Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
 
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
 
 
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 
 
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to read_folio,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 
 
 
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 
 
 308		if (result == IO_ERROR)
 309			return -EIO;
 310		/*
 311		 * We do not return -ENOENT if there is a hole but page is
 312		 * uptodate, because it means that there is some MMAPED data
 313		 * associated with it that is yet to be written to disk.
 314		 */
 315		if ((args & GET_BLOCK_NO_HOLE)
 316		    && !PageUptodate(bh_result->b_page)) {
 317			return -ENOENT;
 318		}
 319		return 0;
 320	}
 321
 322	bh = get_last_bh(&path);
 323	ih = tp_item_head(&path);
 324	if (is_indirect_le_ih(ih)) {
 325		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 326
 327		/*
 328		 * FIXME: here we could cache indirect item or part of it in
 329		 * the inode to avoid search_by_key in case of subsequent
 330		 * access to file
 331		 */
 332		blocknr = get_block_num(ind_item, path.pos_in_item);
 333		ret = 0;
 334		if (blocknr) {
 335			map_bh(bh_result, inode->i_sb, blocknr);
 336			if (path.pos_in_item ==
 337			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 338				set_buffer_boundary(bh_result);
 339			}
 340		} else
 341			/*
 342			 * We do not return -ENOENT if there is a hole but
 343			 * page is uptodate, because it means that there is
 344			 * some MMAPED data associated with it that is
 345			 * yet to be written to disk.
 346			 */
 347		if ((args & GET_BLOCK_NO_HOLE)
 348			    && !PageUptodate(bh_result->b_page)) {
 349			ret = -ENOENT;
 350		}
 351
 352		pathrelse(&path);
 
 
 353		return ret;
 354	}
 355	/* requested data are in direct item(s) */
 356	if (!(args & GET_BLOCK_READ_DIRECT)) {
 357		/*
 358		 * we are called by bmap. FIXME: we can not map block of file
 359		 * when it is stored in direct item(s)
 360		 */
 361		pathrelse(&path);
 
 
 362		return -ENOENT;
 363	}
 364
 365	/*
 366	 * if we've got a direct item, and the buffer or page was uptodate,
 367	 * we don't want to pull data off disk again.  skip to the
 368	 * end, where we map the buffer and return
 369	 */
 370	if (buffer_uptodate(bh_result)) {
 371		goto finished;
 372	} else
 373		/*
 374		 * grab_tail_page can trigger calls to reiserfs_get_block on
 375		 * up to date pages without any buffers.  If the page is up
 376		 * to date, we don't want read old data off disk.  Set the up
 377		 * to date bit on the buffer instead and jump to the end
 378		 */
 379	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 380		set_buffer_uptodate(bh_result);
 381		goto finished;
 382	}
 383	/* read file tail into part of page */
 384	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 385	copy_item_head(&tmp_ih, ih);
 386
 387	/*
 388	 * we only want to kmap if we are reading the tail into the page.
 389	 * this is not the common case, so we don't kmap until we are
 390	 * sure we need to.  But, this means the item might move if
 391	 * kmap schedules
 392	 */
 393	p = (char *)kmap(bh_result->b_page);
 
 
 394	p += offset;
 395	memset(p, 0, inode->i_sb->s_blocksize);
 396	do {
 397		if (!is_direct_le_ih(ih)) {
 398			BUG();
 399		}
 400		/*
 401		 * make sure we don't read more bytes than actually exist in
 402		 * the file.  This can happen in odd cases where i_size isn't
 403		 * correct, and when direct item padding results in a few
 404		 * extra bytes at the end of the direct item
 405		 */
 406		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 407			break;
 408		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 409			chars =
 410			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 411			    path.pos_in_item;
 412			done = 1;
 413		} else {
 414			chars = ih_item_len(ih) - path.pos_in_item;
 415		}
 416		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 417
 418		if (done)
 419			break;
 420
 421		p += chars;
 422
 423		/*
 424		 * we done, if read direct item is not the last item of
 425		 * node FIXME: we could try to check right delimiting key
 426		 * to see whether direct item continues in the right
 427		 * neighbor or rely on i_size
 428		 */
 429		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 
 
 
 
 430			break;
 431
 432		/* update key to look for the next piece */
 433		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 434		result = search_for_position_by_key(inode->i_sb, &key, &path);
 435		if (result != POSITION_FOUND)
 436			/* i/o error most likely */
 437			break;
 438		bh = get_last_bh(&path);
 439		ih = tp_item_head(&path);
 440	} while (1);
 441
 442	flush_dcache_page(bh_result->b_page);
 443	kunmap(bh_result->b_page);
 444
 445finished:
 446	pathrelse(&path);
 447
 448	if (result == IO_ERROR)
 449		return -EIO;
 450
 451	/*
 452	 * this buffer has valid data, but isn't valid for io.  mapping it to
 453	 * block #0 tells the rest of reiserfs it just has a tail in it
 454	 */
 455	map_bh(bh_result, inode->i_sb, 0);
 456	set_buffer_uptodate(bh_result);
 457	return 0;
 458}
 459
 460/*
 461 * this is called to create file map. So, _get_block_create_0 will not
 462 * read direct item
 463 */
 464static int reiserfs_bmap(struct inode *inode, sector_t block,
 465			 struct buffer_head *bh_result, int create)
 466{
 467	if (!file_capable(inode, block))
 468		return -EFBIG;
 469
 470	reiserfs_write_lock(inode->i_sb);
 471	/* do not read the direct item */
 472	_get_block_create_0(inode, block, bh_result, 0);
 473	reiserfs_write_unlock(inode->i_sb);
 474	return 0;
 475}
 476
 477/*
 478 * special version of get_block that is only used by grab_tail_page right
 479 * now.  It is sent to __block_write_begin, and when you try to get a
 480 * block past the end of the file (or a block from a hole) it returns
 481 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 482 * be able to do i/o on the buffers returned, unless an error value
 483 * is also returned.
 484 *
 485 * So, this allows __block_write_begin to be used for reading a single block
 486 * in a page.  Where it does not produce a valid page for holes, or past the
 487 * end of the file.  This turns out to be exactly what we need for reading
 488 * tails for conversion.
 489 *
 490 * The point of the wrapper is forcing a certain value for create, even
 491 * though the VFS layer is calling this function with create==1.  If you
 492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 493 * don't use this function.
 494*/
 495static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 496				       struct buffer_head *bh_result,
 497				       int create)
 498{
 499	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 500}
 501
 502/*
 503 * This is special helper for reiserfs_get_block in case we are executing
 504 * direct_IO request.
 505 */
 506static int reiserfs_get_blocks_direct_io(struct inode *inode,
 507					 sector_t iblock,
 508					 struct buffer_head *bh_result,
 509					 int create)
 510{
 511	int ret;
 512
 513	bh_result->b_page = NULL;
 514
 515	/*
 516	 * We set the b_size before reiserfs_get_block call since it is
 517	 * referenced in convert_tail_for_hole() that may be called from
 518	 * reiserfs_get_block()
 519	 */
 520	bh_result->b_size = i_blocksize(inode);
 521
 522	ret = reiserfs_get_block(inode, iblock, bh_result,
 523				 create | GET_BLOCK_NO_DANGLE);
 524	if (ret)
 525		goto out;
 526
 527	/* don't allow direct io onto tail pages */
 528	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 529		/*
 530		 * make sure future calls to the direct io funcs for this
 531		 * offset in the file fail by unmapping the buffer
 532		 */
 533		clear_buffer_mapped(bh_result);
 534		ret = -EINVAL;
 535	}
 536
 537	/*
 538	 * Possible unpacked tail. Flush the data before pages have
 539	 * disappeared
 540	 */
 541	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 542		int err;
 543
 544		reiserfs_write_lock(inode->i_sb);
 545
 546		err = reiserfs_commit_for_inode(inode);
 547		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 548
 549		reiserfs_write_unlock(inode->i_sb);
 550
 551		if (err < 0)
 552			ret = err;
 553	}
 554out:
 555	return ret;
 556}
 557
 558/*
 559 * helper function for when reiserfs_get_block is called for a hole
 560 * but the file tail is still in a direct item
 561 * bh_result is the buffer head for the hole
 562 * tail_offset is the offset of the start of the tail in the file
 563 *
 564 * This calls prepare_write, which will start a new transaction
 565 * you should not be in a transaction, or have any paths held when you
 566 * call this.
 567 */
 568static int convert_tail_for_hole(struct inode *inode,
 569				 struct buffer_head *bh_result,
 570				 loff_t tail_offset)
 571{
 572	unsigned long index;
 573	unsigned long tail_end;
 574	unsigned long tail_start;
 575	struct page *tail_page;
 576	struct page *hole_page = bh_result->b_page;
 577	int retval = 0;
 578
 579	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 580		return -EIO;
 581
 582	/* always try to read until the end of the block */
 583	tail_start = tail_offset & (PAGE_SIZE - 1);
 584	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 585
 586	index = tail_offset >> PAGE_SHIFT;
 587	/*
 588	 * hole_page can be zero in case of direct_io, we are sure
 589	 * that we cannot get here if we write with O_DIRECT into tail page
 590	 */
 591	if (!hole_page || index != hole_page->index) {
 592		tail_page = grab_cache_page(inode->i_mapping, index);
 593		retval = -ENOMEM;
 594		if (!tail_page) {
 595			goto out;
 596		}
 597	} else {
 598		tail_page = hole_page;
 599	}
 600
 601	/*
 602	 * we don't have to make sure the conversion did not happen while
 603	 * we were locking the page because anyone that could convert
 604	 * must first take i_mutex.
 605	 *
 606	 * We must fix the tail page for writing because it might have buffers
 607	 * that are mapped, but have a block number of 0.  This indicates tail
 608	 * data that has been read directly into the page, and
 609	 * __block_write_begin won't trigger a get_block in this case.
 610	 */
 611	fix_tail_page_for_writing(tail_page);
 612	retval = __reiserfs_write_begin(tail_page, tail_start,
 613				      tail_end - tail_start);
 614	if (retval)
 615		goto unlock;
 616
 617	/* tail conversion might change the data in the page */
 618	flush_dcache_page(tail_page);
 619
 620	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 621
 622unlock:
 623	if (tail_page != hole_page) {
 624		unlock_page(tail_page);
 625		put_page(tail_page);
 626	}
 627out:
 628	return retval;
 629}
 630
 631static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 632				  sector_t block,
 633				  struct inode *inode,
 634				  b_blocknr_t * allocated_block_nr,
 635				  struct treepath *path, int flags)
 636{
 637	BUG_ON(!th->t_trans_id);
 638
 639#ifdef REISERFS_PREALLOCATE
 640	if (!(flags & GET_BLOCK_NO_IMUX)) {
 641		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 642						  path, block);
 643	}
 644#endif
 645	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 646					 block);
 647}
 648
 649int reiserfs_get_block(struct inode *inode, sector_t block,
 650		       struct buffer_head *bh_result, int create)
 651{
 652	int repeat, retval = 0;
 653	/* b_blocknr_t is (unsigned) 32 bit int*/
 654	b_blocknr_t allocated_block_nr = 0;
 655	INITIALIZE_PATH(path);
 656	int pos_in_item;
 657	struct cpu_key key;
 658	struct buffer_head *bh, *unbh = NULL;
 659	struct item_head *ih, tmp_ih;
 660	__le32 *item;
 661	int done;
 662	int fs_gen;
 
 663	struct reiserfs_transaction_handle *th = NULL;
 664	/*
 665	 * space reserved in transaction batch:
 666	 * . 3 balancings in direct->indirect conversion
 667	 * . 1 block involved into reiserfs_update_sd()
 668	 * XXX in practically impossible worst case direct2indirect()
 669	 * can incur (much) more than 3 balancings.
 670	 * quota update for user, group
 671	 */
 672	int jbegin_count =
 673	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 674	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 675	int version;
 676	int dangle = 1;
 677	loff_t new_offset =
 678	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 679
 680	reiserfs_write_lock(inode->i_sb);
 681	version = get_inode_item_key_version(inode);
 682
 683	if (!file_capable(inode, block)) {
 684		reiserfs_write_unlock(inode->i_sb);
 685		return -EFBIG;
 686	}
 687
 688	/*
 689	 * if !create, we aren't changing the FS, so we don't need to
 690	 * log anything, so we don't need to start a transaction
 691	 */
 692	if (!(create & GET_BLOCK_CREATE)) {
 693		int ret;
 694		/* find number of block-th logical block of the file */
 695		ret = _get_block_create_0(inode, block, bh_result,
 696					  create | GET_BLOCK_READ_DIRECT);
 697		reiserfs_write_unlock(inode->i_sb);
 698		return ret;
 699	}
 700
 701	/*
 702	 * if we're already in a transaction, make sure to close
 703	 * any new transactions we start in this func
 704	 */
 705	if ((create & GET_BLOCK_NO_DANGLE) ||
 706	    reiserfs_transaction_running(inode->i_sb))
 707		dangle = 0;
 708
 709	/*
 710	 * If file is of such a size, that it might have a tail and
 711	 * tails are enabled  we should mark it as possibly needing
 712	 * tail packing on close
 713	 */
 714	if ((have_large_tails(inode->i_sb)
 715	     && inode->i_size < i_block_size(inode) * 4)
 716	    || (have_small_tails(inode->i_sb)
 717		&& inode->i_size < i_block_size(inode)))
 718		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 719
 720	/* set the key of the first byte in the 'block'-th block of file */
 721	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 722	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 723start_trans:
 724		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 725		if (!th) {
 726			retval = -ENOMEM;
 727			goto failure;
 728		}
 729		reiserfs_update_inode_transaction(inode);
 730	}
 731research:
 732
 733	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 734	if (retval == IO_ERROR) {
 735		retval = -EIO;
 736		goto failure;
 737	}
 738
 739	bh = get_last_bh(&path);
 740	ih = tp_item_head(&path);
 741	item = tp_item_body(&path);
 742	pos_in_item = path.pos_in_item;
 743
 744	fs_gen = get_generation(inode->i_sb);
 745	copy_item_head(&tmp_ih, ih);
 746
 747	if (allocation_needed
 748	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 749		/* we have to allocate block for the unformatted node */
 750		if (!th) {
 751			pathrelse(&path);
 752			goto start_trans;
 753		}
 754
 755		repeat =
 756		    _allocate_block(th, block, inode, &allocated_block_nr,
 757				    &path, create);
 758
 759		/*
 760		 * restart the transaction to give the journal a chance to free
 761		 * some blocks.  releases the path, so we have to go back to
 762		 * research if we succeed on the second try
 763		 */
 764		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 
 
 
 
 765			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 766			retval = restart_transaction(th, inode, &path);
 767			if (retval)
 768				goto failure;
 769			repeat =
 770			    _allocate_block(th, block, inode,
 771					    &allocated_block_nr, NULL, create);
 772
 773			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 774				goto research;
 775			}
 776			if (repeat == QUOTA_EXCEEDED)
 777				retval = -EDQUOT;
 778			else
 779				retval = -ENOSPC;
 780			goto failure;
 781		}
 782
 783		if (fs_changed(fs_gen, inode->i_sb)
 784		    && item_moved(&tmp_ih, &path)) {
 785			goto research;
 786		}
 787	}
 788
 789	if (indirect_item_found(retval, ih)) {
 790		b_blocknr_t unfm_ptr;
 791		/*
 792		 * 'block'-th block is in the file already (there is
 793		 * corresponding cell in some indirect item). But it may be
 794		 * zero unformatted node pointer (hole)
 795		 */
 796		unfm_ptr = get_block_num(item, pos_in_item);
 797		if (unfm_ptr == 0) {
 798			/* use allocated block to plug the hole */
 799			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 800			if (fs_changed(fs_gen, inode->i_sb)
 801			    && item_moved(&tmp_ih, &path)) {
 802				reiserfs_restore_prepared_buffer(inode->i_sb,
 803								 bh);
 804				goto research;
 805			}
 806			set_buffer_new(bh_result);
 807			if (buffer_dirty(bh_result)
 808			    && reiserfs_data_ordered(inode->i_sb))
 809				reiserfs_add_ordered_list(inode, bh_result);
 810			put_block_num(item, pos_in_item, allocated_block_nr);
 811			unfm_ptr = allocated_block_nr;
 812			journal_mark_dirty(th, bh);
 813			reiserfs_update_sd(th, inode);
 814		}
 815		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 816		pathrelse(&path);
 817		retval = 0;
 818		if (!dangle && th)
 819			retval = reiserfs_end_persistent_transaction(th);
 820
 821		reiserfs_write_unlock(inode->i_sb);
 822
 823		/*
 824		 * the item was found, so new blocks were not added to the file
 825		 * there is no need to make sure the inode is updated with this
 826		 * transaction
 827		 */
 828		return retval;
 829	}
 830
 831	if (!th) {
 832		pathrelse(&path);
 833		goto start_trans;
 834	}
 835
 836	/*
 837	 * desired position is not found or is in the direct item. We have
 838	 * to append file with holes up to 'block'-th block converting
 839	 * direct items to indirect one if necessary
 840	 */
 841	done = 0;
 842	do {
 843		if (is_statdata_le_ih(ih)) {
 844			__le32 unp = 0;
 845			struct cpu_key tmp_key;
 846
 847			/* indirect item has to be inserted */
 848			make_le_item_head(&tmp_ih, &key, version, 1,
 849					  TYPE_INDIRECT, UNFM_P_SIZE,
 850					  0 /* free_space */ );
 851
 852			/*
 853			 * we are going to add 'block'-th block to the file.
 854			 * Use allocated block for that
 855			 */
 856			if (cpu_key_k_offset(&key) == 1) {
 
 
 857				unp = cpu_to_le32(allocated_block_nr);
 858				set_block_dev_mapped(bh_result,
 859						     allocated_block_nr, inode);
 860				set_buffer_new(bh_result);
 861				done = 1;
 862			}
 863			tmp_key = key;	/* ;) */
 864			set_cpu_key_k_offset(&tmp_key, 1);
 865			PATH_LAST_POSITION(&path)++;
 866
 867			retval =
 868			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 869						 inode, (char *)&unp);
 870			if (retval) {
 871				reiserfs_free_block(th, inode,
 872						    allocated_block_nr, 1);
 873				/*
 874				 * retval == -ENOSPC, -EDQUOT or -EIO
 875				 * or -EEXIST
 876				 */
 877				goto failure;
 878			}
 
 879		} else if (is_direct_le_ih(ih)) {
 880			/* direct item has to be converted */
 881			loff_t tail_offset;
 882
 883			tail_offset =
 884			    ((le_ih_k_offset(ih) -
 885			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 886
 887			/*
 888			 * direct item we just found fits into block we have
 889			 * to map. Convert it into unformatted node: use
 890			 * bh_result for the conversion
 891			 */
 892			if (tail_offset == cpu_key_k_offset(&key)) {
 
 
 
 893				set_block_dev_mapped(bh_result,
 894						     allocated_block_nr, inode);
 895				unbh = bh_result;
 896				done = 1;
 897			} else {
 898				/*
 899				 * we have to pad file tail stored in direct
 900				 * item(s) up to block size and convert it
 901				 * to unformatted node. FIXME: this should
 902				 * also get into page cache
 903				 */
 904
 905				pathrelse(&path);
 906				/*
 907				 * ugly, but we can only end the transaction if
 908				 * we aren't nested
 909				 */
 910				BUG_ON(!th->t_refcount);
 911				if (th->t_refcount == 1) {
 912					retval =
 913					    reiserfs_end_persistent_transaction
 914					    (th);
 915					th = NULL;
 916					if (retval)
 917						goto failure;
 918				}
 919
 920				retval =
 921				    convert_tail_for_hole(inode, bh_result,
 922							  tail_offset);
 923				if (retval) {
 924					if (retval != -ENOSPC)
 925						reiserfs_error(inode->i_sb,
 926							"clm-6004",
 927							"convert tail failed "
 928							"inode %lu, error %d",
 929							inode->i_ino,
 930							retval);
 931					if (allocated_block_nr) {
 932						/*
 933						 * the bitmap, the super,
 934						 * and the stat data == 3
 935						 */
 936						if (!th)
 937							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 938						if (th)
 939							reiserfs_free_block(th,
 940									    inode,
 941									    allocated_block_nr,
 942									    1);
 943					}
 944					goto failure;
 945				}
 946				goto research;
 947			}
 948			retval =
 949			    direct2indirect(th, inode, &path, unbh,
 950					    tail_offset);
 951			if (retval) {
 952				reiserfs_unmap_buffer(unbh);
 953				reiserfs_free_block(th, inode,
 954						    allocated_block_nr, 1);
 955				goto failure;
 956			}
 957			/*
 958			 * it is important the set_buffer_uptodate is done
 959			 * after the direct2indirect.  The buffer might
 960			 * contain valid data newer than the data on disk
 961			 * (read by read_folio, changed, and then sent here by
 962			 * writepage).  direct2indirect needs to know if unbh
 963			 * was already up to date, so it can decide if the
 964			 * data in unbh needs to be replaced with data from
 965			 * the disk
 966			 */
 967			set_buffer_uptodate(unbh);
 968
 969			/*
 970			 * unbh->b_page == NULL in case of DIRECT_IO request,
 971			 * this means buffer will disappear shortly, so it
 972			 * should not be added to
 973			 */
 974			if (unbh->b_page) {
 975				/*
 976				 * we've converted the tail, so we must
 977				 * flush unbh before the transaction commits
 978				 */
 979				reiserfs_add_tail_list(inode, unbh);
 980
 981				/*
 982				 * mark it dirty now to prevent commit_write
 983				 * from adding this buffer to the inode's
 984				 * dirty buffer list
 985				 */
 986				/*
 987				 * AKPM: changed __mark_buffer_dirty to
 988				 * mark_buffer_dirty().  It's still atomic,
 989				 * but it sets the page dirty too, which makes
 990				 * it eligible for writeback at any time by the
 991				 * VM (which was also the case with
 992				 * __mark_buffer_dirty())
 993				 */
 994				mark_buffer_dirty(unbh);
 995			}
 996		} else {
 997			/*
 998			 * append indirect item with holes if needed, when
 999			 * appending pointer to 'block'-th block use block,
1000			 * which is already allocated
1001			 */
1002			struct cpu_key tmp_key;
1003			/*
1004			 * We use this in case we need to allocate
1005			 * only one block which is a fastpath
1006			 */
1007			unp_t unf_single = 0;
1008			unp_t *un;
1009			__u64 max_to_insert =
1010			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011			    UNFM_P_SIZE;
1012			__u64 blocks_needed;
1013
1014			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015			       "vs-804: invalid position for append");
1016			/*
1017			 * indirect item has to be appended,
1018			 * set up key of that position
1019			 * (key type is unimportant)
1020			 */
1021			make_cpu_key(&tmp_key, inode,
1022				     le_key_k_offset(version,
1023						     &ih->ih_key) +
1024				     op_bytes_number(ih,
1025						     inode->i_sb->s_blocksize),
1026				     TYPE_INDIRECT, 3);
 
1027
1028			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029			       "green-805: invalid offset");
1030			blocks_needed =
1031			    1 +
1032			    ((cpu_key_k_offset(&key) -
1033			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034			     s_blocksize_bits);
1035
1036			if (blocks_needed == 1) {
1037				un = &unf_single;
1038			} else {
1039				un = kcalloc(min(blocks_needed, max_to_insert),
1040					     UNFM_P_SIZE, GFP_NOFS);
1041				if (!un) {
1042					un = &unf_single;
1043					blocks_needed = 1;
1044					max_to_insert = 0;
1045				}
1046			}
1047			if (blocks_needed <= max_to_insert) {
1048				/*
1049				 * we are going to add target block to
1050				 * the file. Use allocated block for that
1051				 */
1052				un[blocks_needed - 1] =
1053				    cpu_to_le32(allocated_block_nr);
1054				set_block_dev_mapped(bh_result,
1055						     allocated_block_nr, inode);
1056				set_buffer_new(bh_result);
1057				done = 1;
1058			} else {
1059				/* paste hole to the indirect item */
1060				/*
1061				 * If kcalloc failed, max_to_insert becomes
1062				 * zero and it means we only have space for
1063				 * one block
1064				 */
1065				blocks_needed =
1066				    max_to_insert ? max_to_insert : 1;
1067			}
1068			retval =
1069			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070						     (char *)un,
1071						     UNFM_P_SIZE *
1072						     blocks_needed);
1073
1074			if (blocks_needed != 1)
1075				kfree(un);
1076
1077			if (retval) {
1078				reiserfs_free_block(th, inode,
1079						    allocated_block_nr, 1);
1080				goto failure;
1081			}
1082			if (!done) {
1083				/*
1084				 * We need to mark new file size in case
1085				 * this function will be interrupted/aborted
1086				 * later on. And we may do this only for
1087				 * holes.
1088				 */
1089				inode->i_size +=
1090				    inode->i_sb->s_blocksize * blocks_needed;
1091			}
1092		}
1093
1094		if (done == 1)
1095			break;
1096
1097		/*
1098		 * this loop could log more blocks than we had originally
1099		 * asked for.  So, we have to allow the transaction to end
1100		 * if it is too big or too full.  Update the inode so things
1101		 * are consistent if we crash before the function returns
1102		 * release the path so that anybody waiting on the path before
1103		 * ending their transaction will be able to continue.
1104		 */
1105		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106			retval = restart_transaction(th, inode, &path);
1107			if (retval)
1108				goto failure;
1109		}
1110		/*
1111		 * inserting indirect pointers for a hole can take a
1112		 * long time.  reschedule if needed and also release the write
1113		 * lock for others.
1114		 */
1115		reiserfs_cond_resched(inode->i_sb);
 
