Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
 
 
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
 
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
 
  17#include <linux/kstrtox.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/string.h>
  21#include <linux/kdev_t.h>
  22#include <linux/notifier.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/blkdev.h>
  26#include <linux/mutex.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/netdevice.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/mm.h>
 
 
 
  31#include <linux/swiotlb.h>
  32#include <linux/sysfs.h>
  33#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  34
  35#include "base.h"
  36#include "physical_location.h"
  37#include "power/power.h"
  38
  39#ifdef CONFIG_SYSFS_DEPRECATED
  40#ifdef CONFIG_SYSFS_DEPRECATED_V2
  41long sysfs_deprecated = 1;
  42#else
  43long sysfs_deprecated = 0;
  44#endif
  45static int __init sysfs_deprecated_setup(char *arg)
  46{
  47	return kstrtol(arg, 10, &sysfs_deprecated);
  48}
  49early_param("sysfs.deprecated", sysfs_deprecated_setup);
  50#endif
  51
  52/* Device links support. */
  53static LIST_HEAD(deferred_sync);
  54static unsigned int defer_sync_state_count = 1;
  55static DEFINE_MUTEX(fwnode_link_lock);
  56static bool fw_devlink_is_permissive(void);
 
  57static bool fw_devlink_drv_reg_done;
  58static bool fw_devlink_best_effort;
 
  59
  60/**
  61 * fwnode_link_add - Create a link between two fwnode_handles.
  62 * @con: Consumer end of the link.
  63 * @sup: Supplier end of the link.
 
  64 *
  65 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  66 * represents the detail that the firmware lists @sup fwnode as supplying a
  67 * resource to @con.
  68 *
  69 * The driver core will use the fwnode link to create a device link between the
  70 * two device objects corresponding to @con and @sup when they are created. The
  71 * driver core will automatically delete the fwnode link between @con and @sup
  72 * after doing that.
  73 *
  74 * Attempts to create duplicate links between the same pair of fwnode handles
  75 * are ignored and there is no reference counting.
  76 */
  77int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
 
  78{
  79	struct fwnode_link *link;
  80	int ret = 0;
  81
  82	mutex_lock(&fwnode_link_lock);
  83
  84	list_for_each_entry(link, &sup->consumers, s_hook)
  85		if (link->consumer == con)
  86			goto out;
 
 
  87
  88	link = kzalloc(sizeof(*link), GFP_KERNEL);
  89	if (!link) {
  90		ret = -ENOMEM;
  91		goto out;
  92	}
  93
  94	link->supplier = sup;
  95	INIT_LIST_HEAD(&link->s_hook);
  96	link->consumer = con;
  97	INIT_LIST_HEAD(&link->c_hook);
 
  98
  99	list_add(&link->s_hook, &sup->consumers);
 100	list_add(&link->c_hook, &con->suppliers);
 101	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
 102		 con, sup);
 103out:
 104	mutex_unlock(&fwnode_link_lock);
 105
 106	return ret;
 
 
 
 
 
 
 
 
 107}
 108
 109/**
 110 * __fwnode_link_del - Delete a link between two fwnode_handles.
 111 * @link: the fwnode_link to be deleted
 112 *
 113 * The fwnode_link_lock needs to be held when this function is called.
 114 */
 115static void __fwnode_link_del(struct fwnode_link *link)
 116{
 117	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
 118		 link->consumer, link->supplier);
 119	list_del(&link->s_hook);
 120	list_del(&link->c_hook);
 121	kfree(link);
 122}
 123
 124/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 125 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 126 * @fwnode: fwnode whose supplier links need to be deleted
 127 *
 128 * Deletes all supplier links connecting directly to @fwnode.
 129 */
 130static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 131{
 132	struct fwnode_link *link, *tmp;
 133
 134	mutex_lock(&fwnode_link_lock);
 
 135	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
 136		__fwnode_link_del(link);
 137	mutex_unlock(&fwnode_link_lock);
 138}
 139
 140/**
 141 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 142 * @fwnode: fwnode whose consumer links need to be deleted
 143 *
 144 * Deletes all consumer links connecting directly to @fwnode.
 145 */
 146static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 147{
 148	struct fwnode_link *link, *tmp;
 149
 150	mutex_lock(&fwnode_link_lock);
 
 151	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
 152		__fwnode_link_del(link);
 153	mutex_unlock(&fwnode_link_lock);
 154}
 155
 156/**
 157 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 158 * @fwnode: fwnode whose links needs to be deleted
 159 *
 160 * Deletes all links connecting directly to a fwnode.
 161 */
 162void fwnode_links_purge(struct fwnode_handle *fwnode)
 163{
 164	fwnode_links_purge_suppliers(fwnode);
 165	fwnode_links_purge_consumers(fwnode);
 166}
 167
 168void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 169{
 170	struct fwnode_handle *child;
 171
 172	/* Don't purge consumer links of an added child */
 173	if (fwnode->dev)
 174		return;
 175
 176	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 177	fwnode_links_purge_consumers(fwnode);
 178
 179	fwnode_for_each_available_child_node(fwnode, child)
 180		fw_devlink_purge_absent_suppliers(child);
 181}
 182EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 183
 184#ifdef CONFIG_SRCU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185static DEFINE_MUTEX(device_links_lock);
 186DEFINE_STATIC_SRCU(device_links_srcu);
 187
 188static inline void device_links_write_lock(void)
 189{
 190	mutex_lock(&device_links_lock);
 191}
 192
 193static inline void device_links_write_unlock(void)
 194{
 195	mutex_unlock(&device_links_lock);
 196}
 197
 198int device_links_read_lock(void) __acquires(&device_links_srcu)
 199{
 200	return srcu_read_lock(&device_links_srcu);
 201}
 202
 203void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 204{
 205	srcu_read_unlock(&device_links_srcu, idx);
 206}
 207
 208int device_links_read_lock_held(void)
 209{
 210	return srcu_read_lock_held(&device_links_srcu);
 211}
 212
 213static void device_link_synchronize_removal(void)
 214{
 215	synchronize_srcu(&device_links_srcu);
 216}
 217
 218static void device_link_remove_from_lists(struct device_link *link)
 219{
 220	list_del_rcu(&link->s_node);
 221	list_del_rcu(&link->c_node);
 222}
 223#else /* !CONFIG_SRCU */
 224static DECLARE_RWSEM(device_links_lock);
 225
 226static inline void device_links_write_lock(void)
 227{
 228	down_write(&device_links_lock);
 229}
 230
 231static inline void device_links_write_unlock(void)
 232{
 233	up_write(&device_links_lock);
 234}
 235
 236int device_links_read_lock(void)
 237{
 238	down_read(&device_links_lock);
 239	return 0;
 240}
 241
 242void device_links_read_unlock(int not_used)
 243{
 244	up_read(&device_links_lock);
 245}
 246
 247#ifdef CONFIG_DEBUG_LOCK_ALLOC
 248int device_links_read_lock_held(void)
 249{
 250	return lockdep_is_held(&device_links_lock);
 251}
 252#endif
 253
 254static inline void device_link_synchronize_removal(void)
 255{
 256}
 257
 258static void device_link_remove_from_lists(struct device_link *link)
 259{
 260	list_del(&link->s_node);
 261	list_del(&link->c_node);
 262}
 263#endif /* !CONFIG_SRCU */
 264
 265static bool device_is_ancestor(struct device *dev, struct device *target)
 266{
 267	while (target->parent) {
 268		target = target->parent;
 269		if (dev == target)
 270			return true;
 271	}
 272	return false;
 273}
 274
 
 
 
 
 
 
 
 
 275/**
 276 * device_is_dependent - Check if one device depends on another one
 277 * @dev: Device to check dependencies for.
 278 * @target: Device to check against.
 279 *
 280 * Check if @target depends on @dev or any device dependent on it (its child or
 281 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 282 */
 283int device_is_dependent(struct device *dev, void *target)
 284{
 285	struct device_link *link;
 286	int ret;
 287
 288	/*
 289	 * The "ancestors" check is needed to catch the case when the target
 290	 * device has not been completely initialized yet and it is still
 291	 * missing from the list of children of its parent device.
 292	 */
 293	if (dev == target || device_is_ancestor(dev, target))
 294		return 1;
 295
 296	ret = device_for_each_child(dev, target, device_is_dependent);
 297	if (ret)
 298		return ret;
 299
 300	list_for_each_entry(link, &dev->links.consumers, s_node) {
 301		if ((link->flags & ~DL_FLAG_INFERRED) ==
 302		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 303			continue;
 304
 305		if (link->consumer == target)
 306			return 1;
 307
 308		ret = device_is_dependent(link->consumer, target);
 309		if (ret)
 310			break;
 311	}
 312	return ret;
 313}
 314
 315static void device_link_init_status(struct device_link *link,
 316				    struct device *consumer,
 317				    struct device *supplier)
 318{
 319	switch (supplier->links.status) {
 320	case DL_DEV_PROBING:
 321		switch (consumer->links.status) {
 322		case DL_DEV_PROBING:
 323			/*
 324			 * A consumer driver can create a link to a supplier
 325			 * that has not completed its probing yet as long as it
 326			 * knows that the supplier is already functional (for
 327			 * example, it has just acquired some resources from the
 328			 * supplier).
 329			 */
 330			link->status = DL_STATE_CONSUMER_PROBE;
 331			break;
 332		default:
 333			link->status = DL_STATE_DORMANT;
 334			break;
 335		}
 336		break;
 337	case DL_DEV_DRIVER_BOUND:
 338		switch (consumer->links.status) {
 339		case DL_DEV_PROBING:
 340			link->status = DL_STATE_CONSUMER_PROBE;
 341			break;
 342		case DL_DEV_DRIVER_BOUND:
 343			link->status = DL_STATE_ACTIVE;
 344			break;
 345		default:
 346			link->status = DL_STATE_AVAILABLE;
 347			break;
 348		}
 349		break;
 350	case DL_DEV_UNBINDING:
 351		link->status = DL_STATE_SUPPLIER_UNBIND;
 352		break;
 353	default:
 354		link->status = DL_STATE_DORMANT;
 355		break;
 356	}
 357}
 358
 359static int device_reorder_to_tail(struct device *dev, void *not_used)
 360{
 361	struct device_link *link;
 362
 363	/*
 364	 * Devices that have not been registered yet will be put to the ends
 365	 * of the lists during the registration, so skip them here.
 366	 */
 367	if (device_is_registered(dev))
 368		devices_kset_move_last(dev);
 369
 370	if (device_pm_initialized(dev))
 371		device_pm_move_last(dev);
 372
 373	device_for_each_child(dev, NULL, device_reorder_to_tail);
 374	list_for_each_entry(link, &dev->links.consumers, s_node) {
 375		if ((link->flags & ~DL_FLAG_INFERRED) ==
 376		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 377			continue;
 378		device_reorder_to_tail(link->consumer, NULL);
 379	}
 380
 381	return 0;
 382}
 383
 384/**
 385 * device_pm_move_to_tail - Move set of devices to the end of device lists
 386 * @dev: Device to move
 387 *
 388 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 389 *
 390 * It moves the @dev along with all of its children and all of its consumers
 391 * to the ends of the device_kset and dpm_list, recursively.
 392 */
 393void device_pm_move_to_tail(struct device *dev)
 394{
 395	int idx;
 396
 397	idx = device_links_read_lock();
 398	device_pm_lock();
 399	device_reorder_to_tail(dev, NULL);
 400	device_pm_unlock();
 401	device_links_read_unlock(idx);
 402}
 403
 404#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 405
 406static ssize_t status_show(struct device *dev,
 407			   struct device_attribute *attr, char *buf)
 408{
 409	const char *output;
 410
 411	switch (to_devlink(dev)->status) {
 412	case DL_STATE_NONE:
 413		output = "not tracked";
 414		break;
 415	case DL_STATE_DORMANT:
 416		output = "dormant";
 417		break;
 418	case DL_STATE_AVAILABLE:
 419		output = "available";
 420		break;
 421	case DL_STATE_CONSUMER_PROBE:
 422		output = "consumer probing";
 423		break;
 424	case DL_STATE_ACTIVE:
 425		output = "active";
 426		break;
 427	case DL_STATE_SUPPLIER_UNBIND:
 428		output = "supplier unbinding";
 429		break;
 430	default:
 431		output = "unknown";
 432		break;
 433	}
 434
 435	return sysfs_emit(buf, "%s\n", output);
 436}
 437static DEVICE_ATTR_RO(status);
 438
 439static ssize_t auto_remove_on_show(struct device *dev,
 440				   struct device_attribute *attr, char *buf)
 441{
 442	struct device_link *link = to_devlink(dev);
 443	const char *output;
 444
 445	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 446		output = "supplier unbind";
 447	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 448		output = "consumer unbind";
 449	else
 450		output = "never";
 451
 452	return sysfs_emit(buf, "%s\n", output);
 453}
 454static DEVICE_ATTR_RO(auto_remove_on);
 455
 456static ssize_t runtime_pm_show(struct device *dev,
 457			       struct device_attribute *attr, char *buf)
 458{
 459	struct device_link *link = to_devlink(dev);
 460
 461	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 462}
 463static DEVICE_ATTR_RO(runtime_pm);
 464
 465static ssize_t sync_state_only_show(struct device *dev,
 466				    struct device_attribute *attr, char *buf)
 467{
 468	struct device_link *link = to_devlink(dev);
 469
 470	return sysfs_emit(buf, "%d\n",
 471			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 472}
 473static DEVICE_ATTR_RO(sync_state_only);
 474
 475static struct attribute *devlink_attrs[] = {
 476	&dev_attr_status.attr,
 477	&dev_attr_auto_remove_on.attr,
 478	&dev_attr_runtime_pm.attr,
 479	&dev_attr_sync_state_only.attr,
 480	NULL,
 481};
 482ATTRIBUTE_GROUPS(devlink);
 483
 484static void device_link_release_fn(struct work_struct *work)
 485{
 486	struct device_link *link = container_of(work, struct device_link, rm_work);
 487
 488	/* Ensure that all references to the link object have been dropped. */
 489	device_link_synchronize_removal();
 490
 491	pm_runtime_release_supplier(link);
 492	/*
 493	 * If supplier_preactivated is set, the link has been dropped between
 494	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
 495	 * in __driver_probe_device().  In that case, drop the supplier's
 496	 * PM-runtime usage counter to remove the reference taken by
 497	 * pm_runtime_get_suppliers().
 498	 */
 499	if (link->supplier_preactivated)
 500		pm_runtime_put_noidle(link->supplier);
 501
 502	pm_request_idle(link->supplier);
 503
 504	put_device(link->consumer);
 505	put_device(link->supplier);
 506	kfree(link);
 507}
 508
 509static void devlink_dev_release(struct device *dev)
 510{
 511	struct device_link *link = to_devlink(dev);
 512
 513	INIT_WORK(&link->rm_work, device_link_release_fn);
 514	/*
 515	 * It may take a while to complete this work because of the SRCU
 516	 * synchronization in device_link_release_fn() and if the consumer or
 517	 * supplier devices get deleted when it runs, so put it into the "long"
 518	 * workqueue.
 
