever object the inode last
1516 * represented.
1517 */
1518static void reiserfs_make_bad_inode(struct inode *inode)
1519{
1520	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1521	make_bad_inode(inode);
1522}
1523
1524/*
1525 * initially this function was derived from minix or ext2's analog and
1526 * evolved as the prototype did
1527 */
1528int reiserfs_init_locked_inode(struct inode *inode, void *p)
1529{
1530	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1531	inode->i_ino = args->objectid;
1532	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1533	return 0;
1534}
1535
1536/*
1537 * looks for stat data in the tree, and fills up the fields of in-core
1538 * inode stat data fields
1539 */
1540void reiserfs_read_locked_inode(struct inode *inode,
1541				struct reiserfs_iget_args *args)
1542{
1543	INITIALIZE_PATH(path_to_sd);
1544	struct cpu_key key;
1545	unsigned long dirino;
1546	int retval;
1547
1548	dirino = args->dirid;
1549
1550	/*
1551	 * set version 1, version 2 could be used too, because stat data
1552	 * key is the same in both versions
1553	 */
1554	key.version = KEY_FORMAT_3_5;
1555	key.on_disk_key.k_dir_id = dirino;
1556	key.on_disk_key.k_objectid = inode->i_ino;
1557	key.on_disk_key.k_offset = 0;
1558	key.on_disk_key.k_type = 0;
1559
1560	/* look for the object's stat data */
1561	retval = search_item(inode->i_sb, &key, &path_to_sd);
1562	if (retval == IO_ERROR) {
1563		reiserfs_error(inode->i_sb, "vs-13070",
1564			       "i/o failure occurred trying to find "
1565			       "stat data of %K", &key);
1566		reiserfs_make_bad_inode(inode);
1567		return;
1568	}
1569
1570	/* a stale NFS handle can trigger this without it being an error */
1571	if (retval != ITEM_FOUND) {
1572		pathrelse(&path_to_sd);
1573		reiserfs_make_bad_inode(inode);
1574		clear_nlink(inode);
1575		return;
1576	}
1577
1578	init_inode(inode, &path_to_sd);
1579
1580	/*
1581	 * It is possible that knfsd is trying to access inode of a file
1582	 * that is being removed from the disk by some other thread. As we
1583	 * update sd on unlink all that is required is to check for nlink
1584	 * here. This bug was first found by Sizif when debugging
1585	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1586	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1587
1588	 * More logical fix would require changes in fs/inode.c:iput() to
1589	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1590	 * in iget() to return NULL if I_FREEING inode is found in
1591	 * hash-table.
1592	 */
1593
1594	/*
1595	 * Currently there is one place where it's ok to meet inode with
1596	 * nlink==0: processing of open-unlinked and half-truncated files
1597	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1598	 */
1599	if ((inode->i_nlink == 0) &&
1600	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1601		reiserfs_warning(inode->i_sb, "vs-13075",
1602				 "dead inode read from disk %K. "
1603				 "This is likely to be race with knfsd. Ignore",
1604				 &key);
1605		reiserfs_make_bad_inode(inode);
1606	}
1607
1608	/* init inode should be relsing */
1609	reiserfs_check_path(&path_to_sd);
1610
1611	/*
1612	 * Stat data v1 doesn't support ACLs.
1613	 */
1614	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1615		cache_no_acl(inode);
1616}
1617
1618/*
1619 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1620 *
1621 * @inode:    inode from hash table to check
1622 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1623 *
1624 * This function is called by iget5_locked() to distinguish reiserfs inodes
1625 * having the same inode numbers. Such inodes can only exist due to some
1626 * error condition. One of them should be bad. Inodes with identical
1627 * inode numbers (objectids) are distinguished by parent directory ids.
1628 *
1629 */
1630int reiserfs_find_actor(struct inode *inode, void *opaque)
1631{
1632	struct reiserfs_iget_args *args;
1633
1634	args = opaque;
1635	/* args is already in CPU order */
1636	return (inode->i_ino == args->objectid) &&
1637	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1638}
1639
1640struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1641{
1642	struct inode *inode;
1643	struct reiserfs_iget_args args;
1644	int depth;
1645
1646	args.objectid = key->on_disk_key.k_objectid;
1647	args.dirid = key->on_disk_key.k_dir_id;
1648	depth = reiserfs_write_unlock_nested(s);
1649	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1650			     reiserfs_find_actor, reiserfs_init_locked_inode,
1651			     (void *)(&args));
1652	reiserfs_write_lock_nested(s, depth);
1653	if (!inode)
1654		return ERR_PTR(-ENOMEM);
1655
1656	if (inode->i_state & I_NEW) {
1657		reiserfs_read_locked_inode(inode, &args);
1658		unlock_new_inode(inode);
1659	}
1660
1661	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1662		/* either due to i/o error or a stale NFS handle */
1663		iput(inode);
1664		inode = NULL;
1665	}
1666	return inode;
1667}
1668
1669static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1670	u32 objectid, u32 dir_id, u32 generation)
1671
1672{
1673	struct cpu_key key;
1674	struct inode *inode;
1675
1676	key.on_disk_key.k_objectid = objectid;
1677	key.on_disk_key.k_dir_id = dir_id;
1678	reiserfs_write_lock(sb);
1679	inode = reiserfs_iget(sb, &key);
1680	if (inode && !IS_ERR(inode) && generation != 0 &&
1681	    generation != inode->i_generation) {
1682		iput(inode);
1683		inode = NULL;
1684	}
1685	reiserfs_write_unlock(sb);
1686
1687	return d_obtain_alias(inode);
1688}
1689
1690struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1691		int fh_len, int fh_type)
1692{
1693	/*
1694	 * fhtype happens to reflect the number of u32s encoded.
1695	 * due to a bug in earlier code, fhtype might indicate there
1696	 * are more u32s then actually fitted.
1697	 * so if fhtype seems to be more than len, reduce fhtype.
1698	 * Valid types are:
1699	 *   2 - objectid + dir_id - legacy support
1700	 *   3 - objectid + dir_id + generation
1701	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1702	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1703	 *   6 - as above plus generation of directory
1704	 * 6 does not fit in NFSv2 handles
1705	 */
1706	if (fh_type > fh_len) {
1707		if (fh_type != 6 || fh_len != 5)
1708			reiserfs_warning(sb, "reiserfs-13077",
1709				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1710				fh_type, fh_len);
1711		fh_type = fh_len;
1712	}
1713	if (fh_len < 2)
1714		return NULL;
1715
1716	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1717		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1718}
1719
1720struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1721		int fh_len, int fh_type)
1722{
1723	if (fh_type > fh_len)
1724		fh_type = fh_len;
1725	if (fh_type < 4)
1726		return NULL;
1727
1728	return reiserfs_get_dentry(sb,
1729		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1730		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1731		(fh_type == 6) ? fid->raw[5] : 0);
1732}
1733
1734int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1735		       struct inode *parent)
1736{
1737	int maxlen = *lenp;
1738
1739	if (parent && (maxlen < 5)) {
1740		*lenp = 5;
1741		return FILEID_INVALID;
1742	} else if (maxlen < 3) {
1743		*lenp = 3;
1744		return FILEID_INVALID;
1745	}
1746
1747	data[0] = inode->i_ino;
1748	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1749	data[2] = inode->i_generation;
1750	*lenp = 3;
1751	if (parent) {
1752		data[3] = parent->i_ino;
1753		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1754		*lenp = 5;
1755		if (maxlen >= 6) {
1756			data[5] = parent->i_generation;
1757			*lenp = 6;
1758		}
1759	}
1760	return *lenp;
1761}
1762
1763/*
1764 * looks for stat data, then copies fields to it, marks the buffer
1765 * containing stat data as dirty
1766 */
1767/*
1768 * reiserfs inodes are never really dirty, since the dirty inode call
1769 * always logs them.  This call allows the VFS inode marking routines
1770 * to properly mark inodes for datasync and such, but only actually
1771 * does something when called for a synchronous update.
