Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <linux/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/uio.h>
  22#include <linux/bio.h>
  23
  24int reiserfs_commit_write(struct file *f, struct page *page,
  25			  unsigned from, unsigned to);
  26
  27void reiserfs_evict_inode(struct inode *inode)
  28{
  29	/*
  30	 * We need blocks for transaction + (user+group) quota
  31	 * update (possibly delete)
  32	 */
  33	int jbegin_count =
  34	    JOURNAL_PER_BALANCE_CNT * 2 +
  35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  36	struct reiserfs_transaction_handle th;
  37	int err;
  38
  39	if (!inode->i_nlink && !is_bad_inode(inode))
  40		dquot_initialize(inode);
  41
  42	truncate_inode_pages_final(&inode->i_data);
  43	if (inode->i_nlink)
  44		goto no_delete;
  45
  46	/*
  47	 * The = 0 happens when we abort creating a new inode
  48	 * for some reason like lack of space..
  49	 * also handles bad_inode case
  50	 */
  51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
  52
  53		reiserfs_delete_xattrs(inode);
  54
  55		reiserfs_write_lock(inode->i_sb);
  56
  57		if (journal_begin(&th, inode->i_sb, jbegin_count))
  58			goto out;
  59		reiserfs_update_inode_transaction(inode);
  60
  61		reiserfs_discard_prealloc(&th, inode);
  62
  63		err = reiserfs_delete_object(&th, inode);
  64
  65		/*
  66		 * Do quota update inside a transaction for journaled quotas.
  67		 * We must do that after delete_object so that quota updates
  68		 * go into the same transaction as stat data deletion
  69		 */
  70		if (!err) {
  71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  72			dquot_free_inode(inode);
  73			reiserfs_write_lock_nested(inode->i_sb, depth);
  74		}
  75
  76		if (journal_end(&th))
  77			goto out;
  78
  79		/*
  80		 * check return value from reiserfs_delete_object after
  81		 * ending the transaction
  82		 */
  83		if (err)
  84		    goto out;
  85
  86		/*
  87		 * all items of file are deleted, so we can remove
  88		 * "save" link
  89		 * we can't do anything about an error here
  90		 */
  91		remove_save_link(inode, 0 /* not truncate */);
  92out:
  93		reiserfs_write_unlock(inode->i_sb);
  94	} else {
  95		/* no object items are in the tree */
  96		;
  97	}
  98
  99	/* note this must go after the journal_end to prevent deadlock */
 100	clear_inode(inode);
 101
 102	dquot_drop(inode);
 103	inode->i_blocks = 0;
 104	return;
 105
 106no_delete:
 107	clear_inode(inode);
 108	dquot_drop(inode);
 109}
 110
 111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
 112			  __u32 objectid, loff_t offset, int type, int length)
 113{
 114	key->version = version;
 115
 116	key->on_disk_key.k_dir_id = dirid;
 117	key->on_disk_key.k_objectid = objectid;
 118	set_cpu_key_k_offset(key, offset);
 119	set_cpu_key_k_type(key, type);
 120	key->key_length = length;
 121}
 122
 123/*
 124 * take base of inode_key (it comes from inode always) (dirid, objectid)
 125 * and version from an inode, set offset and type of key
 126 */
 127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 128		  int type, int length)
 129{
 130	_make_cpu_key(key, get_inode_item_key_version(inode),
 131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 133		      length);
 134}
 135
 136/* when key is 0, do not set version and short key */
 
 
 137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 138			      int version,
 139			      loff_t offset, int type, int length,
 140			      int entry_count /*or ih_free_space */ )
 141{
 142	if (key) {
 143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 144		ih->ih_key.k_objectid =
 145		    cpu_to_le32(key->on_disk_key.k_objectid);
 146	}
 147	put_ih_version(ih, version);
 148	set_le_ih_k_offset(ih, offset);
 149	set_le_ih_k_type(ih, type);
 150	put_ih_item_len(ih, length);
 151	/*    set_ih_free_space (ih, 0); */
 152	/*
 153	 * for directory items it is entry count, for directs and stat
 154	 * datas - 0xffff, for indirects - 0
 155	 */
 156	put_ih_entry_count(ih, entry_count);
 157}
 158
 159/*
 160 * FIXME: we might cache recently accessed indirect item
 161 * Ugh.  Not too eager for that....
 162 * I cut the code until such time as I see a convincing argument (benchmark).
 163 * I don't want a bloated inode struct..., and I don't like code complexity....
 164 */
 165
 166/*
 167 * cutting the code is fine, since it really isn't in use yet and is easy
 168 * to add back in.  But, Vladimir has a really good idea here.  Think
 169 * about what happens for reading a file.  For each page,
 170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
 171 * an indirect item.  This indirect item has X number of pointers, where
 172 * X is a big number if we've done the block allocation right.  But,
 173 * we only use one or two of these pointers during each call to read_folio,
 174 * needlessly researching again later on.
 175 *
 176 * The size of the cache could be dynamic based on the size of the file.
 177 *
 178 * I'd also like to see us cache the location the stat data item, since
 179 * we are needlessly researching for that frequently.
 180 *
 181 * --chris
 182 */
 
 
 
 183
 184/*
 185 * If this page has a file tail in it, and
 186 * it was read in by get_block_create_0, the page data is valid,
 187 * but tail is still sitting in a direct item, and we can't write to
 188 * it.  So, look through this page, and check all the mapped buffers
 189 * to make sure they have valid block numbers.  Any that don't need
 190 * to be unmapped, so that __block_write_begin will correctly call
 191 * reiserfs_get_block to convert the tail into an unformatted node
 192 */
 193static inline void fix_tail_page_for_writing(struct page *page)
 194{
 195	struct buffer_head *head, *next, *bh;
 196
 197	if (page && page_has_buffers(page)) {
 198		head = page_buffers(page);
 199		bh = head;
 200		do {
 201			next = bh->b_this_page;
 202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 203				reiserfs_unmap_buffer(bh);
 204			}
 205			bh = next;
 206		} while (bh != head);
 207	}
 208}
 209
 210/*
 211 * reiserfs_get_block does not need to allocate a block only if it has been
 212 * done already or non-hole position has been found in the indirect item
 213 */
 214static inline int allocation_needed(int retval, b_blocknr_t allocated,
 215				    struct item_head *ih,
 216				    __le32 * item, int pos_in_item)
 217{
 218	if (allocated)
 219		return 0;
 220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 221	    get_block_num(item, pos_in_item))
 222		return 0;
 223	return 1;
 224}
 225
 226static inline int indirect_item_found(int retval, struct item_head *ih)
 227{
 228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 229}
 230
 231static inline void set_block_dev_mapped(struct buffer_head *bh,
 232					b_blocknr_t block, struct inode *inode)
 233{
 234	map_bh(bh, inode->i_sb, block);
 235}
 236
 237/*
 238 * files which were created in the earlier version can not be longer,
 239 * than 2 gb
 240 */
 241static int file_capable(struct inode *inode, sector_t block)
 242{
 243	/* it is new file. */
 244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
 245	    /* old file, but 'block' is inside of 2gb */
 246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
 247		return 1;
 248
 249	return 0;
 250}
 251
 252static int restart_transaction(struct reiserfs_transaction_handle *th,
 253			       struct inode *inode, struct treepath *path)
 254{
 255	struct super_block *s = th->t_super;
 
 256	int err;
 257
 258	BUG_ON(!th->t_trans_id);
 259	BUG_ON(!th->t_refcount);
 260
 261	pathrelse(path);
 262
 263	/* we cannot restart while nested */
 264	if (th->t_refcount > 1) {
 265		return 0;
 266	}
 267	reiserfs_update_sd(th, inode);
 268	err = journal_end(th);
 269	if (!err) {
 270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 271		if (!err)
 272			reiserfs_update_inode_transaction(inode);
 273	}
 274	return err;
 275}
 276
 277/*
 278 * it is called by get_block when create == 0. Returns block number
 279 * for 'block'-th logical block of file. When it hits direct item it
 280 * returns 0 (being called from bmap) or read direct item into piece
 281 * of page (bh_result)
 282 * Please improve the english/clarity in the comment above, as it is
 283 * hard to understand.
 284 */
 285static int _get_block_create_0(struct inode *inode, sector_t block,
 286			       struct buffer_head *bh_result, int args)
 287{
 288	INITIALIZE_PATH(path);
 289	struct cpu_key key;
 290	struct buffer_head *bh;
 291	struct item_head *ih, tmp_ih;
 292	b_blocknr_t blocknr;
 293	char *p;
 294	int chars;
 295	int ret;
 296	int result;
 297	int done = 0;
 298	unsigned long offset;
 299
 300	/* prepare the key to look for the 'block'-th block of file */
 301	make_cpu_key(&key, inode,
 302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 303		     3);
 304
 305	result = search_for_position_by_key(inode->i_sb, &key, &path);
 306	if (result != POSITION_FOUND) {
 307		pathrelse(&path);
 
 
 308		if (result == IO_ERROR)
 309			return -EIO;
 310		/*
 311		 * We do not return -ENOENT if there is a hole but page is
 312		 * uptodate, because it means that there is some MMAPED data
 313		 * associated with it that is yet to be written to disk.
 314		 */
 315		if ((args & GET_BLOCK_NO_HOLE)
 316		    && !PageUptodate(bh_result->b_page)) {
 317			return -ENOENT;
 318		}
 319		return 0;
 320	}
 321
 322	bh = get_last_bh(&path);
 323	ih = tp_item_head(&path);
 324	if (is_indirect_le_ih(ih)) {
 325		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
 326
 327		/*
 328		 * FIXME: here we could cache indirect item or part of it in
 329		 * the inode to avoid search_by_key in case of subsequent
 330		 * access to file
 331		 */
 332		blocknr = get_block_num(ind_item, path.pos_in_item);
 333		ret = 0;
 334		if (blocknr) {
 335			map_bh(bh_result, inode->i_sb, blocknr);
 336			if (path.pos_in_item ==
 337			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 338				set_buffer_boundary(bh_result);
 339			}
 340		} else
 341			/*
 342			 * We do not return -ENOENT if there is a hole but
 343			 * page is uptodate, because it means that there is
 344			 * some MMAPED data associated with it that is
 345			 * yet to be written to disk.
 346			 */
 347		if ((args & GET_BLOCK_NO_HOLE)
 348			    && !PageUptodate(bh_result->b_page)) {
 349			ret = -ENOENT;
 350		}
 351
 352		pathrelse(&path);
 
 
 353		return ret;
 354	}
 355	/* requested data are in direct item(s) */
 356	if (!(args & GET_BLOCK_READ_DIRECT)) {
 357		/*
 358		 * we are called by bmap. FIXME: we can not map block of file
 359		 * when it is stored in direct item(s)
 360		 */
 361		pathrelse(&path);
 
 
 362		return -ENOENT;
 363	}
 364
 365	/*
 366	 * if we've got a direct item, and the buffer or page was uptodate,
 367	 * we don't want to pull data off disk again.  skip to the
 368	 * end, where we map the buffer and return
 369	 */
 370	if (buffer_uptodate(bh_result)) {
 371		goto finished;
 372	} else
 373		/*
 374		 * grab_tail_page can trigger calls to reiserfs_get_block on
 375		 * up to date pages without any buffers.  If the page is up
 376		 * to date, we don't want read old data off disk.  Set the up
 377		 * to date bit on the buffer instead and jump to the end
 378		 */
 379	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 380		set_buffer_uptodate(bh_result);
 381		goto finished;
 382	}
 383	/* read file tail into part of page */
 384	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
 385	copy_item_head(&tmp_ih, ih);
 386
 387	/*
 388	 * we only want to kmap if we are reading the tail into the page.
 389	 * this is not the common case, so we don't kmap until we are
 390	 * sure we need to.  But, this means the item might move if
 391	 * kmap schedules
 392	 */
 393	p = (char *)kmap(bh_result->b_page);
 
 
 394	p += offset;
 395	memset(p, 0, inode->i_sb->s_blocksize);
 396	do {
 397		if (!is_direct_le_ih(ih)) {
 398			BUG();
 399		}
 400		/*
 401		 * make sure we don't read more bytes than actually exist in
 402		 * the file.  This can happen in odd cases where i_size isn't
 403		 * correct, and when direct item padding results in a few
 404		 * extra bytes at the end of the direct item
 405		 */
 406		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 407			break;
 408		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 409			chars =
 410			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 411			    path.pos_in_item;
 412			done = 1;
 413		} else {
 414			chars = ih_item_len(ih) - path.pos_in_item;
 415		}
 416		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
 417
 418		if (done)
 419			break;
 420
 421		p += chars;
 422
 423		/*
 424		 * we done, if read direct item is not the last item of
 425		 * node FIXME: we could try to check right delimiting key
 426		 * to see whether direct item continues in the right
 427		 * neighbor or rely on i_size
 428		 */
 429		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 
 
 
 
 430			break;
 431
 432		/* update key to look for the next piece */
 433		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 434		result = search_for_position_by_key(inode->i_sb, &key, &path);
 435		if (result != POSITION_FOUND)
 436			/* i/o error most likely */
 437			break;
 438		bh = get_last_bh(&path);
 439		ih = tp_item_head(&path);
 440	} while (1);
 441
 442	flush_dcache_page(bh_result->b_page);
 443	kunmap(bh_result->b_page);
 444
 445finished:
 446	pathrelse(&path);
 447
 448	if (result == IO_ERROR)
 449		return -EIO;
 450
 451	/*
 452	 * this buffer has valid data, but isn't valid for io.  mapping it to
 453	 * block #0 tells the rest of reiserfs it just has a tail in it
 454	 */
 455	map_bh(bh_result, inode->i_sb, 0);
 456	set_buffer_uptodate(bh_result);
 457	return 0;
 458}
 459
 460/*
 461 * this is called to create file map. So, _get_block_create_0 will not
 462 * read direct item
 463 */
 464static int reiserfs_bmap(struct inode *inode, sector_t block,
 465			 struct buffer_head *bh_result, int create)
 466{
 467	if (!file_capable(inode, block))
 468		return -EFBIG;
 469
 470	reiserfs_write_lock(inode->i_sb);
 471	/* do not read the direct item */
 472	_get_block_create_0(inode, block, bh_result, 0);
 473	reiserfs_write_unlock(inode->i_sb);
 474	return 0;
 475}
 476
 477/*
 478 * special version of get_block that is only used by grab_tail_page right
 479 * now.  It is sent to __block_write_begin, and when you try to get a
 480 * block past the end of the file (or a block from a hole) it returns
 481 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
 482 * be able to do i/o on the buffers returned, unless an error value
 483 * is also returned.
 484 *
 485 * So, this allows __block_write_begin to be used for reading a single block
 486 * in a page.  Where it does not produce a valid page for holes, or past the
 487 * end of the file.  This turns out to be exactly what we need for reading
 488 * tails for conversion.
 489 *
 490 * The point of the wrapper is forcing a certain value for create, even
 491 * though the VFS layer is calling this function with create==1.  If you
 492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 493 * don't use this function.
 494*/
 495static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 496				       struct buffer_head *bh_result,
 497				       int create)
 498{
 499	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 500}
 501
 502/*
 503 * This is special helper for reiserfs_get_block in case we are executing
 504 * direct_IO request.
 505 */
 506static int reiserfs_get_blocks_direct_io(struct inode *inode,
 507					 sector_t iblock,
 508					 struct buffer_head *bh_result,
 509					 int create)
 510{
 511	int ret;
 512
 513	bh_result->b_page = NULL;
 514
 515	/*
 516	 * We set the b_size before reiserfs_get_block call since it is
 517	 * referenced in convert_tail_for_hole() that may be called from
 518	 * reiserfs_get_block()
 519	 */
 520	bh_result->b_size = i_blocksize(inode);
 521
 522	ret = reiserfs_get_block(inode, iblock, bh_result,
 523				 create | GET_BLOCK_NO_DANGLE);
 524	if (ret)
 525		goto out;
 526
 527	/* don't allow direct io onto tail pages */
 528	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 529		/*
 530		 * make sure future calls to the direct io funcs for this
 531		 * offset in the file fail by unmapping the buffer
 532		 */
 533		clear_buffer_mapped(bh_result);
 534		ret = -EINVAL;
 535	}
 536
 537	/*
 538	 * Possible unpacked tail. Flush the data before pages have
 539	 * disappeared
 540	 */
 541	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 542		int err;
 543
 544		reiserfs_write_lock(inode->i_sb);
 545
 546		err = reiserfs_commit_for_inode(inode);
 547		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 548
 549		reiserfs_write_unlock(inode->i_sb);
 550
 551		if (err < 0)
 552			ret = err;
 553	}
 554out:
 555	return ret;
 556}
 557
 558/*
 559 * helper function for when reiserfs_get_block is called for a hole
 560 * but the file tail is still in a direct item
 561 * bh_result is the buffer head for the hole
 562 * tail_offset is the offset of the start of the tail in the file
 563 *
 564 * This calls prepare_write, which will start a new transaction
 565 * you should not be in a transaction, or have any paths held when you
 566 * call this.
 567 */
 568static int convert_tail_for_hole(struct inode *inode,
 569				 struct buffer_head *bh_result,
 570				 loff_t tail_offset)
 571{
 572	unsigned long index;
 573	unsigned long tail_end;
 574	unsigned long tail_start;
 575	struct page *tail_page;
 576	struct page *hole_page = bh_result->b_page;
 577	int retval = 0;
 578
 579	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 580		return -EIO;
 581
 582	/* always try to read until the end of the block */
 583	tail_start = tail_offset & (PAGE_SIZE - 1);
 584	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 585
 586	index = tail_offset >> PAGE_SHIFT;
 587	/*
 588	 * hole_page can be zero in case of direct_io, we are sure
 589	 * that we cannot get here if we write with O_DIRECT into tail page
 590	 */
 591	if (!hole_page || index != hole_page->index) {
 592		tail_page = grab_cache_page(inode->i_mapping, index);
 593		retval = -ENOMEM;
 594		if (!tail_page) {
 595			goto out;
 596		}
 597	} else {
 598		tail_page = hole_page;
 599	}
 600
 601	/*
 602	 * we don't have to make sure the conversion did not happen while
 603	 * we were locking the page because anyone that could convert
 604	 * must first take i_mutex.
 605	 *
 606	 * We must fix the tail page for writing because it might have buffers
 607	 * that are mapped, but have a block number of 0.  This indicates tail
 608	 * data that has been read directly into the page, and
 609	 * __block_write_begin won't trigger a get_block in this case.
 610	 */
 611	fix_tail_page_for_writing(tail_page);
 612	retval = __reiserfs_write_begin(tail_page, tail_start,
 613				      tail_end - tail_start);
 614	if (retval)
 615		goto unlock;
 616
 617	/* tail conversion might change the data in the page */
 618	flush_dcache_page(tail_page);
 619
 620	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 621
 622unlock:
 623	if (tail_page != hole_page) {
 624		unlock_page(tail_page);
 625		put_page(tail_page);
 626	}
 627out:
 628	return retval;
 629}
 630
 631static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 632				  sector_t block,
 633				  struct inode *inode,
 634				  b_blocknr_t * allocated_block_nr,
 635				  struct treepath *path, int flags)
 636{
 637	BUG_ON(!th->t_trans_id);
 638
 639#ifdef REISERFS_PREALLOCATE
 640	if (!(flags & GET_BLOCK_NO_IMUX)) {
 641		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 642						  path, block);
 643	}
 644#endif
 645	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 646					 block);
 647}
 648
 649int reiserfs_get_block(struct inode *inode, sector_t block,
 650		       struct buffer_head *bh_result, int create)
 651{
 652	int repeat, retval = 0;
 653	/* b_blocknr_t is (unsigned) 32 bit int*/
 654	b_blocknr_t allocated_block_nr = 0;
 655	INITIALIZE_PATH(path);
 656	int pos_in_item;
 657	struct cpu_key key;
 658	struct buffer_head *bh, *unbh = NULL;
 659	struct item_head *ih, tmp_ih;
 660	__le32 *item;
 661	int done;
 662	int fs_gen;
 663	struct reiserfs_transaction_handle *th = NULL;
 664	/*
 665	 * space reserved in transaction batch:
 666	 * . 3 balancings in direct->indirect conversion
 667	 * . 1 block involved into reiserfs_update_sd()
 668	 * XXX in practically impossible worst case direct2indirect()
 669	 * can incur (much) more than 3 balancings.
 670	 * quota update for user, group
 671	 */
 672	int jbegin_count =
 673	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 674	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 675	int version;
 676	int dangle = 1;
 677	loff_t new_offset =
 678	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 679
 680	reiserfs_write_lock(inode->i_sb);
 681	version = get_inode_item_key_version(inode);
 682
 683	if (!file_capable(inode, block)) {
 684		reiserfs_write_unlock(inode->i_sb);
 685		return -EFBIG;
 686	}
 687
 688	/*
 689	 * if !create, we aren't changing the FS, so we don't need to
 690	 * log anything, so we don't need to start a transaction
 691	 */
 692	if (!(create & GET_BLOCK_CREATE)) {
 693		int ret;
 694		/* find number of block-th logical block of the file */
 695		ret = _get_block_create_0(inode, block, bh_result,
 696					  create | GET_BLOCK_READ_DIRECT);
 697		reiserfs_write_unlock(inode->i_sb);
 698		return ret;
 699	}
 700
 701	/*
 702	 * if we're already in a transaction, make sure to close
 703	 * any new transactions we start in this func
 704	 */
 705	if ((create & GET_BLOCK_NO_DANGLE) ||
 706	    reiserfs_transaction_running(inode->i_sb))
 707		dangle = 0;
 708
 709	/*
 710	 * If file is of such a size, that it might have a tail and
 711	 * tails are enabled  we should mark it as possibly needing
 712	 * tail packing on close
 713	 */
 714	if ((have_large_tails(inode->i_sb)
 715	     && inode->i_size < i_block_size(inode) * 4)
 716	    || (have_small_tails(inode->i_sb)
 717		&& inode->i_size < i_block_size(inode)))
 718		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 719
 720	/* set the key of the first byte in the 'block'-th block of file */
 721	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 722	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 723start_trans:
 724		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 725		if (!th) {
 726			retval = -ENOMEM;
 727			goto failure;
 728		}
 729		reiserfs_update_inode_transaction(inode);
 730	}
 731research:
 732
 733	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 734	if (retval == IO_ERROR) {
 735		retval = -EIO;
 736		goto failure;
 737	}
 738
 739	bh = get_last_bh(&path);
 740	ih = tp_item_head(&path);
 741	item = tp_item_body(&path);
 742	pos_in_item = path.pos_in_item;
 743
 744	fs_gen = get_generation(inode->i_sb);
 745	copy_item_head(&tmp_ih, ih);
 746
 747	if (allocation_needed
 748	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 749		/* we have to allocate block for the unformatted node */
 750		if (!th) {
 751			pathrelse(&path);
 752			goto start_trans;
 753		}
 754
 755		repeat =
 756		    _allocate_block(th, block, inode, &allocated_block_nr,
 757				    &path, create);
 758
 759		/*
 760		 * restart the transaction to give the journal a chance to free
 761		 * some blocks.  releases the path, so we have to go back to
 762		 * research if we succeed on the second try
 763		 */
 764		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 
 
 
 
 765			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 766			retval = restart_transaction(th, inode, &path);
 767			if (retval)
 768				goto failure;
 769			repeat =
 770			    _allocate_block(th, block, inode,
 771					    &allocated_block_nr, NULL, create);
 772
 773			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 774				goto research;
 775			}
 776			if (repeat == QUOTA_EXCEEDED)
 777				retval = -EDQUOT;
 778			else
 779				retval = -ENOSPC;
 780			goto failure;
 781		}
 782
 783		if (fs_changed(fs_gen, inode->i_sb)
 784		    && item_moved(&tmp_ih, &path)) {
 785			goto research;
 786		}
 787	}
 788
 789	if (indirect_item_found(retval, ih)) {
 790		b_blocknr_t unfm_ptr;
 791		/*
 792		 * 'block'-th block is in the file already (there is
 793		 * corresponding cell in some indirect item). But it may be
 794		 * zero unformatted node pointer (hole)
 795		 */
 796		unfm_ptr = get_block_num(item, pos_in_item);
 797		if (unfm_ptr == 0) {
 798			/* use allocated block to plug the hole */
 799			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 800			if (fs_changed(fs_gen, inode->i_sb)
 801			    && item_moved(&tmp_ih, &path)) {
 802				reiserfs_restore_prepared_buffer(inode->i_sb,
 803								 bh);
 804				goto research;
 805			}
 806			set_buffer_new(bh_result);
 807			if (buffer_dirty(bh_result)
 808			    && reiserfs_data_ordered(inode->i_sb))
 809				reiserfs_add_ordered_list(inode, bh_result);
 810			put_block_num(item, pos_in_item, allocated_block_nr);
 811			unfm_ptr = allocated_block_nr;
 812			journal_mark_dirty(th, bh);
 813			reiserfs_update_sd(th, inode);
 814		}
 815		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 816		pathrelse(&path);
 817		retval = 0;
 818		if (!dangle && th)
 819			retval = reiserfs_end_persistent_transaction(th);
 820
 821		reiserfs_write_unlock(inode->i_sb);
 822
 823		/*
 824		 * the item was found, so new blocks were not added to the file
 825		 * there is no need to make sure the inode is updated with this
 826		 * transaction
 827		 */
 828		return retval;
 829	}
 830
 831	if (!th) {
 832		pathrelse(&path);
 833		goto start_trans;
 834	}
 835
 836	/*
 837	 * desired position is not found or is in the direct item. We have
 838	 * to append file with holes up to 'block'-th block converting
 839	 * direct items to indirect one if necessary
 840	 */
 841	done = 0;
 842	do {
 843		if (is_statdata_le_ih(ih)) {
 844			__le32 unp = 0;
 845			struct cpu_key tmp_key;
 846
 847			/* indirect item has to be inserted */
 848			make_le_item_head(&tmp_ih, &key, version, 1,
 849					  TYPE_INDIRECT, UNFM_P_SIZE,
 850					  0 /* free_space */ );
 851
 852			/*
 853			 * we are going to add 'block'-th block to the file.
 854			 * Use allocated block for that
 855			 */
 856			if (cpu_key_k_offset(&key) == 1) {
 