 
 
 
 
 
 
 
 
 
 
 
 
 519	 */
 520	queue_work(system_long_wq, &link->rm_work);
 521}
 
 522
 523static struct class devlink_class = {
 524	.name = "devlink",
 525	.owner = THIS_MODULE,
 526	.dev_groups = devlink_groups,
 527	.dev_release = devlink_dev_release,
 528};
 529
 530static int devlink_add_symlinks(struct device *dev,
 531				struct class_interface *class_intf)
 532{
 
 533	int ret;
 534	size_t len;
 535	struct device_link *link = to_devlink(dev);
 536	struct device *sup = link->supplier;
 537	struct device *con = link->consumer;
 538	char *buf;
 539
 540	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 541		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 542	len += strlen(":");
 543	len += strlen("supplier:") + 1;
 544	buf = kzalloc(len, GFP_KERNEL);
 545	if (!buf)
 546		return -ENOMEM;
 547
 548	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 549	if (ret)
 550		goto out;
 551
 552	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 553	if (ret)
 554		goto err_con;
 555
 556	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 557	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 
 
 
 
 
 558	if (ret)
 559		goto err_con_dev;
 560
 561	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 562	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 
 
 
 
 
 563	if (ret)
 564		goto err_sup_dev;
 565
 566	goto out;
 567
 568err_sup_dev:
 569	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 570	sysfs_remove_link(&sup->kobj, buf);
 571err_con_dev:
 572	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 573err_con:
 574	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 575out:
 576	kfree(buf);
 577	return ret;
 578}
 579
 580static void devlink_remove_symlinks(struct device *dev,
 581				   struct class_interface *class_intf)
 582{
 
 583	struct device_link *link = to_devlink(dev);
 584	size_t len;
 585	struct device *sup = link->supplier;
 586	struct device *con = link->consumer;
 587	char *buf;
 588
 589	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 590	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 591
 592	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 593		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 594	len += strlen(":");
 595	len += strlen("supplier:") + 1;
 596	buf = kzalloc(len, GFP_KERNEL);
 597	if (!buf) {
 598		WARN(1, "Unable to properly free device link symlinks!\n");
 599		return;
 600	}
 601
 602	if (device_is_registered(con)) {
 603		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 604		sysfs_remove_link(&con->kobj, buf);
 
 
 605	}
 606	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 607	sysfs_remove_link(&sup->kobj, buf);
 608	kfree(buf);
 
 
 
 
 
 
 
 609}
 610
 611static struct class_interface devlink_class_intf = {
 612	.class = &devlink_class,
 613	.add_dev = devlink_add_symlinks,
 614	.remove_dev = devlink_remove_symlinks,
 615};
 616
 617static int __init devlink_class_init(void)
 618{
 619	int ret;
 620
 621	ret = class_register(&devlink_class);
 622	if (ret)
 623		return ret;
 624
 625	ret = class_interface_register(&devlink_class_intf);
 626	if (ret)
 627		class_unregister(&devlink_class);
 628
 629	return ret;
 630}
 631postcore_initcall(devlink_class_init);
 632
 633#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 634			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 635			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 636			       DL_FLAG_SYNC_STATE_ONLY | \
 637			       DL_FLAG_INFERRED)
 
 638
 639#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 640			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 641
 642/**
 643 * device_link_add - Create a link between two devices.
 644 * @consumer: Consumer end of the link.
 645 * @supplier: Supplier end of the link.
 646 * @flags: Link flags.
 647 *
 
 
 
 648 * The caller is responsible for the proper synchronization of the link creation
 649 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 650 * runtime PM framework to take the link into account.  Second, if the
 651 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 652 * be forced into the active meta state and reference-counted upon the creation
 653 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 654 * ignored.
 655 *
 656 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 657 * expected to release the link returned by it directly with the help of either
 658 * device_link_del() or device_link_remove().
 659 *
 660 * If that flag is not set, however, the caller of this function is handing the
 661 * management of the link over to the driver core entirely and its return value
 662 * can only be used to check whether or not the link is present.  In that case,
 663 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 664 * flags can be used to indicate to the driver core when the link can be safely
 665 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 666 * that the link is not going to be used (by the given caller of this function)
 667 * after unbinding the consumer or supplier driver, respectively, from its
 668 * device, so the link can be deleted at that point.  If none of them is set,
 669 * the link will be maintained until one of the devices pointed to by it (either
 670 * the consumer or the supplier) is unregistered.
 671 *
 672 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 673 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 674 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 675 * be used to request the driver core to automatically probe for a consumer
 676 * driver after successfully binding a driver to the supplier device.
 677 *
 678 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 679 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 680 * the same time is invalid and will cause NULL to be returned upfront.
 681 * However, if a device link between the given @consumer and @supplier pair
 682 * exists already when this function is called for them, the existing link will
 683 * be returned regardless of its current type and status (the link's flags may
 684 * be modified then).  The caller of this function is then expected to treat
 685 * the link as though it has just been created, so (in particular) if
 686 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 687 * explicitly when not needed any more (as stated above).
 688 *
 689 * A side effect of the link creation is re-ordering of dpm_list and the
 690 * devices_kset list by moving the consumer device and all devices depending
 691 * on it to the ends of these lists (that does not happen to devices that have
 692 * not been registered when this function is called).
 693 *
 694 * The supplier device is required to be registered when this function is called
 695 * and NULL will be returned if that is not the case.  The consumer device need
 696 * not be registered, however.
 697 */
 698struct device_link *device_link_add(struct device *consumer,
 699				    struct device *supplier, u32 flags)
 700{
 701	struct device_link *link;
 702
 703	if (!consumer || !supplier || consumer == supplier ||
 704	    flags & ~DL_ADD_VALID_FLAGS ||
 705	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 706	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 707	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
 708	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 709	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 710		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 711		return NULL;
 712
 713	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 714		if (pm_runtime_get_sync(supplier) < 0) {
 715			pm_runtime_put_noidle(supplier);
 716			return NULL;
 717		}
 718	}
 719
 720	if (!(flags & DL_FLAG_STATELESS))
 721		flags |= DL_FLAG_MANAGED;
 722
 
 
 
 
 723	device_links_write_lock();
 724	device_pm_lock();
 725
 726	/*
 727	 * If the supplier has not been fully registered yet or there is a
 728	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 729	 * the supplier already in the graph, return NULL. If the link is a
 730	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 731	 * because it only affects sync_state() callbacks.
 732	 */
 733	if (!device_pm_initialized(supplier)
 734	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 735		  device_is_dependent(consumer, supplier))) {
 736		link = NULL;
 737		goto out;
 738	}
 739
 740	/*
 741	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 742	 * So, only create it if the consumer hasn't probed yet.
 743	 */
 744	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 745	    consumer->links.status != DL_DEV_NO_DRIVER &&
 746	    consumer->links.status != DL_DEV_PROBING) {
 747		link = NULL;
 748		goto out;
 749	}
 750
 751	/*
 752	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 753	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 754	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 755	 */
 756	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 757		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 758
 759	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 760		if (link->consumer != consumer)
 761			continue;
 762
 763		if (link->flags & DL_FLAG_INFERRED &&
 764		    !(flags & DL_FLAG_INFERRED))
 765			link->flags &= ~DL_FLAG_INFERRED;
 766
 767		if (flags & DL_FLAG_PM_RUNTIME) {
 768			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 769				pm_runtime_new_link(consumer);
 770				link->flags |= DL_FLAG_PM_RUNTIME;
 771			}
 772			if (flags & DL_FLAG_RPM_ACTIVE)
 773				refcount_inc(&link->rpm_active);
 774		}
 775
 776		if (flags & DL_FLAG_STATELESS) {
 777			kref_get(&link->kref);
 778			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 779			    !(link->flags & DL_FLAG_STATELESS)) {
 780				link->flags |= DL_FLAG_STATELESS;
 781				goto reorder;
 782			} else {
 783				link->flags |= DL_FLAG_STATELESS;
 784				goto out;
 785			}
 786		}
 787
 788		/*
 789		 * If the life time of the link following from the new flags is
 790		 * longer than indicated by the flags of the existing link,
 791		 * update the existing link to stay around longer.
 792		 */
 793		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 794			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 795				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 796				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 797			}
 798		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 799			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 800					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 801		}
 802		if (!(link->flags & DL_FLAG_MANAGED)) {
 803			kref_get(&link->kref);
 804			link->flags |= DL_FLAG_MANAGED;
 805			device_link_init_status(link, consumer, supplier);
 806		}
 807		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 808		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 809			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 810			goto reorder;
 811		}
 812
 813		goto out;
 814	}
 815
 816	link = kzalloc(sizeof(*link), GFP_KERNEL);
 817	if (!link)
 818		goto out;
 819
 820	refcount_set(&link->rpm_active, 1);
 821
 822	get_device(supplier);
 823	link->supplier = supplier;
 824	INIT_LIST_HEAD(&link->s_node);
 825	get_device(consumer);
 826	link->consumer = consumer;
 827	INIT_LIST_HEAD(&link->c_node);
 828	link->flags = flags;
 829	kref_init(&link->kref);
 830
 831	link->link_dev.class = &devlink_class;
 832	device_set_pm_not_required(&link->link_dev);
 833	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 834		     dev_bus_name(supplier), dev_name(supplier),
 835		     dev_bus_name(consumer), dev_name(consumer));
 836	if (device_register(&link->link_dev)) {
 837		put_device(&link->link_dev);
 838		link = NULL;
 839		goto out;
 840	}
 841
 842	if (flags & DL_FLAG_PM_RUNTIME) {
 843		if (flags & DL_FLAG_RPM_ACTIVE)
 844			refcount_inc(&link->rpm_active);
 845
 846		pm_runtime_new_link(consumer);
 847	}
 848
 849	/* Determine the initial link state. */
 850	if (flags & DL_FLAG_STATELESS)
 851		link->status = DL_STATE_NONE;
 852	else
 853		device_link_init_status(link, consumer, supplier);
 854
 855	/*
 856	 * Some callers expect the link creation during consumer driver probe to
 857	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 858	 */
 859	if (link->status == DL_STATE_CONSUMER_PROBE &&
 860	    flags & DL_FLAG_PM_RUNTIME)
 861		pm_runtime_resume(supplier);
 862
 863	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 864	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 865
 866	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 867		dev_dbg(consumer,
 868			"Linked as a sync state only consumer to %s\n",
 869			dev_name(supplier));
 870		goto out;
 871	}
 872
 873reorder:
 874	/*
 875	 * Move the consumer and all of the devices depending on it to the end
 876	 * of dpm_list and the devices_kset list.
 877	 *
 878	 * It is necessary to hold dpm_list locked throughout all that or else
 879	 * we may end up suspending with a wrong ordering of it.
 880	 */
 881	device_reorder_to_tail(consumer, NULL);
 882
 883	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 884
 885out:
 886	device_pm_unlock();
 887	device_links_write_unlock();
 888
 889	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 890		pm_runtime_put(supplier);
 891
 892	return link;
 893}
 894EXPORT_SYMBOL_GPL(device_link_add);
 895
 896static void __device_link_del(struct kref *kref)
 897{
 898	struct device_link *link = container_of(kref, struct device_link, kref);
 899
 900	dev_dbg(link->consumer, "Dropping the link to %s\n",
 901		dev_name(link->supplier));
 902
 903	pm_runtime_drop_link(link);
 904
 905	device_link_remove_from_lists(link);
 906	device_unregister(&link->link_dev);
 907}
 908
 909static void device_link_put_kref(struct device_link *link)
 910{
 911	if (link->flags & DL_FLAG_STATELESS)
 912		kref_put(&link->kref, __device_link_del);
 913	else if (!device_is_registered(link->consumer))
 914		__device_link_del(&link->kref);
 915	else
 916		WARN(1, "Unable to drop a managed device link reference\n");
 917}
 918
 919/**
 920 * device_link_del - Delete a stateless link between two devices.
 921 * @link: Device link to delete.
 922 *
 923 * The caller must ensure proper synchronization of this function with runtime
 924 * PM.  If the link was added multiple times, it needs to be deleted as often.
 925 * Care is required for hotplugged devices:  Their links are purged on removal
 926 * and calling device_link_del() is then no longer allowed.
 927 */
 928void device_link_del(struct device_link *link)
 929{
 930	device_links_write_lock();
 931	device_link_put_kref(link);
 932	device_links_write_unlock();
 933}
 934EXPORT_SYMBOL_GPL(device_link_del);
 935
 936/**
 937 * device_link_remove - Delete a stateless link between two devices.
 938 * @consumer: Consumer end of the link.
 939 * @supplier: Supplier end of the link.
 940 *
 941 * The caller must ensure proper synchronization of this function with runtime
 942 * PM.
 943 */
 944void device_link_remove(void *consumer, struct device *supplier)
 945{
 946	struct device_link *link;
 947
 948	if (WARN_ON(consumer == supplier))
 949		return;
 950
 951	device_links_write_lock();
 952
 953	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 954		if (link->consumer == consumer) {
 955			device_link_put_kref(link);
 956			break;
 957		}
 958	}
 959
 960	device_links_write_unlock();
 961}
 962EXPORT_SYMBOL_GPL(device_link_remove);
 963
 964static void device_links_missing_supplier(struct device *dev)
 965{
 966	struct device_link *link;
 967
 968	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 969		if (link->status != DL_STATE_CONSUMER_PROBE)
 970			continue;
 971
 972		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 973			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 974		} else {
 975			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 976			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 977		}
 978	}
 979}
 980
 981static bool dev_is_best_effort(struct device *dev)
 982{
 983	return (fw_devlink_best_effort && dev->can_match) ||
 984		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
 985}
 986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987/**
 988 * device_links_check_suppliers - Check presence of supplier drivers.
 989 * @dev: Consumer device.
 990 *
 991 * Check links from this device to any suppliers.  Walk the list of the device's
 992 * links to suppliers and see if all of them are available.  If not, simply
 993 * return -EPROBE_DEFER.
 994 *
 995 * We need to guarantee that the supplier will not go away after the check has
 996 * been positive here.  It only can go away in __device_release_driver() and
 997 * that function  checks the device's links to consumers.  This means we need to
 998 * mark the link as "consumer probe in progress" to make the supplier removal
 999 * wait for us to complete (or bad things may happen).
1000 *
1001 * Links without the DL_FLAG_MANAGED flag set are ignored.
1002 */
1003int device_links_check_suppliers(struct device *dev)
1004{
1005	struct device_link *link;
1006	int ret = 0, fwnode_ret = 0;
1007	struct fwnode_handle *sup_fw;
1008
1009	/*
1010	 * Device waiting for supplier to become available is not allowed to
1011	 * probe.
1012	 */
1013	mutex_lock(&fwnode_link_lock);
1014	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
1015	    !fw_devlink_is_permissive()) {
1016		sup_fw = list_first_entry(&dev->fwnode->suppliers,
1017					  struct fwnode_link,
1018					  c_hook)->supplier;
1019		if (!dev_is_best_effort(dev)) {
1020			fwnode_ret = -EPROBE_DEFER;
1021			dev_err_probe(dev, -EPROBE_DEFER,
1022				    "wait for supplier %pfwP\n", sup_fw);
1023		} else {
1024			fwnode_ret = -EAGAIN;
1025		}
1026	}
1027	mutex_unlock(&fwnode_link_lock);
1028	if (fwnode_ret == -EPROBE_DEFER)
1029		return fwnode_ret;
1030
1031	device_links_write_lock();
1032
1033	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1034		if (!(link->flags & DL_FLAG_MANAGED))
1035			continue;
1036
1037		if (link->status != DL_STATE_AVAILABLE &&
1038		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1039
1040			if (dev_is_best_effort(dev) &&
1041			    link->flags & DL_FLAG_INFERRED &&
1042			    !link->supplier->can_match) {
1043				ret = -EAGAIN;
1044				continue;
1045			}
1046
1047			device_links_missing_supplier(dev);
1048			dev_err_probe(dev, -EPROBE_DEFER,
1049				      "supplier %s not ready\n",
1050				      dev_name(link->supplier));
1051			ret = -EPROBE_DEFER;
1052			break;
1053		}
1054		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1055	}
1056	dev->links.status = DL_DEV_PROBING;
1057
1058	device_links_write_unlock();
1059
1060	return ret ? ret : fwnode_ret;
1061}
1062
1063/**
1064 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1065 * @dev: Device to call sync_state() on
1066 * @list: List head to queue the @dev on
1067 *
1068 * Queues a device for a sync_state() callback when the device links write lock
1069 * isn't held. This allows the sync_state() execution flow to use device links
1070 * APIs.  The caller must ensure this function is called with
1071 * device_links_write_lock() held.
1072 *
1073 * This function does a get_device() to make sure the device is not freed while
1074 * on this list.
1075 *
1076 * So the caller must also ensure that device_links_flush_sync_list() is called
1077 * as soon as the caller releases device_links_write_lock().  This is necessary
1078 * to make sure the sync_state() is called in a timely fashion and the
1079 * put_device() is called on this device.
1080 */
1081static void __device_links_queue_sync_state(struct device *dev,
1082					    struct list_head *list)
1083{
1084	struct device_link *link;
1085
1086	if (!dev_has_sync_state(dev))
1087		return;
1088	if (dev->state_synced)
1089		return;
1090
1091	list_for_each_entry(link, &dev->links.consumers, s_node) {
1092		if (!(link->flags & DL_FLAG_MANAGED))
1093			continue;
1094		if (link->status != DL_STATE_ACTIVE)
1095			return;
1096	}
1097
1098	/*
1099	 * Set the flag here to avoid adding the same device to a list more
1100	 * than once. This can happen if new consumers get added to the device
1101	 * and probed before the list is flushed.
1102	 */
1103	dev->state_synced = true;
1104
1105	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1106		return;
1107
1108	get_device(dev);
1109	list_add_tail(&dev->links.defer_sync, list);
1110}
1111
1112/**
1113 * device_links_flush_sync_list - Call sync_state() on a list of devices
1114 * @list: List of devices to call sync_state() on
1115 * @dont_lock_dev: Device for which lock is already held by the caller
1116 *
1117 * Calls sync_state() on all the devices that have been queued for it. This
1118 * function is used in conjunction with __device_links_queue_sync_state(). The
1119 * @dont_lock_dev parameter is useful when this function is called from a
1120 * context where a device lock is already held.
1121 */
1122static void device_links_flush_sync_list(struct list_head *list,
1123					 struct device *dont_lock_dev)
1124{
1125	struct device *dev, *tmp;
1126
1127	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1128		list_del_init(&dev->links.defer_sync);
1129
1130		if (dev != dont_lock_dev)
1131			device_lock(dev);
1132
1133		if (dev->bus->sync_state)
1134			dev->bus->sync_state(dev);
1135		else if (dev->driver && dev->driver->sync_state)
1136			dev->driver->sync_state(dev);
1137
1138		if (dev != dont_lock_dev)
1139			device_unlock(dev);
1140
1141		put_device(dev);
1142	}
1143}
1144
1145void device_links_supplier_sync_state_pause(void)
1146{
1147	device_links_write_lock();
1148	defer_sync_state_count++;
1149	device_links_write_unlock();
1150}
1151
1152void device_links_supplier_sync_state_resume(void)
1153{
1154	struct device *dev, *tmp;
1155	LIST_HEAD(sync_list);
1156
1157	device_links_write_lock();
1158	if (!defer_sync_state_count) {
1159		WARN(true, "Unmatched sync_state pause/resume!");
1160		goto out;
1161	}
1162	defer_sync_state_count--;
1163	if (defer_sync_state_count)
1164		goto out;
1165
1166	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1167		/*
1168		 * Delete from deferred_sync list before queuing it to
1169		 * sync_list because defer_sync is used for both lists.
1170		 */
1171		list_del_init(&dev->links.defer_sync);
1172		__device_links_queue_sync_state(dev, &sync_list);
1173	}
1174out:
1175	device_links_write_unlock();
1176
1177	device_links_flush_sync_list(&sync_list, NULL);
1178}
1179
1180static int sync_state_resume_initcall(void)
1181{
1182	device_links_supplier_sync_state_resume();
1183	return 0;
1184}
1185late_initcall(sync_state_resume_initcall);
1186
1187static void __device_links_supplier_defer_sync(struct device *sup)
1188{
1189	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1190		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1191}
1192
1193static void device_link_drop_managed(struct device_link *link)
1194{
1195	link->flags &= ~DL_FLAG_MANAGED;
1196	WRITE_ONCE(link->status, DL_STATE_NONE);
1197	kref_put(&link->kref, __device_link_del);
1198}
1199
1200static ssize_t waiting_for_supplier_show(struct device *dev,
1201					 struct device_attribute *attr,
1202					 char *buf)
1203{
1204	bool val;
1205
1206	device_lock(dev);
1207	val = !list_empty(&dev->fwnode->suppliers);
 