1772 */
1773int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1774{
1775	struct reiserfs_transaction_handle th;
1776	int jbegin_count = 1;
1777
1778	if (sb_rdonly(inode->i_sb))
1779		return -EROFS;
1780	/*
1781	 * memory pressure can sometimes initiate write_inode calls with
1782	 * sync == 1,
1783	 * these cases are just when the system needs ram, not when the
1784	 * inode needs to reach disk for safety, and they can safely be
1785	 * ignored because the altered inode has already been logged.
1786	 */
1787	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1788		reiserfs_write_lock(inode->i_sb);
1789		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1790			reiserfs_update_sd(&th, inode);
1791			journal_end_sync(&th);
1792		}
1793		reiserfs_write_unlock(inode->i_sb);
1794	}
1795	return 0;
1796}
1797
1798/*
1799 * stat data of new object is inserted already, this inserts the item
1800 * containing "." and ".." entries
1801 */
1802static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1803				  struct inode *inode,
1804				  struct item_head *ih, struct treepath *path,
1805				  struct inode *dir)
1806{
1807	struct super_block *sb = th->t_super;
1808	char empty_dir[EMPTY_DIR_SIZE];
1809	char *body = empty_dir;
1810	struct cpu_key key;
1811	int retval;
1812
1813	BUG_ON(!th->t_trans_id);
1814
1815	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1816		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1817		      TYPE_DIRENTRY, 3 /*key length */ );
1818
1819	/*
1820	 * compose item head for new item. Directories consist of items of
1821	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1822	 * is done by reiserfs_new_inode
1823	 */
1824	if (old_format_only(sb)) {
1825		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1826				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1827
1828		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1829				       ih->ih_key.k_objectid,
1830				       INODE_PKEY(dir)->k_dir_id,
1831				       INODE_PKEY(dir)->k_objectid);
1832	} else {
1833		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1834				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1835
1836		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1837				    ih->ih_key.k_objectid,
1838				    INODE_PKEY(dir)->k_dir_id,
1839				    INODE_PKEY(dir)->k_objectid);
1840	}
1841
1842	/* look for place in the tree for new item */
1843	retval = search_item(sb, &key, path);
1844	if (retval == IO_ERROR) {
1845		reiserfs_error(sb, "vs-13080",
1846			       "i/o failure occurred creating new directory");
1847		return -EIO;
1848	}
1849	if (retval == ITEM_FOUND) {
1850		pathrelse(path);
1851		reiserfs_warning(sb, "vs-13070",
1852				 "object with this key exists (%k)",
1853				 &(ih->ih_key));
1854		return -EEXIST;
1855	}
1856
1857	/* insert item, that is empty directory item */
1858	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1859}
1860
1861/*
1862 * stat data of object has been inserted, this inserts the item
1863 * containing the body of symlink
1864 */
1865static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1866				struct inode *inode,
1867				struct item_head *ih,
1868				struct treepath *path, const char *symname,
1869				int item_len)
1870{
1871	struct super_block *sb = th->t_super;
1872	struct cpu_key key;
1873	int retval;
1874
1875	BUG_ON(!th->t_trans_id);
1876
1877	_make_cpu_key(&key, KEY_FORMAT_3_5,
1878		      le32_to_cpu(ih->ih_key.k_dir_id),
1879		      le32_to_cpu(ih->ih_key.k_objectid),
1880		      1, TYPE_DIRECT, 3 /*key length */ );
1881
1882	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1883			  0 /*free_space */ );
1884
1885	/* look for place in the tree for new item */
1886	retval = search_item(sb, &key, path);
1887	if (retval == IO_ERROR) {
1888		reiserfs_error(sb, "vs-13080",
1889			       "i/o failure occurred creating new symlink");
1890		return -EIO;
1891	}
1892	if (retval == ITEM_FOUND) {
1893		pathrelse(path);
1894		reiserfs_warning(sb, "vs-13080",
1895				 "object with this key exists (%k)",
1896				 &(ih->ih_key));
1897		return -EEXIST;
1898	}
1899
1900	/* insert item, that is body of symlink */
1901	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1902}
1903
1904/*
1905 * inserts the stat data into the tree, and then calls
1906 * reiserfs_new_directory (to insert ".", ".." item if new object is
1907 * directory) or reiserfs_new_symlink (to insert symlink body if new
1908 * object is symlink) or nothing (if new object is regular file)
1909
1910 * NOTE! uid and gid must already be set in the inode.  If we return
1911 * non-zero due to an error, we have to drop the quota previously allocated
1912 * for the fresh inode.  This can only be done outside a transaction, so
1913 * if we return non-zero, we also end the transaction.
1914 *
1915 * @th: active transaction handle
1916 * @dir: parent directory for new inode
1917 * @mode: mode of new inode
1918 * @symname: symlink contents if inode is symlink
1919 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1920 *         symlinks
1921 * @inode: inode to be filled
1922 * @security: optional security context to associate with this inode
1923 */
1924int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1925		       struct inode *dir, umode_t mode, const char *symname,
1926		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1927		          strlen (symname) for symlinks) */
1928		       loff_t i_size, struct dentry *dentry,
1929		       struct inode *inode,
1930		       struct reiserfs_security_handle *security)
1931{
1932	struct super_block *sb = dir->i_sb;
1933	struct reiserfs_iget_args args;
1934	INITIALIZE_PATH(path_to_key);
1935	struct cpu_key key;
1936	struct item_head ih;
1937	struct stat_data sd;
1938	int retval;
1939	int err;
1940	int depth;
1941
1942	BUG_ON(!th->t_trans_id);
1943
1944	depth = reiserfs_write_unlock_nested(sb);
1945	err = dquot_alloc_inode(inode);
1946	reiserfs_write_lock_nested(sb, depth);
1947	if (err)
1948		goto out_end_trans;
1949	if (!dir->i_nlink) {
1950		err = -EPERM;
1951		goto out_bad_inode;
1952	}
1953
1954	/* item head of new item */
1955	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1956	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1957	if (!ih.ih_key.k_objectid) {
1958		err = -ENOMEM;
1959		goto out_bad_inode;
1960	}
1961	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1962	if (old_format_only(sb))
1963		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1964				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1965	else
1966		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1967				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1968	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1969	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1970
1971	depth = reiserfs_write_unlock_nested(inode->i_sb);
1972	err = insert_inode_locked4(inode, args.objectid,
1973			     reiserfs_find_actor, &args);
1974	reiserfs_write_lock_nested(inode->i_sb, depth);
1975	if (err) {
1976		err = -EINVAL;
1977		goto out_bad_inode;
1978	}
1979
1980	if (old_format_only(sb))
1981		/*
1982		 * not a perfect generation count, as object ids can be reused,
1983		 * but this is as good as reiserfs can do right now.
1984		 * note that the private part of inode isn't filled in yet,
1985		 * we have to use the directory.