 
 
 
1116
1117		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118		if (retval == IO_ERROR) {
1119			retval = -EIO;
1120			goto failure;
1121		}
1122		if (retval == POSITION_FOUND) {
1123			reiserfs_warning(inode->i_sb, "vs-825",
1124					 "%K should not be found", &key);
1125			retval = -EEXIST;
1126			if (allocated_block_nr)
1127				reiserfs_free_block(th, inode,
1128						    allocated_block_nr, 1);
1129			pathrelse(&path);
1130			goto failure;
1131		}
1132		bh = get_last_bh(&path);
1133		ih = tp_item_head(&path);
1134		item = tp_item_body(&path);
1135		pos_in_item = path.pos_in_item;
1136	} while (1);
1137
1138	retval = 0;
1139
1140failure:
1141	if (th && (!dangle || (retval && !th->t_trans_id))) {
1142		int err;
1143		if (th->t_trans_id)
1144			reiserfs_update_sd(th, inode);
1145		err = reiserfs_end_persistent_transaction(th);
1146		if (err)
1147			retval = err;
1148	}
1149
1150	reiserfs_write_unlock(inode->i_sb);
1151	reiserfs_check_path(&path);
1152	return retval;
1153}
1154
1155static void reiserfs_readahead(struct readahead_control *rac)
 
 
1156{
1157	mpage_readahead(rac, reiserfs_get_block);
1158}
1159
1160/*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
1165static int real_space_diff(struct inode *inode, int sd_size)
1166{
1167	int bytes;
1168	loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171		return sd_size;
1172
1173	/*
1174	 * End of file is also in full block with indirect reference, so round
1175	 * up to the next block.
1176	 *
1177	 * there is just no way to know if the tail is actually packed
1178	 * on the file, so we have to assume it isn't.  When we pack the
1179	 * tail, we add 4 bytes to pretend there really is an unformatted
1180	 * node pointer
1181	 */
1182	bytes =
1183	    ((inode->i_size +
1184	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185	    sd_size;
1186	return bytes;
1187}
1188
1189static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190					int sd_size)
1191{
1192	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193		return inode->i_size +
1194		    (loff_t) (real_space_diff(inode, sd_size));
1195	}
1196	return ((loff_t) real_space_diff(inode, sd_size)) +
1197	    (((loff_t) blocks) << 9);
1198}
1199
1200/* Compute number of blocks used by file in ReiserFS counting */
1201static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202{
1203	loff_t bytes = inode_get_bytes(inode);
1204	loff_t real_space = real_space_diff(inode, sd_size);
1205
1206	/* keeps fsck and non-quota versions of reiserfs happy */
1207	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208		bytes += (loff_t) 511;
1209	}
1210
1211	/*
1212	 * files from before the quota patch might i_blocks such that
1213	 * bytes < real_space.  Deal with that here to prevent it from
1214	 * going negative.
1215	 */
1216	if (bytes < real_space)
1217		return 0;
1218	return (bytes - real_space) >> 9;
1219}
1220
1221/*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228/* called by read_locked_inode */
1229static void init_inode(struct inode *inode, struct treepath *path)
1230{
1231	struct buffer_head *bh;
1232	struct item_head *ih;
1233	__u32 rdev;
 
1234
1235	bh = PATH_PLAST_BUFFER(path);
1236	ih = tp_item_head(path);
1237
1238	copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241	REISERFS_I(inode)->i_flags = 0;
1242	REISERFS_I(inode)->i_prealloc_block = 0;
1243	REISERFS_I(inode)->i_prealloc_count = 0;
1244	REISERFS_I(inode)->i_trans_id = 0;
1245	REISERFS_I(inode)->i_jl = NULL;
1246	reiserfs_init_xattr_rwsem(inode);
1247
1248	if (stat_data_v1(ih)) {
1249		struct stat_data_v1 *sd =
1250		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1251		unsigned long blocks;
1252
1253		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254		set_inode_sd_version(inode, STAT_DATA_V1);
1255		inode->i_mode = sd_v1_mode(sd);
1256		set_nlink(inode, sd_v1_nlink(sd));
1257		i_uid_write(inode, sd_v1_uid(sd));
1258		i_gid_write(inode, sd_v1_gid(sd));
1259		inode->i_size = sd_v1_size(sd);
1260		inode->i_atime.tv_sec = sd_v1_atime(sd);
1261		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1262		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1263		inode->i_atime.tv_nsec = 0;
1264		inode->i_ctime.tv_nsec = 0;
1265		inode->i_mtime.tv_nsec = 0;
1266
1267		inode->i_blocks = sd_v1_blocks(sd);
1268		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1269		blocks = (inode->i_size + 511) >> 9;
1270		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1271
1272		/*
1273		 * there was a bug in <=3.5.23 when i_blocks could take
1274		 * negative values. Starting from 3.5.17 this value could
1275		 * even be stored in stat data. For such files we set
1276		 * i_blocks based on file size. Just 2 notes: this can be
1277		 * wrong for sparse files. On-disk value will be only
1278		 * updated if file's inode will ever change
1279		 */
1280		if (inode->i_blocks > blocks) {
 
 
 
 
 
1281			inode->i_blocks = blocks;
1282		}
1283
1284		rdev = sd_v1_rdev(sd);
1285		REISERFS_I(inode)->i_first_direct_byte =
1286		    sd_v1_first_direct_byte(sd);
1287
1288		/*
1289		 * an early bug in the quota code can give us an odd
1290		 * number for the block count.  This is incorrect, fix it here.
1291		 */
1292		if (inode->i_blocks & 1) {
1293			inode->i_blocks++;
1294		}
1295		inode_set_bytes(inode,
1296				to_real_used_space(inode, inode->i_blocks,
1297						   SD_V1_SIZE));
1298		/*
1299		 * nopack is initially zero for v1 objects. For v2 objects,
1300		 * nopack is initialised from sd_attrs
1301		 */
1302		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1303	} else {
1304		/*
1305		 * new stat data found, but object may have old items
1306		 * (directories and symlinks)
1307		 */
1308		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1309
1310		inode->i_mode = sd_v2_mode(sd);
1311		set_nlink(inode, sd_v2_nlink(sd));
1312		i_uid_write(inode, sd_v2_uid(sd));
1313		inode->i_size = sd_v2_size(sd);
1314		i_gid_write(inode, sd_v2_gid(sd));
1315		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1316		inode->i_atime.tv_sec = sd_v2_atime(sd);
1317		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1318		inode->i_ctime.tv_nsec = 0;
1319		inode->i_mtime.tv_nsec = 0;
1320		inode->i_atime.tv_nsec = 0;
1321		inode->i_blocks = sd_v2_blocks(sd);
1322		rdev = sd_v2_rdev(sd);
1323		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1324			inode->i_generation =
1325			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1326		else
1327			inode->i_generation = sd_v2_generation(sd);
1328
1329		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1330			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1331		else
1332			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1333		REISERFS_I(inode)->i_first_direct_byte = 0;
1334		set_inode_sd_version(inode, STAT_DATA_V2);
1335		inode_set_bytes(inode,
1336				to_real_used_space(inode, inode->i_blocks,
1337						   SD_V2_SIZE));
1338		/*
1339		 * read persistent inode attributes from sd and initialise
1340		 * generic inode flags from them
1341		 */
1342		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1343		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1344	}
1345
1346	pathrelse(path);
1347	if (S_ISREG(inode->i_mode)) {
1348		inode->i_op = &reiserfs_file_inode_operations;
1349		inode->i_fop = &reiserfs_file_operations;
1350		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1351	} else if (S_ISDIR(inode->i_mode)) {
1352		inode->i_op = &reiserfs_dir_inode_operations;
1353		inode->i_fop = &reiserfs_dir_operations;
1354	} else if (S_ISLNK(inode->i_mode)) {
1355		inode->i_op = &reiserfs_symlink_inode_operations;
1356		inode_nohighmem(inode);
1357		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1358	} else {
1359		inode->i_blocks = 0;
1360		inode->i_op = &reiserfs_special_inode_operations;
1361		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1362	}
1363}
1364
1365/* update new stat data with inode fields */
1366static void inode2sd(void *sd, struct inode *inode, loff_t size)
1367{
1368	struct stat_data *sd_v2 = (struct stat_data *)sd;
 
1369
1370	set_sd_v2_mode(sd_v2, inode->i_mode);
1371	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1372	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1373	set_sd_v2_size(sd_v2, size);
1374	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1375	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1376	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1377	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1378	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1379	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1380		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1381	else
1382		set_sd_v2_generation(sd_v2, inode->i_generation);
1383	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
 
 
1384}
1385
1386/* used to copy inode's fields to old stat data */
1387static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1388{
1389	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1390
1391	set_sd_v1_mode(sd_v1, inode->i_mode);
1392	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1393	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1394	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1395	set_sd_v1_size(sd_v1, size);
1396	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1397	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1398	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1399
1400	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1401		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1402	else
1403		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1404
1405	/* Sigh. i_first_direct_byte is back */
1406	set_sd_v1_first_direct_byte(sd_v1,
1407				    REISERFS_I(inode)->i_first_direct_byte);
1408}
1409
1410/*
1411 * NOTE, you must prepare the buffer head before sending it here,
1412 * and then log it after the call
1413 */
1414static void update_stat_data(struct treepath *path, struct inode *inode,
1415			     loff_t size)
1416{
1417	struct buffer_head *bh;
1418	struct item_head *ih;
1419
1420	bh = PATH_PLAST_BUFFER(path);
1421	ih = tp_item_head(path);
1422
1423	if (!is_statdata_le_ih(ih))
1424		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1425			       INODE_PKEY(inode), ih);
1426
1427	/* path points to old stat data */
1428	if (stat_data_v1(ih)) {
1429		inode2sd_v1(ih_item_body(bh, ih), inode, size);
 
1430	} else {
1431		inode2sd(ih_item_body(bh, ih), inode, size);
1432	}
1433
1434	return;
1435}
1436
1437void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1438			     struct inode *inode, loff_t size)
1439{
1440	struct cpu_key key;
1441	INITIALIZE_PATH(path);
1442	struct buffer_head *bh;
1443	int fs_gen;
1444	struct item_head *ih, tmp_ih;
1445	int retval;
1446
1447	BUG_ON(!th->t_trans_id);
1448
1449	/* key type is unimportant */
1450	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1451
1452	for (;;) {
1453		int pos;
1454		/* look for the object's stat data */
1455		retval = search_item(inode->i_sb, &key, &path);
1456		if (retval == IO_ERROR) {
1457			reiserfs_error(inode->i_sb, "vs-13050",
1458				       "i/o failure occurred trying to "
1459				       "update %K stat data", &key);
1460			return;
1461		}
1462		if (retval == ITEM_NOT_FOUND) {
1463			pos = PATH_LAST_POSITION(&path);
1464			pathrelse(&path);
1465			if (inode->i_nlink == 0) {
1466				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1467				return;
1468			}
1469			reiserfs_warning(inode->i_sb, "vs-13060",
1470					 "stat data of object %k (nlink == %d) "
1471					 "not found (pos %d)",
1472					 INODE_PKEY(inode), inode->i_nlink,
1473					 pos);
1474			reiserfs_check_path(&path);
1475			return;
1476		}
1477
1478		/*
1479		 * sigh, prepare_for_journal might schedule.  When it
1480		 * schedules the FS might change.  We have to detect that,
1481		 * and loop back to the search if the stat data item has moved
1482		 */
1483		bh = get_last_bh(&path);
1484		ih = tp_item_head(&path);
1485		copy_item_head(&tmp_ih, ih);
1486		fs_gen = get_generation(inode->i_sb);
1487		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1488
1489		/* Stat_data item has been moved after scheduling. */
1490		if (fs_changed(fs_gen, inode->i_sb)
1491		    && item_moved(&tmp_ih, &path)) {
1492			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1493			continue;
1494		}
1495		break;
1496	}
1497	update_stat_data(&path, inode, size);
1498	journal_mark_dirty(th, bh);
1499	pathrelse(&path);
1500	return;
1501}
1502
1503/*
1504 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1505 * does a make_bad_inode when things go wrong.  But, we need to make sure
1506 * and clear the key in the private portion of the inode, otherwise a
1507 * corresponding iput might try to delete whatever object the inode last
1508 * represented.
1509 */
1510static void reiserfs_make_bad_inode(struct inode *inode)
1511{
1512	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1513	make_bad_inode(inode);
1514}
1515
1516/*
1517 * initially this function was derived from minix or ext2's analog and
1518 * evolved as the prototype did
1519 */
 
1520int reiserfs_init_locked_inode(struct inode *inode, void *p)
1521{
1522	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1523	inode->i_ino = args->objectid;
1524	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1525	return 0;
1526}
1527
1528/*
1529 * looks for stat data in the tree, and fills up the fields of in-core
1530 * inode stat data fields
1531 */
1532void reiserfs_read_locked_inode(struct inode *inode,
1533				struct reiserfs_iget_args *args)
1534{
1535	INITIALIZE_PATH(path_to_sd);
1536	struct cpu_key key;
1537	unsigned long dirino;
1538	int retval;
1539
1540	dirino = args->dirid;
1541
1542	/*
1543	 * set version 1, version 2 could be used too, because stat data
1544	 * key is the same in both versions
1545	 */
1546	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
 
 
1547
1548	/* look for the object's stat data */
1549	retval = search_item(inode->i_sb, &key, &path_to_sd);
1550	if (retval == IO_ERROR) {
1551		reiserfs_error(inode->i_sb, "vs-13070",
1552			       "i/o failure occurred trying to find "
1553			       "stat data of %K", &key);
1554		reiserfs_make_bad_inode(inode);
1555		return;
1556	}
1557
1558	/* a stale NFS handle can trigger this without it being an error */
1559	if (retval != ITEM_FOUND) {
 
1560		pathrelse(&path_to_sd);
1561		reiserfs_make_bad_inode(inode);
1562		clear_nlink(inode);
1563		return;
1564	}
1565
1566	init_inode(inode, &path_to_sd);
1567
1568	/*
1569	 * It is possible that knfsd is trying to access inode of a file
1570	 * that is being removed from the disk by some other thread. As we
1571	 * update sd on unlink all that is required is to check for nlink
1572	 * here. This bug was first found by Sizif when debugging
1573	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1574	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1575
1576	 * More logical fix would require changes in fs/inode.c:iput() to
1577	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1578	 * in iget() to return NULL if I_FREEING inode is found in
1579	 * hash-table.
1580	 */
1581
1582	/*
1583	 * Currently there is one place where it's ok to meet inode with
1584	 * nlink==0: processing of open-unlinked and half-truncated files
1585	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1586	 */
1587	if ((inode->i_nlink == 0) &&
1588	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1589		reiserfs_warning(inode->i_sb, "vs-13075",
1590				 "dead inode read from disk %K. "
1591				 "This is likely to be race with knfsd. Ignore",
1592				 &key);
1593		reiserfs_make_bad_inode(inode);
1594	}
1595
1596	/* init inode should be relsing */
1597	reiserfs_check_path(&path_to_sd);
1598
1599	/*
1600	 * Stat data v1 doesn't support ACLs.
1601	 */
1602	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1603		cache_no_acl(inode);
1604}
1605
1606/*
1607 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1608 *
1609 * @inode:    inode from hash table to check
1610 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1611 *
1612 * This function is called by iget5_locked() to distinguish reiserfs inodes
1613 * having the same inode numbers. Such inodes can only exist due to some
1614 * error condition. One of them should be bad. Inodes with identical
1615 * inode numbers (objectids) are distinguished by parent directory ids.
1616 *
1617 */
1618int reiserfs_find_actor(struct inode *inode, void *opaque)
1619{
1620	struct reiserfs_iget_args *args;
1621
1622	args = opaque;
1623	/* args is already in CPU order */
1624	return (inode->i_ino == args->objectid) &&
1625	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1626}
1627
1628struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1629{
1630	struct inode *inode;
1631	struct reiserfs_iget_args args;
1632	int depth;
1633
1634	args.objectid = key->on_disk_key.k_objectid;
1635	args.dirid = key->on_disk_key.k_dir_id;
1636	depth = reiserfs_write_unlock_nested(s);
1637	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1638			     reiserfs_find_actor, reiserfs_init_locked_inode,
1639			     (void *)(&args));
1640	reiserfs_write_lock_nested(s, depth);
1641	if (!inode)
1642		return ERR_PTR(-ENOMEM);
1643
1644	if (inode->i_state & I_NEW) {
1645		reiserfs_read_locked_inode(inode, &args);
1646		unlock_new_inode(inode);
1647	}
1648
1649	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1650		/* either due to i/o error or a stale NFS handle */
1651		iput(inode);
1652		inode = NULL;
1653	}
1654	return inode;
1655}
1656
1657static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1658	u32 objectid, u32 dir_id, u32 generation)
1659
1660{
1661	struct cpu_key key;
1662	struct inode *inode;
1663
1664	key.on_disk_key.k_objectid = objectid;
1665	key.on_disk_key.k_dir_id = dir_id;
1666	reiserfs_write_lock(sb);
1667	inode = reiserfs_iget(sb, &key);
1668	if (inode && !IS_ERR(inode) && generation != 0 &&
1669	    generation != inode->i_generation) {
1670		iput(inode);
1671		inode = NULL;
1672	}
1673	reiserfs_write_unlock(sb);
1674
1675	return d_obtain_alias(inode);
1676}
1677
1678struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1679		int fh_len, int fh_type)
1680{
1681	/*
1682	 * fhtype happens to reflect the number of u32s encoded.
1683	 * due to a bug in earlier code, fhtype might indicate there
1684	 * are more u32s then actually fitted.
1685	 * so if fhtype seems to be more than len, reduce fhtype.
1686	 * Valid types are:
1687	 *   2 - objectid + dir_id - legacy support
1688	 *   3 - objectid + dir_id + generation
1689	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1690	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1691	 *   6 - as above plus generation of directory
1692	 * 6 does not fit in NFSv2 handles
1693	 */
1694	if (fh_type > fh_len) {
1695		if (fh_type != 6 || fh_len != 5)
1696			reiserfs_warning(sb, "reiserfs-13077",
1697				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1698				fh_type, fh_len);
1699		fh_type = fh_len;
1700	}
1701	if (fh_len < 2)
1702		return NULL;
1703
1704	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1705		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1706}
1707
1708struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1709		int fh_len, int fh_type)
1710{
1711	if (fh_type > fh_len)
1712		fh_type = fh_len;
1713	if (fh_type < 4)
1714		return NULL;
1715
1716	return reiserfs_get_dentry(sb,
1717		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1718		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1719		(fh_type == 6) ? fid->raw[5] : 0);
1720}
1721
1722int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1723		       struct inode *parent)
1724{
 
1725	int maxlen = *lenp;
1726
1727	if (parent && (maxlen < 5)) {
1728		*lenp = 5;
1729		return FILEID_INVALID;
1730	} else if (maxlen < 3) {
1731		*lenp = 3;
1732		return FILEID_INVALID;
1733	}
1734
1735	data[0] = inode->i_ino;
1736	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1737	data[2] = inode->i_generation;
1738	*lenp = 3;
1739	if (parent) {
1740		data[3] = parent->i_ino;
1741		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1742		*lenp = 5;
1743		if (maxlen >= 6) {
1744			data[5] = parent->i_generation;
1745			*lenp = 6;
1746		}
 
 
 
 
1747	}
 
1748	return *lenp;
1749}
1750
1751/*
1752 * looks for stat data, then copies fields to it, marks the buffer
1753 * containing stat data as dirty
1754 */
1755/*
1756 * reiserfs inodes are never really dirty, since the dirty inode call
1757 * always logs them.  This call allows the VFS inode marking routines
1758 * to properly mark inodes for datasync and such, but only actually
1759 * does something when called for a synchronous update.
1760 */
1761int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1762{
1763	struct reiserfs_transaction_handle th;
1764	int jbegin_count = 1;
1765
1766	if (sb_rdonly(inode->i_sb))
1767		return -EROFS;
1768	/*
1769	 * memory pressure can sometimes initiate write_inode calls with
1770	 * sync == 1,
1771	 * these cases are just when the system needs ram, not when the
1772	 * inode needs to reach disk for safety, and they can safely be
1773	 * ignored because the altered inode has already been logged.
1774	 */
1775	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1776		reiserfs_write_lock(inode->i_sb);
1777		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1778			reiserfs_update_sd(&th, inode);
1779			journal_end_sync(&th);
1780		}
1781		reiserfs_write_unlock(inode->i_sb);
1782	}
1783	return 0;
1784}
1785
1786/*
1787 * stat data of new object is inserted already, this inserts the item
1788 * containing "." and ".." entries
1789 */
1790static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1791				  struct inode *inode,
1792				  struct item_head *ih, struct treepath *path,
1793				  struct inode *dir)
1794{
1795	struct super_block *sb = th->t_super;
1796	char empty_dir[EMPTY_DIR_SIZE];
1797	char *body = empty_dir;
1798	struct cpu_key key;
1799	int retval;
1800
1801	BUG_ON(!th->t_trans_id);
1802
1803	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1804		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1805		      TYPE_DIRENTRY, 3 /*key length */ );
1806
1807	/*
1808	 * compose item head for new item. Directories consist of items of
1809	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1810	 * is done by reiserfs_new_inode
1811	 */
1812	if (old_format_only(sb)) {
1813		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1814				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1815
1816		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1817				       ih->ih_key.k_objectid,
1818				       INODE_PKEY(dir)->k_dir_id,
1819				       INODE_PKEY(dir)->k_objectid);
1820	} else {
1821		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1822				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1823
1824		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1825				    ih->ih_key.k_objectid,
1826				    INODE_PKEY(dir)->k_dir_id,
1827				    INODE_PKEY(dir)->k_objectid);
1828	}
1829
1830	/* look for place in the tree for new item */
1831	retval = search_item(sb, &key, path);
1832	if (retval == IO_ERROR) {
1833		reiserfs_error(sb, "vs-13080",
1834			       "i/o failure occurred creating new directory");
1835		return -EIO;
1836	}
1837	if (retval == ITEM_FOUND) {
1838		pathrelse(path);
1839		reiserfs_warning(sb, "vs-13070",
1840				 "object with this key exists (%k)",
1841				 &(ih->ih_key));
1842		return -EEXIST;
1843	}
1844
1845	/* insert item, that is empty directory item */
1846	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1847}
1848
1849/*
1850 * stat data of object has been inserted, this inserts the item
1851 * containing the body of symlink
1852 */
1853static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1854				struct inode *inode,
1855				struct item_head *ih,
1856				struct treepath *path, const char *symname,
1857				int item_len)
1858{
1859	struct super_block *sb = th->t_super;
1860	struct cpu_key key;
1861	int retval;
1862
1863	BUG_ON(!th->t_trans_id);
1864
1865	_make_cpu_key(&key, KEY_FORMAT_3_5,
1866		      le32_to_cpu(ih->ih_key.k_dir_id),
1867		      le32_to_cpu(ih->ih_key.k_objectid),
1868		      1, TYPE_DIRECT, 3 /*key length */ );
1869
1870	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1871			  0 /*free_space */ );
1872
1873	/* look for place in the tree for new item */
1874	retval = search_item(sb, &key, path);
1875	if (retval == IO_ERROR) {
1876		reiserfs_error(sb, "vs-13080",
1877			       "i/o failure occurred creating new symlink");
1878		return -EIO;
1879	}
1880	if (retval == ITEM_FOUND) {
1881		pathrelse(path);
1882		reiserfs_warning(sb, "vs-13080",
1883				 "object with this key exists (%k)",
1884				 &(ih->ih_key));
1885		return -EEXIST;
1886	}
1887
1888	/* insert item, that is body of symlink */
1889	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1890}
1891
1892/*
1893 * inserts the stat data into the tree, and then calls
1894 * reiserfs_new_directory (to insert ".", ".." item if new object is
1895 * directory) or reiserfs_new_symlink (to insert symlink body if new
1896 * object is symlink) or nothing (if new object is regular file)
1897
1898 * NOTE! uid and gid must already be set in the inode.  If we return
1899 * non-zero due to an error, we have to drop the quota previously allocated
1900 * for the fresh inode.  This can only be done outside a transaction, so
1901 * if we return non-zero, we also end the transaction.
1902 *
1903 * @th: active transaction handle
1904 * @dir: parent directory for new inode
1905 * @mode: mode of new inode
1906 * @symname: symlink contents if inode is symlink
1907 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1908 *         symlinks
1909 * @inode: inode to be filled
1910 * @security: optional security context to associate with this inode
1911 */
1912int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1913		       struct inode *dir, umode_t mode, const char *symname,
1914		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1915		          strlen (symname) for symlinks) */
1916		       loff_t i_size, struct dentry *dentry,
1917		       struct inode *inode,
1918		       struct reiserfs_security_handle *security)
1919{
1920	struct super_block *sb = dir->i_sb;
1921	struct reiserfs_iget_args args;
1922	INITIALIZE_PATH(path_to_key);
1923	struct cpu_key key;
1924	struct item_head ih;
1925	struct stat_data sd;
1926	int retval;
1927	int err;
1928	int depth;
1929
1930	BUG_ON(!th->t_trans_id);
1931
1932	depth = reiserfs_write_unlock_nested(sb);
1933	err = dquot_alloc_inode(inode);
1934	reiserfs_write_lock_nested(sb, depth);
1935	if (err)
1936		goto out_end_trans;
1937	if (!dir->i_nlink) {
1938		err = -EPERM;
1939		goto out_bad_inode;
1940	}
1941
 