1208	device_unlock(dev);
1209	return sysfs_emit(buf, "%u\n", val);
1210}
1211static DEVICE_ATTR_RO(waiting_for_supplier);
1212
1213/**
1214 * device_links_force_bind - Prepares device to be force bound
1215 * @dev: Consumer device.
1216 *
1217 * device_bind_driver() force binds a device to a driver without calling any
1218 * driver probe functions. So the consumer really isn't going to wait for any
1219 * supplier before it's bound to the driver. We still want the device link
1220 * states to be sensible when this happens.
1221 *
1222 * In preparation for device_bind_driver(), this function goes through each
1223 * supplier device links and checks if the supplier is bound. If it is, then
1224 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1225 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1226 */
1227void device_links_force_bind(struct device *dev)
1228{
1229	struct device_link *link, *ln;
1230
1231	device_links_write_lock();
1232
1233	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1234		if (!(link->flags & DL_FLAG_MANAGED))
1235			continue;
1236
1237		if (link->status != DL_STATE_AVAILABLE) {
1238			device_link_drop_managed(link);
1239			continue;
1240		}
1241		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1242	}
1243	dev->links.status = DL_DEV_PROBING;
1244
1245	device_links_write_unlock();
1246}
1247
1248/**
1249 * device_links_driver_bound - Update device links after probing its driver.
1250 * @dev: Device to update the links for.
1251 *
1252 * The probe has been successful, so update links from this device to any
1253 * consumers by changing their status to "available".
1254 *
1255 * Also change the status of @dev's links to suppliers to "active".
1256 *
1257 * Links without the DL_FLAG_MANAGED flag set are ignored.
1258 */
1259void device_links_driver_bound(struct device *dev)
1260{
1261	struct device_link *link, *ln;
1262	LIST_HEAD(sync_list);
1263
1264	/*
1265	 * If a device binds successfully, it's expected to have created all
1266	 * the device links it needs to or make new device links as it needs
1267	 * them. So, fw_devlink no longer needs to create device links to any
1268	 * of the device's suppliers.
1269	 *
1270	 * Also, if a child firmware node of this bound device is not added as
1271	 * a device by now, assume it is never going to be added and make sure
1272	 * other devices don't defer probe indefinitely by waiting for such a
1273	 * child device.
 
 
 
1274	 */
1275	if (dev->fwnode && dev->fwnode->dev == dev) {
1276		struct fwnode_handle *child;
 
1277		fwnode_links_purge_suppliers(dev->fwnode);
 
 
 
1278		fwnode_for_each_available_child_node(dev->fwnode, child)
1279			fw_devlink_purge_absent_suppliers(child);
 
 
1280	}
1281	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1282
1283	device_links_write_lock();
1284
1285	list_for_each_entry(link, &dev->links.consumers, s_node) {
1286		if (!(link->flags & DL_FLAG_MANAGED))
1287			continue;
1288
1289		/*
1290		 * Links created during consumer probe may be in the "consumer
1291		 * probe" state to start with if the supplier is still probing
1292		 * when they are created and they may become "active" if the
1293		 * consumer probe returns first.  Skip them here.
1294		 */
1295		if (link->status == DL_STATE_CONSUMER_PROBE ||
1296		    link->status == DL_STATE_ACTIVE)
1297			continue;
1298
1299		WARN_ON(link->status != DL_STATE_DORMANT);
1300		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1301
1302		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1303			driver_deferred_probe_add(link->consumer);
1304	}
1305
1306	if (defer_sync_state_count)
1307		__device_links_supplier_defer_sync(dev);
1308	else
1309		__device_links_queue_sync_state(dev, &sync_list);
1310
1311	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1312		struct device *supplier;
1313
1314		if (!(link->flags & DL_FLAG_MANAGED))
1315			continue;
1316
1317		supplier = link->supplier;
1318		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1319			/*
1320			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1321			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1322			 * save to drop the managed link completely.
1323			 */
1324			device_link_drop_managed(link);
1325		} else if (dev_is_best_effort(dev) &&
1326			   link->flags & DL_FLAG_INFERRED &&
1327			   link->status != DL_STATE_CONSUMER_PROBE &&
1328			   !link->supplier->can_match) {
1329			/*
1330			 * When dev_is_best_effort() is true, we ignore device
1331			 * links to suppliers that don't have a driver.  If the
1332			 * consumer device still managed to probe, there's no
1333			 * point in maintaining a device link in a weird state
1334			 * (consumer probed before supplier). So delete it.
1335			 */
1336			device_link_drop_managed(link);
1337		} else {
1338			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1339			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1340		}
1341
1342		/*
1343		 * This needs to be done even for the deleted
1344		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1345		 * device link that was preventing the supplier from getting a
1346		 * sync_state() call.
1347		 */
1348		if (defer_sync_state_count)
1349			__device_links_supplier_defer_sync(supplier);
1350		else
1351			__device_links_queue_sync_state(supplier, &sync_list);
1352	}
1353
1354	dev->links.status = DL_DEV_DRIVER_BOUND;
1355
1356	device_links_write_unlock();
1357
1358	device_links_flush_sync_list(&sync_list, dev);
1359}
1360
1361/**
1362 * __device_links_no_driver - Update links of a device without a driver.
1363 * @dev: Device without a drvier.
1364 *
1365 * Delete all non-persistent links from this device to any suppliers.
1366 *
1367 * Persistent links stay around, but their status is changed to "available",
1368 * unless they already are in the "supplier unbind in progress" state in which
1369 * case they need not be updated.
1370 *
1371 * Links without the DL_FLAG_MANAGED flag set are ignored.
1372 */
1373static void __device_links_no_driver(struct device *dev)
1374{
1375	struct device_link *link, *ln;
1376
1377	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1378		if (!(link->flags & DL_FLAG_MANAGED))
1379			continue;
1380
1381		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1382			device_link_drop_managed(link);
1383			continue;
1384		}
1385
1386		if (link->status != DL_STATE_CONSUMER_PROBE &&
1387		    link->status != DL_STATE_ACTIVE)
1388			continue;
1389
1390		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1391			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1392		} else {
1393			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1394			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1395		}
1396	}
1397
1398	dev->links.status = DL_DEV_NO_DRIVER;
1399}
1400
1401/**
1402 * device_links_no_driver - Update links after failing driver probe.
1403 * @dev: Device whose driver has just failed to probe.
1404 *
1405 * Clean up leftover links to consumers for @dev and invoke
1406 * %__device_links_no_driver() to update links to suppliers for it as
1407 * appropriate.
1408 *
1409 * Links without the DL_FLAG_MANAGED flag set are ignored.
1410 */
1411void device_links_no_driver(struct device *dev)
1412{
1413	struct device_link *link;
1414
1415	device_links_write_lock();
1416
1417	list_for_each_entry(link, &dev->links.consumers, s_node) {
1418		if (!(link->flags & DL_FLAG_MANAGED))
1419			continue;
1420
1421		/*
1422		 * The probe has failed, so if the status of the link is
1423		 * "consumer probe" or "active", it must have been added by
1424		 * a probing consumer while this device was still probing.
1425		 * Change its state to "dormant", as it represents a valid
1426		 * relationship, but it is not functionally meaningful.
1427		 */
1428		if (link->status == DL_STATE_CONSUMER_PROBE ||
1429		    link->status == DL_STATE_ACTIVE)
1430			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1431	}
1432
1433	__device_links_no_driver(dev);
1434
1435	device_links_write_unlock();
1436}
1437
1438/**
1439 * device_links_driver_cleanup - Update links after driver removal.
1440 * @dev: Device whose driver has just gone away.
1441 *
1442 * Update links to consumers for @dev by changing their status to "dormant" and
1443 * invoke %__device_links_no_driver() to update links to suppliers for it as
1444 * appropriate.
1445 *
1446 * Links without the DL_FLAG_MANAGED flag set are ignored.
1447 */
1448void device_links_driver_cleanup(struct device *dev)
1449{
1450	struct device_link *link, *ln;
1451
1452	device_links_write_lock();
1453
1454	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1455		if (!(link->flags & DL_FLAG_MANAGED))
1456			continue;
1457
1458		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1459		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1460
1461		/*
1462		 * autoremove the links between this @dev and its consumer
1463		 * devices that are not active, i.e. where the link state
1464		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1465		 */
1466		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1467		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1468			device_link_drop_managed(link);
1469
1470		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1471	}
1472
1473	list_del_init(&dev->links.defer_sync);
1474	__device_links_no_driver(dev);
1475
1476	device_links_write_unlock();
1477}
1478
1479/**
1480 * device_links_busy - Check if there are any busy links to consumers.
1481 * @dev: Device to check.
1482 *
1483 * Check each consumer of the device and return 'true' if its link's status
1484 * is one of "consumer probe" or "active" (meaning that the given consumer is
1485 * probing right now or its driver is present).  Otherwise, change the link
1486 * state to "supplier unbind" to prevent the consumer from being probed
1487 * successfully going forward.
1488 *
1489 * Return 'false' if there are no probing or active consumers.
1490 *
1491 * Links without the DL_FLAG_MANAGED flag set are ignored.
1492 */
1493bool device_links_busy(struct device *dev)
1494{
1495	struct device_link *link;
1496	bool ret = false;
1497
1498	device_links_write_lock();
1499
1500	list_for_each_entry(link, &dev->links.consumers, s_node) {
1501		if (!(link->flags & DL_FLAG_MANAGED))
1502			continue;
1503
1504		if (link->status == DL_STATE_CONSUMER_PROBE
1505		    || link->status == DL_STATE_ACTIVE) {
1506			ret = true;
1507			break;
1508		}
1509		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1510	}
1511
1512	dev->links.status = DL_DEV_UNBINDING;
1513
1514	device_links_write_unlock();
1515	return ret;
1516}
1517
1518/**
1519 * device_links_unbind_consumers - Force unbind consumers of the given device.
1520 * @dev: Device to unbind the consumers of.
1521 *
1522 * Walk the list of links to consumers for @dev and if any of them is in the
1523 * "consumer probe" state, wait for all device probes in progress to complete
1524 * and start over.
1525 *
1526 * If that's not the case, change the status of the link to "supplier unbind"
1527 * and check if the link was in the "active" state.  If so, force the consumer
1528 * driver to unbind and start over (the consumer will not re-probe as we have
1529 * changed the state of the link already).
1530 *
1531 * Links without the DL_FLAG_MANAGED flag set are ignored.
1532 */
1533void device_links_unbind_consumers(struct device *dev)
1534{
1535	struct device_link *link;
1536
1537 start:
1538	device_links_write_lock();
1539
1540	list_for_each_entry(link, &dev->links.consumers, s_node) {
1541		enum device_link_state status;
1542
1543		if (!(link->flags & DL_FLAG_MANAGED) ||
1544		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1545			continue;
1546
1547		status = link->status;
1548		if (status == DL_STATE_CONSUMER_PROBE) {
1549			device_links_write_unlock();
1550
1551			wait_for_device_probe();
1552			goto start;
1553		}
1554		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1555		if (status == DL_STATE_ACTIVE) {
1556			struct device *consumer = link->consumer;
1557
1558			get_device(consumer);
1559
1560			device_links_write_unlock();
1561
1562			device_release_driver_internal(consumer, NULL,
1563						       consumer->parent);
1564			put_device(consumer);
1565			goto start;
1566		}
1567	}
1568
1569	device_links_write_unlock();
1570}
1571
1572/**
1573 * device_links_purge - Delete existing links to other devices.
1574 * @dev: Target device.
1575 */
1576static void device_links_purge(struct device *dev)
1577{
1578	struct device_link *link, *ln;
1579
1580	if (dev->class == &devlink_class)
1581		return;
1582
1583	/*
1584	 * Delete all of the remaining links from this device to any other
1585	 * devices (either consumers or suppliers).
1586	 */
1587	device_links_write_lock();
1588
1589	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1590		WARN_ON(link->status == DL_STATE_ACTIVE);
1591		__device_link_del(&link->kref);
1592	}
1593
1594	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1595		WARN_ON(link->status != DL_STATE_DORMANT &&
1596			link->status != DL_STATE_NONE);
1597		__device_link_del(&link->kref);
1598	}
1599
1600	device_links_write_unlock();
1601}
1602
1603#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1604					 DL_FLAG_SYNC_STATE_ONLY)
1605#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1606					 DL_FLAG_AUTOPROBE_CONSUMER)
1607#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1608					 DL_FLAG_PM_RUNTIME)
1609
1610static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1611static int __init fw_devlink_setup(char *arg)
1612{
1613	if (!arg)
1614		return -EINVAL;
1615
1616	if (strcmp(arg, "off") == 0) {
1617		fw_devlink_flags = 0;
1618	} else if (strcmp(arg, "permissive") == 0) {
1619		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1620	} else if (strcmp(arg, "on") == 0) {
1621		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1622	} else if (strcmp(arg, "rpm") == 0) {
1623		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1624	}
1625	return 0;
1626}
1627early_param("fw_devlink", fw_devlink_setup);
1628
1629static bool fw_devlink_strict;
1630static int __init fw_devlink_strict_setup(char *arg)
1631{
1632	return kstrtobool(arg, &fw_devlink_strict);
1633}
1634early_param("fw_devlink.strict", fw_devlink_strict_setup);
1635
1636u32 fw_devlink_get_flags(void)
 