 
 857				unp = cpu_to_le32(allocated_block_nr);
 858				set_block_dev_mapped(bh_result,
 859						     allocated_block_nr, inode);
 860				set_buffer_new(bh_result);
 861				done = 1;
 862			}
 863			tmp_key = key;	/* ;) */
 864			set_cpu_key_k_offset(&tmp_key, 1);
 865			PATH_LAST_POSITION(&path)++;
 866
 867			retval =
 868			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 869						 inode, (char *)&unp);
 870			if (retval) {
 871				reiserfs_free_block(th, inode,
 872						    allocated_block_nr, 1);
 873				/*
 874				 * retval == -ENOSPC, -EDQUOT or -EIO
 875				 * or -EEXIST
 876				 */
 877				goto failure;
 878			}
 
 879		} else if (is_direct_le_ih(ih)) {
 880			/* direct item has to be converted */
 881			loff_t tail_offset;
 882
 883			tail_offset =
 884			    ((le_ih_k_offset(ih) -
 885			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 886
 887			/*
 888			 * direct item we just found fits into block we have
 889			 * to map. Convert it into unformatted node: use
 890			 * bh_result for the conversion
 891			 */
 892			if (tail_offset == cpu_key_k_offset(&key)) {
 
 
 
 893				set_block_dev_mapped(bh_result,
 894						     allocated_block_nr, inode);
 895				unbh = bh_result;
 896				done = 1;
 897			} else {
 898				/*
 899				 * we have to pad file tail stored in direct
 900				 * item(s) up to block size and convert it
 901				 * to unformatted node. FIXME: this should
 902				 * also get into page cache
 903				 */
 904
 905				pathrelse(&path);
 906				/*
 907				 * ugly, but we can only end the transaction if
 908				 * we aren't nested
 909				 */
 910				BUG_ON(!th->t_refcount);
 911				if (th->t_refcount == 1) {
 912					retval =
 913					    reiserfs_end_persistent_transaction
 914					    (th);
 915					th = NULL;
 916					if (retval)
 917						goto failure;
 918				}
 919
 920				retval =
 921				    convert_tail_for_hole(inode, bh_result,
 922							  tail_offset);
 923				if (retval) {
 924					if (retval != -ENOSPC)
 925						reiserfs_error(inode->i_sb,
 926							"clm-6004",
 927							"convert tail failed "
 928							"inode %lu, error %d",
 929							inode->i_ino,
 930							retval);
 931					if (allocated_block_nr) {
 932						/*
 933						 * the bitmap, the super,
 934						 * and the stat data == 3
 935						 */
 936						if (!th)
 937							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 938						if (th)
 939							reiserfs_free_block(th,
 940									    inode,
 941									    allocated_block_nr,
 942									    1);
 943					}
 944					goto failure;
 945				}
 946				goto research;
 947			}
 948			retval =
 949			    direct2indirect(th, inode, &path, unbh,
 950					    tail_offset);
 951			if (retval) {
 952				reiserfs_unmap_buffer(unbh);
 953				reiserfs_free_block(th, inode,
 954						    allocated_block_nr, 1);
 955				goto failure;
 956			}
 957			/*
 958			 * it is important the set_buffer_uptodate is done
 959			 * after the direct2indirect.  The buffer might
 960			 * contain valid data newer than the data on disk
 961			 * (read by read_folio, changed, and then sent here by
 962			 * writepage).  direct2indirect needs to know if unbh
 963			 * was already up to date, so it can decide if the
 964			 * data in unbh needs to be replaced with data from
 965			 * the disk
 966			 */
 967			set_buffer_uptodate(unbh);
 968
 969			/*
 970			 * unbh->b_page == NULL in case of DIRECT_IO request,
 971			 * this means buffer will disappear shortly, so it
 972			 * should not be added to
 973			 */
 974			if (unbh->b_page) {
 975				/*
 976				 * we've converted the tail, so we must
 977				 * flush unbh before the transaction commits
 978				 */
 979				reiserfs_add_tail_list(inode, unbh);
 980
 981				/*
 982				 * mark it dirty now to prevent commit_write
 983				 * from adding this buffer to the inode's
 984				 * dirty buffer list
 985				 */
 986				/*
 987				 * AKPM: changed __mark_buffer_dirty to
 988				 * mark_buffer_dirty().  It's still atomic,
 989				 * but it sets the page dirty too, which makes
 990				 * it eligible for writeback at any time by the
 991				 * VM (which was also the case with
 992				 * __mark_buffer_dirty())
 993				 */
 994				mark_buffer_dirty(unbh);
 995			}
 996		} else {
 997			/*
 998			 * append indirect item with holes if needed, when
 999			 * appending pointer to 'block'-th block use block,
1000			 * which is already allocated
1001			 */
1002			struct cpu_key tmp_key;
1003			/*
1004			 * We use this in case we need to allocate
1005			 * only one block which is a fastpath
1006			 */
1007			unp_t unf_single = 0;
1008			unp_t *un;
1009			__u64 max_to_insert =
1010			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011			    UNFM_P_SIZE;
1012			__u64 blocks_needed;
1013
1014			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015			       "vs-804: invalid position for append");
1016			/*
1017			 * indirect item has to be appended,
1018			 * set up key of that position
1019			 * (key type is unimportant)
1020			 */
1021			make_cpu_key(&tmp_key, inode,
1022				     le_key_k_offset(version,
1023						     &ih->ih_key) +
1024				     op_bytes_number(ih,
1025						     inode->i_sb->s_blocksize),
1026				     TYPE_INDIRECT, 3);
 
1027
1028			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029			       "green-805: invalid offset");
1030			blocks_needed =
1031			    1 +
1032			    ((cpu_key_k_offset(&key) -
1033			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034			     s_blocksize_bits);
1035
1036			if (blocks_needed == 1) {
1037				un = &unf_single;
1038			} else {
1039				un = kcalloc(min(blocks_needed, max_to_insert),
1040					     UNFM_P_SIZE, GFP_NOFS);
1041				if (!un) {
1042					un = &unf_single;
1043					blocks_needed = 1;
1044					max_to_insert = 0;
1045				}
1046			}
1047			if (blocks_needed <= max_to_insert) {
1048				/*
1049				 * we are going to add target block to
1050				 * the file. Use allocated block for that
1051				 */
1052				un[blocks_needed - 1] =
1053				    cpu_to_le32(allocated_block_nr);
1054				set_block_dev_mapped(bh_result,
1055						     allocated_block_nr, inode);
1056				set_buffer_new(bh_result);
1057				done = 1;
1058			} else {
1059				/* paste hole to the indirect item */
1060				/*
1061				 * If kcalloc failed, max_to_insert becomes
1062				 * zero and it means we only have space for
1063				 * one block
1064				 */
1065				blocks_needed =
1066				    max_to_insert ? max_to_insert : 1;
1067			}
1068			retval =
1069			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070						     (char *)un,
1071						     UNFM_P_SIZE *
1072						     blocks_needed);
1073
1074			if (blocks_needed != 1)
1075				kfree(un);
1076
1077			if (retval) {
1078				reiserfs_free_block(th, inode,
1079						    allocated_block_nr, 1);
1080				goto failure;
1081			}
1082			if (!done) {
1083				/*
1084				 * We need to mark new file size in case
1085				 * this function will be interrupted/aborted
1086				 * later on. And we may do this only for
1087				 * holes.
1088				 */
1089				inode->i_size +=
1090				    inode->i_sb->s_blocksize * blocks_needed;
1091			}
1092		}
1093
1094		if (done == 1)
1095			break;
1096
1097		/*
1098		 * this loop could log more blocks than we had originally
1099		 * asked for.  So, we have to allow the transaction to end
1100		 * if it is too big or too full.  Update the inode so things
1101		 * are consistent if we crash before the function returns
1102		 * release the path so that anybody waiting on the path before
1103		 * ending their transaction will be able to continue.
1104		 */
1105		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106			retval = restart_transaction(th, inode, &path);
1107			if (retval)
1108				goto failure;
1109		}
1110		/*
1111		 * inserting indirect pointers for a hole can take a
1112		 * long time.  reschedule if needed and also release the write
1113		 * lock for others.
1114		 */
1115		reiserfs_cond_resched(inode->i_sb);
1116
1117		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118		if (retval == IO_ERROR) {
1119			retval = -EIO;
1120			goto failure;
1121		}
1122		if (retval == POSITION_FOUND) {
1123			reiserfs_warning(inode->i_sb, "vs-825",
1124					 "%K should not be found", &key);
1125			retval = -EEXIST;
1126			if (allocated_block_nr)
1127				reiserfs_free_block(th, inode,
1128						    allocated_block_nr, 1);
1129			pathrelse(&path);
1130			goto failure;
1131		}
1132		bh = get_last_bh(&path);
1133		ih = tp_item_head(&path);
1134		item = tp_item_body(&path);
1135		pos_in_item = path.pos_in_item;
1136	} while (1);
1137
1138	retval = 0;
1139
1140failure:
1141	if (th && (!dangle || (retval && !th->t_trans_id))) {
1142		int err;
1143		if (th->t_trans_id)
1144			reiserfs_update_sd(th, inode);
1145		err = reiserfs_end_persistent_transaction(th);
1146		if (err)
1147			retval = err;
1148	}
1149
1150	reiserfs_write_unlock(inode->i_sb);
1151	reiserfs_check_path(&path);
1152	return retval;
1153}
1154
1155static void reiserfs_readahead(struct readahead_control *rac)
 
 
1156{
1157	mpage_readahead(rac, reiserfs_get_block);
1158}
1159
1160/*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
1165static int real_space_diff(struct inode *inode, int sd_size)
1166{
1167	int bytes;
1168	loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171		return sd_size;
1172
1173	/*
1174	 * End of file is also in full block with indirect reference, so round
1175	 * up to the next block.
1176	 *
1177	 * there is just no way to know if the tail is actually packed
1178	 * on the file, so we have to assume it isn't.  When we pack the
1179	 * tail, we add 4 bytes to pretend there really is an unformatted
1180	 * node pointer
1181	 */
1182	bytes =
1183	    ((inode->i_size +
1184	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185	    sd_size;
1186	return bytes;
1187}
1188
1189static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190					int sd_size)
1191{
1192	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193		return inode->i_size +
1194		    (loff_t) (real_space_diff(inode, sd_size));
1195	}
1196	return ((loff_t) real_space_diff(inode, sd_size)) +
1197	    (((loff_t) blocks) << 9);
1198}
1199
1200/* Compute number of blocks used by file in ReiserFS counting */
1201static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202{
1203	loff_t bytes = inode_get_bytes(inode);
1204	loff_t real_space = real_space_diff(inode, sd_size);
1205
1206	/* keeps fsck and non-quota versions of reiserfs happy */
1207	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208		bytes += (loff_t) 511;
1209	}
1210
1211	/*
1212	 * files from before the quota patch might i_blocks such that
1213	 * bytes < real_space.  Deal with that here to prevent it from
1214	 * going negative.
1215	 */
1216	if (bytes < real_space)
1217		return 0;
1218	return (bytes - real_space) >> 9;
1219}
1220
1221/*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228/* called by read_locked_inode */
1229static void init_inode(struct inode *inode, struct treepath *path)
1230{
1231	struct buffer_head *bh;
1232	struct item_head *ih;
1233	__u32 rdev;
 
1234
1235	bh = PATH_PLAST_BUFFER(path);
1236	ih = tp_item_head(path);
1237
1238	copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241	REISERFS_I(inode)->i_flags = 0;
1242	REISERFS_I(inode)->i_prealloc_block = 0;
1243	REISERFS_I(inode)->i_prealloc_count = 0;
1244	REISERFS_I(inode)->i_trans_id = 0;
1245	REISERFS_I(inode)->i_jl = NULL;
1246	reiserfs_init_xattr_rwsem(inode);
1247
1248	if (stat_data_v1(ih)) {
1249		struct stat_data_v1 *sd =
1250		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1251		unsigned long blocks;
1252
1253		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254		set_inode_sd_version(inode, STAT_DATA_V1);
1255		inode->i_mode = sd_v1_mode(sd);
1256		set_nlink(inode, sd_v1_nlink(sd));
1257		i_uid_write(inode, sd_v1_uid(sd));
1258		i_gid_write(inode, sd_v1_gid(sd));
1259		inode->i_size = sd_v1_size(sd);
1260		inode->i_atime.tv_sec = sd_v1_atime(sd);
1261		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1262		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1263		inode->i_atime.tv_nsec = 0;
1264		inode->i_ctime.tv_nsec = 0;
1265		inode->i_mtime.tv_nsec = 0;
1266
1267		inode->i_blocks = sd_v1_blocks(sd);
1268		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1269		blocks = (inode->i_size + 511) >> 9;
1270		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1271
1272		/*
1273		 * there was a bug in <=3.5.23 when i_blocks could take
1274		 * negative values. Starting from 3.5.17 this value could
1275		 * even be stored in stat data. For such files we set
1276		 * i_blocks based on file size. Just 2 notes: this can be
1277		 * wrong for sparse files. On-disk value will be only
1278		 * updated if file's inode will ever change
1279		 */
1280		if (inode->i_blocks > blocks) {
 
 
 
 
 
1281			inode->i_blocks = blocks;
1282		}
1283
1284		rdev = sd_v1_rdev(sd);
1285		REISERFS_I(inode)->i_first_direct_byte =
1286		    sd_v1_first_direct_byte(sd);
1287
1288		/*
1289		 * an early bug in the quota code can give us an odd
1290		 * number for the block count.  This is incorrect, fix it here.
1291		 */
1292		if (inode->i_blocks & 1) {
1293			inode->i_blocks++;
1294		}
1295		inode_set_bytes(inode,
1296				to_real_used_space(inode, inode->i_blocks,
1297						   SD_V1_SIZE));
1298		/*
1299		 * nopack is initially zero for v1 objects. For v2 objects,
1300		 * nopack is initialised from sd_attrs
1301		 */
1302		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1303	} else {
1304		/*
1305		 * new stat data found, but object may have old items
1306		 * (directories and symlinks)
1307		 */
1308		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1309
1310		inode->i_mode = sd_v2_mode(sd);
1311		set_nlink(inode, sd_v2_nlink(sd));
1312		i_uid_write(inode, sd_v2_uid(sd));
1313		inode->i_size = sd_v2_size(sd);
1314		i_gid_write(inode, sd_v2_gid(sd));
1315		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1316		inode->i_atime.tv_sec = sd_v2_atime(sd);
1317		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1318		inode->i_ctime.tv_nsec = 0;
1319		inode->i_mtime.tv_nsec = 0;
1320		inode->i_atime.tv_nsec = 0;
1321		inode->i_blocks = sd_v2_blocks(sd);
1322		rdev = sd_v2_rdev(sd);
1323		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1324			inode->i_generation =
1325			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1326		else
1327			inode->i_generation = sd_v2_generation(sd);
1328
1329		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1330			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1331		else
1332			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1333		REISERFS_I(inode)->i_first_direct_byte = 0;
1334		set_inode_sd_version(inode, STAT_DATA_V2);
1335		inode_set_bytes(inode,
1336				to_real_used_space(inode, inode->i_blocks,
1337						   SD_V2_SIZE));
1338		/*
1339		 * read persistent inode attributes from sd and initialise
1340		 * generic inode flags from them
1341		 */
1342		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1343		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1344	}
1345
1346	pathrelse(path);
1347	if (S_ISREG(inode->i_mode)) {
1348		inode->i_op = &reiserfs_file_inode_operations;
1349		inode->i_fop = &reiserfs_file_operations;
1350		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1351	} else if (S_ISDIR(inode->i_mode)) {
1352		inode->i_op = &reiserfs_dir_inode_operations;
1353		inode->i_fop = &reiserfs_dir_operations;
1354	} else if (S_ISLNK(inode->i_mode)) {
1355		inode->i_op = &reiserfs_symlink_inode_operations;
1356		inode_nohighmem(inode);
1357		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1358	} else {
1359		inode->i_blocks = 0;
1360		inode->i_op = &reiserfs_special_inode_operations;
1361		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1362	}
1363}
1364
1365/* update new stat data with inode fields */
1366static void inode2sd(void *sd, struct inode *inode, loff_t size)
1367{
1368	struct stat_data *sd_v2 = (struct stat_data *)sd;
 
1369
1370	set_sd_v2_mode(sd_v2, inode->i_mode);
1371	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1372	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1373	set_sd_v2_size(sd_v2, size);
1374	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1375	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1376	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1377	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1378	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1379	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1380		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1381	else
1382		set_sd_v2_generation(sd_v2, inode->i_generation);
1383	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
 
 
1384}
1385
1386/* used to copy inode's fields to old stat data */
1387static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1388{
1389	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1390
1391	set_sd_v1_mode(sd_v1, inode->i_mode);
1392	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1393	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1394	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1395	set_sd_v1_size(sd_v1, size);
1396	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1397	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1398	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1399
1400	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1401		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1402	else
1403		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1404
1405	/* Sigh. i_first_direct_byte is back */
1406	set_sd_v1_first_direct_byte(sd_v1,
1407				    REISERFS_I(inode)->i_first_direct_byte);
1408}
1409
1410/*
1411 * NOTE, you must prepare the buffer head before sending it here,
1412 * and then log it after the call
1413 */
1414static void update_stat_data(struct treepath *path, struct inode *inode,
1415			     loff_t size)
1416{
1417	struct buffer_head *bh;
1418	struct item_head *ih;
1419
1420	bh = PATH_PLAST_BUFFER(path);
1421	ih = tp_item_head(path);
1422
1423	if (!is_statdata_le_ih(ih))
1424		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1425			       INODE_PKEY(inode), ih);
1426
1427	/* path points to old stat data */
1428	if (stat_data_v1(ih)) {
1429		inode2sd_v1(ih_item_body(bh, ih), inode, size);
 
1430	} else {
1431		inode2sd(ih_item_body(bh, ih), inode, size);
1432	}
1433
1434	return;
1435}
1436
1437void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1438			     struct inode *inode, loff_t size)
1439{
1440	struct cpu_key key;
1441	INITIALIZE_PATH(path);
1442	struct buffer_head *bh;
1443	int fs_gen;
1444	struct item_head *ih, tmp_ih;
1445	int retval;
1446
1447	BUG_ON(!th->t_trans_id);
1448
1449	/* key type is unimportant */
1450	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1451
1452	for (;;) {
1453		int pos;
1454		/* look for the object's stat data */
1455		retval = search_item(inode->i_sb, &key, &path);
1456		if (retval == IO_ERROR) {
1457			reiserfs_error(inode->i_sb, "vs-13050",
1458				       "i/o failure occurred trying to "
1459				       "update %K stat data", &key);
1460			return;
1461		}
1462		if (retval == ITEM_NOT_FOUND) {
1463			pos = PATH_LAST_POSITION(&path);
1464			pathrelse(&path);
1465			if (inode->i_nlink == 0) {
1466				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1467				return;
1468			}
1469			reiserfs_warning(inode->i_sb, "vs-13060",
1470					 "stat data of object %k (nlink == %d) "
1471					 "not found (pos %d)",
1472					 INODE_PKEY(inode), inode->i_nlink,
1473					 pos);
1474			reiserfs_check_path(&path);
1475			return;
1476		}
1477
1478		/*
1479		 * sigh, prepare_for_journal might schedule.  When it
1480		 * schedules the FS might change.  We have to detect that,
1481		 * and loop back to the search if the stat data item has moved
1482		 */
1483		bh = get_last_bh(&path);
1484		ih = tp_item_head(&path);
1485		copy_item_head(&tmp_ih, ih);
1486		fs_gen = get_generation(inode->i_sb);
1487		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1488
1489		/* Stat_data item has been moved after scheduling. */
1490		if (fs_changed(fs_gen, inode->i_sb)
1491		    && item_moved(&tmp_ih, &path)) {
1492			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1493			continue;
1494		}
1495		break;
1496	}
1497	update_stat_data(&path, inode, size);
1498	journal_mark_dirty(th, bh);
1499	pathrelse(&path);
1500	return;
1501}
1502
1503/*
1504 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1505 * does a make_bad_inode when things go wrong.  But, we need to make sure
1506 * and clear the key in the private portion of the inode, otherwise a
1507 * corresponding iput might try to delete whatever object the inode last
1508 * represented.
1509 */
1510static void reiserfs_make_bad_inode(struct inode *inode)
1511{
1512	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1513	make_bad_inode(inode);
1514}
1515
1516/*
1517 * initially this function was derived from minix or ext2's analog and
1518 * evolved as the prototype did
1519 */
 
1520int reiserfs_init_locked_inode(struct inode *inode, void *p)
1521{
1522	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1523	inode->i_ino = args->objectid;
1524	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1525	return 0;
1526}
1527
1528/*
1529 * looks for stat data in the tree, and fills up the fields of in-core
1530 * inode stat data fields
1531 */
1532void reiserfs_read_locked_inode(struct inode *inode,
1533				struct reiserfs_iget_args *args)
1534{
1535	INITIALIZE_PATH(path_to_sd);
1536	struct cpu_key key;
1537	unsigned long dirino;
1538	int retval;
1539
1540	dirino = args->dirid;
1541
1542	/*
1543	 * set version 1, version 2 could be used too, because stat data
1544	 * key is the same in both versions
1545	 */
1546	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
 
 
1547
1548	/* look for the object's stat data */
1549	retval = search_item(inode->i_sb, &key, &path_to_sd);
1550	if (retval == IO_ERROR) {
1551		reiserfs_error(inode->i_sb, "vs-13070",
1552			       "i/o failure occurred trying to find "
1553			       "stat data of %K", &key);
1554		reiserfs_make_bad_inode(inode);
1555		return;
1556	}
1557
1558	/* a stale NFS handle can trigger this without it being an error */
1559	if (retval != ITEM_FOUND) {
 