 
1942	/* item head of new item */
1943	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1944	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1945	if (!ih.ih_key.k_objectid) {
1946		err = -ENOMEM;
1947		goto out_bad_inode;
1948	}
1949	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1950	if (old_format_only(sb))
1951		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1952				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1953	else
1954		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1955				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1956	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1957	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1958
1959	depth = reiserfs_write_unlock_nested(inode->i_sb);
1960	err = insert_inode_locked4(inode, args.objectid,
1961			     reiserfs_find_actor, &args);
1962	reiserfs_write_lock_nested(inode->i_sb, depth);
1963	if (err) {
1964		err = -EINVAL;
1965		goto out_bad_inode;
1966	}
1967
1968	if (old_format_only(sb))
1969		/*
1970		 * not a perfect generation count, as object ids can be reused,
1971		 * but this is as good as reiserfs can do right now.
1972		 * note that the private part of inode isn't filled in yet,
1973		 * we have to use the directory.
1974		 */
1975		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1976	else
1977#if defined( USE_INODE_GENERATION_COUNTER )
1978		inode->i_generation =
1979		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1980#else
1981		inode->i_generation = ++event;
1982#endif
1983
1984	/* fill stat data */
1985	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1986
1987	/* uid and gid must already be set by the caller for quota init */
1988
1989	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
 
 
 
 
1990	inode->i_size = i_size;
1991	inode->i_blocks = 0;
1992	inode->i_bytes = 0;
1993	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1994	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1995
1996	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1997	REISERFS_I(inode)->i_flags = 0;
1998	REISERFS_I(inode)->i_prealloc_block = 0;
1999	REISERFS_I(inode)->i_prealloc_count = 0;
2000	REISERFS_I(inode)->i_trans_id = 0;
2001	REISERFS_I(inode)->i_jl = NULL;
2002	REISERFS_I(inode)->i_attrs =
2003	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2004	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2005	reiserfs_init_xattr_rwsem(inode);
2006
2007	/* key to search for correct place for new stat data */
2008	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2009		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2010		      TYPE_STAT_DATA, 3 /*key length */ );
2011
2012	/* find proper place for inserting of stat data */
2013	retval = search_item(sb, &key, &path_to_key);
2014	if (retval == IO_ERROR) {
2015		err = -EIO;
2016		goto out_bad_inode;
2017	}
2018	if (retval == ITEM_FOUND) {
2019		pathrelse(&path_to_key);
2020		err = -EEXIST;
2021		goto out_bad_inode;
2022	}
2023	if (old_format_only(sb)) {
2024		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2025		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2026			pathrelse(&path_to_key);
 
2027			err = -EINVAL;
2028			goto out_bad_inode;
2029		}
2030		inode2sd_v1(&sd, inode, inode->i_size);
2031	} else {
2032		inode2sd(&sd, inode, inode->i_size);
2033	}
2034	/*
2035	 * store in in-core inode the key of stat data and version all
2036	 * object items will have (directory items will have old offset
2037	 * format, other new objects will consist of new items)
2038	 */
2039	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2040		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2041	else
2042		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2043	if (old_format_only(sb))
2044		set_inode_sd_version(inode, STAT_DATA_V1);
2045	else
2046		set_inode_sd_version(inode, STAT_DATA_V2);
2047
2048	/* insert the stat data into the tree */
2049#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2050	if (REISERFS_I(dir)->new_packing_locality)
2051		th->displace_new_blocks = 1;
2052#endif
2053	retval =
2054	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2055				 (char *)(&sd));
2056	if (retval) {
2057		err = retval;
2058		reiserfs_check_path(&path_to_key);
2059		goto out_bad_inode;
2060	}
2061#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2062	if (!th->displace_new_blocks)
2063		REISERFS_I(dir)->new_packing_locality = 0;
2064#endif
2065	if (S_ISDIR(mode)) {
2066		/* insert item with "." and ".." */
2067		retval =
2068		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2069	}
2070
2071	if (S_ISLNK(mode)) {
2072		/* insert body of symlink */
2073		if (!old_format_only(sb))
2074			i_size = ROUND_UP(i_size);
2075		retval =
2076		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2077					 i_size);
2078	}
2079	if (retval) {
2080		err = retval;
2081		reiserfs_check_path(&path_to_key);
2082		journal_end(th);
2083		goto out_inserted_sd;
2084	}
2085
2086	/*
2087	 * Mark it private if we're creating the privroot
2088	 * or something under it.
2089	 */
2090	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
2091		inode->i_flags |= S_PRIVATE;
2092		inode->i_opflags &= ~IOP_XATTR;
2093	}
2094
2095	if (reiserfs_posixacl(inode->i_sb)) {
2096		reiserfs_write_unlock(inode->i_sb);
2097		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2098		reiserfs_write_lock(inode->i_sb);
2099		if (retval) {
2100			err = retval;
2101			reiserfs_check_path(&path_to_key);
2102			journal_end(th);
2103			goto out_inserted_sd;
2104		}
2105	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2106		reiserfs_warning(inode->i_sb, "jdm-13090",
2107				 "ACLs aren't enabled in the fs, "
2108				 "but vfs thinks they are!");
2109	}
 
2110
2111	if (security->name) {
2112		reiserfs_write_unlock(inode->i_sb);
2113		retval = reiserfs_security_write(th, inode, security);
2114		reiserfs_write_lock(inode->i_sb);
2115		if (retval) {
2116			err = retval;
2117			reiserfs_check_path(&path_to_key);
2118			retval = journal_end(th);
 
2119			if (retval)
2120				err = retval;
2121			goto out_inserted_sd;
2122		}
2123	}
2124
2125	reiserfs_update_sd(th, inode);
2126	reiserfs_check_path(&path_to_key);
2127
2128	return 0;
2129
2130out_bad_inode:
 
 
 
 
2131	/* Invalidate the object, nothing was inserted yet */
2132	INODE_PKEY(inode)->k_objectid = 0;
2133
2134	/* Quota change must be inside a transaction for journaling */
2135	depth = reiserfs_write_unlock_nested(inode->i_sb);
2136	dquot_free_inode(inode);
2137	reiserfs_write_lock_nested(inode->i_sb, depth);
2138
2139out_end_trans:
2140	journal_end(th);
2141	/*
2142	 * Drop can be outside and it needs more credits so it's better
2143	 * to have it outside
2144	 */
2145	depth = reiserfs_write_unlock_nested(inode->i_sb);
2146	dquot_drop(inode);
2147	reiserfs_write_lock_nested(inode->i_sb, depth);
2148	inode->i_flags |= S_NOQUOTA;
2149	make_bad_inode(inode);
2150
2151out_inserted_sd:
2152	clear_nlink(inode);
2153	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2154	if (inode->i_state & I_NEW)
2155		unlock_new_inode(inode);
2156	iput(inode);
2157	return err;
2158}
2159
2160/*
2161 * finds the tail page in the page cache,
2162 * reads the last block in.
2163 *
2164 * On success, page_result is set to a locked, pinned page, and bh_result
2165 * is set to an up to date buffer for the last block in the file.  returns 0.
2166 *
2167 * tail conversion is not done, so bh_result might not be valid for writing
2168 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2169 * trying to write the block.
2170 *
2171 * on failure, nonzero is returned, page_result and bh_result are untouched.
2172 */
2173static int grab_tail_page(struct inode *inode,
2174			  struct page **page_result,
2175			  struct buffer_head **bh_result)
2176{
2177
2178	/*
2179	 * we want the page with the last byte in the file,
2180	 * not the page that will hold the next byte for appending
2181	 */
2182	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2183	unsigned long pos = 0;
2184	unsigned long start = 0;
2185	unsigned long blocksize = inode->i_sb->s_blocksize;
2186	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2187	struct buffer_head *bh;
2188	struct buffer_head *head;
2189	struct page *page;
2190	int error;
2191
2192	/*
2193	 * we know that we are only called with inode->i_size > 0.
2194	 * we also know that a file tail can never be as big as a block
2195	 * If i_size % blocksize == 0, our file is currently block aligned
2196	 * and it won't need converting or zeroing after a truncate.
2197	 */
2198	if ((offset & (blocksize - 1)) == 0) {
2199		return -ENOENT;
2200	}
2201	page = grab_cache_page(inode->i_mapping, index);
2202	error = -ENOMEM;
2203	if (!page) {
2204		goto out;
2205	}
2206	/* start within the page of the last block in the file */
2207	start = (offset / blocksize) * blocksize;
2208
2209	error = __block_write_begin(page, start, offset - start,
2210				    reiserfs_get_block_create_0);
2211	if (error)
2212		goto unlock;
2213
2214	head = page_buffers(page);
2215	bh = head;
2216	do {
2217		if (pos >= start) {
2218			break;
2219		}
2220		bh = bh->b_this_page;
2221		pos += blocksize;
2222	} while (bh != head);
2223
2224	if (!buffer_uptodate(bh)) {
2225		/*
2226		 * note, this should never happen, prepare_write should be
2227		 * taking care of this for us.  If the buffer isn't up to
2228		 * date, I've screwed up the code to find the buffer, or the
2229		 * code to call prepare_write
2230		 */
2231		reiserfs_error(inode->i_sb, "clm-6000",
2232			       "error reading block %lu", bh->b_blocknr);
2233		error = -EIO;
2234		goto unlock;
2235	}
2236	*bh_result = bh;
2237	*page_result = page;
2238
2239out:
2240	return error;
2241
2242unlock:
2243	unlock_page(page);
2244	put_page(page);
2245	return error;
2246}
2247
2248/*
2249 * vfs version of truncate file.  Must NOT be called with
2250 * a transaction already started.
2251 *
2252 * some code taken from block_truncate_page
2253 */
2254int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2255{
2256	struct reiserfs_transaction_handle th;
2257	/* we want the offset for the first byte after the end of the file */
2258	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2259	unsigned blocksize = inode->i_sb->s_blocksize;
2260	unsigned length;
2261	struct page *page = NULL;
2262	int error;
2263	struct buffer_head *bh = NULL;
2264	int err2;
 
2265
2266	reiserfs_write_lock(inode->i_sb);
2267
2268	if (inode->i_size > 0) {
2269		error = grab_tail_page(inode, &page, &bh);
2270		if (error) {
2271			/*
2272			 * -ENOENT means we truncated past the end of the
2273			 * file, and get_block_create_0 could not find a
2274			 * block to read in, which is ok.
2275			 */
2276			if (error != -ENOENT)
2277				reiserfs_error(inode->i_sb, "clm-6001",
2278					       "grab_tail_page failed %d",
2279					       error);
2280			page = NULL;
2281			bh = NULL;
2282		}
2283	}
2284
2285	/*
2286	 * so, if page != NULL, we have a buffer head for the offset at
2287	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2288	 * then we have an unformatted node.  Otherwise, we have a direct item,
2289	 * and no zeroing is required on disk.  We zero after the truncate,
2290	 * because the truncate might pack the item anyway
2291	 * (it will unmap bh if it packs).
2292	 *
2293	 * it is enough to reserve space in transaction for 2 balancings:
2294	 * one for "save" link adding and another for the first
2295	 * cut_from_item. 1 is for update_sd
2296	 */
2297	error = journal_begin(&th, inode->i_sb,
2298			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2299	if (error)
2300		goto out;
2301	reiserfs_update_inode_transaction(inode);
2302	if (update_timestamps)
2303		/*
2304		 * we are doing real truncate: if the system crashes
2305		 * before the last transaction of truncating gets committed
2306		 * - on reboot the file either appears truncated properly
2307		 * or not truncated at all
2308		 */
2309		add_save_link(&th, inode, 1);
2310	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2311	error = journal_end(&th);
 
2312	if (error)
2313		goto out;
2314
2315	/* check reiserfs_do_truncate after ending the transaction */
2316	if (err2) {
2317		error = err2;
2318  		goto out;
2319	}
2320	
2321	if (update_timestamps) {
2322		error = remove_save_link(inode, 1 /* truncate */);
2323		if (error)
2324			goto out;
2325	}
2326
2327	if (page) {
2328		length = offset & (blocksize - 1);
2329		/* if we are not on a block boundary */
2330		if (length) {
2331			length = blocksize - length;
2332			zero_user(page, offset, length);
2333			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2334				mark_buffer_dirty(bh);
2335			}
2336		}
2337		unlock_page(page);
2338		put_page(page);
2339	}
2340
2341	reiserfs_write_unlock(inode->i_sb);
2342
2343	return 0;
2344out:
2345	if (page) {
2346		unlock_page(page);
2347		put_page(page);
2348	}
2349
2350	reiserfs_write_unlock(inode->i_sb);
2351
2352	return error;
2353}
2354
2355static int map_block_for_writepage(struct inode *inode,
2356				   struct buffer_head *bh_result,
2357				   unsigned long block)
2358{
2359	struct reiserfs_transaction_handle th;
2360	int fs_gen;
2361	struct item_head tmp_ih;
2362	struct item_head *ih;
2363	struct buffer_head *bh;
2364	__le32 *item;
2365	struct cpu_key key;
2366	INITIALIZE_PATH(path);
2367	int pos_in_item;
2368	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2369	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2370	int retval;
2371	int use_get_block = 0;
2372	int bytes_copied = 0;
2373	int copy_size;
2374	int trans_running = 0;
2375
2376	/*
2377	 * catch places below that try to log something without
2378	 * starting a trans
2379	 */
2380	th.t_trans_id = 0;
2381
2382	if (!buffer_uptodate(bh_result)) {
2383		return -EIO;
2384	}
2385
2386	kmap(bh_result->b_page);
2387start_over:
2388	reiserfs_write_lock(inode->i_sb);
2389	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2390
2391research:
2392	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2393	if (retval != POSITION_FOUND) {
2394		use_get_block = 1;
2395		goto out;
2396	}
2397
2398	bh = get_last_bh(&path);
2399	ih = tp_item_head(&path);
2400	item = tp_item_body(&path);
2401	pos_in_item = path.pos_in_item;
2402
2403	/* we've found an unformatted node */
2404	if (indirect_item_found(retval, ih)) {
2405		if (bytes_copied > 0) {
2406			reiserfs_warning(inode->i_sb, "clm-6002",
2407					 "bytes_copied %d", bytes_copied);
2408		}
2409		if (!get_block_num(item, pos_in_item)) {
2410			/* crap, we are writing to a hole */
2411			use_get_block = 1;
2412			goto out;
2413		}
2414		set_block_dev_mapped(bh_result,
2415				     get_block_num(item, pos_in_item), inode);
2416	} else if (is_direct_le_ih(ih)) {
2417		char *p;
2418		p = page_address(bh_result->b_page);
2419		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2420		copy_size = ih_item_len(ih) - pos_in_item;
2421
2422		fs_gen = get_generation(inode->i_sb);
2423		copy_item_head(&tmp_ih, ih);
2424
2425		if (!trans_running) {
2426			/* vs-3050 is gone, no need to drop the path */
2427			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2428			if (retval)
2429				goto out;
2430			reiserfs_update_inode_transaction(inode);
2431			trans_running = 1;
2432			if (fs_changed(fs_gen, inode->i_sb)
2433			    && item_moved(&tmp_ih, &path)) {
2434				reiserfs_restore_prepared_buffer(inode->i_sb,
2435								 bh);
2436				goto research;
2437			}
2438		}
2439
2440		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2441
2442		if (fs_changed(fs_gen, inode->i_sb)
2443		    && item_moved(&tmp_ih, &path)) {
2444			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2445			goto research;
2446		}
2447
2448		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2449		       copy_size);
2450
2451		journal_mark_dirty(&th, bh);
2452		bytes_copied += copy_size;
2453		set_block_dev_mapped(bh_result, 0, inode);
2454
2455		/* are there still bytes left? */
2456		if (bytes_copied < bh_result->b_size &&
2457		    (byte_offset + bytes_copied) < inode->i_size) {
2458			set_cpu_key_k_offset(&key,
2459					     cpu_key_k_offset(&key) +
2460					     copy_size);
2461			goto research;
2462		}
2463	} else {
2464		reiserfs_warning(inode->i_sb, "clm-6003",
2465				 "bad item inode %lu", inode->i_ino);
2466		retval = -EIO;
2467		goto out;
2468	}
2469	retval = 0;
2470
2471out:
2472	pathrelse(&path);
2473	if (trans_running) {
2474		int err = journal_end(&th);
2475		if (err)
2476			retval = err;
2477		trans_running = 0;
2478	}
2479	reiserfs_write_unlock(inode->i_sb);
2480
2481	/* this is where we fill in holes in the file. */
2482	if (use_get_block) {
2483		retval = reiserfs_get_block(inode, block, bh_result,
2484					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2485					    | GET_BLOCK_NO_DANGLE);
2486		if (!retval) {
2487			if (!buffer_mapped(bh_result)
2488			    || bh_result->b_blocknr == 0) {
2489				/* get_block failed to find a mapped unformatted node. */
2490				use_get_block = 0;
2491				goto start_over;
2492			}
2493		}
2494	}
2495	kunmap(bh_result->b_page);
2496
2497	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2498		/*
2499		 * we've copied data from the page into the direct item, so the
2500		 * buffer in the page is now clean, mark it to reflect that.
2501		 */
2502		lock_buffer(bh_result);
2503		clear_buffer_dirty(bh_result);
2504		unlock_buffer(bh_result);
2505	}
2506	return retval;
2507}
2508
2509/*
2510 * mason@suse.com: updated in 2.5.54 to follow the same general io
2511 * start/recovery path as __block_write_full_page, along with special
2512 * code to handle reiserfs tails.
2513 */
2514static int reiserfs_write_full_page(struct page *page,
2515				    struct writeback_control *wbc)
2516{
2517	struct inode *inode = page->mapping->host;
2518	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2519	int error = 0;
2520	unsigned long block;
2521	sector_t last_block;
2522	struct buffer_head *head, *bh;
2523	int partial = 0;
2524	int nr = 0;
2525	int checked = PageChecked(page);
2526	struct reiserfs_transaction_handle th;
2527	struct super_block *s = inode->i_sb;
2528	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2529	th.t_trans_id = 0;
2530
2531	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2532	if (checked && (current->flags & PF_MEMALLOC)) {
2533		redirty_page_for_writepage(wbc, page);
2534		unlock_page(page);
2535		return 0;
2536	}
2537
2538	/*
2539	 * The page dirty bit is cleared before writepage is called, which
2540	 * means we have to tell create_empty_buffers to make dirty buffers
2541	 * The page really should be up to date at this point, so tossing
2542	 * in the BH_Uptodate is just a sanity check.
2543	 */
2544	if (!page_has_buffers(page)) {
2545		create_empty_buffers(page, s->s_blocksize,
2546				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2547	}
2548	head = page_buffers(page);
2549
2550	/*
2551	 * last page in the file, zero out any contents past the
2552	 * last byte in the file
2553	 */
2554	if (page->index >= end_index) {
2555		unsigned last_offset;
2556
2557		last_offset = inode->i_size & (PAGE_SIZE - 1);
2558		/* no file contents in this page */
2559		if (page->index >= end_index + 1 || !last_offset) {
2560			unlock_page(page);
2561			return 0;
2562		}
2563		zero_user_segment(page, last_offset, PAGE_SIZE);
2564	}
2565	bh = head;
2566	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2567	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2568	/* first map all the buffers, logging any direct items we find */
2569	do {
2570		if (block > last_block) {
2571			/*
2572			 * This can happen when the block size is less than
2573			 * the page size.  The corresponding bytes in the page
2574			 * were zero filled above
2575			 */
2576			clear_buffer_dirty(bh);
2577			set_buffer_uptodate(bh);
2578		} else if ((checked || buffer_dirty(bh)) &&
2579			   (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2580			/*
2581			 * not mapped yet, or it points to a direct item, search
 
2582			 * the btree for the mapping info, and log any direct
2583			 * items found
2584			 */
2585			if ((error = map_block_for_writepage(inode, bh, block))) {
2586				goto fail;
2587			}
2588		}
2589		bh = bh->b_this_page;
2590		block++;
2591	} while (bh != head);
2592
2593	/*
2594	 * we start the transaction after map_block_for_writepage,
2595	 * because it can create holes in the file (an unbounded operation).
2596	 * starting it here, we can make a reliable estimate for how many
2597	 * blocks we're going to log
2598	 */
2599	if (checked) {
2600		ClearPageChecked(page);
2601		reiserfs_write_lock(s);
2602		error = journal_begin(&th, s, bh_per_page + 1);
2603		if (error) {
2604			reiserfs_write_unlock(s);
2605			goto fail;
2606		}
2607		reiserfs_update_inode_transaction(inode);
2608	}
2609	/* now go through and lock any dirty buffers on the page */
2610	do {
2611		get_bh(bh);
2612		if (!buffer_mapped(bh))
2613			continue;
2614		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2615			continue;
2616
2617		if (checked) {
2618			reiserfs_prepare_for_journal(s, bh, 1);
2619			journal_mark_dirty(&th, bh);
2620			continue;
2621		}
2622		/*
2623		 * from this point on, we know the buffer is mapped to a
2624		 * real block and not a direct item
2625		 */
2626		if (wbc->sync_mode != WB_SYNC_NONE) {
2627			lock_buffer(bh);
2628		} else {
2629			if (!trylock_buffer(bh)) {
2630				redirty_page_for_writepage(wbc, page);
2631				continue;
2632			}
2633		}
2634		if (test_clear_buffer_dirty(bh)) {
2635			mark_buffer_async_write(bh);
2636		} else {
2637			unlock_buffer(bh);
2638		}
2639	} while ((bh = bh->b_this_page) != head);
2640
2641	if (checked) {
2642		error = journal_end(&th);
2643		reiserfs_write_unlock(s);
2644		if (error)
2645			goto fail;
2646	}
2647	BUG_ON(PageWriteback(page));
2648	set_page_writeback(page);
2649	unlock_page(page);
2650
2651	/*
2652	 * since any buffer might be the only dirty buffer on the page,
2653	 * the first submit_bh can bring the page out of writeback.
2654	 * be careful with the buffers.
2655	 */
2656	do {
2657		struct buffer_head *next = bh->b_this_page;
2658		if (buffer_async_write(bh)) {
2659			submit_bh(REQ_OP_WRITE, bh);
2660			nr++;
2661		}
2662		put_bh(bh);
2663		bh = next;
2664	} while (bh != head);
2665
2666	error = 0;
2667done:
2668	if (nr == 0) {
2669		/*
2670		 * if this page only had a direct item, it is very possible for
2671		 * no io to be required without there being an error.  Or,
2672		 * someone else could have locked them and sent them down the
2673		 * pipe without locking the page
2674		 */
2675		bh = head;
2676		do {
2677			if (!buffer_uptodate(bh)) {
2678				partial = 1;
2679				break;
2680			}
2681			bh = bh->b_this_page;
2682		} while (bh != head);
2683		if (!partial)
2684			SetPageUptodate(page);
2685		end_page_writeback(page);
2686	}
2687	return error;
2688
2689fail:
2690	/*
2691	 * catches various errors, we need to make sure any valid dirty blocks
2692	 * get to the media.  The page is currently locked and not marked for
2693	 * writeback
2694	 */
2695	ClearPageUptodate(page);
2696	bh = head;
2697	do {
2698		get_bh(bh);
2699		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2700			lock_buffer(bh);
2701			mark_buffer_async_write(bh);
2702		} else {
2703			/*
2704			 * clear any dirty bits that might have come from
2705			 * getting attached to a dirty page
2706			 */
2707			clear_buffer_dirty(bh);
2708		}
2709		bh = bh->b_this_page;
2710	} while (bh != head);
2711	SetPageError(page);
2712	BUG_ON(PageWriteback(page));
2713	set_page_writeback(page);
2714	unlock_page(page);
2715	do {
2716		struct buffer_head *next = bh->b_this_page;
2717		if (buffer_async_write(bh)) {
2718			clear_buffer_dirty(bh);
2719			submit_bh(REQ_OP_WRITE, bh);
2720			nr++;
2721		}
2722		put_bh(bh);
2723		bh = next;
2724	} while (bh != head);
2725	goto done;
2726}
2727
2728static int reiserfs_read_folio(struct file *f, struct folio *folio)
2729{
2730	return block_read_full_folio(folio, reiserfs_get_block);
2731}
2732
2733static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2734{
2735	struct inode *inode = page->mapping->host;
2736	reiserfs_wait_on_write_block(inode->i_sb);
2737	return reiserfs_write_full_page(page, wbc);
2738}
2739
2740static void reiserfs_truncate_failed_write(struct inode *inode)
2741{
2742	truncate_inode_pages(inode->i_mapping, inode->i_size);
2743	reiserfs_truncate_file(inode, 0);
2744}
2745
2746static int reiserfs_write_begin(struct file *file,
2747				struct address_space *mapping,
2748				loff_t pos, unsigned len,
2749				struct page **pagep, void **fsdata)
2750{
2751	struct inode *inode;
2752	struct page *page;
2753	pgoff_t index;
2754	int ret;
2755	int old_ref = 0;
2756
2757 	inode = mapping->host;
2758	index = pos >> PAGE_SHIFT;
2759	page = grab_cache_page_write_begin(mapping, index);
 