1986		 */
1987		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1988	else
1989#if defined( USE_INODE_GENERATION_COUNTER )
1990		inode->i_generation =
1991		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1992#else
1993		inode->i_generation = ++event;
1994#endif
1995
1996	/* fill stat data */
1997	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1998
1999	/* uid and gid must already be set by the caller for quota init */
2000
2001	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
2002	inode->i_size = i_size;
2003	inode->i_blocks = 0;
2004	inode->i_bytes = 0;
2005	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2006	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2007
2008	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2009	REISERFS_I(inode)->i_flags = 0;
2010	REISERFS_I(inode)->i_prealloc_block = 0;
2011	REISERFS_I(inode)->i_prealloc_count = 0;
2012	REISERFS_I(inode)->i_trans_id = 0;
2013	REISERFS_I(inode)->i_jl = NULL;
2014	REISERFS_I(inode)->i_attrs =
2015	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2016	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2017	reiserfs_init_xattr_rwsem(inode);
2018
2019	/* key to search for correct place for new stat data */
2020	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2021		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2022		      TYPE_STAT_DATA, 3 /*key length */ );
2023
2024	/* find proper place for inserting of stat data */
2025	retval = search_item(sb, &key, &path_to_key);
2026	if (retval == IO_ERROR) {
2027		err = -EIO;
2028		goto out_bad_inode;
2029	}
2030	if (retval == ITEM_FOUND) {
2031		pathrelse(&path_to_key);
2032		err = -EEXIST;
2033		goto out_bad_inode;
2034	}
2035	if (old_format_only(sb)) {
2036		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2037		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2038			pathrelse(&path_to_key);
2039			err = -EINVAL;
2040			goto out_bad_inode;
2041		}
2042		inode2sd_v1(&sd, inode, inode->i_size);
2043	} else {
2044		inode2sd(&sd, inode, inode->i_size);
2045	}
2046	/*
2047	 * store in in-core inode the key of stat data and version all
2048	 * object items will have (directory items will have old offset
2049	 * format, other new objects will consist of new items)
2050	 */
2051	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2052		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2053	else
2054		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2055	if (old_format_only(sb))
2056		set_inode_sd_version(inode, STAT_DATA_V1);
2057	else
2058		set_inode_sd_version(inode, STAT_DATA_V2);
2059
2060	/* insert the stat data into the tree */
2061#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2062	if (REISERFS_I(dir)->new_packing_locality)
2063		th->displace_new_blocks = 1;
2064#endif
2065	retval =
2066	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2067				 (char *)(&sd));
2068	if (retval) {
2069		err = retval;
2070		reiserfs_check_path(&path_to_key);
2071		goto out_bad_inode;
2072	}
2073#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2074	if (!th->displace_new_blocks)
2075		REISERFS_I(dir)->new_packing_locality = 0;
2076#endif
2077	if (S_ISDIR(mode)) {
2078		/* insert item with "." and ".." */
2079		retval =
2080		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2081	}
2082
2083	if (S_ISLNK(mode)) {
2084		/* insert body of symlink */
2085		if (!old_format_only(sb))
2086			i_size = ROUND_UP(i_size);
2087		retval =
2088		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2089					 i_size);
2090	}
2091	if (retval) {
2092		err = retval;
2093		reiserfs_check_path(&path_to_key);
2094		journal_end(th);
2095		goto out_inserted_sd;
2096	}
2097
2098	/*
2099	 * Mark it private if we're creating the privroot
2100	 * or something under it.
2101	 */
2102	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
2103		inode->i_flags |= S_PRIVATE;
2104		inode->i_opflags &= ~IOP_XATTR;
2105	}
2106
2107	if (reiserfs_posixacl(inode->i_sb)) {
2108		reiserfs_write_unlock(inode->i_sb);
2109		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2110		reiserfs_write_lock(inode->i_sb);
2111		if (retval) {
2112			err = retval;
2113			reiserfs_check_path(&path_to_key);
2114			journal_end(th);
2115			goto out_inserted_sd;
2116		}
2117	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2118		reiserfs_warning(inode->i_sb, "jdm-13090",
2119				 "ACLs aren't enabled in the fs, "
2120				 "but vfs thinks they are!");
2121	}
2122
2123	if (security->name) {
2124		reiserfs_write_unlock(inode->i_sb);
2125		retval = reiserfs_security_write(th, inode, security);
2126		reiserfs_write_lock(inode->i_sb);
2127		if (retval) {
2128			err = retval;
2129			reiserfs_check_path(&path_to_key);
2130			retval = journal_end(th);
2131			if (retval)
2132				err = retval;
2133			goto out_inserted_sd;
2134		}
2135	}
2136
2137	reiserfs_update_sd(th, inode);
2138	reiserfs_check_path(&path_to_key);
2139
2140	return 0;
2141
2142out_bad_inode:
2143	/* Invalidate the object, nothing was inserted yet */
2144	INODE_PKEY(inode)->k_objectid = 0;
2145
2146	/* Quota change must be inside a transaction for journaling */
2147	depth = reiserfs_write_unlock_nested(inode->i_sb);
2148	dquot_free_inode(inode);
2149	reiserfs_write_lock_nested(inode->i_sb, depth);
2150
2151out_end_trans:
2152	journal_end(th);
2153	/*
2154	 * Drop can be outside and it needs more credits so it's better
2155	 * to have it outside
2156	 */
2157	depth = reiserfs_write_unlock_nested(inode->i_sb);
2158	dquot_drop(inode);
2159	reiserfs_write_lock_nested(inode->i_sb, depth);
2160	inode->i_flags |= S_NOQUOTA;
2161	make_bad_inode(inode);
2162
2163out_inserted_sd:
2164	clear_nlink(inode);
2165	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2166	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
 
2167	iput(inode);
2168	return err;
2169}
2170
2171/*
2172 * finds the tail page in the page cache,
2173 * reads the last block in.
2174 *
2175 * On success, page_result is set to a locked, pinned page, and bh_result
2176 * is set to an up to date buffer for the last block in the file.  returns 0.
2177 *
2178 * tail conversion is not done, so bh_result might not be valid for writing
2179 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2180 * trying to write the block.
2181 *
2182 * on failure, nonzero is returned, page_result and bh_result are untouched.
2183 */
2184static int grab_tail_page(struct inode *inode,
2185			  struct page **page_result,
2186			  struct buffer_head **bh_result)
2187{
2188
2189	/*
2190	 * we want the page with the last byte in the file,
2191	 * not the page that will hold the next byte for appending
2192	 */
2193	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2194	unsigned long pos = 0;
2195	unsigned long start = 0;
2196	unsigned long blocksize = inode->i_sb->s_blocksize;
2197	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2198	struct buffer_head *bh;
2199	struct buffer_head *head;
2200	struct page *page;
2201	int error;
2202
2203	/*
2204	 * we know that we are only called with inode->i_size > 0.
2205	 * we also know that a file tail can never be as big as a block
2206	 * If i_size % blocksize == 0, our file is currently block aligned
2207	 * and it won't need converting or zeroing after a truncate.
2208	 */
2209	if ((offset & (blocksize - 1)) == 0) {
2210		return -ENOENT;
2211	}
2212	page = grab_cache_page(inode->i_mapping, index);
2213	error = -ENOMEM;
2214	if (!page) {
2215		goto out;
2216	}
2217	/* start within the page of the last block in the file */
2218	start = (offset / blocksize) * blocksize;
2219
2220	error = __block_write_begin(page, start, offset - start,
2221				    reiserfs_get_block_create_0);
2222	if (error)
2223		goto unlock;
2224
2225	head = page_buffers(page);
2226	bh = head;
2227	do {
2228		if (pos >= start) {
2229			break;
2230		}
2231		bh = bh->b_this_page;
2232		pos += blocksize;
2233	} while (bh != head);
2234
2235	if (!buffer_uptodate(bh)) {
2236		/*
2237		 * note, this should never happen, prepare_write should be
2238		 * taking care of this for us.  If the buffer isn't up to
2239		 * date, I've screwed up the code to find the buffer, or the
2240		 * code to call prepare_write
2241		 */
2242		reiserfs_error(inode->i_sb, "clm-6000",
2243			       "error reading block %lu", bh->b_blocknr);
2244		error = -EIO;
2245		goto unlock;
2246	}
2247	*bh_result = bh;
2248	*page_result = page;
2249
2250out:
2251	return error;
2252
2253unlock:
2254	unlock_page(page);
2255	put_page(page);
2256	return error;
2257}
2258
2259/*
2260 * vfs version of truncate file.  Must NOT be called with
2261 * a transaction already started.