1560		pathrelse(&path_to_sd);
1561		reiserfs_make_bad_inode(inode);
1562		clear_nlink(inode);
1563		return;
1564	}
1565
1566	init_inode(inode, &path_to_sd);
1567
1568	/*
1569	 * It is possible that knfsd is trying to access inode of a file
1570	 * that is being removed from the disk by some other thread. As we
1571	 * update sd on unlink all that is required is to check for nlink
1572	 * here. This bug was first found by Sizif when debugging
1573	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1574	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1575
1576	 * More logical fix would require changes in fs/inode.c:iput() to
1577	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1578	 * in iget() to return NULL if I_FREEING inode is found in
1579	 * hash-table.
1580	 */
1581
1582	/*
1583	 * Currently there is one place where it's ok to meet inode with
1584	 * nlink==0: processing of open-unlinked and half-truncated files
1585	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1586	 */
1587	if ((inode->i_nlink == 0) &&
1588	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1589		reiserfs_warning(inode->i_sb, "vs-13075",
1590				 "dead inode read from disk %K. "
1591				 "This is likely to be race with knfsd. Ignore",
1592				 &key);
1593		reiserfs_make_bad_inode(inode);
1594	}
1595
1596	/* init inode should be relsing */
1597	reiserfs_check_path(&path_to_sd);
1598
1599	/*
1600	 * Stat data v1 doesn't support ACLs.
1601	 */
1602	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1603		cache_no_acl(inode);
1604}
1605
1606/*
1607 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1608 *
1609 * @inode:    inode from hash table to check
1610 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1611 *
1612 * This function is called by iget5_locked() to distinguish reiserfs inodes
1613 * having the same inode numbers. Such inodes can only exist due to some
1614 * error condition. One of them should be bad. Inodes with identical
1615 * inode numbers (objectids) are distinguished by parent directory ids.
1616 *
1617 */
1618int reiserfs_find_actor(struct inode *inode, void *opaque)
1619{
1620	struct reiserfs_iget_args *args;
1621
1622	args = opaque;
1623	/* args is already in CPU order */
1624	return (inode->i_ino == args->objectid) &&
1625	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1626}
1627
1628struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1629{
1630	struct inode *inode;
1631	struct reiserfs_iget_args args;
1632	int depth;
1633
1634	args.objectid = key->on_disk_key.k_objectid;
1635	args.dirid = key->on_disk_key.k_dir_id;
1636	depth = reiserfs_write_unlock_nested(s);
1637	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1638			     reiserfs_find_actor, reiserfs_init_locked_inode,
1639			     (void *)(&args));
1640	reiserfs_write_lock_nested(s, depth);
1641	if (!inode)
1642		return ERR_PTR(-ENOMEM);
1643
1644	if (inode->i_state & I_NEW) {
1645		reiserfs_read_locked_inode(inode, &args);
1646		unlock_new_inode(inode);
1647	}
1648
1649	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1650		/* either due to i/o error or a stale NFS handle */
1651		iput(inode);
1652		inode = NULL;
1653	}
1654	return inode;
1655}
1656
1657static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1658	u32 objectid, u32 dir_id, u32 generation)
1659
1660{
1661	struct cpu_key key;
1662	struct inode *inode;
1663
1664	key.on_disk_key.k_objectid = objectid;
1665	key.on_disk_key.k_dir_id = dir_id;
1666	reiserfs_write_lock(sb);
1667	inode = reiserfs_iget(sb, &key);
1668	if (inode && !IS_ERR(inode) && generation != 0 &&
1669	    generation != inode->i_generation) {
1670		iput(inode);
1671		inode = NULL;
1672	}
1673	reiserfs_write_unlock(sb);
1674
1675	return d_obtain_alias(inode);
1676}
1677
1678struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1679		int fh_len, int fh_type)
1680{
1681	/*
1682	 * fhtype happens to reflect the number of u32s encoded.
1683	 * due to a bug in earlier code, fhtype might indicate there
1684	 * are more u32s then actually fitted.
1685	 * so if fhtype seems to be more than len, reduce fhtype.
1686	 * Valid types are:
1687	 *   2 - objectid + dir_id - legacy support
1688	 *   3 - objectid + dir_id + generation
1689	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1690	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1691	 *   6 - as above plus generation of directory
1692	 * 6 does not fit in NFSv2 handles
1693	 */
1694	if (fh_type > fh_len) {
1695		if (fh_type != 6 || fh_len != 5)
1696			reiserfs_warning(sb, "reiserfs-13077",
1697				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1698				fh_type, fh_len);
1699		fh_type = fh_len;
1700	}
1701	if (fh_len < 2)
1702		return NULL;
1703
1704	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1705		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1706}
1707
1708struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1709		int fh_len, int fh_type)
1710{
1711	if (fh_type > fh_len)
1712		fh_type = fh_len;
1713	if (fh_type < 4)
1714		return NULL;
1715
1716	return reiserfs_get_dentry(sb,
1717		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1718		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1719		(fh_type == 6) ? fid->raw[5] : 0);
1720}
1721
1722int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1723		       struct inode *parent)
1724{
1725	int maxlen = *lenp;
1726
1727	if (parent && (maxlen < 5)) {
1728		*lenp = 5;
1729		return FILEID_INVALID;
1730	} else if (maxlen < 3) {
1731		*lenp = 3;
1732		return FILEID_INVALID;
1733	}
1734
1735	data[0] = inode->i_ino;
1736	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1737	data[2] = inode->i_generation;
1738	*lenp = 3;
1739	if (parent) {
1740		data[3] = parent->i_ino;
1741		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1742		*lenp = 5;
1743		if (maxlen >= 6) {
1744			data[5] = parent->i_generation;
1745			*lenp = 6;
1746		}
1747	}
1748	return *lenp;
1749}
1750
1751/*
1752 * looks for stat data, then copies fields to it, marks the buffer
1753 * containing stat data as dirty
1754 */
1755/*
1756 * reiserfs inodes are never really dirty, since the dirty inode call
1757 * always logs them.  This call allows the VFS inode marking routines
1758 * to properly mark inodes for datasync and such, but only actually
1759 * does something when called for a synchronous update.
1760 */
1761int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1762{
1763	struct reiserfs_transaction_handle th;
1764	int jbegin_count = 1;
1765
1766	if (sb_rdonly(inode->i_sb))
1767		return -EROFS;
1768	/*
1769	 * memory pressure can sometimes initiate write_inode calls with
1770	 * sync == 1,
1771	 * these cases are just when the system needs ram, not when the
1772	 * inode needs to reach disk for safety, and they can safely be
1773	 * ignored because the altered inode has already been logged.
1774	 */
1775	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1776		reiserfs_write_lock(inode->i_sb);
1777		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1778			reiserfs_update_sd(&th, inode);
1779			journal_end_sync(&th);
1780		}
1781		reiserfs_write_unlock(inode->i_sb);
1782	}
1783	return 0;
1784}
1785
1786/*
1787 * stat data of new object is inserted already, this inserts the item
1788 * containing "." and ".." entries
1789 */
1790static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1791				  struct inode *inode,
1792				  struct item_head *ih, struct treepath *path,
1793				  struct inode *dir)
1794{
1795	struct super_block *sb = th->t_super;
1796	char empty_dir[EMPTY_DIR_SIZE];
1797	char *body = empty_dir;
1798	struct cpu_key key;
1799	int retval;
1800
1801	BUG_ON(!th->t_trans_id);
1802
1803	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1804		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1805		      TYPE_DIRENTRY, 3 /*key length */ );
1806
1807	/*
1808	 * compose item head for new item. Directories consist of items of
1809	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1810	 * is done by reiserfs_new_inode
1811	 */
1812	if (old_format_only(sb)) {
1813		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1814				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1815
1816		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1817				       ih->ih_key.k_objectid,
1818				       INODE_PKEY(dir)->k_dir_id,
1819				       INODE_PKEY(dir)->k_objectid);
1820	} else {
1821		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1822				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1823
1824		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1825				    ih->ih_key.k_objectid,
1826				    INODE_PKEY(dir)->k_dir_id,
1827				    INODE_PKEY(dir)->k_objectid);
1828	}
1829
1830	/* look for place in the tree for new item */
1831	retval = search_item(sb, &key, path);
1832	if (retval == IO_ERROR) {
1833		reiserfs_error(sb, "vs-13080",
1834			       "i/o failure occurred creating new directory");
1835		return -EIO;
1836	}
1837	if (retval == ITEM_FOUND) {
1838		pathrelse(path);
1839		reiserfs_warning(sb, "vs-13070",
1840				 "object with this key exists (%k)",
1841				 &(ih->ih_key));
1842		return -EEXIST;
1843	}
1844
1845	/* insert item, that is empty directory item */
1846	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1847}
1848
1849/*
1850 * stat data of object has been inserted, this inserts the item
1851 * containing the body of symlink
1852 */
1853static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1854				struct inode *inode,
1855				struct item_head *ih,
1856				struct treepath *path, const char *symname,
1857				int item_len)
1858{
1859	struct super_block *sb = th->t_super;
1860	struct cpu_key key;
1861	int retval;
1862
1863	BUG_ON(!th->t_trans_id);
1864
1865	_make_cpu_key(&key, KEY_FORMAT_3_5,
1866		      le32_to_cpu(ih->ih_key.k_dir_id),
1867		      le32_to_cpu(ih->ih_key.k_objectid),
1868		      1, TYPE_DIRECT, 3 /*key length */ );
1869
1870	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1871			  0 /*free_space */ );
1872
1873	/* look for place in the tree for new item */
1874	retval = search_item(sb, &key, path);
1875	if (retval == IO_ERROR) {
1876		reiserfs_error(sb, "vs-13080",
1877			       "i/o failure occurred creating new symlink");
1878		return -EIO;
1879	}
1880	if (retval == ITEM_FOUND) {
1881		pathrelse(path);
1882		reiserfs_warning(sb, "vs-13080",
1883				 "object with this key exists (%k)",
1884				 &(ih->ih_key));
1885		return -EEXIST;
1886	}
1887
1888	/* insert item, that is body of symlink */
1889	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1890}
1891
1892/*
1893 * inserts the stat data into the tree, and then calls
1894 * reiserfs_new_directory (to insert ".", ".." item if new object is
1895 * directory) or reiserfs_new_symlink (to insert symlink body if new
1896 * object is symlink) or nothing (if new object is regular file)
1897
1898 * NOTE! uid and gid must already be set in the inode.  If we return
1899 * non-zero due to an error, we have to drop the quota previously allocated
1900 * for the fresh inode.  This can only be done outside a transaction, so
1901 * if we return non-zero, we also end the transaction.
1902 *
1903 * @th: active transaction handle
1904 * @dir: parent directory for new inode
1905 * @mode: mode of new inode
1906 * @symname: symlink contents if inode is symlink
1907 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1908 *         symlinks
1909 * @inode: inode to be filled
1910 * @security: optional security context to associate with this inode
1911 */
1912int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1913		       struct inode *dir, umode_t mode, const char *symname,
1914		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1915		          strlen (symname) for symlinks) */
1916		       loff_t i_size, struct dentry *dentry,
1917		       struct inode *inode,
1918		       struct reiserfs_security_handle *security)
1919{
1920	struct super_block *sb = dir->i_sb;
1921	struct reiserfs_iget_args args;
1922	INITIALIZE_PATH(path_to_key);
1923	struct cpu_key key;
1924	struct item_head ih;
1925	struct stat_data sd;
1926	int retval;
1927	int err;
1928	int depth;
1929
1930	BUG_ON(!th->t_trans_id);
1931
1932	depth = reiserfs_write_unlock_nested(sb);
1933	err = dquot_alloc_inode(inode);
1934	reiserfs_write_lock_nested(sb, depth);
1935	if (err)
1936		goto out_end_trans;
1937	if (!dir->i_nlink) {
1938		err = -EPERM;
1939		goto out_bad_inode;
1940	}
1941
1942	/* item head of new item */
1943	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1944	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1945	if (!ih.ih_key.k_objectid) {
1946		err = -ENOMEM;
1947		goto out_bad_inode;
1948	}
1949	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1950	if (old_format_only(sb))
1951		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1952				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1953	else
1954		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1955				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1956	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1957	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1958
1959	depth = reiserfs_write_unlock_nested(inode->i_sb);
1960	err = insert_inode_locked4(inode, args.objectid,
1961			     reiserfs_find_actor, &args);
1962	reiserfs_write_lock_nested(inode->i_sb, depth);
1963	if (err) {
1964		err = -EINVAL;
1965		goto out_bad_inode;
1966	}
1967
1968	if (old_format_only(sb))
1969		/*
1970		 * not a perfect generation count, as object ids can be reused,
1971		 * but this is as good as reiserfs can do right now.
1972		 * note that the private part of inode isn't filled in yet,
1973		 * we have to use the directory.
1974		 */
1975		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1976	else
1977#if defined( USE_INODE_GENERATION_COUNTER )
1978		inode->i_generation =
1979		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1980#else
1981		inode->i_generation = ++event;
1982#endif
1983
1984	/* fill stat data */
1985	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1986
1987	/* uid and gid must already be set by the caller for quota init */
1988
1989	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
 
 
 
 
1990	inode->i_size = i_size;
1991	inode->i_blocks = 0;
1992	inode->i_bytes = 0;
1993	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1994	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1995
1996	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1997	REISERFS_I(inode)->i_flags = 0;
1998	REISERFS_I(inode)->i_prealloc_block = 0;
1999	REISERFS_I(inode)->i_prealloc_count = 0;
2000	REISERFS_I(inode)->i_trans_id = 0;
2001	REISERFS_I(inode)->i_jl = NULL;
2002	REISERFS_I(inode)->i_attrs =
2003	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2004	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2005	reiserfs_init_xattr_rwsem(inode);
2006
2007	/* key to search for correct place for new stat data */
2008	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2009		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2010		      TYPE_STAT_DATA, 3 /*key length */ );
2011
2012	/* find proper place for inserting of stat data */
2013	retval = search_item(sb, &key, &path_to_key);
2014	if (retval == IO_ERROR) {
2015		err = -EIO;
2016		goto out_bad_inode;
2017	}
2018	if (retval == ITEM_FOUND) {
2019		pathrelse(&path_to_key);
2020		err = -EEXIST;
2021		goto out_bad_inode;
2022	}
2023	if (old_format_only(sb)) {
2024		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2025		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2026			pathrelse(&path_to_key);
 
2027			err = -EINVAL;
2028			goto out_bad_inode;
2029		}
2030		inode2sd_v1(&sd, inode, inode->i_size);
2031	} else {
2032		inode2sd(&sd, inode, inode->i_size);
2033	}
2034	/*
2035	 * store in in-core inode the key of stat data and version all
2036	 * object items will have (directory items will have old offset
2037	 * format, other new objects will consist of new items)
2038	 */
2039	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2040		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2041	else
2042		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2043	if (old_format_only(sb))
2044		set_inode_sd_version(inode, STAT_DATA_V1);
2045	else
2046		set_inode_sd_version(inode, STAT_DATA_V2);
2047
2048	/* insert the stat data into the tree */
2049#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2050	if (REISERFS_I(dir)->new_packing_locality)
2051		th->displace_new_blocks = 1;
2052#endif
2053	retval =
2054	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2055				 (char *)(&sd));
2056	if (retval) {
2057		err = retval;
2058		reiserfs_check_path(&path_to_key);
2059		goto out_bad_inode;
2060	}
2061#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2062	if (!th->displace_new_blocks)
2063		REISERFS_I(dir)->new_packing_locality = 0;
2064#endif
2065	if (S_ISDIR(mode)) {
2066		/* insert item with "." and ".." */
2067		retval =
2068		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2069	}
2070
2071	if (S_ISLNK(mode)) {
2072		/* insert body of symlink */
2073		if (!old_format_only(sb))
2074			i_size = ROUND_UP(i_size);
2075		retval =
2076		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2077					 i_size);
2078	}
2079	if (retval) {
2080		err = retval;
2081		reiserfs_check_path(&path_to_key);
2082		journal_end(th);
2083		goto out_inserted_sd;
2084	}
2085
2086	/*
2087	 * Mark it private if we're creating the privroot
2088	 * or something under it.
2089	 */
2090	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
2091		inode->i_flags |= S_PRIVATE;
2092		inode->i_opflags &= ~IOP_XATTR;
2093	}
2094
2095	if (reiserfs_posixacl(inode->i_sb)) {
2096		reiserfs_write_unlock(inode->i_sb);
2097		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2098		reiserfs_write_lock(inode->i_sb);
2099		if (retval) {
2100			err = retval;
2101			reiserfs_check_path(&path_to_key);
2102			journal_end(th);
2103			goto out_inserted_sd;
2104		}
2105	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2106		reiserfs_warning(inode->i_sb, "jdm-13090",
2107				 "ACLs aren't enabled in the fs, "
2108				 "but vfs thinks they are!");
2109	}
 
2110
2111	if (security->name) {
2112		reiserfs_write_unlock(inode->i_sb);
2113		retval = reiserfs_security_write(th, inode, security);
2114		reiserfs_write_lock(inode->i_sb);
2115		if (retval) {
2116			err = retval;
2117			reiserfs_check_path(&path_to_key);
2118			retval = journal_end(th);
 
2119			if (retval)
2120				err = retval;
2121			goto out_inserted_sd;
2122		}
2123	}
2124
2125	reiserfs_update_sd(th, inode);
2126	reiserfs_check_path(&path_to_key);
2127
2128	return 0;
2129
2130out_bad_inode:
 
 
 
 
2131	/* Invalidate the object, nothing was inserted yet */
2132	INODE_PKEY(inode)->k_objectid = 0;
2133
2134	/* Quota change must be inside a transaction for journaling */
2135	depth = reiserfs_write_unlock_nested(inode->i_sb);
2136	dquot_free_inode(inode);
2137	reiserfs_write_lock_nested(inode->i_sb, depth);
2138
2139out_end_trans:
2140	journal_end(th);
2141	/*
2142	 * Drop can be outside and it needs more credits so it's better
2143	 * to have it outside
2144	 */
2145	depth = reiserfs_write_unlock_nested(inode->i_sb);
2146	dquot_drop(inode);
2147	reiserfs_write_lock_nested(inode->i_sb, depth);
2148	inode->i_flags |= S_NOQUOTA;
2149	make_bad_inode(inode);
2150
2151out_inserted_sd:
2152	clear_nlink(inode);
2153	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2154	if (inode->i_state & I_NEW)
2155		unlock_new_inode(inode);
2156	iput(inode);
2157	return err;
2158}
2159
2160/*
2161 * finds the tail page in the page cache,
2162 * reads the last block in.
2163 *
2164 * On success, page_result is set to a locked, pinned page, and bh_result
2165 * is set to an up to date buffer for the last block in the file.  returns 0.
2166 *
2167 * tail conversion is not done, so bh_result might not be valid for writing
2168 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2169 * trying to write the block.
2170 *
2171 * on failure, nonzero is returned, page_result and bh_result are untouched.
2172 */
2173static int grab_tail_page(struct inode *inode,
2174			  struct page **page_result,
2175			  struct buffer_head **bh_result)
2176{
2177
2178	/*
2179	 * we want the page with the last byte in the file,
2180	 * not the page that will hold the next byte for appending
2181	 */
2182	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2183	unsigned long pos = 0;
2184	unsigned long start = 0;
2185	unsigned long blocksize = inode->i_sb->s_blocksize;
2186	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2187	struct buffer_head *bh;
2188	struct buffer_head *head;
2189	struct page *page;
2190	int error;
2191
2192	/*
2193	 * we know that we are only called with inode->i_size > 0.
2194	 * we also know that a file tail can never be as big as a block
2195	 * If i_size % blocksize == 0, our file is currently block aligned
2196	 * and it won't need converting or zeroing after a truncate.
2197	 */
2198	if ((offset & (blocksize - 1)) == 0) {
2199		return -ENOENT;
2200	}
2201	page = grab_cache_page(inode->i_mapping, index);
2202	error = -ENOMEM;
2203	if (!page) {
2204		goto out;
2205	}
2206	/* start within the page of the last block in the file */
2207	start = (offset / blocksize) * blocksize;
2208
2209	error = __block_write_begin(page, start, offset - start,
2210				    reiserfs_get_block_create_0);
2211	if (error)
2212		goto unlock;
2213
2214	head = page_buffers(page);
2215	bh = head;
2216	do {
2217		if (pos >= start) {
2218			break;
2219		}
2220		bh = bh->b_this_page;
2221		pos += blocksize;
2222	} while (bh != head);
2223
2224	if (!buffer_uptodate(bh)) {
2225		/*
2226		 * note, this should never happen, prepare_write should be
2227		 * taking care of this for us.  If the buffer isn't up to
2228		 * date, I've screwed up the code to find the buffer, or the
2229		 * code to call prepare_write
2230		 */
2231		reiserfs_error(inode->i_sb, "clm-6000",
2232			       "error reading block %lu", bh->b_blocknr);
2233		error = -EIO;
2234		goto unlock;
2235	}
2236	*bh_result = bh;
2237	*page_result = page;
2238
2239out:
2240	return error;
2241
2242unlock:
2243	unlock_page(page);
2244	put_page(page);
2245	return error;
2246}
2247
2248/*
2249 * vfs version of truncate file.  Must NOT be called with
2250 * a transaction already started.
2251 *
2252 * some code taken from block_truncate_page
2253 */
2254int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2255{
2256	struct reiserfs_transaction_handle th;
2257	/* we want the offset for the first byte after the end of the file */
2258	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2259	unsigned blocksize = inode->i_sb->s_blocksize;
2260	unsigned length;
2261	struct page *page = NULL;
2262	int error;
2263	struct buffer_head *bh = NULL;
2264	int err2;
2265
2266	reiserfs_write_lock(inode->i_sb);
2267
2268	if (inode->i_size > 0) {
2269		error = grab_tail_page(inode, &page, &bh);
2270		if (error) {
2271			/*
2272			 * -ENOENT means we truncated past the end of the
2273			 * file, and get_block_create_0 could not find a
2274			 * block to read in, which is ok.
2275			 */
2276			if (error != -ENOENT)
2277				reiserfs_error(inode->i_sb, "clm-6001",
2278					       "grab_tail_page failed %d",
2279					       error);
2280			page = NULL;
2281			bh = NULL;
2282		}
2283	}
2284
2285	/*
2286	 * so, if page != NULL, we have a buffer head for the offset at
2287	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2288	 * then we have an unformatted node.  Otherwise, we have a direct item,
2289	 * and no zeroing is required on disk.  We zero after the truncate,
2290	 * because the truncate might pack the item anyway
2291	 * (it will unmap bh if it packs).
2292	 *
2293	 * it is enough to reserve space in transaction for 2 balancings:
2294	 * one for "save" link adding and another for the first
2295	 * cut_from_item. 1 is for update_sd
2296	 */
2297	error = journal_begin(&th, inode->i_sb,
2298			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2299	if (error)
2300		goto out;
2301	reiserfs_update_inode_transaction(inode);
2302	if (update_timestamps)
2303		/*
2304		 * we are doing real truncate: if the system crashes
2305		 * before the last transaction of truncating gets committed
2306		 * - on reboot the file either appears truncated properly
2307		 * or not truncated at all
2308		 */
2309		add_save_link(&th, inode, 1);
2310	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2311	error = journal_end(&th);
 
2312	if (error)
2313		goto out;
2314
2315	/* check reiserfs_do_truncate after ending the transaction */
2316	if (err2) {
2317		error = err2;
2318  		goto out;
2319	}
2320	
2321	if (update_timestamps) {
2322		error = remove_save_link(inode, 1 /* truncate */);
2323		if (error)
2324			goto out;
2325	}
2326
2327	if (page) {
2328		length = offset & (blocksize - 1);
2329		/* if we are not on a block boundary */
2330		if (length) {
2331			length = blocksize - length;
2332			zero_user(page, offset, length);
2333			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2334				mark_buffer_dirty(bh);
2335			}
2336		}
2337		unlock_page(page);
2338		put_page(page);
2339	}
2340
2341	reiserfs_write_unlock(inode->i_sb);
2342
2343	return 0;
2344out:
2345	if (page) {
2346		unlock_page(page);
2347		put_page(page);
2348	}
2349
2350	reiserfs_write_unlock(inode->i_sb);
2351
2352	return error;
2353}
2354
2355static int map_block_for_writepage(struct inode *inode,
2356				   struct buffer_head *bh_result,
2357				   unsigned long block)
2358{
2359	struct reiserfs_transaction_handle th;
2360	int fs_gen;
2361	struct item_head tmp_ih;
2362	struct item_head *ih;
2363	struct buffer_head *bh;
2364	__le32 *item;
2365	struct cpu_key key;
2366	INITIALIZE_PATH(path);
2367	int pos_in_item;
2368	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2369	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2370	int retval;
2371	int use_get_block = 0;
2372	int bytes_copied = 0;
2373	int copy_size;
2374	int trans_running = 0;
2375
2376	/*
2377	 * catch places below that try to log something without
2378	 * starting a trans
2379	 */
2380	th.t_trans_id = 0;
2381
2382	if (!buffer_uptodate(bh_result)) {
2383		return -EIO;
2384	}
2385
2386	kmap(bh_result->b_page);
2387start_over:
2388	reiserfs_write_lock(inode->i_sb);
2389	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2390
2391research:
2392	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2393	if (retval != POSITION_FOUND) {
2394		use_get_block = 1;
2395		goto out;
2396	}
2397
2398	bh = get_last_bh(&path);
2399	ih = tp_item_head(&path);
2400	item = tp_item_body(&path);
2401	pos_in_item = path.pos_in_item;
2402
2403	/* we've found an unformatted node */
2404	if (indirect_item_found(retval, ih)) {
2405		if (bytes_copied > 0) {
2406			reiserfs_warning(inode->i_sb, "clm-6002",
2407					 "bytes_copied %d", bytes_copied);
2408		}
2409		if (!get_block_num(item, pos_in_item)) {
2410			/* crap, we are writing to a hole */
2411			use_get_block = 1;
2412			goto out;
2413		}
2414		set_block_dev_mapped(bh_result,
2415				     get_block_num(item, pos_in_item), inode);
2416	} else if (is_direct_le_ih(ih)) {
2417		char *p;
2418		p = page_address(bh_result->b_page);
2419		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2420		copy_size = ih_item_len(ih) - pos_in_item;
2421
2422		fs_gen = get_generation(inode->i_sb);
2423		copy_item_head(&tmp_ih, ih);
2424
2425		if (!trans_running) {
2426			/* vs-3050 is gone, no need to drop the path */
2427			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2428			if (retval)
2429				goto out;
2430			reiserfs_update_inode_transaction(inode);
2431			trans_running = 1;
2432			if (fs_changed(fs_gen, inode->i_sb)
2433			    && item_moved(&tmp_ih, &path)) {
2434				reiserfs_restore_prepared_buffer(inode->i_sb,
2435								 bh);
2436				goto research;
2437			}
2438		}
2439
2440		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2441
2442		if (fs_changed(fs_gen, inode->i_sb)
2443		    && item_moved(&tmp_ih, &path)) {
2444			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2445			goto research;
2446		}
2447
2448		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2449		       copy_size);
2450
2451		journal_mark_dirty(&th, bh);
2452		bytes_copied += copy_size;
2453		set_block_dev_mapped(bh_result, 0, inode);
2454
2455		/* are there still bytes left? */
2456		if (bytes_copied < bh_result->b_size &&
2457		    (byte_offset + bytes_copied) < inode->i_size) {
2458			set_cpu_key_k_offset(&key,
2459					     cpu_key_k_offset(&key) +
2460					     copy_size);
2461			goto research;
2462		}
2463	} else {
2464		reiserfs_warning(inode->i_sb, "clm-6003",
2465				 "bad item inode %lu", inode->i_ino);
2466		retval = -EIO;
2467		goto out;
2468	}
2469	retval = 0;
2470
2471out:
2472	pathrelse(&path);
2473	if (trans_running) {
2474		int err = journal_end(&th);
2475		if (err)
2476			retval = err;
2477		trans_running = 0;
2478	}
2479	reiserfs_write_unlock(inode->i_sb);
2480
2481	/* this is where we fill in holes in the file. */
2482	if (use_get_block) {
2483		retval = reiserfs_get_block(inode, block, bh_result,
2484					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2485					    | GET_BLOCK_NO_DANGLE);
2486		if (!retval) {
2487			if (!buffer_mapped(bh_result)
2488			    || bh_result->b_blocknr == 0) {
2489				/* get_block failed to find a mapped unformatted node. */
2490				use_get_block = 0;
2491				goto start_over;
2492			}
2493		}
2494	}
2495	kunmap(bh_result->b_page);
2496
2497	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2498		/*
2499		 * we've copied data from the page into the direct item, so the
2500		 * buffer in the page is now clean, mark it to reflect that.
2501		 */
2502		lock_buffer(bh_result);
2503		clear_buffer_dirty(bh_result);
2504		unlock_buffer(bh_result);
2505	}
2506	return retval;
2507}
2508
2509/*
2510 * mason@suse.com: updated in 2.5.54 to follow the same general io
2511 * start/recovery path as __block_write_full_page, along with special
2512 * code to handle reiserfs tails.
2513 */
2514static int reiserfs_write_full_page(struct page *page,
2515				    struct writeback_control *wbc)
2516{
2517	struct inode *inode = page->mapping->host;
2518	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2519	int error = 0;
2520	unsigned long block;
2521	sector_t last_block;
2522	struct buffer_head *head, *bh;
2523	int partial = 0;
2524	int nr = 0;
2525	int checked = PageChecked(page);
2526	struct reiserfs_transaction_handle th;
2527	struct super_block *s = inode->i_sb;
2528	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2529	th.t_trans_id = 0;
2530
2531	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2532	if (checked && (current->flags & PF_MEMALLOC)) {
2533		redirty_page_for_writepage(wbc, page);
2534		unlock_page(page);
2535		return 0;
2536	}
2537
2538	/*
2539	 * The page dirty bit is cleared before writepage is called, which
2540	 * means we have to tell create_empty_buffers to make dirty buffers
2541	 * The page really should be up to date at this point, so tossing
2542	 * in the BH_Uptodate is just a sanity check.
2543	 */
2544	if (!page_has_buffers(page)) {
2545		create_empty_buffers(page, s->s_blocksize,
2546				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2547	}
2548	head = page_buffers(page);
2549
2550	/*
2551	 * last page in the file, zero out any contents past the
2552	 * last byte in the file
2553	 */
2554	if (page->index >= end_index) {
2555		unsigned last_offset;
2556
2557		last_offset = inode->i_size & (PAGE_SIZE - 1);
2558		/* no file contents in this page */
2559		if (page->index >= end_index + 1 || !last_offset) {
2560			unlock_page(page);
2561			return 0;
2562		}
2563		zero_user_segment(page, last_offset, PAGE_SIZE);
2564	}
2565	bh = head;
2566	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2567	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2568	/* first map all the buffers, logging any direct items we find */
2569	do {
2570		if (block > last_block) {
2571			/*
2572			 * This can happen when the block size is less than
2573			 * the page size.  The corresponding bytes in the page
2574			 * were zero filled above
2575			 */
2576			clear_buffer_dirty(bh);
2577			set_buffer_uptodate(bh);
2578		} else if ((checked || buffer_dirty(bh)) &&
2579			   (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2580			/*
2581			 * not mapped yet, or it points to a direct item, search
 