 
 
 
 
 
 
2760	if (!page)
2761		return -ENOMEM;
2762	*pagep = page;
2763
2764	reiserfs_wait_on_write_block(inode->i_sb);
2765	fix_tail_page_for_writing(page);
2766	if (reiserfs_transaction_running(inode->i_sb)) {
2767		struct reiserfs_transaction_handle *th;
2768		th = (struct reiserfs_transaction_handle *)current->
2769		    journal_info;
2770		BUG_ON(!th->t_refcount);
2771		BUG_ON(!th->t_trans_id);
2772		old_ref = th->t_refcount;
2773		th->t_refcount++;
2774	}
2775	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2776	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2777		struct reiserfs_transaction_handle *th = current->journal_info;
2778		/*
2779		 * this gets a little ugly.  If reiserfs_get_block returned an
2780		 * error and left a transacstion running, we've got to close
2781		 * it, and we've got to free handle if it was a persistent
2782		 * transaction.
2783		 *
2784		 * But, if we had nested into an existing transaction, we need
2785		 * to just drop the ref count on the handle.
2786		 *
2787		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2788		 * and it was a persistent trans.  Otherwise, it was nested
2789		 * above.
2790		 */
2791		if (th->t_refcount > old_ref) {
2792			if (old_ref)
2793				th->t_refcount--;
2794			else {
2795				int err;
2796				reiserfs_write_lock(inode->i_sb);
2797				err = reiserfs_end_persistent_transaction(th);
2798				reiserfs_write_unlock(inode->i_sb);
2799				if (err)
2800					ret = err;
2801			}
2802		}
2803	}
2804	if (ret) {
2805		unlock_page(page);
2806		put_page(page);
2807		/* Truncate allocated blocks */
2808		reiserfs_truncate_failed_write(inode);
2809	}
2810	return ret;
2811}
2812
2813int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2814{
2815	struct inode *inode = page->mapping->host;
2816	int ret;
2817	int old_ref = 0;
2818	int depth;
2819
2820	depth = reiserfs_write_unlock_nested(inode->i_sb);
2821	reiserfs_wait_on_write_block(inode->i_sb);
2822	reiserfs_write_lock_nested(inode->i_sb, depth);
2823
2824	fix_tail_page_for_writing(page);
2825	if (reiserfs_transaction_running(inode->i_sb)) {
2826		struct reiserfs_transaction_handle *th;
2827		th = (struct reiserfs_transaction_handle *)current->
2828		    journal_info;
2829		BUG_ON(!th->t_refcount);
2830		BUG_ON(!th->t_trans_id);
2831		old_ref = th->t_refcount;
2832		th->t_refcount++;
2833	}
2834
2835	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2836	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2837		struct reiserfs_transaction_handle *th = current->journal_info;
2838		/*
2839		 * this gets a little ugly.  If reiserfs_get_block returned an
2840		 * error and left a transacstion running, we've got to close
2841		 * it, and we've got to free handle if it was a persistent
2842		 * transaction.
2843		 *
2844		 * But, if we had nested into an existing transaction, we need
2845		 * to just drop the ref count on the handle.
2846		 *
2847		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2848		 * and it was a persistent trans.  Otherwise, it was nested
2849		 * above.
2850		 */
2851		if (th->t_refcount > old_ref) {
2852			if (old_ref)
2853				th->t_refcount--;
2854			else {
2855				int err;
2856				reiserfs_write_lock(inode->i_sb);
2857				err = reiserfs_end_persistent_transaction(th);
2858				reiserfs_write_unlock(inode->i_sb);
2859				if (err)
2860					ret = err;
2861			}
2862		}
2863	}
2864	return ret;
2865
2866}
2867
2868static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2869{
2870	return generic_block_bmap(as, block, reiserfs_bmap);
2871}
2872
2873static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2874			      loff_t pos, unsigned len, unsigned copied,
2875			      struct page *page, void *fsdata)
2876{
2877	struct inode *inode = page->mapping->host;
2878	int ret = 0;
2879	int update_sd = 0;
2880	struct reiserfs_transaction_handle *th;
2881	unsigned start;
 
2882	bool locked = false;
2883
 
 
 
2884	reiserfs_wait_on_write_block(inode->i_sb);
2885	if (reiserfs_transaction_running(inode->i_sb))
2886		th = current->journal_info;
2887	else
2888		th = NULL;
2889
2890	start = pos & (PAGE_SIZE - 1);
2891	if (unlikely(copied < len)) {
2892		if (!PageUptodate(page))
2893			copied = 0;
2894
2895		page_zero_new_buffers(page, start + copied, start + len);
2896	}
2897	flush_dcache_page(page);
2898
2899	reiserfs_commit_page(inode, page, start, start + copied);
2900
2901	/*
2902	 * generic_commit_write does this for us, but does not update the
2903	 * transaction tracking stuff when the size changes.  So, we have
2904	 * to do the i_size updates here.
2905	 */
2906	if (pos + copied > inode->i_size) {
2907		struct reiserfs_transaction_handle myth;
2908		reiserfs_write_lock(inode->i_sb);
2909		locked = true;
2910		/*
2911		 * If the file have grown beyond the border where it
2912		 * can have a tail, unmark it as needing a tail
2913		 * packing
2914		 */
2915		if ((have_large_tails(inode->i_sb)
2916		     && inode->i_size > i_block_size(inode) * 4)
2917		    || (have_small_tails(inode->i_sb)
2918			&& inode->i_size > i_block_size(inode)))
2919			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2920
2921		ret = journal_begin(&myth, inode->i_sb, 1);
2922		if (ret)
2923			goto journal_error;
2924
2925		reiserfs_update_inode_transaction(inode);
2926		inode->i_size = pos + copied;
2927		/*
2928		 * this will just nest into our transaction.  It's important
2929		 * to use mark_inode_dirty so the inode gets pushed around on
2930		 * the dirty lists, and so that O_SYNC works as expected
2931		 */
2932		mark_inode_dirty(inode);
2933		reiserfs_update_sd(&myth, inode);
2934		update_sd = 1;
2935		ret = journal_end(&myth);
2936		if (ret)
2937			goto journal_error;
2938	}
2939	if (th) {
2940		if (!locked) {
2941			reiserfs_write_lock(inode->i_sb);
2942			locked = true;
2943		}
2944		if (!update_sd)
2945			mark_inode_dirty(inode);
2946		ret = reiserfs_end_persistent_transaction(th);
2947		if (ret)
2948			goto out;
2949	}
2950
2951out:
2952	if (locked)
2953		reiserfs_write_unlock(inode->i_sb);
2954	unlock_page(page);
2955	put_page(page);
2956
2957	if (pos + len > inode->i_size)
2958		reiserfs_truncate_failed_write(inode);
2959
2960	return ret == 0 ? copied : ret;
2961
2962journal_error:
2963	reiserfs_write_unlock(inode->i_sb);
2964	locked = false;
2965	if (th) {
2966		if (!update_sd)
2967			reiserfs_update_sd(th, inode);
2968		ret = reiserfs_end_persistent_transaction(th);
2969	}
2970	goto out;
2971}
2972
2973int reiserfs_commit_write(struct file *f, struct page *page,
2974			  unsigned from, unsigned to)
2975{
2976	struct inode *inode = page->mapping->host;
2977	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2978	int ret = 0;
2979	int update_sd = 0;
2980	struct reiserfs_transaction_handle *th = NULL;
2981	int depth;
2982
2983	depth = reiserfs_write_unlock_nested(inode->i_sb);
2984	reiserfs_wait_on_write_block(inode->i_sb);
2985	reiserfs_write_lock_nested(inode->i_sb, depth);
2986
2987	if (reiserfs_transaction_running(inode->i_sb)) {
2988		th = current->journal_info;
2989	}
2990	reiserfs_commit_page(inode, page, from, to);
2991
2992	/*
2993	 * generic_commit_write does this for us, but does not update the
2994	 * transaction tracking stuff when the size changes.  So, we have
2995	 * to do the i_size updates here.
2996	 */
2997	if (pos > inode->i_size) {
2998		struct reiserfs_transaction_handle myth;
2999		/*
3000		 * If the file have grown beyond the border where it
3001		 * can have a tail, unmark it as needing a tail
3002		 * packing
3003		 */
3004		if ((have_large_tails(inode->i_sb)
3005		     && inode->i_size > i_block_size(inode) * 4)
3006		    || (have_small_tails(inode->i_sb)
3007			&& inode->i_size > i_block_size(inode)))
3008			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3009
3010		ret = journal_begin(&myth, inode->i_sb, 1);
3011		if (ret)
3012			goto journal_error;
3013
3014		reiserfs_update_inode_transaction(inode);
3015		inode->i_size = pos;
3016		/*
3017		 * this will just nest into our transaction.  It's important
3018		 * to use mark_inode_dirty so the inode gets pushed around
3019		 * on the dirty lists, and so that O_SYNC works as expected
3020		 */
3021		mark_inode_dirty(inode);
3022		reiserfs_update_sd(&myth, inode);
3023		update_sd = 1;
3024		ret = journal_end(&myth);
3025		if (ret)
3026			goto journal_error;
3027	}
3028	if (th) {
3029		if (!update_sd)
3030			mark_inode_dirty(inode);
3031		ret = reiserfs_end_persistent_transaction(th);
3032		if (ret)
3033			goto out;
3034	}
3035
3036out:
3037	return ret;
3038
3039journal_error:
3040	if (th) {
3041		if (!update_sd)
3042			reiserfs_update_sd(th, inode);
3043		ret = reiserfs_end_persistent_transaction(th);
3044	}
3045
3046	return ret;
3047}
3048
3049void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3050{
3051	if (reiserfs_attrs(inode->i_sb)) {
3052		if (sd_attrs & REISERFS_SYNC_FL)
3053			inode->i_flags |= S_SYNC;
3054		else
3055			inode->i_flags &= ~S_SYNC;
3056		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3057			inode->i_flags |= S_IMMUTABLE;
3058		else
3059			inode->i_flags &= ~S_IMMUTABLE;
3060		if (sd_attrs & REISERFS_APPEND_FL)
3061			inode->i_flags |= S_APPEND;
3062		else
3063			inode->i_flags &= ~S_APPEND;
3064		if (sd_attrs & REISERFS_NOATIME_FL)
3065			inode->i_flags |= S_NOATIME;
3066		else
3067			inode->i_flags &= ~S_NOATIME;
3068		if (sd_attrs & REISERFS_NOTAIL_FL)
3069			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3070		else
3071			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3072	}
3073}
3074
3075/*
3076 * decide if this buffer needs to stay around for data logging or ordered
3077 * write purposes
3078 */
3079static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3080{
3081	int ret = 1;
3082	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3083
3084	lock_buffer(bh);
3085	spin_lock(&j->j_dirty_buffers_lock);
3086	if (!buffer_mapped(bh)) {
3087		goto free_jh;
3088	}
3089	/*
3090	 * the page is locked, and the only places that log a data buffer
3091	 * also lock the page.
3092	 */
3093	if (reiserfs_file_data_log(inode)) {
3094		/*
3095		 * very conservative, leave the buffer pinned if
3096		 * anyone might need it.
3097		 */
3098		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3099			ret = 0;
3100		}
3101	} else  if (buffer_dirty(bh)) {
3102		struct reiserfs_journal_list *jl;
3103		struct reiserfs_jh *jh = bh->b_private;
3104
3105		/*
3106		 * why is this safe?
3107		 * reiserfs_setattr updates i_size in the on disk
3108		 * stat data before allowing vmtruncate to be called.
3109		 *
3110		 * If buffer was put onto the ordered list for this
3111		 * transaction, we know for sure either this transaction
3112		 * or an older one already has updated i_size on disk,
3113		 * and this ordered data won't be referenced in the file
3114		 * if we crash.
3115		 *
3116		 * if the buffer was put onto the ordered list for an older
3117		 * transaction, we need to leave it around
3118		 */
3119		if (jh && (jl = jh->jl)
3120		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3121			ret = 0;
3122	}
3123free_jh:
3124	if (ret && bh->b_private) {
3125		reiserfs_free_jh(bh);
3126	}
3127	spin_unlock(&j->j_dirty_buffers_lock);
3128	unlock_buffer(bh);
3129	return ret;
3130}
3131
3132/* clm -- taken from fs/buffer.c:block_invalidate_folio */
3133static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3134				    size_t length)
3135{
3136	struct buffer_head *head, *bh, *next;
3137	struct inode *inode = folio->mapping->host;
3138	unsigned int curr_off = 0;
3139	unsigned int stop = offset + length;
3140	int partial_page = (offset || length < folio_size(folio));
3141	int ret = 1;
3142
3143	BUG_ON(!folio_test_locked(folio));
3144
3145	if (!partial_page)
3146		folio_clear_checked(folio);
3147
3148	head = folio_buffers(folio);
3149	if (!head)
3150		goto out;
3151
 
3152	bh = head;
3153	do {
3154		unsigned int next_off = curr_off + bh->b_size;
3155		next = bh->b_this_page;
3156
3157		if (next_off > stop)
3158			goto out;
3159
3160		/*
3161		 * is this block fully invalidated?
3162		 */
3163		if (offset <= curr_off) {
3164			if (invalidate_folio_can_drop(inode, bh))
3165				reiserfs_unmap_buffer(bh);
3166			else
3167				ret = 0;
3168		}
3169		curr_off = next_off;
3170		bh = next;
3171	} while (bh != head);
3172
3173	/*
3174	 * We release buffers only if the entire page is being invalidated.
3175	 * The get_block cached value has been unconditionally invalidated,
3176	 * so real IO is not possible anymore.
3177	 */
3178	if (!partial_page && ret) {
3179		ret = filemap_release_folio(folio, 0);
3180		/* maybe should BUG_ON(!ret); - neilb */
3181	}
3182out:
3183	return;
3184}
3185
3186static bool reiserfs_dirty_folio(struct address_space *mapping,
3187		struct folio *folio)
3188{
3189	if (reiserfs_file_data_log(mapping->host)) {
3190		folio_set_checked(folio);
3191		return filemap_dirty_folio(mapping, folio);
 
3192	}
3193	return block_dirty_folio(mapping, folio);
3194}
3195
3196/*
3197 * Returns true if the folio's buffers were dropped.  The folio is locked.
3198 *
3199 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3200 * in the buffers at folio_buffers(folio).
3201 *
3202 * even in -o notail mode, we can't be sure an old mount without -o notail
3203 * didn't create files with tails.
3204 */
3205static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3206{
3207	struct inode *inode = folio->mapping->host;
3208	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3209	struct buffer_head *head;
3210	struct buffer_head *bh;
3211	bool ret = true;
3212
3213	WARN_ON(folio_test_checked(folio));
3214	spin_lock(&j->j_dirty_buffers_lock);
3215	head = folio_buffers(folio);
3216	bh = head;
3217	do {
3218		if (bh->b_private) {
3219			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3220				reiserfs_free_jh(bh);
3221			} else {
3222				ret = false;
3223				break;
3224			}
3225		}
3226		bh = bh->b_this_page;
3227	} while (bh != head);
3228	if (ret)
3229		ret = try_to_free_buffers(folio);
3230	spin_unlock(&j->j_dirty_buffers_lock);
3231	return ret;
3232}
3233
3234/*
3235 * We thank Mingming Cao for helping us understand in great detail what
3236 * to do in this section of the code.
3237 */
3238static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3239{
3240	struct file *file = iocb->ki_filp;
3241	struct inode *inode = file->f_mapping->host;
3242	size_t count = iov_iter_count(iter);
3243	ssize_t ret;
3244
3245	ret = blockdev_direct_IO(iocb, inode, iter,
3246				 reiserfs_get_blocks_direct_io);
3247
3248	/*
3249	 * In case of error extending write may have instantiated a few
3250	 * blocks outside i_size. Trim these off again.
3251	 */
3252	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3253		loff_t isize = i_size_read(inode);
3254		loff_t end = iocb->ki_pos + count;
3255
3256		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3257			truncate_setsize(inode, isize);
3258			reiserfs_vfs_truncate_file(inode);
3259		}
3260	}
3261
3262	return ret;
3263}
3264
3265int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3266		     struct iattr *attr)
3267{
3268	struct inode *inode = d_inode(dentry);
3269	unsigned int ia_valid;
 
3270	int error;
3271
3272	error = setattr_prepare(&init_user_ns, dentry, attr);
3273	if (error)
3274		return error;
3275
3276	/* must be turned off for recursive notify_change calls */
3277	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3278
3279	if (is_quota_modification(mnt_userns, inode, attr)) {
3280		error = dquot_initialize(inode);
3281		if (error)
3282			return error;
3283	}
3284	reiserfs_write_lock(inode->i_sb);
3285	if (attr->ia_valid & ATTR_SIZE) {
3286		/*
3287		 * version 2 items will be caught by the s_maxbytes check
3288		 * done for us in vmtruncate
3289		 */
3290		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3291		    attr->ia_size > MAX_NON_LFS) {
3292			reiserfs_write_unlock(inode->i_sb);
3293			error = -EFBIG;
3294			goto out;
3295		}
3296
3297		inode_dio_wait(inode);
3298
3299		/* fill in hole pointers in the expanding truncate case. */
3300		if (attr->ia_size > inode->i_size) {
3301			loff_t pos = attr->ia_size;
3302
3303			if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3304				pos++;
3305			error = generic_cont_expand_simple(inode, pos);
3306			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3307				int err;
3308				struct reiserfs_transaction_handle th;
3309				/* we're changing at most 2 bitmaps, inode + super */
3310				err = journal_begin(&th, inode->i_sb, 4);
3311				if (!err) {
3312					reiserfs_discard_prealloc(&th, inode);
3313					err = journal_end(&th);
3314				}
3315				if (err)
3316					error = err;
3317			}
3318			if (error) {
3319				reiserfs_write_unlock(inode->i_sb);
3320				goto out;
3321			}
3322			/*
3323			 * file size is changed, ctime and mtime are
3324			 * to be updated
3325			 */
3326			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3327		}
3328	}
3329	reiserfs_write_unlock(inode->i_sb);
3330
3331	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3332	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3333	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3334		/* stat data of format v3.5 has 16 bit uid and gid */
3335		error = -EINVAL;
3336		goto out;
3337	}
3338
3339	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3340	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3341		struct reiserfs_transaction_handle th;
3342		int jbegin_count =
3343		    2 *
3344		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3345		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3346		    2;
3347
3348		error = reiserfs_chown_xattrs(inode, attr);
3349
3350		if (error)
3351			return error;
3352
3353		/*
3354		 * (user+group)*(old+new) structure - we count quota
3355		 * info and , inode write (sb, inode)
3356		 */
3357		reiserfs_write_lock(inode->i_sb);
3358		error = journal_begin(&th, inode->i_sb, jbegin_count);
3359		reiserfs_write_unlock(inode->i_sb);
3360		if (error)
3361			goto out;
3362		error = dquot_transfer(mnt_userns, inode, attr);
3363		reiserfs_write_lock(inode->i_sb);
3364		if (error) {
3365			journal_end(&th);
3366			reiserfs_write_unlock(inode->i_sb);
3367			goto out;
3368		}
3369
3370		/*
3371		 * Update corresponding info in inode so that everything
3372		 * is in one transaction
3373		 */
3374		if (attr->ia_valid & ATTR_UID)
3375			inode->i_uid = attr->ia_uid;
3376		if (attr->ia_valid & ATTR_GID)
3377			inode->i_gid = attr->ia_gid;
3378		mark_inode_dirty(inode);
3379		error = journal_end(&th);
3380		reiserfs_write_unlock(inode->i_sb);
3381		if (error)
3382			goto out;
3383	}
3384
 
 
 
 
 
 
 
3385	if ((attr->ia_valid & ATTR_SIZE) &&
3386	    attr->ia_size != i_size_read(inode)) {
3387		error = inode_newsize_ok(inode, attr->ia_size);
3388		if (!error) {
3389			/*
3390			 * Could race against reiserfs_file_release
3391			 * if called from NFS, so take tailpack mutex.
3392			 */
3393			mutex_lock(&REISERFS_I(inode)->tailpack);
3394			truncate_setsize(inode, attr->ia_size);
3395			reiserfs_truncate_file(inode, 1);
3396			mutex_unlock(&REISERFS_I(inode)->tailpack);
3397		}
3398	}
3399
3400	if (!error) {
3401		setattr_copy(&init_user_ns, inode, attr);
3402		mark_inode_dirty(inode);
3403	}
 
3404
3405	if (!error && reiserfs_posixacl(inode->i_sb)) {
3406		if (attr->ia_valid & ATTR_MODE)
3407			error = reiserfs_acl_chmod(dentry);
3408	}
3409
3410out:
 
 
3411	return error;
3412}
3413
3414const struct address_space_operations reiserfs_address_space_operations = {
3415	.writepage = reiserfs_writepage,
3416	.read_folio = reiserfs_read_folio,
3417	.readahead = reiserfs_readahead,
3418	.release_folio = reiserfs_release_folio,
3419	.invalidate_folio = reiserfs_invalidate_folio,
3420	.write_begin = reiserfs_write_begin,
3421	.write_end = reiserfs_write_end,
3422	.bmap = reiserfs_aop_bmap,
3423	.direct_IO = reiserfs_direct_IO,
3424	.dirty_folio = reiserfs_dirty_folio,
3425};
v3.1
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include <linux/reiserfs_fs.h>
   8#include <linux/reiserfs_acl.h>
   9#include <linux/reiserfs_xattr.h>
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <asm/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
 
 
  21
  22int reiserfs_commit_write(struct file *f, struct page *page,
  23			  unsigned from, unsigned to);
  24
  25void reiserfs_evict_inode(struct inode *inode)
  26{
  27	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
 
 
 
  28	int jbegin_count =
  29	    JOURNAL_PER_BALANCE_CNT * 2 +
  30	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  31	struct reiserfs_transaction_handle th;
  32	int depth;
  33	int err;
  34
  35	if (!inode->i_nlink && !is_bad_inode(inode))
  36		dquot_initialize(inode);
  37
  38	truncate_inode_pages(&inode->i_data, 0);
  39	if (inode->i_nlink)
  40		goto no_delete;
  41
  42	depth = reiserfs_write_lock_once(inode->i_sb);
 
 
 
 
 
  43
  44	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
  45	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
  46		reiserfs_delete_xattrs(inode);
  47
 
 
  48		if (journal_begin(&th, inode->i_sb, jbegin_count))
  49			goto out;
  50		reiserfs_update_inode_transaction(inode);
  51
  52		reiserfs_discard_prealloc(&th, inode);
  53
  54		err = reiserfs_delete_object(&th, inode);
  55
  56		/* Do quota update inside a transaction for journaled quotas. We must do that
  57		 * after delete_object so that quota updates go into the same transaction as
  58		 * stat data deletion */
  59		if (!err) 
 
 
 
  60			dquot_free_inode(inode);
 
 
  61
  62		if (journal_end(&th, inode->i_sb, jbegin_count))
  63			goto out;
  64
  65		/* check return value from reiserfs_delete_object after
 
  66		 * ending the transaction
  67		 */
  68		if (err)
  69		    goto out;
  70
  71		/* all items of file are deleted, so we can remove "save" link */
  72		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
  73								 * about an error here */
 
 
 
 
 
  74	} else {
  75		/* no object items are in the tree */
  76		;
  77	}
  78      out:
  79	end_writeback(inode);	/* note this must go after the journal_end to prevent deadlock */
 
 
  80	dquot_drop(inode);
  81	inode->i_blocks = 0;
  82	reiserfs_write_unlock_once(inode->i_sb, depth);
  83	return;
  84
  85no_delete:
  86	end_writeback(inode);
  87	dquot_drop(inode);
  88}
  89
  90static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
  91			  __u32 objectid, loff_t offset, int type, int length)
  92{
  93	key->version = version;
  94
  95	key->on_disk_key.k_dir_id = dirid;
  96	key->on_disk_key.k_objectid = objectid;
  97	set_cpu_key_k_offset(key, offset);
  98	set_cpu_key_k_type(key, type);
  99	key->key_length = length;
 100}
 101
 102/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
 103   offset and type of key */
 
