Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/kstrtox.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/string.h>
  21#include <linux/kdev_t.h>
  22#include <linux/notifier.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/blkdev.h>
  26#include <linux/mutex.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/netdevice.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/mm.h>
  31#include <linux/swiotlb.h>
  32#include <linux/sysfs.h>
  33#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  34
  35#include "base.h"
  36#include "physical_location.h"
  37#include "power/power.h"
  38
  39#ifdef CONFIG_SYSFS_DEPRECATED
  40#ifdef CONFIG_SYSFS_DEPRECATED_V2
  41long sysfs_deprecated = 1;
  42#else
  43long sysfs_deprecated = 0;
  44#endif
  45static int __init sysfs_deprecated_setup(char *arg)
  46{
  47	return kstrtol(arg, 10, &sysfs_deprecated);
  48}
  49early_param("sysfs.deprecated", sysfs_deprecated_setup);
  50#endif
  51
  52/* Device links support. */
 
 
  53static LIST_HEAD(deferred_sync);
  54static unsigned int defer_sync_state_count = 1;
  55static DEFINE_MUTEX(fwnode_link_lock);
 
 
  56static bool fw_devlink_is_permissive(void);
  57static bool fw_devlink_drv_reg_done;
  58static bool fw_devlink_best_effort;
  59
  60/**
  61 * fwnode_link_add - Create a link between two fwnode_handles.
  62 * @con: Consumer end of the link.
  63 * @sup: Supplier end of the link.
  64 *
  65 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  66 * represents the detail that the firmware lists @sup fwnode as supplying a
  67 * resource to @con.
  68 *
  69 * The driver core will use the fwnode link to create a device link between the
  70 * two device objects corresponding to @con and @sup when they are created. The
  71 * driver core will automatically delete the fwnode link between @con and @sup
  72 * after doing that.
  73 *
  74 * Attempts to create duplicate links between the same pair of fwnode handles
  75 * are ignored and there is no reference counting.
  76 */
  77int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
  78{
  79	struct fwnode_link *link;
  80	int ret = 0;
  81
  82	mutex_lock(&fwnode_link_lock);
  83
  84	list_for_each_entry(link, &sup->consumers, s_hook)
  85		if (link->consumer == con)
  86			goto out;
  87
  88	link = kzalloc(sizeof(*link), GFP_KERNEL);
  89	if (!link) {
  90		ret = -ENOMEM;
  91		goto out;
  92	}
  93
  94	link->supplier = sup;
  95	INIT_LIST_HEAD(&link->s_hook);
  96	link->consumer = con;
  97	INIT_LIST_HEAD(&link->c_hook);
  98
  99	list_add(&link->s_hook, &sup->consumers);
 100	list_add(&link->c_hook, &con->suppliers);
 101	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
 102		 con, sup);
 103out:
 104	mutex_unlock(&fwnode_link_lock);
 105
 106	return ret;
 107}
 108
 109/**
 110 * __fwnode_link_del - Delete a link between two fwnode_handles.
 111 * @link: the fwnode_link to be deleted
 112 *
 113 * The fwnode_link_lock needs to be held when this function is called.
 114 */
 115static void __fwnode_link_del(struct fwnode_link *link)
 116{
 117	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
 118		 link->consumer, link->supplier);
 119	list_del(&link->s_hook);
 120	list_del(&link->c_hook);
 121	kfree(link);
 122}
 123
 124/**
 125 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 126 * @fwnode: fwnode whose supplier links need to be deleted
 127 *
 128 * Deletes all supplier links connecting directly to @fwnode.
 129 */
 130static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 131{
 132	struct fwnode_link *link, *tmp;
 133
 134	mutex_lock(&fwnode_link_lock);
 135	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
 136		__fwnode_link_del(link);
 137	mutex_unlock(&fwnode_link_lock);
 138}
 139
 140/**
 141 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 142 * @fwnode: fwnode whose consumer links need to be deleted
 143 *
 144 * Deletes all consumer links connecting directly to @fwnode.
 145 */
 146static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 147{
 148	struct fwnode_link *link, *tmp;
 149
 150	mutex_lock(&fwnode_link_lock);
 151	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
 152		__fwnode_link_del(link);
 153	mutex_unlock(&fwnode_link_lock);
 154}
 155
 156/**
 157 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 158 * @fwnode: fwnode whose links needs to be deleted
 159 *
 160 * Deletes all links connecting directly to a fwnode.
 161 */
 162void fwnode_links_purge(struct fwnode_handle *fwnode)
 163{
 164	fwnode_links_purge_suppliers(fwnode);
 165	fwnode_links_purge_consumers(fwnode);
 166}
 167
 168void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 169{
 170	struct fwnode_handle *child;
 171
 172	/* Don't purge consumer links of an added child */
 173	if (fwnode->dev)
 174		return;
 175
 176	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 177	fwnode_links_purge_consumers(fwnode);
 178
 179	fwnode_for_each_available_child_node(fwnode, child)
 180		fw_devlink_purge_absent_suppliers(child);
 181}
 182EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 183
 184#ifdef CONFIG_SRCU
 185static DEFINE_MUTEX(device_links_lock);
 186DEFINE_STATIC_SRCU(device_links_srcu);
 187
 188static inline void device_links_write_lock(void)
 189{
 190	mutex_lock(&device_links_lock);
 191}
 192
 193static inline void device_links_write_unlock(void)
 194{
 195	mutex_unlock(&device_links_lock);
 196}
 197
 198int device_links_read_lock(void) __acquires(&device_links_srcu)
 199{
 200	return srcu_read_lock(&device_links_srcu);
 201}
 202
 203void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 204{
 205	srcu_read_unlock(&device_links_srcu, idx);
 206}
 207
 208int device_links_read_lock_held(void)
 209{
 210	return srcu_read_lock_held(&device_links_srcu);
 211}
 212
 213static void device_link_synchronize_removal(void)
 214{
 215	synchronize_srcu(&device_links_srcu);
 216}
 217
 218static void device_link_remove_from_lists(struct device_link *link)
 219{
 220	list_del_rcu(&link->s_node);
 221	list_del_rcu(&link->c_node);
 222}
 223#else /* !CONFIG_SRCU */
 224static DECLARE_RWSEM(device_links_lock);
 225
 226static inline void device_links_write_lock(void)
 227{
 228	down_write(&device_links_lock);
 229}
 230
 231static inline void device_links_write_unlock(void)
 232{
 233	up_write(&device_links_lock);
 234}
 235
 236int device_links_read_lock(void)
 237{
 238	down_read(&device_links_lock);
 239	return 0;
 240}
 241
 242void device_links_read_unlock(int not_used)
 243{
 244	up_read(&device_links_lock);
 245}
 246
 247#ifdef CONFIG_DEBUG_LOCK_ALLOC
 248int device_links_read_lock_held(void)
 249{
 250	return lockdep_is_held(&device_links_lock);
 251}
 252#endif
 253
 254static inline void device_link_synchronize_removal(void)
 255{
 256}
 257
 258static void device_link_remove_from_lists(struct device_link *link)
 259{
 260	list_del(&link->s_node);
 261	list_del(&link->c_node);
 262}
 263#endif /* !CONFIG_SRCU */
 264
 265static bool device_is_ancestor(struct device *dev, struct device *target)
 266{
 267	while (target->parent) {
 268		target = target->parent;
 269		if (dev == target)
 270			return true;
 271	}
 272	return false;
 273}
 274
 275/**
 276 * device_is_dependent - Check if one device depends on another one
 277 * @dev: Device to check dependencies for.
 278 * @target: Device to check against.
 279 *
 280 * Check if @target depends on @dev or any device dependent on it (its child or
 281 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 282 */
 283int device_is_dependent(struct device *dev, void *target)
 284{
 285	struct device_link *link;
 286	int ret;
 287
 288	/*
 289	 * The "ancestors" check is needed to catch the case when the target
 290	 * device has not been completely initialized yet and it is still
 291	 * missing from the list of children of its parent device.
 292	 */
 293	if (dev == target || device_is_ancestor(dev, target))
 294		return 1;
 295
 296	ret = device_for_each_child(dev, target, device_is_dependent);
 297	if (ret)
 298		return ret;
 299
 300	list_for_each_entry(link, &dev->links.consumers, s_node) {
 301		if ((link->flags & ~DL_FLAG_INFERRED) ==
 302		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 303			continue;
 304
 305		if (link->consumer == target)
 306			return 1;
 307
 308		ret = device_is_dependent(link->consumer, target);
 309		if (ret)
 310			break;
 311	}
 312	return ret;
 313}
 314
 315static void device_link_init_status(struct device_link *link,
 316				    struct device *consumer,
 317				    struct device *supplier)
 318{
 319	switch (supplier->links.status) {
 320	case DL_DEV_PROBING:
 321		switch (consumer->links.status) {
 322		case DL_DEV_PROBING:
 323			/*
 324			 * A consumer driver can create a link to a supplier
 325			 * that has not completed its probing yet as long as it
 326			 * knows that the supplier is already functional (for
 327			 * example, it has just acquired some resources from the
 328			 * supplier).
 329			 */
 330			link->status = DL_STATE_CONSUMER_PROBE;
 331			break;
 332		default:
 333			link->status = DL_STATE_DORMANT;
 334			break;
 335		}
 336		break;
 337	case DL_DEV_DRIVER_BOUND:
 338		switch (consumer->links.status) {
 339		case DL_DEV_PROBING:
 340			link->status = DL_STATE_CONSUMER_PROBE;
 341			break;
 342		case DL_DEV_DRIVER_BOUND:
 343			link->status = DL_STATE_ACTIVE;
 344			break;
 345		default:
 346			link->status = DL_STATE_AVAILABLE;
 347			break;
 348		}
 349		break;
 350	case DL_DEV_UNBINDING:
 351		link->status = DL_STATE_SUPPLIER_UNBIND;
 352		break;
 353	default:
 354		link->status = DL_STATE_DORMANT;
 355		break;
 356	}
 357}
 358
 359static int device_reorder_to_tail(struct device *dev, void *not_used)
 360{
 361	struct device_link *link;
 362
 363	/*
 364	 * Devices that have not been registered yet will be put to the ends
 365	 * of the lists during the registration, so skip them here.
 366	 */
 367	if (device_is_registered(dev))
 368		devices_kset_move_last(dev);
 369
 370	if (device_pm_initialized(dev))
 371		device_pm_move_last(dev);
 372
 373	device_for_each_child(dev, NULL, device_reorder_to_tail);
 374	list_for_each_entry(link, &dev->links.consumers, s_node) {
 375		if ((link->flags & ~DL_FLAG_INFERRED) ==
 376		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 377			continue;
 378		device_reorder_to_tail(link->consumer, NULL);
 379	}
 380
 381	return 0;
 382}
 383
 384/**
 385 * device_pm_move_to_tail - Move set of devices to the end of device lists
 386 * @dev: Device to move
 387 *
 388 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 389 *
 390 * It moves the @dev along with all of its children and all of its consumers
 391 * to the ends of the device_kset and dpm_list, recursively.
 392 */
 393void device_pm_move_to_tail(struct device *dev)
 394{
 395	int idx;
 396
 397	idx = device_links_read_lock();
 398	device_pm_lock();
 399	device_reorder_to_tail(dev, NULL);
 400	device_pm_unlock();
 401	device_links_read_unlock(idx);
 402}
 403
 404#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 405
 406static ssize_t status_show(struct device *dev,
 407			   struct device_attribute *attr, char *buf)
 408{
 409	const char *output;
 410
 411	switch (to_devlink(dev)->status) {
 412	case DL_STATE_NONE:
 413		output = "not tracked";
 414		break;
 415	case DL_STATE_DORMANT:
 416		output = "dormant";
 417		break;
 418	case DL_STATE_AVAILABLE:
 419		output = "available";
 420		break;
 421	case DL_STATE_CONSUMER_PROBE:
 422		output = "consumer probing";
 423		break;
 424	case DL_STATE_ACTIVE:
 425		output = "active";
 426		break;
 427	case DL_STATE_SUPPLIER_UNBIND:
 428		output = "supplier unbinding";
 429		break;
 430	default:
 431		output = "unknown";
 432		break;
 433	}
 434
 435	return sysfs_emit(buf, "%s\n", output);
 436}
 437static DEVICE_ATTR_RO(status);
 438
 439static ssize_t auto_remove_on_show(struct device *dev,
 440				   struct device_attribute *attr, char *buf)
 441{
 442	struct device_link *link = to_devlink(dev);
 443	const char *output;
 444
 445	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 446		output = "supplier unbind";
 447	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 448		output = "consumer unbind";
 449	else
 450		output = "never";
 451
 452	return sysfs_emit(buf, "%s\n", output);
 453}
 454static DEVICE_ATTR_RO(auto_remove_on);
 455
 456static ssize_t runtime_pm_show(struct device *dev,
 457			       struct device_attribute *attr, char *buf)
 458{
 459	struct device_link *link = to_devlink(dev);
 460
 461	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 462}
 463static DEVICE_ATTR_RO(runtime_pm);
 464
 465static ssize_t sync_state_only_show(struct device *dev,
 466				    struct device_attribute *attr, char *buf)
 467{
 468	struct device_link *link = to_devlink(dev);
 469
 470	return sysfs_emit(buf, "%d\n",
 471			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 472}
 473static DEVICE_ATTR_RO(sync_state_only);
 474
 475static struct attribute *devlink_attrs[] = {
 476	&dev_attr_status.attr,
 477	&dev_attr_auto_remove_on.attr,
 478	&dev_attr_runtime_pm.attr,
 479	&dev_attr_sync_state_only.attr,
 480	NULL,
 481};
 482ATTRIBUTE_GROUPS(devlink);
 483
 484static void device_link_release_fn(struct work_struct *work)
 485{
 486	struct device_link *link = container_of(work, struct device_link, rm_work);
 487
 488	/* Ensure that all references to the link object have been dropped. */
 489	device_link_synchronize_removal();
 490
 491	pm_runtime_release_supplier(link);
 492	/*
 493	 * If supplier_preactivated is set, the link has been dropped between
 494	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
 495	 * in __driver_probe_device().  In that case, drop the supplier's
 496	 * PM-runtime usage counter to remove the reference taken by
 497	 * pm_runtime_get_suppliers().
 498	 */
 499	if (link->supplier_preactivated)
 500		pm_runtime_put_noidle(link->supplier);
 501
 502	pm_request_idle(link->supplier);
 503
 504	put_device(link->consumer);
 505	put_device(link->supplier);
 506	kfree(link);
 507}
 508
 
 
 
 
 
 
 509static void devlink_dev_release(struct device *dev)
 510{
 511	struct device_link *link = to_devlink(dev);
 512
 513	INIT_WORK(&link->rm_work, device_link_release_fn);
 514	/*
 515	 * It may take a while to complete this work because of the SRCU
 516	 * synchronization in device_link_release_fn() and if the consumer or
 517	 * supplier devices get deleted when it runs, so put it into the "long"
 518	 * workqueue.
 519	 */
 520	queue_work(system_long_wq, &link->rm_work);
 521}
 
 522
 523static struct class devlink_class = {
 524	.name = "devlink",
 525	.owner = THIS_MODULE,
 526	.dev_groups = devlink_groups,
 527	.dev_release = devlink_dev_release,
 528};
 529
 530static int devlink_add_symlinks(struct device *dev,
 531				struct class_interface *class_intf)
 532{
 533	int ret;
 534	size_t len;
 535	struct device_link *link = to_devlink(dev);
 536	struct device *sup = link->supplier;
 537	struct device *con = link->consumer;
 538	char *buf;
 539
 540	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 541		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 542	len += strlen(":");
 543	len += strlen("supplier:") + 1;
 544	buf = kzalloc(len, GFP_KERNEL);
 545	if (!buf)
 546		return -ENOMEM;
 547
 548	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 549	if (ret)
 550		goto out;
 551
 552	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 553	if (ret)
 554		goto err_con;
 555
 556	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 557	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 558	if (ret)
 559		goto err_con_dev;
 560
 561	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 562	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 563	if (ret)
 564		goto err_sup_dev;
 565
 566	goto out;
 567
 568err_sup_dev:
 569	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 570	sysfs_remove_link(&sup->kobj, buf);
 571err_con_dev:
 572	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 573err_con:
 574	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 575out:
 576	kfree(buf);
 577	return ret;
 578}
 579
 580static void devlink_remove_symlinks(struct device *dev,
 581				   struct class_interface *class_intf)
 582{
 583	struct device_link *link = to_devlink(dev);
 584	size_t len;
 585	struct device *sup = link->supplier;
 586	struct device *con = link->consumer;
 587	char *buf;
 588
 589	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 590	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 591
 592	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 593		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 594	len += strlen(":");
 595	len += strlen("supplier:") + 1;
 596	buf = kzalloc(len, GFP_KERNEL);
 597	if (!buf) {
 598		WARN(1, "Unable to properly free device link symlinks!\n");
 599		return;
 600	}
 601
 602	if (device_is_registered(con)) {
 603		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 604		sysfs_remove_link(&con->kobj, buf);
 605	}
 606	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 607	sysfs_remove_link(&sup->kobj, buf);
 608	kfree(buf);
 609}
 610
 611static struct class_interface devlink_class_intf = {
 612	.class = &devlink_class,
 613	.add_dev = devlink_add_symlinks,
 614	.remove_dev = devlink_remove_symlinks,
 615};
 616
 617static int __init devlink_class_init(void)
 618{
 619	int ret;
 620
 621	ret = class_register(&devlink_class);
 622	if (ret)
 623		return ret;
 624
 625	ret = class_interface_register(&devlink_class_intf);
 626	if (ret)
 627		class_unregister(&devlink_class);
 628
 629	return ret;
 630}
 631postcore_initcall(devlink_class_init);
 632
 633#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 634			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 635			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 636			       DL_FLAG_SYNC_STATE_ONLY | \
 637			       DL_FLAG_INFERRED)
 638
 639#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 640			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 641
 642/**
 643 * device_link_add - Create a link between two devices.
 644 * @consumer: Consumer end of the link.
 645 * @supplier: Supplier end of the link.
 646 * @flags: Link flags.
 647 *
 648 * The caller is responsible for the proper synchronization of the link creation
 649 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 650 * runtime PM framework to take the link into account.  Second, if the
 651 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 652 * be forced into the active meta state and reference-counted upon the creation
 653 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 654 * ignored.
 655 *
 656 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 657 * expected to release the link returned by it directly with the help of either
 658 * device_link_del() or device_link_remove().
 659 *
 660 * If that flag is not set, however, the caller of this function is handing the
 661 * management of the link over to the driver core entirely and its return value
 662 * can only be used to check whether or not the link is present.  In that case,
 663 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 664 * flags can be used to indicate to the driver core when the link can be safely
 665 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 666 * that the link is not going to be used (by the given caller of this function)
 667 * after unbinding the consumer or supplier driver, respectively, from its
 668 * device, so the link can be deleted at that point.  If none of them is set,
 669 * the link will be maintained until one of the devices pointed to by it (either
 670 * the consumer or the supplier) is unregistered.
 671 *
 672 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 673 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 674 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 675 * be used to request the driver core to automatically probe for a consumer
 676 * driver after successfully binding a driver to the supplier device.
 677 *
 678 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 679 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 680 * the same time is invalid and will cause NULL to be returned upfront.
 681 * However, if a device link between the given @consumer and @supplier pair
 682 * exists already when this function is called for them, the existing link will
 683 * be returned regardless of its current type and status (the link's flags may
 684 * be modified then).  The caller of this function is then expected to treat
 685 * the link as though it has just been created, so (in particular) if
 686 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 687 * explicitly when not needed any more (as stated above).
 688 *
 689 * A side effect of the link creation is re-ordering of dpm_list and the
 690 * devices_kset list by moving the consumer device and all devices depending
 691 * on it to the ends of these lists (that does not happen to devices that have
 692 * not been registered when this function is called).
 693 *
 694 * The supplier device is required to be registered when this function is called
 695 * and NULL will be returned if that is not the case.  The consumer device need
 696 * not be registered, however.
 697 */
 698struct device_link *device_link_add(struct device *consumer,
 699				    struct device *supplier, u32 flags)
 700{
 701	struct device_link *link;
 702
 703	if (!consumer || !supplier || consumer == supplier ||
 704	    flags & ~DL_ADD_VALID_FLAGS ||
 705	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 706	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 707	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
 708	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 709	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 710		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 711		return NULL;
 712
 713	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 714		if (pm_runtime_get_sync(supplier) < 0) {
 715			pm_runtime_put_noidle(supplier);
 716			return NULL;
 717		}
 718	}
 719
 720	if (!(flags & DL_FLAG_STATELESS))
 721		flags |= DL_FLAG_MANAGED;
 722
 723	device_links_write_lock();
 724	device_pm_lock();
 725
 726	/*
 727	 * If the supplier has not been fully registered yet or there is a
 728	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 729	 * the supplier already in the graph, return NULL. If the link is a
 730	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 731	 * because it only affects sync_state() callbacks.
 732	 */
 733	if (!device_pm_initialized(supplier)
 734	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 735		  device_is_dependent(consumer, supplier))) {
 736		link = NULL;
 737		goto out;
 738	}
 739
 740	/*
 741	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 742	 * So, only create it if the consumer hasn't probed yet.
 743	 */
 744	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 745	    consumer->links.status != DL_DEV_NO_DRIVER &&
 746	    consumer->links.status != DL_DEV_PROBING) {
 747		link = NULL;
 748		goto out;
 749	}
 750
 751	/*
 752	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 753	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 754	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 755	 */
 756	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 757		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 758
 759	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 760		if (link->consumer != consumer)
 761			continue;
 762
 763		if (link->flags & DL_FLAG_INFERRED &&
 764		    !(flags & DL_FLAG_INFERRED))
 765			link->flags &= ~DL_FLAG_INFERRED;
 766
 767		if (flags & DL_FLAG_PM_RUNTIME) {
 768			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 769				pm_runtime_new_link(consumer);
 770				link->flags |= DL_FLAG_PM_RUNTIME;
 771			}
 772			if (flags & DL_FLAG_RPM_ACTIVE)
 773				refcount_inc(&link->rpm_active);
 774		}
 775
 776		if (flags & DL_FLAG_STATELESS) {
 777			kref_get(&link->kref);
 778			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 779			    !(link->flags & DL_FLAG_STATELESS)) {
 780				link->flags |= DL_FLAG_STATELESS;
 781				goto reorder;
 782			} else {
 783				link->flags |= DL_FLAG_STATELESS;
 784				goto out;
 785			}
 786		}
 787
 788		/*
 789		 * If the life time of the link following from the new flags is
 790		 * longer than indicated by the flags of the existing link,
 791		 * update the existing link to stay around longer.
 792		 */
 793		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 794			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 795				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 796				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 797			}
 798		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 799			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 800					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 801		}
 802		if (!(link->flags & DL_FLAG_MANAGED)) {
 803			kref_get(&link->kref);
 804			link->flags |= DL_FLAG_MANAGED;
 805			device_link_init_status(link, consumer, supplier);
 806		}
 807		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 808		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 809			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 810			goto reorder;
 811		}
 812
 813		goto out;
 814	}
 815
 816	link = kzalloc(sizeof(*link), GFP_KERNEL);
 817	if (!link)
 818		goto out;
 819
 820	refcount_set(&link->rpm_active, 1);
 821
 822	get_device(supplier);
 823	link->supplier = supplier;
 824	INIT_LIST_HEAD(&link->s_node);
 825	get_device(consumer);
 826	link->consumer = consumer;
 827	INIT_LIST_HEAD(&link->c_node);
 828	link->flags = flags;
 829	kref_init(&link->kref);
 830
 831	link->link_dev.class = &devlink_class;
 832	device_set_pm_not_required(&link->link_dev);
 833	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 834		     dev_bus_name(supplier), dev_name(supplier),
 835		     dev_bus_name(consumer), dev_name(consumer));
 836	if (device_register(&link->link_dev)) {
 837		put_device(&link->link_dev);
 
 
 838		link = NULL;
 839		goto out;
 840	}
 841
 842	if (flags & DL_FLAG_PM_RUNTIME) {
 843		if (flags & DL_FLAG_RPM_ACTIVE)
 844			refcount_inc(&link->rpm_active);
 845
 846		pm_runtime_new_link(consumer);
 847	}
 848
 849	/* Determine the initial link state. */
 850	if (flags & DL_FLAG_STATELESS)
 851		link->status = DL_STATE_NONE;
 852	else
 853		device_link_init_status(link, consumer, supplier);
 854
 855	/*
 856	 * Some callers expect the link creation during consumer driver probe to
 857	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 858	 */
 859	if (link->status == DL_STATE_CONSUMER_PROBE &&
 860	    flags & DL_FLAG_PM_RUNTIME)
 861		pm_runtime_resume(supplier);
 862
 863	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 864	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 865
 866	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 867		dev_dbg(consumer,
 868			"Linked as a sync state only consumer to %s\n",
 869			dev_name(supplier));
 870		goto out;
 871	}
 872
 873reorder:
 874	/*
 875	 * Move the consumer and all of the devices depending on it to the end
 876	 * of dpm_list and the devices_kset list.
 877	 *
 878	 * It is necessary to hold dpm_list locked throughout all that or else
 879	 * we may end up suspending with a wrong ordering of it.
 880	 */
 881	device_reorder_to_tail(consumer, NULL);
 882
 883	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 884
 885out:
 886	device_pm_unlock();
 887	device_links_write_unlock();
 888
 889	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 890		pm_runtime_put(supplier);
 891
 892	return link;
 893}
 894EXPORT_SYMBOL_GPL(device_link_add);
 895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896static void __device_link_del(struct kref *kref)
 897{
 898	struct device_link *link = container_of(kref, struct device_link, kref);
 899
 900	dev_dbg(link->consumer, "Dropping the link to %s\n",
 901		dev_name(link->supplier));
 902
 903	pm_runtime_drop_link(link);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904
 905	device_link_remove_from_lists(link);
 
 906	device_unregister(&link->link_dev);
 907}
 
 908
 909static void device_link_put_kref(struct device_link *link)
 910{
 911	if (link->flags & DL_FLAG_STATELESS)
 912		kref_put(&link->kref, __device_link_del);
 913	else if (!device_is_registered(link->consumer))
 914		__device_link_del(&link->kref);
 915	else
 916		WARN(1, "Unable to drop a managed device link reference\n");
 917}
 918
 919/**
 920 * device_link_del - Delete a stateless link between two devices.
 921 * @link: Device link to delete.
 922 *
 923 * The caller must ensure proper synchronization of this function with runtime
 924 * PM.  If the link was added multiple times, it needs to be deleted as often.
 925 * Care is required for hotplugged devices:  Their links are purged on removal
 926 * and calling device_link_del() is then no longer allowed.
 927 */
 928void device_link_del(struct device_link *link)
 929{
 930	device_links_write_lock();
 931	device_link_put_kref(link);
 932	device_links_write_unlock();
 933}
 934EXPORT_SYMBOL_GPL(device_link_del);
 935
 936/**
 937 * device_link_remove - Delete a stateless link between two devices.
 938 * @consumer: Consumer end of the link.
 939 * @supplier: Supplier end of the link.
 940 *
 941 * The caller must ensure proper synchronization of this function with runtime
 942 * PM.
 943 */
 944void device_link_remove(void *consumer, struct device *supplier)
 945{
 946	struct device_link *link;
 947
 948	if (WARN_ON(consumer == supplier))
 949		return;
 950
 951	device_links_write_lock();
 952
 953	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 954		if (link->consumer == consumer) {
 955			device_link_put_kref(link);
 956			break;
 957		}
 958	}
 959
 960	device_links_write_unlock();
 961}
 962EXPORT_SYMBOL_GPL(device_link_remove);
 963
 964static void device_links_missing_supplier(struct device *dev)
 965{
 966	struct device_link *link;
 967
 968	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 969		if (link->status != DL_STATE_CONSUMER_PROBE)
 970			continue;
 971
 972		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 973			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 974		} else {
 975			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 976			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 977		}
 978	}
 979}
 980
 981static bool dev_is_best_effort(struct device *dev)
 982{
 983	return (fw_devlink_best_effort && dev->can_match) ||
 984		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
 985}
 986
 987/**
 988 * device_links_check_suppliers - Check presence of supplier drivers.
 989 * @dev: Consumer device.
 990 *
 991 * Check links from this device to any suppliers.  Walk the list of the device's
 992 * links to suppliers and see if all of them are available.  If not, simply
 993 * return -EPROBE_DEFER.
 994 *
 995 * We need to guarantee that the supplier will not go away after the check has
 996 * been positive here.  It only can go away in __device_release_driver() and
 997 * that function  checks the device's links to consumers.  This means we need to
 998 * mark the link as "consumer probe in progress" to make the supplier removal
 999 * wait for us to complete (or bad things may happen).
1000 *
1001 * Links without the DL_FLAG_MANAGED flag set are ignored.
1002 */
1003int device_links_check_suppliers(struct device *dev)
1004{
1005	struct device_link *link;
1006	int ret = 0, fwnode_ret = 0;
1007	struct fwnode_handle *sup_fw;
1008
1009	/*
1010	 * Device waiting for supplier to become available is not allowed to
1011	 * probe.
1012	 */
1013	mutex_lock(&fwnode_link_lock);
1014	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
1015	    !fw_devlink_is_permissive()) {
1016		sup_fw = list_first_entry(&dev->fwnode->suppliers,
1017					  struct fwnode_link,
1018					  c_hook)->supplier;
1019		if (!dev_is_best_effort(dev)) {
1020			fwnode_ret = -EPROBE_DEFER;
1021			dev_err_probe(dev, -EPROBE_DEFER,
1022				    "wait for supplier %pfwP\n", sup_fw);
1023		} else {
1024			fwnode_ret = -EAGAIN;
1025		}
1026	}
1027	mutex_unlock(&fwnode_link_lock);
1028	if (fwnode_ret == -EPROBE_DEFER)
1029		return fwnode_ret;
1030
1031	device_links_write_lock();
1032
1033	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1034		if (!(link->flags & DL_FLAG_MANAGED))
1035			continue;
1036
1037		if (link->status != DL_STATE_AVAILABLE &&
1038		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1039
1040			if (dev_is_best_effort(dev) &&
1041			    link->flags & DL_FLAG_INFERRED &&
1042			    !link->supplier->can_match) {
1043				ret = -EAGAIN;
1044				continue;
1045			}
1046
1047			device_links_missing_supplier(dev);
1048			dev_err_probe(dev, -EPROBE_DEFER,
1049				      "supplier %s not ready\n",
1050				      dev_name(link->supplier));
1051			ret = -EPROBE_DEFER;
1052			break;
1053		}
1054		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1055	}
1056	dev->links.status = DL_DEV_PROBING;
1057
1058	device_links_write_unlock();
1059
1060	return ret ? ret : fwnode_ret;
1061}
1062
1063/**
1064 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1065 * @dev: Device to call sync_state() on
1066 * @list: List head to queue the @dev on
1067 *
1068 * Queues a device for a sync_state() callback when the device links write lock
1069 * isn't held. This allows the sync_state() execution flow to use device links
1070 * APIs.  The caller must ensure this function is called with
1071 * device_links_write_lock() held.
1072 *
1073 * This function does a get_device() to make sure the device is not freed while
1074 * on this list.
1075 *
1076 * So the caller must also ensure that device_links_flush_sync_list() is called
1077 * as soon as the caller releases device_links_write_lock().  This is necessary
1078 * to make sure the sync_state() is called in a timely fashion and the
1079 * put_device() is called on this device.
1080 */
1081static void __device_links_queue_sync_state(struct device *dev,
1082					    struct list_head *list)
1083{
1084	struct device_link *link;
1085
1086	if (!dev_has_sync_state(dev))
1087		return;
1088	if (dev->state_synced)
1089		return;
1090
1091	list_for_each_entry(link, &dev->links.consumers, s_node) {
1092		if (!(link->flags & DL_FLAG_MANAGED))
1093			continue;
1094		if (link->status != DL_STATE_ACTIVE)
1095			return;
1096	}
1097
1098	/*
1099	 * Set the flag here to avoid adding the same device to a list more
1100	 * than once. This can happen if new consumers get added to the device
1101	 * and probed before the list is flushed.
1102	 */
1103	dev->state_synced = true;
1104
1105	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1106		return;
1107
1108	get_device(dev);
1109	list_add_tail(&dev->links.defer_sync, list);
1110}
1111
1112/**
1113 * device_links_flush_sync_list - Call sync_state() on a list of devices
1114 * @list: List of devices to call sync_state() on
1115 * @dont_lock_dev: Device for which lock is already held by the caller
1116 *
1117 * Calls sync_state() on all the devices that have been queued for it. This
1118 * function is used in conjunction with __device_links_queue_sync_state(). The
1119 * @dont_lock_dev parameter is useful when this function is called from a
1120 * context where a device lock is already held.
1121 */
1122static void device_links_flush_sync_list(struct list_head *list,
1123					 struct device *dont_lock_dev)
1124{
1125	struct device *dev, *tmp;
1126
1127	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1128		list_del_init(&dev->links.defer_sync);
1129
1130		if (dev != dont_lock_dev)
1131			device_lock(dev);
1132
1133		if (dev->bus->sync_state)
1134			dev->bus->sync_state(dev);
1135		else if (dev->driver && dev->driver->sync_state)
1136			dev->driver->sync_state(dev);
1137
1138		if (dev != dont_lock_dev)
1139			device_unlock(dev);
1140
1141		put_device(dev);
1142	}
1143}
1144
1145void device_links_supplier_sync_state_pause(void)
1146{
1147	device_links_write_lock();
1148	defer_sync_state_count++;
1149	device_links_write_unlock();
1150}
1151
1152void device_links_supplier_sync_state_resume(void)
1153{
1154	struct device *dev, *tmp;
1155	LIST_HEAD(sync_list);
1156
1157	device_links_write_lock();
1158	if (!defer_sync_state_count) {
1159		WARN(true, "Unmatched sync_state pause/resume!");
1160		goto out;
1161	}
1162	defer_sync_state_count--;
1163	if (defer_sync_state_count)
1164		goto out;
1165
1166	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1167		/*
1168		 * Delete from deferred_sync list before queuing it to
1169		 * sync_list because defer_sync is used for both lists.
1170		 */
1171		list_del_init(&dev->links.defer_sync);
1172		__device_links_queue_sync_state(dev, &sync_list);
1173	}
1174out:
1175	device_links_write_unlock();
1176
1177	device_links_flush_sync_list(&sync_list, NULL);
1178}
1179
1180static int sync_state_resume_initcall(void)
1181{
1182	device_links_supplier_sync_state_resume();
1183	return 0;
1184}
1185late_initcall(sync_state_resume_initcall);
1186
1187static void __device_links_supplier_defer_sync(struct device *sup)
1188{
1189	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1190		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1191}
1192
1193static void device_link_drop_managed(struct device_link *link)
1194{
1195	link->flags &= ~DL_FLAG_MANAGED;
1196	WRITE_ONCE(link->status, DL_STATE_NONE);
1197	kref_put(&link->kref, __device_link_del);
1198}
1199
1200static ssize_t waiting_for_supplier_show(struct device *dev,
1201					 struct device_attribute *attr,
1202					 char *buf)
1203{
1204	bool val;
1205
1206	device_lock(dev);
1207	val = !list_empty(&dev->fwnode->suppliers);
 
 
 