 
 
 
 
 
 
 
 
1637{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638	return fw_devlink_flags;
1639}
1640
1641static bool fw_devlink_is_permissive(void)
1642{
1643	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1644}
1645
1646bool fw_devlink_is_strict(void)
1647{
1648	return fw_devlink_strict && !fw_devlink_is_permissive();
1649}
1650
1651static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1652{
1653	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1654		return;
1655
1656	fwnode_call_int_op(fwnode, add_links);
1657	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1658}
1659
1660static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1661{
1662	struct fwnode_handle *child = NULL;
1663
1664	fw_devlink_parse_fwnode(fwnode);
1665
1666	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1667		fw_devlink_parse_fwtree(child);
1668}
1669
1670static void fw_devlink_relax_link(struct device_link *link)
1671{
1672	if (!(link->flags & DL_FLAG_INFERRED))
1673		return;
1674
1675	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1676		return;
1677
1678	pm_runtime_drop_link(link);
1679	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1680	dev_dbg(link->consumer, "Relaxing link with %s\n",
1681		dev_name(link->supplier));
1682}
1683
1684static int fw_devlink_no_driver(struct device *dev, void *data)
1685{
1686	struct device_link *link = to_devlink(dev);
1687
1688	if (!link->supplier->can_match)
1689		fw_devlink_relax_link(link);
1690
1691	return 0;
1692}
1693
1694void fw_devlink_drivers_done(void)
1695{
1696	fw_devlink_drv_reg_done = true;
1697	device_links_write_lock();
1698	class_for_each_device(&devlink_class, NULL, NULL,
1699			      fw_devlink_no_driver);
1700	device_links_write_unlock();
1701}
1702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703/**
1704 * wait_for_init_devices_probe - Try to probe any device needed for init
1705 *
1706 * Some devices might need to be probed and bound successfully before the kernel
1707 * boot sequence can finish and move on to init/userspace. For example, a
1708 * network interface might need to be bound to be able to mount a NFS rootfs.
1709 *
1710 * With fw_devlink=on by default, some of these devices might be blocked from
1711 * probing because they are waiting on a optional supplier that doesn't have a
1712 * driver. While fw_devlink will eventually identify such devices and unblock
1713 * the probing automatically, it might be too late by the time it unblocks the
1714 * probing of devices. For example, the IP4 autoconfig might timeout before
1715 * fw_devlink unblocks probing of the network interface.
1716 *
1717 * This function is available to temporarily try and probe all devices that have
1718 * a driver even if some of their suppliers haven't been added or don't have
1719 * drivers.
1720 *
1721 * The drivers can then decide which of the suppliers are optional vs mandatory
1722 * and probe the device if possible. By the time this function returns, all such
1723 * "best effort" probes are guaranteed to be completed. If a device successfully
1724 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1725 * device where the supplier hasn't yet probed successfully because they have to
1726 * be optional dependencies.
1727 *
1728 * Any devices that didn't successfully probe go back to being treated as if
1729 * this function was never called.
1730 *
1731 * This also means that some devices that aren't needed for init and could have
1732 * waited for their optional supplier to probe (when the supplier's module is
1733 * loaded later on) would end up probing prematurely with limited functionality.
1734 * So call this function only when boot would fail without it.
1735 */
1736void __init wait_for_init_devices_probe(void)
1737{
1738	if (!fw_devlink_flags || fw_devlink_is_permissive())
1739		return;
1740
1741	/*
1742	 * Wait for all ongoing probes to finish so that the "best effort" is
1743	 * only applied to devices that can't probe otherwise.
1744	 */
1745	wait_for_device_probe();
1746
1747	pr_info("Trying to probe devices needed for running init ...\n");
1748	fw_devlink_best_effort = true;
1749	driver_deferred_probe_trigger();
1750
1751	/*
1752	 * Wait for all "best effort" probes to finish before going back to
1753	 * normal enforcement.
1754	 */
1755	wait_for_device_probe();
1756	fw_devlink_best_effort = false;
1757}
1758
1759static void fw_devlink_unblock_consumers(struct device *dev)
1760{
1761	struct device_link *link;
1762
1763	if (!fw_devlink_flags || fw_devlink_is_permissive())
1764		return;
1765
1766	device_links_write_lock();
1767	list_for_each_entry(link, &dev->links.consumers, s_node)
1768		fw_devlink_relax_link(link);
1769	device_links_write_unlock();
1770}
1771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772/**
1773 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1774 * @con: Device to check dependencies for.
1775 * @sup: Device to check against.
1776 *
1777 * Check if @sup depends on @con or any device dependent on it (its child or
1778 * its consumer etc).  When such a cyclic dependency is found, convert all
1779 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1780 * This is the equivalent of doing fw_devlink=permissive just between the
1781 * devices in the cycle. We need to do this because, at this point, fw_devlink
1782 * can't tell which of these dependencies is not a real dependency.
1783 *
1784 * Return 1 if a cycle is found. Otherwise, return 0.
 
 
1785 */
1786static int fw_devlink_relax_cycle(struct device *con, void *sup)
 
1787{
1788	struct device_link *link;
1789	int ret;
1790
1791	if (con == sup)
1792		return 1;
1793
1794	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1795	if (ret)
1796		return ret;
1797
1798	list_for_each_entry(link, &con->links.consumers, s_node) {
1799		if ((link->flags & ~DL_FLAG_INFERRED) ==
1800		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1801			continue;
 
 
 
 
1802
1803		if (!fw_devlink_relax_cycle(link->consumer, sup))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804			continue;
1805
1806		ret = 1;
 
 
 
 
1807
1808		fw_devlink_relax_link(link);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809	}
 
 
 
 
 
 
1810	return ret;
1811}
1812
1813/**
1814 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1815 * @con: consumer device for the device link
1816 * @sup_handle: fwnode handle of supplier
1817 * @flags: devlink flags
1818 *
1819 * This function will try to create a device link between the consumer device
1820 * @con and the supplier device represented by @sup_handle.
1821 *
1822 * The supplier has to be provided as a fwnode because incorrect cycles in
1823 * fwnode links can sometimes cause the supplier device to never be created.
1824 * This function detects such cases and returns an error if it cannot create a
1825 * device link from the consumer to a missing supplier.
1826 *
1827 * Returns,
1828 * 0 on successfully creating a device link
1829 * -EINVAL if the device link cannot be created as expected
1830 * -EAGAIN if the device link cannot be created right now, but it may be
1831 *  possible to do that in the future
1832 */
1833static int fw_devlink_create_devlink(struct device *con,
1834				     struct fwnode_handle *sup_handle, u32 flags)
 
1835{
1836	struct device *sup_dev;
1837	int ret = 0;
 
 
 
 
1838
1839	/*
1840	 * In some cases, a device P might also be a supplier to its child node
1841	 * C. However, this would defer the probe of C until the probe of P
1842	 * completes successfully. This is perfectly fine in the device driver
1843	 * model. device_add() doesn't guarantee probe completion of the device
1844	 * by the time it returns.
1845	 *
1846	 * However, there are a few drivers that assume C will finish probing
1847	 * as soon as it's added and before P finishes probing. So, we provide
1848	 * a flag to let fw_devlink know not to delay the probe of C until the
1849	 * probe of P completes successfully.
1850	 *
1851	 * When such a flag is set, we can't create device links where P is the
1852	 * supplier of C as that would delay the probe of C.
1853	 */
1854	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1855	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1856		return -EINVAL;
1857
1858	sup_dev = get_dev_from_fwnode(sup_handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859	if (sup_dev) {
1860		/*
1861		 * If it's one of those drivers that don't actually bind to
1862		 * their device using driver core, then don't wait on this
1863		 * supplier device indefinitely.
1864		 */
1865		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1866		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
 
 
 
1867			ret = -EINVAL;
1868			goto out;
1869		}
1870
1871		/*
1872		 * If this fails, it is due to cycles in device links.  Just
1873		 * give up on this link and treat it as invalid.
1874		 */
1875		if (!device_link_add(con, sup_dev, flags) &&
1876		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1877			dev_info(con, "Fixing up cyclic dependency with %s\n",
1878				 dev_name(sup_dev));
1879			device_links_write_lock();
1880			fw_devlink_relax_cycle(con, sup_dev);
1881			device_links_write_unlock();
1882			device_link_add(con, sup_dev,
1883					FW_DEVLINK_FLAGS_PERMISSIVE);
1884			ret = -EINVAL;
1885		}
1886
1887		goto out;
1888	}
1889
1890	/* Supplier that's already initialized without a struct device. */
1891	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1892		return -EINVAL;
1893
1894	/*
1895	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1896	 * cycles. So cycle detection isn't necessary and shouldn't be
1897	 * done.
1898	 */
1899	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1900		return -EAGAIN;
1901
1902	/*
1903	 * If we can't find the supplier device from its fwnode, it might be
1904	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1905	 * be broken by applying logic. Check for these types of cycles and
1906	 * break them so that devices in the cycle probe properly.
1907	 *
1908	 * If the supplier's parent is dependent on the consumer, then the
1909	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1910	 * can't tell which of the inferred dependencies are incorrect, don't
1911	 * enforce probe ordering between any of the devices in this cyclic
1912	 * dependency. Do this by relaxing all the fw_devlink device links in
1913	 * this cycle and by treating the fwnode link between the consumer and
1914	 * the supplier as an invalid dependency.
1915	 */
1916	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1917	if (sup_dev && device_is_dependent(con, sup_dev)) {
1918		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1919			 sup_handle, dev_name(sup_dev));
1920		device_links_write_lock();
1921		fw_devlink_relax_cycle(con, sup_dev);
1922		device_links_write_unlock();
1923		ret = -EINVAL;
1924	} else {
1925		/*
1926		 * Can't check for cycles or no cycles. So let's try
1927		 * again later.
1928		 */
1929		ret = -EAGAIN;
1930	}
1931
 
1932out:
1933	put_device(sup_dev);
1934	return ret;
1935}
1936
1937/**
1938 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1939 * @dev: Device that needs to be linked to its consumers
1940 *
1941 * This function looks at all the consumer fwnodes of @dev and creates device
1942 * links between the consumer device and @dev (supplier).
1943 *
1944 * If the consumer device has not been added yet, then this function creates a
1945 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1946 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1947 * sync_state() callback before the real consumer device gets to be added and
1948 * then probed.
1949 *
1950 * Once device links are created from the real consumer to @dev (supplier), the
1951 * fwnode links are deleted.
1952 */
1953static void __fw_devlink_link_to_consumers(struct device *dev)
1954{
1955	struct fwnode_handle *fwnode = dev->fwnode;
1956	struct fwnode_link *link, *tmp;
1957
1958	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1959		u32 dl_flags = fw_devlink_get_flags();
1960		struct device *con_dev;
1961		bool own_link = true;
1962		int ret;
1963
1964		con_dev = get_dev_from_fwnode(link->consumer);
1965		/*
1966		 * If consumer device is not available yet, make a "proxy"
1967		 * SYNC_STATE_ONLY link from the consumer's parent device to
1968		 * the supplier device. This is necessary to make sure the
1969		 * supplier doesn't get a sync_state() callback before the real
1970		 * consumer can create a device link to the supplier.
1971		 *
1972		 * This proxy link step is needed to handle the case where the
1973		 * consumer's parent device is added before the supplier.
1974		 */
1975		if (!con_dev) {
1976			con_dev = fwnode_get_next_parent_dev(link->consumer);
1977			/*
1978			 * However, if the consumer's parent device is also the
1979			 * parent of the supplier, don't create a
1980			 * consumer-supplier link from the parent to its child
1981			 * device. Such a dependency is impossible.
1982			 */
1983			if (con_dev &&
1984			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1985				put_device(con_dev);
1986				con_dev = NULL;
1987			} else {
1988				own_link = false;
1989				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1990			}
1991		}
1992
1993		if (!con_dev)
1994			continue;
1995
1996		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1997		put_device(con_dev);
1998		if (!own_link || ret == -EAGAIN)
1999			continue;
2000
2001		__fwnode_link_del(link);
2002	}
2003}
2004
2005/**
2006 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2007 * @dev: The consumer device that needs to be linked to its suppliers
2008 * @fwnode: Root of the fwnode tree that is used to create device links
2009 *
2010 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2011 * @fwnode and creates device links between @dev (consumer) and all the
2012 * supplier devices of the entire fwnode tree at @fwnode.
2013 *
2014 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2015 * and the real suppliers of @dev. Once these device links are created, the
2016 * fwnode links are deleted. When such device links are successfully created,
2017 * this function is called recursively on those supplier devices. This is
2018 * needed to detect and break some invalid cycles in fwnode links.  See
2019 * fw_devlink_create_devlink() for more details.
2020 *
2021 * In addition, it also looks at all the suppliers of the entire fwnode tree
2022 * because some of the child devices of @dev that have not been added yet
2023 * (because @dev hasn't probed) might already have their suppliers added to
2024 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2025 * @dev (consumer) and these suppliers to make sure they don't execute their
2026 * sync_state() callbacks before these child devices have a chance to create
2027 * their device links. The fwnode links that correspond to the child devices
2028 * aren't delete because they are needed later to create the device links
2029 * between the real consumer and supplier devices.
2030 */
2031static void __fw_devlink_link_to_suppliers(struct device *dev,
2032					   struct fwnode_handle *fwnode)
2033{
2034	bool own_link = (dev->fwnode == fwnode);
2035	struct fwnode_link *link, *tmp;
2036	struct fwnode_handle *child = NULL;
2037	u32 dl_flags;
2038
2039	if (own_link)
2040		dl_flags = fw_devlink_get_flags();
2041	else
2042		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2043
2044	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2045		int ret;
2046		struct device *sup_dev;
2047		struct fwnode_handle *sup = link->supplier;
2048
2049		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
2050		if (!own_link || ret == -EAGAIN)
2051			continue;
2052
2053		__fwnode_link_del(link);
2054
2055		/* If no device link was created, nothing more to do. */
2056		if (ret)
2057			continue;
2058
2059		/*
2060		 * If a device link was successfully created to a supplier, we
2061		 * now need to try and link the supplier to all its suppliers.
2062		 *
2063		 * This is needed to detect and delete false dependencies in
2064		 * fwnode links that haven't been converted to a device link
2065		 * yet. See comments in fw_devlink_create_devlink() for more
2066		 * details on the false dependency.
2067		 *
2068		 * Without deleting these false dependencies, some devices will
2069		 * never probe because they'll keep waiting for their false
2070		 * dependency fwnode links to be converted to device links.
2071		 */
2072		sup_dev = get_dev_from_fwnode(sup);
2073		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
2074		put_device(sup_dev);
2075	}
2076
2077	/*
2078	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2079	 * all the descendants. This proxy link step is needed to handle the
2080	 * case where the supplier is added before the consumer's parent device
2081	 * (@dev).
2082	 */
2083	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2084		__fw_devlink_link_to_suppliers(dev, child);
2085}
2086
2087static void fw_devlink_link_device(struct device *dev)
2088{
2089	struct fwnode_handle *fwnode = dev->fwnode;
2090
2091	if (!fw_devlink_flags)
2092		return;
2093
2094	fw_devlink_parse_fwtree(fwnode);
2095
2096	mutex_lock(&fwnode_link_lock);
 