 
 104void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 105		  int type, int length)
 106{
 107	_make_cpu_key(key, get_inode_item_key_version(inode),
 108		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 109		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 110		      length);
 111}
 112
 113//
 114// when key is 0, do not set version and short key
 115//
 116inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 117			      int version,
 118			      loff_t offset, int type, int length,
 119			      int entry_count /*or ih_free_space */ )
 120{
 121	if (key) {
 122		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 123		ih->ih_key.k_objectid =
 124		    cpu_to_le32(key->on_disk_key.k_objectid);
 125	}
 126	put_ih_version(ih, version);
 127	set_le_ih_k_offset(ih, offset);
 128	set_le_ih_k_type(ih, type);
 129	put_ih_item_len(ih, length);
 130	/*    set_ih_free_space (ih, 0); */
 131	// for directory items it is entry count, for directs and stat
 132	// datas - 0xffff, for indirects - 0
 
 
 133	put_ih_entry_count(ih, entry_count);
 134}
 135
 136//
 137// FIXME: we might cache recently accessed indirect item
 
 
 
 
 138
 139// Ugh.  Not too eager for that....
 140//  I cut the code until such time as I see a convincing argument (benchmark).
 141// I don't want a bloated inode struct..., and I don't like code complexity....
 142
 143/* cutting the code is fine, since it really isn't in use yet and is easy
 144** to add back in.  But, Vladimir has a really good idea here.  Think
 145** about what happens for reading a file.  For each page,
 146** The VFS layer calls reiserfs_readpage, who searches the tree to find
 147** an indirect item.  This indirect item has X number of pointers, where
 148** X is a big number if we've done the block allocation right.  But,
 149** we only use one or two of these pointers during each call to readpage,
 150** needlessly researching again later on.
 151**
 152** The size of the cache could be dynamic based on the size of the file.
 153**
 154** I'd also like to see us cache the location the stat data item, since
 155** we are needlessly researching for that frequently.
 156**
 157** --chris
 158*/
 159
 160/* If this page has a file tail in it, and
 161** it was read in by get_block_create_0, the page data is valid,
 162** but tail is still sitting in a direct item, and we can't write to
 163** it.  So, look through this page, and check all the mapped buffers
 164** to make sure they have valid block numbers.  Any that don't need
 165** to be unmapped, so that __block_write_begin will correctly call
 166** reiserfs_get_block to convert the tail into an unformatted node
 167*/
 
 168static inline void fix_tail_page_for_writing(struct page *page)
 169{
 170	struct buffer_head *head, *next, *bh;
 171
 172	if (page && page_has_buffers(page)) {
 173		head = page_buffers(page);
 174		bh = head;
 175		do {
 176			next = bh->b_this_page;
 177			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 178				reiserfs_unmap_buffer(bh);
 179			}
 180			bh = next;
 181		} while (bh != head);
 182	}
 183}
 184
 185/* reiserfs_get_block does not need to allocate a block only if it has been
 186   done already or non-hole position has been found in the indirect item */
 
 
 187static inline int allocation_needed(int retval, b_blocknr_t allocated,
 188				    struct item_head *ih,
 189				    __le32 * item, int pos_in_item)
 190{
 191	if (allocated)
 192		return 0;
 193	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 194	    get_block_num(item, pos_in_item))
 195		return 0;
 196	return 1;
 197}
 198
 199static inline int indirect_item_found(int retval, struct item_head *ih)
 200{
 201	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 202}
 203
 204static inline void set_block_dev_mapped(struct buffer_head *bh,
 205					b_blocknr_t block, struct inode *inode)
 206{
 207	map_bh(bh, inode->i_sb, block);
 208}
 209
 210//
 211// files which were created in the earlier version can not be longer,
 212// than 2 gb
 213//
 214static int file_capable(struct inode *inode, sector_t block)
 215{
 216	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
 217	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
 
 
 218		return 1;
 219
 220	return 0;
 221}
 222
 223static int restart_transaction(struct reiserfs_transaction_handle *th,
 224			       struct inode *inode, struct treepath *path)
 225{
 226	struct super_block *s = th->t_super;
 227	int len = th->t_blocks_allocated;
 228	int err;
 229
 230	BUG_ON(!th->t_trans_id);
 231	BUG_ON(!th->t_refcount);
 232
 233	pathrelse(path);
 234
 235	/* we cannot restart while nested */
 236	if (th->t_refcount > 1) {
 237		return 0;
 238	}
 239	reiserfs_update_sd(th, inode);
 240	err = journal_end(th, s, len);
 241	if (!err) {
 242		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 243		if (!err)
 244			reiserfs_update_inode_transaction(inode);
 245	}
 246	return err;
 247}
 248
 249// it is called by get_block when create == 0. Returns block number
 250// for 'block'-th logical block of file. When it hits direct item it
 251// returns 0 (being called from bmap) or read direct item into piece
 252// of page (bh_result)
 253
 254// Please improve the english/clarity in the comment above, as it is
 255// hard to understand.
 256
 257static int _get_block_create_0(struct inode *inode, sector_t block,
 258			       struct buffer_head *bh_result, int args)
 259{
 260	INITIALIZE_PATH(path);
 261	struct cpu_key key;
 262	struct buffer_head *bh;
 263	struct item_head *ih, tmp_ih;
 264	b_blocknr_t blocknr;
 265	char *p = NULL;
 266	int chars;
 267	int ret;
 268	int result;
 269	int done = 0;
 270	unsigned long offset;
 271
 272	// prepare the key to look for the 'block'-th block of file
 273	make_cpu_key(&key, inode,
 274		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 275		     3);
 276
 277	result = search_for_position_by_key(inode->i_sb, &key, &path);
 278	if (result != POSITION_FOUND) {
 279		pathrelse(&path);
 280		if (p)
 281			kunmap(bh_result->b_page);
 282		if (result == IO_ERROR)
 283			return -EIO;
 284		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
 285		// That there is some MMAPED data associated with it that is yet to be written to disk.
 
 
 
 286		if ((args & GET_BLOCK_NO_HOLE)
 287		    && !PageUptodate(bh_result->b_page)) {
 288			return -ENOENT;
 289		}
 290		return 0;
 291	}
 292	//
 293	bh = get_last_bh(&path);
 294	ih = get_ih(&path);
 295	if (is_indirect_le_ih(ih)) {
 296		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
 297
 298		/* FIXME: here we could cache indirect item or part of it in
 299		   the inode to avoid search_by_key in case of subsequent
 300		   access to file */
 
 
 301		blocknr = get_block_num(ind_item, path.pos_in_item);
 302		ret = 0;
 303		if (blocknr) {
 304			map_bh(bh_result, inode->i_sb, blocknr);
 305			if (path.pos_in_item ==
 306			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 307				set_buffer_boundary(bh_result);
 308			}
 309		} else
 310			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
 311			// That there is some MMAPED data associated with it that is yet to  be written to disk.
 
 
 
 
 312		if ((args & GET_BLOCK_NO_HOLE)
 313			    && !PageUptodate(bh_result->b_page)) {
 314			ret = -ENOENT;
 315		}
 316
 317		pathrelse(&path);
 318		if (p)
 319			kunmap(bh_result->b_page);
 320		return ret;
 321	}
 322	// requested data are in direct item(s)
 323	if (!(args & GET_BLOCK_READ_DIRECT)) {
 324		// we are called by bmap. FIXME: we can not map block of file
 325		// when it is stored in direct item(s)
 
 
 326		pathrelse(&path);
 327		if (p)
 328			kunmap(bh_result->b_page);
 329		return -ENOENT;
 330	}
 331
 332	/* if we've got a direct item, and the buffer or page was uptodate,
 333	 ** we don't want to pull data off disk again.  skip to the
 334	 ** end, where we map the buffer and return
 
 335	 */
 336	if (buffer_uptodate(bh_result)) {
 337		goto finished;
 338	} else
 339		/*
 340		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
 341		 ** pages without any buffers.  If the page is up to date, we don't want
 342		 ** read old data off disk.  Set the up to date bit on the buffer instead
 343		 ** and jump to the end
 344		 */
 345	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 346		set_buffer_uptodate(bh_result);
 347		goto finished;
 348	}
 349	// read file tail into part of page
 350	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
 351	copy_item_head(&tmp_ih, ih);
 352
 353	/* we only want to kmap if we are reading the tail into the page.
 354	 ** this is not the common case, so we don't kmap until we are
 355	 ** sure we need to.  But, this means the item might move if
 356	 ** kmap schedules
 
 357	 */
 358	if (!p)
 359		p = (char *)kmap(bh_result->b_page);
 360
 361	p += offset;
 362	memset(p, 0, inode->i_sb->s_blocksize);
 363	do {
 364		if (!is_direct_le_ih(ih)) {
 365			BUG();
 366		}
 367		/* make sure we don't read more bytes than actually exist in
 368		 ** the file.  This can happen in odd cases where i_size isn't
 369		 ** correct, and when direct item padding results in a few
 370		 ** extra bytes at the end of the direct item
 
 371		 */
 372		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 373			break;
 374		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 375			chars =
 376			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 377			    path.pos_in_item;
 378			done = 1;
 379		} else {
 380			chars = ih_item_len(ih) - path.pos_in_item;
 381		}
 382		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
 383
 384		if (done)
 385			break;
 386
 387		p += chars;
 388
 
 
 
 
 
 
 389		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 390			// we done, if read direct item is not the last item of
 391			// node FIXME: we could try to check right delimiting key
 392			// to see whether direct item continues in the right
 393			// neighbor or rely on i_size
 394			break;
 395
 396		// update key to look for the next piece
 397		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 398		result = search_for_position_by_key(inode->i_sb, &key, &path);
 399		if (result != POSITION_FOUND)
 400			// i/o error most likely
 401			break;
 402		bh = get_last_bh(&path);
 403		ih = get_ih(&path);
 404	} while (1);
 405
 406	flush_dcache_page(bh_result->b_page);
 407	kunmap(bh_result->b_page);
 408
 409      finished:
 410	pathrelse(&path);
 411
 412	if (result == IO_ERROR)
 413		return -EIO;
 414
 415	/* this buffer has valid data, but isn't valid for io.  mapping it to
 
 416	 * block #0 tells the rest of reiserfs it just has a tail in it
 417	 */
 418	map_bh(bh_result, inode->i_sb, 0);
 419	set_buffer_uptodate(bh_result);
 420	return 0;
 421}
 422
 423// this is called to create file map. So, _get_block_create_0 will not
 424// read direct item
 
 
 425static int reiserfs_bmap(struct inode *inode, sector_t block,
 426			 struct buffer_head *bh_result, int create)
 427{
 428	if (!file_capable(inode, block))
 429		return -EFBIG;
 430
 431	reiserfs_write_lock(inode->i_sb);
 432	/* do not read the direct item */
 433	_get_block_create_0(inode, block, bh_result, 0);
 434	reiserfs_write_unlock(inode->i_sb);
 435	return 0;
 436}
 437
 438/* special version of get_block that is only used by grab_tail_page right
 439** now.  It is sent to __block_write_begin, and when you try to get a
 440** block past the end of the file (or a block from a hole) it returns
 441** -ENOENT instead of a valid buffer.  __block_write_begin expects to
 442** be able to do i/o on the buffers returned, unless an error value
 443** is also returned.
 444**
 445** So, this allows __block_write_begin to be used for reading a single block
 446** in a page.  Where it does not produce a valid page for holes, or past the
 447** end of the file.  This turns out to be exactly what we need for reading
 448** tails for conversion.
 449**
 450** The point of the wrapper is forcing a certain value for create, even
 451** though the VFS layer is calling this function with create==1.  If you
 452** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 453** don't use this function.
 
 454*/
 455static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 456				       struct buffer_head *bh_result,
 457				       int create)
 458{
 459	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 460}
 461
 462/* This is special helper for reiserfs_get_block in case we are executing
 463   direct_IO request. */
 
 
 464static int reiserfs_get_blocks_direct_io(struct inode *inode,
 465					 sector_t iblock,
 466					 struct buffer_head *bh_result,
 467					 int create)
 468{
 469	int ret;
 470
 471	bh_result->b_page = NULL;
 472
 473	/* We set the b_size before reiserfs_get_block call since it is
 474	   referenced in convert_tail_for_hole() that may be called from
 475	   reiserfs_get_block() */
 476	bh_result->b_size = (1 << inode->i_blkbits);
 
 
 477
 478	ret = reiserfs_get_block(inode, iblock, bh_result,
 479				 create | GET_BLOCK_NO_DANGLE);
 480	if (ret)
 481		goto out;
 482
 483	/* don't allow direct io onto tail pages */
 484	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 485		/* make sure future calls to the direct io funcs for this offset
 486		 ** in the file fail by unmapping the buffer
 
 487		 */
 488		clear_buffer_mapped(bh_result);
 489		ret = -EINVAL;
 490	}
 491	/* Possible unpacked tail. Flush the data before pages have
 492	   disappeared */
 
 
 
 493	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 494		int err;
 495
 496		reiserfs_write_lock(inode->i_sb);
 497
 498		err = reiserfs_commit_for_inode(inode);
 499		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 500
 501		reiserfs_write_unlock(inode->i_sb);
 502
 503		if (err < 0)
 504			ret = err;
 505	}
 506      out:
 507	return ret;
 508}
 509
 510/*
 511** helper function for when reiserfs_get_block is called for a hole
 512** but the file tail is still in a direct item
 513** bh_result is the buffer head for the hole
 514** tail_offset is the offset of the start of the tail in the file
 515**
 516** This calls prepare_write, which will start a new transaction
 517** you should not be in a transaction, or have any paths held when you
 518** call this.
 519*/
 520static int convert_tail_for_hole(struct inode *inode,
 521				 struct buffer_head *bh_result,
 522				 loff_t tail_offset)
 523{
 524	unsigned long index;
 525	unsigned long tail_end;
 526	unsigned long tail_start;
 527	struct page *tail_page;
 528	struct page *hole_page = bh_result->b_page;
 529	int retval = 0;
 530
 531	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 532		return -EIO;
 533
 534	/* always try to read until the end of the block */
 535	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
 536	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 537
 538	index = tail_offset >> PAGE_CACHE_SHIFT;
 539	/* hole_page can be zero in case of direct_io, we are sure
 540	   that we cannot get here if we write with O_DIRECT into
 541	   tail page */
 
 542	if (!hole_page || index != hole_page->index) {
 543		tail_page = grab_cache_page(inode->i_mapping, index);
 544		retval = -ENOMEM;
 545		if (!tail_page) {
 546			goto out;
 547		}
 548	} else {
 549		tail_page = hole_page;
 550	}
 551
 552	/* we don't have to make sure the conversion did not happen while
 553	 ** we were locking the page because anyone that could convert
 554	 ** must first take i_mutex.
 555	 **
 556	 ** We must fix the tail page for writing because it might have buffers
 557	 ** that are mapped, but have a block number of 0.  This indicates tail
 558	 ** data that has been read directly into the page, and
 559	 ** __block_write_begin won't trigger a get_block in this case.
 
 560	 */
 561	fix_tail_page_for_writing(tail_page);
 562	retval = __reiserfs_write_begin(tail_page, tail_start,
 563				      tail_end - tail_start);
 564	if (retval)
 565		goto unlock;
 566
 567	/* tail conversion might change the data in the page */
 568	flush_dcache_page(tail_page);
 569
 570	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 571
 572      unlock:
 573	if (tail_page != hole_page) {
 574		unlock_page(tail_page);
 575		page_cache_release(tail_page);
 576	}
 577      out:
 578	return retval;
 579}
 580
 581static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 582				  sector_t block,
 583				  struct inode *inode,
 584				  b_blocknr_t * allocated_block_nr,
 585				  struct treepath *path, int flags)
 586{
 587	BUG_ON(!th->t_trans_id);
 588
 589#ifdef REISERFS_PREALLOCATE
 590	if (!(flags & GET_BLOCK_NO_IMUX)) {
 591		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 592						  path, block);
 593	}
 594#endif
 595	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 596					 block);
 597}
 598
 599int reiserfs_get_block(struct inode *inode, sector_t block,
 600		       struct buffer_head *bh_result, int create)
 601{
 602	int repeat, retval = 0;
 603	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
 
 604	INITIALIZE_PATH(path);
 605	int pos_in_item;
 606	struct cpu_key key;
 607	struct buffer_head *bh, *unbh = NULL;
 608	struct item_head *ih, tmp_ih;
 609	__le32 *item;
 610	int done;
 611	int fs_gen;
 612	int lock_depth;
 613	struct reiserfs_transaction_handle *th = NULL;
 614	/* space reserved in transaction batch:
 615	   . 3 balancings in direct->indirect conversion
 616	   . 1 block involved into reiserfs_update_sd()
 617	   XXX in practically impossible worst case direct2indirect()
 618	   can incur (much) more than 3 balancings.
 619	   quota update for user, group */
 
 
 620	int jbegin_count =
 621	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 622	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 623	int version;
 624	int dangle = 1;
 625	loff_t new_offset =
 626	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 627
 628	lock_depth = reiserfs_write_lock_once(inode->i_sb);
 629	version = get_inode_item_key_version(inode);
 630
 631	if (!file_capable(inode, block)) {
 632		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
 633		return -EFBIG;
 634	}
 635
 636	/* if !create, we aren't changing the FS, so we don't need to
 637	 ** log anything, so we don't need to start a transaction
 
 638	 */
 639	if (!(create & GET_BLOCK_CREATE)) {
 640		int ret;
 641		/* find number of block-th logical block of the file */
 642		ret = _get_block_create_0(inode, block, bh_result,
 643					  create | GET_BLOCK_READ_DIRECT);
 644		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
 645		return ret;
 646	}
 
 647	/*
 648	 * if we're already in a transaction, make sure to close
 649	 * any new transactions we start in this func
 650	 */
 651	if ((create & GET_BLOCK_NO_DANGLE) ||
 652	    reiserfs_transaction_running(inode->i_sb))
 653		dangle = 0;
 654
 655	/* If file is of such a size, that it might have a tail and tails are enabled
 656	 ** we should mark it as possibly needing tail packing on close
 
 
 657	 */
 658	if ((have_large_tails(inode->i_sb)
 659	     && inode->i_size < i_block_size(inode) * 4)
 660	    || (have_small_tails(inode->i_sb)
 661		&& inode->i_size < i_block_size(inode)))
 662		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 663
 664	/* set the key of the first byte in the 'block'-th block of file */
 665	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 666	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 667	      start_trans:
 668		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 669		if (!th) {
 670			retval = -ENOMEM;
 671			goto failure;
 672		}
 673		reiserfs_update_inode_transaction(inode);
 674	}
 675      research:
 676
 677	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 678	if (retval == IO_ERROR) {
 679		retval = -EIO;
 680		goto failure;
 681	}
 682
 683	bh = get_last_bh(&path);
 684	ih = get_ih(&path);
 685	item = get_item(&path);
 686	pos_in_item = path.pos_in_item;
 687
 688	fs_gen = get_generation(inode->i_sb);
 689	copy_item_head(&tmp_ih, ih);
 690
 691	if (allocation_needed
 692	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 693		/* we have to allocate block for the unformatted node */
 694		if (!th) {
 695			pathrelse(&path);
 696			goto start_trans;
 697		}
 698
 699		repeat =
 700		    _allocate_block(th, block, inode, &allocated_block_nr,
 701				    &path, create);
 702
 
 
 
 
 
 703		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 704			/* restart the transaction to give the journal a chance to free
 705			 ** some blocks.  releases the path, so we have to go back to
 706			 ** research if we succeed on the second try
 707			 */
 708			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 709			retval = restart_transaction(th, inode, &path);
 710			if (retval)
 711				goto failure;
 712			repeat =
 713			    _allocate_block(th, block, inode,
 714					    &allocated_block_nr, NULL, create);
 715
 716			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 717				goto research;
 718			}
 719			if (repeat == QUOTA_EXCEEDED)
 720				retval = -EDQUOT;
 721			else
 722				retval = -ENOSPC;
 723			goto failure;
 724		}
 725
 726		if (fs_changed(fs_gen, inode->i_sb)
 727		    && item_moved(&tmp_ih, &path)) {
 728			goto research;
 729		}
 730	}
 731
 732	if (indirect_item_found(retval, ih)) {
 733		b_blocknr_t unfm_ptr;
 734		/* 'block'-th block is in the file already (there is
 735		   corresponding cell in some indirect item). But it may be
 736		   zero unformatted node pointer (hole) */
 
 
 737		unfm_ptr = get_block_num(item, pos_in_item);
 738		if (unfm_ptr == 0) {
 739			/* use allocated block to plug the hole */
 740			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 741			if (fs_changed(fs_gen, inode->i_sb)
 742			    && item_moved(&tmp_ih, &path)) {
 743				reiserfs_restore_prepared_buffer(inode->i_sb,
 744								 bh);
 745				goto research;
 746			}
 747			set_buffer_new(bh_result);
 748			if (buffer_dirty(bh_result)
 749			    && reiserfs_data_ordered(inode->i_sb))
 750				reiserfs_add_ordered_list(inode, bh_result);
 751			put_block_num(item, pos_in_item, allocated_block_nr);
 752			unfm_ptr = allocated_block_nr;
 753			journal_mark_dirty(th, inode->i_sb, bh);
 754			reiserfs_update_sd(th, inode);
 755		}
 756		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 757		pathrelse(&path);
 758		retval = 0;
 759		if (!dangle && th)
 760			retval = reiserfs_end_persistent_transaction(th);
 761
 762		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
 763
 764		/* the item was found, so new blocks were not added to the file
 765		 ** there is no need to make sure the inode is updated with this
 766		 ** transaction
 
 767		 */
 768		return retval;
 769	}
 770
 771	if (!th) {
 772		pathrelse(&path);
 773		goto start_trans;
 774	}
 775
 776	/* desired position is not found or is in the direct item. We have
 777	   to append file with holes up to 'block'-th block converting
 778	   direct items to indirect one if necessary */
 
 
 779	done = 0;
 780	do {
 781		if (is_statdata_le_ih(ih)) {
 782			__le32 unp = 0;
 783			struct cpu_key tmp_key;
 784
 785			/* indirect item has to be inserted */
 786			make_le_item_head(&tmp_ih, &key, version, 1,
 787					  TYPE_INDIRECT, UNFM_P_SIZE,
 788					  0 /* free_space */ );
 789
 
 
 
 
 790			if (cpu_key_k_offset(&key) == 1) {
 791				/* we are going to add 'block'-th block to the file. Use
 792				   allocated block for that */
 793				unp = cpu_to_le32(allocated_block_nr);
 794				set_block_dev_mapped(bh_result,
 795						     allocated_block_nr, inode);
 796				set_buffer_new(bh_result);
 797				done = 1;
 798			}
 799			tmp_key = key;	// ;)
 800			set_cpu_key_k_offset(&tmp_key, 1);
 801			PATH_LAST_POSITION(&path)++;
 802
 803			retval =
 804			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 805						 inode, (char *)&unp);
 806			if (retval) {
 807				reiserfs_free_block(th, inode,
 808						    allocated_block_nr, 1);
 809				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
 
 
 
 
 810			}
 811			//mark_tail_converted (inode);
 812		} else if (is_direct_le_ih(ih)) {
 813			/* direct item has to be converted */
 814			loff_t tail_offset;
 815
 816			tail_offset =
 817			    ((le_ih_k_offset(ih) -
 818			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 
 
 
 
 
 
 819			if (tail_offset == cpu_key_k_offset(&key)) {
 820				/* direct item we just found fits into block we have
 821				   to map. Convert it into unformatted node: use
 822				   bh_result for the conversion */
 823				set_block_dev_mapped(bh_result,
 824						     allocated_block_nr, inode);
 825				unbh = bh_result;
 826				done = 1;
 827			} else {
 828				/* we have to padd file tail stored in direct item(s)
 829				   up to block size and convert it to unformatted
 830				   node. FIXME: this should also get into page cache */
 
 
 
 831
 832				pathrelse(&path);
 833				/*
 834				 * ugly, but we can only end the transaction if
 835				 * we aren't nested
 836				 */
 837				BUG_ON(!th->t_refcount);
 838				if (th->t_refcount == 1) {
 839					retval =
 840					    reiserfs_end_persistent_transaction
 841					    (th);
 842					th = NULL;
 843					if (retval)
 844						goto failure;
 845				}
 846
 847				retval =
 848				    convert_tail_for_hole(inode, bh_result,
 849							  tail_offset);
 850				if (retval) {
 851					if (retval != -ENOSPC)
 852						reiserfs_error(inode->i_sb,
 853							"clm-6004",
 854							"convert tail failed "
 855							"inode %lu, error %d",
 856							inode->i_ino,
 857							retval);
 858					if (allocated_block_nr) {
 859						/* the bitmap, the super, and the stat data == 3 */
 
 
 
 860						if (!th)
 861							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 862						if (th)
 863							reiserfs_free_block(th,
 864									    inode,
 865									    allocated_block_nr,
 866									    1);
 867					}
 868					goto failure;
 869				}
 870				goto research;
 871			}
 872			retval =
 873			    direct2indirect(th, inode, &path, unbh,
 874					    tail_offset);
 875			if (retval) {
 876				reiserfs_unmap_buffer(unbh);
 877				reiserfs_free_block(th, inode,
 878						    allocated_block_nr, 1);
 879				goto failure;
 880			}
 881			/* it is important the set_buffer_uptodate is done after
 882			 ** the direct2indirect.  The buffer might contain valid
 883			 ** data newer than the data on disk (read by readpage, changed,
 884			 ** and then sent here by writepage).  direct2indirect needs
 885			 ** to know if unbh was already up to date, so it can decide
 886			 ** if the data in unbh needs to be replaced with data from
 887			 ** the disk
 