1208	device_unlock(dev);
1209	return sysfs_emit(buf, "%u\n", val);
1210}
1211static DEVICE_ATTR_RO(waiting_for_supplier);
1212
1213/**
1214 * device_links_force_bind - Prepares device to be force bound
1215 * @dev: Consumer device.
1216 *
1217 * device_bind_driver() force binds a device to a driver without calling any
1218 * driver probe functions. So the consumer really isn't going to wait for any
1219 * supplier before it's bound to the driver. We still want the device link
1220 * states to be sensible when this happens.
1221 *
1222 * In preparation for device_bind_driver(), this function goes through each
1223 * supplier device links and checks if the supplier is bound. If it is, then
1224 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1225 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1226 */
1227void device_links_force_bind(struct device *dev)
1228{
1229	struct device_link *link, *ln;
1230
1231	device_links_write_lock();
1232
1233	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1234		if (!(link->flags & DL_FLAG_MANAGED))
1235			continue;
1236
1237		if (link->status != DL_STATE_AVAILABLE) {
1238			device_link_drop_managed(link);
1239			continue;
1240		}
1241		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1242	}
1243	dev->links.status = DL_DEV_PROBING;
1244
1245	device_links_write_unlock();
1246}
1247
1248/**
1249 * device_links_driver_bound - Update device links after probing its driver.
1250 * @dev: Device to update the links for.
1251 *
1252 * The probe has been successful, so update links from this device to any
1253 * consumers by changing their status to "available".
1254 *
1255 * Also change the status of @dev's links to suppliers to "active".
1256 *
1257 * Links without the DL_FLAG_MANAGED flag set are ignored.
1258 */
1259void device_links_driver_bound(struct device *dev)
1260{
1261	struct device_link *link, *ln;
1262	LIST_HEAD(sync_list);
1263
1264	/*
1265	 * If a device binds successfully, it's expected to have created all
1266	 * the device links it needs to or make new device links as it needs
1267	 * them. So, fw_devlink no longer needs to create device links to any
1268	 * of the device's suppliers.
1269	 *
1270	 * Also, if a child firmware node of this bound device is not added as
1271	 * a device by now, assume it is never going to be added and make sure
1272	 * other devices don't defer probe indefinitely by waiting for such a
1273	 * child device.
1274	 */
1275	if (dev->fwnode && dev->fwnode->dev == dev) {
1276		struct fwnode_handle *child;
1277		fwnode_links_purge_suppliers(dev->fwnode);
1278		fwnode_for_each_available_child_node(dev->fwnode, child)
1279			fw_devlink_purge_absent_suppliers(child);
1280	}
1281	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1282
1283	device_links_write_lock();
1284
1285	list_for_each_entry(link, &dev->links.consumers, s_node) {
1286		if (!(link->flags & DL_FLAG_MANAGED))
1287			continue;
1288
1289		/*
1290		 * Links created during consumer probe may be in the "consumer
1291		 * probe" state to start with if the supplier is still probing
1292		 * when they are created and they may become "active" if the
1293		 * consumer probe returns first.  Skip them here.
1294		 */
1295		if (link->status == DL_STATE_CONSUMER_PROBE ||
1296		    link->status == DL_STATE_ACTIVE)
1297			continue;
1298
1299		WARN_ON(link->status != DL_STATE_DORMANT);
1300		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1301
1302		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1303			driver_deferred_probe_add(link->consumer);
1304	}
1305
1306	if (defer_sync_state_count)
1307		__device_links_supplier_defer_sync(dev);
1308	else
1309		__device_links_queue_sync_state(dev, &sync_list);
1310
1311	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1312		struct device *supplier;
1313
1314		if (!(link->flags & DL_FLAG_MANAGED))
1315			continue;
1316
1317		supplier = link->supplier;
1318		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1319			/*
1320			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1321			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1322			 * save to drop the managed link completely.
1323			 */
1324			device_link_drop_managed(link);
1325		} else if (dev_is_best_effort(dev) &&
1326			   link->flags & DL_FLAG_INFERRED &&
1327			   link->status != DL_STATE_CONSUMER_PROBE &&
1328			   !link->supplier->can_match) {
1329			/*
1330			 * When dev_is_best_effort() is true, we ignore device
1331			 * links to suppliers that don't have a driver.  If the
1332			 * consumer device still managed to probe, there's no
1333			 * point in maintaining a device link in a weird state
1334			 * (consumer probed before supplier). So delete it.
1335			 */
1336			device_link_drop_managed(link);
1337		} else {
1338			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1339			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1340		}
1341
1342		/*
1343		 * This needs to be done even for the deleted
1344		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1345		 * device link that was preventing the supplier from getting a
1346		 * sync_state() call.
1347		 */
1348		if (defer_sync_state_count)
1349			__device_links_supplier_defer_sync(supplier);
1350		else
1351			__device_links_queue_sync_state(supplier, &sync_list);
1352	}
1353
1354	dev->links.status = DL_DEV_DRIVER_BOUND;
1355
1356	device_links_write_unlock();
1357
1358	device_links_flush_sync_list(&sync_list, dev);
1359}
1360
1361/**
1362 * __device_links_no_driver - Update links of a device without a driver.
1363 * @dev: Device without a drvier.
1364 *
1365 * Delete all non-persistent links from this device to any suppliers.
1366 *
1367 * Persistent links stay around, but their status is changed to "available",
1368 * unless they already are in the "supplier unbind in progress" state in which
1369 * case they need not be updated.
1370 *
1371 * Links without the DL_FLAG_MANAGED flag set are ignored.
1372 */
1373static void __device_links_no_driver(struct device *dev)
1374{
1375	struct device_link *link, *ln;
1376
1377	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1378		if (!(link->flags & DL_FLAG_MANAGED))
1379			continue;
1380
1381		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1382			device_link_drop_managed(link);
1383			continue;
1384		}
1385
1386		if (link->status != DL_STATE_CONSUMER_PROBE &&
1387		    link->status != DL_STATE_ACTIVE)
1388			continue;
1389
1390		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1391			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1392		} else {
1393			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1394			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1395		}
1396	}
1397
1398	dev->links.status = DL_DEV_NO_DRIVER;
1399}
1400
1401/**
1402 * device_links_no_driver - Update links after failing driver probe.
1403 * @dev: Device whose driver has just failed to probe.
1404 *
1405 * Clean up leftover links to consumers for @dev and invoke
1406 * %__device_links_no_driver() to update links to suppliers for it as
1407 * appropriate.
1408 *
1409 * Links without the DL_FLAG_MANAGED flag set are ignored.
1410 */
1411void device_links_no_driver(struct device *dev)
1412{
1413	struct device_link *link;
1414
1415	device_links_write_lock();
1416
1417	list_for_each_entry(link, &dev->links.consumers, s_node) {
1418		if (!(link->flags & DL_FLAG_MANAGED))
1419			continue;
1420
1421		/*
1422		 * The probe has failed, so if the status of the link is
1423		 * "consumer probe" or "active", it must have been added by
1424		 * a probing consumer while this device was still probing.
1425		 * Change its state to "dormant", as it represents a valid
1426		 * relationship, but it is not functionally meaningful.
1427		 */
1428		if (link->status == DL_STATE_CONSUMER_PROBE ||
1429		    link->status == DL_STATE_ACTIVE)
1430			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1431	}
1432
1433	__device_links_no_driver(dev);
1434
1435	device_links_write_unlock();
1436}
1437
1438/**
1439 * device_links_driver_cleanup - Update links after driver removal.
1440 * @dev: Device whose driver has just gone away.
1441 *
1442 * Update links to consumers for @dev by changing their status to "dormant" and
1443 * invoke %__device_links_no_driver() to update links to suppliers for it as
1444 * appropriate.
1445 *
1446 * Links without the DL_FLAG_MANAGED flag set are ignored.
1447 */
1448void device_links_driver_cleanup(struct device *dev)
1449{
1450	struct device_link *link, *ln;
1451
1452	device_links_write_lock();
1453
1454	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1455		if (!(link->flags & DL_FLAG_MANAGED))
1456			continue;
1457
1458		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1459		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1460
1461		/*
1462		 * autoremove the links between this @dev and its consumer
1463		 * devices that are not active, i.e. where the link state
1464		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1465		 */
1466		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1467		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1468			device_link_drop_managed(link);
1469
1470		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1471	}
1472
1473	list_del_init(&dev->links.defer_sync);
1474	__device_links_no_driver(dev);
1475
1476	device_links_write_unlock();
1477}
1478
1479/**
1480 * device_links_busy - Check if there are any busy links to consumers.
1481 * @dev: Device to check.
1482 *
1483 * Check each consumer of the device and return 'true' if its link's status
1484 * is one of "consumer probe" or "active" (meaning that the given consumer is
1485 * probing right now or its driver is present).  Otherwise, change the link
1486 * state to "supplier unbind" to prevent the consumer from being probed
1487 * successfully going forward.
1488 *
1489 * Return 'false' if there are no probing or active consumers.
1490 *
1491 * Links without the DL_FLAG_MANAGED flag set are ignored.
1492 */
1493bool device_links_busy(struct device *dev)
1494{
1495	struct device_link *link;
1496	bool ret = false;
1497
1498	device_links_write_lock();
1499
1500	list_for_each_entry(link, &dev->links.consumers, s_node) {
1501		if (!(link->flags & DL_FLAG_MANAGED))
1502			continue;
1503
1504		if (link->status == DL_STATE_CONSUMER_PROBE
1505		    || link->status == DL_STATE_ACTIVE) {
1506			ret = true;
1507			break;
1508		}
1509		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1510	}
1511
1512	dev->links.status = DL_DEV_UNBINDING;
1513
1514	device_links_write_unlock();
1515	return ret;
1516}
1517
1518/**
1519 * device_links_unbind_consumers - Force unbind consumers of the given device.
1520 * @dev: Device to unbind the consumers of.
1521 *
1522 * Walk the list of links to consumers for @dev and if any of them is in the
1523 * "consumer probe" state, wait for all device probes in progress to complete
1524 * and start over.
1525 *
1526 * If that's not the case, change the status of the link to "supplier unbind"
1527 * and check if the link was in the "active" state.  If so, force the consumer
1528 * driver to unbind and start over (the consumer will not re-probe as we have
1529 * changed the state of the link already).
1530 *
1531 * Links without the DL_FLAG_MANAGED flag set are ignored.
1532 */
1533void device_links_unbind_consumers(struct device *dev)
1534{
1535	struct device_link *link;
1536
1537 start:
1538	device_links_write_lock();
1539
1540	list_for_each_entry(link, &dev->links.consumers, s_node) {
1541		enum device_link_state status;
1542
1543		if (!(link->flags & DL_FLAG_MANAGED) ||
1544		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1545			continue;
1546
1547		status = link->status;
1548		if (status == DL_STATE_CONSUMER_PROBE) {
1549			device_links_write_unlock();
1550
1551			wait_for_device_probe();
1552			goto start;
1553		}
1554		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1555		if (status == DL_STATE_ACTIVE) {
1556			struct device *consumer = link->consumer;
1557
1558			get_device(consumer);
1559
1560			device_links_write_unlock();
1561
1562			device_release_driver_internal(consumer, NULL,
1563						       consumer->parent);
1564			put_device(consumer);
1565			goto start;
1566		}
1567	}
1568
1569	device_links_write_unlock();
1570}
1571
1572/**
1573 * device_links_purge - Delete existing links to other devices.
1574 * @dev: Target device.
1575 */
1576static void device_links_purge(struct device *dev)
1577{
1578	struct device_link *link, *ln;
1579
1580	if (dev->class == &devlink_class)
1581		return;
1582
 
 
 
 
1583	/*
1584	 * Delete all of the remaining links from this device to any other
1585	 * devices (either consumers or suppliers).
1586	 */
1587	device_links_write_lock();
1588
1589	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1590		WARN_ON(link->status == DL_STATE_ACTIVE);
1591		__device_link_del(&link->kref);
1592	}
1593
1594	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1595		WARN_ON(link->status != DL_STATE_DORMANT &&
1596			link->status != DL_STATE_NONE);
1597		__device_link_del(&link->kref);
1598	}
1599
1600	device_links_write_unlock();
1601}
1602
1603#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1604					 DL_FLAG_SYNC_STATE_ONLY)
1605#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1606					 DL_FLAG_AUTOPROBE_CONSUMER)
1607#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1608					 DL_FLAG_PM_RUNTIME)
1609
1610static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1611static int __init fw_devlink_setup(char *arg)
1612{
1613	if (!arg)
1614		return -EINVAL;
1615
1616	if (strcmp(arg, "off") == 0) {
1617		fw_devlink_flags = 0;
1618	} else if (strcmp(arg, "permissive") == 0) {
1619		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1620	} else if (strcmp(arg, "on") == 0) {
1621		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1622	} else if (strcmp(arg, "rpm") == 0) {
1623		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
 
1624	}
1625	return 0;
1626}
1627early_param("fw_devlink", fw_devlink_setup);
1628
1629static bool fw_devlink_strict;
1630static int __init fw_devlink_strict_setup(char *arg)
1631{
1632	return kstrtobool(arg, &fw_devlink_strict);
1633}
1634early_param("fw_devlink.strict", fw_devlink_strict_setup);
1635
1636u32 fw_devlink_get_flags(void)
1637{
1638	return fw_devlink_flags;
1639}
1640
1641static bool fw_devlink_is_permissive(void)
1642{
1643	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1644}
1645
1646bool fw_devlink_is_strict(void)
1647{
1648	return fw_devlink_strict && !fw_devlink_is_permissive();
1649}
1650
1651static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1652{
1653	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1654		return;
1655
1656	fwnode_call_int_op(fwnode, add_links);
1657	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1658}
1659
1660static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1661{
1662	struct fwnode_handle *child = NULL;
1663
1664	fw_devlink_parse_fwnode(fwnode);
1665
1666	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1667		fw_devlink_parse_fwtree(child);
1668}
1669
1670static void fw_devlink_relax_link(struct device_link *link)
1671{
1672	if (!(link->flags & DL_FLAG_INFERRED))
1673		return;
1674
1675	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1676		return;
1677
1678	pm_runtime_drop_link(link);
1679	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1680	dev_dbg(link->consumer, "Relaxing link with %s\n",
1681		dev_name(link->supplier));
1682}
1683
1684static int fw_devlink_no_driver(struct device *dev, void *data)
1685{
1686	struct device_link *link = to_devlink(dev);
1687
1688	if (!link->supplier->can_match)
1689		fw_devlink_relax_link(link);
1690
1691	return 0;
1692}
1693
1694void fw_devlink_drivers_done(void)
1695{
1696	fw_devlink_drv_reg_done = true;
1697	device_links_write_lock();
1698	class_for_each_device(&devlink_class, NULL, NULL,
1699			      fw_devlink_no_driver);
1700	device_links_write_unlock();
1701}
1702
1703/**
1704 * wait_for_init_devices_probe - Try to probe any device needed for init
1705 *
1706 * Some devices might need to be probed and bound successfully before the kernel
1707 * boot sequence can finish and move on to init/userspace. For example, a
1708 * network interface might need to be bound to be able to mount a NFS rootfs.
1709 *
1710 * With fw_devlink=on by default, some of these devices might be blocked from
1711 * probing because they are waiting on a optional supplier that doesn't have a
1712 * driver. While fw_devlink will eventually identify such devices and unblock
1713 * the probing automatically, it might be too late by the time it unblocks the
1714 * probing of devices. For example, the IP4 autoconfig might timeout before
1715 * fw_devlink unblocks probing of the network interface.
1716 *
1717 * This function is available to temporarily try and probe all devices that have
1718 * a driver even if some of their suppliers haven't been added or don't have
1719 * drivers.
1720 *
1721 * The drivers can then decide which of the suppliers are optional vs mandatory
1722 * and probe the device if possible. By the time this function returns, all such
1723 * "best effort" probes are guaranteed to be completed. If a device successfully
1724 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1725 * device where the supplier hasn't yet probed successfully because they have to
1726 * be optional dependencies.
1727 *
1728 * Any devices that didn't successfully probe go back to being treated as if
1729 * this function was never called.
1730 *
1731 * This also means that some devices that aren't needed for init and could have
1732 * waited for their optional supplier to probe (when the supplier's module is
1733 * loaded later on) would end up probing prematurely with limited functionality.
1734 * So call this function only when boot would fail without it.
1735 */
1736void __init wait_for_init_devices_probe(void)
1737{
1738	if (!fw_devlink_flags || fw_devlink_is_permissive())
1739		return;
1740
1741	/*
1742	 * Wait for all ongoing probes to finish so that the "best effort" is
1743	 * only applied to devices that can't probe otherwise.
1744	 */
1745	wait_for_device_probe();
1746
1747	pr_info("Trying to probe devices needed for running init ...\n");
1748	fw_devlink_best_effort = true;
1749	driver_deferred_probe_trigger();
1750
1751	/*
1752	 * Wait for all "best effort" probes to finish before going back to
1753	 * normal enforcement.
1754	 */
1755	wait_for_device_probe();
1756	fw_devlink_best_effort = false;
1757}
1758
1759static void fw_devlink_unblock_consumers(struct device *dev)
1760{
1761	struct device_link *link;
1762
1763	if (!fw_devlink_flags || fw_devlink_is_permissive())
1764		return;
1765
1766	device_links_write_lock();
1767	list_for_each_entry(link, &dev->links.consumers, s_node)
1768		fw_devlink_relax_link(link);
1769	device_links_write_unlock();
1770}
1771
1772/**
1773 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1774 * @con: Device to check dependencies for.
1775 * @sup: Device to check against.
1776 *
1777 * Check if @sup depends on @con or any device dependent on it (its child or
1778 * its consumer etc).  When such a cyclic dependency is found, convert all
1779 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1780 * This is the equivalent of doing fw_devlink=permissive just between the
1781 * devices in the cycle. We need to do this because, at this point, fw_devlink
1782 * can't tell which of these dependencies is not a real dependency.
1783 *
1784 * Return 1 if a cycle is found. Otherwise, return 0.
1785 */
1786static int fw_devlink_relax_cycle(struct device *con, void *sup)
1787{
1788	struct device_link *link;
1789	int ret;
1790
1791	if (con == sup)
1792		return 1;
1793
1794	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1795	if (ret)
1796		return ret;
1797
1798	list_for_each_entry(link, &con->links.consumers, s_node) {
1799		if ((link->flags & ~DL_FLAG_INFERRED) ==
1800		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1801			continue;
1802
1803		if (!fw_devlink_relax_cycle(link->consumer, sup))
1804			continue;
1805
1806		ret = 1;
1807
1808		fw_devlink_relax_link(link);
1809	}
1810	return ret;
1811}
1812
1813/**
1814 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1815 * @con: consumer device for the device link
1816 * @sup_handle: fwnode handle of supplier
1817 * @flags: devlink flags
1818 *
1819 * This function will try to create a device link between the consumer device
1820 * @con and the supplier device represented by @sup_handle.
1821 *
1822 * The supplier has to be provided as a fwnode because incorrect cycles in
1823 * fwnode links can sometimes cause the supplier device to never be created.
1824 * This function detects such cases and returns an error if it cannot create a
1825 * device link from the consumer to a missing supplier.
1826 *
1827 * Returns,
1828 * 0 on successfully creating a device link
1829 * -EINVAL if the device link cannot be created as expected
1830 * -EAGAIN if the device link cannot be created right now, but it may be
1831 *  possible to do that in the future
1832 */
1833static int fw_devlink_create_devlink(struct device *con,
1834				     struct fwnode_handle *sup_handle, u32 flags)
1835{
1836	struct device *sup_dev;
1837	int ret = 0;
1838
1839	/*
1840	 * In some cases, a device P might also be a supplier to its child node
1841	 * C. However, this would defer the probe of C until the probe of P
1842	 * completes successfully. This is perfectly fine in the device driver
1843	 * model. device_add() doesn't guarantee probe completion of the device
1844	 * by the time it returns.
1845	 *
1846	 * However, there are a few drivers that assume C will finish probing
1847	 * as soon as it's added and before P finishes probing. So, we provide
1848	 * a flag to let fw_devlink know not to delay the probe of C until the
1849	 * probe of P completes successfully.
1850	 *
1851	 * When such a flag is set, we can't create device links where P is the
1852	 * supplier of C as that would delay the probe of C.
1853	 */
1854	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1855	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1856		return -EINVAL;
1857
1858	sup_dev = get_dev_from_fwnode(sup_handle);
1859	if (sup_dev) {
1860		/*
1861		 * If it's one of those drivers that don't actually bind to
1862		 * their device using driver core, then don't wait on this
1863		 * supplier device indefinitely.
1864		 */
1865		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1866		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1867			ret = -EINVAL;
1868			goto out;
1869		}
1870
1871		/*
1872		 * If this fails, it is due to cycles in device links.  Just
1873		 * give up on this link and treat it as invalid.
1874		 */
1875		if (!device_link_add(con, sup_dev, flags) &&
1876		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1877			dev_info(con, "Fixing up cyclic dependency with %s\n",
1878				 dev_name(sup_dev));
1879			device_links_write_lock();
1880			fw_devlink_relax_cycle(con, sup_dev);
1881			device_links_write_unlock();
1882			device_link_add(con, sup_dev,
1883					FW_DEVLINK_FLAGS_PERMISSIVE);
1884			ret = -EINVAL;
1885		}
1886
1887		goto out;
1888	}
1889
1890	/* Supplier that's already initialized without a struct device. */
1891	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1892		return -EINVAL;
1893
1894	/*
1895	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1896	 * cycles. So cycle detection isn't necessary and shouldn't be
1897	 * done.
1898	 */
1899	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1900		return -EAGAIN;
1901
1902	/*
1903	 * If we can't find the supplier device from its fwnode, it might be
1904	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1905	 * be broken by applying logic. Check for these types of cycles and
1906	 * break them so that devices in the cycle probe properly.
1907	 *
1908	 * If the supplier's parent is dependent on the consumer, then the
1909	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1910	 * can't tell which of the inferred dependencies are incorrect, don't
1911	 * enforce probe ordering between any of the devices in this cyclic
1912	 * dependency. Do this by relaxing all the fw_devlink device links in
1913	 * this cycle and by treating the fwnode link between the consumer and
1914	 * the supplier as an invalid dependency.
1915	 */
1916	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1917	if (sup_dev && device_is_dependent(con, sup_dev)) {
1918		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1919			 sup_handle, dev_name(sup_dev));
1920		device_links_write_lock();
1921		fw_devlink_relax_cycle(con, sup_dev);
1922		device_links_write_unlock();
1923		ret = -EINVAL;
1924	} else {
 
1925		/*
1926		 * Can't check for cycles or no cycles. So let's try
1927		 * again later.
 
1928		 */
1929		ret = -EAGAIN;
1930	}
1931
 
 
 
 
 
1932out:
1933	put_device(sup_dev);
1934	return ret;
1935}
1936
1937/**
1938 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1939 * @dev: Device that needs to be linked to its consumers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940 *
1941 * This function looks at all the consumer fwnodes of @dev and creates device
1942 * links between the consumer device and @dev (supplier).
1943 *
1944 * If the consumer device has not been added yet, then this function creates a
1945 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1946 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1947 * sync_state() callback before the real consumer device gets to be added and
1948 * then probed.
 
1949 *
1950 * Once device links are created from the real consumer to @dev (supplier), the
1951 * fwnode links are deleted.
 
 
 
 
1952 */
1953static void __fw_devlink_link_to_consumers(struct device *dev)
1954{
1955	struct fwnode_handle *fwnode = dev->fwnode;
1956	struct fwnode_link *link, *tmp;
1957
1958	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1959		u32 dl_flags = fw_devlink_get_flags();
1960		struct device *con_dev;
1961		bool own_link = true;
1962		int ret;
1963
1964		con_dev = get_dev_from_fwnode(link->consumer);
1965		/*
1966		 * If consumer device is not available yet, make a "proxy"
1967		 * SYNC_STATE_ONLY link from the consumer's parent device to
1968		 * the supplier device. This is necessary to make sure the
1969		 * supplier doesn't get a sync_state() callback before the real
1970		 * consumer can create a device link to the supplier.
1971		 *
1972		 * This proxy link step is needed to handle the case where the
1973		 * consumer's parent device is added before the supplier.
1974		 */
1975		if (!con_dev) {
1976			con_dev = fwnode_get_next_parent_dev(link->consumer);
1977			/*
1978			 * However, if the consumer's parent device is also the
1979			 * parent of the supplier, don't create a
1980			 * consumer-supplier link from the parent to its child
1981			 * device. Such a dependency is impossible.
1982			 */
1983			if (con_dev &&
1984			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1985				put_device(con_dev);
1986				con_dev = NULL;
1987			} else {
1988				own_link = false;
1989				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1990			}
1991		}
1992
1993		if (!con_dev)
1994			continue;
1995
1996		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1997		put_device(con_dev);
1998		if (!own_link || ret == -EAGAIN)
1999			continue;
2000
2001		__fwnode_link_del(link);
2002	}
2003}
2004
2005/**
2006 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2007 * @dev: The consumer device that needs to be linked to its suppliers
2008 * @fwnode: Root of the fwnode tree that is used to create device links
2009 *
2010 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2011 * @fwnode and creates device links between @dev (consumer) and all the
2012 * supplier devices of the entire fwnode tree at @fwnode.
2013 *
2014 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2015 * and the real suppliers of @dev. Once these device links are created, the
2016 * fwnode links are deleted. When such device links are successfully created,
2017 * this function is called recursively on those supplier devices. This is
2018 * needed to detect and break some invalid cycles in fwnode links.  See
2019 * fw_devlink_create_devlink() for more details.
2020 *
2021 * In addition, it also looks at all the suppliers of the entire fwnode tree
2022 * because some of the child devices of @dev that have not been added yet
2023 * (because @dev hasn't probed) might already have their suppliers added to
2024 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2025 * @dev (consumer) and these suppliers to make sure they don't execute their
2026 * sync_state() callbacks before these child devices have a chance to create
2027 * their device links. The fwnode links that correspond to the child devices
2028 * aren't delete because they are needed later to create the device links
2029 * between the real consumer and supplier devices.
2030 */
2031static void __fw_devlink_link_to_suppliers(struct device *dev,
2032					   struct fwnode_handle *fwnode)
2033{
2034	bool own_link = (dev->fwnode == fwnode);
2035	struct fwnode_link *link, *tmp;
2036	struct fwnode_handle *child = NULL;
2037	u32 dl_flags;
2038
2039	if (own_link)
2040		dl_flags = fw_devlink_get_flags();
2041	else
2042		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2043
2044	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2045		int ret;
2046		struct device *sup_dev;
2047		struct fwnode_handle *sup = link->supplier;
2048
2049		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
2050		if (!own_link || ret == -EAGAIN)
2051			continue;
2052
2053		__fwnode_link_del(link);
 
 
 
 
2054
2055		/* If no device link was created, nothing more to do. */
2056		if (ret)
2057			continue;
2058
2059		/*
2060		 * If a device link was successfully created to a supplier, we
2061		 * now need to try and link the supplier to all its suppliers.
2062		 *
2063		 * This is needed to detect and delete false dependencies in
2064		 * fwnode links that haven't been converted to a device link
2065		 * yet. See comments in fw_devlink_create_devlink() for more
2066		 * details on the false dependency.
2067		 *
2068		 * Without deleting these false dependencies, some devices will
2069		 * never probe because they'll keep waiting for their false
2070		 * dependency fwnode links to be converted to device links.
2071		 */
2072		sup_dev = get_dev_from_fwnode(sup);
2073		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
2074		put_device(sup_dev);
2075	}
2076
2077	/*
2078	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2079	 * all the descendants. This proxy link step is needed to handle the
2080	 * case where the supplier is added before the consumer's parent device
2081	 * (@dev).
2082	 */
2083	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2084		__fw_devlink_link_to_suppliers(dev, child);
2085}
2086
2087static void fw_devlink_link_device(struct device *dev)
2088{
2089	struct fwnode_handle *fwnode = dev->fwnode;
2090
2091	if (!fw_devlink_flags)
2092		return;
2093
2094	fw_devlink_parse_fwtree(fwnode);
2095
2096	mutex_lock(&fwnode_link_lock);
2097	__fw_devlink_link_to_consumers(dev);
2098	__fw_devlink_link_to_suppliers(dev, fwnode);
2099	mutex_unlock(&fwnode_link_lock);
2100}
2101
2102/* Device links support end. */
2103
2104int (*platform_notify)(struct device *dev) = NULL;
2105int (*platform_notify_remove)(struct device *dev) = NULL;
2106static struct kobject *dev_kobj;
2107struct kobject *sysfs_dev_char_kobj;
2108struct kobject *sysfs_dev_block_kobj;
2109
2110static DEFINE_MUTEX(device_hotplug_lock);
2111
2112void lock_device_hotplug(void)
2113{
2114	mutex_lock(&device_hotplug_lock);
2115}
2116
2117void unlock_device_hotplug(void)
2118{
2119	mutex_unlock(&device_hotplug_lock);
2120}
2121
2122int lock_device_hotplug_sysfs(void)
2123{
2124	if (mutex_trylock(&device_hotplug_lock))
2125		return 0;
2126
2127	/* Avoid busy looping (5 ms of sleep should do). */
2128	msleep(5);
2129	return restart_syscall();
2130}
2131
2132#ifdef CONFIG_BLOCK
2133static inline int device_is_not_partition(struct device *dev)
2134{
2135	return !(dev->type == &part_type);
2136}
2137#else
2138static inline int device_is_not_partition(struct device *dev)
2139{
2140	return 1;
2141}
2142#endif
2143
2144static void device_platform_notify(struct device *dev)
 
2145{
2146	acpi_device_notify(dev);
2147
2148	software_node_notify(dev);
2149
2150	if (platform_notify)
2151		platform_notify(dev);
2152}
2153
2154static void device_platform_notify_remove(struct device *dev)
2155{
2156	acpi_device_notify_remove(dev);
2157
2158	software_node_notify_remove(dev);
 
 
2159
2160	if (platform_notify_remove)
 
 
2161		platform_notify_remove(dev);
 
2162}
2163
2164/**
2165 * dev_driver_string - Return a device's driver name, if at all possible
2166 * @dev: struct device to get the name of
2167 *
2168 * Will return the device's driver's name if it is bound to a device.  If
2169 * the device is not bound to a driver, it will return the name of the bus
2170 * it is attached to.  If it is not attached to a bus either, an empty
2171 * string will be returned.
2172 */
2173const char *dev_driver_string(const struct device *dev)
2174{
2175	struct device_driver *drv;
2176
2177	/* dev->driver can change to NULL underneath us because of unbinding,
2178	 * so be careful about accessing it.  dev->bus and dev->class should
2179	 * never change once they are set, so they don't need special care.
2180	 */
2181	drv = READ_ONCE(dev->driver);
2182	return drv ? drv->name : dev_bus_name(dev);
 
 
2183}
2184EXPORT_SYMBOL(dev_driver_string);
2185
2186#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2187
2188static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2189			     char *buf)
2190{
2191	struct device_attribute *dev_attr = to_dev_attr(attr);
2192	struct device *dev = kobj_to_dev(kobj);
2193	ssize_t ret = -EIO;
2194
2195	if (dev_attr->show)
2196		ret = dev_attr->show(dev, dev_attr, buf);
2197	if (ret >= (ssize_t)PAGE_SIZE) {
2198		printk("dev_attr_show: %pS returned bad count\n",
2199				dev_attr->show);
2200	}
2201	return ret;
2202}
2203
2204static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2205			      const char *buf, size_t count)
2206{
2207	struct device_attribute *dev_attr = to_dev_attr(attr);
2208	struct device *dev = kobj_to_dev(kobj);
2209	ssize_t ret = -EIO;
2210
2211	if (dev_attr->store)
2212		ret = dev_attr->store(dev, dev_attr, buf, count);
2213	return ret;
2214}
2215
2216static const struct sysfs_ops dev_sysfs_ops = {
2217	.show	= dev_attr_show,
2218	.store	= dev_attr_store,
2219};
2220
2221#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2222
2223ssize_t device_store_ulong(struct device *dev,
2224			   struct device_attribute *attr,
2225			   const char *buf, size_t size)
2226{
2227	struct dev_ext_attribute *ea = to_ext_attr(attr);
2228	int ret;
2229	unsigned long new;
2230
2231	ret = kstrtoul(buf, 0, &new);
2232	if (ret)
2233		return ret;
2234	*(unsigned long *)(ea->var) = new;
2235	/* Always return full write size even if we didn't consume all */
2236	return size;
2237}
2238EXPORT_SYMBOL_GPL(device_store_ulong);
2239
2240ssize_t device_show_ulong(struct device *dev,
2241			  struct device_attribute *attr,
2242			  char *buf)
2243{
2244	struct dev_ext_attribute *ea = to_ext_attr(attr);
2245	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2246}
2247EXPORT_SYMBOL_GPL(device_show_ulong);
2248
2249ssize_t device_store_int(struct device *dev,
2250			 struct device_attribute *attr,
2251			 const char *buf, size_t size)
2252{
2253	struct dev_ext_attribute *ea = to_ext_attr(attr);
2254	int ret;
2255	long new;
2256
2257	ret = kstrtol(buf, 0, &new);
2258	if (ret)
2259		return ret;
2260
2261	if (new > INT_MAX || new < INT_MIN)
2262		return -EINVAL;
2263	*(int *)(ea->var) = new;
2264	/* Always return full write size even if we didn't consume all */
2265	return size;
2266}
2267EXPORT_SYMBOL_GPL(device_store_int);
2268
2269ssize_t device_show_int(struct device *dev,
2270			struct device_attribute *attr,
2271			char *buf)
2272{
2273	struct dev_ext_attribute *ea = to_ext_attr(attr);
2274
2275	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2276}
2277EXPORT_SYMBOL_GPL(device_show_int);
2278
2279ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2280			  const char *buf, size_t size)
2281{
2282	struct dev_ext_attribute *ea = to_ext_attr(attr);
2283
2284	if (kstrtobool(buf, ea->var) < 0)
2285		return -EINVAL;
2286
2287	return size;
2288}
2289EXPORT_SYMBOL_GPL(device_store_bool);
2290
2291ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2292			 char *buf)
2293{
2294	struct dev_ext_attribute *ea = to_ext_attr(attr);
2295
2296	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2297}
2298EXPORT_SYMBOL_GPL(device_show_bool);
2299
2300/**
2301 * device_release - free device structure.
2302 * @kobj: device's kobject.
2303 *
2304 * This is called once the reference count for the object
2305 * reaches 0. We forward the call to the device's release
2306 * method, which should handle actually freeing the structure.
2307 */
2308static void device_release(struct kobject *kobj)
2309{
2310	struct device *dev = kobj_to_dev(kobj);
2311	struct device_private *p = dev->p;
2312
2313	/*
2314	 * Some platform devices are driven without driver attached
2315	 * and managed resources may have been acquired.  Make sure
2316	 * all resources are released.
2317	 *
2318	 * Drivers still can add resources into device after device
2319	 * is deleted but alive, so release devres here to avoid
2320	 * possible memory leak.
2321	 */
2322	devres_release_all(dev);
2323
2324	kfree(dev->dma_range_map);
2325
2326	if (dev->release)
2327		dev->release(dev);
2328	else if (dev->type && dev->type->release)
2329		dev->type->release(dev);
2330	else if (dev->class && dev->class->dev_release)
2331		dev->class->dev_release(dev);
2332	else
2333		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2334			dev_name(dev));
2335	kfree(p);
2336}
2337
2338static const void *device_namespace(const struct kobject *kobj)
2339{
2340	const struct device *dev = kobj_to_dev(kobj);
2341	const void *ns = NULL;
2342
2343	if (dev->class && dev->class->ns_type)
2344		ns = dev->class->namespace(dev);
2345
2346	return ns;
2347}
2348
2349static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2350{
2351	const struct device *dev = kobj_to_dev(kobj);
2352
2353	if (dev->class && dev->class->get_ownership)
2354		dev->class->get_ownership(dev, uid, gid);
2355}
2356
2357static struct kobj_type device_ktype = {
2358	.release	= device_release,
2359	.sysfs_ops	= &dev_sysfs_ops,
2360	.namespace	= device_namespace,
2361	.get_ownership	= device_get_ownership,
2362};
2363
2364
2365static int dev_uevent_filter(const struct kobject *kobj)
2366{
2367	const struct kobj_type *ktype = get_ktype(kobj);
2368
2369	if (ktype == &device_ktype) {
2370		const struct device *dev = kobj_to_dev(kobj);
2371		if (dev->bus)
2372			return 1;
2373		if (dev->class)
2374			return 1;
2375	}
2376	return 0;
2377}
2378
2379static const char *dev_uevent_name(const struct kobject *kobj)
2380{
2381	const struct device *dev = kobj_to_dev(kobj);
2382
2383	if (dev->bus)
2384		return dev->bus->name;
2385	if (dev->class)
2386		return dev->class->name;
2387	return NULL;
2388}
2389
2390static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
 