2582			 * the btree for the mapping info, and log any direct
2583			 * items found
2584			 */
2585			if ((error = map_block_for_writepage(inode, bh, block))) {
2586				goto fail;
2587			}
2588		}
2589		bh = bh->b_this_page;
2590		block++;
2591	} while (bh != head);
2592
2593	/*
2594	 * we start the transaction after map_block_for_writepage,
2595	 * because it can create holes in the file (an unbounded operation).
2596	 * starting it here, we can make a reliable estimate for how many
2597	 * blocks we're going to log
2598	 */
2599	if (checked) {
2600		ClearPageChecked(page);
2601		reiserfs_write_lock(s);
2602		error = journal_begin(&th, s, bh_per_page + 1);
2603		if (error) {
2604			reiserfs_write_unlock(s);
2605			goto fail;
2606		}
2607		reiserfs_update_inode_transaction(inode);
2608	}
2609	/* now go through and lock any dirty buffers on the page */
2610	do {
2611		get_bh(bh);
2612		if (!buffer_mapped(bh))
2613			continue;
2614		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2615			continue;
2616
2617		if (checked) {
2618			reiserfs_prepare_for_journal(s, bh, 1);
2619			journal_mark_dirty(&th, bh);
2620			continue;
2621		}
2622		/*
2623		 * from this point on, we know the buffer is mapped to a
2624		 * real block and not a direct item
2625		 */
2626		if (wbc->sync_mode != WB_SYNC_NONE) {
2627			lock_buffer(bh);
2628		} else {
2629			if (!trylock_buffer(bh)) {
2630				redirty_page_for_writepage(wbc, page);
2631				continue;
2632			}
2633		}
2634		if (test_clear_buffer_dirty(bh)) {
2635			mark_buffer_async_write(bh);
2636		} else {
2637			unlock_buffer(bh);
2638		}
2639	} while ((bh = bh->b_this_page) != head);
2640
2641	if (checked) {
2642		error = journal_end(&th);
2643		reiserfs_write_unlock(s);
2644		if (error)
2645			goto fail;
2646	}
2647	BUG_ON(PageWriteback(page));
2648	set_page_writeback(page);
2649	unlock_page(page);
2650
2651	/*
2652	 * since any buffer might be the only dirty buffer on the page,
2653	 * the first submit_bh can bring the page out of writeback.
2654	 * be careful with the buffers.
2655	 */
2656	do {
2657		struct buffer_head *next = bh->b_this_page;
2658		if (buffer_async_write(bh)) {
2659			submit_bh(REQ_OP_WRITE, bh);
2660			nr++;
2661		}
2662		put_bh(bh);
2663		bh = next;
2664	} while (bh != head);
2665
2666	error = 0;
2667done:
2668	if (nr == 0) {
2669		/*
2670		 * if this page only had a direct item, it is very possible for
2671		 * no io to be required without there being an error.  Or,
2672		 * someone else could have locked them and sent them down the
2673		 * pipe without locking the page
2674		 */
2675		bh = head;
2676		do {
2677			if (!buffer_uptodate(bh)) {
2678				partial = 1;
2679				break;
2680			}
2681			bh = bh->b_this_page;
2682		} while (bh != head);
2683		if (!partial)
2684			SetPageUptodate(page);
2685		end_page_writeback(page);
2686	}
2687	return error;
2688
2689fail:
2690	/*
2691	 * catches various errors, we need to make sure any valid dirty blocks
2692	 * get to the media.  The page is currently locked and not marked for
2693	 * writeback
2694	 */
2695	ClearPageUptodate(page);
2696	bh = head;
2697	do {
2698		get_bh(bh);
2699		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2700			lock_buffer(bh);
2701			mark_buffer_async_write(bh);
2702		} else {
2703			/*
2704			 * clear any dirty bits that might have come from
2705			 * getting attached to a dirty page
2706			 */
2707			clear_buffer_dirty(bh);
2708		}
2709		bh = bh->b_this_page;
2710	} while (bh != head);
2711	SetPageError(page);
2712	BUG_ON(PageWriteback(page));
2713	set_page_writeback(page);
2714	unlock_page(page);
2715	do {
2716		struct buffer_head *next = bh->b_this_page;
2717		if (buffer_async_write(bh)) {
2718			clear_buffer_dirty(bh);
2719			submit_bh(REQ_OP_WRITE, bh);
2720			nr++;
2721		}
2722		put_bh(bh);
2723		bh = next;
2724	} while (bh != head);
2725	goto done;
2726}
2727
2728static int reiserfs_read_folio(struct file *f, struct folio *folio)
2729{
2730	return block_read_full_folio(folio, reiserfs_get_block);
2731}
2732
2733static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2734{
2735	struct inode *inode = page->mapping->host;
2736	reiserfs_wait_on_write_block(inode->i_sb);
2737	return reiserfs_write_full_page(page, wbc);
2738}
2739
2740static void reiserfs_truncate_failed_write(struct inode *inode)
2741{
2742	truncate_inode_pages(inode->i_mapping, inode->i_size);
2743	reiserfs_truncate_file(inode, 0);
2744}
2745
2746static int reiserfs_write_begin(struct file *file,
2747				struct address_space *mapping,
2748				loff_t pos, unsigned len,
2749				struct page **pagep, void **fsdata)
2750{
2751	struct inode *inode;
2752	struct page *page;
2753	pgoff_t index;
2754	int ret;
2755	int old_ref = 0;
2756
2757 	inode = mapping->host;
2758	index = pos >> PAGE_SHIFT;
2759	page = grab_cache_page_write_begin(mapping, index);
 
 
 
 
 
 
 
2760	if (!page)
2761		return -ENOMEM;
2762	*pagep = page;
2763
2764	reiserfs_wait_on_write_block(inode->i_sb);
2765	fix_tail_page_for_writing(page);
2766	if (reiserfs_transaction_running(inode->i_sb)) {
2767		struct reiserfs_transaction_handle *th;
2768		th = (struct reiserfs_transaction_handle *)current->
2769		    journal_info;
2770		BUG_ON(!th->t_refcount);
2771		BUG_ON(!th->t_trans_id);
2772		old_ref = th->t_refcount;
2773		th->t_refcount++;
2774	}
2775	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2776	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2777		struct reiserfs_transaction_handle *th = current->journal_info;
2778		/*
2779		 * this gets a little ugly.  If reiserfs_get_block returned an
2780		 * error and left a transacstion running, we've got to close
2781		 * it, and we've got to free handle if it was a persistent
2782		 * transaction.
2783		 *
2784		 * But, if we had nested into an existing transaction, we need
2785		 * to just drop the ref count on the handle.
2786		 *
2787		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2788		 * and it was a persistent trans.  Otherwise, it was nested
2789		 * above.
2790		 */
2791		if (th->t_refcount > old_ref) {
2792			if (old_ref)
2793				th->t_refcount--;
2794			else {
2795				int err;
2796				reiserfs_write_lock(inode->i_sb);
2797				err = reiserfs_end_persistent_transaction(th);
2798				reiserfs_write_unlock(inode->i_sb);
2799				if (err)
2800					ret = err;
2801			}
2802		}
2803	}
2804	if (ret) {
2805		unlock_page(page);
2806		put_page(page);
2807		/* Truncate allocated blocks */
2808		reiserfs_truncate_failed_write(inode);
2809	}
2810	return ret;
2811}
2812
2813int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2814{
2815	struct inode *inode = page->mapping->host;
2816	int ret;
2817	int old_ref = 0;
2818	int depth;
2819
2820	depth = reiserfs_write_unlock_nested(inode->i_sb);
2821	reiserfs_wait_on_write_block(inode->i_sb);
2822	reiserfs_write_lock_nested(inode->i_sb, depth);
2823
2824	fix_tail_page_for_writing(page);
2825	if (reiserfs_transaction_running(inode->i_sb)) {
2826		struct reiserfs_transaction_handle *th;
2827		th = (struct reiserfs_transaction_handle *)current->
2828		    journal_info;
2829		BUG_ON(!th->t_refcount);
2830		BUG_ON(!th->t_trans_id);
2831		old_ref = th->t_refcount;
2832		th->t_refcount++;
2833	}
2834
2835	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2836	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2837		struct reiserfs_transaction_handle *th = current->journal_info;
2838		/*
2839		 * this gets a little ugly.  If reiserfs_get_block returned an
2840		 * error and left a transacstion running, we've got to close
2841		 * it, and we've got to free handle if it was a persistent
2842		 * transaction.
2843		 *
2844		 * But, if we had nested into an existing transaction, we need
2845		 * to just drop the ref count on the handle.
2846		 *
2847		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2848		 * and it was a persistent trans.  Otherwise, it was nested
2849		 * above.
2850		 */
2851		if (th->t_refcount > old_ref) {
2852			if (old_ref)
2853				th->t_refcount--;
2854			else {
2855				int err;
2856				reiserfs_write_lock(inode->i_sb);
2857				err = reiserfs_end_persistent_transaction(th);
2858				reiserfs_write_unlock(inode->i_sb);
2859				if (err)
2860					ret = err;
2861			}
2862		}
2863	}
2864	return ret;
2865
2866}
2867
2868static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2869{
2870	return generic_block_bmap(as, block, reiserfs_bmap);
2871}
2872
2873static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2874			      loff_t pos, unsigned len, unsigned copied,
2875			      struct page *page, void *fsdata)
2876{
2877	struct inode *inode = page->mapping->host;
2878	int ret = 0;
2879	int update_sd = 0;
2880	struct reiserfs_transaction_handle *th;
2881	unsigned start;
2882	bool locked = false;
2883
 
 
 
2884	reiserfs_wait_on_write_block(inode->i_sb);
2885	if (reiserfs_transaction_running(inode->i_sb))
2886		th = current->journal_info;
2887	else
2888		th = NULL;
2889
2890	start = pos & (PAGE_SIZE - 1);
2891	if (unlikely(copied < len)) {
2892		if (!PageUptodate(page))
2893			copied = 0;
2894
2895		page_zero_new_buffers(page, start + copied, start + len);
2896	}
2897	flush_dcache_page(page);
2898
2899	reiserfs_commit_page(inode, page, start, start + copied);
2900
2901	/*
2902	 * generic_commit_write does this for us, but does not update the
2903	 * transaction tracking stuff when the size changes.  So, we have
2904	 * to do the i_size updates here.
2905	 */
2906	if (pos + copied > inode->i_size) {
2907		struct reiserfs_transaction_handle myth;
2908		reiserfs_write_lock(inode->i_sb);
2909		locked = true;
2910		/*
2911		 * If the file have grown beyond the border where it
2912		 * can have a tail, unmark it as needing a tail
2913		 * packing
2914		 */
2915		if ((have_large_tails(inode->i_sb)
2916		     && inode->i_size > i_block_size(inode) * 4)
2917		    || (have_small_tails(inode->i_sb)
2918			&& inode->i_size > i_block_size(inode)))
2919			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2920
2921		ret = journal_begin(&myth, inode->i_sb, 1);
2922		if (ret)
2923			goto journal_error;
2924
2925		reiserfs_update_inode_transaction(inode);
2926		inode->i_size = pos + copied;
2927		/*
2928		 * this will just nest into our transaction.  It's important
2929		 * to use mark_inode_dirty so the inode gets pushed around on
2930		 * the dirty lists, and so that O_SYNC works as expected
2931		 */
2932		mark_inode_dirty(inode);
2933		reiserfs_update_sd(&myth, inode);
2934		update_sd = 1;
2935		ret = journal_end(&myth);
2936		if (ret)
2937			goto journal_error;
2938	}
2939	if (th) {
2940		if (!locked) {
2941			reiserfs_write_lock(inode->i_sb);
2942			locked = true;
2943		}
2944		if (!update_sd)
2945			mark_inode_dirty(inode);
2946		ret = reiserfs_end_persistent_transaction(th);
2947		if (ret)
2948			goto out;
2949	}
2950
2951out:
2952	if (locked)
2953		reiserfs_write_unlock(inode->i_sb);
2954	unlock_page(page);
2955	put_page(page);
2956
2957	if (pos + len > inode->i_size)
2958		reiserfs_truncate_failed_write(inode);
2959
2960	return ret == 0 ? copied : ret;
2961
2962journal_error:
2963	reiserfs_write_unlock(inode->i_sb);
2964	locked = false;
2965	if (th) {
2966		if (!update_sd)
2967			reiserfs_update_sd(th, inode);
2968		ret = reiserfs_end_persistent_transaction(th);
2969	}
2970	goto out;
2971}
2972
2973int reiserfs_commit_write(struct file *f, struct page *page,
2974			  unsigned from, unsigned to)
2975{
2976	struct inode *inode = page->mapping->host;
2977	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2978	int ret = 0;
2979	int update_sd = 0;
2980	struct reiserfs_transaction_handle *th = NULL;
2981	int depth;
2982
2983	depth = reiserfs_write_unlock_nested(inode->i_sb);
2984	reiserfs_wait_on_write_block(inode->i_sb);
2985	reiserfs_write_lock_nested(inode->i_sb, depth);
2986
2987	if (reiserfs_transaction_running(inode->i_sb)) {
2988		th = current->journal_info;
2989	}
2990	reiserfs_commit_page(inode, page, from, to);
2991
2992	/*
2993	 * generic_commit_write does this for us, but does not update the
2994	 * transaction tracking stuff when the size changes.  So, we have
2995	 * to do the i_size updates here.
2996	 */
2997	if (pos > inode->i_size) {
2998		struct reiserfs_transaction_handle myth;
2999		/*
3000		 * If the file have grown beyond the border where it
3001		 * can have a tail, unmark it as needing a tail
3002		 * packing
3003		 */
3004		if ((have_large_tails(inode->i_sb)
3005		     && inode->i_size > i_block_size(inode) * 4)
3006		    || (have_small_tails(inode->i_sb)
3007			&& inode->i_size > i_block_size(inode)))
3008			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3009
3010		ret = journal_begin(&myth, inode->i_sb, 1);
3011		if (ret)
3012			goto journal_error;
3013
3014		reiserfs_update_inode_transaction(inode);
3015		inode->i_size = pos;
3016		/*
3017		 * this will just nest into our transaction.  It's important
3018		 * to use mark_inode_dirty so the inode gets pushed around
3019		 * on the dirty lists, and so that O_SYNC works as expected
3020		 */
3021		mark_inode_dirty(inode);
3022		reiserfs_update_sd(&myth, inode);
3023		update_sd = 1;
3024		ret = journal_end(&myth);
3025		if (ret)
3026			goto journal_error;
3027	}
3028	if (th) {
3029		if (!update_sd)
3030			mark_inode_dirty(inode);
3031		ret = reiserfs_end_persistent_transaction(th);
3032		if (ret)
3033			goto out;
3034	}
3035
3036out:
3037	return ret;
3038
3039journal_error:
3040	if (th) {
3041		if (!update_sd)
3042			reiserfs_update_sd(th, inode);
3043		ret = reiserfs_end_persistent_transaction(th);
3044	}
3045
3046	return ret;
3047}
3048
3049void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3050{
3051	if (reiserfs_attrs(inode->i_sb)) {
3052		if (sd_attrs & REISERFS_SYNC_FL)
3053			inode->i_flags |= S_SYNC;
3054		else
3055			inode->i_flags &= ~S_SYNC;
3056		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3057			inode->i_flags |= S_IMMUTABLE;
3058		else
3059			inode->i_flags &= ~S_IMMUTABLE;
3060		if (sd_attrs & REISERFS_APPEND_FL)
3061			inode->i_flags |= S_APPEND;
3062		else
3063			inode->i_flags &= ~S_APPEND;
3064		if (sd_attrs & REISERFS_NOATIME_FL)
3065			inode->i_flags |= S_NOATIME;
3066		else
3067			inode->i_flags &= ~S_NOATIME;
3068		if (sd_attrs & REISERFS_NOTAIL_FL)
3069			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3070		else
3071			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3072	}
3073}
3074
3075/*
3076 * decide if this buffer needs to stay around for data logging or ordered
3077 * write purposes
3078 */
3079static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3080{
3081	int ret = 1;
3082	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3083
3084	lock_buffer(bh);
3085	spin_lock(&j->j_dirty_buffers_lock);
3086	if (!buffer_mapped(bh)) {
3087		goto free_jh;
3088	}
3089	/*
3090	 * the page is locked, and the only places that log a data buffer
3091	 * also lock the page.
3092	 */
3093	if (reiserfs_file_data_log(inode)) {
3094		/*
3095		 * very conservative, leave the buffer pinned if
3096		 * anyone might need it.
3097		 */
3098		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3099			ret = 0;
3100		}
3101	} else  if (buffer_dirty(bh)) {
3102		struct reiserfs_journal_list *jl;
3103		struct reiserfs_jh *jh = bh->b_private;
3104
3105		/*
3106		 * why is this safe?
3107		 * reiserfs_setattr updates i_size in the on disk
3108		 * stat data before allowing vmtruncate to be called.
3109		 *
3110		 * If buffer was put onto the ordered list for this
3111		 * transaction, we know for sure either this transaction
3112		 * or an older one already has updated i_size on disk,
3113		 * and this ordered data won't be referenced in the file
3114		 * if we crash.
3115		 *
3116		 * if the buffer was put onto the ordered list for an older
3117		 * transaction, we need to leave it around
3118		 */
3119		if (jh && (jl = jh->jl)
3120		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3121			ret = 0;
3122	}
3123free_jh:
3124	if (ret && bh->b_private) {
3125		reiserfs_free_jh(bh);
3126	}
3127	spin_unlock(&j->j_dirty_buffers_lock);
3128	unlock_buffer(bh);
3129	return ret;
3130}
3131
3132/* clm -- taken from fs/buffer.c:block_invalidate_folio */
3133static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3134				    size_t length)
3135{
3136	struct buffer_head *head, *bh, *next;
3137	struct inode *inode = folio->mapping->host;
3138	unsigned int curr_off = 0;
3139	unsigned int stop = offset + length;
3140	int partial_page = (offset || length < folio_size(folio));
3141	int ret = 1;
3142
3143	BUG_ON(!folio_test_locked(folio));
3144
3145	if (!partial_page)
3146		folio_clear_checked(folio);
3147
3148	head = folio_buffers(folio);
3149	if (!head)
3150		goto out;
3151
 
3152	bh = head;
3153	do {
3154		unsigned int next_off = curr_off + bh->b_size;
3155		next = bh->b_this_page;
3156
3157		if (next_off > stop)
3158			goto out;
3159
3160		/*
3161		 * is this block fully invalidated?
3162		 */
3163		if (offset <= curr_off) {
3164			if (invalidate_folio_can_drop(inode, bh))
3165				reiserfs_unmap_buffer(bh);
3166			else
3167				ret = 0;
3168		}
3169		curr_off = next_off;
3170		bh = next;
3171	} while (bh != head);
3172
3173	/*
3174	 * We release buffers only if the entire page is being invalidated.
3175	 * The get_block cached value has been unconditionally invalidated,
3176	 * so real IO is not possible anymore.
3177	 */
3178	if (!partial_page && ret) {
3179		ret = filemap_release_folio(folio, 0);
3180		/* maybe should BUG_ON(!ret); - neilb */
3181	}
3182out:
3183	return;
3184}
3185
3186static bool reiserfs_dirty_folio(struct address_space *mapping,
3187		struct folio *folio)
3188{
3189	if (reiserfs_file_data_log(mapping->host)) {
3190		folio_set_checked(folio);
3191		return filemap_dirty_folio(mapping, folio);
 
3192	}
3193	return block_dirty_folio(mapping, folio);
3194}
3195
3196/*
3197 * Returns true if the folio's buffers were dropped.  The folio is locked.
3198 *
3199 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3200 * in the buffers at folio_buffers(folio).
3201 *
3202 * even in -o notail mode, we can't be sure an old mount without -o notail
3203 * didn't create files with tails.
3204 */
3205static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3206{
3207	struct inode *inode = folio->mapping->host;
3208	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3209	struct buffer_head *head;
3210	struct buffer_head *bh;
3211	bool ret = true;
3212
3213	WARN_ON(folio_test_checked(folio));
3214	spin_lock(&j->j_dirty_buffers_lock);
3215	head = folio_buffers(folio);
3216	bh = head;
3217	do {
3218		if (bh->b_private) {
3219			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3220				reiserfs_free_jh(bh);
3221			} else {
3222				ret = false;
3223				break;
3224			}
3225		}
3226		bh = bh->b_this_page;
3227	} while (bh != head);
3228	if (ret)
3229		ret = try_to_free_buffers(folio);
3230	spin_unlock(&j->j_dirty_buffers_lock);
3231	return ret;
3232}
3233
3234/*
3235 * We thank Mingming Cao for helping us understand in great detail what
3236 * to do in this section of the code.
3237 */
3238static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3239{
3240	struct file *file = iocb->ki_filp;
3241	struct inode *inode = file->f_mapping->host;
3242	size_t count = iov_iter_count(iter);
3243	ssize_t ret;
3244
3245	ret = blockdev_direct_IO(iocb, inode, iter,
3246				 reiserfs_get_blocks_direct_io);
3247
3248	/*
3249	 * In case of error extending write may have instantiated a few
3250	 * blocks outside i_size. Trim these off again.
3251	 */
3252	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3253		loff_t isize = i_size_read(inode);
3254		loff_t end = iocb->ki_pos + count;
3255
3256		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3257			truncate_setsize(inode, isize);
3258			reiserfs_vfs_truncate_file(inode);
3259		}
3260	}
3261
3262	return ret;
3263}
3264
3265int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3266		     struct iattr *attr)
3267{
3268	struct inode *inode = d_inode(dentry);
3269	unsigned int ia_valid;
3270	int error;
3271
3272	error = setattr_prepare(&init_user_ns, dentry, attr);
3273	if (error)
3274		return error;
3275
3276	/* must be turned off for recursive notify_change calls */
3277	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3278
3279	if (is_quota_modification(mnt_userns, inode, attr)) {
3280		error = dquot_initialize(inode);
3281		if (error)
3282			return error;
3283	}
3284	reiserfs_write_lock(inode->i_sb);
3285	if (attr->ia_valid & ATTR_SIZE) {
3286		/*
3287		 * version 2 items will be caught by the s_maxbytes check
3288		 * done for us in vmtruncate
3289		 */
3290		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3291		    attr->ia_size > MAX_NON_LFS) {
3292			reiserfs_write_unlock(inode->i_sb);
3293			error = -EFBIG;
3294			goto out;
3295		}
3296
3297		inode_dio_wait(inode);
3298
3299		/* fill in hole pointers in the expanding truncate case. */
3300		if (attr->ia_size > inode->i_size) {
3301			loff_t pos = attr->ia_size;
3302
3303			if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3304				pos++;
3305			error = generic_cont_expand_simple(inode, pos);
3306			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3307				int err;
3308				struct reiserfs_transaction_handle th;
3309				/* we're changing at most 2 bitmaps, inode + super */
3310				err = journal_begin(&th, inode->i_sb, 4);
3311				if (!err) {
3312					reiserfs_discard_prealloc(&th, inode);
3313					err = journal_end(&th);
3314				}
3315				if (err)
3316					error = err;
3317			}
3318			if (error) {
3319				reiserfs_write_unlock(inode->i_sb);
3320				goto out;
3321			}
3322			/*
3323			 * file size is changed, ctime and mtime are
3324			 * to be updated
3325			 */
3326			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3327		}
3328	}
3329	reiserfs_write_unlock(inode->i_sb);
3330
3331	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3332	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3333	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3334		/* stat data of format v3.5 has 16 bit uid and gid */
3335		error = -EINVAL;
3336		goto out;
3337	}
3338
3339	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3340	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3341		struct reiserfs_transaction_handle th;
3342		int jbegin_count =
3343		    2 *
3344		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3345		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3346		    2;
3347
3348		error = reiserfs_chown_xattrs(inode, attr);
3349
3350		if (error)
3351			return error;
3352
3353		/*
3354		 * (user+group)*(old+new) structure - we count quota
3355		 * info and , inode write (sb, inode)
3356		 */
3357		reiserfs_write_lock(inode->i_sb);
3358		error = journal_begin(&th, inode->i_sb, jbegin_count);
3359		reiserfs_write_unlock(inode->i_sb);
3360		if (error)
3361			goto out;
3362		error = dquot_transfer(mnt_userns, inode, attr);
3363		reiserfs_write_lock(inode->i_sb);
3364		if (error) {
3365			journal_end(&th);
3366			reiserfs_write_unlock(inode->i_sb);
3367			goto out;
3368		}
3369
3370		/*
3371		 * Update corresponding info in inode so that everything
3372		 * is in one transaction
3373		 */
3374		if (attr->ia_valid & ATTR_UID)
3375			inode->i_uid = attr->ia_uid;
3376		if (attr->ia_valid & ATTR_GID)
3377			inode->i_gid = attr->ia_gid;
3378		mark_inode_dirty(inode);
3379		error = journal_end(&th);
3380		reiserfs_write_unlock(inode->i_sb);
3381		if (error)
3382			goto out;
3383	}
3384
3385	if ((attr->ia_valid & ATTR_SIZE) &&
3386	    attr->ia_size != i_size_read(inode)) {
3387		error = inode_newsize_ok(inode, attr->ia_size);
3388		if (!error) {
3389			/*
3390			 * Could race against reiserfs_file_release
3391			 * if called from NFS, so take tailpack mutex.
3392			 */
3393			mutex_lock(&REISERFS_I(inode)->tailpack);
3394			truncate_setsize(inode, attr->ia_size);
3395			reiserfs_truncate_file(inode, 1);
3396			mutex_unlock(&REISERFS_I(inode)->tailpack);
3397		}
3398	}
3399
3400	if (!error) {
3401		setattr_copy(&init_user_ns, inode, attr);
3402		mark_inode_dirty(inode);
3403	}
3404
3405	if (!error && reiserfs_posixacl(inode->i_sb)) {
3406		if (attr->ia_valid & ATTR_MODE)
3407			error = reiserfs_acl_chmod(dentry);
3408	}
3409
3410out:
3411	return error;
3412}
3413
3414const struct address_space_operations reiserfs_address_space_operations = {
3415	.writepage = reiserfs_writepage,
3416	.read_folio = reiserfs_read_folio,
3417	.readahead = reiserfs_readahead,
3418	.release_folio = reiserfs_release_folio,
3419	.invalidate_folio = reiserfs_invalidate_folio,
3420	.write_begin = reiserfs_write_begin,
3421	.write_end = reiserfs_write_end,
3422	.bmap = reiserfs_aop_bmap,
3423	.direct_IO = reiserfs_direct_IO,
3424	.dirty_folio = reiserfs_dirty_folio,
3425};
v3.15
   1/*
   2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5#include <linux/time.h>
   6#include <linux/fs.h>
   7#include "reiserfs.h"
   8#include "acl.h"
   9#include "xattr.h"
  10#include <linux/exportfs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/slab.h>
  14#include <asm/uaccess.h>
  15#include <asm/unaligned.h>
  16#include <linux/buffer_head.h>
  17#include <linux/mpage.h>
  18#include <linux/writeback.h>
  19#include <linux/quotaops.h>
  20#include <linux/swap.h>
  21#include <linux/aio.h>
 