2262 *
2263 * some code taken from block_truncate_page
2264 */
2265int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2266{
2267	struct reiserfs_transaction_handle th;
2268	/* we want the offset for the first byte after the end of the file */
2269	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2270	unsigned blocksize = inode->i_sb->s_blocksize;
2271	unsigned length;
2272	struct page *page = NULL;
2273	int error;
2274	struct buffer_head *bh = NULL;
2275	int err2;
2276
2277	reiserfs_write_lock(inode->i_sb);
2278
2279	if (inode->i_size > 0) {
2280		error = grab_tail_page(inode, &page, &bh);
2281		if (error) {
2282			/*
2283			 * -ENOENT means we truncated past the end of the
2284			 * file, and get_block_create_0 could not find a
2285			 * block to read in, which is ok.
2286			 */
2287			if (error != -ENOENT)
2288				reiserfs_error(inode->i_sb, "clm-6001",
2289					       "grab_tail_page failed %d",
2290					       error);
2291			page = NULL;
2292			bh = NULL;
2293		}
2294	}
2295
2296	/*
2297	 * so, if page != NULL, we have a buffer head for the offset at
2298	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2299	 * then we have an unformatted node.  Otherwise, we have a direct item,
2300	 * and no zeroing is required on disk.  We zero after the truncate,
2301	 * because the truncate might pack the item anyway
2302	 * (it will unmap bh if it packs).
2303	 *
2304	 * it is enough to reserve space in transaction for 2 balancings:
2305	 * one for "save" link adding and another for the first
2306	 * cut_from_item. 1 is for update_sd
2307	 */
2308	error = journal_begin(&th, inode->i_sb,
2309			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2310	if (error)
2311		goto out;
2312	reiserfs_update_inode_transaction(inode);
2313	if (update_timestamps)
2314		/*
2315		 * we are doing real truncate: if the system crashes
2316		 * before the last transaction of truncating gets committed
2317		 * - on reboot the file either appears truncated properly
2318		 * or not truncated at all
2319		 */
2320		add_save_link(&th, inode, 1);
2321	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2322	error = journal_end(&th);
2323	if (error)
2324		goto out;
2325
2326	/* check reiserfs_do_truncate after ending the transaction */
2327	if (err2) {
2328		error = err2;
2329  		goto out;
2330	}
2331	
2332	if (update_timestamps) {
2333		error = remove_save_link(inode, 1 /* truncate */);
2334		if (error)
2335			goto out;
2336	}
2337
2338	if (page) {
2339		length = offset & (blocksize - 1);
2340		/* if we are not on a block boundary */
2341		if (length) {
2342			length = blocksize - length;
2343			zero_user(page, offset, length);
2344			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2345				mark_buffer_dirty(bh);
2346			}
2347		}
2348		unlock_page(page);
2349		put_page(page);
2350	}
2351
2352	reiserfs_write_unlock(inode->i_sb);
2353
2354	return 0;
2355out:
2356	if (page) {
2357		unlock_page(page);
2358		put_page(page);
2359	}
2360
2361	reiserfs_write_unlock(inode->i_sb);
2362
2363	return error;
2364}
2365
2366static int map_block_for_writepage(struct inode *inode,
2367				   struct buffer_head *bh_result,
2368				   unsigned long block)
2369{
2370	struct reiserfs_transaction_handle th;
2371	int fs_gen;
2372	struct item_head tmp_ih;
2373	struct item_head *ih;
2374	struct buffer_head *bh;
2375	__le32 *item;
2376	struct cpu_key key;
2377	INITIALIZE_PATH(path);
2378	int pos_in_item;
2379	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2380	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2381	int retval;
2382	int use_get_block = 0;
2383	int bytes_copied = 0;
2384	int copy_size;
2385	int trans_running = 0;
2386
2387	/*
2388	 * catch places below that try to log something without
2389	 * starting a trans
2390	 */
2391	th.t_trans_id = 0;
2392
2393	if (!buffer_uptodate(bh_result)) {
2394		return -EIO;
2395	}
2396
2397	kmap(bh_result->b_page);
2398start_over:
2399	reiserfs_write_lock(inode->i_sb);
2400	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2401
2402research:
2403	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2404	if (retval != POSITION_FOUND) {
2405		use_get_block = 1;
2406		goto out;
2407	}
2408
2409	bh = get_last_bh(&path);
2410	ih = tp_item_head(&path);
2411	item = tp_item_body(&path);
2412	pos_in_item = path.pos_in_item;
2413
2414	/* we've found an unformatted node */
2415	if (indirect_item_found(retval, ih)) {
2416		if (bytes_copied > 0) {
2417			reiserfs_warning(inode->i_sb, "clm-6002",
2418					 "bytes_copied %d", bytes_copied);
2419		}
2420		if (!get_block_num(item, pos_in_item)) {
2421			/* crap, we are writing to a hole */
2422			use_get_block = 1;
2423			goto out;
2424		}
2425		set_block_dev_mapped(bh_result,
2426				     get_block_num(item, pos_in_item), inode);
2427	} else if (is_direct_le_ih(ih)) {
2428		char *p;
2429		p = page_address(bh_result->b_page);
2430		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2431		copy_size = ih_item_len(ih) - pos_in_item;
2432
2433		fs_gen = get_generation(inode->i_sb);
2434		copy_item_head(&tmp_ih, ih);
2435
2436		if (!trans_running) {
2437			/* vs-3050 is gone, no need to drop the path */
2438			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2439			if (retval)
2440				goto out;
2441			reiserfs_update_inode_transaction(inode);
2442			trans_running = 1;
2443			if (fs_changed(fs_gen, inode->i_sb)
2444			    && item_moved(&tmp_ih, &path)) {
2445				reiserfs_restore_prepared_buffer(inode->i_sb,
2446								 bh);
2447				goto research;
2448			}
2449		}
2450
2451		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2452
2453		if (fs_changed(fs_gen, inode->i_sb)
2454		    && item_moved(&tmp_ih, &path)) {
2455			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2456			goto research;
2457		}
2458
2459		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2460		       copy_size);
2461
2462		journal_mark_dirty(&th, bh);
2463		bytes_copied += copy_size;
2464		set_block_dev_mapped(bh_result, 0, inode);
2465
2466		/* are there still bytes left? */
2467		if (bytes_copied < bh_result->b_size &&
2468		    (byte_offset + bytes_copied) < inode->i_size) {
2469			set_cpu_key_k_offset(&key,
2470					     cpu_key_k_offset(&key) +
2471					     copy_size);
2472			goto research;
2473		}
2474	} else {
2475		reiserfs_warning(inode->i_sb, "clm-6003",
2476				 "bad item inode %lu", inode->i_ino);
2477		retval = -EIO;
2478		goto out;
2479	}
2480	retval = 0;
2481
2482out:
2483	pathrelse(&path);
2484	if (trans_running) {
2485		int err = journal_end(&th);
2486		if (err)
2487			retval = err;
2488		trans_running = 0;
2489	}
2490	reiserfs_write_unlock(inode->i_sb);
2491
2492	/* this is where we fill in holes in the file. */
2493	if (use_get_block) {
2494		retval = reiserfs_get_block(inode, block, bh_result,
2495					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2496					    | GET_BLOCK_NO_DANGLE);
2497		if (!retval) {
2498			if (!buffer_mapped(bh_result)
2499			    || bh_result->b_blocknr == 0) {
2500				/* get_block failed to find a mapped unformatted node. */
2501				use_get_block = 0;
2502				goto start_over;
2503			}
2504		}
2505	}
2506	kunmap(bh_result->b_page);
2507
2508	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2509		/*
2510		 * we've copied data from the page into the direct item, so the
2511		 * buffer in the page is now clean, mark it to reflect that.