2391{
2392	struct device *dev = kobj_to_dev(kobj);
2393	int retval = 0;
2394
2395	/* add device node properties if present */
2396	if (MAJOR(dev->devt)) {
2397		const char *tmp;
2398		const char *name;
2399		umode_t mode = 0;
2400		kuid_t uid = GLOBAL_ROOT_UID;
2401		kgid_t gid = GLOBAL_ROOT_GID;
2402
2403		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2404		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2405		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2406		if (name) {
2407			add_uevent_var(env, "DEVNAME=%s", name);
2408			if (mode)
2409				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2410			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2411				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2412			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2413				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2414			kfree(tmp);
2415		}
2416	}
2417
2418	if (dev->type && dev->type->name)
2419		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2420
2421	if (dev->driver)
2422		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2423
2424	/* Add common DT information about the device */
2425	of_device_uevent(dev, env);
2426
2427	/* have the bus specific function add its stuff */
2428	if (dev->bus && dev->bus->uevent) {
2429		retval = dev->bus->uevent(dev, env);
2430		if (retval)
2431			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2432				 dev_name(dev), __func__, retval);
2433	}
2434
2435	/* have the class specific function add its stuff */
2436	if (dev->class && dev->class->dev_uevent) {
2437		retval = dev->class->dev_uevent(dev, env);
2438		if (retval)
2439			pr_debug("device: '%s': %s: class uevent() "
2440				 "returned %d\n", dev_name(dev),
2441				 __func__, retval);
2442	}
2443
2444	/* have the device type specific function add its stuff */
2445	if (dev->type && dev->type->uevent) {
2446		retval = dev->type->uevent(dev, env);
2447		if (retval)
2448			pr_debug("device: '%s': %s: dev_type uevent() "
2449				 "returned %d\n", dev_name(dev),
2450				 __func__, retval);
2451	}
2452
2453	return retval;
2454}
2455
2456static const struct kset_uevent_ops device_uevent_ops = {
2457	.filter =	dev_uevent_filter,
2458	.name =		dev_uevent_name,
2459	.uevent =	dev_uevent,
2460};
2461
2462static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2463			   char *buf)
2464{
2465	struct kobject *top_kobj;
2466	struct kset *kset;
2467	struct kobj_uevent_env *env = NULL;
2468	int i;
2469	int len = 0;
2470	int retval;
2471
2472	/* search the kset, the device belongs to */
2473	top_kobj = &dev->kobj;
2474	while (!top_kobj->kset && top_kobj->parent)
2475		top_kobj = top_kobj->parent;
2476	if (!top_kobj->kset)
2477		goto out;
2478
2479	kset = top_kobj->kset;
2480	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2481		goto out;
2482
2483	/* respect filter */
2484	if (kset->uevent_ops && kset->uevent_ops->filter)
2485		if (!kset->uevent_ops->filter(&dev->kobj))
2486			goto out;
2487
2488	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2489	if (!env)
2490		return -ENOMEM;
2491
2492	/* let the kset specific function add its keys */
2493	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2494	if (retval)
2495		goto out;
2496
2497	/* copy keys to file */
2498	for (i = 0; i < env->envp_idx; i++)
2499		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2500out:
2501	kfree(env);
2502	return len;
2503}
2504
2505static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2506			    const char *buf, size_t count)
2507{
2508	int rc;
2509
2510	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2511
2512	if (rc) {
2513		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2514		return rc;
2515	}
2516
2517	return count;
2518}
2519static DEVICE_ATTR_RW(uevent);
2520
2521static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2522			   char *buf)
2523{
2524	bool val;
2525
2526	device_lock(dev);
2527	val = !dev->offline;
2528	device_unlock(dev);
2529	return sysfs_emit(buf, "%u\n", val);
2530}
2531
2532static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2533			    const char *buf, size_t count)
2534{
2535	bool val;
2536	int ret;
2537
2538	ret = kstrtobool(buf, &val);
2539	if (ret < 0)
2540		return ret;
2541
2542	ret = lock_device_hotplug_sysfs();
2543	if (ret)
2544		return ret;
2545
2546	ret = val ? device_online(dev) : device_offline(dev);
2547	unlock_device_hotplug();
2548	return ret < 0 ? ret : count;
2549}
2550static DEVICE_ATTR_RW(online);
2551
2552static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2553			      char *buf)
2554{
2555	const char *loc;
2556
2557	switch (dev->removable) {
2558	case DEVICE_REMOVABLE:
2559		loc = "removable";
2560		break;
2561	case DEVICE_FIXED:
2562		loc = "fixed";
2563		break;
2564	default:
2565		loc = "unknown";
2566	}
2567	return sysfs_emit(buf, "%s\n", loc);
2568}
2569static DEVICE_ATTR_RO(removable);
2570
2571int device_add_groups(struct device *dev, const struct attribute_group **groups)
2572{
2573	return sysfs_create_groups(&dev->kobj, groups);
2574}
2575EXPORT_SYMBOL_GPL(device_add_groups);
2576
2577void device_remove_groups(struct device *dev,
2578			  const struct attribute_group **groups)
2579{
2580	sysfs_remove_groups(&dev->kobj, groups);
2581}
2582EXPORT_SYMBOL_GPL(device_remove_groups);
2583
2584union device_attr_group_devres {
2585	const struct attribute_group *group;
2586	const struct attribute_group **groups;
2587};
2588
 
 
 
 
 
2589static void devm_attr_group_remove(struct device *dev, void *res)
2590{
2591	union device_attr_group_devres *devres = res;
2592	const struct attribute_group *group = devres->group;
2593
2594	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2595	sysfs_remove_group(&dev->kobj, group);
2596}
2597
2598static void devm_attr_groups_remove(struct device *dev, void *res)
2599{
2600	union device_attr_group_devres *devres = res;
2601	const struct attribute_group **groups = devres->groups;
2602
2603	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2604	sysfs_remove_groups(&dev->kobj, groups);
2605}
2606
2607/**
2608 * devm_device_add_group - given a device, create a managed attribute group
2609 * @dev:	The device to create the group for
2610 * @grp:	The attribute group to create
2611 *
2612 * This function creates a group for the first time.  It will explicitly
2613 * warn and error if any of the attribute files being created already exist.
2614 *
2615 * Returns 0 on success or error code on failure.
2616 */
2617int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2618{
2619	union device_attr_group_devres *devres;
2620	int error;
2621
2622	devres = devres_alloc(devm_attr_group_remove,
2623			      sizeof(*devres), GFP_KERNEL);
2624	if (!devres)
2625		return -ENOMEM;
2626
2627	error = sysfs_create_group(&dev->kobj, grp);
2628	if (error) {
2629		devres_free(devres);
2630		return error;
2631	}
2632
2633	devres->group = grp;
2634	devres_add(dev, devres);
2635	return 0;
2636}
2637EXPORT_SYMBOL_GPL(devm_device_add_group);
2638
2639/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2640 * devm_device_add_groups - create a bunch of managed attribute groups
2641 * @dev:	The device to create the group for
2642 * @groups:	The attribute groups to create, NULL terminated
2643 *
2644 * This function creates a bunch of managed attribute groups.  If an error
2645 * occurs when creating a group, all previously created groups will be
2646 * removed, unwinding everything back to the original state when this
2647 * function was called.  It will explicitly warn and error if any of the
2648 * attribute files being created already exist.
2649 *
2650 * Returns 0 on success or error code from sysfs_create_group on failure.
2651 */
2652int devm_device_add_groups(struct device *dev,
2653			   const struct attribute_group **groups)
2654{
2655	union device_attr_group_devres *devres;
2656	int error;
2657
2658	devres = devres_alloc(devm_attr_groups_remove,
2659			      sizeof(*devres), GFP_KERNEL);
2660	if (!devres)
2661		return -ENOMEM;
2662
2663	error = sysfs_create_groups(&dev->kobj, groups);
2664	if (error) {
2665		devres_free(devres);
2666		return error;
2667	}
2668
2669	devres->groups = groups;
2670	devres_add(dev, devres);
2671	return 0;
2672}
2673EXPORT_SYMBOL_GPL(devm_device_add_groups);
2674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2675static int device_add_attrs(struct device *dev)
2676{
2677	struct class *class = dev->class;
2678	const struct device_type *type = dev->type;
2679	int error;
2680
2681	if (class) {
2682		error = device_add_groups(dev, class->dev_groups);
2683		if (error)
2684			return error;
2685	}
2686
2687	if (type) {
2688		error = device_add_groups(dev, type->groups);
2689		if (error)
2690			goto err_remove_class_groups;
2691	}
2692
2693	error = device_add_groups(dev, dev->groups);
2694	if (error)
2695		goto err_remove_type_groups;
2696
2697	if (device_supports_offline(dev) && !dev->offline_disabled) {
2698		error = device_create_file(dev, &dev_attr_online);
2699		if (error)
2700			goto err_remove_dev_groups;
2701	}
2702
2703	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2704		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2705		if (error)
2706			goto err_remove_dev_online;
2707	}
2708
2709	if (dev_removable_is_valid(dev)) {
2710		error = device_create_file(dev, &dev_attr_removable);
2711		if (error)
2712			goto err_remove_dev_waiting_for_supplier;
2713	}
2714
2715	if (dev_add_physical_location(dev)) {
2716		error = device_add_group(dev,
2717			&dev_attr_physical_location_group);
2718		if (error)
2719			goto err_remove_dev_removable;
2720	}
2721
2722	return 0;
2723
2724 err_remove_dev_removable:
2725	device_remove_file(dev, &dev_attr_removable);
2726 err_remove_dev_waiting_for_supplier:
2727	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2728 err_remove_dev_online:
2729	device_remove_file(dev, &dev_attr_online);
2730 err_remove_dev_groups:
2731	device_remove_groups(dev, dev->groups);
2732 err_remove_type_groups:
2733	if (type)
2734		device_remove_groups(dev, type->groups);
2735 err_remove_class_groups:
2736	if (class)
2737		device_remove_groups(dev, class->dev_groups);
2738
2739	return error;
2740}
2741
2742static void device_remove_attrs(struct device *dev)
2743{
2744	struct class *class = dev->class;
2745	const struct device_type *type = dev->type;
2746
2747	if (dev->physical_location) {
2748		device_remove_group(dev, &dev_attr_physical_location_group);
2749		kfree(dev->physical_location);
2750	}
2751
2752	device_remove_file(dev, &dev_attr_removable);
2753	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2754	device_remove_file(dev, &dev_attr_online);
2755	device_remove_groups(dev, dev->groups);
2756
2757	if (type)
2758		device_remove_groups(dev, type->groups);
2759
2760	if (class)
2761		device_remove_groups(dev, class->dev_groups);
2762}
2763
2764static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2765			char *buf)
2766{
2767	return print_dev_t(buf, dev->devt);
2768}
2769static DEVICE_ATTR_RO(dev);
2770
2771/* /sys/devices/ */
2772struct kset *devices_kset;
2773
2774/**
2775 * devices_kset_move_before - Move device in the devices_kset's list.
2776 * @deva: Device to move.
2777 * @devb: Device @deva should come before.
2778 */
2779static void devices_kset_move_before(struct device *deva, struct device *devb)
2780{
2781	if (!devices_kset)
2782		return;
2783	pr_debug("devices_kset: Moving %s before %s\n",
2784		 dev_name(deva), dev_name(devb));
2785	spin_lock(&devices_kset->list_lock);
2786	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2787	spin_unlock(&devices_kset->list_lock);
2788}
2789
2790/**
2791 * devices_kset_move_after - Move device in the devices_kset's list.
2792 * @deva: Device to move
2793 * @devb: Device @deva should come after.
2794 */
2795static void devices_kset_move_after(struct device *deva, struct device *devb)
2796{
2797	if (!devices_kset)
2798		return;
2799	pr_debug("devices_kset: Moving %s after %s\n",
2800		 dev_name(deva), dev_name(devb));
2801	spin_lock(&devices_kset->list_lock);
2802	list_move(&deva->kobj.entry, &devb->kobj.entry);
2803	spin_unlock(&devices_kset->list_lock);
2804}
2805
2806/**
2807 * devices_kset_move_last - move the device to the end of devices_kset's list.
2808 * @dev: device to move
2809 */
2810void devices_kset_move_last(struct device *dev)
2811{
2812	if (!devices_kset)
2813		return;
2814	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2815	spin_lock(&devices_kset->list_lock);
2816	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2817	spin_unlock(&devices_kset->list_lock);
2818}
2819
2820/**
2821 * device_create_file - create sysfs attribute file for device.
2822 * @dev: device.
2823 * @attr: device attribute descriptor.
2824 */
2825int device_create_file(struct device *dev,
2826		       const struct device_attribute *attr)
2827{
2828	int error = 0;
2829
2830	if (dev) {
2831		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2832			"Attribute %s: write permission without 'store'\n",
2833			attr->attr.name);
2834		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2835			"Attribute %s: read permission without 'show'\n",
2836			attr->attr.name);
2837		error = sysfs_create_file(&dev->kobj, &attr->attr);
2838	}
2839
2840	return error;
2841}
2842EXPORT_SYMBOL_GPL(device_create_file);
2843
2844/**
2845 * device_remove_file - remove sysfs attribute file.
2846 * @dev: device.
2847 * @attr: device attribute descriptor.
2848 */
2849void device_remove_file(struct device *dev,
2850			const struct device_attribute *attr)
2851{
2852	if (dev)
2853		sysfs_remove_file(&dev->kobj, &attr->attr);
2854}
2855EXPORT_SYMBOL_GPL(device_remove_file);
2856
2857/**
2858 * device_remove_file_self - remove sysfs attribute file from its own method.
2859 * @dev: device.
2860 * @attr: device attribute descriptor.
2861 *
2862 * See kernfs_remove_self() for details.
2863 */
2864bool device_remove_file_self(struct device *dev,
2865			     const struct device_attribute *attr)
2866{
2867	if (dev)
2868		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2869	else
2870		return false;
2871}
2872EXPORT_SYMBOL_GPL(device_remove_file_self);
2873
2874/**
2875 * device_create_bin_file - create sysfs binary attribute file for device.
2876 * @dev: device.
2877 * @attr: device binary attribute descriptor.
2878 */
2879int device_create_bin_file(struct device *dev,
2880			   const struct bin_attribute *attr)
2881{
2882	int error = -EINVAL;
2883	if (dev)
2884		error = sysfs_create_bin_file(&dev->kobj, attr);
2885	return error;
2886}
2887EXPORT_SYMBOL_GPL(device_create_bin_file);
2888
2889/**
2890 * device_remove_bin_file - remove sysfs binary attribute file
2891 * @dev: device.
2892 * @attr: device binary attribute descriptor.
2893 */
2894void device_remove_bin_file(struct device *dev,
2895			    const struct bin_attribute *attr)
2896{
2897	if (dev)
2898		sysfs_remove_bin_file(&dev->kobj, attr);
2899}
2900EXPORT_SYMBOL_GPL(device_remove_bin_file);
2901
2902static void klist_children_get(struct klist_node *n)
2903{
2904	struct device_private *p = to_device_private_parent(n);
2905	struct device *dev = p->device;
2906
2907	get_device(dev);
2908}
2909
2910static void klist_children_put(struct klist_node *n)
2911{
2912	struct device_private *p = to_device_private_parent(n);
2913	struct device *dev = p->device;
2914
2915	put_device(dev);
2916}
2917
2918/**
2919 * device_initialize - init device structure.
2920 * @dev: device.
2921 *
2922 * This prepares the device for use by other layers by initializing
2923 * its fields.
2924 * It is the first half of device_register(), if called by
2925 * that function, though it can also be called separately, so one
2926 * may use @dev's fields. In particular, get_device()/put_device()
2927 * may be used for reference counting of @dev after calling this
2928 * function.
2929 *
2930 * All fields in @dev must be initialized by the caller to 0, except
2931 * for those explicitly set to some other value.  The simplest
2932 * approach is to use kzalloc() to allocate the structure containing
2933 * @dev.
2934 *
2935 * NOTE: Use put_device() to give up your reference instead of freeing
2936 * @dev directly once you have called this function.
2937 */
2938void device_initialize(struct device *dev)
2939{
2940	dev->kobj.kset = devices_kset;
2941	kobject_init(&dev->kobj, &device_ktype);
2942	INIT_LIST_HEAD(&dev->dma_pools);
2943	mutex_init(&dev->mutex);
 
 
 
2944	lockdep_set_novalidate_class(&dev->mutex);
2945	spin_lock_init(&dev->devres_lock);
2946	INIT_LIST_HEAD(&dev->devres_head);
2947	device_pm_init(dev);
2948	set_dev_node(dev, NUMA_NO_NODE);
 
 
 
2949	INIT_LIST_HEAD(&dev->links.consumers);
2950	INIT_LIST_HEAD(&dev->links.suppliers);
2951	INIT_LIST_HEAD(&dev->links.defer_sync);
 
2952	dev->links.status = DL_DEV_NO_DRIVER;
2953#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2954    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2955    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2956	dev->dma_coherent = dma_default_coherent;
2957#endif
2958#ifdef CONFIG_SWIOTLB
2959	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2960#endif
2961}
2962EXPORT_SYMBOL_GPL(device_initialize);
2963
2964struct kobject *virtual_device_parent(struct device *dev)
2965{
2966	static struct kobject *virtual_dir = NULL;
2967
2968	if (!virtual_dir)
2969		virtual_dir = kobject_create_and_add("virtual",
2970						     &devices_kset->kobj);
2971
2972	return virtual_dir;
2973}
2974
2975struct class_dir {
2976	struct kobject kobj;
2977	struct class *class;
2978};
2979
2980#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2981
2982static void class_dir_release(struct kobject *kobj)
2983{
2984	struct class_dir *dir = to_class_dir(kobj);
2985	kfree(dir);
2986}
2987
2988static const
2989struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
2990{
2991	const struct class_dir *dir = to_class_dir(kobj);
2992	return dir->class->ns_type;
2993}
2994
2995static struct kobj_type class_dir_ktype = {
2996	.release	= class_dir_release,
2997	.sysfs_ops	= &kobj_sysfs_ops,
2998	.child_ns_type	= class_dir_child_ns_type
2999};
3000
3001static struct kobject *
3002class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3003{
3004	struct class_dir *dir;
3005	int retval;
3006
3007	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3008	if (!dir)
3009		return ERR_PTR(-ENOMEM);
3010
3011	dir->class = class;
3012	kobject_init(&dir->kobj, &class_dir_ktype);
3013
3014	dir->kobj.kset = &class->p->glue_dirs;
3015
3016	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3017	if (retval < 0) {
3018		kobject_put(&dir->kobj);
3019		return ERR_PTR(retval);
3020	}
3021	return &dir->kobj;
3022}
3023
3024static DEFINE_MUTEX(gdp_mutex);
3025
3026static struct kobject *get_device_parent(struct device *dev,
3027					 struct device *parent)
3028{
3029	if (dev->class) {
3030		struct kobject *kobj = NULL;
3031		struct kobject *parent_kobj;
3032		struct kobject *k;
3033
3034#ifdef CONFIG_BLOCK
3035		/* block disks show up in /sys/block */
3036		if (sysfs_deprecated && dev->class == &block_class) {
3037			if (parent && parent->class == &block_class)
3038				return &parent->kobj;
3039			return &block_class.p->subsys.kobj;
3040		}
3041#endif
3042
3043		/*
3044		 * If we have no parent, we live in "virtual".
3045		 * Class-devices with a non class-device as parent, live
3046		 * in a "glue" directory to prevent namespace collisions.
3047		 */
3048		if (parent == NULL)
3049			parent_kobj = virtual_device_parent(dev);
3050		else if (parent->class && !dev->class->ns_type)
3051			return &parent->kobj;
3052		else
3053			parent_kobj = &parent->kobj;
3054
3055		mutex_lock(&gdp_mutex);
3056
3057		/* find our class-directory at the parent and reference it */
3058		spin_lock(&dev->class->p->glue_dirs.list_lock);
3059		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3060			if (k->parent == parent_kobj) {
3061				kobj = kobject_get(k);
3062				break;
3063			}
3064		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3065		if (kobj) {
3066			mutex_unlock(&gdp_mutex);
3067			return kobj;
3068		}
3069
3070		/* or create a new class-directory at the parent device */
3071		k = class_dir_create_and_add(dev->class, parent_kobj);
3072		/* do not emit an uevent for this simple "glue" directory */
3073		mutex_unlock(&gdp_mutex);
3074		return k;
3075	}
3076
3077	/* subsystems can specify a default root directory for their devices */
3078	if (!parent && dev->bus && dev->bus->dev_root)
3079		return &dev->bus->dev_root->kobj;
3080
3081	if (parent)
3082		return &parent->kobj;
3083	return NULL;
3084}
3085
3086static inline bool live_in_glue_dir(struct kobject *kobj,
3087				    struct device *dev)
3088{
3089	if (!kobj || !dev->class ||
3090	    kobj->kset != &dev->class->p->glue_dirs)
3091		return false;
3092	return true;
3093}
3094
3095static inline struct kobject *get_glue_dir(struct device *dev)
3096{
3097	return dev->kobj.parent;
3098}
3099
3100/**
3101 * kobject_has_children - Returns whether a kobject has children.
3102 * @kobj: the object to test
3103 *
3104 * This will return whether a kobject has other kobjects as children.
3105 *
3106 * It does NOT account for the presence of attribute files, only sub
3107 * directories. It also assumes there is no concurrent addition or
3108 * removal of such children, and thus relies on external locking.
3109 */
3110static inline bool kobject_has_children(struct kobject *kobj)
3111{
3112	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3113
3114	return kobj->sd && kobj->sd->dir.subdirs;
3115}
3116
3117/*
3118 * make sure cleaning up dir as the last step, we need to make
3119 * sure .release handler of kobject is run with holding the
3120 * global lock
3121 */
3122static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3123{
3124	unsigned int ref;
3125
3126	/* see if we live in a "glue" directory */
3127	if (!live_in_glue_dir(glue_dir, dev))
3128		return;
3129
3130	mutex_lock(&gdp_mutex);
3131	/**
3132	 * There is a race condition between removing glue directory
3133	 * and adding a new device under the glue directory.
3134	 *
3135	 * CPU1:                                         CPU2:
3136	 *
3137	 * device_add()
3138	 *   get_device_parent()
3139	 *     class_dir_create_and_add()
3140	 *       kobject_add_internal()
3141	 *         create_dir()    // create glue_dir
3142	 *
3143	 *                                               device_add()
3144	 *                                                 get_device_parent()
3145	 *                                                   kobject_get() // get glue_dir
3146	 *
3147	 * device_del()
3148	 *   cleanup_glue_dir()
3149	 *     kobject_del(glue_dir)
3150	 *
3151	 *                                               kobject_add()
3152	 *                                                 kobject_add_internal()
3153	 *                                                   create_dir() // in glue_dir
3154	 *                                                     sysfs_create_dir_ns()
3155	 *                                                       kernfs_create_dir_ns(sd)
3156	 *
3157	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3158	 *       sysfs_put()        // free glue_dir->sd
3159	 *
3160	 *                                                         // sd is freed
3161	 *                                                         kernfs_new_node(sd)
3162	 *                                                           kernfs_get(glue_dir)
3163	 *                                                           kernfs_add_one()
3164	 *                                                           kernfs_put()
3165	 *
3166	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3167	 * a new device under glue dir, the glue_dir kobject reference count
3168	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3169	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3170	 * and sysfs_put(). This result in glue_dir->sd is freed.
3171	 *
3172	 * Then the CPU2 will see a stale "empty" but still potentially used
3173	 * glue dir around in kernfs_new_node().
3174	 *
3175	 * In order to avoid this happening, we also should make sure that
3176	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3177	 * for glue_dir kobj is 1.
3178	 */
3179	ref = kref_read(&glue_dir->kref);
3180	if (!kobject_has_children(glue_dir) && !--ref)
3181		kobject_del(glue_dir);
3182	kobject_put(glue_dir);
3183	mutex_unlock(&gdp_mutex);
3184}
3185
3186static int device_add_class_symlinks(struct device *dev)
3187{
3188	struct device_node *of_node = dev_of_node(dev);
3189	int error;
3190
3191	if (of_node) {
3192		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3193		if (error)
3194			dev_warn(dev, "Error %d creating of_node link\n",error);
3195		/* An error here doesn't warrant bringing down the device */
3196	}
3197
3198	if (!dev->class)
3199		return 0;
3200
3201	error = sysfs_create_link(&dev->kobj,
3202				  &dev->class->p->subsys.kobj,
3203				  "subsystem");
3204	if (error)
3205		goto out_devnode;
3206
3207	if (dev->parent && device_is_not_partition(dev)) {
3208		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3209					  "device");
3210		if (error)
3211			goto out_subsys;
3212	}
3213
3214#ifdef CONFIG_BLOCK
3215	/* /sys/block has directories and does not need symlinks */
3216	if (sysfs_deprecated && dev->class == &block_class)
3217		return 0;
3218#endif
3219
3220	/* link in the class directory pointing to the device */
3221	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3222				  &dev->kobj, dev_name(dev));
3223	if (error)
3224		goto out_device;
3225
3226	return 0;
3227
3228out_device:
3229	sysfs_remove_link(&dev->kobj, "device");
3230
3231out_subsys:
3232	sysfs_remove_link(&dev->kobj, "subsystem");
3233out_devnode:
3234	sysfs_remove_link(&dev->kobj, "of_node");
3235	return error;
3236}
3237
3238static void device_remove_class_symlinks(struct device *dev)
3239{
3240	if (dev_of_node(dev))
3241		sysfs_remove_link(&dev->kobj, "of_node");
3242
3243	if (!dev->class)
3244		return;
3245
3246	if (dev->parent && device_is_not_partition(dev))
3247		sysfs_remove_link(&dev->kobj, "device");
3248	sysfs_remove_link(&dev->kobj, "subsystem");
3249#ifdef CONFIG_BLOCK
3250	if (sysfs_deprecated && dev->class == &block_class)
3251		return;
3252#endif
3253	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3254}
3255
3256/**
3257 * dev_set_name - set a device name
3258 * @dev: device
3259 * @fmt: format string for the device's name
3260 */
3261int dev_set_name(struct device *dev, const char *fmt, ...)
3262{
3263	va_list vargs;
3264	int err;
3265
3266	va_start(vargs, fmt);
3267	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3268	va_end(vargs);
3269	return err;
3270}
3271EXPORT_SYMBOL_GPL(dev_set_name);
3272
3273/**
3274 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3275 * @dev: device
3276 *
3277 * By default we select char/ for new entries.  Setting class->dev_obj
3278 * to NULL prevents an entry from being created.  class->dev_kobj must
3279 * be set (or cleared) before any devices are registered to the class
3280 * otherwise device_create_sys_dev_entry() and
3281 * device_remove_sys_dev_entry() will disagree about the presence of
3282 * the link.
3283 */
3284static struct kobject *device_to_dev_kobj(struct device *dev)
3285{
3286	struct kobject *kobj;
3287
3288	if (dev->class)
3289		kobj = dev->class->dev_kobj;
3290	else
3291		kobj = sysfs_dev_char_kobj;
3292
3293	return kobj;
3294}
3295
3296static int device_create_sys_dev_entry(struct device *dev)
3297{
3298	struct kobject *kobj = device_to_dev_kobj(dev);
3299	int error = 0;
3300	char devt_str[15];
3301
3302	if (kobj) {
3303		format_dev_t(devt_str, dev->devt);
3304		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3305	}
3306
3307	return error;
3308}
3309
3310static void device_remove_sys_dev_entry(struct device *dev)
3311{
3312	struct kobject *kobj = device_to_dev_kobj(dev);
3313	char devt_str[15];
3314
3315	if (kobj) {
3316		format_dev_t(devt_str, dev->devt);
3317		sysfs_remove_link(kobj, devt_str);
3318	}
3319}
3320
3321static int device_private_init(struct device *dev)
3322{
3323	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3324	if (!dev->p)
3325		return -ENOMEM;
3326	dev->p->device = dev;
3327	klist_init(&dev->p->klist_children, klist_children_get,
3328		   klist_children_put);
3329	INIT_LIST_HEAD(&dev->p->deferred_probe);
3330	return 0;
3331}
3332
3333/**
3334 * device_add - add device to device hierarchy.
3335 * @dev: device.
3336 *
3337 * This is part 2 of device_register(), though may be called
3338 * separately _iff_ device_initialize() has been called separately.
3339 *
3340 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3341 * to the global and sibling lists for the device, then
3342 * adds it to the other relevant subsystems of the driver model.
3343 *
3344 * Do not call this routine or device_register() more than once for
3345 * any device structure.  The driver model core is not designed to work
3346 * with devices that get unregistered and then spring back to life.
3347 * (Among other things, it's very hard to guarantee that all references
3348 * to the previous incarnation of @dev have been dropped.)  Allocate
3349 * and register a fresh new struct device instead.
3350 *
3351 * NOTE: _Never_ directly free @dev after calling this function, even
3352 * if it returned an error! Always use put_device() to give up your
3353 * reference instead.
3354 *
3355 * Rule of thumb is: if device_add() succeeds, you should call
3356 * device_del() when you want to get rid of it. If device_add() has
3357 * *not* succeeded, use *only* put_device() to drop the reference
3358 * count.
3359 */
3360int device_add(struct device *dev)
3361{
3362	struct device *parent;
3363	struct kobject *kobj;
3364	struct class_interface *class_intf;
3365	int error = -EINVAL;
3366	struct kobject *glue_dir = NULL;
3367
3368	dev = get_device(dev);
3369	if (!dev)
3370		goto done;
3371
3372	if (!dev->p) {
3373		error = device_private_init(dev);
3374		if (error)
3375			goto done;
3376	}
3377
3378	/*
3379	 * for statically allocated devices, which should all be converted
3380	 * some day, we need to initialize the name. We prevent reading back
3381	 * the name, and force the use of dev_name()
3382	 */
3383	if (dev->init_name) {
3384		dev_set_name(dev, "%s", dev->init_name);
3385		dev->init_name = NULL;
3386	}
3387
3388	/* subsystems can specify simple device enumeration */
3389	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3390		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3391
3392	if (!dev_name(dev)) {
3393		error = -EINVAL;
3394		goto name_error;
3395	}
3396
3397	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3398
3399	parent = get_device(dev->parent);
3400	kobj = get_device_parent(dev, parent);
3401	if (IS_ERR(kobj)) {
3402		error = PTR_ERR(kobj);
3403		goto parent_error;
3404	}
3405	if (kobj)
3406		dev->kobj.parent = kobj;
3407
3408	/* use parent numa_node */
3409	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3410		set_dev_node(dev, dev_to_node(parent));
3411
3412	/* first, register with generic layer. */
3413	/* we require the name to be set before, and pass NULL */
3414	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3415	if (error) {
3416		glue_dir = get_glue_dir(dev);
3417		goto Error;
3418	}
3419
3420	/* notify platform of device entry */
3421	device_platform_notify(dev);
 
 
3422
3423	error = device_create_file(dev, &dev_attr_uevent);
3424	if (error)
3425		goto attrError;
3426
3427	error = device_add_class_symlinks(dev);
3428	if (error)
3429		goto SymlinkError;
3430	error = device_add_attrs(dev);
3431	if (error)
3432		goto AttrsError;
3433	error = bus_add_device(dev);
3434	if (error)
3435		goto BusError;
3436	error = dpm_sysfs_add(dev);
3437	if (error)
3438		goto DPMError;
3439	device_pm_add(dev);
3440
3441	if (MAJOR(dev->devt)) {
3442		error = device_create_file(dev, &dev_attr_dev);
3443		if (error)
3444			goto DevAttrError;
3445
3446		error = device_create_sys_dev_entry(dev);
3447		if (error)
3448			goto SysEntryError;
3449
3450		devtmpfs_create_node(dev);
3451	}
3452
3453	/* Notify clients of device addition.  This call must come
3454	 * after dpm_sysfs_add() and before kobject_uevent().
3455	 */
3456	if (dev->bus)
3457		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3458					     BUS_NOTIFY_ADD_DEVICE, dev);
3459
3460	kobject_uevent(&dev->kobj, KOBJ_ADD);
3461
3462	/*
3463	 * Check if any of the other devices (consumers) have been waiting for
3464	 * this device (supplier) to be added so that they can create a device
3465	 * link to it.
3466	 *
3467	 * This needs to happen after device_pm_add() because device_link_add()
3468	 * requires the supplier be registered before it's called.
3469	 *
3470	 * But this also needs to happen before bus_probe_device() to make sure
3471	 * waiting consumers can link to it before the driver is bound to the
3472	 * device and the driver sync_state callback is called for this device.
3473	 */
3474	if (dev->fwnode && !dev->fwnode->dev) {
3475		dev->fwnode->dev = dev;
3476		fw_devlink_link_device(dev);
3477	}
3478
3479	bus_probe_device(dev);
3480
3481	/*
3482	 * If all driver registration is done and a newly added device doesn't
3483	 * match with any driver, don't block its consumers from probing in
3484	 * case the consumer device is able to operate without this supplier.
3485	 */
3486	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3487		fw_devlink_unblock_consumers(dev);
3488
3489	if (parent)
3490		klist_add_tail(&dev->p->knode_parent,
3491			       &parent->p->klist_children);
3492
3493	if (dev->class) {
3494		mutex_lock(&dev->class->p->mutex);
3495		/* tie the class to the device */
3496		klist_add_tail(&dev->p->knode_class,
3497			       &dev->class->p->klist_devices);
3498
3499		/* notify any interfaces that the device is here */
3500		list_for_each_entry(class_intf,
3501				    &dev->class->p->interfaces, node)
3502			if (class_intf->add_dev)
3503				class_intf->add_dev(dev, class_intf);
3504		mutex_unlock(&dev->class->p->mutex);
3505	}
3506done:
3507	put_device(dev);
3508	return error;
3509 SysEntryError:
3510	if (MAJOR(dev->devt))
3511		device_remove_file(dev, &dev_attr_dev);
3512 DevAttrError:
3513	device_pm_remove(dev);
3514	dpm_sysfs_remove(dev);
3515 DPMError:
3516	bus_remove_device(dev);
3517 BusError:
3518	device_remove_attrs(dev);
3519 AttrsError:
3520	device_remove_class_symlinks(dev);
3521 SymlinkError:
3522	device_remove_file(dev, &dev_attr_uevent);
3523 attrError:
3524	device_platform_notify_remove(dev);
 