  22
  23int reiserfs_commit_write(struct file *f, struct page *page,
  24			  unsigned from, unsigned to);
  25
  26void reiserfs_evict_inode(struct inode *inode)
  27{
  28	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
 
 
 
  29	int jbegin_count =
  30	    JOURNAL_PER_BALANCE_CNT * 2 +
  31	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
  32	struct reiserfs_transaction_handle th;
  33	int err;
  34
  35	if (!inode->i_nlink && !is_bad_inode(inode))
  36		dquot_initialize(inode);
  37
  38	truncate_inode_pages_final(&inode->i_data);
  39	if (inode->i_nlink)
  40		goto no_delete;
  41
  42	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
  43	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
 
 
 
 
  44
  45		reiserfs_delete_xattrs(inode);
  46
  47		reiserfs_write_lock(inode->i_sb);
  48
  49		if (journal_begin(&th, inode->i_sb, jbegin_count))
  50			goto out;
  51		reiserfs_update_inode_transaction(inode);
  52
  53		reiserfs_discard_prealloc(&th, inode);
  54
  55		err = reiserfs_delete_object(&th, inode);
  56
  57		/* Do quota update inside a transaction for journaled quotas. We must do that
  58		 * after delete_object so that quota updates go into the same transaction as
  59		 * stat data deletion */
 
 
  60		if (!err) {
  61			int depth = reiserfs_write_unlock_nested(inode->i_sb);
  62			dquot_free_inode(inode);
  63			reiserfs_write_lock_nested(inode->i_sb, depth);
  64		}
  65
  66		if (journal_end(&th, inode->i_sb, jbegin_count))
  67			goto out;
  68
  69		/* check return value from reiserfs_delete_object after
 
  70		 * ending the transaction
  71		 */
  72		if (err)
  73		    goto out;
  74
  75		/* all items of file are deleted, so we can remove "save" link */
  76		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
  77								 * about an error here */
 
 
 
  78out:
  79		reiserfs_write_unlock(inode->i_sb);
  80	} else {
  81		/* no object items are in the tree */
  82		;
  83	}
  84	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
 
 
 
  85	dquot_drop(inode);
  86	inode->i_blocks = 0;
  87	return;
  88
  89no_delete:
  90	clear_inode(inode);
  91	dquot_drop(inode);
  92}
  93
  94static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
  95			  __u32 objectid, loff_t offset, int type, int length)
  96{
  97	key->version = version;
  98
  99	key->on_disk_key.k_dir_id = dirid;
 100	key->on_disk_key.k_objectid = objectid;
 101	set_cpu_key_k_offset(key, offset);
 102	set_cpu_key_k_type(key, type);
 103	key->key_length = length;
 104}
 105
 106/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
 107   offset and type of key */
 
 
 108void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
 109		  int type, int length)
 110{
 111	_make_cpu_key(key, get_inode_item_key_version(inode),
 112		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
 113		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
 114		      length);
 115}
 116
 117//
 118// when key is 0, do not set version and short key
 119//
 120inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 121			      int version,
 122			      loff_t offset, int type, int length,
 123			      int entry_count /*or ih_free_space */ )
 124{
 125	if (key) {
 126		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
 127		ih->ih_key.k_objectid =
 128		    cpu_to_le32(key->on_disk_key.k_objectid);
 129	}
 130	put_ih_version(ih, version);
 131	set_le_ih_k_offset(ih, offset);
 132	set_le_ih_k_type(ih, type);
 133	put_ih_item_len(ih, length);
 134	/*    set_ih_free_space (ih, 0); */
 135	// for directory items it is entry count, for directs and stat
 136	// datas - 0xffff, for indirects - 0
 
 
 137	put_ih_entry_count(ih, entry_count);
 138}
 139
 140//
 141// FIXME: we might cache recently accessed indirect item
 
 
 
 
 142
 143// Ugh.  Not too eager for that....
 144//  I cut the code until such time as I see a convincing argument (benchmark).
 145// I don't want a bloated inode struct..., and I don't like code complexity....
 146
 147/* cutting the code is fine, since it really isn't in use yet and is easy
 148** to add back in.  But, Vladimir has a really good idea here.  Think
 149** about what happens for reading a file.  For each page,
 150** The VFS layer calls reiserfs_readpage, who searches the tree to find
 151** an indirect item.  This indirect item has X number of pointers, where
 152** X is a big number if we've done the block allocation right.  But,
 153** we only use one or two of these pointers during each call to readpage,
 154** needlessly researching again later on.
 155**
 156** The size of the cache could be dynamic based on the size of the file.
 157**
 158** I'd also like to see us cache the location the stat data item, since
 159** we are needlessly researching for that frequently.
 160**
 161** --chris
 162*/
 163
 164/* If this page has a file tail in it, and
 165** it was read in by get_block_create_0, the page data is valid,
 166** but tail is still sitting in a direct item, and we can't write to
 167** it.  So, look through this page, and check all the mapped buffers
 168** to make sure they have valid block numbers.  Any that don't need
 169** to be unmapped, so that __block_write_begin will correctly call
 170** reiserfs_get_block to convert the tail into an unformatted node
 171*/
 
 172static inline void fix_tail_page_for_writing(struct page *page)
 173{
 174	struct buffer_head *head, *next, *bh;
 175
 176	if (page && page_has_buffers(page)) {
 177		head = page_buffers(page);
 178		bh = head;
 179		do {
 180			next = bh->b_this_page;
 181			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
 182				reiserfs_unmap_buffer(bh);
 183			}
 184			bh = next;
 185		} while (bh != head);
 186	}
 187}
 188
 189/* reiserfs_get_block does not need to allocate a block only if it has been
 190   done already or non-hole position has been found in the indirect item */
 
 
 191static inline int allocation_needed(int retval, b_blocknr_t allocated,
 192				    struct item_head *ih,
 193				    __le32 * item, int pos_in_item)
 194{
 195	if (allocated)
 196		return 0;
 197	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
 198	    get_block_num(item, pos_in_item))
 199		return 0;
 200	return 1;
 201}
 202
 203static inline int indirect_item_found(int retval, struct item_head *ih)
 204{
 205	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
 206}
 207
 208static inline void set_block_dev_mapped(struct buffer_head *bh,
 209					b_blocknr_t block, struct inode *inode)
 210{
 211	map_bh(bh, inode->i_sb, block);
 212}
 213
 214//
 215// files which were created in the earlier version can not be longer,
 216// than 2 gb
 217//
 218static int file_capable(struct inode *inode, sector_t block)
 219{
 220	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
 221	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
 
 
 222		return 1;
 223
 224	return 0;
 225}
 226
 227static int restart_transaction(struct reiserfs_transaction_handle *th,
 228			       struct inode *inode, struct treepath *path)
 229{
 230	struct super_block *s = th->t_super;
 231	int len = th->t_blocks_allocated;
 232	int err;
 233
 234	BUG_ON(!th->t_trans_id);
 235	BUG_ON(!th->t_refcount);
 236
 237	pathrelse(path);
 238
 239	/* we cannot restart while nested */
 240	if (th->t_refcount > 1) {
 241		return 0;
 242	}
 243	reiserfs_update_sd(th, inode);
 244	err = journal_end(th, s, len);
 245	if (!err) {
 246		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
 247		if (!err)
 248			reiserfs_update_inode_transaction(inode);
 249	}
 250	return err;
 251}
 252
 253// it is called by get_block when create == 0. Returns block number
 254// for 'block'-th logical block of file. When it hits direct item it
 255// returns 0 (being called from bmap) or read direct item into piece
 256// of page (bh_result)
 257
 258// Please improve the english/clarity in the comment above, as it is
 259// hard to understand.
 260
 261static int _get_block_create_0(struct inode *inode, sector_t block,
 262			       struct buffer_head *bh_result, int args)
 263{
 264	INITIALIZE_PATH(path);
 265	struct cpu_key key;
 266	struct buffer_head *bh;
 267	struct item_head *ih, tmp_ih;
 268	b_blocknr_t blocknr;
 269	char *p = NULL;
 270	int chars;
 271	int ret;
 272	int result;
 273	int done = 0;
 274	unsigned long offset;
 275
 276	// prepare the key to look for the 'block'-th block of file
 277	make_cpu_key(&key, inode,
 278		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
 279		     3);
 280
 281	result = search_for_position_by_key(inode->i_sb, &key, &path);
 282	if (result != POSITION_FOUND) {
 283		pathrelse(&path);
 284		if (p)
 285			kunmap(bh_result->b_page);
 286		if (result == IO_ERROR)
 287			return -EIO;
 288		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
 289		// That there is some MMAPED data associated with it that is yet to be written to disk.
 
 
 
 290		if ((args & GET_BLOCK_NO_HOLE)
 291		    && !PageUptodate(bh_result->b_page)) {
 292			return -ENOENT;
 293		}
 294		return 0;
 295	}
 296	//
 297	bh = get_last_bh(&path);
 298	ih = get_ih(&path);
 299	if (is_indirect_le_ih(ih)) {
 300		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
 301
 302		/* FIXME: here we could cache indirect item or part of it in
 303		   the inode to avoid search_by_key in case of subsequent
 304		   access to file */
 
 
 305		blocknr = get_block_num(ind_item, path.pos_in_item);
 306		ret = 0;
 307		if (blocknr) {
 308			map_bh(bh_result, inode->i_sb, blocknr);
 309			if (path.pos_in_item ==
 310			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
 311				set_buffer_boundary(bh_result);
 312			}
 313		} else
 314			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
 315			// That there is some MMAPED data associated with it that is yet to  be written to disk.
 
 
 
 
 316		if ((args & GET_BLOCK_NO_HOLE)
 317			    && !PageUptodate(bh_result->b_page)) {
 318			ret = -ENOENT;
 319		}
 320
 321		pathrelse(&path);
 322		if (p)
 323			kunmap(bh_result->b_page);
 324		return ret;
 325	}
 326	// requested data are in direct item(s)
 327	if (!(args & GET_BLOCK_READ_DIRECT)) {
 328		// we are called by bmap. FIXME: we can not map block of file
 329		// when it is stored in direct item(s)
 
 
 330		pathrelse(&path);
 331		if (p)
 332			kunmap(bh_result->b_page);
 333		return -ENOENT;
 334	}
 335
 336	/* if we've got a direct item, and the buffer or page was uptodate,
 337	 ** we don't want to pull data off disk again.  skip to the
 338	 ** end, where we map the buffer and return
 
 339	 */
 340	if (buffer_uptodate(bh_result)) {
 341		goto finished;
 342	} else
 343		/*
 344		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
 345		 ** pages without any buffers.  If the page is up to date, we don't want
 346		 ** read old data off disk.  Set the up to date bit on the buffer instead
 347		 ** and jump to the end
 348		 */
 349	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
 350		set_buffer_uptodate(bh_result);
 351		goto finished;
 352	}
 353	// read file tail into part of page
 354	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
 355	copy_item_head(&tmp_ih, ih);
 356
 357	/* we only want to kmap if we are reading the tail into the page.
 358	 ** this is not the common case, so we don't kmap until we are
 359	 ** sure we need to.  But, this means the item might move if
 360	 ** kmap schedules
 
 361	 */
 362	if (!p)
 363		p = (char *)kmap(bh_result->b_page);
 364
 365	p += offset;
 366	memset(p, 0, inode->i_sb->s_blocksize);
 367	do {
 368		if (!is_direct_le_ih(ih)) {
 369			BUG();
 370		}
 371		/* make sure we don't read more bytes than actually exist in
 372		 ** the file.  This can happen in odd cases where i_size isn't
 373		 ** correct, and when direct item padding results in a few
 374		 ** extra bytes at the end of the direct item
 
 375		 */
 376		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
 377			break;
 378		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
 379			chars =
 380			    inode->i_size - (le_ih_k_offset(ih) - 1) -
 381			    path.pos_in_item;
 382			done = 1;
 383		} else {
 384			chars = ih_item_len(ih) - path.pos_in_item;
 385		}
 386		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
 387
 388		if (done)
 389			break;
 390
 391		p += chars;
 392
 
 
 
 
 
 
 393		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
 394			// we done, if read direct item is not the last item of
 395			// node FIXME: we could try to check right delimiting key
 396			// to see whether direct item continues in the right
 397			// neighbor or rely on i_size
 398			break;
 399
 400		// update key to look for the next piece
 401		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
 402		result = search_for_position_by_key(inode->i_sb, &key, &path);
 403		if (result != POSITION_FOUND)
 404			// i/o error most likely
 405			break;
 406		bh = get_last_bh(&path);
 407		ih = get_ih(&path);
 408	} while (1);
 409
 410	flush_dcache_page(bh_result->b_page);
 411	kunmap(bh_result->b_page);
 412
 413      finished:
 414	pathrelse(&path);
 415
 416	if (result == IO_ERROR)
 417		return -EIO;
 418
 419	/* this buffer has valid data, but isn't valid for io.  mapping it to
 
 420	 * block #0 tells the rest of reiserfs it just has a tail in it
 421	 */
 422	map_bh(bh_result, inode->i_sb, 0);
 423	set_buffer_uptodate(bh_result);
 424	return 0;
 425}
 426
 427// this is called to create file map. So, _get_block_create_0 will not
 428// read direct item
 
 
 429static int reiserfs_bmap(struct inode *inode, sector_t block,
 430			 struct buffer_head *bh_result, int create)
 431{
 432	if (!file_capable(inode, block))
 433		return -EFBIG;
 434
 435	reiserfs_write_lock(inode->i_sb);
 436	/* do not read the direct item */
 437	_get_block_create_0(inode, block, bh_result, 0);
 438	reiserfs_write_unlock(inode->i_sb);
 439	return 0;
 440}
 441
 442/* special version of get_block that is only used by grab_tail_page right
 443** now.  It is sent to __block_write_begin, and when you try to get a
 444** block past the end of the file (or a block from a hole) it returns
 445** -ENOENT instead of a valid buffer.  __block_write_begin expects to
 446** be able to do i/o on the buffers returned, unless an error value
 447** is also returned.
 448**
 449** So, this allows __block_write_begin to be used for reading a single block
 450** in a page.  Where it does not produce a valid page for holes, or past the
 451** end of the file.  This turns out to be exactly what we need for reading
 452** tails for conversion.
 453**
 454** The point of the wrapper is forcing a certain value for create, even
 455** though the VFS layer is calling this function with create==1.  If you
 456** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
 457** don't use this function.
 
 458*/
 459static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
 460				       struct buffer_head *bh_result,
 461				       int create)
 462{
 463	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
 464}
 465
 466/* This is special helper for reiserfs_get_block in case we are executing
 467   direct_IO request. */
 
 
 468static int reiserfs_get_blocks_direct_io(struct inode *inode,
 469					 sector_t iblock,
 470					 struct buffer_head *bh_result,
 471					 int create)
 472{
 473	int ret;
 474
 475	bh_result->b_page = NULL;
 476
 477	/* We set the b_size before reiserfs_get_block call since it is
 478	   referenced in convert_tail_for_hole() that may be called from
 479	   reiserfs_get_block() */
 480	bh_result->b_size = (1 << inode->i_blkbits);
 
 
 481
 482	ret = reiserfs_get_block(inode, iblock, bh_result,
 483				 create | GET_BLOCK_NO_DANGLE);
 484	if (ret)
 485		goto out;
 486
 487	/* don't allow direct io onto tail pages */
 488	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
 489		/* make sure future calls to the direct io funcs for this offset
 490		 ** in the file fail by unmapping the buffer
 
 491		 */
 492		clear_buffer_mapped(bh_result);
 493		ret = -EINVAL;
 494	}
 495	/* Possible unpacked tail. Flush the data before pages have
 496	   disappeared */
 
 
 
 497	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
 498		int err;
 499
 500		reiserfs_write_lock(inode->i_sb);
 501
 502		err = reiserfs_commit_for_inode(inode);
 503		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
 504
 505		reiserfs_write_unlock(inode->i_sb);
 506
 507		if (err < 0)
 508			ret = err;
 509	}
 510      out:
 511	return ret;
 512}
 513
 514/*
 515** helper function for when reiserfs_get_block is called for a hole
 516** but the file tail is still in a direct item
 517** bh_result is the buffer head for the hole
 518** tail_offset is the offset of the start of the tail in the file
 519**
 520** This calls prepare_write, which will start a new transaction
 521** you should not be in a transaction, or have any paths held when you
 522** call this.
 523*/
 524static int convert_tail_for_hole(struct inode *inode,
 525				 struct buffer_head *bh_result,
 526				 loff_t tail_offset)
 527{
 528	unsigned long index;
 529	unsigned long tail_end;
 530	unsigned long tail_start;
 531	struct page *tail_page;
 532	struct page *hole_page = bh_result->b_page;
 533	int retval = 0;
 534
 535	if ((tail_offset & (bh_result->b_size - 1)) != 1)
 536		return -EIO;
 537
 538	/* always try to read until the end of the block */
 539	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
 540	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
 541
 542	index = tail_offset >> PAGE_CACHE_SHIFT;
 543	/* hole_page can be zero in case of direct_io, we are sure
 544	   that we cannot get here if we write with O_DIRECT into
 545	   tail page */
 
 546	if (!hole_page || index != hole_page->index) {
 547		tail_page = grab_cache_page(inode->i_mapping, index);
 548		retval = -ENOMEM;
 549		if (!tail_page) {
 550			goto out;
 551		}
 552	} else {
 553		tail_page = hole_page;
 554	}
 555
 556	/* we don't have to make sure the conversion did not happen while
 557	 ** we were locking the page because anyone that could convert
 558	 ** must first take i_mutex.
 559	 **
 560	 ** We must fix the tail page for writing because it might have buffers
 561	 ** that are mapped, but have a block number of 0.  This indicates tail
 562	 ** data that has been read directly into the page, and
 563	 ** __block_write_begin won't trigger a get_block in this case.
 
 564	 */
 565	fix_tail_page_for_writing(tail_page);
 566	retval = __reiserfs_write_begin(tail_page, tail_start,
 567				      tail_end - tail_start);
 568	if (retval)
 569		goto unlock;
 570
 571	/* tail conversion might change the data in the page */
 572	flush_dcache_page(tail_page);
 573
 574	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
 575
 576      unlock:
 577	if (tail_page != hole_page) {
 578		unlock_page(tail_page);
 579		page_cache_release(tail_page);
 580	}
 581      out:
 582	return retval;
 583}
 584
 585static inline int _allocate_block(struct reiserfs_transaction_handle *th,
 586				  sector_t block,
 587				  struct inode *inode,
 588				  b_blocknr_t * allocated_block_nr,
 589				  struct treepath *path, int flags)
 590{
 591	BUG_ON(!th->t_trans_id);
 592
 593#ifdef REISERFS_PREALLOCATE
 594	if (!(flags & GET_BLOCK_NO_IMUX)) {
 595		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
 596						  path, block);
 597	}
 598#endif
 599	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
 600					 block);
 601}
 602
 603int reiserfs_get_block(struct inode *inode, sector_t block,
 604		       struct buffer_head *bh_result, int create)
 605{
 606	int repeat, retval = 0;
 607	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
 
 608	INITIALIZE_PATH(path);
 609	int pos_in_item;
 610	struct cpu_key key;
 611	struct buffer_head *bh, *unbh = NULL;
 612	struct item_head *ih, tmp_ih;
 613	__le32 *item;
 614	int done;
 615	int fs_gen;
 616	struct reiserfs_transaction_handle *th = NULL;
 617	/* space reserved in transaction batch:
 618	   . 3 balancings in direct->indirect conversion
 619	   . 1 block involved into reiserfs_update_sd()
 620	   XXX in practically impossible worst case direct2indirect()
 621	   can incur (much) more than 3 balancings.
 622	   quota update for user, group */
 
 
 623	int jbegin_count =
 624	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
 625	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
 626	int version;
 627	int dangle = 1;
 628	loff_t new_offset =
 629	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
 630
 631	reiserfs_write_lock(inode->i_sb);
 632	version = get_inode_item_key_version(inode);
 633
 634	if (!file_capable(inode, block)) {
 635		reiserfs_write_unlock(inode->i_sb);
 636		return -EFBIG;
 637	}
 638
 639	/* if !create, we aren't changing the FS, so we don't need to
 640	 ** log anything, so we don't need to start a transaction
 
 641	 */
 642	if (!(create & GET_BLOCK_CREATE)) {
 643		int ret;
 644		/* find number of block-th logical block of the file */
 645		ret = _get_block_create_0(inode, block, bh_result,
 646					  create | GET_BLOCK_READ_DIRECT);
 647		reiserfs_write_unlock(inode->i_sb);
 648		return ret;
 649	}
 
 650	/*
 651	 * if we're already in a transaction, make sure to close
 652	 * any new transactions we start in this func
 653	 */
 654	if ((create & GET_BLOCK_NO_DANGLE) ||
 655	    reiserfs_transaction_running(inode->i_sb))
 656		dangle = 0;
 657
 658	/* If file is of such a size, that it might have a tail and tails are enabled
 659	 ** we should mark it as possibly needing tail packing on close
 
 
 660	 */
 661	if ((have_large_tails(inode->i_sb)
 662	     && inode->i_size < i_block_size(inode) * 4)
 663	    || (have_small_tails(inode->i_sb)
 664		&& inode->i_size < i_block_size(inode)))
 665		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
 666
 667	/* set the key of the first byte in the 'block'-th block of file */
 668	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
 669	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
 670	      start_trans:
 671		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
 672		if (!th) {
 673			retval = -ENOMEM;
 674			goto failure;
 675		}
 676		reiserfs_update_inode_transaction(inode);
 677	}
 678      research:
 679
 680	retval = search_for_position_by_key(inode->i_sb, &key, &path);
 681	if (retval == IO_ERROR) {
 682		retval = -EIO;
 683		goto failure;
 684	}
 685
 686	bh = get_last_bh(&path);
 687	ih = get_ih(&path);
 688	item = get_item(&path);
 689	pos_in_item = path.pos_in_item;
 690
 691	fs_gen = get_generation(inode->i_sb);
 692	copy_item_head(&tmp_ih, ih);
 693
 694	if (allocation_needed
 695	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
 696		/* we have to allocate block for the unformatted node */
 697		if (!th) {
 698			pathrelse(&path);
 699			goto start_trans;
 700		}
 701
 702		repeat =
 703		    _allocate_block(th, block, inode, &allocated_block_nr,
 704				    &path, create);
 705
 
 
 
 
 
 706		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
 707			/* restart the transaction to give the journal a chance to free
 708			 ** some blocks.  releases the path, so we have to go back to
 709			 ** research if we succeed on the second try
 710			 */
 711			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
 712			retval = restart_transaction(th, inode, &path);
 713			if (retval)
 714				goto failure;
 715			repeat =
 716			    _allocate_block(th, block, inode,
 717					    &allocated_block_nr, NULL, create);
 718
 719			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
 720				goto research;
 721			}
 722			if (repeat == QUOTA_EXCEEDED)
 723				retval = -EDQUOT;
 724			else
 725				retval = -ENOSPC;
 726			goto failure;
 727		}
 728
 729		if (fs_changed(fs_gen, inode->i_sb)
 730		    && item_moved(&tmp_ih, &path)) {
 731			goto research;
 732		}
 733	}
 734
 735	if (indirect_item_found(retval, ih)) {
 736		b_blocknr_t unfm_ptr;
 737		/* 'block'-th block is in the file already (there is
 738		   corresponding cell in some indirect item). But it may be
 739		   zero unformatted node pointer (hole) */
 
 
 740		unfm_ptr = get_block_num(item, pos_in_item);
 741		if (unfm_ptr == 0) {
 742			/* use allocated block to plug the hole */
 743			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 744			if (fs_changed(fs_gen, inode->i_sb)
 745			    && item_moved(&tmp_ih, &path)) {
 746				reiserfs_restore_prepared_buffer(inode->i_sb,
 747								 bh);
 748				goto research;
 749			}
 750			set_buffer_new(bh_result);
 751			if (buffer_dirty(bh_result)
 752			    && reiserfs_data_ordered(inode->i_sb))
 753				reiserfs_add_ordered_list(inode, bh_result);
 754			put_block_num(item, pos_in_item, allocated_block_nr);
 755			unfm_ptr = allocated_block_nr;
 756			journal_mark_dirty(th, inode->i_sb, bh);
 757			reiserfs_update_sd(th, inode);
 758		}
 759		set_block_dev_mapped(bh_result, unfm_ptr, inode);
 760		pathrelse(&path);
 761		retval = 0;
 762		if (!dangle && th)
 763			retval = reiserfs_end_persistent_transaction(th);
 764
 765		reiserfs_write_unlock(inode->i_sb);
 766
 767		/* the item was found, so new blocks were not added to the file
 768		 ** there is no need to make sure the inode is updated with this
 769		 ** transaction
 
 770		 */
 771		return retval;
 772	}
 773
 774	if (!th) {
 775		pathrelse(&path);
 776		goto start_trans;
 777	}
 778
 779	/* desired position is not found or is in the direct item. We have
 780	   to append file with holes up to 'block'-th block converting
 781	   direct items to indirect one if necessary */
 
 
 782	done = 0;
 783	do {
 784		if (is_statdata_le_ih(ih)) {
 785			__le32 unp = 0;
 786			struct cpu_key tmp_key;
 787
 788			/* indirect item has to be inserted */
 789			make_le_item_head(&tmp_ih, &key, version, 1,
 790					  TYPE_INDIRECT, UNFM_P_SIZE,
 791					  0 /* free_space */ );
 792
 
 
 
 
 793			if (cpu_key_k_offset(&key) == 1) {
 794				/* we are going to add 'block'-th block to the file. Use
 795				   allocated block for that */
 796				unp = cpu_to_le32(allocated_block_nr);
 797				set_block_dev_mapped(bh_result,
 798						     allocated_block_nr, inode);
 799				set_buffer_new(bh_result);
 800				done = 1;
 801			}
 802			tmp_key = key;	// ;)
 803			set_cpu_key_k_offset(&tmp_key, 1);
 804			PATH_LAST_POSITION(&path)++;
 805
 806			retval =
 807			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
 808						 inode, (char *)&unp);
 809			if (retval) {
 810				reiserfs_free_block(th, inode,
 811						    allocated_block_nr, 1);
 812				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
 