2097	__fw_devlink_link_to_consumers(dev);
2098	__fw_devlink_link_to_suppliers(dev, fwnode);
2099	mutex_unlock(&fwnode_link_lock);
2100}
2101
2102/* Device links support end. */
2103
2104int (*platform_notify)(struct device *dev) = NULL;
2105int (*platform_notify_remove)(struct device *dev) = NULL;
2106static struct kobject *dev_kobj;
2107struct kobject *sysfs_dev_char_kobj;
2108struct kobject *sysfs_dev_block_kobj;
 
 
 
 
2109
2110static DEFINE_MUTEX(device_hotplug_lock);
2111
2112void lock_device_hotplug(void)
2113{
2114	mutex_lock(&device_hotplug_lock);
2115}
2116
2117void unlock_device_hotplug(void)
2118{
2119	mutex_unlock(&device_hotplug_lock);
2120}
2121
2122int lock_device_hotplug_sysfs(void)
2123{
2124	if (mutex_trylock(&device_hotplug_lock))
2125		return 0;
2126
2127	/* Avoid busy looping (5 ms of sleep should do). */
2128	msleep(5);
2129	return restart_syscall();
2130}
2131
2132#ifdef CONFIG_BLOCK
2133static inline int device_is_not_partition(struct device *dev)
2134{
2135	return !(dev->type == &part_type);
2136}
2137#else
2138static inline int device_is_not_partition(struct device *dev)
2139{
2140	return 1;
2141}
2142#endif
2143
2144static void device_platform_notify(struct device *dev)
2145{
2146	acpi_device_notify(dev);
2147
2148	software_node_notify(dev);
2149
2150	if (platform_notify)
2151		platform_notify(dev);
2152}
2153
2154static void device_platform_notify_remove(struct device *dev)
2155{
2156	acpi_device_notify_remove(dev);
2157
2158	software_node_notify_remove(dev);
2159
2160	if (platform_notify_remove)
2161		platform_notify_remove(dev);
2162}
2163
2164/**
2165 * dev_driver_string - Return a device's driver name, if at all possible
2166 * @dev: struct device to get the name of
2167 *
2168 * Will return the device's driver's name if it is bound to a device.  If
2169 * the device is not bound to a driver, it will return the name of the bus
2170 * it is attached to.  If it is not attached to a bus either, an empty
2171 * string will be returned.
2172 */
2173const char *dev_driver_string(const struct device *dev)
2174{
2175	struct device_driver *drv;
2176
2177	/* dev->driver can change to NULL underneath us because of unbinding,
2178	 * so be careful about accessing it.  dev->bus and dev->class should
2179	 * never change once they are set, so they don't need special care.
2180	 */
2181	drv = READ_ONCE(dev->driver);
2182	return drv ? drv->name : dev_bus_name(dev);
2183}
2184EXPORT_SYMBOL(dev_driver_string);
2185
2186#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2187
2188static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2189			     char *buf)
2190{
2191	struct device_attribute *dev_attr = to_dev_attr(attr);
2192	struct device *dev = kobj_to_dev(kobj);
2193	ssize_t ret = -EIO;
2194
2195	if (dev_attr->show)
2196		ret = dev_attr->show(dev, dev_attr, buf);
2197	if (ret >= (ssize_t)PAGE_SIZE) {
2198		printk("dev_attr_show: %pS returned bad count\n",
2199				dev_attr->show);
2200	}
2201	return ret;
2202}
2203
2204static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2205			      const char *buf, size_t count)
2206{
2207	struct device_attribute *dev_attr = to_dev_attr(attr);
2208	struct device *dev = kobj_to_dev(kobj);
2209	ssize_t ret = -EIO;
2210
2211	if (dev_attr->store)
2212		ret = dev_attr->store(dev, dev_attr, buf, count);
2213	return ret;
2214}
2215
2216static const struct sysfs_ops dev_sysfs_ops = {
2217	.show	= dev_attr_show,
2218	.store	= dev_attr_store,
2219};
2220
2221#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2222
2223ssize_t device_store_ulong(struct device *dev,
2224			   struct device_attribute *attr,
2225			   const char *buf, size_t size)
2226{
2227	struct dev_ext_attribute *ea = to_ext_attr(attr);
2228	int ret;
2229	unsigned long new;
2230
2231	ret = kstrtoul(buf, 0, &new);
2232	if (ret)
2233		return ret;
2234	*(unsigned long *)(ea->var) = new;
2235	/* Always return full write size even if we didn't consume all */
2236	return size;
2237}
2238EXPORT_SYMBOL_GPL(device_store_ulong);
2239
2240ssize_t device_show_ulong(struct device *dev,
2241			  struct device_attribute *attr,
2242			  char *buf)
2243{
2244	struct dev_ext_attribute *ea = to_ext_attr(attr);
2245	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2246}
2247EXPORT_SYMBOL_GPL(device_show_ulong);
2248
2249ssize_t device_store_int(struct device *dev,
2250			 struct device_attribute *attr,
2251			 const char *buf, size_t size)
2252{
2253	struct dev_ext_attribute *ea = to_ext_attr(attr);
2254	int ret;
2255	long new;
2256
2257	ret = kstrtol(buf, 0, &new);
2258	if (ret)
2259		return ret;
2260
2261	if (new > INT_MAX || new < INT_MIN)
2262		return -EINVAL;
2263	*(int *)(ea->var) = new;
2264	/* Always return full write size even if we didn't consume all */
2265	return size;
2266}
2267EXPORT_SYMBOL_GPL(device_store_int);
2268
2269ssize_t device_show_int(struct device *dev,
2270			struct device_attribute *attr,
2271			char *buf)
2272{
2273	struct dev_ext_attribute *ea = to_ext_attr(attr);
2274
2275	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2276}
2277EXPORT_SYMBOL_GPL(device_show_int);
2278
2279ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2280			  const char *buf, size_t size)
2281{
2282	struct dev_ext_attribute *ea = to_ext_attr(attr);
2283
2284	if (kstrtobool(buf, ea->var) < 0)
2285		return -EINVAL;
2286
2287	return size;
2288}
2289EXPORT_SYMBOL_GPL(device_store_bool);
2290
2291ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2292			 char *buf)
2293{
2294	struct dev_ext_attribute *ea = to_ext_attr(attr);
2295
2296	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2297}
2298EXPORT_SYMBOL_GPL(device_show_bool);
2299
 
 
 
 
 
 
 
 
 
2300/**
2301 * device_release - free device structure.
2302 * @kobj: device's kobject.
2303 *
2304 * This is called once the reference count for the object
2305 * reaches 0. We forward the call to the device's release
2306 * method, which should handle actually freeing the structure.
2307 */
2308static void device_release(struct kobject *kobj)
2309{
2310	struct device *dev = kobj_to_dev(kobj);
2311	struct device_private *p = dev->p;
2312
2313	/*
2314	 * Some platform devices are driven without driver attached
2315	 * and managed resources may have been acquired.  Make sure
2316	 * all resources are released.
2317	 *
2318	 * Drivers still can add resources into device after device
2319	 * is deleted but alive, so release devres here to avoid
2320	 * possible memory leak.
2321	 */
2322	devres_release_all(dev);
2323
2324	kfree(dev->dma_range_map);
2325
2326	if (dev->release)
2327		dev->release(dev);
2328	else if (dev->type && dev->type->release)
2329		dev->type->release(dev);
2330	else if (dev->class && dev->class->dev_release)
2331		dev->class->dev_release(dev);
2332	else
2333		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2334			dev_name(dev));
2335	kfree(p);
2336}
2337
2338static const void *device_namespace(const struct kobject *kobj)
2339{
2340	const struct device *dev = kobj_to_dev(kobj);
2341	const void *ns = NULL;
2342
2343	if (dev->class && dev->class->ns_type)
2344		ns = dev->class->namespace(dev);
2345
2346	return ns;
2347}
2348
2349static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2350{
2351	const struct device *dev = kobj_to_dev(kobj);
2352
2353	if (dev->class && dev->class->get_ownership)
2354		dev->class->get_ownership(dev, uid, gid);
2355}
2356
2357static struct kobj_type device_ktype = {
2358	.release	= device_release,
2359	.sysfs_ops	= &dev_sysfs_ops,
2360	.namespace	= device_namespace,
2361	.get_ownership	= device_get_ownership,
2362};
2363
2364
2365static int dev_uevent_filter(const struct kobject *kobj)
2366{
2367	const struct kobj_type *ktype = get_ktype(kobj);
2368
2369	if (ktype == &device_ktype) {
2370		const struct device *dev = kobj_to_dev(kobj);
2371		if (dev->bus)
2372			return 1;
2373		if (dev->class)
2374			return 1;
2375	}
2376	return 0;
2377}
2378
2379static const char *dev_uevent_name(const struct kobject *kobj)
2380{
2381	const struct device *dev = kobj_to_dev(kobj);
2382
2383	if (dev->bus)
2384		return dev->bus->name;
2385	if (dev->class)
2386		return dev->class->name;
2387	return NULL;
2388}
2389
2390static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
2391{
2392	struct device *dev = kobj_to_dev(kobj);
2393	int retval = 0;
2394
2395	/* add device node properties if present */
2396	if (MAJOR(dev->devt)) {
2397		const char *tmp;
2398		const char *name;
2399		umode_t mode = 0;
2400		kuid_t uid = GLOBAL_ROOT_UID;
2401		kgid_t gid = GLOBAL_ROOT_GID;
2402
2403		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2404		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2405		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2406		if (name) {
2407			add_uevent_var(env, "DEVNAME=%s", name);
2408			if (mode)
2409				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2410			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2411				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2412			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2413				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2414			kfree(tmp);
2415		}
2416	}
2417
2418	if (dev->type && dev->type->name)
2419		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2420
2421	if (dev->driver)
2422		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2423
2424	/* Add common DT information about the device */
2425	of_device_uevent(dev, env);
2426
2427	/* have the bus specific function add its stuff */
2428	if (dev->bus && dev->bus->uevent) {
2429		retval = dev->bus->uevent(dev, env);
2430		if (retval)
2431			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2432				 dev_name(dev), __func__, retval);
2433	}
2434
2435	/* have the class specific function add its stuff */
2436	if (dev->class && dev->class->dev_uevent) {
2437		retval = dev->class->dev_uevent(dev, env);
2438		if (retval)
2439			pr_debug("device: '%s': %s: class uevent() "
2440				 "returned %d\n", dev_name(dev),
2441				 __func__, retval);
2442	}
2443
2444	/* have the device type specific function add its stuff */
2445	if (dev->type && dev->type->uevent) {
2446		retval = dev->type->uevent(dev, env);
2447		if (retval)
2448			pr_debug("device: '%s': %s: dev_type uevent() "
2449				 "returned %d\n", dev_name(dev),
2450				 __func__, retval);
2451	}
2452
2453	return retval;
2454}
2455
2456static const struct kset_uevent_ops device_uevent_ops = {
2457	.filter =	dev_uevent_filter,
2458	.name =		dev_uevent_name,
2459	.uevent =	dev_uevent,
2460};
2461
2462static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2463			   char *buf)
2464{
2465	struct kobject *top_kobj;
2466	struct kset *kset;
2467	struct kobj_uevent_env *env = NULL;
2468	int i;
2469	int len = 0;
2470	int retval;
2471
2472	/* search the kset, the device belongs to */
2473	top_kobj = &dev->kobj;
2474	while (!top_kobj->kset && top_kobj->parent)
2475		top_kobj = top_kobj->parent;
2476	if (!top_kobj->kset)
2477		goto out;
2478
2479	kset = top_kobj->kset;
2480	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2481		goto out;
2482
2483	/* respect filter */
2484	if (kset->uevent_ops && kset->uevent_ops->filter)
2485		if (!kset->uevent_ops->filter(&dev->kobj))
2486			goto out;
2487
2488	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2489	if (!env)
2490		return -ENOMEM;
2491
 
 
2492	/* let the kset specific function add its keys */
2493	retval = kset->uevent_ops->uevent(&dev->kobj, env);
 