3525	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3526	glue_dir = get_glue_dir(dev);
3527	kobject_del(&dev->kobj);
3528 Error:
3529	cleanup_glue_dir(dev, glue_dir);
3530parent_error:
3531	put_device(parent);
3532name_error:
3533	kfree(dev->p);
3534	dev->p = NULL;
3535	goto done;
3536}
3537EXPORT_SYMBOL_GPL(device_add);
3538
3539/**
3540 * device_register - register a device with the system.
3541 * @dev: pointer to the device structure
3542 *
3543 * This happens in two clean steps - initialize the device
3544 * and add it to the system. The two steps can be called
3545 * separately, but this is the easiest and most common.
3546 * I.e. you should only call the two helpers separately if
3547 * have a clearly defined need to use and refcount the device
3548 * before it is added to the hierarchy.
3549 *
3550 * For more information, see the kerneldoc for device_initialize()
3551 * and device_add().
3552 *
3553 * NOTE: _Never_ directly free @dev after calling this function, even
3554 * if it returned an error! Always use put_device() to give up the
3555 * reference initialized in this function instead.
3556 */
3557int device_register(struct device *dev)
3558{
3559	device_initialize(dev);
3560	return device_add(dev);
3561}
3562EXPORT_SYMBOL_GPL(device_register);
3563
3564/**
3565 * get_device - increment reference count for device.
3566 * @dev: device.
3567 *
3568 * This simply forwards the call to kobject_get(), though
3569 * we do take care to provide for the case that we get a NULL
3570 * pointer passed in.
3571 */
3572struct device *get_device(struct device *dev)
3573{
3574	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3575}
3576EXPORT_SYMBOL_GPL(get_device);
3577
3578/**
3579 * put_device - decrement reference count.
3580 * @dev: device in question.
3581 */
3582void put_device(struct device *dev)
3583{
3584	/* might_sleep(); */
3585	if (dev)
3586		kobject_put(&dev->kobj);
3587}
3588EXPORT_SYMBOL_GPL(put_device);
3589
3590bool kill_device(struct device *dev)
3591{
3592	/*
3593	 * Require the device lock and set the "dead" flag to guarantee that
3594	 * the update behavior is consistent with the other bitfields near
3595	 * it and that we cannot have an asynchronous probe routine trying
3596	 * to run while we are tearing out the bus/class/sysfs from
3597	 * underneath the device.
3598	 */
3599	device_lock_assert(dev);
3600
3601	if (dev->p->dead)
3602		return false;
3603	dev->p->dead = true;
3604	return true;
3605}
3606EXPORT_SYMBOL_GPL(kill_device);
3607
3608/**
3609 * device_del - delete device from system.
3610 * @dev: device.
3611 *
3612 * This is the first part of the device unregistration
3613 * sequence. This removes the device from the lists we control
3614 * from here, has it removed from the other driver model
3615 * subsystems it was added to in device_add(), and removes it
3616 * from the kobject hierarchy.
3617 *
3618 * NOTE: this should be called manually _iff_ device_add() was
3619 * also called manually.
3620 */
3621void device_del(struct device *dev)
3622{
3623	struct device *parent = dev->parent;
3624	struct kobject *glue_dir = NULL;
3625	struct class_interface *class_intf;
3626	unsigned int noio_flag;
3627
3628	device_lock(dev);
3629	kill_device(dev);
3630	device_unlock(dev);
3631
3632	if (dev->fwnode && dev->fwnode->dev == dev)
3633		dev->fwnode->dev = NULL;
3634
3635	/* Notify clients of device removal.  This call must come
3636	 * before dpm_sysfs_remove().
3637	 */
3638	noio_flag = memalloc_noio_save();
3639	if (dev->bus)
3640		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3641					     BUS_NOTIFY_DEL_DEVICE, dev);
3642
3643	dpm_sysfs_remove(dev);
3644	if (parent)
3645		klist_del(&dev->p->knode_parent);
3646	if (MAJOR(dev->devt)) {
3647		devtmpfs_delete_node(dev);
3648		device_remove_sys_dev_entry(dev);
3649		device_remove_file(dev, &dev_attr_dev);
3650	}
3651	if (dev->class) {
3652		device_remove_class_symlinks(dev);
3653
3654		mutex_lock(&dev->class->p->mutex);
3655		/* notify any interfaces that the device is now gone */
3656		list_for_each_entry(class_intf,
3657				    &dev->class->p->interfaces, node)
3658			if (class_intf->remove_dev)
3659				class_intf->remove_dev(dev, class_intf);
3660		/* remove the device from the class list */
3661		klist_del(&dev->p->knode_class);
3662		mutex_unlock(&dev->class->p->mutex);
3663	}
3664	device_remove_file(dev, &dev_attr_uevent);
3665	device_remove_attrs(dev);
3666	bus_remove_device(dev);
3667	device_pm_remove(dev);
3668	driver_deferred_probe_del(dev);
3669	device_platform_notify_remove(dev);
 
3670	device_links_purge(dev);
3671
3672	if (dev->bus)
3673		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3674					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3675	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3676	glue_dir = get_glue_dir(dev);
3677	kobject_del(&dev->kobj);
3678	cleanup_glue_dir(dev, glue_dir);
3679	memalloc_noio_restore(noio_flag);
3680	put_device(parent);
3681}
3682EXPORT_SYMBOL_GPL(device_del);
3683
3684/**
3685 * device_unregister - unregister device from system.
3686 * @dev: device going away.
3687 *
3688 * We do this in two parts, like we do device_register(). First,
3689 * we remove it from all the subsystems with device_del(), then
3690 * we decrement the reference count via put_device(). If that
3691 * is the final reference count, the device will be cleaned up
3692 * via device_release() above. Otherwise, the structure will
3693 * stick around until the final reference to the device is dropped.
3694 */
3695void device_unregister(struct device *dev)
3696{
3697	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3698	device_del(dev);
3699	put_device(dev);
3700}
3701EXPORT_SYMBOL_GPL(device_unregister);
3702
3703static struct device *prev_device(struct klist_iter *i)
3704{
3705	struct klist_node *n = klist_prev(i);
3706	struct device *dev = NULL;
3707	struct device_private *p;
3708
3709	if (n) {
3710		p = to_device_private_parent(n);
3711		dev = p->device;
3712	}
3713	return dev;
3714}
3715
3716static struct device *next_device(struct klist_iter *i)
3717{
3718	struct klist_node *n = klist_next(i);
3719	struct device *dev = NULL;
3720	struct device_private *p;
3721
3722	if (n) {
3723		p = to_device_private_parent(n);
3724		dev = p->device;
3725	}
3726	return dev;
3727}
3728
3729/**
3730 * device_get_devnode - path of device node file
3731 * @dev: device
3732 * @mode: returned file access mode
3733 * @uid: returned file owner
3734 * @gid: returned file group
3735 * @tmp: possibly allocated string
3736 *
3737 * Return the relative path of a possible device node.
3738 * Non-default names may need to allocate a memory to compose
3739 * a name. This memory is returned in tmp and needs to be
3740 * freed by the caller.
3741 */
3742const char *device_get_devnode(struct device *dev,
3743			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3744			       const char **tmp)
3745{
3746	char *s;
3747
3748	*tmp = NULL;
3749
3750	/* the device type may provide a specific name */
3751	if (dev->type && dev->type->devnode)
3752		*tmp = dev->type->devnode(dev, mode, uid, gid);
3753	if (*tmp)
3754		return *tmp;
3755
3756	/* the class may provide a specific name */
3757	if (dev->class && dev->class->devnode)
3758		*tmp = dev->class->devnode(dev, mode);
3759	if (*tmp)
3760		return *tmp;
3761
3762	/* return name without allocation, tmp == NULL */
3763	if (strchr(dev_name(dev), '!') == NULL)
3764		return dev_name(dev);
3765
3766	/* replace '!' in the name with '/' */
3767	s = kstrdup(dev_name(dev), GFP_KERNEL);
3768	if (!s)
3769		return NULL;
3770	strreplace(s, '!', '/');
3771	return *tmp = s;
3772}
3773
3774/**
3775 * device_for_each_child - device child iterator.
3776 * @parent: parent struct device.
3777 * @fn: function to be called for each device.
3778 * @data: data for the callback.
3779 *
3780 * Iterate over @parent's child devices, and call @fn for each,
3781 * passing it @data.
3782 *
3783 * We check the return of @fn each time. If it returns anything
3784 * other than 0, we break out and return that value.
3785 */
3786int device_for_each_child(struct device *parent, void *data,
3787			  int (*fn)(struct device *dev, void *data))
3788{
3789	struct klist_iter i;
3790	struct device *child;
3791	int error = 0;
3792
3793	if (!parent->p)
3794		return 0;
3795
3796	klist_iter_init(&parent->p->klist_children, &i);
3797	while (!error && (child = next_device(&i)))
3798		error = fn(child, data);
3799	klist_iter_exit(&i);
3800	return error;
3801}
3802EXPORT_SYMBOL_GPL(device_for_each_child);
3803
3804/**
3805 * device_for_each_child_reverse - device child iterator in reversed order.
3806 * @parent: parent struct device.
3807 * @fn: function to be called for each device.
3808 * @data: data for the callback.
3809 *
3810 * Iterate over @parent's child devices, and call @fn for each,
3811 * passing it @data.
3812 *
3813 * We check the return of @fn each time. If it returns anything
3814 * other than 0, we break out and return that value.
3815 */
3816int device_for_each_child_reverse(struct device *parent, void *data,
3817				  int (*fn)(struct device *dev, void *data))
3818{
3819	struct klist_iter i;
3820	struct device *child;
3821	int error = 0;
3822
3823	if (!parent->p)
3824		return 0;
3825
3826	klist_iter_init(&parent->p->klist_children, &i);
3827	while ((child = prev_device(&i)) && !error)
3828		error = fn(child, data);
3829	klist_iter_exit(&i);
3830	return error;
3831}
3832EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3833
3834/**
3835 * device_find_child - device iterator for locating a particular device.
3836 * @parent: parent struct device
3837 * @match: Callback function to check device
3838 * @data: Data to pass to match function
3839 *
3840 * This is similar to the device_for_each_child() function above, but it
3841 * returns a reference to a device that is 'found' for later use, as
3842 * determined by the @match callback.
3843 *
3844 * The callback should return 0 if the device doesn't match and non-zero
3845 * if it does.  If the callback returns non-zero and a reference to the
3846 * current device can be obtained, this function will return to the caller
3847 * and not iterate over any more devices.
3848 *
3849 * NOTE: you will need to drop the reference with put_device() after use.
3850 */
3851struct device *device_find_child(struct device *parent, void *data,
3852				 int (*match)(struct device *dev, void *data))
3853{
3854	struct klist_iter i;
3855	struct device *child;
3856
3857	if (!parent)
3858		return NULL;
3859
3860	klist_iter_init(&parent->p->klist_children, &i);
3861	while ((child = next_device(&i)))
3862		if (match(child, data) && get_device(child))
3863			break;
3864	klist_iter_exit(&i);
3865	return child;
3866}
3867EXPORT_SYMBOL_GPL(device_find_child);
3868
3869/**
3870 * device_find_child_by_name - device iterator for locating a child device.
3871 * @parent: parent struct device
3872 * @name: name of the child device
3873 *
3874 * This is similar to the device_find_child() function above, but it
3875 * returns a reference to a device that has the name @name.
3876 *
3877 * NOTE: you will need to drop the reference with put_device() after use.
3878 */
3879struct device *device_find_child_by_name(struct device *parent,
3880					 const char *name)
3881{
3882	struct klist_iter i;
3883	struct device *child;
3884
3885	if (!parent)
3886		return NULL;
3887
3888	klist_iter_init(&parent->p->klist_children, &i);
3889	while ((child = next_device(&i)))
3890		if (sysfs_streq(dev_name(child), name) && get_device(child))
3891			break;
3892	klist_iter_exit(&i);
3893	return child;
3894}
3895EXPORT_SYMBOL_GPL(device_find_child_by_name);
3896
3897static int match_any(struct device *dev, void *unused)
3898{
3899	return 1;
3900}
3901
3902/**
3903 * device_find_any_child - device iterator for locating a child device, if any.
3904 * @parent: parent struct device
3905 *
3906 * This is similar to the device_find_child() function above, but it
3907 * returns a reference to a child device, if any.
3908 *
3909 * NOTE: you will need to drop the reference with put_device() after use.
3910 */
3911struct device *device_find_any_child(struct device *parent)
3912{
3913	return device_find_child(parent, NULL, match_any);
3914}
3915EXPORT_SYMBOL_GPL(device_find_any_child);
3916
3917int __init devices_init(void)
3918{
3919	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3920	if (!devices_kset)
3921		return -ENOMEM;
3922	dev_kobj = kobject_create_and_add("dev", NULL);
3923	if (!dev_kobj)
3924		goto dev_kobj_err;
3925	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3926	if (!sysfs_dev_block_kobj)
3927		goto block_kobj_err;
3928	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3929	if (!sysfs_dev_char_kobj)
3930		goto char_kobj_err;
3931
3932	return 0;
3933
3934 char_kobj_err:
3935	kobject_put(sysfs_dev_block_kobj);
3936 block_kobj_err:
3937	kobject_put(dev_kobj);
3938 dev_kobj_err:
3939	kset_unregister(devices_kset);
3940	return -ENOMEM;
3941}
3942
3943static int device_check_offline(struct device *dev, void *not_used)
3944{
3945	int ret;
3946
3947	ret = device_for_each_child(dev, NULL, device_check_offline);
3948	if (ret)
3949		return ret;
3950
3951	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3952}
3953
3954/**
3955 * device_offline - Prepare the device for hot-removal.
3956 * @dev: Device to be put offline.
3957 *
3958 * Execute the device bus type's .offline() callback, if present, to prepare
3959 * the device for a subsequent hot-removal.  If that succeeds, the device must
3960 * not be used until either it is removed or its bus type's .online() callback
3961 * is executed.
3962 *
3963 * Call under device_hotplug_lock.
3964 */
3965int device_offline(struct device *dev)
3966{
3967	int ret;
3968
3969	if (dev->offline_disabled)
3970		return -EPERM;
3971
3972	ret = device_for_each_child(dev, NULL, device_check_offline);
3973	if (ret)
3974		return ret;
3975
3976	device_lock(dev);
3977	if (device_supports_offline(dev)) {
3978		if (dev->offline) {
3979			ret = 1;
3980		} else {
3981			ret = dev->bus->offline(dev);
3982			if (!ret) {
3983				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3984				dev->offline = true;
3985			}
3986		}
3987	}
3988	device_unlock(dev);
3989
3990	return ret;
3991}
3992
3993/**
3994 * device_online - Put the device back online after successful device_offline().
3995 * @dev: Device to be put back online.
3996 *
3997 * If device_offline() has been successfully executed for @dev, but the device
3998 * has not been removed subsequently, execute its bus type's .online() callback
3999 * to indicate that the device can be used again.
4000 *
4001 * Call under device_hotplug_lock.
4002 */
4003int device_online(struct device *dev)
4004{
4005	int ret = 0;
4006
4007	device_lock(dev);
4008	if (device_supports_offline(dev)) {
4009		if (dev->offline) {
4010			ret = dev->bus->online(dev);
4011			if (!ret) {
4012				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4013				dev->offline = false;
4014			}
4015		} else {
4016			ret = 1;
4017		}
4018	}
4019	device_unlock(dev);
4020
4021	return ret;
4022}
4023
4024struct root_device {
4025	struct device dev;
4026	struct module *owner;
4027};
4028
4029static inline struct root_device *to_root_device(struct device *d)
4030{
4031	return container_of(d, struct root_device, dev);
4032}
4033
4034static void root_device_release(struct device *dev)
4035{
4036	kfree(to_root_device(dev));
4037}
4038
4039/**
4040 * __root_device_register - allocate and register a root device
4041 * @name: root device name
4042 * @owner: owner module of the root device, usually THIS_MODULE
4043 *
4044 * This function allocates a root device and registers it
4045 * using device_register(). In order to free the returned
4046 * device, use root_device_unregister().
4047 *
4048 * Root devices are dummy devices which allow other devices
4049 * to be grouped under /sys/devices. Use this function to
4050 * allocate a root device and then use it as the parent of
4051 * any device which should appear under /sys/devices/{name}
4052 *
4053 * The /sys/devices/{name} directory will also contain a
4054 * 'module' symlink which points to the @owner directory
4055 * in sysfs.
4056 *
4057 * Returns &struct device pointer on success, or ERR_PTR() on error.
4058 *
4059 * Note: You probably want to use root_device_register().
4060 */
4061struct device *__root_device_register(const char *name, struct module *owner)
4062{
4063	struct root_device *root;
4064	int err = -ENOMEM;
4065
4066	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4067	if (!root)
4068		return ERR_PTR(err);
4069
4070	err = dev_set_name(&root->dev, "%s", name);
4071	if (err) {
4072		kfree(root);
4073		return ERR_PTR(err);
4074	}
4075
4076	root->dev.release = root_device_release;
4077
4078	err = device_register(&root->dev);
4079	if (err) {
4080		put_device(&root->dev);
4081		return ERR_PTR(err);
4082	}
4083
4084#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4085	if (owner) {
4086		struct module_kobject *mk = &owner->mkobj;
4087
4088		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4089		if (err) {
4090			device_unregister(&root->dev);
4091			return ERR_PTR(err);
4092		}
4093		root->owner = owner;
4094	}
4095#endif
4096
4097	return &root->dev;
4098}
4099EXPORT_SYMBOL_GPL(__root_device_register);
4100
4101/**
4102 * root_device_unregister - unregister and free a root device
4103 * @dev: device going away
4104 *
4105 * This function unregisters and cleans up a device that was created by
4106 * root_device_register().
4107 */
4108void root_device_unregister(struct device *dev)
4109{
4110	struct root_device *root = to_root_device(dev);
4111
4112	if (root->owner)
4113		sysfs_remove_link(&root->dev.kobj, "module");
4114
4115	device_unregister(dev);
4116}
4117EXPORT_SYMBOL_GPL(root_device_unregister);
4118
4119
4120static void device_create_release(struct device *dev)
4121{
4122	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4123	kfree(dev);
4124}
4125
4126static __printf(6, 0) struct device *
4127device_create_groups_vargs(struct class *class, struct device *parent,
4128			   dev_t devt, void *drvdata,
4129			   const struct attribute_group **groups,
4130			   const char *fmt, va_list args)
4131{
4132	struct device *dev = NULL;
4133	int retval = -ENODEV;
4134
4135	if (IS_ERR_OR_NULL(class))
4136		goto error;
4137
4138	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4139	if (!dev) {
4140		retval = -ENOMEM;
4141		goto error;
4142	}
4143
4144	device_initialize(dev);
4145	dev->devt = devt;
4146	dev->class = class;
4147	dev->parent = parent;
4148	dev->groups = groups;
4149	dev->release = device_create_release;
4150	dev_set_drvdata(dev, drvdata);
4151
4152	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4153	if (retval)
4154		goto error;
4155
4156	retval = device_add(dev);
4157	if (retval)
4158		goto error;
4159
4160	return dev;
4161
4162error:
4163	put_device(dev);
4164	return ERR_PTR(retval);
4165}
4166
4167/**
4168 * device_create - creates a device and registers it with sysfs
4169 * @class: pointer to the struct class that this device should be registered to
4170 * @parent: pointer to the parent struct device of this new device, if any
4171 * @devt: the dev_t for the char device to be added
4172 * @drvdata: the data to be added to the device for callbacks
4173 * @fmt: string for the device's name
4174 *
4175 * This function can be used by char device classes.  A struct device
4176 * will be created in sysfs, registered to the specified class.
4177 *
4178 * A "dev" file will be created, showing the dev_t for the device, if
4179 * the dev_t is not 0,0.
4180 * If a pointer to a parent struct device is passed in, the newly created
4181 * struct device will be a child of that device in sysfs.
4182 * The pointer to the struct device will be returned from the call.
4183 * Any further sysfs files that might be required can be created using this
4184 * pointer.
4185 *
4186 * Returns &struct device pointer on success, or ERR_PTR() on error.
4187 *
4188 * Note: the struct class passed to this function must have previously
4189 * been created with a call to class_create().
4190 */
4191struct device *device_create(struct class *class, struct device *parent,
4192			     dev_t devt, void *drvdata, const char *fmt, ...)
4193{
4194	va_list vargs;
4195	struct device *dev;
4196
4197	va_start(vargs, fmt);
4198	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4199					  fmt, vargs);
4200	va_end(vargs);
4201	return dev;
4202}
4203EXPORT_SYMBOL_GPL(device_create);
4204
4205/**
4206 * device_create_with_groups - creates a device and registers it with sysfs
4207 * @class: pointer to the struct class that this device should be registered to
4208 * @parent: pointer to the parent struct device of this new device, if any
4209 * @devt: the dev_t for the char device to be added
4210 * @drvdata: the data to be added to the device for callbacks
4211 * @groups: NULL-terminated list of attribute groups to be created
4212 * @fmt: string for the device's name
4213 *
4214 * This function can be used by char device classes.  A struct device
4215 * will be created in sysfs, registered to the specified class.
4216 * Additional attributes specified in the groups parameter will also
4217 * be created automatically.
4218 *
4219 * A "dev" file will be created, showing the dev_t for the device, if
4220 * the dev_t is not 0,0.
4221 * If a pointer to a parent struct device is passed in, the newly created
4222 * struct device will be a child of that device in sysfs.
4223 * The pointer to the struct device will be returned from the call.
4224 * Any further sysfs files that might be required can be created using this
4225 * pointer.
4226 *
4227 * Returns &struct device pointer on success, or ERR_PTR() on error.
4228 *
4229 * Note: the struct class passed to this function must have previously
4230 * been created with a call to class_create().
4231 */
4232struct device *device_create_with_groups(struct class *class,
4233					 struct device *parent, dev_t devt,
4234					 void *drvdata,
4235					 const struct attribute_group **groups,
4236					 const char *fmt, ...)
4237{
4238	va_list vargs;
4239	struct device *dev;
4240
4241	va_start(vargs, fmt);
4242	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4243					 fmt, vargs);
4244	va_end(vargs);
4245	return dev;
4246}
4247EXPORT_SYMBOL_GPL(device_create_with_groups);
4248
4249/**
4250 * device_destroy - removes a device that was created with device_create()
4251 * @class: pointer to the struct class that this device was registered with
4252 * @devt: the dev_t of the device that was previously registered
4253 *
4254 * This call unregisters and cleans up a device that was created with a
4255 * call to device_create().
4256 */
4257void device_destroy(struct class *class, dev_t devt)
4258{
4259	struct device *dev;
4260
4261	dev = class_find_device_by_devt(class, devt);
4262	if (dev) {
4263		put_device(dev);
4264		device_unregister(dev);
4265	}
4266}
4267EXPORT_SYMBOL_GPL(device_destroy);
4268
4269/**
4270 * device_rename - renames a device
4271 * @dev: the pointer to the struct device to be renamed
4272 * @new_name: the new name of the device
4273 *
4274 * It is the responsibility of the caller to provide mutual
4275 * exclusion between two different calls of device_rename
4276 * on the same device to ensure that new_name is valid and
4277 * won't conflict with other devices.
4278 *
4279 * Note: Don't call this function.  Currently, the networking layer calls this
4280 * function, but that will change.  The following text from Kay Sievers offers
4281 * some insight:
4282 *
4283 * Renaming devices is racy at many levels, symlinks and other stuff are not
4284 * replaced atomically, and you get a "move" uevent, but it's not easy to
4285 * connect the event to the old and new device. Device nodes are not renamed at
4286 * all, there isn't even support for that in the kernel now.
4287 *
4288 * In the meantime, during renaming, your target name might be taken by another
4289 * driver, creating conflicts. Or the old name is taken directly after you
4290 * renamed it -- then you get events for the same DEVPATH, before you even see
4291 * the "move" event. It's just a mess, and nothing new should ever rely on
4292 * kernel device renaming. Besides that, it's not even implemented now for
4293 * other things than (driver-core wise very simple) network devices.
4294 *
4295 * We are currently about to change network renaming in udev to completely
4296 * disallow renaming of devices in the same namespace as the kernel uses,
4297 * because we can't solve the problems properly, that arise with swapping names
4298 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4299 * be allowed to some other name than eth[0-9]*, for the aforementioned
4300 * reasons.
4301 *
4302 * Make up a "real" name in the driver before you register anything, or add
4303 * some other attributes for userspace to find the device, or use udev to add
4304 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4305 * don't even want to get into that and try to implement the missing pieces in
4306 * the core. We really have other pieces to fix in the driver core mess. :)
4307 */
4308int device_rename(struct device *dev, const char *new_name)
4309{
4310	struct kobject *kobj = &dev->kobj;
4311	char *old_device_name = NULL;
4312	int error;
4313
4314	dev = get_device(dev);
4315	if (!dev)
4316		return -EINVAL;
4317
4318	dev_dbg(dev, "renaming to %s\n", new_name);
4319
4320	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4321	if (!old_device_name) {
4322		error = -ENOMEM;
4323		goto out;
4324	}
4325
4326	if (dev->class) {
4327		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4328					     kobj, old_device_name,
4329					     new_name, kobject_namespace(kobj));
4330		if (error)
4331			goto out;
4332	}
4333
4334	error = kobject_rename(kobj, new_name);
4335	if (error)
4336		goto out;
4337
4338out:
4339	put_device(dev);
4340
4341	kfree(old_device_name);
4342
4343	return error;
4344}
4345EXPORT_SYMBOL_GPL(device_rename);
4346
4347static int device_move_class_links(struct device *dev,
4348				   struct device *old_parent,
4349				   struct device *new_parent)
4350{
4351	int error = 0;
4352
4353	if (old_parent)
4354		sysfs_remove_link(&dev->kobj, "device");
4355	if (new_parent)
4356		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4357					  "device");
4358	return error;
4359}
4360
4361/**
4362 * device_move - moves a device to a new parent
4363 * @dev: the pointer to the struct device to be moved
4364 * @new_parent: the new parent of the device (can be NULL)
4365 * @dpm_order: how to reorder the dpm_list
4366 */
4367int device_move(struct device *dev, struct device *new_parent,
4368		enum dpm_order dpm_order)
4369{
4370	int error;
4371	struct device *old_parent;
4372	struct kobject *new_parent_kobj;
4373
4374	dev = get_device(dev);
4375	if (!dev)
4376		return -EINVAL;
4377
4378	device_pm_lock();
4379	new_parent = get_device(new_parent);
4380	new_parent_kobj = get_device_parent(dev, new_parent);
4381	if (IS_ERR(new_parent_kobj)) {
4382		error = PTR_ERR(new_parent_kobj);
4383		put_device(new_parent);
4384		goto out;
4385	}
4386
4387	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4388		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4389	error = kobject_move(&dev->kobj, new_parent_kobj);
4390	if (error) {
4391		cleanup_glue_dir(dev, new_parent_kobj);
4392		put_device(new_parent);
4393		goto out;
4394	}
4395	old_parent = dev->parent;
4396	dev->parent = new_parent;
4397	if (old_parent)
4398		klist_remove(&dev->p->knode_parent);
4399	if (new_parent) {
4400		klist_add_tail(&dev->p->knode_parent,
4401			       &new_parent->p->klist_children);
4402		set_dev_node(dev, dev_to_node(new_parent));
4403	}
4404
4405	if (dev->class) {
4406		error = device_move_class_links(dev, old_parent, new_parent);
4407		if (error) {
4408			/* We ignore errors on cleanup since we're hosed anyway... */
4409			device_move_class_links(dev, new_parent, old_parent);
4410			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4411				if (new_parent)
4412					klist_remove(&dev->p->knode_parent);
4413				dev->parent = old_parent;
4414				if (old_parent) {
4415					klist_add_tail(&dev->p->knode_parent,
4416						       &old_parent->p->klist_children);
4417					set_dev_node(dev, dev_to_node(old_parent));
4418				}
4419			}
4420			cleanup_glue_dir(dev, new_parent_kobj);
4421			put_device(new_parent);
4422			goto out;
4423		}
4424	}
4425	switch (dpm_order) {
4426	case DPM_ORDER_NONE:
4427		break;
4428	case DPM_ORDER_DEV_AFTER_PARENT:
4429		device_pm_move_after(dev, new_parent);
4430		devices_kset_move_after(dev, new_parent);
4431		break;
4432	case DPM_ORDER_PARENT_BEFORE_DEV:
4433		device_pm_move_before(new_parent, dev);
4434		devices_kset_move_before(new_parent, dev);
4435		break;
4436	case DPM_ORDER_DEV_LAST:
4437		device_pm_move_last(dev);
4438		devices_kset_move_last(dev);
4439		break;
4440	}
4441
4442	put_device(old_parent);
4443out:
4444	device_pm_unlock();
4445	put_device(dev);
4446	return error;
4447}
4448EXPORT_SYMBOL_GPL(device_move);
4449
4450static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4451				     kgid_t kgid)
4452{
4453	struct kobject *kobj = &dev->kobj;
4454	struct class *class = dev->class;
4455	const struct device_type *type = dev->type;
4456	int error;
4457
4458	if (class) {
4459		/*
4460		 * Change the device groups of the device class for @dev to
4461		 * @kuid/@kgid.
4462		 */
4463		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4464						  kgid);
4465		if (error)
4466			return error;
4467	}
4468
4469	if (type) {
4470		/*
4471		 * Change the device groups of the device type for @dev to
4472		 * @kuid/@kgid.
4473		 */
4474		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4475						  kgid);
4476		if (error)
4477			return error;
4478	}
4479
4480	/* Change the device groups of @dev to @kuid/@kgid. */
4481	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4482	if (error)
4483		return error;
4484
4485	if (device_supports_offline(dev) && !dev->offline_disabled) {
4486		/* Change online device attributes of @dev to @kuid/@kgid. */
4487		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4488						kuid, kgid);
4489		if (error)
4490			return error;
4491	}
4492
4493	return 0;
4494}
4495
4496/**
4497 * device_change_owner - change the owner of an existing device.
4498 * @dev: device.
4499 * @kuid: new owner's kuid
4500 * @kgid: new owner's kgid
4501 *
4502 * This changes the owner of @dev and its corresponding sysfs entries to
4503 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4504 * core.
4505 *
4506 * Returns 0 on success or error code on failure.
4507 */
4508int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4509{
4510	int error;
4511	struct kobject *kobj = &dev->kobj;
4512
4513	dev = get_device(dev);
4514	if (!dev)
4515		return -EINVAL;
4516
4517	/*
4518	 * Change the kobject and the default attributes and groups of the
4519	 * ktype associated with it to @kuid/@kgid.
4520	 */
4521	error = sysfs_change_owner(kobj, kuid, kgid);
4522	if (error)
4523		goto out;
4524
4525	/*
4526	 * Change the uevent file for @dev to the new owner. The uevent file
4527	 * was created in a separate step when @dev got added and we mirror
4528	 * that step here.
4529	 */
4530	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4531					kgid);
4532	if (error)
4533		goto out;
4534
4535	/*
4536	 * Change the device groups, the device groups associated with the
4537	 * device class, and the groups associated with the device type of @dev
4538	 * to @kuid/@kgid.
4539	 */
4540	error = device_attrs_change_owner(dev, kuid, kgid);
4541	if (error)
4542		goto out;
4543
4544	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4545	if (error)
4546		goto out;
4547
4548#ifdef CONFIG_BLOCK
4549	if (sysfs_deprecated && dev->class == &block_class)
4550		goto out;
4551#endif
4552
4553	/*
4554	 * Change the owner of the symlink located in the class directory of
4555	 * the device class associated with @dev which points to the actual
4556	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4557	 * symlink shows the same permissions as its target.
4558	 */
4559	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4560					dev_name(dev), kuid, kgid);
4561	if (error)
4562		goto out;
4563
4564out:
4565	put_device(dev);
4566	return error;
4567}
4568EXPORT_SYMBOL_GPL(device_change_owner);
4569
4570/**
4571 * device_shutdown - call ->shutdown() on each device to shutdown.
4572 */
4573void device_shutdown(void)
4574{
4575	struct device *dev, *parent;
4576
4577	wait_for_device_probe();
4578	device_block_probing();
4579
4580	cpufreq_suspend();
4581
4582	spin_lock(&devices_kset->list_lock);
4583	/*
4584	 * Walk the devices list backward, shutting down each in turn.
4585	 * Beware that device unplug events may also start pulling
4586	 * devices offline, even as the system is shutting down.
4587	 */
4588	while (!list_empty(&devices_kset->list)) {
4589		dev = list_entry(devices_kset->list.prev, struct device,
4590				kobj.entry);
4591
4592		/*
4593		 * hold reference count of device's parent to
4594		 * prevent it from being freed because parent's
4595		 * lock is to be held
4596		 */
4597		parent = get_device(dev->parent);
4598		get_device(dev);
4599		/*
4600		 * Make sure the device is off the kset list, in the
4601		 * event that dev->*->shutdown() doesn't remove it.
4602		 */
4603		list_del_init(&dev->kobj.entry);
4604		spin_unlock(&devices_kset->list_lock);
4605
4606		/* hold lock to avoid race with probe/release */
4607		if (parent)
4608			device_lock(parent);
4609		device_lock(dev);
4610
4611		/* Don't allow any more runtime suspends */
4612		pm_runtime_get_noresume(dev);
4613		pm_runtime_barrier(dev);
4614
4615		if (dev->class && dev->class->shutdown_pre) {
4616			if (initcall_debug)
4617				dev_info(dev, "shutdown_pre\n");
4618			dev->class->shutdown_pre(dev);
4619		}
4620		if (dev->bus && dev->bus->shutdown) {
4621			if (initcall_debug)
4622				dev_info(dev, "shutdown\n");
4623			dev->bus->shutdown(dev);
4624		} else if (dev->driver && dev->driver->shutdown) {
4625			if (initcall_debug)
4626				dev_info(dev, "shutdown\n");
4627			dev->driver->shutdown(dev);
4628		}
4629
4630		device_unlock(dev);
4631		if (parent)
4632			device_unlock(parent);
4633
4634		put_device(dev);
4635		put_device(parent);
4636
4637		spin_lock(&devices_kset->list_lock);
4638	}
4639	spin_unlock(&devices_kset->list_lock);
4640}
4641
4642/*
4643 * Device logging functions
4644 */
4645
4646#ifdef CONFIG_PRINTK
4647static void
4648set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4649{
4650	const char *subsys;
4651
4652	memset(dev_info, 0, sizeof(*dev_info));
4653
4654	if (dev->class)
4655		subsys = dev->class->name;
4656	else if (dev->bus)
4657		subsys = dev->bus->name;
4658	else
4659		return;
4660
4661	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
 
 
4662
4663	/*
4664	 * Add device identifier DEVICE=:
4665	 *   b12:8         block dev_t
4666	 *   c127:3        char dev_t
4667	 *   n8            netdev ifindex
4668	 *   +sound:card0  subsystem:devname
4669	 */
4670	if (MAJOR(dev->devt)) {
4671		char c;
4672
4673		if (strcmp(subsys, "block") == 0)
4674			c = 'b';
4675		else
4676			c = 'c';
4677
4678		snprintf(dev_info->device, sizeof(dev_info->device),
4679			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
 