 
 
 
 813			}
 814			//mark_tail_converted (inode);
 815		} else if (is_direct_le_ih(ih)) {
 816			/* direct item has to be converted */
 817			loff_t tail_offset;
 818
 819			tail_offset =
 820			    ((le_ih_k_offset(ih) -
 821			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
 
 
 
 
 
 
 822			if (tail_offset == cpu_key_k_offset(&key)) {
 823				/* direct item we just found fits into block we have
 824				   to map. Convert it into unformatted node: use
 825				   bh_result for the conversion */
 826				set_block_dev_mapped(bh_result,
 827						     allocated_block_nr, inode);
 828				unbh = bh_result;
 829				done = 1;
 830			} else {
 831				/* we have to padd file tail stored in direct item(s)
 832				   up to block size and convert it to unformatted
 833				   node. FIXME: this should also get into page cache */
 
 
 
 834
 835				pathrelse(&path);
 836				/*
 837				 * ugly, but we can only end the transaction if
 838				 * we aren't nested
 839				 */
 840				BUG_ON(!th->t_refcount);
 841				if (th->t_refcount == 1) {
 842					retval =
 843					    reiserfs_end_persistent_transaction
 844					    (th);
 845					th = NULL;
 846					if (retval)
 847						goto failure;
 848				}
 849
 850				retval =
 851				    convert_tail_for_hole(inode, bh_result,
 852							  tail_offset);
 853				if (retval) {
 854					if (retval != -ENOSPC)
 855						reiserfs_error(inode->i_sb,
 856							"clm-6004",
 857							"convert tail failed "
 858							"inode %lu, error %d",
 859							inode->i_ino,
 860							retval);
 861					if (allocated_block_nr) {
 862						/* the bitmap, the super, and the stat data == 3 */
 
 
 
 863						if (!th)
 864							th = reiserfs_persistent_transaction(inode->i_sb, 3);
 865						if (th)
 866							reiserfs_free_block(th,
 867									    inode,
 868									    allocated_block_nr,
 869									    1);
 870					}
 871					goto failure;
 872				}
 873				goto research;
 874			}
 875			retval =
 876			    direct2indirect(th, inode, &path, unbh,
 877					    tail_offset);
 878			if (retval) {
 879				reiserfs_unmap_buffer(unbh);
 880				reiserfs_free_block(th, inode,
 881						    allocated_block_nr, 1);
 882				goto failure;
 883			}
 884			/* it is important the set_buffer_uptodate is done after
 885			 ** the direct2indirect.  The buffer might contain valid
 886			 ** data newer than the data on disk (read by readpage, changed,
 887			 ** and then sent here by writepage).  direct2indirect needs
 888			 ** to know if unbh was already up to date, so it can decide
 889			 ** if the data in unbh needs to be replaced with data from
 890			 ** the disk
 
 
 891			 */
 892			set_buffer_uptodate(unbh);
 893
 894			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
 895			   buffer will disappear shortly, so it should not be added to
 
 
 896			 */
 897			if (unbh->b_page) {
 898				/* we've converted the tail, so we must
 899				 ** flush unbh before the transaction commits
 
 900				 */
 901				reiserfs_add_tail_list(inode, unbh);
 902
 903				/* mark it dirty now to prevent commit_write from adding
 904				 ** this buffer to the inode's dirty buffer list
 
 
 905				 */
 906				/*
 907				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
 908				 * It's still atomic, but it sets the page dirty too,
 909				 * which makes it eligible for writeback at any time by the
 910				 * VM (which was also the case with __mark_buffer_dirty())
 
 
 911				 */
 912				mark_buffer_dirty(unbh);
 913			}
 914		} else {
 915			/* append indirect item with holes if needed, when appending
 916			   pointer to 'block'-th block use block, which is already
 917			   allocated */
 
 
 918			struct cpu_key tmp_key;
 919			unp_t unf_single = 0;	// We use this in case we need to allocate only
 920			// one block which is a fastpath
 
 
 
 921			unp_t *un;
 922			__u64 max_to_insert =
 923			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
 924			    UNFM_P_SIZE;
 925			__u64 blocks_needed;
 926
 927			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
 928			       "vs-804: invalid position for append");
 929			/* indirect item has to be appended, set up key of that position */
 
 
 
 
 930			make_cpu_key(&tmp_key, inode,
 931				     le_key_k_offset(version,
 932						     &(ih->ih_key)) +
 933				     op_bytes_number(ih,
 934						     inode->i_sb->s_blocksize),
 935				     //pos_in_item * inode->i_sb->s_blocksize,
 936				     TYPE_INDIRECT, 3);	// key type is unimportant
 937
 938			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
 939			       "green-805: invalid offset");
 940			blocks_needed =
 941			    1 +
 942			    ((cpu_key_k_offset(&key) -
 943			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
 944			     s_blocksize_bits);
 945
 946			if (blocks_needed == 1) {
 947				un = &unf_single;
 948			} else {
 949				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
 
 950				if (!un) {
 951					un = &unf_single;
 952					blocks_needed = 1;
 953					max_to_insert = 0;
 954				}
 955			}
 956			if (blocks_needed <= max_to_insert) {
 957				/* we are going to add target block to the file. Use allocated
 958				   block for that */
 
 
 959				un[blocks_needed - 1] =
 960				    cpu_to_le32(allocated_block_nr);
 961				set_block_dev_mapped(bh_result,
 962						     allocated_block_nr, inode);
 963				set_buffer_new(bh_result);
 964				done = 1;
 965			} else {
 966				/* paste hole to the indirect item */
 967				/* If kmalloc failed, max_to_insert becomes zero and it means we
 968				   only have space for one block */
 
 
 
 969				blocks_needed =
 970				    max_to_insert ? max_to_insert : 1;
 971			}
 972			retval =
 973			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
 974						     (char *)un,
 975						     UNFM_P_SIZE *
 976						     blocks_needed);
 977
 978			if (blocks_needed != 1)
 979				kfree(un);
 980
 981			if (retval) {
 982				reiserfs_free_block(th, inode,
 983						    allocated_block_nr, 1);
 984				goto failure;
 985			}
 986			if (!done) {
 987				/* We need to mark new file size in case this function will be
 988				   interrupted/aborted later on. And we may do this only for
 989				   holes. */
 
 
 
 990				inode->i_size +=
 991				    inode->i_sb->s_blocksize * blocks_needed;
 992			}
 993		}
 994
 995		if (done == 1)
 996			break;
 997
 998		/* this loop could log more blocks than we had originally asked
 999		 ** for.  So, we have to allow the transaction to end if it is
1000		 ** too big or too full.  Update the inode so things are
1001		 ** consistent if we crash before the function returns
1002		 **
1003		 ** release the path so that anybody waiting on the path before
1004		 ** ending their transaction will be able to continue.
1005		 */
1006		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1007			retval = restart_transaction(th, inode, &path);
1008			if (retval)
1009				goto failure;
1010		}
1011		/*
1012		 * inserting indirect pointers for a hole can take a
1013		 * long time.  reschedule if needed and also release the write
1014		 * lock for others.
1015		 */
1016		reiserfs_cond_resched(inode->i_sb);
1017
1018		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1019		if (retval == IO_ERROR) {
1020			retval = -EIO;
1021			goto failure;
1022		}
1023		if (retval == POSITION_FOUND) {
1024			reiserfs_warning(inode->i_sb, "vs-825",
1025					 "%K should not be found", &key);
1026			retval = -EEXIST;
1027			if (allocated_block_nr)
1028				reiserfs_free_block(th, inode,
1029						    allocated_block_nr, 1);
1030			pathrelse(&path);
1031			goto failure;
1032		}
1033		bh = get_last_bh(&path);
1034		ih = get_ih(&path);
1035		item = get_item(&path);
1036		pos_in_item = path.pos_in_item;
1037	} while (1);
1038
1039	retval = 0;
1040
1041      failure:
1042	if (th && (!dangle || (retval && !th->t_trans_id))) {
1043		int err;
1044		if (th->t_trans_id)
1045			reiserfs_update_sd(th, inode);
1046		err = reiserfs_end_persistent_transaction(th);
1047		if (err)
1048			retval = err;
1049	}
1050
1051	reiserfs_write_unlock(inode->i_sb);
1052	reiserfs_check_path(&path);
1053	return retval;
1054}
1055
1056static int
1057reiserfs_readpages(struct file *file, struct address_space *mapping,
1058		   struct list_head *pages, unsigned nr_pages)
1059{
1060	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1061}
1062
1063/* Compute real number of used bytes by file
1064 * Following three functions can go away when we'll have enough space in stat item
 
 
1065 */
1066static int real_space_diff(struct inode *inode, int sd_size)
1067{
1068	int bytes;
1069	loff_t blocksize = inode->i_sb->s_blocksize;
1070
1071	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1072		return sd_size;
1073
1074	/* End of file is also in full block with indirect reference, so round
1075	 ** up to the next block.
1076	 **
1077	 ** there is just no way to know if the tail is actually packed
1078	 ** on the file, so we have to assume it isn't.  When we pack the
1079	 ** tail, we add 4 bytes to pretend there really is an unformatted
1080	 ** node pointer
 
1081	 */
1082	bytes =
1083	    ((inode->i_size +
1084	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1085	    sd_size;
1086	return bytes;
1087}
1088
1089static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1090					int sd_size)
1091{
1092	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1093		return inode->i_size +
1094		    (loff_t) (real_space_diff(inode, sd_size));
1095	}
1096	return ((loff_t) real_space_diff(inode, sd_size)) +
1097	    (((loff_t) blocks) << 9);
1098}
1099
1100/* Compute number of blocks used by file in ReiserFS counting */
1101static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1102{
1103	loff_t bytes = inode_get_bytes(inode);
1104	loff_t real_space = real_space_diff(inode, sd_size);
1105
1106	/* keeps fsck and non-quota versions of reiserfs happy */
1107	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1108		bytes += (loff_t) 511;
1109	}
1110
1111	/* files from before the quota patch might i_blocks such that
1112	 ** bytes < real_space.  Deal with that here to prevent it from
1113	 ** going negative.
 
1114	 */
1115	if (bytes < real_space)
1116		return 0;
1117	return (bytes - real_space) >> 9;
1118}
1119
1120//
1121// BAD: new directories have stat data of new type and all other items
1122// of old type. Version stored in the inode says about body items, so
1123// in update_stat_data we can not rely on inode, but have to check
1124// item version directly
1125//
1126
1127// called by read_locked_inode
1128static void init_inode(struct inode *inode, struct treepath *path)
1129{
1130	struct buffer_head *bh;
1131	struct item_head *ih;
1132	__u32 rdev;
1133	//int version = ITEM_VERSION_1;
1134
1135	bh = PATH_PLAST_BUFFER(path);
1136	ih = PATH_PITEM_HEAD(path);
1137
1138	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1139
1140	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1141	REISERFS_I(inode)->i_flags = 0;
1142	REISERFS_I(inode)->i_prealloc_block = 0;
1143	REISERFS_I(inode)->i_prealloc_count = 0;
1144	REISERFS_I(inode)->i_trans_id = 0;
1145	REISERFS_I(inode)->i_jl = NULL;
1146	reiserfs_init_xattr_rwsem(inode);
1147
1148	if (stat_data_v1(ih)) {
1149		struct stat_data_v1 *sd =
1150		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1151		unsigned long blocks;
1152
1153		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1154		set_inode_sd_version(inode, STAT_DATA_V1);
1155		inode->i_mode = sd_v1_mode(sd);
1156		set_nlink(inode, sd_v1_nlink(sd));
1157		i_uid_write(inode, sd_v1_uid(sd));
1158		i_gid_write(inode, sd_v1_gid(sd));
1159		inode->i_size = sd_v1_size(sd);
1160		inode->i_atime.tv_sec = sd_v1_atime(sd);
1161		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1162		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1163		inode->i_atime.tv_nsec = 0;
1164		inode->i_ctime.tv_nsec = 0;
1165		inode->i_mtime.tv_nsec = 0;
1166
1167		inode->i_blocks = sd_v1_blocks(sd);
1168		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1169		blocks = (inode->i_size + 511) >> 9;
1170		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
 
 
 
 
 
 
 
 
 
1171		if (inode->i_blocks > blocks) {
1172			// there was a bug in <=3.5.23 when i_blocks could take negative
1173			// values. Starting from 3.5.17 this value could even be stored in
1174			// stat data. For such files we set i_blocks based on file
1175			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1176			// only updated if file's inode will ever change
1177			inode->i_blocks = blocks;
1178		}
1179
1180		rdev = sd_v1_rdev(sd);
1181		REISERFS_I(inode)->i_first_direct_byte =
1182		    sd_v1_first_direct_byte(sd);
1183		/* an early bug in the quota code can give us an odd number for the
1184		 ** block count.  This is incorrect, fix it here.
 
 
1185		 */
1186		if (inode->i_blocks & 1) {
1187			inode->i_blocks++;
1188		}
1189		inode_set_bytes(inode,
1190				to_real_used_space(inode, inode->i_blocks,
1191						   SD_V1_SIZE));
1192		/* nopack is initially zero for v1 objects. For v2 objects,
1193		   nopack is initialised from sd_attrs */
 
 
1194		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1195	} else {
1196		// new stat data found, but object may have old items
1197		// (directories and symlinks)
1198		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
 
 
1199
1200		inode->i_mode = sd_v2_mode(sd);
1201		set_nlink(inode, sd_v2_nlink(sd));
1202		i_uid_write(inode, sd_v2_uid(sd));
1203		inode->i_size = sd_v2_size(sd);
1204		i_gid_write(inode, sd_v2_gid(sd));
1205		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1206		inode->i_atime.tv_sec = sd_v2_atime(sd);
1207		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1208		inode->i_ctime.tv_nsec = 0;
1209		inode->i_mtime.tv_nsec = 0;
1210		inode->i_atime.tv_nsec = 0;
1211		inode->i_blocks = sd_v2_blocks(sd);
1212		rdev = sd_v2_rdev(sd);
1213		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1214			inode->i_generation =
1215			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1216		else
1217			inode->i_generation = sd_v2_generation(sd);
1218
1219		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1220			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1221		else
1222			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1223		REISERFS_I(inode)->i_first_direct_byte = 0;
1224		set_inode_sd_version(inode, STAT_DATA_V2);
1225		inode_set_bytes(inode,
1226				to_real_used_space(inode, inode->i_blocks,
1227						   SD_V2_SIZE));
1228		/* read persistent inode attributes from sd and initialise
1229		   generic inode flags from them */
 
 
1230		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1231		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1232	}
1233
1234	pathrelse(path);
1235	if (S_ISREG(inode->i_mode)) {
1236		inode->i_op = &reiserfs_file_inode_operations;
1237		inode->i_fop = &reiserfs_file_operations;
1238		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1239	} else if (S_ISDIR(inode->i_mode)) {
1240		inode->i_op = &reiserfs_dir_inode_operations;
1241		inode->i_fop = &reiserfs_dir_operations;
1242	} else if (S_ISLNK(inode->i_mode)) {
1243		inode->i_op = &reiserfs_symlink_inode_operations;
 
1244		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1245	} else {
1246		inode->i_blocks = 0;
1247		inode->i_op = &reiserfs_special_inode_operations;
1248		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1249	}
1250}
1251
1252// update new stat data with inode fields
1253static void inode2sd(void *sd, struct inode *inode, loff_t size)
1254{
1255	struct stat_data *sd_v2 = (struct stat_data *)sd;
1256	__u16 flags;
1257
1258	set_sd_v2_mode(sd_v2, inode->i_mode);
1259	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1260	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1261	set_sd_v2_size(sd_v2, size);
1262	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1263	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1264	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1265	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1266	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1267	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1268		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1269	else
1270		set_sd_v2_generation(sd_v2, inode->i_generation);
1271	flags = REISERFS_I(inode)->i_attrs;
1272	i_attrs_to_sd_attrs(inode, &flags);
1273	set_sd_v2_attrs(sd_v2, flags);
1274}
1275
1276// used to copy inode's fields to old stat data
1277static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1278{
1279	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1280
1281	set_sd_v1_mode(sd_v1, inode->i_mode);
1282	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1283	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1284	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1285	set_sd_v1_size(sd_v1, size);
1286	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1287	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1288	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1289
1290	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1291		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1292	else
1293		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1294
1295	// Sigh. i_first_direct_byte is back
1296	set_sd_v1_first_direct_byte(sd_v1,
1297				    REISERFS_I(inode)->i_first_direct_byte);
1298}
1299
1300/* NOTE, you must prepare the buffer head before sending it here,
1301** and then log it after the call
1302*/
 
1303static void update_stat_data(struct treepath *path, struct inode *inode,
1304			     loff_t size)
1305{
1306	struct buffer_head *bh;
1307	struct item_head *ih;
1308
1309	bh = PATH_PLAST_BUFFER(path);
1310	ih = PATH_PITEM_HEAD(path);
1311
1312	if (!is_statdata_le_ih(ih))
1313		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1314			       INODE_PKEY(inode), ih);
1315
 
1316	if (stat_data_v1(ih)) {
1317		// path points to old stat data
1318		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1319	} else {
1320		inode2sd(B_I_PITEM(bh, ih), inode, size);
1321	}
1322
1323	return;
1324}
1325
1326void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1327			     struct inode *inode, loff_t size)
1328{
1329	struct cpu_key key;
1330	INITIALIZE_PATH(path);
1331	struct buffer_head *bh;
1332	int fs_gen;
1333	struct item_head *ih, tmp_ih;
1334	int retval;
1335
1336	BUG_ON(!th->t_trans_id);
1337
1338	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
 
1339
1340	for (;;) {
1341		int pos;
1342		/* look for the object's stat data */
1343		retval = search_item(inode->i_sb, &key, &path);
1344		if (retval == IO_ERROR) {
1345			reiserfs_error(inode->i_sb, "vs-13050",
1346				       "i/o failure occurred trying to "
1347				       "update %K stat data", &key);
1348			return;
1349		}
1350		if (retval == ITEM_NOT_FOUND) {
1351			pos = PATH_LAST_POSITION(&path);
1352			pathrelse(&path);
1353			if (inode->i_nlink == 0) {
1354				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1355				return;
1356			}
1357			reiserfs_warning(inode->i_sb, "vs-13060",
1358					 "stat data of object %k (nlink == %d) "
1359					 "not found (pos %d)",
1360					 INODE_PKEY(inode), inode->i_nlink,
1361					 pos);
1362			reiserfs_check_path(&path);
1363			return;
1364		}
1365
1366		/* sigh, prepare_for_journal might schedule.  When it schedules the
1367		 ** FS might change.  We have to detect that, and loop back to the
1368		 ** search if the stat data item has moved
 
1369		 */
1370		bh = get_last_bh(&path);
1371		ih = get_ih(&path);
1372		copy_item_head(&tmp_ih, ih);
1373		fs_gen = get_generation(inode->i_sb);
1374		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
 
 
1375		if (fs_changed(fs_gen, inode->i_sb)
1376		    && item_moved(&tmp_ih, &path)) {
1377			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1378			continue;	/* Stat_data item has been moved after scheduling. */
1379		}
1380		break;
1381	}
1382	update_stat_data(&path, inode, size);
1383	journal_mark_dirty(th, th->t_super, bh);
1384	pathrelse(&path);
1385	return;
1386}
1387
1388/* reiserfs_read_locked_inode is called to read the inode off disk, and it
1389** does a make_bad_inode when things go wrong.  But, we need to make sure
1390** and clear the key in the private portion of the inode, otherwise a
1391** corresponding iput might try to delete whatever object the inode last
1392** represented.
1393*/
 
1394static void reiserfs_make_bad_inode(struct inode *inode)
1395{
1396	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1397	make_bad_inode(inode);
1398}
1399
1400//
1401// initially this function was derived from minix or ext2's analog and
1402// evolved as the prototype did
1403//
1404
1405int reiserfs_init_locked_inode(struct inode *inode, void *p)
1406{
1407	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1408	inode->i_ino = args->objectid;
1409	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1410	return 0;
1411}
1412
1413/* looks for stat data in the tree, and fills up the fields of in-core
1414   inode stat data fields */
 
 
1415void reiserfs_read_locked_inode(struct inode *inode,
1416				struct reiserfs_iget_args *args)
1417{
1418	INITIALIZE_PATH(path_to_sd);
1419	struct cpu_key key;
1420	unsigned long dirino;
1421	int retval;
1422
1423	dirino = args->dirid;
1424
1425	/* set version 1, version 2 could be used too, because stat data
1426	   key is the same in both versions */
1427	key.version = KEY_FORMAT_3_5;
1428	key.on_disk_key.k_dir_id = dirino;
1429	key.on_disk_key.k_objectid = inode->i_ino;
1430	key.on_disk_key.k_offset = 0;
1431	key.on_disk_key.k_type = 0;
1432
1433	/* look for the object's stat data */
1434	retval = search_item(inode->i_sb, &key, &path_to_sd);
1435	if (retval == IO_ERROR) {
1436		reiserfs_error(inode->i_sb, "vs-13070",
1437			       "i/o failure occurred trying to find "
1438			       "stat data of %K", &key);
1439		reiserfs_make_bad_inode(inode);
1440		return;
1441	}
 
 
1442	if (retval != ITEM_FOUND) {
1443		/* a stale NFS handle can trigger this without it being an error */
1444		pathrelse(&path_to_sd);
1445		reiserfs_make_bad_inode(inode);
1446		clear_nlink(inode);
1447		return;
1448	}
1449
1450	init_inode(inode, &path_to_sd);
1451
1452	/* It is possible that knfsd is trying to access inode of a file
1453	   that is being removed from the disk by some other thread. As we
1454	   update sd on unlink all that is required is to check for nlink
1455	   here. This bug was first found by Sizif when debugging
1456	   SquidNG/Butterfly, forgotten, and found again after Philippe
1457	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1458
1459	   More logical fix would require changes in fs/inode.c:iput() to
1460	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1461	   in iget() to return NULL if I_FREEING inode is found in
1462	   hash-table. */
1463	/* Currently there is one place where it's ok to meet inode with
1464	   nlink==0: processing of open-unlinked and half-truncated files
1465	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
 
 
 
 
 
1466	if ((inode->i_nlink == 0) &&
1467	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1468		reiserfs_warning(inode->i_sb, "vs-13075",
1469				 "dead inode read from disk %K. "
1470				 "This is likely to be race with knfsd. Ignore",
1471				 &key);
1472		reiserfs_make_bad_inode(inode);
1473	}
1474
1475	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
 
1476
1477	/*
1478	 * Stat data v1 doesn't support ACLs.
1479	 */
1480	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1481		cache_no_acl(inode);
1482}
1483
1484/**
1485 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1486 *
1487 * @inode:    inode from hash table to check
1488 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1489 *
1490 * This function is called by iget5_locked() to distinguish reiserfs inodes
1491 * having the same inode numbers. Such inodes can only exist due to some
1492 * error condition. One of them should be bad. Inodes with identical
1493 * inode numbers (objectids) are distinguished by parent directory ids.
1494 *
1495 */
1496int reiserfs_find_actor(struct inode *inode, void *opaque)
1497{
1498	struct reiserfs_iget_args *args;
1499
1500	args = opaque;
1501	/* args is already in CPU order */
1502	return (inode->i_ino == args->objectid) &&
1503	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1504}
1505
1506struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1507{
1508	struct inode *inode;
1509	struct reiserfs_iget_args args;
1510	int depth;
1511
1512	args.objectid = key->on_disk_key.k_objectid;
1513	args.dirid = key->on_disk_key.k_dir_id;
1514	depth = reiserfs_write_unlock_nested(s);
1515	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516			     reiserfs_find_actor, reiserfs_init_locked_inode,
1517			     (void *)(&args));
1518	reiserfs_write_lock_nested(s, depth);
1519	if (!inode)
1520		return ERR_PTR(-ENOMEM);
1521
1522	if (inode->i_state & I_NEW) {
1523		reiserfs_read_locked_inode(inode, &args);
1524		unlock_new_inode(inode);
1525	}
1526
1527	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528		/* either due to i/o error or a stale NFS handle */
1529		iput(inode);
1530		inode = NULL;
1531	}
1532	return inode;
1533}
1534
1535static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536	u32 objectid, u32 dir_id, u32 generation)
1537
1538{
1539	struct cpu_key key;
1540	struct inode *inode;
1541
1542	key.on_disk_key.k_objectid = objectid;
1543	key.on_disk_key.k_dir_id = dir_id;
1544	reiserfs_write_lock(sb);
1545	inode = reiserfs_iget(sb, &key);
1546	if (inode && !IS_ERR(inode) && generation != 0 &&
1547	    generation != inode->i_generation) {
1548		iput(inode);
1549		inode = NULL;
1550	}
1551	reiserfs_write_unlock(sb);
1552
1553	return d_obtain_alias(inode);
1554}
1555
1556struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557		int fh_len, int fh_type)
1558{
1559	/* fhtype happens to reflect the number of u32s encoded.
 