 
 888			 */
 889			set_buffer_uptodate(unbh);
 890
 891			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
 892			   buffer will disappear shortly, so it should not be added to
 
 
 893			 */
 894			if (unbh->b_page) {
 895				/* we've converted the tail, so we must
 896				 ** flush unbh before the transaction commits
 
 897				 */
 898				reiserfs_add_tail_list(inode, unbh);
 899
 900				/* mark it dirty now to prevent commit_write from adding
 901				 ** this buffer to the inode's dirty buffer list
 
 
 902				 */
 903				/*
 904				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
 905				 * It's still atomic, but it sets the page dirty too,
 906				 * which makes it eligible for writeback at any time by the
 907				 * VM (which was also the case with __mark_buffer_dirty())
 
 
 908				 */
 909				mark_buffer_dirty(unbh);
 910			}
 911		} else {
 912			/* append indirect item with holes if needed, when appending
 913			   pointer to 'block'-th block use block, which is already
 914			   allocated */
 
 
 915			struct cpu_key tmp_key;
 916			unp_t unf_single = 0;	// We use this in case we need to allocate only
 917			// one block which is a fastpath
 
 
 
 918			unp_t *un;
 919			__u64 max_to_insert =
 920			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
 921			    UNFM_P_SIZE;
 922			__u64 blocks_needed;
 923
 924			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
 925			       "vs-804: invalid position for append");
 926			/* indirect item has to be appended, set up key of that position */
 
 
 
 
 927			make_cpu_key(&tmp_key, inode,
 928				     le_key_k_offset(version,
 929						     &(ih->ih_key)) +
 930				     op_bytes_number(ih,
 931						     inode->i_sb->s_blocksize),
 932				     //pos_in_item * inode->i_sb->s_blocksize,
 933				     TYPE_INDIRECT, 3);	// key type is unimportant
 934
 935			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
 936			       "green-805: invalid offset");
 937			blocks_needed =
 938			    1 +
 939			    ((cpu_key_k_offset(&key) -
 940			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
 941			     s_blocksize_bits);
 942
 943			if (blocks_needed == 1) {
 944				un = &unf_single;
 945			} else {
 946				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
 
 947				if (!un) {
 948					un = &unf_single;
 949					blocks_needed = 1;
 950					max_to_insert = 0;
 951				}
 952			}
 953			if (blocks_needed <= max_to_insert) {
 954				/* we are going to add target block to the file. Use allocated
 955				   block for that */
 
 
 956				un[blocks_needed - 1] =
 957				    cpu_to_le32(allocated_block_nr);
 958				set_block_dev_mapped(bh_result,
 959						     allocated_block_nr, inode);
 960				set_buffer_new(bh_result);
 961				done = 1;
 962			} else {
 963				/* paste hole to the indirect item */
 964				/* If kmalloc failed, max_to_insert becomes zero and it means we
 965				   only have space for one block */
 
 
 
 966				blocks_needed =
 967				    max_to_insert ? max_to_insert : 1;
 968			}
 969			retval =
 970			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
 971						     (char *)un,
 972						     UNFM_P_SIZE *
 973						     blocks_needed);
 974
 975			if (blocks_needed != 1)
 976				kfree(un);
 977
 978			if (retval) {
 979				reiserfs_free_block(th, inode,
 980						    allocated_block_nr, 1);
 981				goto failure;
 982			}
 983			if (!done) {
 984				/* We need to mark new file size in case this function will be
 985				   interrupted/aborted later on. And we may do this only for
 986				   holes. */
 
 
 
 987				inode->i_size +=
 988				    inode->i_sb->s_blocksize * blocks_needed;
 989			}
 990		}
 991
 992		if (done == 1)
 993			break;
 994
 995		/* this loop could log more blocks than we had originally asked
 996		 ** for.  So, we have to allow the transaction to end if it is
 997		 ** too big or too full.  Update the inode so things are
 998		 ** consistent if we crash before the function returns
 999		 **
1000		 ** release the path so that anybody waiting on the path before
1001		 ** ending their transaction will be able to continue.
1002		 */
1003		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004			retval = restart_transaction(th, inode, &path);
1005			if (retval)
1006				goto failure;
1007		}
1008		/*
1009		 * inserting indirect pointers for a hole can take a
1010		 * long time.  reschedule if needed and also release the write
1011		 * lock for others.
1012		 */
1013		if (need_resched()) {
1014			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015			schedule();
1016			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017		}
1018
1019		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020		if (retval == IO_ERROR) {
1021			retval = -EIO;
1022			goto failure;
1023		}
1024		if (retval == POSITION_FOUND) {
1025			reiserfs_warning(inode->i_sb, "vs-825",
1026					 "%K should not be found", &key);
1027			retval = -EEXIST;
1028			if (allocated_block_nr)
1029				reiserfs_free_block(th, inode,
1030						    allocated_block_nr, 1);
1031			pathrelse(&path);
1032			goto failure;
1033		}
1034		bh = get_last_bh(&path);
1035		ih = get_ih(&path);
1036		item = get_item(&path);
1037		pos_in_item = path.pos_in_item;
1038	} while (1);
1039
1040	retval = 0;
1041
1042      failure:
1043	if (th && (!dangle || (retval && !th->t_trans_id))) {
1044		int err;
1045		if (th->t_trans_id)
1046			reiserfs_update_sd(th, inode);
1047		err = reiserfs_end_persistent_transaction(th);
1048		if (err)
1049			retval = err;
1050	}
1051
1052	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053	reiserfs_check_path(&path);
1054	return retval;
1055}
1056
1057static int
1058reiserfs_readpages(struct file *file, struct address_space *mapping,
1059		   struct list_head *pages, unsigned nr_pages)
1060{
1061	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062}
1063
1064/* Compute real number of used bytes by file
1065 * Following three functions can go away when we'll have enough space in stat item
 
 
1066 */
1067static int real_space_diff(struct inode *inode, int sd_size)
1068{
1069	int bytes;
1070	loff_t blocksize = inode->i_sb->s_blocksize;
1071
1072	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073		return sd_size;
1074
1075	/* End of file is also in full block with indirect reference, so round
1076	 ** up to the next block.
1077	 **
1078	 ** there is just no way to know if the tail is actually packed
1079	 ** on the file, so we have to assume it isn't.  When we pack the
1080	 ** tail, we add 4 bytes to pretend there really is an unformatted
1081	 ** node pointer
 
1082	 */
1083	bytes =
1084	    ((inode->i_size +
1085	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086	    sd_size;
1087	return bytes;
1088}
1089
1090static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091					int sd_size)
1092{
1093	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094		return inode->i_size +
1095		    (loff_t) (real_space_diff(inode, sd_size));
1096	}
1097	return ((loff_t) real_space_diff(inode, sd_size)) +
1098	    (((loff_t) blocks) << 9);
1099}
1100
1101/* Compute number of blocks used by file in ReiserFS counting */
1102static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103{
1104	loff_t bytes = inode_get_bytes(inode);
1105	loff_t real_space = real_space_diff(inode, sd_size);
1106
1107	/* keeps fsck and non-quota versions of reiserfs happy */
1108	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109		bytes += (loff_t) 511;
1110	}
1111
1112	/* files from before the quota patch might i_blocks such that
1113	 ** bytes < real_space.  Deal with that here to prevent it from
1114	 ** going negative.
 
1115	 */
1116	if (bytes < real_space)
1117		return 0;
1118	return (bytes - real_space) >> 9;
1119}
1120
1121//
1122// BAD: new directories have stat data of new type and all other items
1123// of old type. Version stored in the inode says about body items, so
1124// in update_stat_data we can not rely on inode, but have to check
1125// item version directly
1126//
1127
1128// called by read_locked_inode
1129static void init_inode(struct inode *inode, struct treepath *path)
1130{
1131	struct buffer_head *bh;
1132	struct item_head *ih;
1133	__u32 rdev;
1134	//int version = ITEM_VERSION_1;
1135
1136	bh = PATH_PLAST_BUFFER(path);
1137	ih = PATH_PITEM_HEAD(path);
1138
1139	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140
1141	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142	REISERFS_I(inode)->i_flags = 0;
1143	REISERFS_I(inode)->i_prealloc_block = 0;
1144	REISERFS_I(inode)->i_prealloc_count = 0;
1145	REISERFS_I(inode)->i_trans_id = 0;
1146	REISERFS_I(inode)->i_jl = NULL;
1147	reiserfs_init_xattr_rwsem(inode);
1148
1149	if (stat_data_v1(ih)) {
1150		struct stat_data_v1 *sd =
1151		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152		unsigned long blocks;
1153
1154		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155		set_inode_sd_version(inode, STAT_DATA_V1);
1156		inode->i_mode = sd_v1_mode(sd);
1157		inode->i_nlink = sd_v1_nlink(sd);
1158		inode->i_uid = sd_v1_uid(sd);
1159		inode->i_gid = sd_v1_gid(sd);
1160		inode->i_size = sd_v1_size(sd);
1161		inode->i_atime.tv_sec = sd_v1_atime(sd);
1162		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164		inode->i_atime.tv_nsec = 0;
1165		inode->i_ctime.tv_nsec = 0;
1166		inode->i_mtime.tv_nsec = 0;
1167
1168		inode->i_blocks = sd_v1_blocks(sd);
1169		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170		blocks = (inode->i_size + 511) >> 9;
1171		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
 
 
 
 
 
 
 
 
 
1172		if (inode->i_blocks > blocks) {
1173			// there was a bug in <=3.5.23 when i_blocks could take negative
1174			// values. Starting from 3.5.17 this value could even be stored in
1175			// stat data. For such files we set i_blocks based on file
1176			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177			// only updated if file's inode will ever change
1178			inode->i_blocks = blocks;
1179		}
1180
1181		rdev = sd_v1_rdev(sd);
1182		REISERFS_I(inode)->i_first_direct_byte =
1183		    sd_v1_first_direct_byte(sd);
1184		/* an early bug in the quota code can give us an odd number for the
1185		 ** block count.  This is incorrect, fix it here.
 
 
1186		 */
1187		if (inode->i_blocks & 1) {
1188			inode->i_blocks++;
1189		}
1190		inode_set_bytes(inode,
1191				to_real_used_space(inode, inode->i_blocks,
1192						   SD_V1_SIZE));
1193		/* nopack is initially zero for v1 objects. For v2 objects,
1194		   nopack is initialised from sd_attrs */
 
 
1195		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196	} else {
1197		// new stat data found, but object may have old items
1198		// (directories and symlinks)
1199		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
 
 
1200
1201		inode->i_mode = sd_v2_mode(sd);
1202		inode->i_nlink = sd_v2_nlink(sd);
1203		inode->i_uid = sd_v2_uid(sd);
1204		inode->i_size = sd_v2_size(sd);
1205		inode->i_gid = sd_v2_gid(sd);
1206		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207		inode->i_atime.tv_sec = sd_v2_atime(sd);
1208		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209		inode->i_ctime.tv_nsec = 0;
1210		inode->i_mtime.tv_nsec = 0;
1211		inode->i_atime.tv_nsec = 0;
1212		inode->i_blocks = sd_v2_blocks(sd);
1213		rdev = sd_v2_rdev(sd);
1214		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215			inode->i_generation =
1216			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217		else
1218			inode->i_generation = sd_v2_generation(sd);
1219
1220		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222		else
1223			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224		REISERFS_I(inode)->i_first_direct_byte = 0;
1225		set_inode_sd_version(inode, STAT_DATA_V2);
1226		inode_set_bytes(inode,
1227				to_real_used_space(inode, inode->i_blocks,
1228						   SD_V2_SIZE));
1229		/* read persistent inode attributes from sd and initialise
1230		   generic inode flags from them */
 
 
1231		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233	}
1234
1235	pathrelse(path);
1236	if (S_ISREG(inode->i_mode)) {
1237		inode->i_op = &reiserfs_file_inode_operations;
1238		inode->i_fop = &reiserfs_file_operations;
1239		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240	} else if (S_ISDIR(inode->i_mode)) {
1241		inode->i_op = &reiserfs_dir_inode_operations;
1242		inode->i_fop = &reiserfs_dir_operations;
1243	} else if (S_ISLNK(inode->i_mode)) {
1244		inode->i_op = &reiserfs_symlink_inode_operations;
 
1245		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246	} else {
1247		inode->i_blocks = 0;
1248		inode->i_op = &reiserfs_special_inode_operations;
1249		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250	}
1251}
1252
1253// update new stat data with inode fields
1254static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255{
1256	struct stat_data *sd_v2 = (struct stat_data *)sd;
1257	__u16 flags;
1258
1259	set_sd_v2_mode(sd_v2, inode->i_mode);
1260	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261	set_sd_v2_uid(sd_v2, inode->i_uid);
1262	set_sd_v2_size(sd_v2, size);
1263	set_sd_v2_gid(sd_v2, inode->i_gid);
1264	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270	else
1271		set_sd_v2_generation(sd_v2, inode->i_generation);
1272	flags = REISERFS_I(inode)->i_attrs;
1273	i_attrs_to_sd_attrs(inode, &flags);
1274	set_sd_v2_attrs(sd_v2, flags);
1275}
1276
1277// used to copy inode's fields to old stat data
1278static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279{
1280	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281
1282	set_sd_v1_mode(sd_v1, inode->i_mode);
1283	set_sd_v1_uid(sd_v1, inode->i_uid);
1284	set_sd_v1_gid(sd_v1, inode->i_gid);
1285	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286	set_sd_v1_size(sd_v1, size);
1287	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290
1291	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293	else
1294		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295
1296	// Sigh. i_first_direct_byte is back
1297	set_sd_v1_first_direct_byte(sd_v1,
1298				    REISERFS_I(inode)->i_first_direct_byte);
1299}
1300
1301/* NOTE, you must prepare the buffer head before sending it here,
1302** and then log it after the call
1303*/
 
1304static void update_stat_data(struct treepath *path, struct inode *inode,
1305			     loff_t size)
1306{
1307	struct buffer_head *bh;
1308	struct item_head *ih;
1309
1310	bh = PATH_PLAST_BUFFER(path);
1311	ih = PATH_PITEM_HEAD(path);
1312
1313	if (!is_statdata_le_ih(ih))
1314		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315			       INODE_PKEY(inode), ih);
1316
 
1317	if (stat_data_v1(ih)) {
1318		// path points to old stat data
1319		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320	} else {
1321		inode2sd(B_I_PITEM(bh, ih), inode, size);
1322	}
1323
1324	return;
1325}
1326
1327void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328			     struct inode *inode, loff_t size)
1329{
1330	struct cpu_key key;
1331	INITIALIZE_PATH(path);
1332	struct buffer_head *bh;
1333	int fs_gen;
1334	struct item_head *ih, tmp_ih;
1335	int retval;
1336
1337	BUG_ON(!th->t_trans_id);
1338
1339	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
 
1340
1341	for (;;) {
1342		int pos;
1343		/* look for the object's stat data */
1344		retval = search_item(inode->i_sb, &key, &path);
1345		if (retval == IO_ERROR) {
1346			reiserfs_error(inode->i_sb, "vs-13050",
1347				       "i/o failure occurred trying to "
1348				       "update %K stat data", &key);
1349			return;
1350		}
1351		if (retval == ITEM_NOT_FOUND) {
1352			pos = PATH_LAST_POSITION(&path);
1353			pathrelse(&path);
1354			if (inode->i_nlink == 0) {
1355				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356				return;
1357			}
1358			reiserfs_warning(inode->i_sb, "vs-13060",
1359					 "stat data of object %k (nlink == %d) "
1360					 "not found (pos %d)",
1361					 INODE_PKEY(inode), inode->i_nlink,
1362					 pos);
1363			reiserfs_check_path(&path);
1364			return;
1365		}
1366
1367		/* sigh, prepare_for_journal might schedule.  When it schedules the
1368		 ** FS might change.  We have to detect that, and loop back to the
1369		 ** search if the stat data item has moved
 
1370		 */
1371		bh = get_last_bh(&path);
1372		ih = get_ih(&path);
1373		copy_item_head(&tmp_ih, ih);
1374		fs_gen = get_generation(inode->i_sb);
1375		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 
 
1376		if (fs_changed(fs_gen, inode->i_sb)
1377		    && item_moved(&tmp_ih, &path)) {
1378			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379			continue;	/* Stat_data item has been moved after scheduling. */
1380		}
1381		break;
1382	}
1383	update_stat_data(&path, inode, size);
1384	journal_mark_dirty(th, th->t_super, bh);
1385	pathrelse(&path);
1386	return;
1387}
1388
1389/* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390** does a make_bad_inode when things go wrong.  But, we need to make sure
1391** and clear the key in the private portion of the inode, otherwise a
1392** corresponding iput might try to delete whatever object the inode last
1393** represented.
1394*/
 
1395static void reiserfs_make_bad_inode(struct inode *inode)
1396{
1397	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398	make_bad_inode(inode);
1399}
1400
1401//
1402// initially this function was derived from minix or ext2's analog and
1403// evolved as the prototype did
1404//
1405
1406int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407{
1408	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409	inode->i_ino = args->objectid;
1410	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411	return 0;
1412}
1413
1414/* looks for stat data in the tree, and fills up the fields of in-core
1415   inode stat data fields */
 
 
1416void reiserfs_read_locked_inode(struct inode *inode,
1417				struct reiserfs_iget_args *args)
1418{
1419	INITIALIZE_PATH(path_to_sd);
1420	struct cpu_key key;
1421	unsigned long dirino;
1422	int retval;
1423
1424	dirino = args->dirid;
1425
1426	/* set version 1, version 2 could be used too, because stat data
1427	   key is the same in both versions */
1428	key.version = KEY_FORMAT_3_5;
1429	key.on_disk_key.k_dir_id = dirino;
1430	key.on_disk_key.k_objectid = inode->i_ino;
1431	key.on_disk_key.k_offset = 0;
1432	key.on_disk_key.k_type = 0;
1433
1434	/* look for the object's stat data */
1435	retval = search_item(inode->i_sb, &key, &path_to_sd);
1436	if (retval == IO_ERROR) {
1437		reiserfs_error(inode->i_sb, "vs-13070",
1438			       "i/o failure occurred trying to find "
1439			       "stat data of %K", &key);
1440		reiserfs_make_bad_inode(inode);
1441		return;
1442	}
 
 
1443	if (retval != ITEM_FOUND) {
1444		/* a stale NFS handle can trigger this without it being an error */
1445		pathrelse(&path_to_sd);
1446		reiserfs_make_bad_inode(inode);
1447		inode->i_nlink = 0;
1448		return;
1449	}
1450
1451	init_inode(inode, &path_to_sd);
1452
1453	/* It is possible that knfsd is trying to access inode of a file
1454	   that is being removed from the disk by some other thread. As we
1455	   update sd on unlink all that is required is to check for nlink
1456	   here. This bug was first found by Sizif when debugging
1457	   SquidNG/Butterfly, forgotten, and found again after Philippe
1458	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459
1460	   More logical fix would require changes in fs/inode.c:iput() to
1461	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1462	   in iget() to return NULL if I_FREEING inode is found in
1463	   hash-table. */
1464	/* Currently there is one place where it's ok to meet inode with
1465	   nlink==0: processing of open-unlinked and half-truncated files
1466	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
 
 
 
 
 
1467	if ((inode->i_nlink == 0) &&
1468	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469		reiserfs_warning(inode->i_sb, "vs-13075",
1470				 "dead inode read from disk %K. "
1471				 "This is likely to be race with knfsd. Ignore",
1472				 &key);
1473		reiserfs_make_bad_inode(inode);
1474	}
1475
1476	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
 
1477
1478	/*
1479	 * Stat data v1 doesn't support ACLs.
1480	 */
1481	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1482		cache_no_acl(inode);
1483}
1484
1485/**
1486 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1487 *
1488 * @inode:    inode from hash table to check
1489 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1490 *
1491 * This function is called by iget5_locked() to distinguish reiserfs inodes
1492 * having the same inode numbers. Such inodes can only exist due to some
1493 * error condition. One of them should be bad. Inodes with identical
1494 * inode numbers (objectids) are distinguished by parent directory ids.
1495 *
1496 */
1497int reiserfs_find_actor(struct inode *inode, void *opaque)
1498{
1499	struct reiserfs_iget_args *args;
1500
1501	args = opaque;
1502	/* args is already in CPU order */
1503	return (inode->i_ino == args->objectid) &&
1504	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1505}
1506
1507struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1508{
1509	struct inode *inode;
1510	struct reiserfs_iget_args args;
 
1511
1512	args.objectid = key->on_disk_key.k_objectid;
1513	args.dirid = key->on_disk_key.k_dir_id;
1514	reiserfs_write_unlock(s);
1515	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516			     reiserfs_find_actor, reiserfs_init_locked_inode,
1517			     (void *)(&args));
1518	reiserfs_write_lock(s);
1519	if (!inode)
1520		return ERR_PTR(-ENOMEM);
1521
1522	if (inode->i_state & I_NEW) {
1523		reiserfs_read_locked_inode(inode, &args);
1524		unlock_new_inode(inode);
1525	}
1526
1527	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528		/* either due to i/o error or a stale NFS handle */
1529		iput(inode);
1530		inode = NULL;
1531	}
1532	return inode;
1533}
1534
1535static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536	u32 objectid, u32 dir_id, u32 generation)
1537
1538{
1539	struct cpu_key key;
1540	struct inode *inode;
1541
1542	key.on_disk_key.k_objectid = objectid;
1543	key.on_disk_key.k_dir_id = dir_id;
1544	reiserfs_write_lock(sb);
1545	inode = reiserfs_iget(sb, &key);
1546	if (inode && !IS_ERR(inode) && generation != 0 &&
1547	    generation != inode->i_generation) {
1548		iput(inode);
1549		inode = NULL;
1550	}
1551	reiserfs_write_unlock(sb);
1552
1553	return d_obtain_alias(inode);
1554}
1555
1556struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557		int fh_len, int fh_type)
1558{
1559	/* fhtype happens to reflect the number of u32s encoded.
 
1560	 * due to a bug in earlier code, fhtype might indicate there
1561	 * are more u32s then actually fitted.
1562	 * so if fhtype seems to be more than len, reduce fhtype.
1563	 * Valid types are:
1564	 *   2 - objectid + dir_id - legacy support
1565	 *   3 - objectid + dir_id + generation
1566	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1567	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1568	 *   6 - as above plus generation of directory
1569	 * 6 does not fit in NFSv2 handles
1570	 */
1571	if (fh_type > fh_len) {
1572		if (fh_type != 6 || fh_len != 5)
1573			reiserfs_warning(sb, "reiserfs-13077",
1574				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575				fh_type, fh_len);
1576		fh_type = 5;
1577	}
 
 
1578
1579	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1580		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1581}
1582
1583struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1584		int fh_len, int fh_type)
1585{
 
 
1586	if (fh_type < 4)
1587		return NULL;
1588
1589	return reiserfs_get_dentry(sb,
1590		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1591		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1592		(fh_type == 6) ? fid->raw[5] : 0);
1593}
1594
1595int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1596		       int need_parent)
1597{
1598	struct inode *inode = dentry->d_inode;
1599	int maxlen = *lenp;
1600
1601	if (need_parent && (maxlen < 5)) {
1602		*lenp = 5;
1603		return 255;
1604	} else if (maxlen < 3) {
1605		*lenp = 3;
1606		return 255;
1607	}
1608
1609	data[0] = inode->i_ino;
1610	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1611	data[2] = inode->i_generation;
1612	*lenp = 3;
1613	/* no room for directory info? return what we've stored so far */
1614	if (maxlen < 5 || !need_parent)
1615		return 3;
1616
1617	spin_lock(&dentry->d_lock);
1618	inode = dentry->d_parent->d_inode;
1619	data[3] = inode->i_ino;
1620	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1621	*lenp = 5;
1622	if (maxlen >= 6) {
1623		data[5] = inode->i_generation;
1624		*lenp = 6;
1625	}
1626	spin_unlock(&dentry->d_lock);
1627	return *lenp;
1628}
1629
1630/* looks for stat data, then copies fields to it, marks the buffer
1631   containing stat data as dirty */
1632/* reiserfs inodes are never really dirty, since the dirty inode call
1633** always logs them.  This call allows the VFS inode marking routines
1634** to properly mark inodes for datasync and such, but only actually
1635** does something when called for a synchronous update.
1636*/
 
 
 
1637int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1638{
1639	struct reiserfs_transaction_handle th;
1640	int jbegin_count = 1;
1641
1642	if (inode->i_sb->s_flags & MS_RDONLY)
1643		return -EROFS;
1644	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1645	 ** these cases are just when the system needs ram, not when the
1646	 ** inode needs to reach disk for safety, and they can safely be
1647	 ** ignored because the altered inode has already been logged.
 