4680	} else if (strcmp(subsys, "net") == 0) {
4681		struct net_device *net = to_net_dev(dev);
4682
4683		snprintf(dev_info->device, sizeof(dev_info->device),
4684			 "n%u", net->ifindex);
 
4685	} else {
4686		snprintf(dev_info->device, sizeof(dev_info->device),
4687			 "+%s:%s", subsys, dev_name(dev));
 
4688	}
 
 
 
 
 
 
 
 
 
4689}
4690
4691int dev_vprintk_emit(int level, const struct device *dev,
4692		     const char *fmt, va_list args)
4693{
4694	struct dev_printk_info dev_info;
 
4695
4696	set_dev_info(dev, &dev_info);
4697
4698	return vprintk_emit(0, level, &dev_info, fmt, args);
4699}
4700EXPORT_SYMBOL(dev_vprintk_emit);
4701
4702int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4703{
4704	va_list args;
4705	int r;
4706
4707	va_start(args, fmt);
4708
4709	r = dev_vprintk_emit(level, dev, fmt, args);
4710
4711	va_end(args);
4712
4713	return r;
4714}
4715EXPORT_SYMBOL(dev_printk_emit);
4716
4717static void __dev_printk(const char *level, const struct device *dev,
4718			struct va_format *vaf)
4719{
4720	if (dev)
4721		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4722				dev_driver_string(dev), dev_name(dev), vaf);
4723	else
4724		printk("%s(NULL device *): %pV", level, vaf);
4725}
4726
4727void _dev_printk(const char *level, const struct device *dev,
4728		 const char *fmt, ...)
4729{
4730	struct va_format vaf;
4731	va_list args;
4732
4733	va_start(args, fmt);
4734
4735	vaf.fmt = fmt;
4736	vaf.va = &args;
4737
4738	__dev_printk(level, dev, &vaf);
4739
4740	va_end(args);
4741}
4742EXPORT_SYMBOL(_dev_printk);
4743
4744#define define_dev_printk_level(func, kern_level)		\
4745void func(const struct device *dev, const char *fmt, ...)	\
4746{								\
4747	struct va_format vaf;					\
4748	va_list args;						\
4749								\
4750	va_start(args, fmt);					\
4751								\
4752	vaf.fmt = fmt;						\
4753	vaf.va = &args;						\
4754								\
4755	__dev_printk(kern_level, dev, &vaf);			\
4756								\
4757	va_end(args);						\
4758}								\
4759EXPORT_SYMBOL(func);
4760
4761define_dev_printk_level(_dev_emerg, KERN_EMERG);
4762define_dev_printk_level(_dev_alert, KERN_ALERT);
4763define_dev_printk_level(_dev_crit, KERN_CRIT);
4764define_dev_printk_level(_dev_err, KERN_ERR);
4765define_dev_printk_level(_dev_warn, KERN_WARNING);
4766define_dev_printk_level(_dev_notice, KERN_NOTICE);
4767define_dev_printk_level(_dev_info, KERN_INFO);
4768
4769#endif
4770
4771/**
4772 * dev_err_probe - probe error check and log helper
4773 * @dev: the pointer to the struct device
4774 * @err: error value to test
4775 * @fmt: printf-style format string
4776 * @...: arguments as specified in the format string
4777 *
4778 * This helper implements common pattern present in probe functions for error
4779 * checking: print debug or error message depending if the error value is
4780 * -EPROBE_DEFER and propagate error upwards.
4781 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4782 * checked later by reading devices_deferred debugfs attribute.
4783 * It replaces code sequence::
4784 *
4785 * 	if (err != -EPROBE_DEFER)
4786 * 		dev_err(dev, ...);
4787 * 	else
4788 * 		dev_dbg(dev, ...);
4789 * 	return err;
4790 *
4791 * with::
4792 *
4793 * 	return dev_err_probe(dev, err, ...);
4794 *
4795 * Note that it is deemed acceptable to use this function for error
4796 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4797 * The benefit compared to a normal dev_err() is the standardized format
4798 * of the error code and the fact that the error code is returned.
4799 *
4800 * Returns @err.
4801 *
4802 */
4803int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4804{
4805	struct va_format vaf;
4806	va_list args;
4807
4808	va_start(args, fmt);
4809	vaf.fmt = fmt;
4810	vaf.va = &args;
4811
4812	if (err != -EPROBE_DEFER) {
4813		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4814	} else {
4815		device_set_deferred_probe_reason(dev, &vaf);
4816		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4817	}
4818
4819	va_end(args);
4820
4821	return err;
4822}
4823EXPORT_SYMBOL_GPL(dev_err_probe);
4824
4825static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4826{
4827	return fwnode && !IS_ERR(fwnode->secondary);
4828}
4829
4830/**
4831 * set_primary_fwnode - Change the primary firmware node of a given device.
4832 * @dev: Device to handle.
4833 * @fwnode: New primary firmware node of the device.
4834 *
4835 * Set the device's firmware node pointer to @fwnode, but if a secondary
4836 * firmware node of the device is present, preserve it.
4837 *
4838 * Valid fwnode cases are:
4839 *  - primary --> secondary --> -ENODEV
4840 *  - primary --> NULL
4841 *  - secondary --> -ENODEV
4842 *  - NULL
4843 */
4844void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4845{
4846	struct device *parent = dev->parent;
4847	struct fwnode_handle *fn = dev->fwnode;
4848
4849	if (fwnode) {
4850		if (fwnode_is_primary(fn))
4851			fn = fn->secondary;
4852
4853		if (fn) {
4854			WARN_ON(fwnode->secondary);
4855			fwnode->secondary = fn;
4856		}
4857		dev->fwnode = fwnode;
4858	} else {
4859		if (fwnode_is_primary(fn)) {
4860			dev->fwnode = fn->secondary;
4861			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4862			if (!(parent && fn == parent->fwnode))
4863				fn->secondary = NULL;
4864		} else {
4865			dev->fwnode = NULL;
4866		}
4867	}
4868}
4869EXPORT_SYMBOL_GPL(set_primary_fwnode);
4870
4871/**
4872 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4873 * @dev: Device to handle.
4874 * @fwnode: New secondary firmware node of the device.
4875 *
4876 * If a primary firmware node of the device is present, set its secondary
4877 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4878 * @fwnode.
4879 */
4880void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4881{
4882	if (fwnode)
4883		fwnode->secondary = ERR_PTR(-ENODEV);
4884
4885	if (fwnode_is_primary(dev->fwnode))
4886		dev->fwnode->secondary = fwnode;
4887	else
4888		dev->fwnode = fwnode;
4889}
4890EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4891
4892/**
4893 * device_set_of_node_from_dev - reuse device-tree node of another device
4894 * @dev: device whose device-tree node is being set
4895 * @dev2: device whose device-tree node is being reused
4896 *
4897 * Takes another reference to the new device-tree node after first dropping
4898 * any reference held to the old node.
4899 */
4900void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4901{
4902	of_node_put(dev->of_node);
4903	dev->of_node = of_node_get(dev2->of_node);
4904	dev->of_node_reused = true;
4905}
4906EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4907
4908void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4909{
4910	dev->fwnode = fwnode;
4911	dev->of_node = to_of_node(fwnode);
4912}
4913EXPORT_SYMBOL_GPL(device_set_node);
4914
4915int device_match_name(struct device *dev, const void *name)
4916{
4917	return sysfs_streq(dev_name(dev), name);
4918}
4919EXPORT_SYMBOL_GPL(device_match_name);
4920
4921int device_match_of_node(struct device *dev, const void *np)
4922{
4923	return dev->of_node == np;
4924}
4925EXPORT_SYMBOL_GPL(device_match_of_node);
4926
4927int device_match_fwnode(struct device *dev, const void *fwnode)
4928{
4929	return dev_fwnode(dev) == fwnode;
4930}
4931EXPORT_SYMBOL_GPL(device_match_fwnode);
4932
4933int device_match_devt(struct device *dev, const void *pdevt)
4934{
4935	return dev->devt == *(dev_t *)pdevt;
4936}
4937EXPORT_SYMBOL_GPL(device_match_devt);
4938
4939int device_match_acpi_dev(struct device *dev, const void *adev)
4940{
4941	return ACPI_COMPANION(dev) == adev;
4942}
4943EXPORT_SYMBOL(device_match_acpi_dev);
4944
4945int device_match_acpi_handle(struct device *dev, const void *handle)
4946{
4947	return ACPI_HANDLE(dev) == handle;
4948}
4949EXPORT_SYMBOL(device_match_acpi_handle);
4950
4951int device_match_any(struct device *dev, const void *unused)
4952{
4953	return 1;
4954}
4955EXPORT_SYMBOL_GPL(device_match_any);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
 
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
 
 
  29#include <linux/sysfs.h>
 
  30
  31#include "base.h"
 
  32#include "power/power.h"
  33
  34#ifdef CONFIG_SYSFS_DEPRECATED
  35#ifdef CONFIG_SYSFS_DEPRECATED_V2
  36long sysfs_deprecated = 1;
  37#else
  38long sysfs_deprecated = 0;
  39#endif
  40static int __init sysfs_deprecated_setup(char *arg)
  41{
  42	return kstrtol(arg, 10, &sysfs_deprecated);
  43}
  44early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45#endif
  46
  47/* Device links support. */
  48static LIST_HEAD(wait_for_suppliers);
  49static DEFINE_MUTEX(wfs_lock);
  50static LIST_HEAD(deferred_sync);
  51static unsigned int defer_sync_state_count = 1;
  52static unsigned int defer_fw_devlink_count;
  53static LIST_HEAD(deferred_fw_devlink);
  54static DEFINE_MUTEX(defer_fw_devlink_lock);
  55static bool fw_devlink_is_permissive(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57#ifdef CONFIG_SRCU
  58static DEFINE_MUTEX(device_links_lock);
  59DEFINE_STATIC_SRCU(device_links_srcu);
  60
  61static inline void device_links_write_lock(void)
  62{
  63	mutex_lock(&device_links_lock);
  64}
  65
  66static inline void device_links_write_unlock(void)
  67{
  68	mutex_unlock(&device_links_lock);
  69}
  70
  71int device_links_read_lock(void) __acquires(&device_links_srcu)
  72{
  73	return srcu_read_lock(&device_links_srcu);
  74}
  75
  76void device_links_read_unlock(int idx) __releases(&device_links_srcu)
  77{
  78	srcu_read_unlock(&device_links_srcu, idx);
  79}
  80
  81int device_links_read_lock_held(void)
  82{
  83	return srcu_read_lock_held(&device_links_srcu);
  84}
 
 
 
 
 
 
 
 
 
 
 
  85#else /* !CONFIG_SRCU */
  86static DECLARE_RWSEM(device_links_lock);
  87
  88static inline void device_links_write_lock(void)
  89{
  90	down_write(&device_links_lock);
  91}
  92
  93static inline void device_links_write_unlock(void)
  94{
  95	up_write(&device_links_lock);
  96}
  97
  98int device_links_read_lock(void)
  99{
 100	down_read(&device_links_lock);
 101	return 0;
 102}
 103
 104void device_links_read_unlock(int not_used)
 105{
 106	up_read(&device_links_lock);
 107}
 108
 109#ifdef CONFIG_DEBUG_LOCK_ALLOC
 110int device_links_read_lock_held(void)
 111{
 112	return lockdep_is_held(&device_links_lock);
 113}
 114#endif
 
 
 
 
 
 
 
 
 
 
 115#endif /* !CONFIG_SRCU */
 116
 
 
 
 
 
 
 
 
 
 
 117/**
 118 * device_is_dependent - Check if one device depends on another one
 119 * @dev: Device to check dependencies for.
 120 * @target: Device to check against.
 121 *
 122 * Check if @target depends on @dev or any device dependent on it (its child or
 123 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 124 */
 125int device_is_dependent(struct device *dev, void *target)
 126{
 127	struct device_link *link;
 128	int ret;
 129
 130	if (dev == target)
 
 
 
 
 
 131		return 1;
 132
 133	ret = device_for_each_child(dev, target, device_is_dependent);
 134	if (ret)
 135		return ret;
 136
 137	list_for_each_entry(link, &dev->links.consumers, s_node) {
 138		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 
 139			continue;
 140
 141		if (link->consumer == target)
 142			return 1;
 143
 144		ret = device_is_dependent(link->consumer, target);
 145		if (ret)
 146			break;
 147	}
 148	return ret;
 149}
 150
 151static void device_link_init_status(struct device_link *link,
 152				    struct device *consumer,
 153				    struct device *supplier)
 154{
 155	switch (supplier->links.status) {
 156	case DL_DEV_PROBING:
 157		switch (consumer->links.status) {
 158		case DL_DEV_PROBING:
 159			/*
 160			 * A consumer driver can create a link to a supplier
 161			 * that has not completed its probing yet as long as it
 162			 * knows that the supplier is already functional (for
 163			 * example, it has just acquired some resources from the
 164			 * supplier).
 165			 */
 166			link->status = DL_STATE_CONSUMER_PROBE;
 167			break;
 168		default:
 169			link->status = DL_STATE_DORMANT;
 170			break;
 171		}
 172		break;
 173	case DL_DEV_DRIVER_BOUND:
 174		switch (consumer->links.status) {
 175		case DL_DEV_PROBING:
 176			link->status = DL_STATE_CONSUMER_PROBE;
 177			break;
 178		case DL_DEV_DRIVER_BOUND:
 179			link->status = DL_STATE_ACTIVE;
 180			break;
 181		default:
 182			link->status = DL_STATE_AVAILABLE;
 183			break;
 184		}
 185		break;
 186	case DL_DEV_UNBINDING:
 187		link->status = DL_STATE_SUPPLIER_UNBIND;
 188		break;
 189	default:
 190		link->status = DL_STATE_DORMANT;
 191		break;
 192	}
 193}
 194
 195static int device_reorder_to_tail(struct device *dev, void *not_used)
 196{
 197	struct device_link *link;
 198
 199	/*
 200	 * Devices that have not been registered yet will be put to the ends
 201	 * of the lists during the registration, so skip them here.
 202	 */
 203	if (device_is_registered(dev))
 204		devices_kset_move_last(dev);
 205
 206	if (device_pm_initialized(dev))
 207		device_pm_move_last(dev);
 208
 209	device_for_each_child(dev, NULL, device_reorder_to_tail);
 210	list_for_each_entry(link, &dev->links.consumers, s_node) {
 211		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 
 212			continue;
 213		device_reorder_to_tail(link->consumer, NULL);
 214	}
 215
 216	return 0;
 217}
 218
 219/**
 220 * device_pm_move_to_tail - Move set of devices to the end of device lists
 221 * @dev: Device to move
 222 *
 223 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 224 *
 225 * It moves the @dev along with all of its children and all of its consumers
 226 * to the ends of the device_kset and dpm_list, recursively.
 227 */
 228void device_pm_move_to_tail(struct device *dev)
 229{
 230	int idx;
 231
 232	idx = device_links_read_lock();
 233	device_pm_lock();
 234	device_reorder_to_tail(dev, NULL);
 235	device_pm_unlock();
 236	device_links_read_unlock(idx);
 237}
 238
 239#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 240
 241static ssize_t status_show(struct device *dev,
 242			  struct device_attribute *attr, char *buf)
 243{
 244	char *status;
 245
 246	switch (to_devlink(dev)->status) {
 247	case DL_STATE_NONE:
 248		status = "not tracked"; break;
 
 249	case DL_STATE_DORMANT:
 250		status = "dormant"; break;
 
 251	case DL_STATE_AVAILABLE:
 252		status = "available"; break;
 
 253	case DL_STATE_CONSUMER_PROBE:
 254		status = "consumer probing"; break;
 
 255	case DL_STATE_ACTIVE:
 256		status = "active"; break;
 
 257	case DL_STATE_SUPPLIER_UNBIND:
 258		status = "supplier unbinding"; break;
 
 259	default:
 260		status = "unknown"; break;
 
 261	}
 262	return sprintf(buf, "%s\n", status);
 
 263}
 264static DEVICE_ATTR_RO(status);
 265
 266static ssize_t auto_remove_on_show(struct device *dev,
 267				   struct device_attribute *attr, char *buf)
 268{
 269	struct device_link *link = to_devlink(dev);
 270	char *str;
 271
 272	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 273		str = "supplier unbind";
 274	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 275		str = "consumer unbind";
 276	else
 277		str = "never";
 278
 279	return sprintf(buf, "%s\n", str);
 280}
 281static DEVICE_ATTR_RO(auto_remove_on);
 282
 283static ssize_t runtime_pm_show(struct device *dev,
 284			       struct device_attribute *attr, char *buf)
 285{
 286	struct device_link *link = to_devlink(dev);
 287
 288	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 289}
 290static DEVICE_ATTR_RO(runtime_pm);
 291
 292static ssize_t sync_state_only_show(struct device *dev,
 293				    struct device_attribute *attr, char *buf)
 294{
 295	struct device_link *link = to_devlink(dev);
 296
 297	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 
 298}
 299static DEVICE_ATTR_RO(sync_state_only);
 300
 301static struct attribute *devlink_attrs[] = {
 302	&dev_attr_status.attr,
 303	&dev_attr_auto_remove_on.attr,
 304	&dev_attr_runtime_pm.attr,
 305	&dev_attr_sync_state_only.attr,
 306	NULL,
 307};
 308ATTRIBUTE_GROUPS(devlink);
 309
 310static void device_link_free(struct device_link *link)
 311{
 312	while (refcount_dec_not_one(&link->rpm_active))
 313		pm_runtime_put(link->supplier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314
 315	put_device(link->consumer);
 316	put_device(link->supplier);
 317	kfree(link);
 318}
 319
 320#ifdef CONFIG_SRCU
 321static void __device_link_free_srcu(struct rcu_head *rhead)
 322{
 323	device_link_free(container_of(rhead, struct device_link, rcu_head));
 324}
 325
 326static void devlink_dev_release(struct device *dev)
 327{
 328	struct device_link *link = to_devlink(dev);
 329
 330	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 331}
 332#else
 333static void devlink_dev_release(struct device *dev)
 334{
 335	device_link_free(to_devlink(dev));
 
 
 336}
 337#endif
 338
 339static struct class devlink_class = {
 340	.name = "devlink",
 341	.owner = THIS_MODULE,
 342	.dev_groups = devlink_groups,
 343	.dev_release = devlink_dev_release,
 344};
 345
 346static int devlink_add_symlinks(struct device *dev,
 347				struct class_interface *class_intf)
 348{
 349	int ret;
 350	size_t len;
 351	struct device_link *link = to_devlink(dev);
 352	struct device *sup = link->supplier;
 353	struct device *con = link->consumer;
 354	char *buf;
 355
 356	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
 
 
 357	len += strlen("supplier:") + 1;
 358	buf = kzalloc(len, GFP_KERNEL);
 359	if (!buf)
 360		return -ENOMEM;
 361
 362	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 363	if (ret)
 364		goto out;
 365
 366	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 367	if (ret)
 368		goto err_con;
 369
 370	snprintf(buf, len, "consumer:%s", dev_name(con));
 371	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 372	if (ret)
 373		goto err_con_dev;
 374
 375	snprintf(buf, len, "supplier:%s", dev_name(sup));
 376	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 377	if (ret)
 378		goto err_sup_dev;
 379
 380	goto out;
 381
 382err_sup_dev:
 383	snprintf(buf, len, "consumer:%s", dev_name(con));
 384	sysfs_remove_link(&sup->kobj, buf);
 385err_con_dev:
 386	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 387err_con:
 388	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 389out:
 390	kfree(buf);
 391	return ret;
 392}
 393
 394static void devlink_remove_symlinks(struct device *dev,
 395				   struct class_interface *class_intf)
 396{
 397	struct device_link *link = to_devlink(dev);
 398	size_t len;
 399	struct device *sup = link->supplier;
 400	struct device *con = link->consumer;
 401	char *buf;
 402
 403	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 404	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 405
 406	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
 
 
 407	len += strlen("supplier:") + 1;
 408	buf = kzalloc(len, GFP_KERNEL);
 409	if (!buf) {
 410		WARN(1, "Unable to properly free device link symlinks!\n");
 411		return;
 412	}
 413
 414	snprintf(buf, len, "supplier:%s", dev_name(sup));
 415	sysfs_remove_link(&con->kobj, buf);
 416	snprintf(buf, len, "consumer:%s", dev_name(con));
 
 
 417	sysfs_remove_link(&sup->kobj, buf);
 418	kfree(buf);
 419}
 420
 421static struct class_interface devlink_class_intf = {
 422	.class = &devlink_class,
 423	.add_dev = devlink_add_symlinks,
 424	.remove_dev = devlink_remove_symlinks,
 425};
 426
 427static int __init devlink_class_init(void)
 428{
 429	int ret;
 430
 431	ret = class_register(&devlink_class);
 432	if (ret)
 433		return ret;
 434
 435	ret = class_interface_register(&devlink_class_intf);
 436	if (ret)
 437		class_unregister(&devlink_class);
 438
 439	return ret;
 440}
 441postcore_initcall(devlink_class_init);
 442
 443#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 444			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 445			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 446			       DL_FLAG_SYNC_STATE_ONLY)
 
 447
 448#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 449			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 450
 451/**
 452 * device_link_add - Create a link between two devices.
 453 * @consumer: Consumer end of the link.
 454 * @supplier: Supplier end of the link.
 455 * @flags: Link flags.
 456 *
 457 * The caller is responsible for the proper synchronization of the link creation
 458 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 459 * runtime PM framework to take the link into account.  Second, if the
 460 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 461 * be forced into the active metastate and reference-counted upon the creation
 462 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 463 * ignored.
 464 *
 465 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 466 * expected to release the link returned by it directly with the help of either
 467 * device_link_del() or device_link_remove().
 468 *
 469 * If that flag is not set, however, the caller of this function is handing the
 470 * management of the link over to the driver core entirely and its return value
 471 * can only be used to check whether or not the link is present.  In that case,
 472 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 473 * flags can be used to indicate to the driver core when the link can be safely
 474 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 475 * that the link is not going to be used (by the given caller of this function)
 476 * after unbinding the consumer or supplier driver, respectively, from its
 477 * device, so the link can be deleted at that point.  If none of them is set,
 478 * the link will be maintained until one of the devices pointed to by it (either
 479 * the consumer or the supplier) is unregistered.
 480 *
 481 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 482 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 483 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 484 * be used to request the driver core to automaticall probe for a consmer
 485 * driver after successfully binding a driver to the supplier device.
 486 *
 487 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 488 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 489 * the same time is invalid and will cause NULL to be returned upfront.
 490 * However, if a device link between the given @consumer and @supplier pair
 491 * exists already when this function is called for them, the existing link will
 492 * be returned regardless of its current type and status (the link's flags may
 493 * be modified then).  The caller of this function is then expected to treat
 494 * the link as though it has just been created, so (in particular) if
 495 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 496 * explicitly when not needed any more (as stated above).
 497 *
 498 * A side effect of the link creation is re-ordering of dpm_list and the
 499 * devices_kset list by moving the consumer device and all devices depending
 500 * on it to the ends of these lists (that does not happen to devices that have
 501 * not been registered when this function is called).
 502 *
 503 * The supplier device is required to be registered when this function is called
 504 * and NULL will be returned if that is not the case.  The consumer device need
 505 * not be registered, however.
 506 */
 507struct device_link *device_link_add(struct device *consumer,
 508				    struct device *supplier, u32 flags)
 509{
 510	struct device_link *link;
 511
 512	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 
 513	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 514	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 515	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
 516	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 517	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 518		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 519		return NULL;
 520
 521	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 522		if (pm_runtime_get_sync(supplier) < 0) {
 523			pm_runtime_put_noidle(supplier);
 524			return NULL;
 525		}
 526	}
 527
 528	if (!(flags & DL_FLAG_STATELESS))
 529		flags |= DL_FLAG_MANAGED;
 530
 531	device_links_write_lock();
 532	device_pm_lock();
 533
 534	/*
 535	 * If the supplier has not been fully registered yet or there is a
 536	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 537	 * the supplier already in the graph, return NULL. If the link is a
 538	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 539	 * because it only affects sync_state() callbacks.
 540	 */
 541	if (!device_pm_initialized(supplier)
 542	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 543		  device_is_dependent(consumer, supplier))) {
 544		link = NULL;
 545		goto out;
 546	}
 547
 548	/*
 
 
 
 
 
 
 
 
 
 
 
 549	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 550	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 551	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 552	 */
 553	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 554		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 555
 556	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 557		if (link->consumer != consumer)
 558			continue;
 559
 
 
 
 
 560		if (flags & DL_FLAG_PM_RUNTIME) {
 561			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 562				pm_runtime_new_link(consumer);
 563				link->flags |= DL_FLAG_PM_RUNTIME;
 564			}
 565			if (flags & DL_FLAG_RPM_ACTIVE)
 566				refcount_inc(&link->rpm_active);
 567		}
 568
 569		if (flags & DL_FLAG_STATELESS) {
 570			kref_get(&link->kref);
 571			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 572			    !(link->flags & DL_FLAG_STATELESS)) {
 573				link->flags |= DL_FLAG_STATELESS;
 574				goto reorder;
 575			} else {
 576				link->flags |= DL_FLAG_STATELESS;
 577				goto out;
 578			}
 579		}
 580
 581		/*
 582		 * If the life time of the link following from the new flags is
 583		 * longer than indicated by the flags of the existing link,
 584		 * update the existing link to stay around longer.
 585		 */
 586		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 587			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 588				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 589				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 590			}
 591		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 592			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 593					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 594		}
 595		if (!(link->flags & DL_FLAG_MANAGED)) {
 596			kref_get(&link->kref);
 597			link->flags |= DL_FLAG_MANAGED;
 598			device_link_init_status(link, consumer, supplier);
 599		}
 600		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 601		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 602			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 603			goto reorder;
 604		}
 605
 606		goto out;
 607	}
 608
 609	link = kzalloc(sizeof(*link), GFP_KERNEL);
 610	if (!link)
 611		goto out;
 612
 613	refcount_set(&link->rpm_active, 1);
 614
 615	get_device(supplier);
 616	link->supplier = supplier;
 617	INIT_LIST_HEAD(&link->s_node);
 618	get_device(consumer);
 619	link->consumer = consumer;
 620	INIT_LIST_HEAD(&link->c_node);
 621	link->flags = flags;
 622	kref_init(&link->kref);
 623
 624	link->link_dev.class = &devlink_class;
 625	device_set_pm_not_required(&link->link_dev);
 626	dev_set_name(&link->link_dev, "%s--%s",
 627		     dev_name(supplier), dev_name(consumer));
 
 628	if (device_register(&link->link_dev)) {
 629		put_device(consumer);
 630		put_device(supplier);
 631		kfree(link);
 632		link = NULL;
 633		goto out;
 634	}
 635
 636	if (flags & DL_FLAG_PM_RUNTIME) {
 637		if (flags & DL_FLAG_RPM_ACTIVE)
 638			refcount_inc(&link->rpm_active);
 639
 640		pm_runtime_new_link(consumer);
 641	}
 642
 643	/* Determine the initial link state. */
 644	if (flags & DL_FLAG_STATELESS)
 645		link->status = DL_STATE_NONE;
 646	else
 647		device_link_init_status(link, consumer, supplier);
 648
 649	/*
 650	 * Some callers expect the link creation during consumer driver probe to
 651	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 652	 */
 653	if (link->status == DL_STATE_CONSUMER_PROBE &&
 654	    flags & DL_FLAG_PM_RUNTIME)
 655		pm_runtime_resume(supplier);
 656
 657	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 658	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 659
 660	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 661		dev_dbg(consumer,
 662			"Linked as a sync state only consumer to %s\n",
 663			dev_name(supplier));
 664		goto out;
 665	}
 666
 667reorder:
 668	/*
 669	 * Move the consumer and all of the devices depending on it to the end
 670	 * of dpm_list and the devices_kset list.
 671	 *
 672	 * It is necessary to hold dpm_list locked throughout all that or else
 673	 * we may end up suspending with a wrong ordering of it.
 674	 */
 675	device_reorder_to_tail(consumer, NULL);
 676
 677	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 678
 679out:
 680	device_pm_unlock();
 681	device_links_write_unlock();
 682
 683	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 684		pm_runtime_put(supplier);
 685
 686	return link;
 687}
 688EXPORT_SYMBOL_GPL(device_link_add);
 689
 690/**
 691 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
 692 * @consumer: Consumer device
 693 *
 694 * Marks the @consumer device as waiting for suppliers to become available by
 695 * adding it to the wait_for_suppliers list. The consumer device will never be
 696 * probed until it's removed from the wait_for_suppliers list.
 697 *
 698 * The caller is responsible for adding the links to the supplier devices once
 699 * they are available and removing the @consumer device from the
 700 * wait_for_suppliers list once links to all the suppliers have been created.
 701 *
 702 * This function is NOT meant to be called from the probe function of the
 703 * consumer but rather from code that creates/adds the consumer device.
 704 */
 705static void device_link_wait_for_supplier(struct device *consumer,
 706					  bool need_for_probe)
 707{
 708	mutex_lock(&wfs_lock);
 709	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
 710	consumer->links.need_for_probe = need_for_probe;
 711	mutex_unlock(&wfs_lock);
 712}
 713
 714static void device_link_wait_for_mandatory_supplier(struct device *consumer)
 715{
 716	device_link_wait_for_supplier(consumer, true);
 717}
 718
 719static void device_link_wait_for_optional_supplier(struct device *consumer)
 720{
 721	device_link_wait_for_supplier(consumer, false);
 722}
 723
 724/**
 725 * device_link_add_missing_supplier_links - Add links from consumer devices to
 726 *					    supplier devices, leaving any
 727 *					    consumer with inactive suppliers on
 728 *					    the wait_for_suppliers list
 729 *
 730 * Loops through all consumers waiting on suppliers and tries to add all their
 731 * supplier links. If that succeeds, the consumer device is removed from
 732 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
 733 * list.  Devices left on the wait_for_suppliers list will not be probed.
 734 *
 735 * The fwnode add_links callback is expected to return 0 if it has found and
 736 * added all the supplier links for the consumer device. It should return an
 737 * error if it isn't able to do so.
 738 *
 739 * The caller of device_link_wait_for_supplier() is expected to call this once
 740 * it's aware of potential suppliers becoming available.
 741 */
 742static void device_link_add_missing_supplier_links(void)
 743{
 744	struct device *dev, *tmp;
 745
 746	mutex_lock(&wfs_lock);
 747	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
 748				 links.needs_suppliers) {
 749		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
 750		if (!ret)
 751			list_del_init(&dev->links.needs_suppliers);
 752		else if (ret != -ENODEV || fw_devlink_is_permissive())
 753			dev->links.need_for_probe = false;
 754	}
 755	mutex_unlock(&wfs_lock);
 756}
 757
 758#ifdef CONFIG_SRCU
 759static void __device_link_del(struct kref *kref)
 760{
 761	struct device_link *link = container_of(kref, struct device_link, kref);
 762
 763	dev_dbg(link->consumer, "Dropping the link to %s\n",
 764		dev_name(link->supplier));
 765
 766	if (link->flags & DL_FLAG_PM_RUNTIME)
 767		pm_runtime_drop_link(link->consumer);
 768
 769	list_del_rcu(&link->s_node);
 770	list_del_rcu(&link->c_node);
 771	device_unregister(&link->link_dev);
 772}
 773#else /* !CONFIG_SRCU */
 774static void __device_link_del(struct kref *kref)
 775{
 776	struct device_link *link = container_of(kref, struct device_link, kref);
 777
 778	dev_info(link->consumer, "Dropping the link to %s\n",
 779		 dev_name(link->supplier));
 780
 781	if (link->flags & DL_FLAG_PM_RUNTIME)
 782		pm_runtime_drop_link(link->consumer);
 783
 784	list_del(&link->s_node);
 785	list_del(&link->c_node);
 786	device_unregister(&link->link_dev);
 787}
 788#endif /* !CONFIG_SRCU */
 789
 790static void device_link_put_kref(struct device_link *link)
 791{
 792	if (link->flags & DL_FLAG_STATELESS)
 793		kref_put(&link->kref, __device_link_del);
 
 
 794	else
 795		WARN(1, "Unable to drop a managed device link reference\n");
 796}
 797
 798/**
 799 * device_link_del - Delete a stateless link between two devices.
 800 * @link: Device link to delete.
 801 *
 802 * The caller must ensure proper synchronization of this function with runtime
 803 * PM.  If the link was added multiple times, it needs to be deleted as often.
 804 * Care is required for hotplugged devices:  Their links are purged on removal
 805 * and calling device_link_del() is then no longer allowed.
 806 */
 807void device_link_del(struct device_link *link)
 808{
 809	device_links_write_lock();
 810	device_link_put_kref(link);
 811	device_links_write_unlock();
 812}
 813EXPORT_SYMBOL_GPL(device_link_del);
 814
 815/**
 816 * device_link_remove - Delete a stateless link between two devices.
 817 * @consumer: Consumer end of the link.
 818 * @supplier: Supplier end of the link.
 819 *
 820 * The caller must ensure proper synchronization of this function with runtime
 821 * PM.
 822 */
 823void device_link_remove(void *consumer, struct device *supplier)
 824{
 825	struct device_link *link;
 826
 827	if (WARN_ON(consumer == supplier))
 828		return;
 829
 830	device_links_write_lock();
 831
 832	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 833		if (link->consumer == consumer) {
 834			device_link_put_kref(link);
 835			break;
 836		}
 837	}
 838
 839	device_links_write_unlock();
 840}
 841EXPORT_SYMBOL_GPL(device_link_remove);
 842
 843static void device_links_missing_supplier(struct device *dev)
 844{
 845	struct device_link *link;
 846
 847	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 848		if (link->status != DL_STATE_CONSUMER_PROBE)
 849			continue;
 850
 851		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 852			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 853		} else {
 854			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 855			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 856		}
 857	}
 858}
 859
 
 
 
 
 
 
 860/**
 861 * device_links_check_suppliers - Check presence of supplier drivers.
 862 * @dev: Consumer device.
 863 *
 864 * Check links from this device to any suppliers.  Walk the list of the device's
 865 * links to suppliers and see if all of them are available.  If not, simply
 866 * return -EPROBE_DEFER.
 867 *
 868 * We need to guarantee that the supplier will not go away after the check has
 869 * been positive here.  It only can go away in __device_release_driver() and
 870 * that function  checks the device's links to consumers.  This means we need to
 871 * mark the link as "consumer probe in progress" to make the supplier removal
 872 * wait for us to complete (or bad things may happen).
 873 *
 874 * Links without the DL_FLAG_MANAGED flag set are ignored.
 875 */
 876int device_links_check_suppliers(struct device *dev)
 877{
 878	struct device_link *link;
 879	int ret = 0;
 
 880
 881	/*
 882	 * Device waiting for supplier to become available is not allowed to
 883	 * probe.
 884	 */
 885	mutex_lock(&wfs_lock);
 886	if (!list_empty(&dev->links.needs_suppliers) &&
 887	    dev->links.need_for_probe) {
 888		mutex_unlock(&wfs_lock);
 889		return -EPROBE_DEFER;
 
 
 
 
 
 
 
 
 890	}
 891	mutex_unlock(&wfs_lock);
 