1560	 * due to a bug in earlier code, fhtype might indicate there
1561	 * are more u32s then actually fitted.
1562	 * so if fhtype seems to be more than len, reduce fhtype.
1563	 * Valid types are:
1564	 *   2 - objectid + dir_id - legacy support
1565	 *   3 - objectid + dir_id + generation
1566	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1567	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1568	 *   6 - as above plus generation of directory
1569	 * 6 does not fit in NFSv2 handles
1570	 */
1571	if (fh_type > fh_len) {
1572		if (fh_type != 6 || fh_len != 5)
1573			reiserfs_warning(sb, "reiserfs-13077",
1574				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575				fh_type, fh_len);
1576		fh_type = fh_len;
1577	}
1578	if (fh_len < 2)
1579		return NULL;
1580
1581	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1582		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1583}
1584
1585struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1586		int fh_len, int fh_type)
1587{
1588	if (fh_type > fh_len)
1589		fh_type = fh_len;
1590	if (fh_type < 4)
1591		return NULL;
1592
1593	return reiserfs_get_dentry(sb,
1594		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1595		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1596		(fh_type == 6) ? fid->raw[5] : 0);
1597}
1598
1599int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1600		       struct inode *parent)
1601{
1602	int maxlen = *lenp;
1603
1604	if (parent && (maxlen < 5)) {
1605		*lenp = 5;
1606		return FILEID_INVALID;
1607	} else if (maxlen < 3) {
1608		*lenp = 3;
1609		return FILEID_INVALID;
1610	}
1611
1612	data[0] = inode->i_ino;
1613	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1614	data[2] = inode->i_generation;
1615	*lenp = 3;
1616	if (parent) {
1617		data[3] = parent->i_ino;
1618		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1619		*lenp = 5;
1620		if (maxlen >= 6) {
1621			data[5] = parent->i_generation;
1622			*lenp = 6;
1623		}
1624	}
1625	return *lenp;
1626}
1627
1628/* looks for stat data, then copies fields to it, marks the buffer
1629   containing stat data as dirty */
1630/* reiserfs inodes are never really dirty, since the dirty inode call
1631** always logs them.  This call allows the VFS inode marking routines
1632** to properly mark inodes for datasync and such, but only actually
1633** does something when called for a synchronous update.
1634*/
 
 
 
1635int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1636{
1637	struct reiserfs_transaction_handle th;
1638	int jbegin_count = 1;
1639
1640	if (inode->i_sb->s_flags & MS_RDONLY)
1641		return -EROFS;
1642	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1643	 ** these cases are just when the system needs ram, not when the
1644	 ** inode needs to reach disk for safety, and they can safely be
1645	 ** ignored because the altered inode has already been logged.
 
 
1646	 */
1647	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1648		reiserfs_write_lock(inode->i_sb);
1649		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1650			reiserfs_update_sd(&th, inode);
1651			journal_end_sync(&th, inode->i_sb, jbegin_count);
1652		}
1653		reiserfs_write_unlock(inode->i_sb);
1654	}
1655	return 0;
1656}
1657
1658/* stat data of new object is inserted already, this inserts the item
1659   containing "." and ".." entries */
 
 
1660static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1661				  struct inode *inode,
1662				  struct item_head *ih, struct treepath *path,
1663				  struct inode *dir)
1664{
1665	struct super_block *sb = th->t_super;
1666	char empty_dir[EMPTY_DIR_SIZE];
1667	char *body = empty_dir;
1668	struct cpu_key key;
1669	int retval;
1670
1671	BUG_ON(!th->t_trans_id);
1672
1673	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1674		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1675		      TYPE_DIRENTRY, 3 /*key length */ );
1676
1677	/* compose item head for new item. Directories consist of items of
1678	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1679	   is done by reiserfs_new_inode */
 
 
1680	if (old_format_only(sb)) {
1681		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1682				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1683
1684		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1685				       ih->ih_key.k_objectid,
1686				       INODE_PKEY(dir)->k_dir_id,
1687				       INODE_PKEY(dir)->k_objectid);
1688	} else {
1689		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1690				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1691
1692		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1693				    ih->ih_key.k_objectid,
1694				    INODE_PKEY(dir)->k_dir_id,
1695				    INODE_PKEY(dir)->k_objectid);
1696	}
1697
1698	/* look for place in the tree for new item */
1699	retval = search_item(sb, &key, path);
1700	if (retval == IO_ERROR) {
1701		reiserfs_error(sb, "vs-13080",
1702			       "i/o failure occurred creating new directory");
1703		return -EIO;
1704	}
1705	if (retval == ITEM_FOUND) {
1706		pathrelse(path);
1707		reiserfs_warning(sb, "vs-13070",
1708				 "object with this key exists (%k)",
1709				 &(ih->ih_key));
1710		return -EEXIST;
1711	}
1712
1713	/* insert item, that is empty directory item */
1714	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1715}
1716
1717/* stat data of object has been inserted, this inserts the item
1718   containing the body of symlink */
1719static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
 
 
 
1720				struct item_head *ih,
1721				struct treepath *path, const char *symname,
1722				int item_len)
1723{
1724	struct super_block *sb = th->t_super;
1725	struct cpu_key key;
1726	int retval;
1727
1728	BUG_ON(!th->t_trans_id);
1729
1730	_make_cpu_key(&key, KEY_FORMAT_3_5,
1731		      le32_to_cpu(ih->ih_key.k_dir_id),
1732		      le32_to_cpu(ih->ih_key.k_objectid),
1733		      1, TYPE_DIRECT, 3 /*key length */ );
1734
1735	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1736			  0 /*free_space */ );
1737
1738	/* look for place in the tree for new item */
1739	retval = search_item(sb, &key, path);
1740	if (retval == IO_ERROR) {
1741		reiserfs_error(sb, "vs-13080",
1742			       "i/o failure occurred creating new symlink");
1743		return -EIO;
1744	}
1745	if (retval == ITEM_FOUND) {
1746		pathrelse(path);
1747		reiserfs_warning(sb, "vs-13080",
1748				 "object with this key exists (%k)",
1749				 &(ih->ih_key));
1750		return -EEXIST;
1751	}
1752
1753	/* insert item, that is body of symlink */
1754	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1755}
1756
1757/* inserts the stat data into the tree, and then calls
1758   reiserfs_new_directory (to insert ".", ".." item if new object is
1759   directory) or reiserfs_new_symlink (to insert symlink body if new
1760   object is symlink) or nothing (if new object is regular file)
1761
1762   NOTE! uid and gid must already be set in the inode.  If we return
1763   non-zero due to an error, we have to drop the quota previously allocated
1764   for the fresh inode.  This can only be done outside a transaction, so
1765   if we return non-zero, we also end the transaction.  */
 
 
 
 
 
 
 
 
 
 
 
1766int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1767		       struct inode *dir, umode_t mode, const char *symname,
1768		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1769		          strlen (symname) for symlinks) */
1770		       loff_t i_size, struct dentry *dentry,
1771		       struct inode *inode,
1772		       struct reiserfs_security_handle *security)
1773{
1774	struct super_block *sb = dir->i_sb;
1775	struct reiserfs_iget_args args;
1776	INITIALIZE_PATH(path_to_key);
1777	struct cpu_key key;
1778	struct item_head ih;
1779	struct stat_data sd;
1780	int retval;
1781	int err;
1782	int depth;
1783
1784	BUG_ON(!th->t_trans_id);
1785
1786	depth = reiserfs_write_unlock_nested(sb);
1787	err = dquot_alloc_inode(inode);
1788	reiserfs_write_lock_nested(sb, depth);
1789	if (err)
1790		goto out_end_trans;
1791	if (!dir->i_nlink) {
1792		err = -EPERM;
1793		goto out_bad_inode;
1794	}
1795
1796	/* item head of new item */
1797	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1798	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1799	if (!ih.ih_key.k_objectid) {
1800		err = -ENOMEM;
1801		goto out_bad_inode;
1802	}
1803	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1804	if (old_format_only(sb))
1805		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1806				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1807	else
1808		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1809				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1810	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1811	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1812
1813	depth = reiserfs_write_unlock_nested(inode->i_sb);
1814	err = insert_inode_locked4(inode, args.objectid,
1815			     reiserfs_find_actor, &args);
1816	reiserfs_write_lock_nested(inode->i_sb, depth);
1817	if (err) {
1818		err = -EINVAL;
1819		goto out_bad_inode;
1820	}
1821
1822	if (old_format_only(sb))
1823		/* not a perfect generation count, as object ids can be reused, but
1824		 ** this is as good as reiserfs can do right now.
1825		 ** note that the private part of inode isn't filled in yet, we have
1826		 ** to use the directory.
 
1827		 */
1828		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1829	else
1830#if defined( USE_INODE_GENERATION_COUNTER )
1831		inode->i_generation =
1832		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1833#else
1834		inode->i_generation = ++event;
1835#endif
1836
1837	/* fill stat data */
1838	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1839
1840	/* uid and gid must already be set by the caller for quota init */
1841
1842	/* symlink cannot be immutable or append only, right? */
1843	if (S_ISLNK(inode->i_mode))
1844		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1845
1846	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1847	inode->i_size = i_size;
1848	inode->i_blocks = 0;
1849	inode->i_bytes = 0;
1850	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1851	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1852
1853	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1854	REISERFS_I(inode)->i_flags = 0;
1855	REISERFS_I(inode)->i_prealloc_block = 0;
1856	REISERFS_I(inode)->i_prealloc_count = 0;
1857	REISERFS_I(inode)->i_trans_id = 0;
1858	REISERFS_I(inode)->i_jl = NULL;
1859	REISERFS_I(inode)->i_attrs =
1860	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1861	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1862	reiserfs_init_xattr_rwsem(inode);
1863
1864	/* key to search for correct place for new stat data */
1865	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1866		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1867		      TYPE_STAT_DATA, 3 /*key length */ );
1868
1869	/* find proper place for inserting of stat data */
1870	retval = search_item(sb, &key, &path_to_key);
1871	if (retval == IO_ERROR) {
1872		err = -EIO;
1873		goto out_bad_inode;
1874	}
1875	if (retval == ITEM_FOUND) {
1876		pathrelse(&path_to_key);
1877		err = -EEXIST;
1878		goto out_bad_inode;
1879	}
1880	if (old_format_only(sb)) {
 
1881		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
1882			pathrelse(&path_to_key);
1883			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1884			err = -EINVAL;
1885			goto out_bad_inode;
1886		}
1887		inode2sd_v1(&sd, inode, inode->i_size);
1888	} else {
1889		inode2sd(&sd, inode, inode->i_size);
1890	}
1891	// store in in-core inode the key of stat data and version all
1892	// object items will have (directory items will have old offset
1893	// format, other new objects will consist of new items)
 
 
1894	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1895		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1896	else
1897		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1898	if (old_format_only(sb))
1899		set_inode_sd_version(inode, STAT_DATA_V1);
1900	else
1901		set_inode_sd_version(inode, STAT_DATA_V2);
1902
1903	/* insert the stat data into the tree */
1904#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1905	if (REISERFS_I(dir)->new_packing_locality)
1906		th->displace_new_blocks = 1;
1907#endif
1908	retval =
1909	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1910				 (char *)(&sd));
1911	if (retval) {
1912		err = retval;
1913		reiserfs_check_path(&path_to_key);
1914		goto out_bad_inode;
1915	}
1916#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1917	if (!th->displace_new_blocks)
1918		REISERFS_I(dir)->new_packing_locality = 0;
1919#endif
1920	if (S_ISDIR(mode)) {
1921		/* insert item with "." and ".." */
1922		retval =
1923		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1924	}
1925
1926	if (S_ISLNK(mode)) {
1927		/* insert body of symlink */
1928		if (!old_format_only(sb))
1929			i_size = ROUND_UP(i_size);
1930		retval =
1931		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1932					 i_size);
1933	}
1934	if (retval) {
1935		err = retval;
1936		reiserfs_check_path(&path_to_key);
1937		journal_end(th, th->t_super, th->t_blocks_allocated);
1938		goto out_inserted_sd;
1939	}
1940
 
 
 
 
 
 
 
 
 
1941	if (reiserfs_posixacl(inode->i_sb)) {
1942		reiserfs_write_unlock(inode->i_sb);
1943		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1944		reiserfs_write_lock(inode->i_sb);
1945		if (retval) {
1946			err = retval;
1947			reiserfs_check_path(&path_to_key);
1948			journal_end(th, th->t_super, th->t_blocks_allocated);
1949			goto out_inserted_sd;
1950		}
1951	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1952		reiserfs_warning(inode->i_sb, "jdm-13090",
1953				 "ACLs aren't enabled in the fs, "
1954				 "but vfs thinks they are!");
1955	} else if (IS_PRIVATE(dir))
1956		inode->i_flags |= S_PRIVATE;
1957
1958	if (security->name) {
1959		reiserfs_write_unlock(inode->i_sb);
1960		retval = reiserfs_security_write(th, inode, security);
1961		reiserfs_write_lock(inode->i_sb);
1962		if (retval) {
1963			err = retval;
1964			reiserfs_check_path(&path_to_key);
1965			retval = journal_end(th, th->t_super,
1966					     th->t_blocks_allocated);
1967			if (retval)
1968				err = retval;
1969			goto out_inserted_sd;
1970		}
1971	}
1972
1973	reiserfs_update_sd(th, inode);
1974	reiserfs_check_path(&path_to_key);
1975
1976	return 0;
1977
1978/* it looks like you can easily compress these two goto targets into
1979 * one.  Keeping it like this doesn't actually hurt anything, and they
1980 * are place holders for what the quota code actually needs.
1981 */
1982      out_bad_inode:
1983	/* Invalidate the object, nothing was inserted yet */
1984	INODE_PKEY(inode)->k_objectid = 0;
1985
1986	/* Quota change must be inside a transaction for journaling */
1987	depth = reiserfs_write_unlock_nested(inode->i_sb);
1988	dquot_free_inode(inode);
1989	reiserfs_write_lock_nested(inode->i_sb, depth);
1990
1991      out_end_trans:
1992	journal_end(th, th->t_super, th->t_blocks_allocated);
1993	/* Drop can be outside and it needs more credits so it's better to have it outside */
 
 
 
1994	depth = reiserfs_write_unlock_nested(inode->i_sb);
1995	dquot_drop(inode);
1996	reiserfs_write_lock_nested(inode->i_sb, depth);
1997	inode->i_flags |= S_NOQUOTA;
1998	make_bad_inode(inode);
1999
2000      out_inserted_sd:
2001	clear_nlink(inode);
2002	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2003	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
 
2004	iput(inode);
2005	return err;
2006}
2007
2008/*
2009** finds the tail page in the page cache,
2010** reads the last block in.
2011**
2012** On success, page_result is set to a locked, pinned page, and bh_result
2013** is set to an up to date buffer for the last block in the file.  returns 0.
2014**
2015** tail conversion is not done, so bh_result might not be valid for writing
2016** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2017** trying to write the block.
2018**
2019** on failure, nonzero is returned, page_result and bh_result are untouched.
2020*/
2021static int grab_tail_page(struct inode *inode,
2022			  struct page **page_result,
2023			  struct buffer_head **bh_result)
2024{
2025
2026	/* we want the page with the last byte in the file,
2027	 ** not the page that will hold the next byte for appending
 
2028	 */
2029	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2030	unsigned long pos = 0;
2031	unsigned long start = 0;
2032	unsigned long blocksize = inode->i_sb->s_blocksize;
2033	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2034	struct buffer_head *bh;
2035	struct buffer_head *head;
2036	struct page *page;
2037	int error;
2038
2039	/* we know that we are only called with inode->i_size > 0.
2040	 ** we also know that a file tail can never be as big as a block
2041	 ** If i_size % blocksize == 0, our file is currently block aligned
2042	 ** and it won't need converting or zeroing after a truncate.
 
2043	 */
2044	if ((offset & (blocksize - 1)) == 0) {
2045		return -ENOENT;
2046	}
2047	page = grab_cache_page(inode->i_mapping, index);
2048	error = -ENOMEM;
2049	if (!page) {
2050		goto out;
2051	}
2052	/* start within the page of the last block in the file */
2053	start = (offset / blocksize) * blocksize;
2054
2055	error = __block_write_begin(page, start, offset - start,
2056				    reiserfs_get_block_create_0);
2057	if (error)
2058		goto unlock;
2059
2060	head = page_buffers(page);
2061	bh = head;
2062	do {
2063		if (pos >= start) {
2064			break;
2065		}
2066		bh = bh->b_this_page;
2067		pos += blocksize;
2068	} while (bh != head);
2069
2070	if (!buffer_uptodate(bh)) {
2071		/* note, this should never happen, prepare_write should
2072		 ** be taking care of this for us.  If the buffer isn't up to date,
2073		 ** I've screwed up the code to find the buffer, or the code to
2074		 ** call prepare_write
 
2075		 */
2076		reiserfs_error(inode->i_sb, "clm-6000",
2077			       "error reading block %lu", bh->b_blocknr);
2078		error = -EIO;
2079		goto unlock;
2080	}
2081	*bh_result = bh;
2082	*page_result = page;
2083
2084      out:
2085	return error;
2086
2087      unlock:
2088	unlock_page(page);
2089	page_cache_release(page);
2090	return error;
2091}
2092
2093/*
2094** vfs version of truncate file.  Must NOT be called with
2095** a transaction already started.
2096**
2097** some code taken from block_truncate_page
2098*/
2099int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2100{
2101	struct reiserfs_transaction_handle th;
2102	/* we want the offset for the first byte after the end of the file */
2103	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2104	unsigned blocksize = inode->i_sb->s_blocksize;
2105	unsigned length;
2106	struct page *page = NULL;
2107	int error;
2108	struct buffer_head *bh = NULL;
2109	int err2;
2110
2111	reiserfs_write_lock(inode->i_sb);
2112
2113	if (inode->i_size > 0) {
2114		error = grab_tail_page(inode, &page, &bh);
2115		if (error) {
2116			// -ENOENT means we truncated past the end of the file,
2117			// and get_block_create_0 could not find a block to read in,
2118			// which is ok.
 
 
2119			if (error != -ENOENT)
2120				reiserfs_error(inode->i_sb, "clm-6001",
2121					       "grab_tail_page failed %d",
2122					       error);
2123			page = NULL;
2124			bh = NULL;
2125		}
2126	}
2127
2128	/* so, if page != NULL, we have a buffer head for the offset at
2129	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2130	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2131	 ** and no zeroing is required on disk.  We zero after the truncate,
2132	 ** because the truncate might pack the item anyway
2133	 ** (it will unmap bh if it packs).
2134	 */
2135	/* it is enough to reserve space in transaction for 2 balancings:
2136	   one for "save" link adding and another for the first
2137	   cut_from_item. 1 is for update_sd */
 
 
2138	error = journal_begin(&th, inode->i_sb,
2139			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2140	if (error)
2141		goto out;
2142	reiserfs_update_inode_transaction(inode);
2143	if (update_timestamps)
2144		/* we are doing real truncate: if the system crashes before the last
2145		   transaction of truncating gets committed - on reboot the file
2146		   either appears truncated properly or not truncated at all */
 
 
 
2147		add_save_link(&th, inode, 1);
2148	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2149	error =
2150	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2151	if (error)
2152		goto out;
2153
2154	/* check reiserfs_do_truncate after ending the transaction */
2155	if (err2) {
2156		error = err2;
2157  		goto out;
2158	}
2159	
2160	if (update_timestamps) {
2161		error = remove_save_link(inode, 1 /* truncate */);
2162		if (error)
2163			goto out;
2164	}
2165
2166	if (page) {
2167		length = offset & (blocksize - 1);
2168		/* if we are not on a block boundary */
2169		if (length) {
2170			length = blocksize - length;
2171			zero_user(page, offset, length);
2172			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2173				mark_buffer_dirty(bh);
2174			}
2175		}
2176		unlock_page(page);
2177		page_cache_release(page);
2178	}
2179
2180	reiserfs_write_unlock(inode->i_sb);
2181
2182	return 0;
2183      out:
2184	if (page) {
2185		unlock_page(page);
2186		page_cache_release(page);
2187	}
2188
2189	reiserfs_write_unlock(inode->i_sb);
2190
2191	return error;
2192}
2193
2194static int map_block_for_writepage(struct inode *inode,
2195				   struct buffer_head *bh_result,
2196				   unsigned long block)
2197{
2198	struct reiserfs_transaction_handle th;
2199	int fs_gen;
2200	struct item_head tmp_ih;
2201	struct item_head *ih;
2202	struct buffer_head *bh;
2203	__le32 *item;
2204	struct cpu_key key;
2205	INITIALIZE_PATH(path);
2206	int pos_in_item;
2207	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2208	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2209	int retval;
2210	int use_get_block = 0;
2211	int bytes_copied = 0;
2212	int copy_size;
2213	int trans_running = 0;
2214
2215	/* catch places below that try to log something without starting a trans */
 
 
 
2216	th.t_trans_id = 0;
2217
2218	if (!buffer_uptodate(bh_result)) {
2219		return -EIO;
2220	}
2221
2222	kmap(bh_result->b_page);
2223      start_over:
2224	reiserfs_write_lock(inode->i_sb);
2225	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2226
2227      research:
2228	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2229	if (retval != POSITION_FOUND) {
2230		use_get_block = 1;
2231		goto out;
2232	}
2233
2234	bh = get_last_bh(&path);
2235	ih = get_ih(&path);
2236	item = get_item(&path);
2237	pos_in_item = path.pos_in_item;
2238
2239	/* we've found an unformatted node */
2240	if (indirect_item_found(retval, ih)) {
2241		if (bytes_copied > 0) {
2242			reiserfs_warning(inode->i_sb, "clm-6002",
2243					 "bytes_copied %d", bytes_copied);
2244		}
2245		if (!get_block_num(item, pos_in_item)) {
2246			/* crap, we are writing to a hole */
2247			use_get_block = 1;
2248			goto out;
2249		}
2250		set_block_dev_mapped(bh_result,
2251				     get_block_num(item, pos_in_item), inode);
2252	} else if (is_direct_le_ih(ih)) {
2253		char *p;
2254		p = page_address(bh_result->b_page);
2255		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2256		copy_size = ih_item_len(ih) - pos_in_item;
2257
2258		fs_gen = get_generation(inode->i_sb);
2259		copy_item_head(&tmp_ih, ih);
2260
2261		if (!trans_running) {
2262			/* vs-3050 is gone, no need to drop the path */
2263			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2264			if (retval)
2265				goto out;
2266			reiserfs_update_inode_transaction(inode);
2267			trans_running = 1;
2268			if (fs_changed(fs_gen, inode->i_sb)
2269			    && item_moved(&tmp_ih, &path)) {
2270				reiserfs_restore_prepared_buffer(inode->i_sb,
2271								 bh);
2272				goto research;
2273			}
2274		}
2275
2276		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2277
2278		if (fs_changed(fs_gen, inode->i_sb)
2279		    && item_moved(&tmp_ih, &path)) {
2280			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2281			goto research;
2282		}
2283
2284		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2285		       copy_size);
2286
2287		journal_mark_dirty(&th, inode->i_sb, bh);
2288		bytes_copied += copy_size;
2289		set_block_dev_mapped(bh_result, 0, inode);
2290
2291		/* are there still bytes left? */
2292		if (bytes_copied < bh_result->b_size &&
2293		    (byte_offset + bytes_copied) < inode->i_size) {
2294			set_cpu_key_k_offset(&key,
2295					     cpu_key_k_offset(&key) +
2296					     copy_size);
2297			goto research;
2298		}
2299	} else {
2300		reiserfs_warning(inode->i_sb, "clm-6003",
2301				 "bad item inode %lu", inode->i_ino);
2302		retval = -EIO;
2303		goto out;
2304	}
2305	retval = 0;
2306
2307      out:
2308	pathrelse(&path);
2309	if (trans_running) {
2310		int err = journal_end(&th, inode->i_sb, jbegin_count);
2311		if (err)
2312			retval = err;
2313		trans_running = 0;
2314	}
2315	reiserfs_write_unlock(inode->i_sb);
2316
2317	/* this is where we fill in holes in the file. */
2318	if (use_get_block) {
2319		retval = reiserfs_get_block(inode, block, bh_result,
2320					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2321					    | GET_BLOCK_NO_DANGLE);
2322		if (!retval) {
2323			if (!buffer_mapped(bh_result)
2324			    || bh_result->b_blocknr == 0) {
2325				/* get_block failed to find a mapped unformatted node. */
2326				use_get_block = 0;
2327				goto start_over;
2328			}
2329		}
2330	}
2331	kunmap(bh_result->b_page);
2332
2333	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2334		/* we've copied data from the page into the direct item, so the
 
2335		 * buffer in the page is now clean, mark it to reflect that.
2336		 */
2337		lock_buffer(bh_result);
2338		clear_buffer_dirty(bh_result);
2339		unlock_buffer(bh_result);
2340	}
2341	return retval;
2342}
2343
2344/*
2345 * mason@suse.com: updated in 2.5.54 to follow the same general io
2346 * start/recovery path as __block_write_full_page, along with special
2347 * code to handle reiserfs tails.
2348 */
2349static int reiserfs_write_full_page(struct page *page,
2350				    struct writeback_control *wbc)
2351{
2352	struct inode *inode = page->mapping->host;
2353	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2354	int error = 0;
2355	unsigned long block;
2356	sector_t last_block;
2357	struct buffer_head *head, *bh;
2358	int partial = 0;
2359	int nr = 0;
2360	int checked = PageChecked(page);
2361	struct reiserfs_transaction_handle th;
2362	struct super_block *s = inode->i_sb;
2363	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2364	th.t_trans_id = 0;
2365
2366	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2367	if (checked && (current->flags & PF_MEMALLOC)) {
2368		redirty_page_for_writepage(wbc, page);
2369		unlock_page(page);
2370		return 0;
2371	}
2372
2373	/* The page dirty bit is cleared before writepage is called, which
 
2374	 * means we have to tell create_empty_buffers to make dirty buffers
2375	 * The page really should be up to date at this point, so tossing
2376	 * in the BH_Uptodate is just a sanity check.
2377	 */
2378	if (!page_has_buffers(page)) {
2379		create_empty_buffers(page, s->s_blocksize,
2380				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2381	}
2382	head = page_buffers(page);
2383
2384	/* last page in the file, zero out any contents past the
2385	 ** last byte in the file
 
2386	 */
2387	if (page->index >= end_index) {
2388		unsigned last_offset;
2389
2390		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2391		/* no file contents in this page */
2392		if (page->index >= end_index + 1 || !last_offset) {
2393			unlock_page(page);
2394			return 0;
2395		}
2396		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2397	}
2398	bh = head;
2399	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2400	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2401	/* first map all the buffers, logging any direct items we find */
2402	do {
2403		if (block > last_block) {
2404			/*
2405			 * This can happen when the block size is less than
2406			 * the page size.  The corresponding bytes in the page
2407			 * were zero filled above
2408			 */
2409			clear_buffer_dirty(bh);
2410			set_buffer_uptodate(bh);
2411		} else if ((checked || buffer_dirty(bh)) &&
2412		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2413						       && bh->b_blocknr ==
2414						       0))) {
2415			/* not mapped yet, or it points to a direct item, search
2416			 * the btree for the mapping info, and log any direct
2417			 * items found
2418			 */
2419			if ((error = map_block_for_writepage(inode, bh, block))) {
2420				goto fail;
2421			}
2422		}
2423		bh = bh->b_this_page;
2424		block++;
2425	} while (bh != head);
2426
2427	/*
2428	 * we start the transaction after map_block_for_writepage,
2429	 * because it can create holes in the file (an unbounded operation).
2430	 * starting it here, we can make a reliable estimate for how many
2431	 * blocks we're going to log
2432	 */
2433	if (checked) {
2434		ClearPageChecked(page);
2435		reiserfs_write_lock(s);
2436		error = journal_begin(&th, s, bh_per_page + 1);
2437		if (error) {
2438			reiserfs_write_unlock(s);
2439			goto fail;
2440		}
2441		reiserfs_update_inode_transaction(inode);
2442	}
2443	/* now go through and lock any dirty buffers on the page */
2444	do {
2445		get_bh(bh);
2446		if (!buffer_mapped(bh))
2447			continue;
2448		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2449			continue;
2450
2451		if (checked) {
2452			reiserfs_prepare_for_journal(s, bh, 1);
2453			journal_mark_dirty(&th, s, bh);
2454			continue;
2455		}
2456		/* from this point on, we know the buffer is mapped to a
 