2512		 */
2513		lock_buffer(bh_result);
2514		clear_buffer_dirty(bh_result);
2515		unlock_buffer(bh_result);
2516	}
2517	return retval;
2518}
2519
2520/*
2521 * mason@suse.com: updated in 2.5.54 to follow the same general io
2522 * start/recovery path as __block_write_full_page, along with special
2523 * code to handle reiserfs tails.
2524 */
2525static int reiserfs_write_full_page(struct page *page,
2526				    struct writeback_control *wbc)
2527{
2528	struct inode *inode = page->mapping->host;
2529	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2530	int error = 0;
2531	unsigned long block;
2532	sector_t last_block;
2533	struct buffer_head *head, *bh;
2534	int partial = 0;
2535	int nr = 0;
2536	int checked = PageChecked(page);
2537	struct reiserfs_transaction_handle th;
2538	struct super_block *s = inode->i_sb;
2539	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2540	th.t_trans_id = 0;
2541
2542	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2543	if (checked && (current->flags & PF_MEMALLOC)) {
2544		redirty_page_for_writepage(wbc, page);
2545		unlock_page(page);
2546		return 0;
2547	}
2548
2549	/*
2550	 * The page dirty bit is cleared before writepage is called, which
2551	 * means we have to tell create_empty_buffers to make dirty buffers
2552	 * The page really should be up to date at this point, so tossing
2553	 * in the BH_Uptodate is just a sanity check.
2554	 */
2555	if (!page_has_buffers(page)) {
2556		create_empty_buffers(page, s->s_blocksize,
2557				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2558	}
2559	head = page_buffers(page);
2560
2561	/*
2562	 * last page in the file, zero out any contents past the
2563	 * last byte in the file
2564	 */
2565	if (page->index >= end_index) {
2566		unsigned last_offset;
2567
2568		last_offset = inode->i_size & (PAGE_SIZE - 1);
2569		/* no file contents in this page */
2570		if (page->index >= end_index + 1 || !last_offset) {
2571			unlock_page(page);
2572			return 0;
2573		}
2574		zero_user_segment(page, last_offset, PAGE_SIZE);
2575	}
2576	bh = head;
2577	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2578	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2579	/* first map all the buffers, logging any direct items we find */
2580	do {
2581		if (block > last_block) {
2582			/*
2583			 * This can happen when the block size is less than
2584			 * the page size.  The corresponding bytes in the page
2585			 * were zero filled above
2586			 */
2587			clear_buffer_dirty(bh);
2588			set_buffer_uptodate(bh);
2589		} else if ((checked || buffer_dirty(bh)) &&
2590		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2591						       && bh->b_blocknr ==
2592						       0))) {
2593			/*
2594			 * not mapped yet, or it points to a direct item, search
2595			 * the btree for the mapping info, and log any direct
2596			 * items found
2597			 */
2598			if ((error = map_block_for_writepage(inode, bh, block))) {
2599				goto fail;
2600			}
2601		}
2602		bh = bh->b_this_page;
2603		block++;
2604	} while (bh != head);
2605
2606	/*
2607	 * we start the transaction after map_block_for_writepage,
2608	 * because it can create holes in the file (an unbounded operation).
2609	 * starting it here, we can make a reliable estimate for how many
2610	 * blocks we're going to log
2611	 */
2612	if (checked) {
2613		ClearPageChecked(page);
2614		reiserfs_write_lock(s);
2615		error = journal_begin(&th, s, bh_per_page + 1);
2616		if (error) {
2617			reiserfs_write_unlock(s);
2618			goto fail;
2619		}
2620		reiserfs_update_inode_transaction(inode);
2621	}
2622	/* now go through and lock any dirty buffers on the page */
2623	do {
2624		get_bh(bh);
2625		if (!buffer_mapped(bh))
2626			continue;
2627		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2628			continue;
2629
2630		if (checked) {
2631			reiserfs_prepare_for_journal(s, bh, 1);
2632			journal_mark_dirty(&th, bh);
2633			continue;
2634		}
2635		/*
2636		 * from this point on, we know the buffer is mapped to a
2637		 * real block and not a direct item
2638		 */
2639		if (wbc->sync_mode != WB_SYNC_NONE) {
2640			lock_buffer(bh);
2641		} else {
2642			if (!trylock_buffer(bh)) {
2643				redirty_page_for_writepage(wbc, page);
2644				continue;
2645			}
2646		}
2647		if (test_clear_buffer_dirty(bh)) {
2648			mark_buffer_async_write(bh);
2649		} else {
2650			unlock_buffer(bh);
2651		}
2652	} while ((bh = bh->b_this_page) != head);
2653
2654	if (checked) {
2655		error = journal_end(&th);
2656		reiserfs_write_unlock(s);
2657		if (error)
2658			goto fail;
2659	}
2660	BUG_ON(PageWriteback(page));
2661	set_page_writeback(page);
2662	unlock_page(page);
2663
2664	/*
2665	 * since any buffer might be the only dirty buffer on the page,
2666	 * the first submit_bh can bring the page out of writeback.
2667	 * be careful with the buffers.