 
 892
 893	device_links_write_lock();
 894
 895	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 896		if (!(link->flags & DL_FLAG_MANAGED))
 897			continue;
 898
 899		if (link->status != DL_STATE_AVAILABLE &&
 900		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
 
 
 
 
 
 
 
 
 901			device_links_missing_supplier(dev);
 
 
 
 902			ret = -EPROBE_DEFER;
 903			break;
 904		}
 905		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 906	}
 907	dev->links.status = DL_DEV_PROBING;
 908
 909	device_links_write_unlock();
 910	return ret;
 
 911}
 912
 913/**
 914 * __device_links_queue_sync_state - Queue a device for sync_state() callback
 915 * @dev: Device to call sync_state() on
 916 * @list: List head to queue the @dev on
 917 *
 918 * Queues a device for a sync_state() callback when the device links write lock
 919 * isn't held. This allows the sync_state() execution flow to use device links
 920 * APIs.  The caller must ensure this function is called with
 921 * device_links_write_lock() held.
 922 *
 923 * This function does a get_device() to make sure the device is not freed while
 924 * on this list.
 925 *
 926 * So the caller must also ensure that device_links_flush_sync_list() is called
 927 * as soon as the caller releases device_links_write_lock().  This is necessary
 928 * to make sure the sync_state() is called in a timely fashion and the
 929 * put_device() is called on this device.
 930 */
 931static void __device_links_queue_sync_state(struct device *dev,
 932					    struct list_head *list)
 933{
 934	struct device_link *link;
 935
 936	if (!dev_has_sync_state(dev))
 937		return;
 938	if (dev->state_synced)
 939		return;
 940
 941	list_for_each_entry(link, &dev->links.consumers, s_node) {
 942		if (!(link->flags & DL_FLAG_MANAGED))
 943			continue;
 944		if (link->status != DL_STATE_ACTIVE)
 945			return;
 946	}
 947
 948	/*
 949	 * Set the flag here to avoid adding the same device to a list more
 950	 * than once. This can happen if new consumers get added to the device
 951	 * and probed before the list is flushed.
 952	 */
 953	dev->state_synced = true;
 954
 955	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
 956		return;
 957
 958	get_device(dev);
 959	list_add_tail(&dev->links.defer_hook, list);
 960}
 961
 962/**
 963 * device_links_flush_sync_list - Call sync_state() on a list of devices
 964 * @list: List of devices to call sync_state() on
 965 * @dont_lock_dev: Device for which lock is already held by the caller
 966 *
 967 * Calls sync_state() on all the devices that have been queued for it. This
 968 * function is used in conjunction with __device_links_queue_sync_state(). The
 969 * @dont_lock_dev parameter is useful when this function is called from a
 970 * context where a device lock is already held.
 971 */
 972static void device_links_flush_sync_list(struct list_head *list,
 973					 struct device *dont_lock_dev)
 974{
 975	struct device *dev, *tmp;
 976
 977	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
 978		list_del_init(&dev->links.defer_hook);
 979
 980		if (dev != dont_lock_dev)
 981			device_lock(dev);
 982
 983		if (dev->bus->sync_state)
 984			dev->bus->sync_state(dev);
 985		else if (dev->driver && dev->driver->sync_state)
 986			dev->driver->sync_state(dev);
 987
 988		if (dev != dont_lock_dev)
 989			device_unlock(dev);
 990
 991		put_device(dev);
 992	}
 993}
 994
 995void device_links_supplier_sync_state_pause(void)
 996{
 997	device_links_write_lock();
 998	defer_sync_state_count++;
 999	device_links_write_unlock();
1000}
1001
1002void device_links_supplier_sync_state_resume(void)
1003{
1004	struct device *dev, *tmp;
1005	LIST_HEAD(sync_list);
1006
1007	device_links_write_lock();
1008	if (!defer_sync_state_count) {
1009		WARN(true, "Unmatched sync_state pause/resume!");
1010		goto out;
1011	}
1012	defer_sync_state_count--;
1013	if (defer_sync_state_count)
1014		goto out;
1015
1016	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1017		/*
1018		 * Delete from deferred_sync list before queuing it to
1019		 * sync_list because defer_hook is used for both lists.
1020		 */
1021		list_del_init(&dev->links.defer_hook);
1022		__device_links_queue_sync_state(dev, &sync_list);
1023	}
1024out:
1025	device_links_write_unlock();
1026
1027	device_links_flush_sync_list(&sync_list, NULL);
1028}
1029
1030static int sync_state_resume_initcall(void)
1031{
1032	device_links_supplier_sync_state_resume();
1033	return 0;
1034}
1035late_initcall(sync_state_resume_initcall);
1036
1037static void __device_links_supplier_defer_sync(struct device *sup)
1038{
1039	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1040		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1041}
1042
1043static void device_link_drop_managed(struct device_link *link)
1044{
1045	link->flags &= ~DL_FLAG_MANAGED;
1046	WRITE_ONCE(link->status, DL_STATE_NONE);
1047	kref_put(&link->kref, __device_link_del);
1048}
1049
1050static ssize_t waiting_for_supplier_show(struct device *dev,
1051					 struct device_attribute *attr,
1052					 char *buf)
1053{
1054	bool val;
1055
1056	device_lock(dev);
1057	mutex_lock(&wfs_lock);
1058	val = !list_empty(&dev->links.needs_suppliers)
1059	      && dev->links.need_for_probe;
1060	mutex_unlock(&wfs_lock);
1061	device_unlock(dev);
1062	return sprintf(buf, "%u\n", val);
1063}
1064static DEVICE_ATTR_RO(waiting_for_supplier);
1065
1066/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067 * device_links_driver_bound - Update device links after probing its driver.
1068 * @dev: Device to update the links for.
1069 *
1070 * The probe has been successful, so update links from this device to any
1071 * consumers by changing their status to "available".
1072 *
1073 * Also change the status of @dev's links to suppliers to "active".
1074 *
1075 * Links without the DL_FLAG_MANAGED flag set are ignored.
1076 */
1077void device_links_driver_bound(struct device *dev)
1078{
1079	struct device_link *link, *ln;
1080	LIST_HEAD(sync_list);
1081
1082	/*
1083	 * If a device probes successfully, it's expected to have created all
1084	 * the device links it needs to or make new device links as it needs
1085	 * them. So, it no longer needs to wait on any suppliers.
 
 
 
 
 
 
1086	 */
1087	mutex_lock(&wfs_lock);
1088	list_del_init(&dev->links.needs_suppliers);
1089	mutex_unlock(&wfs_lock);
 
 
 
1090	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1091
1092	device_links_write_lock();
1093
1094	list_for_each_entry(link, &dev->links.consumers, s_node) {
1095		if (!(link->flags & DL_FLAG_MANAGED))
1096			continue;
1097
1098		/*
1099		 * Links created during consumer probe may be in the "consumer
1100		 * probe" state to start with if the supplier is still probing
1101		 * when they are created and they may become "active" if the
1102		 * consumer probe returns first.  Skip them here.
1103		 */
1104		if (link->status == DL_STATE_CONSUMER_PROBE ||
1105		    link->status == DL_STATE_ACTIVE)
1106			continue;
1107
1108		WARN_ON(link->status != DL_STATE_DORMANT);
1109		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1110
1111		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1112			driver_deferred_probe_add(link->consumer);
1113	}
1114
1115	if (defer_sync_state_count)
1116		__device_links_supplier_defer_sync(dev);
1117	else
1118		__device_links_queue_sync_state(dev, &sync_list);
1119
1120	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1121		struct device *supplier;
1122
1123		if (!(link->flags & DL_FLAG_MANAGED))
1124			continue;
1125
1126		supplier = link->supplier;
1127		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1128			/*
1129			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1130			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1131			 * save to drop the managed link completely.
1132			 */
1133			device_link_drop_managed(link);
 
 
 
 
 
 
 
 
 
 
 
 
1134		} else {
1135			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1136			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1137		}
1138
1139		/*
1140		 * This needs to be done even for the deleted
1141		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1142		 * device link that was preventing the supplier from getting a
1143		 * sync_state() call.
1144		 */
1145		if (defer_sync_state_count)
1146			__device_links_supplier_defer_sync(supplier);
1147		else
1148			__device_links_queue_sync_state(supplier, &sync_list);
1149	}
1150
1151	dev->links.status = DL_DEV_DRIVER_BOUND;
1152
1153	device_links_write_unlock();
1154
1155	device_links_flush_sync_list(&sync_list, dev);
1156}
1157
1158/**
1159 * __device_links_no_driver - Update links of a device without a driver.
1160 * @dev: Device without a drvier.
1161 *
1162 * Delete all non-persistent links from this device to any suppliers.
1163 *
1164 * Persistent links stay around, but their status is changed to "available",
1165 * unless they already are in the "supplier unbind in progress" state in which
1166 * case they need not be updated.
1167 *
1168 * Links without the DL_FLAG_MANAGED flag set are ignored.
1169 */
1170static void __device_links_no_driver(struct device *dev)
1171{
1172	struct device_link *link, *ln;
1173
1174	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1175		if (!(link->flags & DL_FLAG_MANAGED))
1176			continue;
1177
1178		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1179			device_link_drop_managed(link);
1180			continue;
1181		}
1182
1183		if (link->status != DL_STATE_CONSUMER_PROBE &&
1184		    link->status != DL_STATE_ACTIVE)
1185			continue;
1186
1187		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1188			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1189		} else {
1190			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1191			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1192		}
1193	}
1194
1195	dev->links.status = DL_DEV_NO_DRIVER;
1196}
1197
1198/**
1199 * device_links_no_driver - Update links after failing driver probe.
1200 * @dev: Device whose driver has just failed to probe.
1201 *
1202 * Clean up leftover links to consumers for @dev and invoke
1203 * %__device_links_no_driver() to update links to suppliers for it as
1204 * appropriate.
1205 *
1206 * Links without the DL_FLAG_MANAGED flag set are ignored.
1207 */
1208void device_links_no_driver(struct device *dev)
1209{
1210	struct device_link *link;
1211
1212	device_links_write_lock();
1213
1214	list_for_each_entry(link, &dev->links.consumers, s_node) {
1215		if (!(link->flags & DL_FLAG_MANAGED))
1216			continue;
1217
1218		/*
1219		 * The probe has failed, so if the status of the link is
1220		 * "consumer probe" or "active", it must have been added by
1221		 * a probing consumer while this device was still probing.
1222		 * Change its state to "dormant", as it represents a valid
1223		 * relationship, but it is not functionally meaningful.
1224		 */
1225		if (link->status == DL_STATE_CONSUMER_PROBE ||
1226		    link->status == DL_STATE_ACTIVE)
1227			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1228	}
1229
1230	__device_links_no_driver(dev);
1231
1232	device_links_write_unlock();
1233}
1234
1235/**
1236 * device_links_driver_cleanup - Update links after driver removal.
1237 * @dev: Device whose driver has just gone away.
1238 *
1239 * Update links to consumers for @dev by changing their status to "dormant" and
1240 * invoke %__device_links_no_driver() to update links to suppliers for it as
1241 * appropriate.
1242 *
1243 * Links without the DL_FLAG_MANAGED flag set are ignored.
1244 */
1245void device_links_driver_cleanup(struct device *dev)
1246{
1247	struct device_link *link, *ln;
1248
1249	device_links_write_lock();
1250
1251	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1252		if (!(link->flags & DL_FLAG_MANAGED))
1253			continue;
1254
1255		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1256		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1257
1258		/*
1259		 * autoremove the links between this @dev and its consumer
1260		 * devices that are not active, i.e. where the link state
1261		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1262		 */
1263		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1264		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1265			device_link_drop_managed(link);
1266
1267		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268	}
1269
1270	list_del_init(&dev->links.defer_hook);
1271	__device_links_no_driver(dev);
1272
1273	device_links_write_unlock();
1274}
1275
1276/**
1277 * device_links_busy - Check if there are any busy links to consumers.
1278 * @dev: Device to check.
1279 *
1280 * Check each consumer of the device and return 'true' if its link's status
1281 * is one of "consumer probe" or "active" (meaning that the given consumer is
1282 * probing right now or its driver is present).  Otherwise, change the link
1283 * state to "supplier unbind" to prevent the consumer from being probed
1284 * successfully going forward.
1285 *
1286 * Return 'false' if there are no probing or active consumers.
1287 *
1288 * Links without the DL_FLAG_MANAGED flag set are ignored.
1289 */
1290bool device_links_busy(struct device *dev)
1291{
1292	struct device_link *link;
1293	bool ret = false;
1294
1295	device_links_write_lock();
1296
1297	list_for_each_entry(link, &dev->links.consumers, s_node) {
1298		if (!(link->flags & DL_FLAG_MANAGED))
1299			continue;
1300
1301		if (link->status == DL_STATE_CONSUMER_PROBE
1302		    || link->status == DL_STATE_ACTIVE) {
1303			ret = true;
1304			break;
1305		}
1306		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1307	}
1308
1309	dev->links.status = DL_DEV_UNBINDING;
1310
1311	device_links_write_unlock();
1312	return ret;
1313}
1314
1315/**
1316 * device_links_unbind_consumers - Force unbind consumers of the given device.
1317 * @dev: Device to unbind the consumers of.
1318 *
1319 * Walk the list of links to consumers for @dev and if any of them is in the
1320 * "consumer probe" state, wait for all device probes in progress to complete
1321 * and start over.
1322 *
1323 * If that's not the case, change the status of the link to "supplier unbind"
1324 * and check if the link was in the "active" state.  If so, force the consumer
1325 * driver to unbind and start over (the consumer will not re-probe as we have
1326 * changed the state of the link already).
1327 *
1328 * Links without the DL_FLAG_MANAGED flag set are ignored.
1329 */
1330void device_links_unbind_consumers(struct device *dev)
1331{
1332	struct device_link *link;
1333
1334 start:
1335	device_links_write_lock();
1336
1337	list_for_each_entry(link, &dev->links.consumers, s_node) {
1338		enum device_link_state status;
1339
1340		if (!(link->flags & DL_FLAG_MANAGED) ||
1341		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1342			continue;
1343
1344		status = link->status;
1345		if (status == DL_STATE_CONSUMER_PROBE) {
1346			device_links_write_unlock();
1347
1348			wait_for_device_probe();
1349			goto start;
1350		}
1351		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1352		if (status == DL_STATE_ACTIVE) {
1353			struct device *consumer = link->consumer;
1354
1355			get_device(consumer);
1356
1357			device_links_write_unlock();
1358
1359			device_release_driver_internal(consumer, NULL,
1360						       consumer->parent);
1361			put_device(consumer);
1362			goto start;
1363		}
1364	}
1365
1366	device_links_write_unlock();
1367}
1368
1369/**
1370 * device_links_purge - Delete existing links to other devices.
1371 * @dev: Target device.
1372 */
1373static void device_links_purge(struct device *dev)
1374{
1375	struct device_link *link, *ln;
1376
1377	if (dev->class == &devlink_class)
1378		return;
1379
1380	mutex_lock(&wfs_lock);
1381	list_del(&dev->links.needs_suppliers);
1382	mutex_unlock(&wfs_lock);
1383
1384	/*
1385	 * Delete all of the remaining links from this device to any other
1386	 * devices (either consumers or suppliers).
1387	 */
1388	device_links_write_lock();
1389
1390	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1391		WARN_ON(link->status == DL_STATE_ACTIVE);
1392		__device_link_del(&link->kref);
1393	}
1394
1395	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1396		WARN_ON(link->status != DL_STATE_DORMANT &&
1397			link->status != DL_STATE_NONE);
1398		__device_link_del(&link->kref);
1399	}
1400
1401	device_links_write_unlock();
1402}
1403
1404static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
 
 
 
 
 
 
 
1405static int __init fw_devlink_setup(char *arg)
1406{
1407	if (!arg)
1408		return -EINVAL;
1409
1410	if (strcmp(arg, "off") == 0) {
1411		fw_devlink_flags = 0;
1412	} else if (strcmp(arg, "permissive") == 0) {
1413		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1414	} else if (strcmp(arg, "on") == 0) {
1415		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1416	} else if (strcmp(arg, "rpm") == 0) {
1417		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1418				   DL_FLAG_PM_RUNTIME;
1419	}
1420	return 0;
1421}
1422early_param("fw_devlink", fw_devlink_setup);
1423
 
 
 
 
 
 
 
1424u32 fw_devlink_get_flags(void)
1425{
1426	return fw_devlink_flags;
1427}
1428
1429static bool fw_devlink_is_permissive(void)
1430{
1431	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432}
1433
1434static void fw_devlink_link_device(struct device *dev)
1435{
1436	int fw_ret;
1437
1438	if (!fw_devlink_flags)
1439		return;
1440
1441	mutex_lock(&defer_fw_devlink_lock);
1442	if (!defer_fw_devlink_count)
1443		device_link_add_missing_supplier_links();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445	/*
1446	 * The device's fwnode not having add_links() doesn't affect if other
1447	 * consumers can find this device as a supplier.  So, this check is
1448	 * intentionally placed after device_link_add_missing_supplier_links().
 
 
 
 
 
 
 
 
 
 
1449	 */
1450	if (!fwnode_has_op(dev->fwnode, add_links))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451		goto out;
 
 
 
 
 
1452
1453	/*
1454	 * If fw_devlink is being deferred, assume all devices have mandatory
1455	 * suppliers they need to link to later. Then, when the fw_devlink is
1456	 * resumed, all these devices will get a chance to try and link to any
1457	 * suppliers they have.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458	 */
1459	if (!defer_fw_devlink_count) {
1460		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1461		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1462			fw_ret = -EAGAIN;
 
 
 
 
1463	} else {
1464		fw_ret = -ENODEV;
1465		/*
1466		 * defer_hook is not used to add device to deferred_sync list
1467		 * until device is bound. Since deferred fw devlink also blocks
1468		 * probing, same list hook can be used for deferred_fw_devlink.
1469		 */
1470		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1471	}
1472
1473	if (fw_ret == -ENODEV)
1474		device_link_wait_for_mandatory_supplier(dev);
1475	else if (fw_ret)
1476		device_link_wait_for_optional_supplier(dev);
1477
1478out:
1479	mutex_unlock(&defer_fw_devlink_lock);
 
1480}
1481
1482/**
1483 * fw_devlink_pause - Pause parsing of fwnode to create device links
1484 *
1485 * Calling this function defers any fwnode parsing to create device links until
1486 * fw_devlink_resume() is called. Both these functions are ref counted and the
1487 * caller needs to match the calls.
1488 *
1489 * While fw_devlink is paused:
1490 * - Any device that is added won't have its fwnode parsed to create device
1491 *   links.
1492 * - The probe of the device will also be deferred during this period.
1493 * - Any devices that were already added, but waiting for suppliers won't be
1494 *   able to link to newly added devices.
1495 *
1496 * Once fw_devlink_resume():
1497 * - All the fwnodes that was not parsed will be parsed.
1498 * - All the devices that were deferred probing will be reattempted if they
1499 *   aren't waiting for any more suppliers.
1500 *
1501 * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1502 * when a lot of devices that need to link to each other are added in a short
1503 * interval of time. For example, adding all the top level devices in a system.
1504 *
1505 * For example, if N devices are added and:
1506 * - All the consumers are added before their suppliers
1507 * - All the suppliers of the N devices are part of the N devices
1508 *
1509 * Then:
 
1510 *
1511 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1512 *   will only need one parsing of its fwnode because it is guaranteed to find
1513 *   all the supplier devices already registered and ready to link to. It won't
1514 *   have to do another pass later to find one or more suppliers it couldn't
1515 *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1516 *   parses.
1517 *
1518 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1519 *   end up doing O(N^2) parses of fwnodes because every device that's added is
1520 *   guaranteed to trigger a parse of the fwnode of every device added before
1521 *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1522 *   device is parsed, all it descendant devices might need to have their
1523 *   fwnodes parsed too (even if the devices themselves aren't added).
1524 */
1525void fw_devlink_pause(void)
1526{
1527	mutex_lock(&defer_fw_devlink_lock);
1528	defer_fw_devlink_count++;
1529	mutex_unlock(&defer_fw_devlink_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530}
1531
1532/** fw_devlink_resume - Resume parsing of fwnode to create device links
1533 *
1534 * This function is used in conjunction with fw_devlink_pause() and is ref
1535 * counted. See documentation for fw_devlink_pause() for more details.
1536 */
1537void fw_devlink_resume(void)
1538{
1539	struct device *dev, *tmp;
1540	LIST_HEAD(probe_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1541
1542	mutex_lock(&defer_fw_devlink_lock);
1543	if (!defer_fw_devlink_count) {
1544		WARN(true, "Unmatched fw_devlink pause/resume!");
1545		goto out;
1546	}
1547
1548	defer_fw_devlink_count--;
1549	if (defer_fw_devlink_count)
1550		goto out;
1551
1552	device_link_add_missing_supplier_links();
1553	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1554out:
1555	mutex_unlock(&defer_fw_devlink_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1556
1557	/*
1558	 * bus_probe_device() can cause new devices to get added and they'll
1559	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1560	 * the defer_fw_devlink_lock.
 
1561	 */
1562	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1563		list_del_init(&dev->links.defer_hook);
1564		bus_probe_device(dev);
1565	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1566}
 
1567/* Device links support end. */
1568
1569int (*platform_notify)(struct device *dev) = NULL;
1570int (*platform_notify_remove)(struct device *dev) = NULL;
1571static struct kobject *dev_kobj;
1572struct kobject *sysfs_dev_char_kobj;
1573struct kobject *sysfs_dev_block_kobj;
1574
1575static DEFINE_MUTEX(device_hotplug_lock);
1576
1577void lock_device_hotplug(void)
1578{
1579	mutex_lock(&device_hotplug_lock);
1580}
1581
1582void unlock_device_hotplug(void)
1583{
1584	mutex_unlock(&device_hotplug_lock);
1585}
1586
1587int lock_device_hotplug_sysfs(void)
1588{
1589	if (mutex_trylock(&device_hotplug_lock))
1590		return 0;
1591
1592	/* Avoid busy looping (5 ms of sleep should do). */
1593	msleep(5);
1594	return restart_syscall();
1595}
1596
1597#ifdef CONFIG_BLOCK
1598static inline int device_is_not_partition(struct device *dev)
1599{
1600	return !(dev->type == &part_type);
1601}
1602#else
1603static inline int device_is_not_partition(struct device *dev)
1604{
1605	return 1;
1606}
1607#endif
1608
1609static int
1610device_platform_notify(struct device *dev, enum kobject_action action)
1611{
1612	int ret;
 
 
 
 
 
 
1613
1614	ret = acpi_platform_notify(dev, action);
1615	if (ret)
1616		return ret;
1617
1618	ret = software_node_notify(dev, action);
1619	if (ret)
1620		return ret;
1621
1622	if (platform_notify && action == KOBJ_ADD)
1623		platform_notify(dev);
1624	else if (platform_notify_remove && action == KOBJ_REMOVE)
1625		platform_notify_remove(dev);
1626	return 0;
1627}
1628
1629/**
1630 * dev_driver_string - Return a device's driver name, if at all possible
1631 * @dev: struct device to get the name of
1632 *
1633 * Will return the device's driver's name if it is bound to a device.  If
1634 * the device is not bound to a driver, it will return the name of the bus
1635 * it is attached to.  If it is not attached to a bus either, an empty
1636 * string will be returned.
1637 */
1638const char *dev_driver_string(const struct device *dev)
1639{
1640	struct device_driver *drv;
1641
1642	/* dev->driver can change to NULL underneath us because of unbinding,
1643	 * so be careful about accessing it.  dev->bus and dev->class should
1644	 * never change once they are set, so they don't need special care.
1645	 */
1646	drv = READ_ONCE(dev->driver);
1647	return drv ? drv->name :
1648			(dev->bus ? dev->bus->name :
1649			(dev->class ? dev->class->name : ""));
1650}
1651EXPORT_SYMBOL(dev_driver_string);
1652
1653#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1654
1655static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1656			     char *buf)
1657{
1658	struct device_attribute *dev_attr = to_dev_attr(attr);
1659	struct device *dev = kobj_to_dev(kobj);
1660	ssize_t ret = -EIO;
1661
1662	if (dev_attr->show)
1663		ret = dev_attr->show(dev, dev_attr, buf);
1664	if (ret >= (ssize_t)PAGE_SIZE) {
1665		printk("dev_attr_show: %pS returned bad count\n",
1666				dev_attr->show);
1667	}
1668	return ret;
1669}
1670
1671static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1672			      const char *buf, size_t count)
1673{
1674	struct device_attribute *dev_attr = to_dev_attr(attr);
1675	struct device *dev = kobj_to_dev(kobj);
1676	ssize_t ret = -EIO;
1677
1678	if (dev_attr->store)
1679		ret = dev_attr->store(dev, dev_attr, buf, count);
1680	return ret;
1681}
1682
1683static const struct sysfs_ops dev_sysfs_ops = {
1684	.show	= dev_attr_show,
1685	.store	= dev_attr_store,
1686};
1687
1688#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1689
1690ssize_t device_store_ulong(struct device *dev,
1691			   struct device_attribute *attr,
1692			   const char *buf, size_t size)
1693{
1694	struct dev_ext_attribute *ea = to_ext_attr(attr);
1695	int ret;
1696	unsigned long new;
1697
1698	ret = kstrtoul(buf, 0, &new);
1699	if (ret)
1700		return ret;
1701	*(unsigned long *)(ea->var) = new;
1702	/* Always return full write size even if we didn't consume all */
1703	return size;
1704}
1705EXPORT_SYMBOL_GPL(device_store_ulong);
1706
1707ssize_t device_show_ulong(struct device *dev,
1708			  struct device_attribute *attr,
1709			  char *buf)
1710{
1711	struct dev_ext_attribute *ea = to_ext_attr(attr);
1712	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1713}
1714EXPORT_SYMBOL_GPL(device_show_ulong);
1715
1716ssize_t device_store_int(struct device *dev,
1717			 struct device_attribute *attr,
1718			 const char *buf, size_t size)
1719{
1720	struct dev_ext_attribute *ea = to_ext_attr(attr);
1721	int ret;
1722	long new;
1723
1724	ret = kstrtol(buf, 0, &new);
1725	if (ret)
1726		return ret;
1727
1728	if (new > INT_MAX || new < INT_MIN)
1729		return -EINVAL;
1730	*(int *)(ea->var) = new;
1731	/* Always return full write size even if we didn't consume all */
1732	return size;
1733}
1734EXPORT_SYMBOL_GPL(device_store_int);
1735
1736ssize_t device_show_int(struct device *dev,
1737			struct device_attribute *attr,
1738			char *buf)
1739{
1740	struct dev_ext_attribute *ea = to_ext_attr(attr);
1741
1742	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1743}
1744EXPORT_SYMBOL_GPL(device_show_int);
1745
1746ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1747			  const char *buf, size_t size)
1748{
1749	struct dev_ext_attribute *ea = to_ext_attr(attr);
1750
1751	if (strtobool(buf, ea->var) < 0)
1752		return -EINVAL;
1753
1754	return size;
1755}
1756EXPORT_SYMBOL_GPL(device_store_bool);
1757
1758ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1759			 char *buf)
1760{
1761	struct dev_ext_attribute *ea = to_ext_attr(attr);
1762
1763	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1764}
1765EXPORT_SYMBOL_GPL(device_show_bool);
1766
1767/**
1768 * device_release - free device structure.
1769 * @kobj: device's kobject.
1770 *
1771 * This is called once the reference count for the object
1772 * reaches 0. We forward the call to the device's release
1773 * method, which should handle actually freeing the structure.
1774 */
1775static void device_release(struct kobject *kobj)
1776{
1777	struct device *dev = kobj_to_dev(kobj);
1778	struct device_private *p = dev->p;
1779
1780	/*
1781	 * Some platform devices are driven without driver attached
1782	 * and managed resources may have been acquired.  Make sure
1783	 * all resources are released.
1784	 *
1785	 * Drivers still can add resources into device after device
1786	 * is deleted but alive, so release devres here to avoid
1787	 * possible memory leak.
1788	 */
1789	devres_release_all(dev);
1790
 
 
1791	if (dev->release)
1792		dev->release(dev);
1793	else if (dev->type && dev->type->release)
1794		dev->type->release(dev);
1795	else if (dev->class && dev->class->dev_release)
1796		dev->class->dev_release(dev);
1797	else
1798		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1799			dev_name(dev));
1800	kfree(p);
1801}
1802
1803static const void *device_namespace(struct kobject *kobj)
1804{
1805	struct device *dev = kobj_to_dev(kobj);
1806	const void *ns = NULL;
1807
1808	if (dev->class && dev->class->ns_type)
1809		ns = dev->class->namespace(dev);
1810
1811	return ns;
1812}
1813
1814static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1815{
1816	struct device *dev = kobj_to_dev(kobj);
1817
1818	if (dev->class && dev->class->get_ownership)
1819		dev->class->get_ownership(dev, uid, gid);
1820}
1821
1822static struct kobj_type device_ktype = {
1823	.release	= device_release,
1824	.sysfs_ops	= &dev_sysfs_ops,
1825	.namespace	= device_namespace,
1826	.get_ownership	= device_get_ownership,
1827};
1828
1829
1830static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1831{
1832	struct kobj_type *ktype = get_ktype(kobj);
1833
1834	if (ktype == &device_ktype) {
1835		struct device *dev = kobj_to_dev(kobj);
1836		if (dev->bus)
1837			return 1;
1838		if (dev->class)
1839			return 1;
1840	}
1841	return 0;
1842}
1843
1844static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1845{
1846	struct device *dev = kobj_to_dev(kobj);
1847
1848	if (dev->bus)
1849		return dev->bus->name;
1850	if (dev->class)
1851		return dev->class->name;
1852	return NULL;
1853}
1854
1855static int dev_uevent(struct kset *kset, struct kobject *kobj,
1856		      struct kobj_uevent_env *env)
1857{
1858	struct device *dev = kobj_to_dev(kobj);
1859	int retval = 0;
1860
1861	/* add device node properties if present */
1862	if (MAJOR(dev->devt)) {
1863		const char *tmp;
1864		const char *name;
1865		umode_t mode = 0;
1866		kuid_t uid = GLOBAL_ROOT_UID;
1867		kgid_t gid = GLOBAL_ROOT_GID;
1868
1869		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1870		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1871		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1872		if (name) {
1873			add_uevent_var(env, "DEVNAME=%s", name);
1874			if (mode)
1875				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1876			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1877				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1878			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1879				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1880			kfree(tmp);
1881		}
1882	}
1883
1884	if (dev->type && dev->type->name)
1885		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1886
1887	if (dev->driver)
1888		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1889
1890	/* Add common DT information about the device */
1891	of_device_uevent(dev, env);
1892
1893	/* have the bus specific function add its stuff */
1894	if (dev->bus && dev->bus->uevent) {
1895		retval = dev->bus->uevent(dev, env);
1896		if (retval)
1897			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1898				 dev_name(dev), __func__, retval);
1899	}
1900
1901	/* have the class specific function add its stuff */
1902	if (dev->class && dev->class->dev_uevent) {
1903		retval = dev->class->dev_uevent(dev, env);
1904		if (retval)
1905			pr_debug("device: '%s': %s: class uevent() "
1906				 "returned %d\n", dev_name(dev),
1907				 __func__, retval);
1908	}
1909
1910	/* have the device type specific function add its stuff */
1911	if (dev->type && dev->type->uevent) {
1912		retval = dev->type->uevent(dev, env);
1913		if (retval)
1914			pr_debug("device: '%s': %s: dev_type uevent() "
1915				 "returned %d\n", dev_name(dev),
1916				 __func__, retval);
1917	}
1918
1919	return retval;
1920}
1921
1922static const struct kset_uevent_ops device_uevent_ops = {
1923	.filter =	dev_uevent_filter,
1924	.name =		dev_uevent_name,
1925	.uevent =	dev_uevent,
1926};
1927
1928static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1929			   char *buf)
1930{
1931	struct kobject *top_kobj;
1932	struct kset *kset;
1933	struct kobj_uevent_env *env = NULL;
1934	int i;
1935	size_t count = 0;
1936	int retval;
1937
1938	/* search the kset, the device belongs to */
1939	top_kobj = &dev->kobj;
1940	while (!top_kobj->kset && top_kobj->parent)
1941		top_kobj = top_kobj->parent;
1942	if (!top_kobj->kset)
1943		goto out;
1944
1945	kset = top_kobj->kset;
1946	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1947		goto out;
1948
1949	/* respect filter */
1950	if (kset->uevent_ops && kset->uevent_ops->filter)
1951		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1952			goto out;
1953
1954	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1955	if (!env)
1956		return -ENOMEM;
1957
1958	/* let the kset specific function add its keys */
1959	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1960	if (retval)
1961		goto out;
1962
1963	/* copy keys to file */
1964	for (i = 0; i < env->envp_idx; i++)
1965		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1966out:
1967	kfree(env);
1968	return count;
1969}
1970
1971static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1972			    const char *buf, size_t count)
1973{
1974	int rc;
1975
1976	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1977
1978	if (rc) {
1979		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1980		return rc;
1981	}
1982
1983	return count;
1984}
1985static DEVICE_ATTR_RW(uevent);
1986
1987static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1988			   char *buf)
1989{
1990	bool val;
1991
1992	device_lock(dev);
1993	val = !dev->offline;
1994	device_unlock(dev);
1995	return sprintf(buf, "%u\n", val);
1996}
1997
1998static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1999			    const char *buf, size_t count)
2000{
2001	bool val;
2002	int ret;
2003
2004	ret = strtobool(buf, &val);
2005	if (ret < 0)
2006		return ret;
2007
2008	ret = lock_device_hotplug_sysfs();
2009	if (ret)
2010		return ret;
2011
2012	ret = val ? device_online(dev) : device_offline(dev);
2013	unlock_device_hotplug();
2014	return ret < 0 ? ret : count;
2015}
2016static DEVICE_ATTR_RW(online);
2017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018int device_add_groups(struct device *dev, const struct attribute_group **groups)
2019{
2020	return sysfs_create_groups(&dev->kobj, groups);
2021}
2022EXPORT_SYMBOL_GPL(device_add_groups);
2023
2024void device_remove_groups(struct device *dev,
2025			  const struct attribute_group **groups)
2026{
2027	sysfs_remove_groups(&dev->kobj, groups);
2028}
2029EXPORT_SYMBOL_GPL(device_remove_groups);
2030
2031union device_attr_group_devres {
2032	const struct attribute_group *group;
2033	const struct attribute_group **groups;
2034};
2035
2036static int devm_attr_group_match(struct device *dev, void *res, void *data)
2037{
2038	return ((union device_attr_group_devres *)res)->group == data;
2039}
2040
2041static void devm_attr_group_remove(struct device *dev, void *res)
2042{
2043	union device_attr_group_devres *devres = res;
2044	const struct attribute_group *group = devres->group;
2045
2046	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2047	sysfs_remove_group(&dev->kobj, group);
2048}
2049
2050static void devm_attr_groups_remove(struct device *dev, void *res)
2051{
2052	union device_attr_group_devres *devres = res;
2053	const struct attribute_group **groups = devres->groups;
2054
2055	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2056	sysfs_remove_groups(&dev->kobj, groups);
2057}
2058
2059/**
2060 * devm_device_add_group - given a device, create a managed attribute group
2061 * @dev:	The device to create the group for
2062 * @grp:	The attribute group to create
2063 *
2064 * This function creates a group for the first time.  It will explicitly
2065 * warn and error if any of the attribute files being created already exist.
2066 *
2067 * Returns 0 on success or error code on failure.
2068 */
2069int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2070{
2071	union device_attr_group_devres *devres;
2072	int error;
2073
2074	devres = devres_alloc(devm_attr_group_remove,
2075			      sizeof(*devres), GFP_KERNEL);
2076	if (!devres)
2077		return -ENOMEM;
2078
2079	error = sysfs_create_group(&dev->kobj, grp);
2080	if (error) {
2081		devres_free(devres);
2082		return error;
2083	}
2084
2085	devres->group = grp;
2086	devres_add(dev, devres);
2087	return 0;
2088}
2089EXPORT_SYMBOL_GPL(devm_device_add_group);
2090
2091/**
2092 * devm_device_remove_group: remove a managed group from a device
2093 * @dev:	device to remove the group from
2094 * @grp:	group to remove
2095 *
2096 * This function removes a group of attributes from a device. The attributes
2097 * previously have to have been created for this group, otherwise it will fail.
2098 */
2099void devm_device_remove_group(struct device *dev,
2100			      const struct attribute_group *grp)
2101{
2102	WARN_ON(devres_release(dev, devm_attr_group_remove,
2103			       devm_attr_group_match,
2104			       /* cast away const */ (void *)grp));
2105}
2106EXPORT_SYMBOL_GPL(devm_device_remove_group);
2107
2108/**
2109 * devm_device_add_groups - create a bunch of managed attribute groups
2110 * @dev:	The device to create the group for
2111 * @groups:	The attribute groups to create, NULL terminated
2112 *
2113 * This function creates a bunch of managed attribute groups.  If an error
2114 * occurs when creating a group, all previously created groups will be
2115 * removed, unwinding everything back to the original state when this
2116 * function was called.  It will explicitly warn and error if any of the
2117 * attribute files being created already exist.
2118 *
2119 * Returns 0 on success or error code from sysfs_create_group on failure.
2120 */
2121int devm_device_add_groups(struct device *dev,
2122			   const struct attribute_group **groups)
2123{
2124	union device_attr_group_devres *devres;
2125	int error;
2126
2127	devres = devres_alloc(devm_attr_groups_remove,
2128			      sizeof(*devres), GFP_KERNEL);
2129	if (!devres)
2130		return -ENOMEM;
2131
2132	error = sysfs_create_groups(&dev->kobj, groups);
2133	if (error) {
2134		devres_free(devres);
2135		return error;
2136	}
2137
2138	devres->groups = groups;
2139	devres_add(dev, devres);
2140	return 0;
2141}
2142EXPORT_SYMBOL_GPL(devm_device_add_groups);
2143
2144/**
2145 * devm_device_remove_groups - remove a list of managed groups
2146 *
2147 * @dev:	The device for the groups to be removed from
2148 * @groups:	NULL terminated list of groups to be removed
2149 *
2150 * If groups is not NULL, remove the specified groups from the device.
2151 */
2152void devm_device_remove_groups(struct device *dev,
2153			       const struct attribute_group **groups)
2154{
2155	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2156			       devm_attr_group_match,
2157			       /* cast away const */ (void *)groups));
2158}
2159EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2160
2161static int device_add_attrs(struct device *dev)
2162{
2163	struct class *class = dev->class;
2164	const struct device_type *type = dev->type;
2165	int error;
2166
2167	if (class) {
2168		error = device_add_groups(dev, class->dev_groups);
2169		if (error)
2170			return error;
2171	}
2172
2173	if (type) {
2174		error = device_add_groups(dev, type->groups);
2175		if (error)
2176			goto err_remove_class_groups;
2177	}
2178
2179	error = device_add_groups(dev, dev->groups);
2180	if (error)
2181		goto err_remove_type_groups;
2182
2183	if (device_supports_offline(dev) && !dev->offline_disabled) {
2184		error = device_create_file(dev, &dev_attr_online);
2185		if (error)
2186			goto err_remove_dev_groups;
2187	}
2188
2189	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2190		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2191		if (error)
2192			goto err_remove_dev_online;
2193	}
2194
 