2494	if (retval)
2495		goto out;
2496
2497	/* copy keys to file */
2498	for (i = 0; i < env->envp_idx; i++)
2499		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2500out:
2501	kfree(env);
2502	return len;
2503}
2504
2505static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2506			    const char *buf, size_t count)
2507{
2508	int rc;
2509
2510	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2511
2512	if (rc) {
2513		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2514		return rc;
2515	}
2516
2517	return count;
2518}
2519static DEVICE_ATTR_RW(uevent);
2520
2521static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2522			   char *buf)
2523{
2524	bool val;
2525
2526	device_lock(dev);
2527	val = !dev->offline;
2528	device_unlock(dev);
2529	return sysfs_emit(buf, "%u\n", val);
2530}
2531
2532static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2533			    const char *buf, size_t count)
2534{
2535	bool val;
2536	int ret;
2537
2538	ret = kstrtobool(buf, &val);
2539	if (ret < 0)
2540		return ret;
2541
2542	ret = lock_device_hotplug_sysfs();
2543	if (ret)
2544		return ret;
2545
2546	ret = val ? device_online(dev) : device_offline(dev);
2547	unlock_device_hotplug();
2548	return ret < 0 ? ret : count;
2549}
2550static DEVICE_ATTR_RW(online);
2551
2552static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2553			      char *buf)
2554{
2555	const char *loc;
2556
2557	switch (dev->removable) {
2558	case DEVICE_REMOVABLE:
2559		loc = "removable";
2560		break;
2561	case DEVICE_FIXED:
2562		loc = "fixed";
2563		break;
2564	default:
2565		loc = "unknown";
2566	}
2567	return sysfs_emit(buf, "%s\n", loc);
2568}
2569static DEVICE_ATTR_RO(removable);
2570
2571int device_add_groups(struct device *dev, const struct attribute_group **groups)
2572{
2573	return sysfs_create_groups(&dev->kobj, groups);
2574}
2575EXPORT_SYMBOL_GPL(device_add_groups);
2576
2577void device_remove_groups(struct device *dev,
2578			  const struct attribute_group **groups)
2579{
2580	sysfs_remove_groups(&dev->kobj, groups);
2581}
2582EXPORT_SYMBOL_GPL(device_remove_groups);
2583
2584union device_attr_group_devres {
2585	const struct attribute_group *group;
2586	const struct attribute_group **groups;
2587};
2588
2589static void devm_attr_group_remove(struct device *dev, void *res)
2590{
2591	union device_attr_group_devres *devres = res;
2592	const struct attribute_group *group = devres->group;
2593
2594	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2595	sysfs_remove_group(&dev->kobj, group);
2596}
2597
2598static void devm_attr_groups_remove(struct device *dev, void *res)
2599{
2600	union device_attr_group_devres *devres = res;
2601	const struct attribute_group **groups = devres->groups;
2602
2603	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2604	sysfs_remove_groups(&dev->kobj, groups);
2605}
2606
2607/**
2608 * devm_device_add_group - given a device, create a managed attribute group
2609 * @dev:	The device to create the group for
2610 * @grp:	The attribute group to create
2611 *
2612 * This function creates a group for the first time.  It will explicitly
2613 * warn and error if any of the attribute files being created already exist.
2614 *
2615 * Returns 0 on success or error code on failure.
2616 */
2617int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2618{
2619	union device_attr_group_devres *devres;
2620	int error;
2621
2622	devres = devres_alloc(devm_attr_group_remove,
2623			      sizeof(*devres), GFP_KERNEL);
2624	if (!devres)
2625		return -ENOMEM;
2626
2627	error = sysfs_create_group(&dev->kobj, grp);
2628	if (error) {
2629		devres_free(devres);
2630		return error;
2631	}
2632
2633	devres->group = grp;
2634	devres_add(dev, devres);
2635	return 0;
2636}
2637EXPORT_SYMBOL_GPL(devm_device_add_group);
2638
2639/**
2640 * devm_device_add_groups - create a bunch of managed attribute groups
2641 * @dev:	The device to create the group for
2642 * @groups:	The attribute groups to create, NULL terminated
2643 *
2644 * This function creates a bunch of managed attribute groups.  If an error
2645 * occurs when creating a group, all previously created groups will be
2646 * removed, unwinding everything back to the original state when this
2647 * function was called.  It will explicitly warn and error if any of the
2648 * attribute files being created already exist.
2649 *
2650 * Returns 0 on success or error code from sysfs_create_group on failure.
2651 */
2652int devm_device_add_groups(struct device *dev,
2653			   const struct attribute_group **groups)
2654{
2655	union device_attr_group_devres *devres;
2656	int error;
2657
2658	devres = devres_alloc(devm_attr_groups_remove,
2659			      sizeof(*devres), GFP_KERNEL);
2660	if (!devres)
2661		return -ENOMEM;
2662
2663	error = sysfs_create_groups(&dev->kobj, groups);
2664	if (error) {
2665		devres_free(devres);
2666		return error;
2667	}
2668
2669	devres->groups = groups;
2670	devres_add(dev, devres);
2671	return 0;
2672}
2673EXPORT_SYMBOL_GPL(devm_device_add_groups);
2674
2675static int device_add_attrs(struct device *dev)
2676{
2677	struct class *class = dev->class;
2678	const struct device_type *type = dev->type;
2679	int error;
2680
2681	if (class) {
2682		error = device_add_groups(dev, class->dev_groups);
2683		if (error)
2684			return error;
2685	}
2686
2687	if (type) {
2688		error = device_add_groups(dev, type->groups);
2689		if (error)
2690			goto err_remove_class_groups;
2691	}
2692
2693	error = device_add_groups(dev, dev->groups);
2694	if (error)
2695		goto err_remove_type_groups;
2696
2697	if (device_supports_offline(dev) && !dev->offline_disabled) {
2698		error = device_create_file(dev, &dev_attr_online);
2699		if (error)
2700			goto err_remove_dev_groups;
2701	}
2702
2703	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2704		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2705		if (error)
2706			goto err_remove_dev_online;
2707	}
2708
2709	if (dev_removable_is_valid(dev)) {
2710		error = device_create_file(dev, &dev_attr_removable);
2711		if (error)
2712			goto err_remove_dev_waiting_for_supplier;
2713	}
2714
2715	if (dev_add_physical_location(dev)) {
2716		error = device_add_group(dev,
2717			&dev_attr_physical_location_group);
2718		if (error)
2719			goto err_remove_dev_removable;
2720	}
2721
2722	return 0;
2723
2724 err_remove_dev_removable:
2725	device_remove_file(dev, &dev_attr_removable);
2726 err_remove_dev_waiting_for_supplier:
2727	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2728 err_remove_dev_online:
2729	device_remove_file(dev, &dev_attr_online);
2730 err_remove_dev_groups:
2731	device_remove_groups(dev, dev->groups);
2732 err_remove_type_groups:
2733	if (type)
2734		device_remove_groups(dev, type->groups);
2735 err_remove_class_groups:
2736	if (class)
2737		device_remove_groups(dev, class->dev_groups);
2738
2739	return error;
2740}
2741
2742static void device_remove_attrs(struct device *dev)
2743{
2744	struct class *class = dev->class;
2745	const struct device_type *type = dev->type;
2746
2747	if (dev->physical_location) {
2748		device_remove_group(dev, &dev_attr_physical_location_group);
2749		kfree(dev->physical_location);
2750	}
2751
2752	device_remove_file(dev, &dev_attr_removable);
2753	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2754	device_remove_file(dev, &dev_attr_online);
2755	device_remove_groups(dev, dev->groups);
2756
2757	if (type)
2758		device_remove_groups(dev, type->groups);
2759
2760	if (class)
2761		device_remove_groups(dev, class->dev_groups);
2762}
2763
2764static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2765			char *buf)
2766{
2767	return print_dev_t(buf, dev->devt);
2768}
2769static DEVICE_ATTR_RO(dev);
2770
2771/* /sys/devices/ */
2772struct kset *devices_kset;
2773
2774/**
2775 * devices_kset_move_before - Move device in the devices_kset's list.
2776 * @deva: Device to move.
2777 * @devb: Device @deva should come before.
2778 */
2779static void devices_kset_move_before(struct device *deva, struct device *devb)
2780{
2781	if (!devices_kset)
2782		return;
2783	pr_debug("devices_kset: Moving %s before %s\n",
2784		 dev_name(deva), dev_name(devb));
2785	spin_lock(&devices_kset->list_lock);
2786	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2787	spin_unlock(&devices_kset->list_lock);
2788}
2789
2790/**
2791 * devices_kset_move_after - Move device in the devices_kset's list.
2792 * @deva: Device to move
2793 * @devb: Device @deva should come after.
2794 */
2795static void devices_kset_move_after(struct device *deva, struct device *devb)
2796{
2797	if (!devices_kset)
2798		return;
2799	pr_debug("devices_kset: Moving %s after %s\n",
2800		 dev_name(deva), dev_name(devb));
2801	spin_lock(&devices_kset->list_lock);
2802	list_move(&deva->kobj.entry, &devb->kobj.entry);
2803	spin_unlock(&devices_kset->list_lock);
2804}
2805
2806/**
2807 * devices_kset_move_last - move the device to the end of devices_kset's list.
2808 * @dev: device to move
2809 */
2810void devices_kset_move_last(struct device *dev)
2811{
2812	if (!devices_kset)
2813		return;
2814	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2815	spin_lock(&devices_kset->list_lock);
2816	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2817	spin_unlock(&devices_kset->list_lock);
2818}
2819
2820/**
2821 * device_create_file - create sysfs attribute file for device.
2822 * @dev: device.
2823 * @attr: device attribute descriptor.
2824 */
2825int device_create_file(struct device *dev,
2826		       const struct device_attribute *attr)
2827{
2828	int error = 0;
2829
2830	if (dev) {
2831		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2832			"Attribute %s: write permission without 'store'\n",
2833			attr->attr.name);
2834		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2835			"Attribute %s: read permission without 'show'\n",
2836			attr->attr.name);
2837		error = sysfs_create_file(&dev->kobj, &attr->attr);
2838	}
2839
2840	return error;
2841}
2842EXPORT_SYMBOL_GPL(device_create_file);
2843
2844/**
2845 * device_remove_file - remove sysfs attribute file.
2846 * @dev: device.
2847 * @attr: device attribute descriptor.
2848 */
2849void device_remove_file(struct device *dev,
2850			const struct device_attribute *attr)
2851{
2852	if (dev)
2853		sysfs_remove_file(&dev->kobj, &attr->attr);
2854}
2855EXPORT_SYMBOL_GPL(device_remove_file);
2856
2857/**
2858 * device_remove_file_self - remove sysfs attribute file from its own method.
2859 * @dev: device.
2860 * @attr: device attribute descriptor.
2861 *
2862 * See kernfs_remove_self() for details.
2863 */
2864bool device_remove_file_self(struct device *dev,
2865			     const struct device_attribute *attr)
2866{
2867	if (dev)
2868		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2869	else
2870		return false;
2871}
2872EXPORT_SYMBOL_GPL(device_remove_file_self);
2873
2874/**
2875 * device_create_bin_file - create sysfs binary attribute file for device.
2876 * @dev: device.
2877 * @attr: device binary attribute descriptor.
2878 */
2879int device_create_bin_file(struct device *dev,
2880			   const struct bin_attribute *attr)
2881{
2882	int error = -EINVAL;
2883	if (dev)
2884		error = sysfs_create_bin_file(&dev->kobj, attr);
2885	return error;
2886}
2887EXPORT_SYMBOL_GPL(device_create_bin_file);
2888
2889/**
2890 * device_remove_bin_file - remove sysfs binary attribute file
2891 * @dev: device.
2892 * @attr: device binary attribute descriptor.
2893 */
2894void device_remove_bin_file(struct device *dev,
2895			    const struct bin_attribute *attr)
2896{
2897	if (dev)
2898		sysfs_remove_bin_file(&dev->kobj, attr);
2899}
2900EXPORT_SYMBOL_GPL(device_remove_bin_file);
2901
2902static void klist_children_get(struct klist_node *n)
2903{
2904	struct device_private *p = to_device_private_parent(n);
2905	struct device *dev = p->device;
2906
2907	get_device(dev);
2908}
2909
2910static void klist_children_put(struct klist_node *n)
2911{
2912	struct device_private *p = to_device_private_parent(n);
2913	struct device *dev = p->device;
2914
2915	put_device(dev);
2916}
2917
2918/**
2919 * device_initialize - init device structure.
2920 * @dev: device.
2921 *
2922 * This prepares the device for use by other layers by initializing
2923 * its fields.
2924 * It is the first half of device_register(), if called by
2925 * that function, though it can also be called separately, so one
2926 * may use @dev's fields. In particular, get_device()/put_device()
2927 * may be used for reference counting of @dev after calling this
2928 * function.
2929 *
2930 * All fields in @dev must be initialized by the caller to 0, except
2931 * for those explicitly set to some other value.  The simplest
2932 * approach is to use kzalloc() to allocate the structure containing
2933 * @dev.
2934 *
2935 * NOTE: Use put_device() to give up your reference instead of freeing
2936 * @dev directly once you have called this function.
2937 */
2938void device_initialize(struct device *dev)
2939{
2940	dev->kobj.kset = devices_kset;
2941	kobject_init(&dev->kobj, &device_ktype);
2942	INIT_LIST_HEAD(&dev->dma_pools);
2943	mutex_init(&dev->mutex);
2944	lockdep_set_novalidate_class(&dev->mutex);
2945	spin_lock_init(&dev->devres_lock);
2946	INIT_LIST_HEAD(&dev->devres_head);
2947	device_pm_init(dev);
2948	set_dev_node(dev, NUMA_NO_NODE);
2949	INIT_LIST_HEAD(&dev->links.consumers);
2950	INIT_LIST_HEAD(&dev->links.suppliers);
2951	INIT_LIST_HEAD(&dev->links.defer_sync);
2952	dev->links.status = DL_DEV_NO_DRIVER;
2953#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2954    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2955    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2956	dev->dma_coherent = dma_default_coherent;
2957#endif
2958#ifdef CONFIG_SWIOTLB
2959	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2960#endif
2961}
2962EXPORT_SYMBOL_GPL(device_initialize);
2963
2964struct kobject *virtual_device_parent(struct device *dev)
2965{
2966	static struct kobject *virtual_dir = NULL;
2967
2968	if (!virtual_dir)
2969		virtual_dir = kobject_create_and_add("virtual",
2970						     &devices_kset->kobj);
2971
2972	return virtual_dir;
2973}
2974
2975struct class_dir {
2976	struct kobject kobj;
2977	struct class *class;
2978};
2979
2980#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2981
2982static void class_dir_release(struct kobject *kobj)
2983{
2984	struct class_dir *dir = to_class_dir(kobj);
2985	kfree(dir);
2986}
2987
2988static const
2989struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
2990{
2991	const struct class_dir *dir = to_class_dir(kobj);
2992	return dir->class->ns_type;
2993}
2994
2995static struct kobj_type class_dir_ktype = {
2996	.release	= class_dir_release,
2997	.sysfs_ops	= &kobj_sysfs_ops,
2998	.child_ns_type	= class_dir_child_ns_type
2999};
3000
3001static struct kobject *
3002class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3003{
3004	struct class_dir *dir;
3005	int retval;
3006
3007	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3008	if (!dir)
3009		return ERR_PTR(-ENOMEM);
3010
3011	dir->class = class;
3012	kobject_init(&dir->kobj, &class_dir_ktype);
3013
3014	dir->kobj.kset = &class->p->glue_dirs;
3015
3016	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3017	if (retval < 0) {
3018		kobject_put(&dir->kobj);
3019		return ERR_PTR(retval);
3020	}
3021	return &dir->kobj;
3022}
3023
3024static DEFINE_MUTEX(gdp_mutex);
3025
3026static struct kobject *get_device_parent(struct device *dev,
3027					 struct device *parent)
3028{
3029	if (dev->class) {
3030		struct kobject *kobj = NULL;
 
 
3031		struct kobject *parent_kobj;
3032		struct kobject *k;
3033
3034#ifdef CONFIG_BLOCK
3035		/* block disks show up in /sys/block */
3036		if (sysfs_deprecated && dev->class == &block_class) {
3037			if (parent && parent->class == &block_class)
3038				return &parent->kobj;
3039			return &block_class.p->subsys.kobj;
3040		}
3041#endif
3042
3043		/*
3044		 * If we have no parent, we live in "virtual".
3045		 * Class-devices with a non class-device as parent, live
3046		 * in a "glue" directory to prevent namespace collisions.
3047		 */
3048		if (parent == NULL)
3049			parent_kobj = virtual_device_parent(dev);
3050		else if (parent->class && !dev->class->ns_type)
 
3051			return &parent->kobj;
3052		else
3053			parent_kobj = &parent->kobj;
 
3054
3055		mutex_lock(&gdp_mutex);
3056
3057		/* find our class-directory at the parent and reference it */
3058		spin_lock(&dev->class->p->glue_dirs.list_lock);
3059		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3060			if (k->parent == parent_kobj) {
3061				kobj = kobject_get(k);
3062				break;
3063			}
3064		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3065		if (kobj) {
3066			mutex_unlock(&gdp_mutex);
 
3067			return kobj;
3068		}
3069
3070		/* or create a new class-directory at the parent device */
3071		k = class_dir_create_and_add(dev->class, parent_kobj);
3072		/* do not emit an uevent for this simple "glue" directory */
3073		mutex_unlock(&gdp_mutex);
 
3074		return k;
3075	}
3076
3077	/* subsystems can specify a default root directory for their devices */
3078	if (!parent && dev->bus && dev->bus->dev_root)
3079		return &dev->bus->dev_root->kobj;
 
 
 
 
 
 
 
3080
3081	if (parent)
3082		return &parent->kobj;
3083	return NULL;
3084}
3085
3086static inline bool live_in_glue_dir(struct kobject *kobj,
3087				    struct device *dev)
3088{
3089	if (!kobj || !dev->class ||
3090	    kobj->kset != &dev->class->p->glue_dirs)
 
 
3091		return false;
3092	return true;
 
 
 
 
 
 
 
 
 
 
 
3093}
3094
3095static inline struct kobject *get_glue_dir(struct device *dev)
3096{
3097	return dev->kobj.parent;
3098}
3099
3100/**
3101 * kobject_has_children - Returns whether a kobject has children.
3102 * @kobj: the object to test
3103 *
3104 * This will return whether a kobject has other kobjects as children.
3105 *
3106 * It does NOT account for the presence of attribute files, only sub
3107 * directories. It also assumes there is no concurrent addition or
3108 * removal of such children, and thus relies on external locking.
3109 */
3110static inline bool kobject_has_children(struct kobject *kobj)
3111{
3112	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3113
3114	return kobj->sd && kobj->sd->dir.subdirs;
3115}
3116
3117/*
3118 * make sure cleaning up dir as the last step, we need to make
3119 * sure .release handler of kobject is run with holding the
3120 * global lock
3121 */
3122static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3123{
3124	unsigned int ref;
3125
3126	/* see if we live in a "glue" directory */
3127	if (!live_in_glue_dir(glue_dir, dev))
3128		return;
3129
3130	mutex_lock(&gdp_mutex);
3131	/**
3132	 * There is a race condition between removing glue directory
3133	 * and adding a new device under the glue directory.
3134	 *
3135	 * CPU1:                                         CPU2:
3136	 *
3137	 * device_add()
3138	 *   get_device_parent()
3139	 *     class_dir_create_and_add()
3140	 *       kobject_add_internal()
3141	 *         create_dir()    // create glue_dir
3142	 *
3143	 *                                               device_add()
3144	 *                                                 get_device_parent()
3145	 *                                                   kobject_get() // get glue_dir
3146	 *
3147	 * device_del()
3148	 *   cleanup_glue_dir()
3149	 *     kobject_del(glue_dir)
3150	 *
3151	 *                                               kobject_add()
3152	 *                                                 kobject_add_internal()
3153	 *                                                   create_dir() // in glue_dir
3154	 *                                                     sysfs_create_dir_ns()
3155	 *                                                       kernfs_create_dir_ns(sd)
3156	 *
3157	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3158	 *       sysfs_put()        // free glue_dir->sd
3159	 *
3160	 *                                                         // sd is freed
3161	 *                                                         kernfs_new_node(sd)
3162	 *                                                           kernfs_get(glue_dir)
3163	 *                                                           kernfs_add_one()
3164	 *                                                           kernfs_put()
3165	 *
3166	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3167	 * a new device under glue dir, the glue_dir kobject reference count
3168	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3169	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3170	 * and sysfs_put(). This result in glue_dir->sd is freed.
3171	 *
3172	 * Then the CPU2 will see a stale "empty" but still potentially used
3173	 * glue dir around in kernfs_new_node().
3174	 *
3175	 * In order to avoid this happening, we also should make sure that
3176	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3177	 * for glue_dir kobj is 1.
3178	 */
3179	ref = kref_read(&glue_dir->kref);
3180	if (!kobject_has_children(glue_dir) && !--ref)
3181		kobject_del(glue_dir);
3182	kobject_put(glue_dir);
3183	mutex_unlock(&gdp_mutex);
3184}
3185
3186static int device_add_class_symlinks(struct device *dev)
3187{
3188	struct device_node *of_node = dev_of_node(dev);
 