2668	 */
2669	do {
2670		struct buffer_head *next = bh->b_this_page;
2671		if (buffer_async_write(bh)) {
2672			submit_bh(REQ_OP_WRITE, 0, bh);
2673			nr++;
2674		}
2675		put_bh(bh);
2676		bh = next;
2677	} while (bh != head);
2678
2679	error = 0;
2680done:
2681	if (nr == 0) {
2682		/*
2683		 * if this page only had a direct item, it is very possible for
2684		 * no io to be required without there being an error.  Or,
2685		 * someone else could have locked them and sent them down the
2686		 * pipe without locking the page
2687		 */
2688		bh = head;
2689		do {
2690			if (!buffer_uptodate(bh)) {
2691				partial = 1;
2692				break;
2693			}
2694			bh = bh->b_this_page;
2695		} while (bh != head);
2696		if (!partial)
2697			SetPageUptodate(page);
2698		end_page_writeback(page);
2699	}
2700	return error;
2701
2702fail:
2703	/*
2704	 * catches various errors, we need to make sure any valid dirty blocks
2705	 * get to the media.  The page is currently locked and not marked for
2706	 * writeback
2707	 */
2708	ClearPageUptodate(page);
2709	bh = head;
2710	do {
2711		get_bh(bh);
2712		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2713			lock_buffer(bh);
2714			mark_buffer_async_write(bh);
2715		} else {
2716			/*
2717			 * clear any dirty bits that might have come from
2718			 * getting attached to a dirty page
2719			 */
2720			clear_buffer_dirty(bh);
2721		}
2722		bh = bh->b_this_page;
2723	} while (bh != head);
2724	SetPageError(page);
2725	BUG_ON(PageWriteback(page));
2726	set_page_writeback(page);
2727	unlock_page(page);
2728	do {
2729		struct buffer_head *next = bh->b_this_page;
2730		if (buffer_async_write(bh)) {
2731			clear_buffer_dirty(bh);
2732			submit_bh(REQ_OP_WRITE, 0, bh);
2733			nr++;
2734		}
2735		put_bh(bh);
2736		bh = next;
2737	} while (bh != head);
2738	goto done;
2739}
2740
2741static int reiserfs_readpage(struct file *f, struct page *page)
2742{
2743	return block_read_full_page(page, reiserfs_get_block);
2744}
2745
2746static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2747{
2748	struct inode *inode = page->mapping->host;
2749	reiserfs_wait_on_write_block(inode->i_sb);
2750	return reiserfs_write_full_page(page, wbc);
2751}
2752
2753static void reiserfs_truncate_failed_write(struct inode *inode)
2754{
2755	truncate_inode_pages(inode->i_mapping, inode->i_size);
2756	reiserfs_truncate_file(inode, 0);
2757}
2758
2759static int reiserfs_write_begin(struct file *file,
2760				struct address_space *mapping,
2761				loff_t pos, unsigned len, unsigned flags,
2762				struct page **pagep, void **fsdata)
2763{
2764	struct inode *inode;
2765	struct page *page;
2766	pgoff_t index;
2767	int ret;
2768	int old_ref = 0;
2769
2770 	inode = mapping->host;
2771	*fsdata = NULL;
2772 	if (flags & AOP_FLAG_CONT_EXPAND &&
2773 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2774 		pos ++;
2775		*fsdata = (void *)(unsigned long)flags;
2776	}
2777
2778	index = pos >> PAGE_SHIFT;
2779	page = grab_cache_page_write_begin(mapping, index, flags);
2780	if (!page)
2781		return -ENOMEM;
2782	*pagep = page;
2783
2784	reiserfs_wait_on_write_block(inode->i_sb);
2785	fix_tail_page_for_writing(page);
2786	if (reiserfs_transaction_running(inode->i_sb)) {
2787		struct reiserfs_transaction_handle *th;
2788		th = (struct reiserfs_transaction_handle *)current->
2789		    journal_info;
2790		BUG_ON(!th->t_refcount);
2791		BUG_ON(!th->t_trans_id);
2792		old_ref = th->t_refcount;
2793		th->t_refcount++;
2794	}
2795	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2796	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2797		struct reiserfs_transaction_handle *th = current->journal_info;
2798		/*
2799		 * this gets a little ugly.  If reiserfs_get_block returned an
2800		 * error and left a transacstion running, we've got to close
2801		 * it, and we've got to free handle if it was a persistent
2802		 * transaction.
2803		 *
2804		 * But, if we had nested into an existing transaction, we need
2805		 * to just drop the ref count on the handle.
2806		 *
2807		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2808		 * and it was a persistent trans.  Otherwise, it was nested
2809		 * above.
2810		 */
2811		if (th->t_refcount > old_ref) {
2812			if (old_ref)
2813				th->t_refcount--;
2814			else {
2815				int err;
2816				reiserfs_write_lock(inode->i_sb);
2817				err = reiserfs_end_persistent_transaction(th);
2818				reiserfs_write_unlock(inode->i_sb);
2819				if (err)
2820					ret = err;
2821			}
2822		}
2823	}
2824	if (ret) {
2825		unlock_page(page);
2826		put_page(page);
2827		/* Truncate allocated blocks */
2828		reiserfs_truncate_failed_write(inode);
2829	}
2830	return ret;
2831}
2832
2833int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2834{
2835	struct inode *inode = page->mapping->host;
2836	int ret;
2837	int old_ref = 0;
2838	int depth;
2839
2840	depth = reiserfs_write_unlock_nested(inode->i_sb);
2841	reiserfs_wait_on_write_block(inode->i_sb);
2842	reiserfs_write_lock_nested(inode->i_sb, depth);
2843
2844	fix_tail_page_for_writing(page);
2845	if (reiserfs_transaction_running(inode->i_sb)) {
2846		struct reiserfs_transaction_handle *th;
2847		th = (struct reiserfs_transaction_handle *)current->
2848		    journal_info;
2849		BUG_ON(!th->t_refcount);
2850		BUG_ON(!th->t_trans_id);
2851		old_ref = th->t_refcount;
2852		th->t_refcount++;
2853	}
2854
2855	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2856	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2857		struct reiserfs_transaction_handle *th = current->journal_info;
2858		/*
2859		 * this gets a little ugly.  If reiserfs_get_block returned an
2860		 * error and left a transacstion running, we've got to close
2861		 * it, and we've got to free handle if it was a persistent
2862		 * transaction.
2863		 *
2864		 * But, if we had nested into an existing transaction, we need
2865		 * to just drop the ref count on the handle.
2866		 *
2867		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2868		 * and it was a persistent trans.  Otherwise, it was nested
2869		 * above.
2870		 */
2871		if (th->t_refcount > old_ref) {
2872			if (old_ref)
2873				th->t_refcount--;
2874			else {
2875				int err;
2876				reiserfs_write_lock(inode->i_sb);
2877				err = reiserfs_end_persistent_transaction(th);
2878				reiserfs_write_unlock(inode->i_sb);
2879				if (err)
2880					ret = err;
2881			}
2882		}
2883	}
2884	return ret;
2885
2886}
2887
2888static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2889{
2890	return generic_block_bmap(as, block, reiserfs_bmap);
2891}
2892
2893static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2894			      loff_t pos, unsigned len, unsigned copied,
2895			      struct page *page, void *fsdata)
2896{
2897	struct inode *inode = page->mapping->host;
2898	int ret = 0;
2899	int update_sd = 0;
2900	struct reiserfs_transaction_handle *th;
2901	unsigned start;
2902	bool locked = false;
2903
2904	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2905		pos ++;
2906
2907	reiserfs_wait_on_write_block(inode->i_sb);
2908	if (reiserfs_transaction_running(inode->i_sb))
2909		th = current->journal_info;
2910	else
2911		th = NULL;
2912
2913	start = pos & (PAGE_SIZE - 1);
2914	if (unlikely(copied < len)) {
2915		if (!PageUptodate(page))
2916			copied = 0;
2917
2918		page_zero_new_buffers(page, start + copied, start + len);
2919	}
2920	flush_dcache_page(page);
2921
2922	reiserfs_commit_page(inode, page, start, start + copied);
2923
2924	/*
2925	 * generic_commit_write does this for us, but does not update the
2926	 * transaction tracking stuff when the size changes.  So, we have
2927	 * to do the i_size updates here.