 
 
 
 
 
 
 
 
 
 
 
 
2195	return 0;
2196
 
 
 
 
2197 err_remove_dev_online:
2198	device_remove_file(dev, &dev_attr_online);
2199 err_remove_dev_groups:
2200	device_remove_groups(dev, dev->groups);
2201 err_remove_type_groups:
2202	if (type)
2203		device_remove_groups(dev, type->groups);
2204 err_remove_class_groups:
2205	if (class)
2206		device_remove_groups(dev, class->dev_groups);
2207
2208	return error;
2209}
2210
2211static void device_remove_attrs(struct device *dev)
2212{
2213	struct class *class = dev->class;
2214	const struct device_type *type = dev->type;
2215
 
 
 
 
 
 
2216	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2217	device_remove_file(dev, &dev_attr_online);
2218	device_remove_groups(dev, dev->groups);
2219
2220	if (type)
2221		device_remove_groups(dev, type->groups);
2222
2223	if (class)
2224		device_remove_groups(dev, class->dev_groups);
2225}
2226
2227static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2228			char *buf)
2229{
2230	return print_dev_t(buf, dev->devt);
2231}
2232static DEVICE_ATTR_RO(dev);
2233
2234/* /sys/devices/ */
2235struct kset *devices_kset;
2236
2237/**
2238 * devices_kset_move_before - Move device in the devices_kset's list.
2239 * @deva: Device to move.
2240 * @devb: Device @deva should come before.
2241 */
2242static void devices_kset_move_before(struct device *deva, struct device *devb)
2243{
2244	if (!devices_kset)
2245		return;
2246	pr_debug("devices_kset: Moving %s before %s\n",
2247		 dev_name(deva), dev_name(devb));
2248	spin_lock(&devices_kset->list_lock);
2249	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2250	spin_unlock(&devices_kset->list_lock);
2251}
2252
2253/**
2254 * devices_kset_move_after - Move device in the devices_kset's list.
2255 * @deva: Device to move
2256 * @devb: Device @deva should come after.
2257 */
2258static void devices_kset_move_after(struct device *deva, struct device *devb)
2259{
2260	if (!devices_kset)
2261		return;
2262	pr_debug("devices_kset: Moving %s after %s\n",
2263		 dev_name(deva), dev_name(devb));
2264	spin_lock(&devices_kset->list_lock);
2265	list_move(&deva->kobj.entry, &devb->kobj.entry);
2266	spin_unlock(&devices_kset->list_lock);
2267}
2268
2269/**
2270 * devices_kset_move_last - move the device to the end of devices_kset's list.
2271 * @dev: device to move
2272 */
2273void devices_kset_move_last(struct device *dev)
2274{
2275	if (!devices_kset)
2276		return;
2277	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2278	spin_lock(&devices_kset->list_lock);
2279	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2280	spin_unlock(&devices_kset->list_lock);
2281}
2282
2283/**
2284 * device_create_file - create sysfs attribute file for device.
2285 * @dev: device.
2286 * @attr: device attribute descriptor.
2287 */
2288int device_create_file(struct device *dev,
2289		       const struct device_attribute *attr)
2290{
2291	int error = 0;
2292
2293	if (dev) {
2294		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2295			"Attribute %s: write permission without 'store'\n",
2296			attr->attr.name);
2297		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2298			"Attribute %s: read permission without 'show'\n",
2299			attr->attr.name);
2300		error = sysfs_create_file(&dev->kobj, &attr->attr);
2301	}
2302
2303	return error;
2304}
2305EXPORT_SYMBOL_GPL(device_create_file);
2306
2307/**
2308 * device_remove_file - remove sysfs attribute file.
2309 * @dev: device.
2310 * @attr: device attribute descriptor.
2311 */
2312void device_remove_file(struct device *dev,
2313			const struct device_attribute *attr)
2314{
2315	if (dev)
2316		sysfs_remove_file(&dev->kobj, &attr->attr);
2317}
2318EXPORT_SYMBOL_GPL(device_remove_file);
2319
2320/**
2321 * device_remove_file_self - remove sysfs attribute file from its own method.
2322 * @dev: device.
2323 * @attr: device attribute descriptor.
2324 *
2325 * See kernfs_remove_self() for details.
2326 */
2327bool device_remove_file_self(struct device *dev,
2328			     const struct device_attribute *attr)
2329{
2330	if (dev)
2331		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2332	else
2333		return false;
2334}
2335EXPORT_SYMBOL_GPL(device_remove_file_self);
2336
2337/**
2338 * device_create_bin_file - create sysfs binary attribute file for device.
2339 * @dev: device.
2340 * @attr: device binary attribute descriptor.
2341 */
2342int device_create_bin_file(struct device *dev,
2343			   const struct bin_attribute *attr)
2344{
2345	int error = -EINVAL;
2346	if (dev)
2347		error = sysfs_create_bin_file(&dev->kobj, attr);
2348	return error;
2349}
2350EXPORT_SYMBOL_GPL(device_create_bin_file);
2351
2352/**
2353 * device_remove_bin_file - remove sysfs binary attribute file
2354 * @dev: device.
2355 * @attr: device binary attribute descriptor.
2356 */
2357void device_remove_bin_file(struct device *dev,
2358			    const struct bin_attribute *attr)
2359{
2360	if (dev)
2361		sysfs_remove_bin_file(&dev->kobj, attr);
2362}
2363EXPORT_SYMBOL_GPL(device_remove_bin_file);
2364
2365static void klist_children_get(struct klist_node *n)
2366{
2367	struct device_private *p = to_device_private_parent(n);
2368	struct device *dev = p->device;
2369
2370	get_device(dev);
2371}
2372
2373static void klist_children_put(struct klist_node *n)
2374{
2375	struct device_private *p = to_device_private_parent(n);
2376	struct device *dev = p->device;
2377
2378	put_device(dev);
2379}
2380
2381/**
2382 * device_initialize - init device structure.
2383 * @dev: device.
2384 *
2385 * This prepares the device for use by other layers by initializing
2386 * its fields.
2387 * It is the first half of device_register(), if called by
2388 * that function, though it can also be called separately, so one
2389 * may use @dev's fields. In particular, get_device()/put_device()
2390 * may be used for reference counting of @dev after calling this
2391 * function.
2392 *
2393 * All fields in @dev must be initialized by the caller to 0, except
2394 * for those explicitly set to some other value.  The simplest
2395 * approach is to use kzalloc() to allocate the structure containing
2396 * @dev.
2397 *
2398 * NOTE: Use put_device() to give up your reference instead of freeing
2399 * @dev directly once you have called this function.
2400 */
2401void device_initialize(struct device *dev)
2402{
2403	dev->kobj.kset = devices_kset;
2404	kobject_init(&dev->kobj, &device_ktype);
2405	INIT_LIST_HEAD(&dev->dma_pools);
2406	mutex_init(&dev->mutex);
2407#ifdef CONFIG_PROVE_LOCKING
2408	mutex_init(&dev->lockdep_mutex);
2409#endif
2410	lockdep_set_novalidate_class(&dev->mutex);
2411	spin_lock_init(&dev->devres_lock);
2412	INIT_LIST_HEAD(&dev->devres_head);
2413	device_pm_init(dev);
2414	set_dev_node(dev, -1);
2415#ifdef CONFIG_GENERIC_MSI_IRQ
2416	INIT_LIST_HEAD(&dev->msi_list);
2417#endif
2418	INIT_LIST_HEAD(&dev->links.consumers);
2419	INIT_LIST_HEAD(&dev->links.suppliers);
2420	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2421	INIT_LIST_HEAD(&dev->links.defer_hook);
2422	dev->links.status = DL_DEV_NO_DRIVER;
 
 
 
 
 
 
 
 
2423}
2424EXPORT_SYMBOL_GPL(device_initialize);
2425
2426struct kobject *virtual_device_parent(struct device *dev)
2427{
2428	static struct kobject *virtual_dir = NULL;
2429
2430	if (!virtual_dir)
2431		virtual_dir = kobject_create_and_add("virtual",
2432						     &devices_kset->kobj);
2433
2434	return virtual_dir;
2435}
2436
2437struct class_dir {
2438	struct kobject kobj;
2439	struct class *class;
2440};
2441
2442#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2443
2444static void class_dir_release(struct kobject *kobj)
2445{
2446	struct class_dir *dir = to_class_dir(kobj);
2447	kfree(dir);
2448}
2449
2450static const
2451struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2452{
2453	struct class_dir *dir = to_class_dir(kobj);
2454	return dir->class->ns_type;
2455}
2456
2457static struct kobj_type class_dir_ktype = {
2458	.release	= class_dir_release,
2459	.sysfs_ops	= &kobj_sysfs_ops,
2460	.child_ns_type	= class_dir_child_ns_type
2461};
2462
2463static struct kobject *
2464class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2465{
2466	struct class_dir *dir;
2467	int retval;
2468
2469	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2470	if (!dir)
2471		return ERR_PTR(-ENOMEM);
2472
2473	dir->class = class;
2474	kobject_init(&dir->kobj, &class_dir_ktype);
2475
2476	dir->kobj.kset = &class->p->glue_dirs;
2477
2478	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2479	if (retval < 0) {
2480		kobject_put(&dir->kobj);
2481		return ERR_PTR(retval);
2482	}
2483	return &dir->kobj;
2484}
2485
2486static DEFINE_MUTEX(gdp_mutex);
2487
2488static struct kobject *get_device_parent(struct device *dev,
2489					 struct device *parent)
2490{
2491	if (dev->class) {
2492		struct kobject *kobj = NULL;
2493		struct kobject *parent_kobj;
2494		struct kobject *k;
2495
2496#ifdef CONFIG_BLOCK
2497		/* block disks show up in /sys/block */
2498		if (sysfs_deprecated && dev->class == &block_class) {
2499			if (parent && parent->class == &block_class)
2500				return &parent->kobj;
2501			return &block_class.p->subsys.kobj;
2502		}
2503#endif
2504
2505		/*
2506		 * If we have no parent, we live in "virtual".
2507		 * Class-devices with a non class-device as parent, live
2508		 * in a "glue" directory to prevent namespace collisions.
2509		 */
2510		if (parent == NULL)
2511			parent_kobj = virtual_device_parent(dev);
2512		else if (parent->class && !dev->class->ns_type)
2513			return &parent->kobj;
2514		else
2515			parent_kobj = &parent->kobj;
2516
2517		mutex_lock(&gdp_mutex);
2518
2519		/* find our class-directory at the parent and reference it */
2520		spin_lock(&dev->class->p->glue_dirs.list_lock);
2521		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2522			if (k->parent == parent_kobj) {
2523				kobj = kobject_get(k);
2524				break;
2525			}
2526		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2527		if (kobj) {
2528			mutex_unlock(&gdp_mutex);
2529			return kobj;
2530		}
2531
2532		/* or create a new class-directory at the parent device */
2533		k = class_dir_create_and_add(dev->class, parent_kobj);
2534		/* do not emit an uevent for this simple "glue" directory */
2535		mutex_unlock(&gdp_mutex);
2536		return k;
2537	}
2538
2539	/* subsystems can specify a default root directory for their devices */
2540	if (!parent && dev->bus && dev->bus->dev_root)
2541		return &dev->bus->dev_root->kobj;
2542
2543	if (parent)
2544		return &parent->kobj;
2545	return NULL;
2546}
2547
2548static inline bool live_in_glue_dir(struct kobject *kobj,
2549				    struct device *dev)
2550{
2551	if (!kobj || !dev->class ||
2552	    kobj->kset != &dev->class->p->glue_dirs)
2553		return false;
2554	return true;
2555}
2556
2557static inline struct kobject *get_glue_dir(struct device *dev)
2558{
2559	return dev->kobj.parent;
2560}
2561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2562/*
2563 * make sure cleaning up dir as the last step, we need to make
2564 * sure .release handler of kobject is run with holding the
2565 * global lock
2566 */
2567static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2568{
2569	unsigned int ref;
2570
2571	/* see if we live in a "glue" directory */
2572	if (!live_in_glue_dir(glue_dir, dev))
2573		return;
2574
2575	mutex_lock(&gdp_mutex);
2576	/**
2577	 * There is a race condition between removing glue directory
2578	 * and adding a new device under the glue directory.
2579	 *
2580	 * CPU1:                                         CPU2:
2581	 *
2582	 * device_add()
2583	 *   get_device_parent()
2584	 *     class_dir_create_and_add()
2585	 *       kobject_add_internal()
2586	 *         create_dir()    // create glue_dir
2587	 *
2588	 *                                               device_add()
2589	 *                                                 get_device_parent()
2590	 *                                                   kobject_get() // get glue_dir
2591	 *
2592	 * device_del()
2593	 *   cleanup_glue_dir()
2594	 *     kobject_del(glue_dir)
2595	 *
2596	 *                                               kobject_add()
2597	 *                                                 kobject_add_internal()
2598	 *                                                   create_dir() // in glue_dir
2599	 *                                                     sysfs_create_dir_ns()
2600	 *                                                       kernfs_create_dir_ns(sd)
2601	 *
2602	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2603	 *       sysfs_put()        // free glue_dir->sd
2604	 *
2605	 *                                                         // sd is freed
2606	 *                                                         kernfs_new_node(sd)
2607	 *                                                           kernfs_get(glue_dir)
2608	 *                                                           kernfs_add_one()
2609	 *                                                           kernfs_put()
2610	 *
2611	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2612	 * a new device under glue dir, the glue_dir kobject reference count
2613	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2614	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2615	 * and sysfs_put(). This result in glue_dir->sd is freed.
2616	 *
2617	 * Then the CPU2 will see a stale "empty" but still potentially used
2618	 * glue dir around in kernfs_new_node().
2619	 *
2620	 * In order to avoid this happening, we also should make sure that
2621	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2622	 * for glue_dir kobj is 1.
2623	 */
2624	ref = kref_read(&glue_dir->kref);
2625	if (!kobject_has_children(glue_dir) && !--ref)
2626		kobject_del(glue_dir);
2627	kobject_put(glue_dir);
2628	mutex_unlock(&gdp_mutex);
2629}
2630
2631static int device_add_class_symlinks(struct device *dev)
2632{
2633	struct device_node *of_node = dev_of_node(dev);
2634	int error;
2635
2636	if (of_node) {
2637		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2638		if (error)
2639			dev_warn(dev, "Error %d creating of_node link\n",error);
2640		/* An error here doesn't warrant bringing down the device */
2641	}
2642
2643	if (!dev->class)
2644		return 0;
2645
2646	error = sysfs_create_link(&dev->kobj,
2647				  &dev->class->p->subsys.kobj,
2648				  "subsystem");
2649	if (error)
2650		goto out_devnode;
2651
2652	if (dev->parent && device_is_not_partition(dev)) {
2653		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2654					  "device");
2655		if (error)
2656			goto out_subsys;
2657	}
2658
2659#ifdef CONFIG_BLOCK
2660	/* /sys/block has directories and does not need symlinks */
2661	if (sysfs_deprecated && dev->class == &block_class)
2662		return 0;
2663#endif
2664
2665	/* link in the class directory pointing to the device */
2666	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2667				  &dev->kobj, dev_name(dev));
2668	if (error)
2669		goto out_device;
2670
2671	return 0;
2672
2673out_device:
2674	sysfs_remove_link(&dev->kobj, "device");
2675
2676out_subsys:
2677	sysfs_remove_link(&dev->kobj, "subsystem");
2678out_devnode:
2679	sysfs_remove_link(&dev->kobj, "of_node");
2680	return error;
2681}
2682
2683static void device_remove_class_symlinks(struct device *dev)
2684{
2685	if (dev_of_node(dev))
2686		sysfs_remove_link(&dev->kobj, "of_node");
2687
2688	if (!dev->class)
2689		return;
2690
2691	if (dev->parent && device_is_not_partition(dev))
2692		sysfs_remove_link(&dev->kobj, "device");
2693	sysfs_remove_link(&dev->kobj, "subsystem");
2694#ifdef CONFIG_BLOCK
2695	if (sysfs_deprecated && dev->class == &block_class)
2696		return;
2697#endif
2698	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2699}
2700
2701/**
2702 * dev_set_name - set a device name
2703 * @dev: device
2704 * @fmt: format string for the device's name
2705 */
2706int dev_set_name(struct device *dev, const char *fmt, ...)
2707{
2708	va_list vargs;
2709	int err;
2710
2711	va_start(vargs, fmt);
2712	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2713	va_end(vargs);
2714	return err;
2715}
2716EXPORT_SYMBOL_GPL(dev_set_name);
2717
2718/**
2719 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2720 * @dev: device
2721 *
2722 * By default we select char/ for new entries.  Setting class->dev_obj
2723 * to NULL prevents an entry from being created.  class->dev_kobj must
2724 * be set (or cleared) before any devices are registered to the class
2725 * otherwise device_create_sys_dev_entry() and
2726 * device_remove_sys_dev_entry() will disagree about the presence of
2727 * the link.
2728 */
2729static struct kobject *device_to_dev_kobj(struct device *dev)
2730{
2731	struct kobject *kobj;
2732
2733	if (dev->class)
2734		kobj = dev->class->dev_kobj;
2735	else
2736		kobj = sysfs_dev_char_kobj;
2737
2738	return kobj;
2739}
2740
2741static int device_create_sys_dev_entry(struct device *dev)
2742{
2743	struct kobject *kobj = device_to_dev_kobj(dev);
2744	int error = 0;
2745	char devt_str[15];
2746
2747	if (kobj) {
2748		format_dev_t(devt_str, dev->devt);
2749		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2750	}
2751
2752	return error;
2753}
2754
2755static void device_remove_sys_dev_entry(struct device *dev)
2756{
2757	struct kobject *kobj = device_to_dev_kobj(dev);
2758	char devt_str[15];
2759
2760	if (kobj) {
2761		format_dev_t(devt_str, dev->devt);
2762		sysfs_remove_link(kobj, devt_str);
2763	}
2764}
2765
2766static int device_private_init(struct device *dev)
2767{
2768	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2769	if (!dev->p)
2770		return -ENOMEM;
2771	dev->p->device = dev;
2772	klist_init(&dev->p->klist_children, klist_children_get,
2773		   klist_children_put);
2774	INIT_LIST_HEAD(&dev->p->deferred_probe);
2775	return 0;
2776}
2777
2778/**
2779 * device_add - add device to device hierarchy.
2780 * @dev: device.
2781 *
2782 * This is part 2 of device_register(), though may be called
2783 * separately _iff_ device_initialize() has been called separately.
2784 *
2785 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2786 * to the global and sibling lists for the device, then
2787 * adds it to the other relevant subsystems of the driver model.
2788 *
2789 * Do not call this routine or device_register() more than once for
2790 * any device structure.  The driver model core is not designed to work
2791 * with devices that get unregistered and then spring back to life.
2792 * (Among other things, it's very hard to guarantee that all references
2793 * to the previous incarnation of @dev have been dropped.)  Allocate
2794 * and register a fresh new struct device instead.
2795 *
2796 * NOTE: _Never_ directly free @dev after calling this function, even
2797 * if it returned an error! Always use put_device() to give up your
2798 * reference instead.
2799 *
2800 * Rule of thumb is: if device_add() succeeds, you should call
2801 * device_del() when you want to get rid of it. If device_add() has
2802 * *not* succeeded, use *only* put_device() to drop the reference
2803 * count.
2804 */
2805int device_add(struct device *dev)
2806{
2807	struct device *parent;
2808	struct kobject *kobj;
2809	struct class_interface *class_intf;
2810	int error = -EINVAL;
2811	struct kobject *glue_dir = NULL;
2812
2813	dev = get_device(dev);
2814	if (!dev)
2815		goto done;
2816
2817	if (!dev->p) {
2818		error = device_private_init(dev);
2819		if (error)
2820			goto done;
2821	}
2822
2823	/*
2824	 * for statically allocated devices, which should all be converted
2825	 * some day, we need to initialize the name. We prevent reading back
2826	 * the name, and force the use of dev_name()
2827	 */
2828	if (dev->init_name) {
2829		dev_set_name(dev, "%s", dev->init_name);
2830		dev->init_name = NULL;
2831	}
2832
2833	/* subsystems can specify simple device enumeration */
2834	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2835		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2836
2837	if (!dev_name(dev)) {
2838		error = -EINVAL;
2839		goto name_error;
2840	}
2841
2842	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2843
2844	parent = get_device(dev->parent);
2845	kobj = get_device_parent(dev, parent);
2846	if (IS_ERR(kobj)) {
2847		error = PTR_ERR(kobj);
2848		goto parent_error;
2849	}
2850	if (kobj)
2851		dev->kobj.parent = kobj;
2852
2853	/* use parent numa_node */
2854	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2855		set_dev_node(dev, dev_to_node(parent));
2856
2857	/* first, register with generic layer. */
2858	/* we require the name to be set before, and pass NULL */
2859	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2860	if (error) {
2861		glue_dir = get_glue_dir(dev);
2862		goto Error;
2863	}
2864
2865	/* notify platform of device entry */
2866	error = device_platform_notify(dev, KOBJ_ADD);
2867	if (error)
2868		goto platform_error;
2869
2870	error = device_create_file(dev, &dev_attr_uevent);
2871	if (error)
2872		goto attrError;
2873
2874	error = device_add_class_symlinks(dev);
2875	if (error)
2876		goto SymlinkError;
2877	error = device_add_attrs(dev);
2878	if (error)
2879		goto AttrsError;
2880	error = bus_add_device(dev);
2881	if (error)
2882		goto BusError;
2883	error = dpm_sysfs_add(dev);
2884	if (error)
2885		goto DPMError;
2886	device_pm_add(dev);
2887
2888	if (MAJOR(dev->devt)) {
2889		error = device_create_file(dev, &dev_attr_dev);
2890		if (error)
2891			goto DevAttrError;
2892
2893		error = device_create_sys_dev_entry(dev);
2894		if (error)
2895			goto SysEntryError;
2896
2897		devtmpfs_create_node(dev);
2898	}
2899
2900	/* Notify clients of device addition.  This call must come
2901	 * after dpm_sysfs_add() and before kobject_uevent().
2902	 */
2903	if (dev->bus)
2904		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2905					     BUS_NOTIFY_ADD_DEVICE, dev);
2906
2907	kobject_uevent(&dev->kobj, KOBJ_ADD);
2908
2909	/*
2910	 * Check if any of the other devices (consumers) have been waiting for
2911	 * this device (supplier) to be added so that they can create a device
2912	 * link to it.
2913	 *
2914	 * This needs to happen after device_pm_add() because device_link_add()
2915	 * requires the supplier be registered before it's called.
2916	 *
2917	 * But this also needs to happen before bus_probe_device() to make sure
2918	 * waiting consumers can link to it before the driver is bound to the
2919	 * device and the driver sync_state callback is called for this device.
2920	 */
2921	if (dev->fwnode && !dev->fwnode->dev) {
2922		dev->fwnode->dev = dev;
2923		fw_devlink_link_device(dev);
2924	}
2925
2926	bus_probe_device(dev);
 
 
 
 
 
 
 
 
 
2927	if (parent)
2928		klist_add_tail(&dev->p->knode_parent,
2929			       &parent->p->klist_children);
2930
2931	if (dev->class) {
2932		mutex_lock(&dev->class->p->mutex);
2933		/* tie the class to the device */
2934		klist_add_tail(&dev->p->knode_class,
2935			       &dev->class->p->klist_devices);
2936
2937		/* notify any interfaces that the device is here */
2938		list_for_each_entry(class_intf,
2939				    &dev->class->p->interfaces, node)
2940			if (class_intf->add_dev)
2941				class_intf->add_dev(dev, class_intf);
2942		mutex_unlock(&dev->class->p->mutex);
2943	}
2944done:
2945	put_device(dev);
2946	return error;
2947 SysEntryError:
2948	if (MAJOR(dev->devt))
2949		device_remove_file(dev, &dev_attr_dev);
2950 DevAttrError:
2951	device_pm_remove(dev);
2952	dpm_sysfs_remove(dev);
2953 DPMError:
2954	bus_remove_device(dev);
2955 BusError:
2956	device_remove_attrs(dev);
2957 AttrsError:
2958	device_remove_class_symlinks(dev);
2959 SymlinkError:
2960	device_remove_file(dev, &dev_attr_uevent);
2961 attrError:
2962	device_platform_notify(dev, KOBJ_REMOVE);
2963platform_error:
2964	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2965	glue_dir = get_glue_dir(dev);
2966	kobject_del(&dev->kobj);
2967 Error:
2968	cleanup_glue_dir(dev, glue_dir);
2969parent_error:
2970	put_device(parent);
2971name_error:
2972	kfree(dev->p);
2973	dev->p = NULL;
2974	goto done;
2975}
2976EXPORT_SYMBOL_GPL(device_add);
2977
2978/**
2979 * device_register - register a device with the system.
2980 * @dev: pointer to the device structure
2981 *
2982 * This happens in two clean steps - initialize the device
2983 * and add it to the system. The two steps can be called
2984 * separately, but this is the easiest and most common.
2985 * I.e. you should only call the two helpers separately if
2986 * have a clearly defined need to use and refcount the device
2987 * before it is added to the hierarchy.
2988 *
2989 * For more information, see the kerneldoc for device_initialize()
2990 * and device_add().
2991 *
2992 * NOTE: _Never_ directly free @dev after calling this function, even
2993 * if it returned an error! Always use put_device() to give up the
2994 * reference initialized in this function instead.
2995 */
2996int device_register(struct device *dev)
2997{
2998	device_initialize(dev);
2999	return device_add(dev);
3000}
3001EXPORT_SYMBOL_GPL(device_register);
3002
3003/**
3004 * get_device - increment reference count for device.
3005 * @dev: device.
3006 *
3007 * This simply forwards the call to kobject_get(), though
3008 * we do take care to provide for the case that we get a NULL
3009 * pointer passed in.
3010 */
3011struct device *get_device(struct device *dev)
3012{
3013	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3014}
3015EXPORT_SYMBOL_GPL(get_device);
3016
3017/**
3018 * put_device - decrement reference count.
3019 * @dev: device in question.
3020 */
3021void put_device(struct device *dev)
3022{
3023	/* might_sleep(); */
3024	if (dev)
3025		kobject_put(&dev->kobj);
3026}
3027EXPORT_SYMBOL_GPL(put_device);
3028
3029bool kill_device(struct device *dev)
3030{
3031	/*
3032	 * Require the device lock and set the "dead" flag to guarantee that
3033	 * the update behavior is consistent with the other bitfields near
3034	 * it and that we cannot have an asynchronous probe routine trying
3035	 * to run while we are tearing out the bus/class/sysfs from
3036	 * underneath the device.
3037	 */
3038	lockdep_assert_held(&dev->mutex);
3039
3040	if (dev->p->dead)
3041		return false;
3042	dev->p->dead = true;
3043	return true;
3044}
3045EXPORT_SYMBOL_GPL(kill_device);
3046
3047/**
3048 * device_del - delete device from system.
3049 * @dev: device.
3050 *
3051 * This is the first part of the device unregistration
3052 * sequence. This removes the device from the lists we control
3053 * from here, has it removed from the other driver model
3054 * subsystems it was added to in device_add(), and removes it
3055 * from the kobject hierarchy.
3056 *
3057 * NOTE: this should be called manually _iff_ device_add() was
3058 * also called manually.
3059 */
3060void device_del(struct device *dev)
3061{
3062	struct device *parent = dev->parent;
3063	struct kobject *glue_dir = NULL;
3064	struct class_interface *class_intf;
 
3065
3066	device_lock(dev);
3067	kill_device(dev);
3068	device_unlock(dev);
3069
3070	if (dev->fwnode && dev->fwnode->dev == dev)
3071		dev->fwnode->dev = NULL;
3072
3073	/* Notify clients of device removal.  This call must come
3074	 * before dpm_sysfs_remove().
3075	 */
 
3076	if (dev->bus)
3077		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3078					     BUS_NOTIFY_DEL_DEVICE, dev);
3079
3080	dpm_sysfs_remove(dev);
3081	if (parent)
3082		klist_del(&dev->p->knode_parent);
3083	if (MAJOR(dev->devt)) {
3084		devtmpfs_delete_node(dev);
3085		device_remove_sys_dev_entry(dev);
3086		device_remove_file(dev, &dev_attr_dev);
3087	}
3088	if (dev->class) {
3089		device_remove_class_symlinks(dev);
3090
3091		mutex_lock(&dev->class->p->mutex);
3092		/* notify any interfaces that the device is now gone */
3093		list_for_each_entry(class_intf,
3094				    &dev->class->p->interfaces, node)
3095			if (class_intf->remove_dev)
3096				class_intf->remove_dev(dev, class_intf);
3097		/* remove the device from the class list */
3098		klist_del(&dev->p->knode_class);
3099		mutex_unlock(&dev->class->p->mutex);
3100	}
3101	device_remove_file(dev, &dev_attr_uevent);
3102	device_remove_attrs(dev);
3103	bus_remove_device(dev);
3104	device_pm_remove(dev);
3105	driver_deferred_probe_del(dev);
3106	device_platform_notify(dev, KOBJ_REMOVE);
3107	device_remove_properties(dev);
3108	device_links_purge(dev);
3109
3110	if (dev->bus)
3111		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3112					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3113	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3114	glue_dir = get_glue_dir(dev);
3115	kobject_del(&dev->kobj);
3116	cleanup_glue_dir(dev, glue_dir);
 