3189	int error;
3190
3191	if (of_node) {
3192		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3193		if (error)
3194			dev_warn(dev, "Error %d creating of_node link\n",error);
3195		/* An error here doesn't warrant bringing down the device */
3196	}
3197
3198	if (!dev->class)
 
3199		return 0;
3200
3201	error = sysfs_create_link(&dev->kobj,
3202				  &dev->class->p->subsys.kobj,
3203				  "subsystem");
3204	if (error)
3205		goto out_devnode;
3206
3207	if (dev->parent && device_is_not_partition(dev)) {
3208		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3209					  "device");
3210		if (error)
3211			goto out_subsys;
3212	}
3213
3214#ifdef CONFIG_BLOCK
3215	/* /sys/block has directories and does not need symlinks */
3216	if (sysfs_deprecated && dev->class == &block_class)
3217		return 0;
3218#endif
3219
3220	/* link in the class directory pointing to the device */
3221	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3222				  &dev->kobj, dev_name(dev));
3223	if (error)
3224		goto out_device;
3225
3226	return 0;
3227
3228out_device:
3229	sysfs_remove_link(&dev->kobj, "device");
3230
3231out_subsys:
3232	sysfs_remove_link(&dev->kobj, "subsystem");
3233out_devnode:
3234	sysfs_remove_link(&dev->kobj, "of_node");
 
 
3235	return error;
3236}
3237
3238static void device_remove_class_symlinks(struct device *dev)
3239{
 
 
3240	if (dev_of_node(dev))
3241		sysfs_remove_link(&dev->kobj, "of_node");
3242
3243	if (!dev->class)
3244		return;
3245
3246	if (dev->parent && device_is_not_partition(dev))
3247		sysfs_remove_link(&dev->kobj, "device");
3248	sysfs_remove_link(&dev->kobj, "subsystem");
3249#ifdef CONFIG_BLOCK
3250	if (sysfs_deprecated && dev->class == &block_class)
3251		return;
3252#endif
3253	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3254}
3255
3256/**
3257 * dev_set_name - set a device name
3258 * @dev: device
3259 * @fmt: format string for the device's name
3260 */
3261int dev_set_name(struct device *dev, const char *fmt, ...)
3262{
3263	va_list vargs;
3264	int err;
3265
3266	va_start(vargs, fmt);
3267	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3268	va_end(vargs);
3269	return err;
3270}
3271EXPORT_SYMBOL_GPL(dev_set_name);
3272
3273/**
3274 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3275 * @dev: device
3276 *
3277 * By default we select char/ for new entries.  Setting class->dev_obj
3278 * to NULL prevents an entry from being created.  class->dev_kobj must
3279 * be set (or cleared) before any devices are registered to the class
3280 * otherwise device_create_sys_dev_entry() and
3281 * device_remove_sys_dev_entry() will disagree about the presence of
3282 * the link.
3283 */
3284static struct kobject *device_to_dev_kobj(struct device *dev)
3285{
3286	struct kobject *kobj;
3287
3288	if (dev->class)
3289		kobj = dev->class->dev_kobj;
3290	else
3291		kobj = sysfs_dev_char_kobj;
3292
3293	return kobj;
3294}
3295
3296static int device_create_sys_dev_entry(struct device *dev)
3297{
3298	struct kobject *kobj = device_to_dev_kobj(dev);
3299	int error = 0;
3300	char devt_str[15];
3301
3302	if (kobj) {
3303		format_dev_t(devt_str, dev->devt);
3304		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3305	}
3306
3307	return error;
3308}
3309
3310static void device_remove_sys_dev_entry(struct device *dev)
3311{
3312	struct kobject *kobj = device_to_dev_kobj(dev);
3313	char devt_str[15];
3314
3315	if (kobj) {
3316		format_dev_t(devt_str, dev->devt);
3317		sysfs_remove_link(kobj, devt_str);
3318	}
3319}
3320
3321static int device_private_init(struct device *dev)
3322{
3323	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3324	if (!dev->p)
3325		return -ENOMEM;
3326	dev->p->device = dev;
3327	klist_init(&dev->p->klist_children, klist_children_get,
3328		   klist_children_put);
3329	INIT_LIST_HEAD(&dev->p->deferred_probe);
3330	return 0;
3331}
3332
3333/**
3334 * device_add - add device to device hierarchy.
3335 * @dev: device.
3336 *
3337 * This is part 2 of device_register(), though may be called
3338 * separately _iff_ device_initialize() has been called separately.
3339 *
3340 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3341 * to the global and sibling lists for the device, then
3342 * adds it to the other relevant subsystems of the driver model.
3343 *
3344 * Do not call this routine or device_register() more than once for
3345 * any device structure.  The driver model core is not designed to work
3346 * with devices that get unregistered and then spring back to life.
3347 * (Among other things, it's very hard to guarantee that all references
3348 * to the previous incarnation of @dev have been dropped.)  Allocate
3349 * and register a fresh new struct device instead.
3350 *
3351 * NOTE: _Never_ directly free @dev after calling this function, even
3352 * if it returned an error! Always use put_device() to give up your
3353 * reference instead.
3354 *
3355 * Rule of thumb is: if device_add() succeeds, you should call
3356 * device_del() when you want to get rid of it. If device_add() has
3357 * *not* succeeded, use *only* put_device() to drop the reference
3358 * count.
3359 */
3360int device_add(struct device *dev)
3361{
 
3362	struct device *parent;
3363	struct kobject *kobj;
3364	struct class_interface *class_intf;
3365	int error = -EINVAL;
3366	struct kobject *glue_dir = NULL;
3367
3368	dev = get_device(dev);
3369	if (!dev)
3370		goto done;
3371
3372	if (!dev->p) {
3373		error = device_private_init(dev);
3374		if (error)
3375			goto done;
3376	}
3377
3378	/*
3379	 * for statically allocated devices, which should all be converted
3380	 * some day, we need to initialize the name. We prevent reading back
3381	 * the name, and force the use of dev_name()
3382	 */
3383	if (dev->init_name) {
3384		dev_set_name(dev, "%s", dev->init_name);
3385		dev->init_name = NULL;
3386	}
3387
 
 
3388	/* subsystems can specify simple device enumeration */
3389	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3390		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3391
3392	if (!dev_name(dev)) {
3393		error = -EINVAL;
 
3394		goto name_error;
3395	}
3396
3397	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3398
3399	parent = get_device(dev->parent);
3400	kobj = get_device_parent(dev, parent);
3401	if (IS_ERR(kobj)) {
3402		error = PTR_ERR(kobj);
3403		goto parent_error;
3404	}
3405	if (kobj)
3406		dev->kobj.parent = kobj;
3407
3408	/* use parent numa_node */
3409	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3410		set_dev_node(dev, dev_to_node(parent));
3411
3412	/* first, register with generic layer. */
3413	/* we require the name to be set before, and pass NULL */
3414	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3415	if (error) {
3416		glue_dir = get_glue_dir(dev);
3417		goto Error;
3418	}
3419
3420	/* notify platform of device entry */
3421	device_platform_notify(dev);
3422
3423	error = device_create_file(dev, &dev_attr_uevent);
3424	if (error)
3425		goto attrError;
3426
3427	error = device_add_class_symlinks(dev);
3428	if (error)
3429		goto SymlinkError;
3430	error = device_add_attrs(dev);
3431	if (error)
3432		goto AttrsError;
3433	error = bus_add_device(dev);
3434	if (error)
3435		goto BusError;
3436	error = dpm_sysfs_add(dev);
3437	if (error)
3438		goto DPMError;
3439	device_pm_add(dev);
3440
3441	if (MAJOR(dev->devt)) {
3442		error = device_create_file(dev, &dev_attr_dev);
3443		if (error)
3444			goto DevAttrError;
3445
3446		error = device_create_sys_dev_entry(dev);
3447		if (error)
3448			goto SysEntryError;
3449
3450		devtmpfs_create_node(dev);
3451	}
3452
3453	/* Notify clients of device addition.  This call must come
3454	 * after dpm_sysfs_add() and before kobject_uevent().
3455	 */
3456	if (dev->bus)
3457		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3458					     BUS_NOTIFY_ADD_DEVICE, dev);
3459
3460	kobject_uevent(&dev->kobj, KOBJ_ADD);
3461
3462	/*
3463	 * Check if any of the other devices (consumers) have been waiting for
3464	 * this device (supplier) to be added so that they can create a device
3465	 * link to it.
3466	 *
3467	 * This needs to happen after device_pm_add() because device_link_add()
3468	 * requires the supplier be registered before it's called.
3469	 *
3470	 * But this also needs to happen before bus_probe_device() to make sure
3471	 * waiting consumers can link to it before the driver is bound to the
3472	 * device and the driver sync_state callback is called for this device.
3473	 */
3474	if (dev->fwnode && !dev->fwnode->dev) {
3475		dev->fwnode->dev = dev;
3476		fw_devlink_link_device(dev);
3477	}
3478
3479	bus_probe_device(dev);
3480
3481	/*
3482	 * If all driver registration is done and a newly added device doesn't
3483	 * match with any driver, don't block its consumers from probing in
3484	 * case the consumer device is able to operate without this supplier.
3485	 */
3486	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3487		fw_devlink_unblock_consumers(dev);
3488
3489	if (parent)
3490		klist_add_tail(&dev->p->knode_parent,
3491			       &parent->p->klist_children);
3492
3493	if (dev->class) {
3494		mutex_lock(&dev->class->p->mutex);
 
3495		/* tie the class to the device */
3496		klist_add_tail(&dev->p->knode_class,
3497			       &dev->class->p->klist_devices);
3498
3499		/* notify any interfaces that the device is here */
3500		list_for_each_entry(class_intf,
3501				    &dev->class->p->interfaces, node)
3502			if (class_intf->add_dev)
3503				class_intf->add_dev(dev, class_intf);
3504		mutex_unlock(&dev->class->p->mutex);
 
3505	}
3506done:
3507	put_device(dev);
3508	return error;
3509 SysEntryError:
3510	if (MAJOR(dev->devt))
3511		device_remove_file(dev, &dev_attr_dev);
3512 DevAttrError:
3513	device_pm_remove(dev);
3514	dpm_sysfs_remove(dev);
3515 DPMError:
 
3516	bus_remove_device(dev);
3517 BusError:
3518	device_remove_attrs(dev);
3519 AttrsError:
3520	device_remove_class_symlinks(dev);
3521 SymlinkError:
3522	device_remove_file(dev, &dev_attr_uevent);
3523 attrError:
3524	device_platform_notify_remove(dev);
3525	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3526	glue_dir = get_glue_dir(dev);
3527	kobject_del(&dev->kobj);
3528 Error:
3529	cleanup_glue_dir(dev, glue_dir);
3530parent_error:
3531	put_device(parent);
3532name_error:
3533	kfree(dev->p);
3534	dev->p = NULL;
3535	goto done;
3536}
3537EXPORT_SYMBOL_GPL(device_add);
3538
3539/**
3540 * device_register - register a device with the system.
3541 * @dev: pointer to the device structure
3542 *
3543 * This happens in two clean steps - initialize the device
3544 * and add it to the system. The two steps can be called
3545 * separately, but this is the easiest and most common.
3546 * I.e. you should only call the two helpers separately if
3547 * have a clearly defined need to use and refcount the device
3548 * before it is added to the hierarchy.
3549 *
3550 * For more information, see the kerneldoc for device_initialize()
3551 * and device_add().
3552 *
3553 * NOTE: _Never_ directly free @dev after calling this function, even
3554 * if it returned an error! Always use put_device() to give up the
3555 * reference initialized in this function instead.
3556 */
3557int device_register(struct device *dev)
3558{
3559	device_initialize(dev);
3560	return device_add(dev);
3561}
3562EXPORT_SYMBOL_GPL(device_register);
3563
3564/**
3565 * get_device - increment reference count for device.
3566 * @dev: device.
3567 *
3568 * This simply forwards the call to kobject_get(), though
3569 * we do take care to provide for the case that we get a NULL
3570 * pointer passed in.
3571 */
3572struct device *get_device(struct device *dev)
3573{
3574	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3575}
3576EXPORT_SYMBOL_GPL(get_device);
3577
3578/**
3579 * put_device - decrement reference count.
3580 * @dev: device in question.
3581 */
3582void put_device(struct device *dev)
3583{
3584	/* might_sleep(); */
3585	if (dev)
3586		kobject_put(&dev->kobj);
3587}
3588EXPORT_SYMBOL_GPL(put_device);
3589
3590bool kill_device(struct device *dev)
3591{
3592	/*
3593	 * Require the device lock and set the "dead" flag to guarantee that
3594	 * the update behavior is consistent with the other bitfields near
3595	 * it and that we cannot have an asynchronous probe routine trying
3596	 * to run while we are tearing out the bus/class/sysfs from
3597	 * underneath the device.
3598	 */
3599	device_lock_assert(dev);
3600
3601	if (dev->p->dead)
3602		return false;
3603	dev->p->dead = true;
3604	return true;
3605}
3606EXPORT_SYMBOL_GPL(kill_device);
3607
3608/**
3609 * device_del - delete device from system.
3610 * @dev: device.
3611 *
3612 * This is the first part of the device unregistration
3613 * sequence. This removes the device from the lists we control
3614 * from here, has it removed from the other driver model
3615 * subsystems it was added to in device_add(), and removes it
3616 * from the kobject hierarchy.
3617 *
3618 * NOTE: this should be called manually _iff_ device_add() was
3619 * also called manually.
3620 */
3621void device_del(struct device *dev)
3622{
 
3623	struct device *parent = dev->parent;
3624	struct kobject *glue_dir = NULL;
3625	struct class_interface *class_intf;
3626	unsigned int noio_flag;
3627
3628	device_lock(dev);
3629	kill_device(dev);
3630	device_unlock(dev);
3631
3632	if (dev->fwnode && dev->fwnode->dev == dev)
3633		dev->fwnode->dev = NULL;
3634
3635	/* Notify clients of device removal.  This call must come
3636	 * before dpm_sysfs_remove().
3637	 */
3638	noio_flag = memalloc_noio_save();
3639	if (dev->bus)
3640		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3641					     BUS_NOTIFY_DEL_DEVICE, dev);
3642
3643	dpm_sysfs_remove(dev);
3644	if (parent)
3645		klist_del(&dev->p->knode_parent);
3646	if (MAJOR(dev->devt)) {
3647		devtmpfs_delete_node(dev);
3648		device_remove_sys_dev_entry(dev);
3649		device_remove_file(dev, &dev_attr_dev);
3650	}
3651	if (dev->class) {
 
 
3652		device_remove_class_symlinks(dev);
3653
3654		mutex_lock(&dev->class->p->mutex);
3655		/* notify any interfaces that the device is now gone */
3656		list_for_each_entry(class_intf,
3657				    &dev->class->p->interfaces, node)
3658			if (class_intf->remove_dev)
3659				class_intf->remove_dev(dev, class_intf);
3660		/* remove the device from the class list */
3661		klist_del(&dev->p->knode_class);
3662		mutex_unlock(&dev->class->p->mutex);
 