2457		 * real block and not a direct item
2458		 */
2459		if (wbc->sync_mode != WB_SYNC_NONE) {
2460			lock_buffer(bh);
2461		} else {
2462			if (!trylock_buffer(bh)) {
2463				redirty_page_for_writepage(wbc, page);
2464				continue;
2465			}
2466		}
2467		if (test_clear_buffer_dirty(bh)) {
2468			mark_buffer_async_write(bh);
2469		} else {
2470			unlock_buffer(bh);
2471		}
2472	} while ((bh = bh->b_this_page) != head);
2473
2474	if (checked) {
2475		error = journal_end(&th, s, bh_per_page + 1);
2476		reiserfs_write_unlock(s);
2477		if (error)
2478			goto fail;
2479	}
2480	BUG_ON(PageWriteback(page));
2481	set_page_writeback(page);
2482	unlock_page(page);
2483
2484	/*
2485	 * since any buffer might be the only dirty buffer on the page,
2486	 * the first submit_bh can bring the page out of writeback.
2487	 * be careful with the buffers.
2488	 */
2489	do {
2490		struct buffer_head *next = bh->b_this_page;
2491		if (buffer_async_write(bh)) {
2492			submit_bh(WRITE, bh);
2493			nr++;
2494		}
2495		put_bh(bh);
2496		bh = next;
2497	} while (bh != head);
2498
2499	error = 0;
2500      done:
2501	if (nr == 0) {
2502		/*
2503		 * if this page only had a direct item, it is very possible for
2504		 * no io to be required without there being an error.  Or,
2505		 * someone else could have locked them and sent them down the
2506		 * pipe without locking the page
2507		 */
2508		bh = head;
2509		do {
2510			if (!buffer_uptodate(bh)) {
2511				partial = 1;
2512				break;
2513			}
2514			bh = bh->b_this_page;
2515		} while (bh != head);
2516		if (!partial)
2517			SetPageUptodate(page);
2518		end_page_writeback(page);
2519	}
2520	return error;
2521
2522      fail:
2523	/* catches various errors, we need to make sure any valid dirty blocks
 
2524	 * get to the media.  The page is currently locked and not marked for
2525	 * writeback
2526	 */
2527	ClearPageUptodate(page);
2528	bh = head;
2529	do {
2530		get_bh(bh);
2531		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2532			lock_buffer(bh);
2533			mark_buffer_async_write(bh);
2534		} else {
2535			/*
2536			 * clear any dirty bits that might have come from getting
2537			 * attached to a dirty page
2538			 */
2539			clear_buffer_dirty(bh);
2540		}
2541		bh = bh->b_this_page;
2542	} while (bh != head);
2543	SetPageError(page);
2544	BUG_ON(PageWriteback(page));
2545	set_page_writeback(page);
2546	unlock_page(page);
2547	do {
2548		struct buffer_head *next = bh->b_this_page;
2549		if (buffer_async_write(bh)) {
2550			clear_buffer_dirty(bh);
2551			submit_bh(WRITE, bh);
2552			nr++;
2553		}
2554		put_bh(bh);
2555		bh = next;
2556	} while (bh != head);
2557	goto done;
2558}
2559
2560static int reiserfs_readpage(struct file *f, struct page *page)
2561{
2562	return block_read_full_page(page, reiserfs_get_block);
2563}
2564
2565static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2566{
2567	struct inode *inode = page->mapping->host;
2568	reiserfs_wait_on_write_block(inode->i_sb);
2569	return reiserfs_write_full_page(page, wbc);
2570}
2571
2572static void reiserfs_truncate_failed_write(struct inode *inode)
2573{
2574	truncate_inode_pages(inode->i_mapping, inode->i_size);
2575	reiserfs_truncate_file(inode, 0);
2576}
2577
2578static int reiserfs_write_begin(struct file *file,
2579				struct address_space *mapping,
2580				loff_t pos, unsigned len, unsigned flags,
2581				struct page **pagep, void **fsdata)
2582{
2583	struct inode *inode;
2584	struct page *page;
2585	pgoff_t index;
2586	int ret;
2587	int old_ref = 0;
2588
2589 	inode = mapping->host;
2590	*fsdata = 0;
2591 	if (flags & AOP_FLAG_CONT_EXPAND &&
2592 	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2593 		pos ++;
2594		*fsdata = (void *)(unsigned long)flags;
2595	}
2596
2597	index = pos >> PAGE_CACHE_SHIFT;
2598	page = grab_cache_page_write_begin(mapping, index, flags);
2599	if (!page)
2600		return -ENOMEM;
2601	*pagep = page;
2602
2603	reiserfs_wait_on_write_block(inode->i_sb);
2604	fix_tail_page_for_writing(page);
2605	if (reiserfs_transaction_running(inode->i_sb)) {
2606		struct reiserfs_transaction_handle *th;
2607		th = (struct reiserfs_transaction_handle *)current->
2608		    journal_info;
2609		BUG_ON(!th->t_refcount);
2610		BUG_ON(!th->t_trans_id);
2611		old_ref = th->t_refcount;
2612		th->t_refcount++;
2613	}
2614	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2615	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2616		struct reiserfs_transaction_handle *th = current->journal_info;
2617		/* this gets a little ugly.  If reiserfs_get_block returned an
2618		 * error and left a transacstion running, we've got to close it,
2619		 * and we've got to free handle if it was a persistent transaction.
 
 
2620		 *
2621		 * But, if we had nested into an existing transaction, we need
2622		 * to just drop the ref count on the handle.
2623		 *
2624		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2625		 * and it was a persistent trans.  Otherwise, it was nested above.
 
2626		 */
2627		if (th->t_refcount > old_ref) {
2628			if (old_ref)
2629				th->t_refcount--;
2630			else {
2631				int err;
2632				reiserfs_write_lock(inode->i_sb);
2633				err = reiserfs_end_persistent_transaction(th);
2634				reiserfs_write_unlock(inode->i_sb);
2635				if (err)
2636					ret = err;
2637			}
2638		}
2639	}
2640	if (ret) {
2641		unlock_page(page);
2642		page_cache_release(page);
2643		/* Truncate allocated blocks */
2644		reiserfs_truncate_failed_write(inode);
2645	}
2646	return ret;
2647}
2648
2649int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2650{
2651	struct inode *inode = page->mapping->host;
2652	int ret;
2653	int old_ref = 0;
2654	int depth;
2655
2656	depth = reiserfs_write_unlock_nested(inode->i_sb);
2657	reiserfs_wait_on_write_block(inode->i_sb);
2658	reiserfs_write_lock_nested(inode->i_sb, depth);
2659
2660	fix_tail_page_for_writing(page);
2661	if (reiserfs_transaction_running(inode->i_sb)) {
2662		struct reiserfs_transaction_handle *th;
2663		th = (struct reiserfs_transaction_handle *)current->
2664		    journal_info;
2665		BUG_ON(!th->t_refcount);
2666		BUG_ON(!th->t_trans_id);
2667		old_ref = th->t_refcount;
2668		th->t_refcount++;
2669	}
2670
2671	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2672	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2673		struct reiserfs_transaction_handle *th = current->journal_info;
2674		/* this gets a little ugly.  If reiserfs_get_block returned an
2675		 * error and left a transacstion running, we've got to close it,
2676		 * and we've got to free handle if it was a persistent transaction.
 
 
2677		 *
2678		 * But, if we had nested into an existing transaction, we need
2679		 * to just drop the ref count on the handle.
2680		 *
2681		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2682		 * and it was a persistent trans.  Otherwise, it was nested above.
 
2683		 */
2684		if (th->t_refcount > old_ref) {
2685			if (old_ref)
2686				th->t_refcount--;
2687			else {
2688				int err;
2689				reiserfs_write_lock(inode->i_sb);
2690				err = reiserfs_end_persistent_transaction(th);
2691				reiserfs_write_unlock(inode->i_sb);
2692				if (err)
2693					ret = err;
2694			}
2695		}
2696	}
2697	return ret;
2698
2699}
2700
2701static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2702{
2703	return generic_block_bmap(as, block, reiserfs_bmap);
2704}
2705
2706static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2707			      loff_t pos, unsigned len, unsigned copied,
2708			      struct page *page, void *fsdata)
2709{
2710	struct inode *inode = page->mapping->host;
2711	int ret = 0;
2712	int update_sd = 0;
2713	struct reiserfs_transaction_handle *th;
2714	unsigned start;
2715	bool locked = false;
2716
2717	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2718		pos ++;
2719
2720	reiserfs_wait_on_write_block(inode->i_sb);
2721	if (reiserfs_transaction_running(inode->i_sb))
2722		th = current->journal_info;
2723	else
2724		th = NULL;
2725
2726	start = pos & (PAGE_CACHE_SIZE - 1);
2727	if (unlikely(copied < len)) {
2728		if (!PageUptodate(page))
2729			copied = 0;
2730
2731		page_zero_new_buffers(page, start + copied, start + len);
2732	}
2733	flush_dcache_page(page);
2734
2735	reiserfs_commit_page(inode, page, start, start + copied);
2736
2737	/* generic_commit_write does this for us, but does not update the
2738	 ** transaction tracking stuff when the size changes.  So, we have
2739	 ** to do the i_size updates here.
 
2740	 */
2741	if (pos + copied > inode->i_size) {
2742		struct reiserfs_transaction_handle myth;
2743		reiserfs_write_lock(inode->i_sb);
2744		locked = true;
2745		/* If the file have grown beyond the border where it
2746		   can have a tail, unmark it as needing a tail
2747		   packing */
 
 
2748		if ((have_large_tails(inode->i_sb)
2749		     && inode->i_size > i_block_size(inode) * 4)
2750		    || (have_small_tails(inode->i_sb)
2751			&& inode->i_size > i_block_size(inode)))
2752			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2753
2754		ret = journal_begin(&myth, inode->i_sb, 1);
2755		if (ret)
2756			goto journal_error;
2757
2758		reiserfs_update_inode_transaction(inode);
2759		inode->i_size = pos + copied;
2760		/*
2761		 * this will just nest into our transaction.  It's important
2762		 * to use mark_inode_dirty so the inode gets pushed around on the
2763		 * dirty lists, and so that O_SYNC works as expected
2764		 */
2765		mark_inode_dirty(inode);
2766		reiserfs_update_sd(&myth, inode);
2767		update_sd = 1;
2768		ret = journal_end(&myth, inode->i_sb, 1);
2769		if (ret)
2770			goto journal_error;
2771	}
2772	if (th) {
2773		if (!locked) {
2774			reiserfs_write_lock(inode->i_sb);
2775			locked = true;
2776		}
2777		if (!update_sd)
2778			mark_inode_dirty(inode);
2779		ret = reiserfs_end_persistent_transaction(th);
2780		if (ret)
2781			goto out;
2782	}
2783
2784      out:
2785	if (locked)
2786		reiserfs_write_unlock(inode->i_sb);
2787	unlock_page(page);
2788	page_cache_release(page);
2789
2790	if (pos + len > inode->i_size)
2791		reiserfs_truncate_failed_write(inode);
2792
2793	return ret == 0 ? copied : ret;
2794
2795      journal_error:
2796	reiserfs_write_unlock(inode->i_sb);
2797	locked = false;
2798	if (th) {
2799		if (!update_sd)
2800			reiserfs_update_sd(th, inode);
2801		ret = reiserfs_end_persistent_transaction(th);
2802	}
2803	goto out;
2804}
2805
2806int reiserfs_commit_write(struct file *f, struct page *page,
2807			  unsigned from, unsigned to)
2808{
2809	struct inode *inode = page->mapping->host;
2810	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2811	int ret = 0;
2812	int update_sd = 0;
2813	struct reiserfs_transaction_handle *th = NULL;
2814	int depth;
2815
2816	depth = reiserfs_write_unlock_nested(inode->i_sb);
2817	reiserfs_wait_on_write_block(inode->i_sb);
2818	reiserfs_write_lock_nested(inode->i_sb, depth);
2819
2820	if (reiserfs_transaction_running(inode->i_sb)) {
2821		th = current->journal_info;
2822	}
2823	reiserfs_commit_page(inode, page, from, to);
2824
2825	/* generic_commit_write does this for us, but does not update the
2826	 ** transaction tracking stuff when the size changes.  So, we have
2827	 ** to do the i_size updates here.
 
2828	 */
2829	if (pos > inode->i_size) {
2830		struct reiserfs_transaction_handle myth;
2831		/* If the file have grown beyond the border where it
2832		   can have a tail, unmark it as needing a tail
2833		   packing */
 
 
2834		if ((have_large_tails(inode->i_sb)
2835		     && inode->i_size > i_block_size(inode) * 4)
2836		    || (have_small_tails(inode->i_sb)
2837			&& inode->i_size > i_block_size(inode)))
2838			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2839
2840		ret = journal_begin(&myth, inode->i_sb, 1);
2841		if (ret)
2842			goto journal_error;
2843
2844		reiserfs_update_inode_transaction(inode);
2845		inode->i_size = pos;
2846		/*
2847		 * this will just nest into our transaction.  It's important
2848		 * to use mark_inode_dirty so the inode gets pushed around on the
2849		 * dirty lists, and so that O_SYNC works as expected
2850		 */
2851		mark_inode_dirty(inode);
2852		reiserfs_update_sd(&myth, inode);
2853		update_sd = 1;
2854		ret = journal_end(&myth, inode->i_sb, 1);
2855		if (ret)
2856			goto journal_error;
2857	}
2858	if (th) {
2859		if (!update_sd)
2860			mark_inode_dirty(inode);
2861		ret = reiserfs_end_persistent_transaction(th);
2862		if (ret)
2863			goto out;
2864	}
2865
2866      out:
2867	return ret;
2868
2869      journal_error:
2870	if (th) {
2871		if (!update_sd)
2872			reiserfs_update_sd(th, inode);
2873		ret = reiserfs_end_persistent_transaction(th);
2874	}
2875
2876	return ret;
2877}
2878
2879void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2880{
2881	if (reiserfs_attrs(inode->i_sb)) {
2882		if (sd_attrs & REISERFS_SYNC_FL)
2883			inode->i_flags |= S_SYNC;
2884		else
2885			inode->i_flags &= ~S_SYNC;
2886		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2887			inode->i_flags |= S_IMMUTABLE;
2888		else
2889			inode->i_flags &= ~S_IMMUTABLE;
2890		if (sd_attrs & REISERFS_APPEND_FL)
2891			inode->i_flags |= S_APPEND;
2892		else
2893			inode->i_flags &= ~S_APPEND;
2894		if (sd_attrs & REISERFS_NOATIME_FL)
2895			inode->i_flags |= S_NOATIME;
2896		else
2897			inode->i_flags &= ~S_NOATIME;
2898		if (sd_attrs & REISERFS_NOTAIL_FL)
2899			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2900		else
2901			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2902	}
2903}
2904
2905void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2906{
2907	if (reiserfs_attrs(inode->i_sb)) {
2908		if (inode->i_flags & S_IMMUTABLE)
2909			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2910		else
2911			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2912		if (inode->i_flags & S_SYNC)
2913			*sd_attrs |= REISERFS_SYNC_FL;
2914		else
2915			*sd_attrs &= ~REISERFS_SYNC_FL;
2916		if (inode->i_flags & S_NOATIME)
2917			*sd_attrs |= REISERFS_NOATIME_FL;
2918		else
2919			*sd_attrs &= ~REISERFS_NOATIME_FL;
2920		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2921			*sd_attrs |= REISERFS_NOTAIL_FL;
2922		else
2923			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2924	}
2925}
2926
2927/* decide if this buffer needs to stay around for data logging or ordered
2928** write purposes
2929*/
2930static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2931{
2932	int ret = 1;
2933	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2934
2935	lock_buffer(bh);
2936	spin_lock(&j->j_dirty_buffers_lock);
2937	if (!buffer_mapped(bh)) {
2938		goto free_jh;
2939	}
2940	/* the page is locked, and the only places that log a data buffer
 
2941	 * also lock the page.
2942	 */
2943	if (reiserfs_file_data_log(inode)) {
2944		/*
2945		 * very conservative, leave the buffer pinned if
2946		 * anyone might need it.
2947		 */
2948		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2949			ret = 0;
2950		}
2951	} else  if (buffer_dirty(bh)) {
2952		struct reiserfs_journal_list *jl;
2953		struct reiserfs_jh *jh = bh->b_private;
2954
2955		/* why is this safe?
 
2956		 * reiserfs_setattr updates i_size in the on disk
2957		 * stat data before allowing vmtruncate to be called.
2958		 *
2959		 * If buffer was put onto the ordered list for this
2960		 * transaction, we know for sure either this transaction
2961		 * or an older one already has updated i_size on disk,
2962		 * and this ordered data won't be referenced in the file
2963		 * if we crash.
2964		 *
2965		 * if the buffer was put onto the ordered list for an older
2966		 * transaction, we need to leave it around
2967		 */
2968		if (jh && (jl = jh->jl)
2969		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2970			ret = 0;
2971	}
2972      free_jh:
2973	if (ret && bh->b_private) {
2974		reiserfs_free_jh(bh);
2975	}
2976	spin_unlock(&j->j_dirty_buffers_lock);
2977	unlock_buffer(bh);
2978	return ret;
2979}
2980
2981/* clm -- taken from fs/buffer.c:block_invalidate_page */
2982static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
2983				    unsigned int length)
2984{
2985	struct buffer_head *head, *bh, *next;
2986	struct inode *inode = page->mapping->host;
2987	unsigned int curr_off = 0;
2988	unsigned int stop = offset + length;
2989	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2990	int ret = 1;
2991
2992	BUG_ON(!PageLocked(page));
2993
2994	if (!partial_page)
2995		ClearPageChecked(page);
2996
2997	if (!page_has_buffers(page))
 
2998		goto out;
2999
3000	head = page_buffers(page);
3001	bh = head;
3002	do {
3003		unsigned int next_off = curr_off + bh->b_size;
3004		next = bh->b_this_page;
3005
3006		if (next_off > stop)
3007			goto out;
3008
3009		/*
3010		 * is this block fully invalidated?
3011		 */
3012		if (offset <= curr_off) {
3013			if (invalidatepage_can_drop(inode, bh))
3014				reiserfs_unmap_buffer(bh);
3015			else
3016				ret = 0;
3017		}
3018		curr_off = next_off;
3019		bh = next;
3020	} while (bh != head);
3021
3022	/*
3023	 * We release buffers only if the entire page is being invalidated.
3024	 * The get_block cached value has been unconditionally invalidated,
3025	 * so real IO is not possible anymore.
3026	 */
3027	if (!partial_page && ret) {
3028		ret = try_to_release_page(page, 0);
3029		/* maybe should BUG_ON(!ret); - neilb */
3030	}
3031      out:
3032	return;
3033}
3034
3035static int reiserfs_set_page_dirty(struct page *page)
 
3036{
3037	struct inode *inode = page->mapping->host;
3038	if (reiserfs_file_data_log(inode)) {
3039		SetPageChecked(page);
3040		return __set_page_dirty_nobuffers(page);
3041	}
3042	return __set_page_dirty_buffers(page);
3043}
3044
3045/*
3046 * Returns 1 if the page's buffers were dropped.  The page is locked.
3047 *
3048 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3049 * in the buffers at page_buffers(page).
3050 *
3051 * even in -o notail mode, we can't be sure an old mount without -o notail
3052 * didn't create files with tails.
3053 */
3054static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3055{
3056	struct inode *inode = page->mapping->host;
3057	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3058	struct buffer_head *head;
3059	struct buffer_head *bh;
3060	int ret = 1;
3061
3062	WARN_ON(PageChecked(page));
3063	spin_lock(&j->j_dirty_buffers_lock);
3064	head = page_buffers(page);
3065	bh = head;
3066	do {
3067		if (bh->b_private) {
3068			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3069				reiserfs_free_jh(bh);
3070			} else {
3071				ret = 0;
3072				break;
3073			}
3074		}
3075		bh = bh->b_this_page;
3076	} while (bh != head);
3077	if (ret)
3078		ret = try_to_free_buffers(page);
3079	spin_unlock(&j->j_dirty_buffers_lock);
3080	return ret;
3081}
3082
3083/* We thank Mingming Cao for helping us understand in great detail what
3084   to do in this section of the code. */
3085static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3086				  const struct iovec *iov, loff_t offset,
3087				  unsigned long nr_segs)
3088{
3089	struct file *file = iocb->ki_filp;
3090	struct inode *inode = file->f_mapping->host;
 
3091	ssize_t ret;
3092
3093	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3094				  reiserfs_get_blocks_direct_io);
3095
3096	/*
3097	 * In case of error extending write may have instantiated a few
3098	 * blocks outside i_size. Trim these off again.
3099	 */
3100	if (unlikely((rw & WRITE) && ret < 0)) {
3101		loff_t isize = i_size_read(inode);
3102		loff_t end = offset + iov_length(iov, nr_segs);
3103
3104		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3105			truncate_setsize(inode, isize);
3106			reiserfs_vfs_truncate_file(inode);
3107		}
3108	}
3109
3110	return ret;
3111}
3112
3113int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
 
3114{
3115	struct inode *inode = dentry->d_inode;
3116	unsigned int ia_valid;
3117	int error;
3118
3119	error = inode_change_ok(inode, attr);
3120	if (error)
3121		return error;
3122
3123	/* must be turned off for recursive notify_change calls */
3124	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3125
3126	if (is_quota_modification(inode, attr))
3127		dquot_initialize(inode);
 
 
 
3128	reiserfs_write_lock(inode->i_sb);
3129	if (attr->ia_valid & ATTR_SIZE) {
3130		/* version 2 items will be caught by the s_maxbytes check
3131		 ** done for us in vmtruncate
 
3132		 */
3133		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3134		    attr->ia_size > MAX_NON_LFS) {
3135			reiserfs_write_unlock(inode->i_sb);
3136			error = -EFBIG;
3137			goto out;
3138		}
3139
3140		inode_dio_wait(inode);
3141
3142		/* fill in hole pointers in the expanding truncate case. */
3143		if (attr->ia_size > inode->i_size) {
3144			error = generic_cont_expand_simple(inode, attr->ia_size);
 
 
 
 
3145			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3146				int err;
3147				struct reiserfs_transaction_handle th;
3148				/* we're changing at most 2 bitmaps, inode + super */
3149				err = journal_begin(&th, inode->i_sb, 4);
3150				if (!err) {
3151					reiserfs_discard_prealloc(&th, inode);
3152					err = journal_end(&th, inode->i_sb, 4);
3153				}
3154				if (err)
3155					error = err;
3156			}
3157			if (error) {
3158				reiserfs_write_unlock(inode->i_sb);
3159				goto out;
3160			}
3161			/*
3162			 * file size is changed, ctime and mtime are
3163			 * to be updated
3164			 */
3165			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3166		}
3167	}
3168	reiserfs_write_unlock(inode->i_sb);
3169
3170	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3171	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3172	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3173		/* stat data of format v3.5 has 16 bit uid and gid */
3174		error = -EINVAL;
3175		goto out;
3176	}
3177
3178	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3179	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3180		struct reiserfs_transaction_handle th;
3181		int jbegin_count =
3182		    2 *
3183		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3184		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3185		    2;
3186
3187		error = reiserfs_chown_xattrs(inode, attr);
3188
3189		if (error)
3190			return error;
3191
3192		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
 
 
 
3193		reiserfs_write_lock(inode->i_sb);
3194		error = journal_begin(&th, inode->i_sb, jbegin_count);
3195		reiserfs_write_unlock(inode->i_sb);
3196		if (error)
3197			goto out;
3198		error = dquot_transfer(inode, attr);
3199		reiserfs_write_lock(inode->i_sb);
3200		if (error) {
3201			journal_end(&th, inode->i_sb, jbegin_count);
3202			reiserfs_write_unlock(inode->i_sb);
3203			goto out;
3204		}
3205
3206		/* Update corresponding info in inode so that everything is in
3207		 * one transaction */
 
 
3208		if (attr->ia_valid & ATTR_UID)
3209			inode->i_uid = attr->ia_uid;
3210		if (attr->ia_valid & ATTR_GID)
3211			inode->i_gid = attr->ia_gid;
3212		mark_inode_dirty(inode);
3213		error = journal_end(&th, inode->i_sb, jbegin_count);
3214		reiserfs_write_unlock(inode->i_sb);
3215		if (error)
3216			goto out;
3217	}
3218
3219	if ((attr->ia_valid & ATTR_SIZE) &&
3220	    attr->ia_size != i_size_read(inode)) {
3221		error = inode_newsize_ok(inode, attr->ia_size);
3222		if (!error) {
 
 
 
 
 
3223			truncate_setsize(inode, attr->ia_size);
3224			reiserfs_vfs_truncate_file(inode);
 
3225		}
3226	}
3227
3228	if (!error) {
3229		setattr_copy(inode, attr);
3230		mark_inode_dirty(inode);
3231	}
3232
3233	if (!error && reiserfs_posixacl(inode->i_sb)) {
3234		if (attr->ia_valid & ATTR_MODE)
3235			error = reiserfs_acl_chmod(inode);
3236	}
3237
3238out:
3239	return error;
3240}
3241
3242const struct address_space_operations reiserfs_address_space_operations = {
3243	.writepage = reiserfs_writepage,
3244	.readpage = reiserfs_readpage,
3245	.readpages = reiserfs_readpages,
3246	.releasepage = reiserfs_releasepage,
3247	.invalidatepage = reiserfs_invalidatepage,
3248	.write_begin = reiserfs_write_begin,
3249	.write_end = reiserfs_write_end,
3250	.bmap = reiserfs_aop_bmap,
3251	.direct_IO = reiserfs_direct_IO,
3252	.set_page_dirty = reiserfs_set_page_dirty,
3253};