3117	put_device(parent);
3118}
3119EXPORT_SYMBOL_GPL(device_del);
3120
3121/**
3122 * device_unregister - unregister device from system.
3123 * @dev: device going away.
3124 *
3125 * We do this in two parts, like we do device_register(). First,
3126 * we remove it from all the subsystems with device_del(), then
3127 * we decrement the reference count via put_device(). If that
3128 * is the final reference count, the device will be cleaned up
3129 * via device_release() above. Otherwise, the structure will
3130 * stick around until the final reference to the device is dropped.
3131 */
3132void device_unregister(struct device *dev)
3133{
3134	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3135	device_del(dev);
3136	put_device(dev);
3137}
3138EXPORT_SYMBOL_GPL(device_unregister);
3139
3140static struct device *prev_device(struct klist_iter *i)
3141{
3142	struct klist_node *n = klist_prev(i);
3143	struct device *dev = NULL;
3144	struct device_private *p;
3145
3146	if (n) {
3147		p = to_device_private_parent(n);
3148		dev = p->device;
3149	}
3150	return dev;
3151}
3152
3153static struct device *next_device(struct klist_iter *i)
3154{
3155	struct klist_node *n = klist_next(i);
3156	struct device *dev = NULL;
3157	struct device_private *p;
3158
3159	if (n) {
3160		p = to_device_private_parent(n);
3161		dev = p->device;
3162	}
3163	return dev;
3164}
3165
3166/**
3167 * device_get_devnode - path of device node file
3168 * @dev: device
3169 * @mode: returned file access mode
3170 * @uid: returned file owner
3171 * @gid: returned file group
3172 * @tmp: possibly allocated string
3173 *
3174 * Return the relative path of a possible device node.
3175 * Non-default names may need to allocate a memory to compose
3176 * a name. This memory is returned in tmp and needs to be
3177 * freed by the caller.
3178 */
3179const char *device_get_devnode(struct device *dev,
3180			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3181			       const char **tmp)
3182{
3183	char *s;
3184
3185	*tmp = NULL;
3186
3187	/* the device type may provide a specific name */
3188	if (dev->type && dev->type->devnode)
3189		*tmp = dev->type->devnode(dev, mode, uid, gid);
3190	if (*tmp)
3191		return *tmp;
3192
3193	/* the class may provide a specific name */
3194	if (dev->class && dev->class->devnode)
3195		*tmp = dev->class->devnode(dev, mode);
3196	if (*tmp)
3197		return *tmp;
3198
3199	/* return name without allocation, tmp == NULL */
3200	if (strchr(dev_name(dev), '!') == NULL)
3201		return dev_name(dev);
3202
3203	/* replace '!' in the name with '/' */
3204	s = kstrdup(dev_name(dev), GFP_KERNEL);
3205	if (!s)
3206		return NULL;
3207	strreplace(s, '!', '/');
3208	return *tmp = s;
3209}
3210
3211/**
3212 * device_for_each_child - device child iterator.
3213 * @parent: parent struct device.
3214 * @fn: function to be called for each device.
3215 * @data: data for the callback.
3216 *
3217 * Iterate over @parent's child devices, and call @fn for each,
3218 * passing it @data.
3219 *
3220 * We check the return of @fn each time. If it returns anything
3221 * other than 0, we break out and return that value.
3222 */
3223int device_for_each_child(struct device *parent, void *data,
3224			  int (*fn)(struct device *dev, void *data))
3225{
3226	struct klist_iter i;
3227	struct device *child;
3228	int error = 0;
3229
3230	if (!parent->p)
3231		return 0;
3232
3233	klist_iter_init(&parent->p->klist_children, &i);
3234	while (!error && (child = next_device(&i)))
3235		error = fn(child, data);
3236	klist_iter_exit(&i);
3237	return error;
3238}
3239EXPORT_SYMBOL_GPL(device_for_each_child);
3240
3241/**
3242 * device_for_each_child_reverse - device child iterator in reversed order.
3243 * @parent: parent struct device.
3244 * @fn: function to be called for each device.
3245 * @data: data for the callback.
3246 *
3247 * Iterate over @parent's child devices, and call @fn for each,
3248 * passing it @data.
3249 *
3250 * We check the return of @fn each time. If it returns anything
3251 * other than 0, we break out and return that value.
3252 */
3253int device_for_each_child_reverse(struct device *parent, void *data,
3254				  int (*fn)(struct device *dev, void *data))
3255{
3256	struct klist_iter i;
3257	struct device *child;
3258	int error = 0;
3259
3260	if (!parent->p)
3261		return 0;
3262
3263	klist_iter_init(&parent->p->klist_children, &i);
3264	while ((child = prev_device(&i)) && !error)
3265		error = fn(child, data);
3266	klist_iter_exit(&i);
3267	return error;
3268}
3269EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3270
3271/**
3272 * device_find_child - device iterator for locating a particular device.
3273 * @parent: parent struct device
3274 * @match: Callback function to check device
3275 * @data: Data to pass to match function
3276 *
3277 * This is similar to the device_for_each_child() function above, but it
3278 * returns a reference to a device that is 'found' for later use, as
3279 * determined by the @match callback.
3280 *
3281 * The callback should return 0 if the device doesn't match and non-zero
3282 * if it does.  If the callback returns non-zero and a reference to the
3283 * current device can be obtained, this function will return to the caller
3284 * and not iterate over any more devices.
3285 *
3286 * NOTE: you will need to drop the reference with put_device() after use.
3287 */
3288struct device *device_find_child(struct device *parent, void *data,
3289				 int (*match)(struct device *dev, void *data))
3290{
3291	struct klist_iter i;
3292	struct device *child;
3293
3294	if (!parent)
3295		return NULL;
3296
3297	klist_iter_init(&parent->p->klist_children, &i);
3298	while ((child = next_device(&i)))
3299		if (match(child, data) && get_device(child))
3300			break;
3301	klist_iter_exit(&i);
3302	return child;
3303}
3304EXPORT_SYMBOL_GPL(device_find_child);
3305
3306/**
3307 * device_find_child_by_name - device iterator for locating a child device.
3308 * @parent: parent struct device
3309 * @name: name of the child device
3310 *
3311 * This is similar to the device_find_child() function above, but it
3312 * returns a reference to a device that has the name @name.
3313 *
3314 * NOTE: you will need to drop the reference with put_device() after use.
3315 */
3316struct device *device_find_child_by_name(struct device *parent,
3317					 const char *name)
3318{
3319	struct klist_iter i;
3320	struct device *child;
3321
3322	if (!parent)
3323		return NULL;
3324
3325	klist_iter_init(&parent->p->klist_children, &i);
3326	while ((child = next_device(&i)))
3327		if (!strcmp(dev_name(child), name) && get_device(child))
3328			break;
3329	klist_iter_exit(&i);
3330	return child;
3331}
3332EXPORT_SYMBOL_GPL(device_find_child_by_name);
3333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3334int __init devices_init(void)
3335{
3336	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3337	if (!devices_kset)
3338		return -ENOMEM;
3339	dev_kobj = kobject_create_and_add("dev", NULL);
3340	if (!dev_kobj)
3341		goto dev_kobj_err;
3342	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3343	if (!sysfs_dev_block_kobj)
3344		goto block_kobj_err;
3345	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3346	if (!sysfs_dev_char_kobj)
3347		goto char_kobj_err;
3348
3349	return 0;
3350
3351 char_kobj_err:
3352	kobject_put(sysfs_dev_block_kobj);
3353 block_kobj_err:
3354	kobject_put(dev_kobj);
3355 dev_kobj_err:
3356	kset_unregister(devices_kset);
3357	return -ENOMEM;
3358}
3359
3360static int device_check_offline(struct device *dev, void *not_used)
3361{
3362	int ret;
3363
3364	ret = device_for_each_child(dev, NULL, device_check_offline);
3365	if (ret)
3366		return ret;
3367
3368	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3369}
3370
3371/**
3372 * device_offline - Prepare the device for hot-removal.
3373 * @dev: Device to be put offline.
3374 *
3375 * Execute the device bus type's .offline() callback, if present, to prepare
3376 * the device for a subsequent hot-removal.  If that succeeds, the device must
3377 * not be used until either it is removed or its bus type's .online() callback
3378 * is executed.
3379 *
3380 * Call under device_hotplug_lock.
3381 */
3382int device_offline(struct device *dev)
3383{
3384	int ret;
3385
3386	if (dev->offline_disabled)
3387		return -EPERM;
3388
3389	ret = device_for_each_child(dev, NULL, device_check_offline);
3390	if (ret)
3391		return ret;
3392
3393	device_lock(dev);
3394	if (device_supports_offline(dev)) {
3395		if (dev->offline) {
3396			ret = 1;
3397		} else {
3398			ret = dev->bus->offline(dev);
3399			if (!ret) {
3400				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3401				dev->offline = true;
3402			}
3403		}
3404	}
3405	device_unlock(dev);
3406
3407	return ret;
3408}
3409
3410/**
3411 * device_online - Put the device back online after successful device_offline().
3412 * @dev: Device to be put back online.
3413 *
3414 * If device_offline() has been successfully executed for @dev, but the device
3415 * has not been removed subsequently, execute its bus type's .online() callback
3416 * to indicate that the device can be used again.
3417 *
3418 * Call under device_hotplug_lock.
3419 */
3420int device_online(struct device *dev)
3421{
3422	int ret = 0;
3423
3424	device_lock(dev);
3425	if (device_supports_offline(dev)) {
3426		if (dev->offline) {
3427			ret = dev->bus->online(dev);
3428			if (!ret) {
3429				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3430				dev->offline = false;
3431			}
3432		} else {
3433			ret = 1;
3434		}
3435	}
3436	device_unlock(dev);
3437
3438	return ret;
3439}
3440
3441struct root_device {
3442	struct device dev;
3443	struct module *owner;
3444};
3445
3446static inline struct root_device *to_root_device(struct device *d)
3447{
3448	return container_of(d, struct root_device, dev);
3449}
3450
3451static void root_device_release(struct device *dev)
3452{
3453	kfree(to_root_device(dev));
3454}
3455
3456/**
3457 * __root_device_register - allocate and register a root device
3458 * @name: root device name
3459 * @owner: owner module of the root device, usually THIS_MODULE
3460 *
3461 * This function allocates a root device and registers it
3462 * using device_register(). In order to free the returned
3463 * device, use root_device_unregister().
3464 *
3465 * Root devices are dummy devices which allow other devices
3466 * to be grouped under /sys/devices. Use this function to
3467 * allocate a root device and then use it as the parent of
3468 * any device which should appear under /sys/devices/{name}
3469 *
3470 * The /sys/devices/{name} directory will also contain a
3471 * 'module' symlink which points to the @owner directory
3472 * in sysfs.
3473 *
3474 * Returns &struct device pointer on success, or ERR_PTR() on error.
3475 *
3476 * Note: You probably want to use root_device_register().
3477 */
3478struct device *__root_device_register(const char *name, struct module *owner)
3479{
3480	struct root_device *root;
3481	int err = -ENOMEM;
3482
3483	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3484	if (!root)
3485		return ERR_PTR(err);
3486
3487	err = dev_set_name(&root->dev, "%s", name);
3488	if (err) {
3489		kfree(root);
3490		return ERR_PTR(err);
3491	}
3492
3493	root->dev.release = root_device_release;
3494
3495	err = device_register(&root->dev);
3496	if (err) {
3497		put_device(&root->dev);
3498		return ERR_PTR(err);
3499	}
3500
3501#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3502	if (owner) {
3503		struct module_kobject *mk = &owner->mkobj;
3504
3505		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3506		if (err) {
3507			device_unregister(&root->dev);
3508			return ERR_PTR(err);
3509		}
3510		root->owner = owner;
3511	}
3512#endif
3513
3514	return &root->dev;
3515}
3516EXPORT_SYMBOL_GPL(__root_device_register);
3517
3518/**
3519 * root_device_unregister - unregister and free a root device
3520 * @dev: device going away
3521 *
3522 * This function unregisters and cleans up a device that was created by
3523 * root_device_register().
3524 */
3525void root_device_unregister(struct device *dev)
3526{
3527	struct root_device *root = to_root_device(dev);
3528
3529	if (root->owner)
3530		sysfs_remove_link(&root->dev.kobj, "module");
3531
3532	device_unregister(dev);
3533}
3534EXPORT_SYMBOL_GPL(root_device_unregister);
3535
3536
3537static void device_create_release(struct device *dev)
3538{
3539	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3540	kfree(dev);
3541}
3542
3543static __printf(6, 0) struct device *
3544device_create_groups_vargs(struct class *class, struct device *parent,
3545			   dev_t devt, void *drvdata,
3546			   const struct attribute_group **groups,
3547			   const char *fmt, va_list args)
3548{
3549	struct device *dev = NULL;
3550	int retval = -ENODEV;
3551
3552	if (class == NULL || IS_ERR(class))
3553		goto error;
3554
3555	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3556	if (!dev) {
3557		retval = -ENOMEM;
3558		goto error;
3559	}
3560
3561	device_initialize(dev);
3562	dev->devt = devt;
3563	dev->class = class;
3564	dev->parent = parent;
3565	dev->groups = groups;
3566	dev->release = device_create_release;
3567	dev_set_drvdata(dev, drvdata);
3568
3569	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3570	if (retval)
3571		goto error;
3572
3573	retval = device_add(dev);
3574	if (retval)
3575		goto error;
3576
3577	return dev;
3578
3579error:
3580	put_device(dev);
3581	return ERR_PTR(retval);
3582}
3583
3584/**
3585 * device_create - creates a device and registers it with sysfs
3586 * @class: pointer to the struct class that this device should be registered to
3587 * @parent: pointer to the parent struct device of this new device, if any
3588 * @devt: the dev_t for the char device to be added
3589 * @drvdata: the data to be added to the device for callbacks
3590 * @fmt: string for the device's name
3591 *
3592 * This function can be used by char device classes.  A struct device
3593 * will be created in sysfs, registered to the specified class.
3594 *
3595 * A "dev" file will be created, showing the dev_t for the device, if
3596 * the dev_t is not 0,0.
3597 * If a pointer to a parent struct device is passed in, the newly created
3598 * struct device will be a child of that device in sysfs.
3599 * The pointer to the struct device will be returned from the call.
3600 * Any further sysfs files that might be required can be created using this
3601 * pointer.
3602 *
3603 * Returns &struct device pointer on success, or ERR_PTR() on error.
3604 *
3605 * Note: the struct class passed to this function must have previously
3606 * been created with a call to class_create().
3607 */
3608struct device *device_create(struct class *class, struct device *parent,
3609			     dev_t devt, void *drvdata, const char *fmt, ...)
3610{
3611	va_list vargs;
3612	struct device *dev;
3613
3614	va_start(vargs, fmt);
3615	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3616					  fmt, vargs);
3617	va_end(vargs);
3618	return dev;
3619}
3620EXPORT_SYMBOL_GPL(device_create);
3621
3622/**
3623 * device_create_with_groups - creates a device and registers it with sysfs
3624 * @class: pointer to the struct class that this device should be registered to
3625 * @parent: pointer to the parent struct device of this new device, if any
3626 * @devt: the dev_t for the char device to be added
3627 * @drvdata: the data to be added to the device for callbacks
3628 * @groups: NULL-terminated list of attribute groups to be created
3629 * @fmt: string for the device's name
3630 *
3631 * This function can be used by char device classes.  A struct device
3632 * will be created in sysfs, registered to the specified class.
3633 * Additional attributes specified in the groups parameter will also
3634 * be created automatically.
3635 *
3636 * A "dev" file will be created, showing the dev_t for the device, if
3637 * the dev_t is not 0,0.
3638 * If a pointer to a parent struct device is passed in, the newly created
3639 * struct device will be a child of that device in sysfs.
3640 * The pointer to the struct device will be returned from the call.
3641 * Any further sysfs files that might be required can be created using this
3642 * pointer.
3643 *
3644 * Returns &struct device pointer on success, or ERR_PTR() on error.
3645 *
3646 * Note: the struct class passed to this function must have previously
3647 * been created with a call to class_create().
3648 */
3649struct device *device_create_with_groups(struct class *class,
3650					 struct device *parent, dev_t devt,
3651					 void *drvdata,
3652					 const struct attribute_group **groups,
3653					 const char *fmt, ...)
3654{
3655	va_list vargs;
3656	struct device *dev;
3657
3658	va_start(vargs, fmt);
3659	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3660					 fmt, vargs);
3661	va_end(vargs);
3662	return dev;
3663}
3664EXPORT_SYMBOL_GPL(device_create_with_groups);
3665
3666/**
3667 * device_destroy - removes a device that was created with device_create()
3668 * @class: pointer to the struct class that this device was registered with
3669 * @devt: the dev_t of the device that was previously registered
3670 *
3671 * This call unregisters and cleans up a device that was created with a
3672 * call to device_create().
3673 */
3674void device_destroy(struct class *class, dev_t devt)
3675{
3676	struct device *dev;
3677
3678	dev = class_find_device_by_devt(class, devt);
3679	if (dev) {
3680		put_device(dev);
3681		device_unregister(dev);
3682	}
3683}
3684EXPORT_SYMBOL_GPL(device_destroy);
3685
3686/**
3687 * device_rename - renames a device
3688 * @dev: the pointer to the struct device to be renamed
3689 * @new_name: the new name of the device
3690 *
3691 * It is the responsibility of the caller to provide mutual
3692 * exclusion between two different calls of device_rename
3693 * on the same device to ensure that new_name is valid and
3694 * won't conflict with other devices.
3695 *
3696 * Note: Don't call this function.  Currently, the networking layer calls this
3697 * function, but that will change.  The following text from Kay Sievers offers
3698 * some insight:
3699 *
3700 * Renaming devices is racy at many levels, symlinks and other stuff are not
3701 * replaced atomically, and you get a "move" uevent, but it's not easy to
3702 * connect the event to the old and new device. Device nodes are not renamed at
3703 * all, there isn't even support for that in the kernel now.
3704 *
3705 * In the meantime, during renaming, your target name might be taken by another
3706 * driver, creating conflicts. Or the old name is taken directly after you
3707 * renamed it -- then you get events for the same DEVPATH, before you even see
3708 * the "move" event. It's just a mess, and nothing new should ever rely on
3709 * kernel device renaming. Besides that, it's not even implemented now for
3710 * other things than (driver-core wise very simple) network devices.
3711 *
3712 * We are currently about to change network renaming in udev to completely
3713 * disallow renaming of devices in the same namespace as the kernel uses,
3714 * because we can't solve the problems properly, that arise with swapping names
3715 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3716 * be allowed to some other name than eth[0-9]*, for the aforementioned
3717 * reasons.
3718 *
3719 * Make up a "real" name in the driver before you register anything, or add
3720 * some other attributes for userspace to find the device, or use udev to add
3721 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3722 * don't even want to get into that and try to implement the missing pieces in
3723 * the core. We really have other pieces to fix in the driver core mess. :)
3724 */
3725int device_rename(struct device *dev, const char *new_name)
3726{
3727	struct kobject *kobj = &dev->kobj;
3728	char *old_device_name = NULL;
3729	int error;
3730
3731	dev = get_device(dev);
3732	if (!dev)
3733		return -EINVAL;
3734
3735	dev_dbg(dev, "renaming to %s\n", new_name);
3736
3737	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3738	if (!old_device_name) {
3739		error = -ENOMEM;
3740		goto out;
3741	}
3742
3743	if (dev->class) {
3744		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3745					     kobj, old_device_name,
3746					     new_name, kobject_namespace(kobj));
3747		if (error)
3748			goto out;
3749	}
3750
3751	error = kobject_rename(kobj, new_name);
3752	if (error)
3753		goto out;
3754
3755out:
3756	put_device(dev);
3757
3758	kfree(old_device_name);
3759
3760	return error;
3761}
3762EXPORT_SYMBOL_GPL(device_rename);
3763
3764static int device_move_class_links(struct device *dev,
3765				   struct device *old_parent,
3766				   struct device *new_parent)
3767{
3768	int error = 0;
3769
3770	if (old_parent)
3771		sysfs_remove_link(&dev->kobj, "device");
3772	if (new_parent)
3773		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3774					  "device");
3775	return error;
3776}
3777
3778/**
3779 * device_move - moves a device to a new parent
3780 * @dev: the pointer to the struct device to be moved
3781 * @new_parent: the new parent of the device (can be NULL)
3782 * @dpm_order: how to reorder the dpm_list
3783 */
3784int device_move(struct device *dev, struct device *new_parent,
3785		enum dpm_order dpm_order)
3786{
3787	int error;
3788	struct device *old_parent;
3789	struct kobject *new_parent_kobj;
3790
3791	dev = get_device(dev);
3792	if (!dev)
3793		return -EINVAL;
3794
3795	device_pm_lock();
3796	new_parent = get_device(new_parent);
3797	new_parent_kobj = get_device_parent(dev, new_parent);
3798	if (IS_ERR(new_parent_kobj)) {
3799		error = PTR_ERR(new_parent_kobj);
3800		put_device(new_parent);
3801		goto out;
3802	}
3803
3804	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3805		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3806	error = kobject_move(&dev->kobj, new_parent_kobj);
3807	if (error) {
3808		cleanup_glue_dir(dev, new_parent_kobj);
3809		put_device(new_parent);
3810		goto out;
3811	}
3812	old_parent = dev->parent;
3813	dev->parent = new_parent;
3814	if (old_parent)
3815		klist_remove(&dev->p->knode_parent);
3816	if (new_parent) {
3817		klist_add_tail(&dev->p->knode_parent,
3818			       &new_parent->p->klist_children);
3819		set_dev_node(dev, dev_to_node(new_parent));
3820	}
3821
3822	if (dev->class) {
3823		error = device_move_class_links(dev, old_parent, new_parent);
3824		if (error) {
3825			/* We ignore errors on cleanup since we're hosed anyway... */
3826			device_move_class_links(dev, new_parent, old_parent);
3827			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3828				if (new_parent)
3829					klist_remove(&dev->p->knode_parent);
3830				dev->parent = old_parent;
3831				if (old_parent) {
3832					klist_add_tail(&dev->p->knode_parent,
3833						       &old_parent->p->klist_children);
3834					set_dev_node(dev, dev_to_node(old_parent));
3835				}
3836			}
3837			cleanup_glue_dir(dev, new_parent_kobj);
3838			put_device(new_parent);
3839			goto out;
3840		}
3841	}
3842	switch (dpm_order) {
3843	case DPM_ORDER_NONE:
3844		break;
3845	case DPM_ORDER_DEV_AFTER_PARENT:
3846		device_pm_move_after(dev, new_parent);
3847		devices_kset_move_after(dev, new_parent);
3848		break;
3849	case DPM_ORDER_PARENT_BEFORE_DEV:
3850		device_pm_move_before(new_parent, dev);
3851		devices_kset_move_before(new_parent, dev);
3852		break;
3853	case DPM_ORDER_DEV_LAST:
3854		device_pm_move_last(dev);
3855		devices_kset_move_last(dev);
3856		break;
3857	}
3858
3859	put_device(old_parent);
3860out:
3861	device_pm_unlock();
3862	put_device(dev);
3863	return error;
3864}
3865EXPORT_SYMBOL_GPL(device_move);
3866
3867static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3868				     kgid_t kgid)
3869{
3870	struct kobject *kobj = &dev->kobj;
3871	struct class *class = dev->class;
3872	const struct device_type *type = dev->type;
3873	int error;
3874
3875	if (class) {
3876		/*
3877		 * Change the device groups of the device class for @dev to
3878		 * @kuid/@kgid.
3879		 */
3880		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3881						  kgid);
3882		if (error)
3883			return error;
3884	}
3885
3886	if (type) {
3887		/*
3888		 * Change the device groups of the device type for @dev to
3889		 * @kuid/@kgid.
3890		 */
3891		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3892						  kgid);
3893		if (error)
3894			return error;
3895	}
3896
3897	/* Change the device groups of @dev to @kuid/@kgid. */
3898	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3899	if (error)
3900		return error;
3901
3902	if (device_supports_offline(dev) && !dev->offline_disabled) {
3903		/* Change online device attributes of @dev to @kuid/@kgid. */
3904		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3905						kuid, kgid);
3906		if (error)
3907			return error;
3908	}
3909
3910	return 0;
3911}
3912
3913/**
3914 * device_change_owner - change the owner of an existing device.
3915 * @dev: device.
3916 * @kuid: new owner's kuid
3917 * @kgid: new owner's kgid
3918 *
3919 * This changes the owner of @dev and its corresponding sysfs entries to
3920 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3921 * core.
3922 *
3923 * Returns 0 on success or error code on failure.
3924 */
3925int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3926{
3927	int error;
3928	struct kobject *kobj = &dev->kobj;
3929
3930	dev = get_device(dev);
3931	if (!dev)
3932		return -EINVAL;
3933
3934	/*
3935	 * Change the kobject and the default attributes and groups of the
3936	 * ktype associated with it to @kuid/@kgid.
3937	 */
3938	error = sysfs_change_owner(kobj, kuid, kgid);
3939	if (error)
3940		goto out;
3941
3942	/*
3943	 * Change the uevent file for @dev to the new owner. The uevent file
3944	 * was created in a separate step when @dev got added and we mirror
3945	 * that step here.
3946	 */
3947	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3948					kgid);
3949	if (error)
3950		goto out;
3951
3952	/*
3953	 * Change the device groups, the device groups associated with the
3954	 * device class, and the groups associated with the device type of @dev
3955	 * to @kuid/@kgid.
3956	 */
3957	error = device_attrs_change_owner(dev, kuid, kgid);
3958	if (error)
3959		goto out;
3960
3961	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3962	if (error)
3963		goto out;
3964
3965#ifdef CONFIG_BLOCK
3966	if (sysfs_deprecated && dev->class == &block_class)
3967		goto out;
3968#endif
3969
3970	/*
3971	 * Change the owner of the symlink located in the class directory of
3972	 * the device class associated with @dev which points to the actual
3973	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3974	 * symlink shows the same permissions as its target.
3975	 */
3976	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3977					dev_name(dev), kuid, kgid);
3978	if (error)
3979		goto out;
3980
3981out:
3982	put_device(dev);
3983	return error;
3984}
3985EXPORT_SYMBOL_GPL(device_change_owner);
3986
3987/**
3988 * device_shutdown - call ->shutdown() on each device to shutdown.
3989 */
3990void device_shutdown(void)
3991{
3992	struct device *dev, *parent;
3993
3994	wait_for_device_probe();
3995	device_block_probing();
3996
3997	cpufreq_suspend();
3998
3999	spin_lock(&devices_kset->list_lock);
4000	/*
4001	 * Walk the devices list backward, shutting down each in turn.
4002	 * Beware that device unplug events may also start pulling
4003	 * devices offline, even as the system is shutting down.
4004	 */
4005	while (!list_empty(&devices_kset->list)) {
4006		dev = list_entry(devices_kset->list.prev, struct device,
4007				kobj.entry);
4008
4009		/*
4010		 * hold reference count of device's parent to
4011		 * prevent it from being freed because parent's
4012		 * lock is to be held
4013		 */
4014		parent = get_device(dev->parent);
4015		get_device(dev);
4016		/*
4017		 * Make sure the device is off the kset list, in the
4018		 * event that dev->*->shutdown() doesn't remove it.
4019		 */
4020		list_del_init(&dev->kobj.entry);
4021		spin_unlock(&devices_kset->list_lock);
4022
4023		/* hold lock to avoid race with probe/release */
4024		if (parent)
4025			device_lock(parent);
4026		device_lock(dev);
4027
4028		/* Don't allow any more runtime suspends */
4029		pm_runtime_get_noresume(dev);
4030		pm_runtime_barrier(dev);
4031
4032		if (dev->class && dev->class->shutdown_pre) {
4033			if (initcall_debug)
4034				dev_info(dev, "shutdown_pre\n");
4035			dev->class->shutdown_pre(dev);
4036		}
4037		if (dev->bus && dev->bus->shutdown) {
4038			if (initcall_debug)
4039				dev_info(dev, "shutdown\n");
4040			dev->bus->shutdown(dev);
4041		} else if (dev->driver && dev->driver->shutdown) {
4042			if (initcall_debug)
4043				dev_info(dev, "shutdown\n");
4044			dev->driver->shutdown(dev);
4045		}
4046
4047		device_unlock(dev);
4048		if (parent)
4049			device_unlock(parent);
4050
4051		put_device(dev);
4052		put_device(parent);
4053
4054		spin_lock(&devices_kset->list_lock);
4055	}
4056	spin_unlock(&devices_kset->list_lock);
4057}
4058
4059/*
4060 * Device logging functions
4061 */
4062
4063#ifdef CONFIG_PRINTK
4064static int
4065create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
4066{
4067	const char *subsys;
4068	size_t pos = 0;
 
4069
4070	if (dev->class)
4071		subsys = dev->class->name;
4072	else if (dev->bus)
4073		subsys = dev->bus->name;
4074	else
4075		return 0;
4076
4077	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
4078	if (pos >= hdrlen)
4079		goto overflow;
4080
4081	/*
4082	 * Add device identifier DEVICE=:
4083	 *   b12:8         block dev_t
4084	 *   c127:3        char dev_t
4085	 *   n8            netdev ifindex
4086	 *   +sound:card0  subsystem:devname
4087	 */
4088	if (MAJOR(dev->devt)) {
4089		char c;
4090
4091		if (strcmp(subsys, "block") == 0)
4092			c = 'b';
4093		else
4094			c = 'c';
4095		pos++;
4096		pos += snprintf(hdr + pos, hdrlen - pos,
4097				"DEVICE=%c%u:%u",
4098				c, MAJOR(dev->devt), MINOR(dev->devt));
4099	} else if (strcmp(subsys, "net") == 0) {
4100		struct net_device *net = to_net_dev(dev);
4101
4102		pos++;
4103		pos += snprintf(hdr + pos, hdrlen - pos,
4104				"DEVICE=n%u", net->ifindex);
4105	} else {
4106		pos++;
4107		pos += snprintf(hdr + pos, hdrlen - pos,
4108				"DEVICE=+%s:%s", subsys, dev_name(dev));
4109	}
4110
4111	if (pos >= hdrlen)
4112		goto overflow;
4113
4114	return pos;
4115
4116overflow:
4117	dev_WARN(dev, "device/subsystem name too long");
4118	return 0;
4119}
4120
4121int dev_vprintk_emit(int level, const struct device *dev,
4122		     const char *fmt, va_list args)
4123{
4124	char hdr[128];
4125	size_t hdrlen;
4126
4127	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
4128
4129	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
4130}
4131EXPORT_SYMBOL(dev_vprintk_emit);
4132
4133int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4134{
4135	va_list args;
4136	int r;
4137
4138	va_start(args, fmt);
4139
4140	r = dev_vprintk_emit(level, dev, fmt, args);
4141
4142	va_end(args);
4143
4144	return r;
4145}
4146EXPORT_SYMBOL(dev_printk_emit);
4147
4148static void __dev_printk(const char *level, const struct device *dev,
4149			struct va_format *vaf)
4150{
4151	if (dev)
4152		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4153				dev_driver_string(dev), dev_name(dev), vaf);
4154	else
4155		printk("%s(NULL device *): %pV", level, vaf);
4156}
4157
4158void dev_printk(const char *level, const struct device *dev,
4159		const char *fmt, ...)
4160{
4161	struct va_format vaf;
4162	va_list args;
4163
4164	va_start(args, fmt);
4165
4166	vaf.fmt = fmt;
4167	vaf.va = &args;
4168
4169	__dev_printk(level, dev, &vaf);
4170
4171	va_end(args);
4172}
4173EXPORT_SYMBOL(dev_printk);
4174
4175#define define_dev_printk_level(func, kern_level)		\
4176void func(const struct device *dev, const char *fmt, ...)	\
4177{								\
4178	struct va_format vaf;					\
4179	va_list args;						\
4180								\
4181	va_start(args, fmt);					\
4182								\
4183	vaf.fmt = fmt;						\
4184	vaf.va = &args;						\
4185								\
4186	__dev_printk(kern_level, dev, &vaf);			\
4187								\
4188	va_end(args);						\
4189}								\
4190EXPORT_SYMBOL(func);
4191
4192define_dev_printk_level(_dev_emerg, KERN_EMERG);
4193define_dev_printk_level(_dev_alert, KERN_ALERT);
4194define_dev_printk_level(_dev_crit, KERN_CRIT);
4195define_dev_printk_level(_dev_err, KERN_ERR);
4196define_dev_printk_level(_dev_warn, KERN_WARNING);
4197define_dev_printk_level(_dev_notice, KERN_NOTICE);
4198define_dev_printk_level(_dev_info, KERN_INFO);
4199
4200#endif
4201
4202/**
4203 * dev_err_probe - probe error check and log helper
4204 * @dev: the pointer to the struct device
4205 * @err: error value to test
4206 * @fmt: printf-style format string
4207 * @...: arguments as specified in the format string
4208 *
4209 * This helper implements common pattern present in probe functions for error
4210 * checking: print debug or error message depending if the error value is
4211 * -EPROBE_DEFER and propagate error upwards.
4212 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4213 * checked later by reading devices_deferred debugfs attribute.
4214 * It replaces code sequence:
 
4215 * 	if (err != -EPROBE_DEFER)
4216 * 		dev_err(dev, ...);
4217 * 	else
4218 * 		dev_dbg(dev, ...);
4219 * 	return err;
4220 * with
 
 
4221 * 	return dev_err_probe(dev, err, ...);
4222 *
 
 
 
 
 
4223 * Returns @err.
4224 *
4225 */
4226int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4227{
4228	struct va_format vaf;
4229	va_list args;
4230
4231	va_start(args, fmt);
4232	vaf.fmt = fmt;
4233	vaf.va = &args;
4234
4235	if (err != -EPROBE_DEFER) {
4236		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4237	} else {
4238		device_set_deferred_probe_reason(dev, &vaf);
4239		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4240	}
4241
4242	va_end(args);
4243
4244	return err;
4245}
4246EXPORT_SYMBOL_GPL(dev_err_probe);
4247
4248static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4249{
4250	return fwnode && !IS_ERR(fwnode->secondary);
4251}
4252
4253/**
4254 * set_primary_fwnode - Change the primary firmware node of a given device.
4255 * @dev: Device to handle.
4256 * @fwnode: New primary firmware node of the device.
4257 *
4258 * Set the device's firmware node pointer to @fwnode, but if a secondary
4259 * firmware node of the device is present, preserve it.
 
 
 
 
 
 
4260 */
4261void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4262{
 
4263	struct fwnode_handle *fn = dev->fwnode;
4264
4265	if (fwnode) {
4266		if (fwnode_is_primary(fn))
4267			fn = fn->secondary;
4268
4269		if (fn) {
4270			WARN_ON(fwnode->secondary);
4271			fwnode->secondary = fn;
4272		}
4273		dev->fwnode = fwnode;
4274	} else {
4275		if (fwnode_is_primary(fn)) {
4276			dev->fwnode = fn->secondary;
4277			fn->secondary = NULL;
 
 
4278		} else {
4279			dev->fwnode = NULL;
4280		}
4281	}
4282}
4283EXPORT_SYMBOL_GPL(set_primary_fwnode);
4284
4285/**
4286 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4287 * @dev: Device to handle.
4288 * @fwnode: New secondary firmware node of the device.
4289 *
4290 * If a primary firmware node of the device is present, set its secondary
4291 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4292 * @fwnode.
4293 */
4294void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4295{
4296	if (fwnode)
4297		fwnode->secondary = ERR_PTR(-ENODEV);
4298
4299	if (fwnode_is_primary(dev->fwnode))
4300		dev->fwnode->secondary = fwnode;
4301	else
4302		dev->fwnode = fwnode;
4303}
4304EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4305
4306/**
4307 * device_set_of_node_from_dev - reuse device-tree node of another device
4308 * @dev: device whose device-tree node is being set
4309 * @dev2: device whose device-tree node is being reused
4310 *
4311 * Takes another reference to the new device-tree node after first dropping
4312 * any reference held to the old node.
4313 */
4314void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4315{
4316	of_node_put(dev->of_node);
4317	dev->of_node = of_node_get(dev2->of_node);
4318	dev->of_node_reused = true;
4319}
4320EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4321
 
 
 
 
 
 
 
4322int device_match_name(struct device *dev, const void *name)
4323{
4324	return sysfs_streq(dev_name(dev), name);
4325}
4326EXPORT_SYMBOL_GPL(device_match_name);
4327
4328int device_match_of_node(struct device *dev, const void *np)
4329{
4330	return dev->of_node == np;
4331}
4332EXPORT_SYMBOL_GPL(device_match_of_node);
4333
4334int device_match_fwnode(struct device *dev, const void *fwnode)
4335{
4336	return dev_fwnode(dev) == fwnode;
4337}
4338EXPORT_SYMBOL_GPL(device_match_fwnode);
4339
4340int device_match_devt(struct device *dev, const void *pdevt)
4341{
4342	return dev->devt == *(dev_t *)pdevt;
4343}
4344EXPORT_SYMBOL_GPL(device_match_devt);
4345
4346int device_match_acpi_dev(struct device *dev, const void *adev)
4347{
4348	return ACPI_COMPANION(dev) == adev;
4349}
4350EXPORT_SYMBOL(device_match_acpi_dev);
 
 
 
 
 
 
4351
4352int device_match_any(struct device *dev, const void *unused)
4353{
4354	return 1;
4355}
4356EXPORT_SYMBOL_GPL(device_match_any);