 
1648	 */
1649	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1650		reiserfs_write_lock(inode->i_sb);
1651		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1652			reiserfs_update_sd(&th, inode);
1653			journal_end_sync(&th, inode->i_sb, jbegin_count);
1654		}
1655		reiserfs_write_unlock(inode->i_sb);
1656	}
1657	return 0;
1658}
1659
1660/* stat data of new object is inserted already, this inserts the item
1661   containing "." and ".." entries */
 
 
1662static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1663				  struct inode *inode,
1664				  struct item_head *ih, struct treepath *path,
1665				  struct inode *dir)
1666{
1667	struct super_block *sb = th->t_super;
1668	char empty_dir[EMPTY_DIR_SIZE];
1669	char *body = empty_dir;
1670	struct cpu_key key;
1671	int retval;
1672
1673	BUG_ON(!th->t_trans_id);
1674
1675	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1676		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1677		      TYPE_DIRENTRY, 3 /*key length */ );
1678
1679	/* compose item head for new item. Directories consist of items of
1680	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1681	   is done by reiserfs_new_inode */
 
 
1682	if (old_format_only(sb)) {
1683		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1684				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1685
1686		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1687				       ih->ih_key.k_objectid,
1688				       INODE_PKEY(dir)->k_dir_id,
1689				       INODE_PKEY(dir)->k_objectid);
1690	} else {
1691		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1692				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1693
1694		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1695				    ih->ih_key.k_objectid,
1696				    INODE_PKEY(dir)->k_dir_id,
1697				    INODE_PKEY(dir)->k_objectid);
1698	}
1699
1700	/* look for place in the tree for new item */
1701	retval = search_item(sb, &key, path);
1702	if (retval == IO_ERROR) {
1703		reiserfs_error(sb, "vs-13080",
1704			       "i/o failure occurred creating new directory");
1705		return -EIO;
1706	}
1707	if (retval == ITEM_FOUND) {
1708		pathrelse(path);
1709		reiserfs_warning(sb, "vs-13070",
1710				 "object with this key exists (%k)",
1711				 &(ih->ih_key));
1712		return -EEXIST;
1713	}
1714
1715	/* insert item, that is empty directory item */
1716	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1717}
1718
1719/* stat data of object has been inserted, this inserts the item
1720   containing the body of symlink */
1721static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
 
 
 
1722				struct item_head *ih,
1723				struct treepath *path, const char *symname,
1724				int item_len)
1725{
1726	struct super_block *sb = th->t_super;
1727	struct cpu_key key;
1728	int retval;
1729
1730	BUG_ON(!th->t_trans_id);
1731
1732	_make_cpu_key(&key, KEY_FORMAT_3_5,
1733		      le32_to_cpu(ih->ih_key.k_dir_id),
1734		      le32_to_cpu(ih->ih_key.k_objectid),
1735		      1, TYPE_DIRECT, 3 /*key length */ );
1736
1737	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1738			  0 /*free_space */ );
1739
1740	/* look for place in the tree for new item */
1741	retval = search_item(sb, &key, path);
1742	if (retval == IO_ERROR) {
1743		reiserfs_error(sb, "vs-13080",
1744			       "i/o failure occurred creating new symlink");
1745		return -EIO;
1746	}
1747	if (retval == ITEM_FOUND) {
1748		pathrelse(path);
1749		reiserfs_warning(sb, "vs-13080",
1750				 "object with this key exists (%k)",
1751				 &(ih->ih_key));
1752		return -EEXIST;
1753	}
1754
1755	/* insert item, that is body of symlink */
1756	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1757}
1758
1759/* inserts the stat data into the tree, and then calls
1760   reiserfs_new_directory (to insert ".", ".." item if new object is
1761   directory) or reiserfs_new_symlink (to insert symlink body if new
1762   object is symlink) or nothing (if new object is regular file)
1763
1764   NOTE! uid and gid must already be set in the inode.  If we return
1765   non-zero due to an error, we have to drop the quota previously allocated
1766   for the fresh inode.  This can only be done outside a transaction, so
1767   if we return non-zero, we also end the transaction.  */
 
 
 
 
 
 
 
 
 
 
 
1768int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1769		       struct inode *dir, int mode, const char *symname,
1770		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1771		          strlen (symname) for symlinks) */
1772		       loff_t i_size, struct dentry *dentry,
1773		       struct inode *inode,
1774		       struct reiserfs_security_handle *security)
1775{
1776	struct super_block *sb;
1777	struct reiserfs_iget_args args;
1778	INITIALIZE_PATH(path_to_key);
1779	struct cpu_key key;
1780	struct item_head ih;
1781	struct stat_data sd;
1782	int retval;
1783	int err;
 
1784
1785	BUG_ON(!th->t_trans_id);
1786
1787	dquot_initialize(inode);
1788	err = dquot_alloc_inode(inode);
 
1789	if (err)
1790		goto out_end_trans;
1791	if (!dir->i_nlink) {
1792		err = -EPERM;
1793		goto out_bad_inode;
1794	}
1795
1796	sb = dir->i_sb;
1797
1798	/* item head of new item */
1799	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1800	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1801	if (!ih.ih_key.k_objectid) {
1802		err = -ENOMEM;
1803		goto out_bad_inode;
1804	}
1805	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1806	if (old_format_only(sb))
1807		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1808				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1809	else
1810		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1811				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1812	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1813	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1814	if (insert_inode_locked4(inode, args.objectid,
1815			     reiserfs_find_actor, &args) < 0) {
 
 
 
 
1816		err = -EINVAL;
1817		goto out_bad_inode;
1818	}
 
1819	if (old_format_only(sb))
1820		/* not a perfect generation count, as object ids can be reused, but
1821		 ** this is as good as reiserfs can do right now.
1822		 ** note that the private part of inode isn't filled in yet, we have
1823		 ** to use the directory.
 
1824		 */
1825		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1826	else
1827#if defined( USE_INODE_GENERATION_COUNTER )
1828		inode->i_generation =
1829		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1830#else
1831		inode->i_generation = ++event;
1832#endif
1833
1834	/* fill stat data */
1835	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1836
1837	/* uid and gid must already be set by the caller for quota init */
1838
1839	/* symlink cannot be immutable or append only, right? */
1840	if (S_ISLNK(inode->i_mode))
1841		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1842
1843	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1844	inode->i_size = i_size;
1845	inode->i_blocks = 0;
1846	inode->i_bytes = 0;
1847	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1848	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1849
1850	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1851	REISERFS_I(inode)->i_flags = 0;
1852	REISERFS_I(inode)->i_prealloc_block = 0;
1853	REISERFS_I(inode)->i_prealloc_count = 0;
1854	REISERFS_I(inode)->i_trans_id = 0;
1855	REISERFS_I(inode)->i_jl = NULL;
1856	REISERFS_I(inode)->i_attrs =
1857	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1858	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1859	reiserfs_init_xattr_rwsem(inode);
1860
1861	/* key to search for correct place for new stat data */
1862	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1863		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1864		      TYPE_STAT_DATA, 3 /*key length */ );
1865
1866	/* find proper place for inserting of stat data */
1867	retval = search_item(sb, &key, &path_to_key);
1868	if (retval == IO_ERROR) {
1869		err = -EIO;
1870		goto out_bad_inode;
1871	}
1872	if (retval == ITEM_FOUND) {
1873		pathrelse(&path_to_key);
1874		err = -EEXIST;
1875		goto out_bad_inode;
1876	}
1877	if (old_format_only(sb)) {
1878		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
 
1879			pathrelse(&path_to_key);
1880			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1881			err = -EINVAL;
1882			goto out_bad_inode;
1883		}
1884		inode2sd_v1(&sd, inode, inode->i_size);
1885	} else {
1886		inode2sd(&sd, inode, inode->i_size);
1887	}
1888	// store in in-core inode the key of stat data and version all
1889	// object items will have (directory items will have old offset
1890	// format, other new objects will consist of new items)
 
 
1891	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1892		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1893	else
1894		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1895	if (old_format_only(sb))
1896		set_inode_sd_version(inode, STAT_DATA_V1);
1897	else
1898		set_inode_sd_version(inode, STAT_DATA_V2);
1899
1900	/* insert the stat data into the tree */
1901#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1902	if (REISERFS_I(dir)->new_packing_locality)
1903		th->displace_new_blocks = 1;
1904#endif
1905	retval =
1906	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1907				 (char *)(&sd));
1908	if (retval) {
1909		err = retval;
1910		reiserfs_check_path(&path_to_key);
1911		goto out_bad_inode;
1912	}
1913#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1914	if (!th->displace_new_blocks)
1915		REISERFS_I(dir)->new_packing_locality = 0;
1916#endif
1917	if (S_ISDIR(mode)) {
1918		/* insert item with "." and ".." */
1919		retval =
1920		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1921	}
1922
1923	if (S_ISLNK(mode)) {
1924		/* insert body of symlink */
1925		if (!old_format_only(sb))
1926			i_size = ROUND_UP(i_size);
1927		retval =
1928		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1929					 i_size);
1930	}
1931	if (retval) {
1932		err = retval;
1933		reiserfs_check_path(&path_to_key);
1934		journal_end(th, th->t_super, th->t_blocks_allocated);
1935		goto out_inserted_sd;
1936	}
1937
 
 
 
 
 
 
 
 
 
1938	if (reiserfs_posixacl(inode->i_sb)) {
 
1939		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
 
1940		if (retval) {
1941			err = retval;
1942			reiserfs_check_path(&path_to_key);
1943			journal_end(th, th->t_super, th->t_blocks_allocated);
1944			goto out_inserted_sd;
1945		}
1946	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1947		reiserfs_warning(inode->i_sb, "jdm-13090",
1948				 "ACLs aren't enabled in the fs, "
1949				 "but vfs thinks they are!");
1950	} else if (IS_PRIVATE(dir))
1951		inode->i_flags |= S_PRIVATE;
1952
1953	if (security->name) {
 
1954		retval = reiserfs_security_write(th, inode, security);
 
1955		if (retval) {
1956			err = retval;
1957			reiserfs_check_path(&path_to_key);
1958			retval = journal_end(th, th->t_super,
1959					     th->t_blocks_allocated);
1960			if (retval)
1961				err = retval;
1962			goto out_inserted_sd;
1963		}
1964	}
1965
1966	reiserfs_update_sd(th, inode);
1967	reiserfs_check_path(&path_to_key);
1968
1969	return 0;
1970
1971/* it looks like you can easily compress these two goto targets into
1972 * one.  Keeping it like this doesn't actually hurt anything, and they
1973 * are place holders for what the quota code actually needs.
1974 */
1975      out_bad_inode:
1976	/* Invalidate the object, nothing was inserted yet */
1977	INODE_PKEY(inode)->k_objectid = 0;
1978
1979	/* Quota change must be inside a transaction for journaling */
 
1980	dquot_free_inode(inode);
 
1981
1982      out_end_trans:
1983	journal_end(th, th->t_super, th->t_blocks_allocated);
1984	/* Drop can be outside and it needs more credits so it's better to have it outside */
 
 
 
 
1985	dquot_drop(inode);
 
1986	inode->i_flags |= S_NOQUOTA;
1987	make_bad_inode(inode);
1988
1989      out_inserted_sd:
1990	inode->i_nlink = 0;
1991	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1992	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
 
1993	iput(inode);
1994	return err;
1995}
1996
1997/*
1998** finds the tail page in the page cache,
1999** reads the last block in.
2000**
2001** On success, page_result is set to a locked, pinned page, and bh_result
2002** is set to an up to date buffer for the last block in the file.  returns 0.
2003**
2004** tail conversion is not done, so bh_result might not be valid for writing
2005** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2006** trying to write the block.
2007**
2008** on failure, nonzero is returned, page_result and bh_result are untouched.
2009*/
2010static int grab_tail_page(struct inode *inode,
2011			  struct page **page_result,
2012			  struct buffer_head **bh_result)
2013{
2014
2015	/* we want the page with the last byte in the file,
2016	 ** not the page that will hold the next byte for appending
 
2017	 */
2018	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2019	unsigned long pos = 0;
2020	unsigned long start = 0;
2021	unsigned long blocksize = inode->i_sb->s_blocksize;
2022	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2023	struct buffer_head *bh;
2024	struct buffer_head *head;
2025	struct page *page;
2026	int error;
2027
2028	/* we know that we are only called with inode->i_size > 0.
2029	 ** we also know that a file tail can never be as big as a block
2030	 ** If i_size % blocksize == 0, our file is currently block aligned
2031	 ** and it won't need converting or zeroing after a truncate.
 
2032	 */
2033	if ((offset & (blocksize - 1)) == 0) {
2034		return -ENOENT;
2035	}
2036	page = grab_cache_page(inode->i_mapping, index);
2037	error = -ENOMEM;
2038	if (!page) {
2039		goto out;
2040	}
2041	/* start within the page of the last block in the file */
2042	start = (offset / blocksize) * blocksize;
2043
2044	error = __block_write_begin(page, start, offset - start,
2045				    reiserfs_get_block_create_0);
2046	if (error)
2047		goto unlock;
2048
2049	head = page_buffers(page);
2050	bh = head;
2051	do {
2052		if (pos >= start) {
2053			break;
2054		}
2055		bh = bh->b_this_page;
2056		pos += blocksize;
2057	} while (bh != head);
2058
2059	if (!buffer_uptodate(bh)) {
2060		/* note, this should never happen, prepare_write should
2061		 ** be taking care of this for us.  If the buffer isn't up to date,
2062		 ** I've screwed up the code to find the buffer, or the code to
2063		 ** call prepare_write
 
2064		 */
2065		reiserfs_error(inode->i_sb, "clm-6000",
2066			       "error reading block %lu", bh->b_blocknr);
2067		error = -EIO;
2068		goto unlock;
2069	}
2070	*bh_result = bh;
2071	*page_result = page;
2072
2073      out:
2074	return error;
2075
2076      unlock:
2077	unlock_page(page);
2078	page_cache_release(page);
2079	return error;
2080}
2081
2082/*
2083** vfs version of truncate file.  Must NOT be called with
2084** a transaction already started.
2085**
2086** some code taken from block_truncate_page
2087*/
2088int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2089{
2090	struct reiserfs_transaction_handle th;
2091	/* we want the offset for the first byte after the end of the file */
2092	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2093	unsigned blocksize = inode->i_sb->s_blocksize;
2094	unsigned length;
2095	struct page *page = NULL;
2096	int error;
2097	struct buffer_head *bh = NULL;
2098	int err2;
2099	int lock_depth;
2100
2101	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2102
2103	if (inode->i_size > 0) {
2104		error = grab_tail_page(inode, &page, &bh);
2105		if (error) {
2106			// -ENOENT means we truncated past the end of the file,
2107			// and get_block_create_0 could not find a block to read in,
2108			// which is ok.
 
 
2109			if (error != -ENOENT)
2110				reiserfs_error(inode->i_sb, "clm-6001",
2111					       "grab_tail_page failed %d",
2112					       error);
2113			page = NULL;
2114			bh = NULL;
2115		}
2116	}
2117
2118	/* so, if page != NULL, we have a buffer head for the offset at
2119	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2120	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2121	 ** and no zeroing is required on disk.  We zero after the truncate,
2122	 ** because the truncate might pack the item anyway
2123	 ** (it will unmap bh if it packs).
2124	 */
2125	/* it is enough to reserve space in transaction for 2 balancings:
2126	   one for "save" link adding and another for the first
2127	   cut_from_item. 1 is for update_sd */
 
 
2128	error = journal_begin(&th, inode->i_sb,
2129			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2130	if (error)
2131		goto out;
2132	reiserfs_update_inode_transaction(inode);
2133	if (update_timestamps)
2134		/* we are doing real truncate: if the system crashes before the last
2135		   transaction of truncating gets committed - on reboot the file
2136		   either appears truncated properly or not truncated at all */
 
 
 
2137		add_save_link(&th, inode, 1);
2138	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2139	error =
2140	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2141	if (error)
2142		goto out;
2143
2144	/* check reiserfs_do_truncate after ending the transaction */
2145	if (err2) {
2146		error = err2;
2147  		goto out;
2148	}
2149	
2150	if (update_timestamps) {
2151		error = remove_save_link(inode, 1 /* truncate */);
2152		if (error)
2153			goto out;
2154	}
2155
2156	if (page) {
2157		length = offset & (blocksize - 1);
2158		/* if we are not on a block boundary */
2159		if (length) {
2160			length = blocksize - length;
2161			zero_user(page, offset, length);
2162			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2163				mark_buffer_dirty(bh);
2164			}
2165		}
2166		unlock_page(page);
2167		page_cache_release(page);
2168	}
2169
2170	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2171
2172	return 0;
2173      out:
2174	if (page) {
2175		unlock_page(page);
2176		page_cache_release(page);
2177	}
2178
2179	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2180
2181	return error;
2182}
2183
2184static int map_block_for_writepage(struct inode *inode,
2185				   struct buffer_head *bh_result,
2186				   unsigned long block)
2187{
2188	struct reiserfs_transaction_handle th;
2189	int fs_gen;
2190	struct item_head tmp_ih;
2191	struct item_head *ih;
2192	struct buffer_head *bh;
2193	__le32 *item;
2194	struct cpu_key key;
2195	INITIALIZE_PATH(path);
2196	int pos_in_item;
2197	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2198	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2199	int retval;
2200	int use_get_block = 0;
2201	int bytes_copied = 0;
2202	int copy_size;
2203	int trans_running = 0;
2204
2205	/* catch places below that try to log something without starting a trans */
 
 
 
2206	th.t_trans_id = 0;
2207
2208	if (!buffer_uptodate(bh_result)) {
2209		return -EIO;
2210	}
2211
2212	kmap(bh_result->b_page);
2213      start_over:
2214	reiserfs_write_lock(inode->i_sb);
2215	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2216
2217      research:
2218	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2219	if (retval != POSITION_FOUND) {
2220		use_get_block = 1;
2221		goto out;
2222	}
2223
2224	bh = get_last_bh(&path);
2225	ih = get_ih(&path);
2226	item = get_item(&path);
2227	pos_in_item = path.pos_in_item;
2228
2229	/* we've found an unformatted node */
2230	if (indirect_item_found(retval, ih)) {
2231		if (bytes_copied > 0) {
2232			reiserfs_warning(inode->i_sb, "clm-6002",
2233					 "bytes_copied %d", bytes_copied);
2234		}
2235		if (!get_block_num(item, pos_in_item)) {
2236			/* crap, we are writing to a hole */
2237			use_get_block = 1;
2238			goto out;
2239		}
2240		set_block_dev_mapped(bh_result,
2241				     get_block_num(item, pos_in_item), inode);
2242	} else if (is_direct_le_ih(ih)) {
2243		char *p;
2244		p = page_address(bh_result->b_page);
2245		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2246		copy_size = ih_item_len(ih) - pos_in_item;
2247
2248		fs_gen = get_generation(inode->i_sb);
2249		copy_item_head(&tmp_ih, ih);
2250
2251		if (!trans_running) {
2252			/* vs-3050 is gone, no need to drop the path */
2253			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2254			if (retval)
2255				goto out;
2256			reiserfs_update_inode_transaction(inode);
2257			trans_running = 1;
2258			if (fs_changed(fs_gen, inode->i_sb)
2259			    && item_moved(&tmp_ih, &path)) {
2260				reiserfs_restore_prepared_buffer(inode->i_sb,
2261								 bh);
2262				goto research;
2263			}
2264		}
2265
2266		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2267
2268		if (fs_changed(fs_gen, inode->i_sb)
2269		    && item_moved(&tmp_ih, &path)) {
2270			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2271			goto research;
2272		}
2273
2274		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2275		       copy_size);
2276
2277		journal_mark_dirty(&th, inode->i_sb, bh);
2278		bytes_copied += copy_size;
2279		set_block_dev_mapped(bh_result, 0, inode);
2280
2281		/* are there still bytes left? */
2282		if (bytes_copied < bh_result->b_size &&
2283		    (byte_offset + bytes_copied) < inode->i_size) {
2284			set_cpu_key_k_offset(&key,
2285					     cpu_key_k_offset(&key) +
2286					     copy_size);
2287			goto research;
2288		}
2289	} else {
2290		reiserfs_warning(inode->i_sb, "clm-6003",
2291				 "bad item inode %lu", inode->i_ino);
2292		retval = -EIO;
2293		goto out;
2294	}
2295	retval = 0;
2296
2297      out:
2298	pathrelse(&path);
2299	if (trans_running) {
2300		int err = journal_end(&th, inode->i_sb, jbegin_count);
2301		if (err)
2302			retval = err;
2303		trans_running = 0;
2304	}
2305	reiserfs_write_unlock(inode->i_sb);
2306
2307	/* this is where we fill in holes in the file. */
2308	if (use_get_block) {
2309		retval = reiserfs_get_block(inode, block, bh_result,
2310					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2311					    | GET_BLOCK_NO_DANGLE);
2312		if (!retval) {
2313			if (!buffer_mapped(bh_result)
2314			    || bh_result->b_blocknr == 0) {
2315				/* get_block failed to find a mapped unformatted node. */
2316				use_get_block = 0;
2317				goto start_over;
2318			}
2319		}
2320	}
2321	kunmap(bh_result->b_page);
2322
2323	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2324		/* we've copied data from the page into the direct item, so the
 
2325		 * buffer in the page is now clean, mark it to reflect that.
2326		 */
2327		lock_buffer(bh_result);
2328		clear_buffer_dirty(bh_result);
2329		unlock_buffer(bh_result);
2330	}
2331	return retval;
2332}
2333
2334/*
2335 * mason@suse.com: updated in 2.5.54 to follow the same general io
2336 * start/recovery path as __block_write_full_page, along with special
2337 * code to handle reiserfs tails.
2338 */
2339static int reiserfs_write_full_page(struct page *page,
2340				    struct writeback_control *wbc)
2341{
2342	struct inode *inode = page->mapping->host;
2343	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2344	int error = 0;
2345	unsigned long block;
2346	sector_t last_block;
2347	struct buffer_head *head, *bh;
2348	int partial = 0;
2349	int nr = 0;
2350	int checked = PageChecked(page);
2351	struct reiserfs_transaction_handle th;
2352	struct super_block *s = inode->i_sb;
2353	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2354	th.t_trans_id = 0;
2355
2356	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2357	if (checked && (current->flags & PF_MEMALLOC)) {
2358		redirty_page_for_writepage(wbc, page);
2359		unlock_page(page);
2360		return 0;
2361	}
2362
2363	/* The page dirty bit is cleared before writepage is called, which
 
2364	 * means we have to tell create_empty_buffers to make dirty buffers
2365	 * The page really should be up to date at this point, so tossing
2366	 * in the BH_Uptodate is just a sanity check.
2367	 */
2368	if (!page_has_buffers(page)) {
2369		create_empty_buffers(page, s->s_blocksize,
2370				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2371	}
2372	head = page_buffers(page);
2373
2374	/* last page in the file, zero out any contents past the
2375	 ** last byte in the file
 
2376	 */
2377	if (page->index >= end_index) {
2378		unsigned last_offset;
2379
2380		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2381		/* no file contents in this page */
2382		if (page->index >= end_index + 1 || !last_offset) {
2383			unlock_page(page);
2384			return 0;
2385		}
2386		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2387	}
2388	bh = head;
2389	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2390	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2391	/* first map all the buffers, logging any direct items we find */
2392	do {
2393		if (block > last_block) {
2394			/*
2395			 * This can happen when the block size is less than
2396			 * the page size.  The corresponding bytes in the page
2397			 * were zero filled above
2398			 */
2399			clear_buffer_dirty(bh);
2400			set_buffer_uptodate(bh);
2401		} else if ((checked || buffer_dirty(bh)) &&
2402		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2403						       && bh->b_blocknr ==
2404						       0))) {
2405			/* not mapped yet, or it points to a direct item, search
2406			 * the btree for the mapping info, and log any direct
2407			 * items found
2408			 */
2409			if ((error = map_block_for_writepage(inode, bh, block))) {
2410				goto fail;
2411			}
2412		}
2413		bh = bh->b_this_page;
2414		block++;
2415	} while (bh != head);
2416
2417	/*
2418	 * we start the transaction after map_block_for_writepage,
2419	 * because it can create holes in the file (an unbounded operation).
2420	 * starting it here, we can make a reliable estimate for how many
2421	 * blocks we're going to log
2422	 */
2423	if (checked) {
2424		ClearPageChecked(page);
2425		reiserfs_write_lock(s);
2426		error = journal_begin(&th, s, bh_per_page + 1);
2427		if (error) {
2428			reiserfs_write_unlock(s);
2429			goto fail;
2430		}
2431		reiserfs_update_inode_transaction(inode);
2432	}
2433	/* now go through and lock any dirty buffers on the page */
2434	do {
2435		get_bh(bh);
2436		if (!buffer_mapped(bh))
2437			continue;
2438		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2439			continue;
2440
2441		if (checked) {
2442			reiserfs_prepare_for_journal(s, bh, 1);
2443			journal_mark_dirty(&th, s, bh);
2444			continue;
2445		}
2446		/* from this point on, we know the buffer is mapped to a
 