2928	 */
2929	if (pos + copied > inode->i_size) {
2930		struct reiserfs_transaction_handle myth;
2931		reiserfs_write_lock(inode->i_sb);
2932		locked = true;
2933		/*
2934		 * If the file have grown beyond the border where it
2935		 * can have a tail, unmark it as needing a tail
2936		 * packing
2937		 */
2938		if ((have_large_tails(inode->i_sb)
2939		     && inode->i_size > i_block_size(inode) * 4)
2940		    || (have_small_tails(inode->i_sb)
2941			&& inode->i_size > i_block_size(inode)))
2942			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2943
2944		ret = journal_begin(&myth, inode->i_sb, 1);
2945		if (ret)
2946			goto journal_error;
2947
2948		reiserfs_update_inode_transaction(inode);
2949		inode->i_size = pos + copied;
2950		/*
2951		 * this will just nest into our transaction.  It's important
2952		 * to use mark_inode_dirty so the inode gets pushed around on
2953		 * the dirty lists, and so that O_SYNC works as expected
2954		 */
2955		mark_inode_dirty(inode);
2956		reiserfs_update_sd(&myth, inode);
2957		update_sd = 1;
2958		ret = journal_end(&myth);
2959		if (ret)
2960			goto journal_error;
2961	}
2962	if (th) {
2963		if (!locked) {
2964			reiserfs_write_lock(inode->i_sb);
2965			locked = true;
2966		}
2967		if (!update_sd)
2968			mark_inode_dirty(inode);
2969		ret = reiserfs_end_persistent_transaction(th);
2970		if (ret)
2971			goto out;
2972	}
2973
2974out:
2975	if (locked)
2976		reiserfs_write_unlock(inode->i_sb);
2977	unlock_page(page);
2978	put_page(page);
2979
2980	if (pos + len > inode->i_size)
2981		reiserfs_truncate_failed_write(inode);
2982
2983	return ret == 0 ? copied : ret;
2984
2985journal_error:
2986	reiserfs_write_unlock(inode->i_sb);
2987	locked = false;
2988	if (th) {
2989		if (!update_sd)
2990			reiserfs_update_sd(th, inode);
2991		ret = reiserfs_end_persistent_transaction(th);
2992	}
2993	goto out;
2994}
2995
2996int reiserfs_commit_write(struct file *f, struct page *page,
2997			  unsigned from, unsigned to)
2998{
2999	struct inode *inode = page->mapping->host;
3000	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
3001	int ret = 0;
3002	int update_sd = 0;
3003	struct reiserfs_transaction_handle *th = NULL;
3004	int depth;
3005
3006	depth = reiserfs_write_unlock_nested(inode->i_sb);
3007	reiserfs_wait_on_write_block(inode->i_sb);
3008	reiserfs_write_lock_nested(inode->i_sb, depth);
3009
3010	if (reiserfs_transaction_running(inode->i_sb)) {
3011		th = current->journal_info;
3012	}
3013	reiserfs_commit_page(inode, page, from, to);
3014
3015	/*
3016	 * generic_commit_write does this for us, but does not update the
3017	 * transaction tracking stuff when the size changes.  So, we have
3018	 * to do the i_size updates here.
3019	 */
3020	if (pos > inode->i_size) {
3021		struct reiserfs_transaction_handle myth;
3022		/*
3023		 * If the file have grown beyond the border where it
3024		 * can have a tail, unmark it as needing a tail
3025		 * packing
3026		 */
3027		if ((have_large_tails(inode->i_sb)
3028		     && inode->i_size > i_block_size(inode) * 4)
3029		    || (have_small_tails(inode->i_sb)
3030			&& inode->i_size > i_block_size(inode)))
3031			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3032
3033		ret = journal_begin(&myth, inode->i_sb, 1);
3034		if (ret)
3035			goto journal_error;
3036
3037		reiserfs_update_inode_transaction(inode);
3038		inode->i_size = pos;
3039		/*
3040		 * this will just nest into our transaction.  It's important
3041		 * to use mark_inode_dirty so the inode gets pushed around
3042		 * on the dirty lists, and so that O_SYNC works as expected
3043		 */
3044		mark_inode_dirty(inode);
3045		reiserfs_update_sd(&myth, inode);
3046		update_sd = 1;
3047		ret = journal_end(&myth);
3048		if (ret)
3049			goto journal_error;
3050	}
3051	if (th) {
3052		if (!update_sd)
3053			mark_inode_dirty(inode);
3054		ret = reiserfs_end_persistent_transaction(th);
3055		if (ret)
3056			goto out;
3057	}
3058
3059out:
3060	return ret;
3061
3062journal_error:
3063	if (th) {
3064		if (!update_sd)
3065			reiserfs_update_sd(th, inode);
3066		ret = reiserfs_end_persistent_transaction(th);
3067	}
3068
3069	return ret;
3070}
3071
3072void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3073{
3074	if (reiserfs_attrs(inode->i_sb)) {
3075		if (sd_attrs & REISERFS_SYNC_FL)
3076			inode->i_flags |= S_SYNC;
3077		else
3078			inode->i_flags &= ~S_SYNC;
3079		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3080			inode->i_flags |= S_IMMUTABLE;
3081		else
3082			inode->i_flags &= ~S_IMMUTABLE;
3083		if (sd_attrs & REISERFS_APPEND_FL)
3084			inode->i_flags |= S_APPEND;
3085		else
3086			inode->i_flags &= ~S_APPEND;
3087		if (sd_attrs & REISERFS_NOATIME_FL)
3088			inode->i_flags |= S_NOATIME;
3089		else
3090			inode->i_flags &= ~S_NOATIME;
3091		if (sd_attrs & REISERFS_NOTAIL_FL)
3092			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3093		else
3094			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3095	}
3096}
3097
3098/*
3099 * decide if this buffer needs to stay around for data logging or ordered
3100 * write purposes
3101 */
3102static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3103{
3104	int ret = 1;
3105	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3106
3107	lock_buffer(bh);
3108	spin_lock(&j->j_dirty_buffers_lock);
3109	if (!buffer_mapped(bh)) {
3110		goto free_jh;
3111	}
3112	/*
3113	 * the page is locked, and the only places that log a data buffer
3114	 * also lock the page.
3115	 */
3116	if (reiserfs_file_data_log(inode)) {
3117		/*
3118		 * very conservative, leave the buffer pinned if
3119		 * anyone might need it.
3120		 */
3121		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3122			ret = 0;
3123		}
3124	} else  if (buffer_dirty(bh)) {
3125		struct reiserfs_journal_list *jl;
3126		struct reiserfs_jh *jh = bh->b_private;
3127
3128		/*
3129		 * why is this safe?
3130		 * reiserfs_setattr updates i_size in the on disk
3131		 * stat data before allowing vmtruncate to be called.
3132		 *
3133		 * If buffer was put onto the ordered list for this
3134		 * transaction, we know for sure either this transaction
3135		 * or an older one already has updated i_size on disk,
3136		 * and this ordered data won't be referenced in the file
3137		 * if we crash.
3138		 *
3139		 * if the buffer was put onto the ordered list for an older
3140		 * transaction, we need to leave it around
3141		 */
3142		if (jh && (jl = jh->jl)
3143		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3144			ret = 0;
3145	}
3146free_jh:
3147	if (ret && bh->b_private) {
3148		reiserfs_free_jh(bh);
3149	}
3150	spin_unlock(&j->j_dirty_buffers_lock);
3151	unlock_buffer(bh);
3152	return ret;
3153}
3154
3155/* clm -- taken from fs/buffer.c:block_invalidate_page */
3156static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3157				    unsigned int length)
3158{
3159	struct buffer_head *head, *bh, *next;
3160	struct inode *inode = page->mapping->host;
3161	unsigned int curr_off = 0;
3162	unsigned int stop = offset + length;
3163	int partial_page = (offset || length < PAGE_SIZE);
3164	int ret = 1;
3165
3166	BUG_ON(!PageLocked(page));
3167
3168	if (!partial_page)
3169		ClearPageChecked(page);
3170
3171	if (!page_has_buffers(page))
 
3172		goto out;
3173
3174	head = page_buffers(page);
3175	bh = head;
3176	do {
3177		unsigned int next_off = curr_off + bh->b_size;
3178		next = bh->b_this_page;
3179
3180		if (next_off > stop)
3181			goto out;
3182
3183		/*
3184		 * is this block fully invalidated?
3185		 */
3186		if (offset <= curr_off) {
3187			if (invalidatepage_can_drop(inode, bh))
3188				reiserfs_unmap_buffer(bh);
3189			else
3190				ret = 0;
3191		}
3192		curr_off = next_off;
3193		bh = next;
3194	} while (bh != head);
3195
3196	/*
3197	 * We release buffers only if the entire page is being invalidated.
3198	 * The get_block cached value has been unconditionally invalidated,
3199	 * so real IO is not possible anymore.