2447		 * real block and not a direct item
2448		 */
2449		if (wbc->sync_mode != WB_SYNC_NONE) {
2450			lock_buffer(bh);
2451		} else {
2452			if (!trylock_buffer(bh)) {
2453				redirty_page_for_writepage(wbc, page);
2454				continue;
2455			}
2456		}
2457		if (test_clear_buffer_dirty(bh)) {
2458			mark_buffer_async_write(bh);
2459		} else {
2460			unlock_buffer(bh);
2461		}
2462	} while ((bh = bh->b_this_page) != head);
2463
2464	if (checked) {
2465		error = journal_end(&th, s, bh_per_page + 1);
2466		reiserfs_write_unlock(s);
2467		if (error)
2468			goto fail;
2469	}
2470	BUG_ON(PageWriteback(page));
2471	set_page_writeback(page);
2472	unlock_page(page);
2473
2474	/*
2475	 * since any buffer might be the only dirty buffer on the page,
2476	 * the first submit_bh can bring the page out of writeback.
2477	 * be careful with the buffers.
2478	 */
2479	do {
2480		struct buffer_head *next = bh->b_this_page;
2481		if (buffer_async_write(bh)) {
2482			submit_bh(WRITE, bh);
2483			nr++;
2484		}
2485		put_bh(bh);
2486		bh = next;
2487	} while (bh != head);
2488
2489	error = 0;
2490      done:
2491	if (nr == 0) {
2492		/*
2493		 * if this page only had a direct item, it is very possible for
2494		 * no io to be required without there being an error.  Or,
2495		 * someone else could have locked them and sent them down the
2496		 * pipe without locking the page
2497		 */
2498		bh = head;
2499		do {
2500			if (!buffer_uptodate(bh)) {
2501				partial = 1;
2502				break;
2503			}
2504			bh = bh->b_this_page;
2505		} while (bh != head);
2506		if (!partial)
2507			SetPageUptodate(page);
2508		end_page_writeback(page);
2509	}
2510	return error;
2511
2512      fail:
2513	/* catches various errors, we need to make sure any valid dirty blocks
 
2514	 * get to the media.  The page is currently locked and not marked for
2515	 * writeback
2516	 */
2517	ClearPageUptodate(page);
2518	bh = head;
2519	do {
2520		get_bh(bh);
2521		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2522			lock_buffer(bh);
2523			mark_buffer_async_write(bh);
2524		} else {
2525			/*
2526			 * clear any dirty bits that might have come from getting
2527			 * attached to a dirty page
2528			 */
2529			clear_buffer_dirty(bh);
2530		}
2531		bh = bh->b_this_page;
2532	} while (bh != head);
2533	SetPageError(page);
2534	BUG_ON(PageWriteback(page));
2535	set_page_writeback(page);
2536	unlock_page(page);
2537	do {
2538		struct buffer_head *next = bh->b_this_page;
2539		if (buffer_async_write(bh)) {
2540			clear_buffer_dirty(bh);
2541			submit_bh(WRITE, bh);
2542			nr++;
2543		}
2544		put_bh(bh);
2545		bh = next;
2546	} while (bh != head);
2547	goto done;
2548}
2549
2550static int reiserfs_readpage(struct file *f, struct page *page)
2551{
2552	return block_read_full_page(page, reiserfs_get_block);
2553}
2554
2555static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2556{
2557	struct inode *inode = page->mapping->host;
2558	reiserfs_wait_on_write_block(inode->i_sb);
2559	return reiserfs_write_full_page(page, wbc);
2560}
2561
2562static void reiserfs_truncate_failed_write(struct inode *inode)
2563{
2564	truncate_inode_pages(inode->i_mapping, inode->i_size);
2565	reiserfs_truncate_file(inode, 0);
2566}
2567
2568static int reiserfs_write_begin(struct file *file,
2569				struct address_space *mapping,
2570				loff_t pos, unsigned len, unsigned flags,
2571				struct page **pagep, void **fsdata)
2572{
2573	struct inode *inode;
2574	struct page *page;
2575	pgoff_t index;
2576	int ret;
2577	int old_ref = 0;
2578
2579 	inode = mapping->host;
2580	*fsdata = 0;
2581 	if (flags & AOP_FLAG_CONT_EXPAND &&
2582 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2583 		pos ++;
2584		*fsdata = (void *)(unsigned long)flags;
2585	}
2586
2587	index = pos >> PAGE_CACHE_SHIFT;
2588	page = grab_cache_page_write_begin(mapping, index, flags);
2589	if (!page)
2590		return -ENOMEM;
2591	*pagep = page;
2592
2593	reiserfs_wait_on_write_block(inode->i_sb);
2594	fix_tail_page_for_writing(page);
2595	if (reiserfs_transaction_running(inode->i_sb)) {
2596		struct reiserfs_transaction_handle *th;
2597		th = (struct reiserfs_transaction_handle *)current->
2598		    journal_info;
2599		BUG_ON(!th->t_refcount);
2600		BUG_ON(!th->t_trans_id);
2601		old_ref = th->t_refcount;
2602		th->t_refcount++;
2603	}
2604	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2605	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2606		struct reiserfs_transaction_handle *th = current->journal_info;
2607		/* this gets a little ugly.  If reiserfs_get_block returned an
2608		 * error and left a transacstion running, we've got to close it,
2609		 * and we've got to free handle if it was a persistent transaction.
 
 
2610		 *
2611		 * But, if we had nested into an existing transaction, we need
2612		 * to just drop the ref count on the handle.
2613		 *
2614		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2615		 * and it was a persistent trans.  Otherwise, it was nested above.
 
2616		 */
2617		if (th->t_refcount > old_ref) {
2618			if (old_ref)
2619				th->t_refcount--;
2620			else {
2621				int err;
2622				reiserfs_write_lock(inode->i_sb);
2623				err = reiserfs_end_persistent_transaction(th);
2624				reiserfs_write_unlock(inode->i_sb);
2625				if (err)
2626					ret = err;
2627			}
2628		}
2629	}
2630	if (ret) {
2631		unlock_page(page);
2632		page_cache_release(page);
2633		/* Truncate allocated blocks */
2634		reiserfs_truncate_failed_write(inode);
2635	}
2636	return ret;
2637}
2638
2639int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2640{
2641	struct inode *inode = page->mapping->host;
2642	int ret;
2643	int old_ref = 0;
 
2644
2645	reiserfs_write_unlock(inode->i_sb);
2646	reiserfs_wait_on_write_block(inode->i_sb);
2647	reiserfs_write_lock(inode->i_sb);
2648
2649	fix_tail_page_for_writing(page);
2650	if (reiserfs_transaction_running(inode->i_sb)) {
2651		struct reiserfs_transaction_handle *th;
2652		th = (struct reiserfs_transaction_handle *)current->
2653		    journal_info;
2654		BUG_ON(!th->t_refcount);
2655		BUG_ON(!th->t_trans_id);
2656		old_ref = th->t_refcount;
2657		th->t_refcount++;
2658	}
2659
2660	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2661	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2662		struct reiserfs_transaction_handle *th = current->journal_info;
2663		/* this gets a little ugly.  If reiserfs_get_block returned an
2664		 * error and left a transacstion running, we've got to close it,
2665		 * and we've got to free handle if it was a persistent transaction.
 
 
2666		 *
2667		 * But, if we had nested into an existing transaction, we need
2668		 * to just drop the ref count on the handle.
2669		 *
2670		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2671		 * and it was a persistent trans.  Otherwise, it was nested above.
 
2672		 */
2673		if (th->t_refcount > old_ref) {
2674			if (old_ref)
2675				th->t_refcount--;
2676			else {
2677				int err;
2678				reiserfs_write_lock(inode->i_sb);
2679				err = reiserfs_end_persistent_transaction(th);
2680				reiserfs_write_unlock(inode->i_sb);
2681				if (err)
2682					ret = err;
2683			}
2684		}
2685	}
2686	return ret;
2687
2688}
2689
2690static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2691{
2692	return generic_block_bmap(as, block, reiserfs_bmap);
2693}
2694
2695static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2696			      loff_t pos, unsigned len, unsigned copied,
2697			      struct page *page, void *fsdata)
2698{
2699	struct inode *inode = page->mapping->host;
2700	int ret = 0;
2701	int update_sd = 0;
2702	struct reiserfs_transaction_handle *th;
2703	unsigned start;
2704	int lock_depth = 0;
2705	bool locked = false;
2706
2707	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2708		pos ++;
2709
2710	reiserfs_wait_on_write_block(inode->i_sb);
2711	if (reiserfs_transaction_running(inode->i_sb))
2712		th = current->journal_info;
2713	else
2714		th = NULL;
2715
2716	start = pos & (PAGE_CACHE_SIZE - 1);
2717	if (unlikely(copied < len)) {
2718		if (!PageUptodate(page))
2719			copied = 0;
2720
2721		page_zero_new_buffers(page, start + copied, start + len);
2722	}
2723	flush_dcache_page(page);
2724
2725	reiserfs_commit_page(inode, page, start, start + copied);
2726
2727	/* generic_commit_write does this for us, but does not update the
2728	 ** transaction tracking stuff when the size changes.  So, we have
2729	 ** to do the i_size updates here.
 
2730	 */
2731	if (pos + copied > inode->i_size) {
2732		struct reiserfs_transaction_handle myth;
2733		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2734		locked = true;
2735		/* If the file have grown beyond the border where it
2736		   can have a tail, unmark it as needing a tail
2737		   packing */
 
 
2738		if ((have_large_tails(inode->i_sb)
2739		     && inode->i_size > i_block_size(inode) * 4)
2740		    || (have_small_tails(inode->i_sb)
2741			&& inode->i_size > i_block_size(inode)))
2742			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2743
2744		ret = journal_begin(&myth, inode->i_sb, 1);
2745		if (ret)
2746			goto journal_error;
2747
2748		reiserfs_update_inode_transaction(inode);
2749		inode->i_size = pos + copied;
2750		/*
2751		 * this will just nest into our transaction.  It's important
2752		 * to use mark_inode_dirty so the inode gets pushed around on the
2753		 * dirty lists, and so that O_SYNC works as expected
2754		 */
2755		mark_inode_dirty(inode);
2756		reiserfs_update_sd(&myth, inode);
2757		update_sd = 1;
2758		ret = journal_end(&myth, inode->i_sb, 1);
2759		if (ret)
2760			goto journal_error;
2761	}
2762	if (th) {
2763		if (!locked) {
2764			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2765			locked = true;
2766		}
2767		if (!update_sd)
2768			mark_inode_dirty(inode);
2769		ret = reiserfs_end_persistent_transaction(th);
2770		if (ret)
2771			goto out;
2772	}
2773
2774      out:
2775	if (locked)
2776		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2777	unlock_page(page);
2778	page_cache_release(page);
2779
2780	if (pos + len > inode->i_size)
2781		reiserfs_truncate_failed_write(inode);
2782
2783	return ret == 0 ? copied : ret;
2784
2785      journal_error:
2786	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2787	locked = false;
2788	if (th) {
2789		if (!update_sd)
2790			reiserfs_update_sd(th, inode);
2791		ret = reiserfs_end_persistent_transaction(th);
2792	}
2793	goto out;
2794}
2795
2796int reiserfs_commit_write(struct file *f, struct page *page,
2797			  unsigned from, unsigned to)
2798{
2799	struct inode *inode = page->mapping->host;
2800	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2801	int ret = 0;
2802	int update_sd = 0;
2803	struct reiserfs_transaction_handle *th = NULL;
 
2804
2805	reiserfs_write_unlock(inode->i_sb);
2806	reiserfs_wait_on_write_block(inode->i_sb);
2807	reiserfs_write_lock(inode->i_sb);
2808
2809	if (reiserfs_transaction_running(inode->i_sb)) {
2810		th = current->journal_info;
2811	}
2812	reiserfs_commit_page(inode, page, from, to);
2813
2814	/* generic_commit_write does this for us, but does not update the
2815	 ** transaction tracking stuff when the size changes.  So, we have
2816	 ** to do the i_size updates here.
 
2817	 */
2818	if (pos > inode->i_size) {
2819		struct reiserfs_transaction_handle myth;
2820		/* If the file have grown beyond the border where it
2821		   can have a tail, unmark it as needing a tail
2822		   packing */
 
 
2823		if ((have_large_tails(inode->i_sb)
2824		     && inode->i_size > i_block_size(inode) * 4)
2825		    || (have_small_tails(inode->i_sb)
2826			&& inode->i_size > i_block_size(inode)))
2827			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2828
2829		ret = journal_begin(&myth, inode->i_sb, 1);
2830		if (ret)
2831			goto journal_error;
2832
2833		reiserfs_update_inode_transaction(inode);
2834		inode->i_size = pos;
2835		/*
2836		 * this will just nest into our transaction.  It's important
2837		 * to use mark_inode_dirty so the inode gets pushed around on the
2838		 * dirty lists, and so that O_SYNC works as expected
2839		 */
2840		mark_inode_dirty(inode);
2841		reiserfs_update_sd(&myth, inode);
2842		update_sd = 1;
2843		ret = journal_end(&myth, inode->i_sb, 1);
2844		if (ret)
2845			goto journal_error;
2846	}
2847	if (th) {
2848		if (!update_sd)
2849			mark_inode_dirty(inode);
2850		ret = reiserfs_end_persistent_transaction(th);
2851		if (ret)
2852			goto out;
2853	}
2854
2855      out:
2856	return ret;
2857
2858      journal_error:
2859	if (th) {
2860		if (!update_sd)
2861			reiserfs_update_sd(th, inode);
2862		ret = reiserfs_end_persistent_transaction(th);
2863	}
2864
2865	return ret;
2866}
2867
2868void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2869{
2870	if (reiserfs_attrs(inode->i_sb)) {
2871		if (sd_attrs & REISERFS_SYNC_FL)
2872			inode->i_flags |= S_SYNC;
2873		else
2874			inode->i_flags &= ~S_SYNC;
2875		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2876			inode->i_flags |= S_IMMUTABLE;
2877		else
2878			inode->i_flags &= ~S_IMMUTABLE;
2879		if (sd_attrs & REISERFS_APPEND_FL)
2880			inode->i_flags |= S_APPEND;
2881		else
2882			inode->i_flags &= ~S_APPEND;
2883		if (sd_attrs & REISERFS_NOATIME_FL)
2884			inode->i_flags |= S_NOATIME;
2885		else
2886			inode->i_flags &= ~S_NOATIME;
2887		if (sd_attrs & REISERFS_NOTAIL_FL)
2888			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2889		else
2890			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2891	}
2892}
2893
2894void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2895{
2896	if (reiserfs_attrs(inode->i_sb)) {
2897		if (inode->i_flags & S_IMMUTABLE)
2898			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2899		else
2900			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2901		if (inode->i_flags & S_SYNC)
2902			*sd_attrs |= REISERFS_SYNC_FL;
2903		else
2904			*sd_attrs &= ~REISERFS_SYNC_FL;
2905		if (inode->i_flags & S_NOATIME)
2906			*sd_attrs |= REISERFS_NOATIME_FL;
2907		else
2908			*sd_attrs &= ~REISERFS_NOATIME_FL;
2909		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2910			*sd_attrs |= REISERFS_NOTAIL_FL;
2911		else
2912			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2913	}
2914}
2915
2916/* decide if this buffer needs to stay around for data logging or ordered
2917** write purposes
2918*/
2919static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2920{
2921	int ret = 1;
2922	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2923
2924	lock_buffer(bh);
2925	spin_lock(&j->j_dirty_buffers_lock);
2926	if (!buffer_mapped(bh)) {
2927		goto free_jh;
2928	}
2929	/* the page is locked, and the only places that log a data buffer
 
2930	 * also lock the page.
2931	 */
2932	if (reiserfs_file_data_log(inode)) {
2933		/*
2934		 * very conservative, leave the buffer pinned if
2935		 * anyone might need it.
2936		 */
2937		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2938			ret = 0;
2939		}
2940	} else  if (buffer_dirty(bh)) {
2941		struct reiserfs_journal_list *jl;
2942		struct reiserfs_jh *jh = bh->b_private;
2943
2944		/* why is this safe?
 
2945		 * reiserfs_setattr updates i_size in the on disk
2946		 * stat data before allowing vmtruncate to be called.
2947		 *
2948		 * If buffer was put onto the ordered list for this
2949		 * transaction, we know for sure either this transaction
2950		 * or an older one already has updated i_size on disk,
2951		 * and this ordered data won't be referenced in the file
2952		 * if we crash.
2953		 *
2954		 * if the buffer was put onto the ordered list for an older
2955		 * transaction, we need to leave it around
2956		 */
2957		if (jh && (jl = jh->jl)
2958		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2959			ret = 0;
2960	}
2961      free_jh:
2962	if (ret && bh->b_private) {
2963		reiserfs_free_jh(bh);
2964	}
2965	spin_unlock(&j->j_dirty_buffers_lock);
2966	unlock_buffer(bh);
2967	return ret;
2968}
2969
2970/* clm -- taken from fs/buffer.c:block_invalidate_page */
2971static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
 
2972{
2973	struct buffer_head *head, *bh, *next;
2974	struct inode *inode = page->mapping->host;
2975	unsigned int curr_off = 0;
 
 
2976	int ret = 1;
2977
2978	BUG_ON(!PageLocked(page));
2979
2980	if (offset == 0)
2981		ClearPageChecked(page);
2982
2983	if (!page_has_buffers(page))
 
2984		goto out;
2985
2986	head = page_buffers(page);
2987	bh = head;
2988	do {
2989		unsigned int next_off = curr_off + bh->b_size;
2990		next = bh->b_this_page;
2991
 
 
 
2992		/*
2993		 * is this block fully invalidated?
2994		 */
2995		if (offset <= curr_off) {
2996			if (invalidatepage_can_drop(inode, bh))
2997				reiserfs_unmap_buffer(bh);
2998			else
2999				ret = 0;
3000		}
3001		curr_off = next_off;
3002		bh = next;
3003	} while (bh != head);
3004
3005	/*
3006	 * We release buffers only if the entire page is being invalidated.
3007	 * The get_block cached value has been unconditionally invalidated,
3008	 * so real IO is not possible anymore.
3009	 */
3010	if (!offset && ret) {
3011		ret = try_to_release_page(page, 0);
3012		/* maybe should BUG_ON(!ret); - neilb */
3013	}
3014      out:
3015	return;
3016}
3017
3018static int reiserfs_set_page_dirty(struct page *page)
 
3019{
3020	struct inode *inode = page->mapping->host;
3021	if (reiserfs_file_data_log(inode)) {
3022		SetPageChecked(page);
3023		return __set_page_dirty_nobuffers(page);
3024	}
3025	return __set_page_dirty_buffers(page);
3026}
3027
3028/*
3029 * Returns 1 if the page's buffers were dropped.  The page is locked.
3030 *
3031 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3032 * in the buffers at page_buffers(page).
3033 *
3034 * even in -o notail mode, we can't be sure an old mount without -o notail
3035 * didn't create files with tails.
3036 */
3037static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3038{
3039	struct inode *inode = page->mapping->host;
3040	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3041	struct buffer_head *head;
3042	struct buffer_head *bh;
3043	int ret = 1;
3044
3045	WARN_ON(PageChecked(page));
3046	spin_lock(&j->j_dirty_buffers_lock);
3047	head = page_buffers(page);
3048	bh = head;
3049	do {
3050		if (bh->b_private) {
3051			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3052				reiserfs_free_jh(bh);
3053			} else {
3054				ret = 0;
3055				break;
3056			}
3057		}
3058		bh = bh->b_this_page;
3059	} while (bh != head);
3060	if (ret)
3061		ret = try_to_free_buffers(page);
3062	spin_unlock(&j->j_dirty_buffers_lock);
3063	return ret;
3064}
3065
3066/* We thank Mingming Cao for helping us understand in great detail what
3067   to do in this section of the code. */
3068static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3069				  const struct iovec *iov, loff_t offset,
3070				  unsigned long nr_segs)
3071{
3072	struct file *file = iocb->ki_filp;
3073	struct inode *inode = file->f_mapping->host;
 
3074	ssize_t ret;
3075
3076	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3077				  reiserfs_get_blocks_direct_io);
3078
3079	/*
3080	 * In case of error extending write may have instantiated a few
3081	 * blocks outside i_size. Trim these off again.
3082	 */
3083	if (unlikely((rw & WRITE) && ret < 0)) {
3084		loff_t isize = i_size_read(inode);
3085		loff_t end = offset + iov_length(iov, nr_segs);
3086
3087		if (end > isize)
3088			vmtruncate(inode, isize);
 
 
3089	}
3090
3091	return ret;
3092}
3093
3094int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
 
3095{
3096	struct inode *inode = dentry->d_inode;
3097	unsigned int ia_valid;
3098	int depth;
3099	int error;
3100
3101	error = inode_change_ok(inode, attr);
3102	if (error)
3103		return error;
3104
3105	/* must be turned off for recursive notify_change calls */
3106	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3107
3108	depth = reiserfs_write_lock_once(inode->i_sb);
3109	if (is_quota_modification(inode, attr))
3110		dquot_initialize(inode);
3111
 
 
3112	if (attr->ia_valid & ATTR_SIZE) {
3113		/* version 2 items will be caught by the s_maxbytes check
3114		 ** done for us in vmtruncate
 
3115		 */
3116		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3117		    attr->ia_size > MAX_NON_LFS) {
 
3118			error = -EFBIG;
3119			goto out;
3120		}
3121
3122		inode_dio_wait(inode);
3123
3124		/* fill in hole pointers in the expanding truncate case. */
3125		if (attr->ia_size > inode->i_size) {
3126			error = generic_cont_expand_simple(inode, attr->ia_size);
 
 
 
 
3127			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3128				int err;
3129				struct reiserfs_transaction_handle th;
3130				/* we're changing at most 2 bitmaps, inode + super */
3131				err = journal_begin(&th, inode->i_sb, 4);
3132				if (!err) {
3133					reiserfs_discard_prealloc(&th, inode);
3134					err = journal_end(&th, inode->i_sb, 4);
3135				}
3136				if (err)
3137					error = err;
3138			}
3139			if (error)
 
3140				goto out;
 
3141			/*
3142			 * file size is changed, ctime and mtime are
3143			 * to be updated
3144			 */
3145			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3146		}
3147	}
 
3148
3149	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3150	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3151	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3152		/* stat data of format v3.5 has 16 bit uid and gid */
3153		error = -EINVAL;
3154		goto out;
3155	}
3156
3157	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3158	    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3159		struct reiserfs_transaction_handle th;
3160		int jbegin_count =
3161		    2 *
3162		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3163		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3164		    2;
3165
3166		error = reiserfs_chown_xattrs(inode, attr);
3167
3168		if (error)
3169			return error;
3170
3171		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
 
 
 
 
3172		error = journal_begin(&th, inode->i_sb, jbegin_count);
 
3173		if (error)
3174			goto out;
3175		error = dquot_transfer(inode, attr);
 
3176		if (error) {
3177			journal_end(&th, inode->i_sb, jbegin_count);
 
3178			goto out;
3179		}
3180
3181		/* Update corresponding info in inode so that everything is in
3182		 * one transaction */
 
 
3183		if (attr->ia_valid & ATTR_UID)
3184			inode->i_uid = attr->ia_uid;
3185		if (attr->ia_valid & ATTR_GID)
3186			inode->i_gid = attr->ia_gid;
3187		mark_inode_dirty(inode);
3188		error = journal_end(&th, inode->i_sb, jbegin_count);
 
3189		if (error)
3190			goto out;
3191	}
3192
3193	/*
3194	 * Relax the lock here, as it might truncate the
3195	 * inode pages and wait for inode pages locks.
3196	 * To release such page lock, the owner needs the
3197	 * reiserfs lock
3198	 */
3199	reiserfs_write_unlock_once(inode->i_sb, depth);
3200	if ((attr->ia_valid & ATTR_SIZE) &&
3201	    attr->ia_size != i_size_read(inode))
3202		error = vmtruncate(inode, attr->ia_size);
 
 
 
 
 
 
 
 
 
 
 
3203
3204	if (!error) {
3205		setattr_copy(inode, attr);
3206		mark_inode_dirty(inode);
3207	}
3208	depth = reiserfs_write_lock_once(inode->i_sb);
3209
3210	if (!error && reiserfs_posixacl(inode->i_sb)) {
3211		if (attr->ia_valid & ATTR_MODE)
3212			error = reiserfs_acl_chmod(inode);
3213	}
3214
3215      out:
3216	reiserfs_write_unlock_once(inode->i_sb, depth);
3217
3218	return error;
3219}
3220
3221const struct address_space_operations reiserfs_address_space_operations = {
3222	.writepage = reiserfs_writepage,
3223	.readpage = reiserfs_readpage,
3224	.readpages = reiserfs_readpages,
3225	.releasepage = reiserfs_releasepage,
3226	.invalidatepage = reiserfs_invalidatepage,
3227	.write_begin = reiserfs_write_begin,
3228	.write_end = reiserfs_write_end,
3229	.bmap = reiserfs_aop_bmap,
3230	.direct_IO = reiserfs_direct_IO,
3231	.set_page_dirty = reiserfs_set_page_dirty,
3232};