3200	 */
3201	if (!partial_page && ret) {
3202		ret = try_to_release_page(page, 0);
3203		/* maybe should BUG_ON(!ret); - neilb */
3204	}
3205out:
3206	return;
3207}
3208
3209static int reiserfs_set_page_dirty(struct page *page)
 
3210{
3211	struct inode *inode = page->mapping->host;
3212	if (reiserfs_file_data_log(inode)) {
3213		SetPageChecked(page);
3214		return __set_page_dirty_nobuffers(page);
3215	}
3216	return __set_page_dirty_buffers(page);
3217}
3218
3219/*
3220 * Returns 1 if the page's buffers were dropped.  The page is locked.
3221 *
3222 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3223 * in the buffers at page_buffers(page).
3224 *
3225 * even in -o notail mode, we can't be sure an old mount without -o notail
3226 * didn't create files with tails.
3227 */
3228static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3229{
3230	struct inode *inode = page->mapping->host;
3231	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3232	struct buffer_head *head;
3233	struct buffer_head *bh;
3234	int ret = 1;
3235
3236	WARN_ON(PageChecked(page));
3237	spin_lock(&j->j_dirty_buffers_lock);
3238	head = page_buffers(page);
3239	bh = head;
3240	do {
3241		if (bh->b_private) {
3242			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3243				reiserfs_free_jh(bh);
3244			} else {
3245				ret = 0;
3246				break;
3247			}
3248		}
3249		bh = bh->b_this_page;
3250	} while (bh != head);
3251	if (ret)
3252		ret = try_to_free_buffers(page);
3253	spin_unlock(&j->j_dirty_buffers_lock);
3254	return ret;
3255}
3256
3257/*
3258 * We thank Mingming Cao for helping us understand in great detail what
3259 * to do in this section of the code.
3260 */
3261static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3262{
3263	struct file *file = iocb->ki_filp;
3264	struct inode *inode = file->f_mapping->host;
3265	size_t count = iov_iter_count(iter);
3266	ssize_t ret;
3267
3268	ret = blockdev_direct_IO(iocb, inode, iter,
3269				 reiserfs_get_blocks_direct_io);
3270
3271	/*
3272	 * In case of error extending write may have instantiated a few
3273	 * blocks outside i_size. Trim these off again.
3274	 */
3275	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3276		loff_t isize = i_size_read(inode);
3277		loff_t end = iocb->ki_pos + count;
3278
3279		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3280			truncate_setsize(inode, isize);
3281			reiserfs_vfs_truncate_file(inode);
3282		}
3283	}
3284
3285	return ret;
3286}
3287
3288int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
 
3289{
3290	struct inode *inode = d_inode(dentry);
3291	unsigned int ia_valid;
3292	int error;
3293
3294	error = setattr_prepare(dentry, attr);
3295	if (error)
3296		return error;
3297
3298	/* must be turned off for recursive notify_change calls */
3299	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3300
3301	if (is_quota_modification(inode, attr)) {
3302		error = dquot_initialize(inode);
3303		if (error)
3304			return error;
3305	}
3306	reiserfs_write_lock(inode->i_sb);
3307	if (attr->ia_valid & ATTR_SIZE) {
3308		/*
3309		 * version 2 items will be caught by the s_maxbytes check
3310		 * done for us in vmtruncate
3311		 */
3312		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3313		    attr->ia_size > MAX_NON_LFS) {
3314			reiserfs_write_unlock(inode->i_sb);
3315			error = -EFBIG;
3316			goto out;
3317		}
3318
3319		inode_dio_wait(inode);
3320
3321		/* fill in hole pointers in the expanding truncate case. */
3322		if (attr->ia_size > inode->i_size) {
3323			error = generic_cont_expand_simple(inode, attr->ia_size);
 
 
 
 
3324			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3325				int err;
3326				struct reiserfs_transaction_handle th;
3327				/* we're changing at most 2 bitmaps, inode + super */
3328				err = journal_begin(&th, inode->i_sb, 4);
3329				if (!err) {
3330					reiserfs_discard_prealloc(&th, inode);
3331					err = journal_end(&th);
3332				}
3333				if (err)
3334					error = err;
3335			}
3336			if (error) {
3337				reiserfs_write_unlock(inode->i_sb);
3338				goto out;
3339			}
3340			/*
3341			 * file size is changed, ctime and mtime are
3342			 * to be updated
3343			 */
3344			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3345		}
3346	}
3347	reiserfs_write_unlock(inode->i_sb);
3348
3349	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3350	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3351	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3352		/* stat data of format v3.5 has 16 bit uid and gid */
3353		error = -EINVAL;
3354		goto out;
3355	}
3356
3357	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3358	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3359		struct reiserfs_transaction_handle th;
3360		int jbegin_count =
3361		    2 *
3362		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3363		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3364		    2;
3365
3366		error = reiserfs_chown_xattrs(inode, attr);
3367
3368		if (error)
3369			return error;
3370
3371		/*
3372		 * (user+group)*(old+new) structure - we count quota
3373		 * info and , inode write (sb, inode)
3374		 */
3375		reiserfs_write_lock(inode->i_sb);
3376		error = journal_begin(&th, inode->i_sb, jbegin_count);
3377		reiserfs_write_unlock(inode->i_sb);
3378		if (error)
3379			goto out;
3380		error = dquot_transfer(inode, attr);
3381		reiserfs_write_lock(inode->i_sb);
3382		if (error) {
3383			journal_end(&th);
3384			reiserfs_write_unlock(inode->i_sb);
3385			goto out;
3386		}
3387
3388		/*
3389		 * Update corresponding info in inode so that everything
3390		 * is in one transaction
3391		 */
3392		if (attr->ia_valid & ATTR_UID)
3393			inode->i_uid = attr->ia_uid;
3394		if (attr->ia_valid & ATTR_GID)
3395			inode->i_gid = attr->ia_gid;
3396		mark_inode_dirty(inode);
3397		error = journal_end(&th);
3398		reiserfs_write_unlock(inode->i_sb);
3399		if (error)
3400			goto out;
3401	}
3402
3403	if ((attr->ia_valid & ATTR_SIZE) &&
3404	    attr->ia_size != i_size_read(inode)) {
3405		error = inode_newsize_ok(inode, attr->ia_size);
3406		if (!error) {
3407			/*
3408			 * Could race against reiserfs_file_release
3409			 * if called from NFS, so take tailpack mutex.
3410			 */
3411			mutex_lock(&REISERFS_I(inode)->tailpack);
3412			truncate_setsize(inode, attr->ia_size);
3413			reiserfs_truncate_file(inode, 1);
3414			mutex_unlock(&REISERFS_I(inode)->tailpack);
3415		}
3416	}
3417
3418	if (!error) {
3419		setattr_copy(inode, attr);
3420		mark_inode_dirty(inode);
3421	}
3422
3423	if (!error && reiserfs_posixacl(inode->i_sb)) {
3424		if (attr->ia_valid & ATTR_MODE)
3425			error = reiserfs_acl_chmod(inode);
3426	}
3427
3428out:
3429	return error;
3430}
3431
3432const struct address_space_operations reiserfs_address_space_operations = {
3433	.writepage = reiserfs_writepage,
3434	.readpage = reiserfs_readpage,
3435	.readahead = reiserfs_readahead,
3436	.releasepage = reiserfs_releasepage,
3437	.invalidatepage = reiserfs_invalidatepage,
3438	.write_begin = reiserfs_write_begin,
3439	.write_end = reiserfs_write_end,
3440	.bmap = reiserfs_aop_bmap,
3441	.direct_IO = reiserfs_direct_IO,
3442	.set_page_dirty = reiserfs_set_page_dirty,
3443};