3663	}
3664	device_remove_file(dev, &dev_attr_uevent);
3665	device_remove_attrs(dev);
3666	bus_remove_device(dev);
3667	device_pm_remove(dev);
3668	driver_deferred_probe_del(dev);
3669	device_platform_notify_remove(dev);
3670	device_links_purge(dev);
3671
3672	if (dev->bus)
3673		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3674					     BUS_NOTIFY_REMOVED_DEVICE, dev);
 
 
 
 
 
 
 
 
 
3675	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3676	glue_dir = get_glue_dir(dev);
3677	kobject_del(&dev->kobj);
3678	cleanup_glue_dir(dev, glue_dir);
3679	memalloc_noio_restore(noio_flag);
3680	put_device(parent);
3681}
3682EXPORT_SYMBOL_GPL(device_del);
3683
3684/**
3685 * device_unregister - unregister device from system.
3686 * @dev: device going away.
3687 *
3688 * We do this in two parts, like we do device_register(). First,
3689 * we remove it from all the subsystems with device_del(), then
3690 * we decrement the reference count via put_device(). If that
3691 * is the final reference count, the device will be cleaned up
3692 * via device_release() above. Otherwise, the structure will
3693 * stick around until the final reference to the device is dropped.
3694 */
3695void device_unregister(struct device *dev)
3696{
3697	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3698	device_del(dev);
3699	put_device(dev);
3700}
3701EXPORT_SYMBOL_GPL(device_unregister);
3702
3703static struct device *prev_device(struct klist_iter *i)
3704{
3705	struct klist_node *n = klist_prev(i);
3706	struct device *dev = NULL;
3707	struct device_private *p;
3708
3709	if (n) {
3710		p = to_device_private_parent(n);
3711		dev = p->device;
3712	}
3713	return dev;
3714}
3715
3716static struct device *next_device(struct klist_iter *i)
3717{
3718	struct klist_node *n = klist_next(i);
3719	struct device *dev = NULL;
3720	struct device_private *p;
3721
3722	if (n) {
3723		p = to_device_private_parent(n);
3724		dev = p->device;
3725	}
3726	return dev;
3727}
3728
3729/**
3730 * device_get_devnode - path of device node file
3731 * @dev: device
3732 * @mode: returned file access mode
3733 * @uid: returned file owner
3734 * @gid: returned file group
3735 * @tmp: possibly allocated string
3736 *
3737 * Return the relative path of a possible device node.
3738 * Non-default names may need to allocate a memory to compose
3739 * a name. This memory is returned in tmp and needs to be
3740 * freed by the caller.
3741 */
3742const char *device_get_devnode(struct device *dev,
3743			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3744			       const char **tmp)
3745{
3746	char *s;
3747
3748	*tmp = NULL;
3749
3750	/* the device type may provide a specific name */
3751	if (dev->type && dev->type->devnode)
3752		*tmp = dev->type->devnode(dev, mode, uid, gid);
3753	if (*tmp)
3754		return *tmp;
3755
3756	/* the class may provide a specific name */
3757	if (dev->class && dev->class->devnode)
3758		*tmp = dev->class->devnode(dev, mode);
3759	if (*tmp)
3760		return *tmp;
3761
3762	/* return name without allocation, tmp == NULL */
3763	if (strchr(dev_name(dev), '!') == NULL)
3764		return dev_name(dev);
3765
3766	/* replace '!' in the name with '/' */
3767	s = kstrdup(dev_name(dev), GFP_KERNEL);
3768	if (!s)
3769		return NULL;
3770	strreplace(s, '!', '/');
3771	return *tmp = s;
3772}
3773
3774/**
3775 * device_for_each_child - device child iterator.
3776 * @parent: parent struct device.
3777 * @fn: function to be called for each device.
3778 * @data: data for the callback.
3779 *
3780 * Iterate over @parent's child devices, and call @fn for each,
3781 * passing it @data.
3782 *
3783 * We check the return of @fn each time. If it returns anything
3784 * other than 0, we break out and return that value.
3785 */
3786int device_for_each_child(struct device *parent, void *data,
3787			  int (*fn)(struct device *dev, void *data))
3788{
3789	struct klist_iter i;
3790	struct device *child;
3791	int error = 0;
3792
3793	if (!parent->p)
3794		return 0;
3795
3796	klist_iter_init(&parent->p->klist_children, &i);
3797	while (!error && (child = next_device(&i)))
3798		error = fn(child, data);
3799	klist_iter_exit(&i);
3800	return error;
3801}
3802EXPORT_SYMBOL_GPL(device_for_each_child);
3803
3804/**
3805 * device_for_each_child_reverse - device child iterator in reversed order.
3806 * @parent: parent struct device.
3807 * @fn: function to be called for each device.
3808 * @data: data for the callback.
3809 *
3810 * Iterate over @parent's child devices, and call @fn for each,
3811 * passing it @data.
3812 *
3813 * We check the return of @fn each time. If it returns anything
3814 * other than 0, we break out and return that value.
3815 */
3816int device_for_each_child_reverse(struct device *parent, void *data,
3817				  int (*fn)(struct device *dev, void *data))
3818{
3819	struct klist_iter i;
3820	struct device *child;
3821	int error = 0;
3822
3823	if (!parent->p)
3824		return 0;
3825
3826	klist_iter_init(&parent->p->klist_children, &i);
3827	while ((child = prev_device(&i)) && !error)
3828		error = fn(child, data);
3829	klist_iter_exit(&i);
3830	return error;
3831}
3832EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3833
3834/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3835 * device_find_child - device iterator for locating a particular device.
3836 * @parent: parent struct device
3837 * @match: Callback function to check device
3838 * @data: Data to pass to match function
3839 *
3840 * This is similar to the device_for_each_child() function above, but it
3841 * returns a reference to a device that is 'found' for later use, as
3842 * determined by the @match callback.
3843 *
3844 * The callback should return 0 if the device doesn't match and non-zero
3845 * if it does.  If the callback returns non-zero and a reference to the
3846 * current device can be obtained, this function will return to the caller
3847 * and not iterate over any more devices.
3848 *
3849 * NOTE: you will need to drop the reference with put_device() after use.
3850 */
3851struct device *device_find_child(struct device *parent, void *data,
3852				 int (*match)(struct device *dev, void *data))
3853{
3854	struct klist_iter i;
3855	struct device *child;
3856
3857	if (!parent)
3858		return NULL;
3859
3860	klist_iter_init(&parent->p->klist_children, &i);
3861	while ((child = next_device(&i)))
3862		if (match(child, data) && get_device(child))
3863			break;
3864	klist_iter_exit(&i);
3865	return child;
3866}
3867EXPORT_SYMBOL_GPL(device_find_child);
3868
3869/**
3870 * device_find_child_by_name - device iterator for locating a child device.
3871 * @parent: parent struct device
3872 * @name: name of the child device
3873 *
3874 * This is similar to the device_find_child() function above, but it
3875 * returns a reference to a device that has the name @name.
3876 *
3877 * NOTE: you will need to drop the reference with put_device() after use.
3878 */
3879struct device *device_find_child_by_name(struct device *parent,
3880					 const char *name)
3881{
3882	struct klist_iter i;
3883	struct device *child;
3884
3885	if (!parent)
3886		return NULL;
3887
3888	klist_iter_init(&parent->p->klist_children, &i);
3889	while ((child = next_device(&i)))
3890		if (sysfs_streq(dev_name(child), name) && get_device(child))
3891			break;
3892	klist_iter_exit(&i);
3893	return child;
3894}
3895EXPORT_SYMBOL_GPL(device_find_child_by_name);
3896
3897static int match_any(struct device *dev, void *unused)
3898{
3899	return 1;
3900}
3901
3902/**
3903 * device_find_any_child - device iterator for locating a child device, if any.
3904 * @parent: parent struct device
3905 *
3906 * This is similar to the device_find_child() function above, but it
3907 * returns a reference to a child device, if any.
3908 *
3909 * NOTE: you will need to drop the reference with put_device() after use.
3910 */
3911struct device *device_find_any_child(struct device *parent)
3912{
3913	return device_find_child(parent, NULL, match_any);
3914}
3915EXPORT_SYMBOL_GPL(device_find_any_child);
3916
3917int __init devices_init(void)
3918{
3919	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3920	if (!devices_kset)
3921		return -ENOMEM;
3922	dev_kobj = kobject_create_and_add("dev", NULL);
3923	if (!dev_kobj)
3924		goto dev_kobj_err;
3925	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3926	if (!sysfs_dev_block_kobj)
3927		goto block_kobj_err;
3928	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3929	if (!sysfs_dev_char_kobj)
3930		goto char_kobj_err;
 
 
 
3931
3932	return 0;
3933
 
 
3934 char_kobj_err:
3935	kobject_put(sysfs_dev_block_kobj);
3936 block_kobj_err:
3937	kobject_put(dev_kobj);
3938 dev_kobj_err:
3939	kset_unregister(devices_kset);
3940	return -ENOMEM;
3941}
3942
3943static int device_check_offline(struct device *dev, void *not_used)
3944{
3945	int ret;
3946
3947	ret = device_for_each_child(dev, NULL, device_check_offline);
3948	if (ret)
3949		return ret;
3950
3951	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3952}
3953
3954/**
3955 * device_offline - Prepare the device for hot-removal.
3956 * @dev: Device to be put offline.
3957 *
3958 * Execute the device bus type's .offline() callback, if present, to prepare
3959 * the device for a subsequent hot-removal.  If that succeeds, the device must
3960 * not be used until either it is removed or its bus type's .online() callback
3961 * is executed.
3962 *
3963 * Call under device_hotplug_lock.
3964 */
3965int device_offline(struct device *dev)
3966{
3967	int ret;
3968
3969	if (dev->offline_disabled)
3970		return -EPERM;
3971
3972	ret = device_for_each_child(dev, NULL, device_check_offline);
3973	if (ret)
3974		return ret;
3975
3976	device_lock(dev);
3977	if (device_supports_offline(dev)) {
3978		if (dev->offline) {
3979			ret = 1;
3980		} else {
3981			ret = dev->bus->offline(dev);
3982			if (!ret) {
3983				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3984				dev->offline = true;
3985			}
3986		}
3987	}
3988	device_unlock(dev);
3989
3990	return ret;
3991}
3992
3993/**
3994 * device_online - Put the device back online after successful device_offline().
3995 * @dev: Device to be put back online.
3996 *
3997 * If device_offline() has been successfully executed for @dev, but the device
3998 * has not been removed subsequently, execute its bus type's .online() callback
3999 * to indicate that the device can be used again.
4000 *
4001 * Call under device_hotplug_lock.
4002 */
4003int device_online(struct device *dev)
4004{
4005	int ret = 0;
4006
4007	device_lock(dev);
4008	if (device_supports_offline(dev)) {
4009		if (dev->offline) {
4010			ret = dev->bus->online(dev);
4011			if (!ret) {
4012				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4013				dev->offline = false;
4014			}
4015		} else {
4016			ret = 1;
4017		}
4018	}
4019	device_unlock(dev);
4020
4021	return ret;
4022}
4023
4024struct root_device {
4025	struct device dev;
4026	struct module *owner;
4027};
4028
4029static inline struct root_device *to_root_device(struct device *d)
4030{
4031	return container_of(d, struct root_device, dev);
4032}
4033
4034static void root_device_release(struct device *dev)
4035{
4036	kfree(to_root_device(dev));
4037}
4038
4039/**
4040 * __root_device_register - allocate and register a root device
4041 * @name: root device name
4042 * @owner: owner module of the root device, usually THIS_MODULE
4043 *
4044 * This function allocates a root device and registers it
4045 * using device_register(). In order to free the returned
4046 * device, use root_device_unregister().
4047 *
4048 * Root devices are dummy devices which allow other devices
4049 * to be grouped under /sys/devices. Use this function to
4050 * allocate a root device and then use it as the parent of
4051 * any device which should appear under /sys/devices/{name}
4052 *
4053 * The /sys/devices/{name} directory will also contain a
4054 * 'module' symlink which points to the @owner directory
4055 * in sysfs.
4056 *
4057 * Returns &struct device pointer on success, or ERR_PTR() on error.
4058 *
4059 * Note: You probably want to use root_device_register().
4060 */
4061struct device *__root_device_register(const char *name, struct module *owner)
4062{
4063	struct root_device *root;
4064	int err = -ENOMEM;
4065
4066	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4067	if (!root)
4068		return ERR_PTR(err);
4069
4070	err = dev_set_name(&root->dev, "%s", name);
4071	if (err) {
4072		kfree(root);
4073		return ERR_PTR(err);
4074	}
4075
4076	root->dev.release = root_device_release;
4077
4078	err = device_register(&root->dev);
4079	if (err) {
4080		put_device(&root->dev);
4081		return ERR_PTR(err);
4082	}
4083
4084#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4085	if (owner) {
4086		struct module_kobject *mk = &owner->mkobj;
4087
4088		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4089		if (err) {
4090			device_unregister(&root->dev);
4091			return ERR_PTR(err);
4092		}
4093		root->owner = owner;
4094	}
4095#endif
4096
4097	return &root->dev;
4098}
4099EXPORT_SYMBOL_GPL(__root_device_register);
4100
4101/**
4102 * root_device_unregister - unregister and free a root device
4103 * @dev: device going away
4104 *
4105 * This function unregisters and cleans up a device that was created by
4106 * root_device_register().
4107 */
4108void root_device_unregister(struct device *dev)
4109{
4110	struct root_device *root = to_root_device(dev);
4111
4112	if (root->owner)
4113		sysfs_remove_link(&root->dev.kobj, "module");
4114
4115	device_unregister(dev);
4116}
4117EXPORT_SYMBOL_GPL(root_device_unregister);
4118
4119
4120static void device_create_release(struct device *dev)
4121{
4122	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4123	kfree(dev);
4124}
4125
4126static __printf(6, 0) struct device *
4127device_create_groups_vargs(struct class *class, struct device *parent,
4128			   dev_t devt, void *drvdata,
4129			   const struct attribute_group **groups,
4130			   const char *fmt, va_list args)
4131{
4132	struct device *dev = NULL;
4133	int retval = -ENODEV;
4134
4135	if (IS_ERR_OR_NULL(class))
4136		goto error;
4137
4138	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4139	if (!dev) {
4140		retval = -ENOMEM;
4141		goto error;
4142	}
4143
4144	device_initialize(dev);
4145	dev->devt = devt;
4146	dev->class = class;
4147	dev->parent = parent;
4148	dev->groups = groups;
4149	dev->release = device_create_release;
4150	dev_set_drvdata(dev, drvdata);
4151
4152	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4153	if (retval)
4154		goto error;
4155
4156	retval = device_add(dev);
4157	if (retval)
4158		goto error;
4159
4160	return dev;
4161
4162error:
4163	put_device(dev);
4164	return ERR_PTR(retval);
4165}
4166
4167/**
4168 * device_create - creates a device and registers it with sysfs
4169 * @class: pointer to the struct class that this device should be registered to
4170 * @parent: pointer to the parent struct device of this new device, if any
4171 * @devt: the dev_t for the char device to be added
4172 * @drvdata: the data to be added to the device for callbacks
4173 * @fmt: string for the device's name
4174 *
4175 * This function can be used by char device classes.  A struct device
4176 * will be created in sysfs, registered to the specified class.
4177 *
4178 * A "dev" file will be created, showing the dev_t for the device, if
4179 * the dev_t is not 0,0.
4180 * If a pointer to a parent struct device is passed in, the newly created
4181 * struct device will be a child of that device in sysfs.
4182 * The pointer to the struct device will be returned from the call.
4183 * Any further sysfs files that might be required can be created using this
4184 * pointer.
4185 *
4186 * Returns &struct device pointer on success, or ERR_PTR() on error.
4187 *
4188 * Note: the struct class passed to this function must have previously
4189 * been created with a call to class_create().
4190 */
4191struct device *device_create(struct class *class, struct device *parent,
4192			     dev_t devt, void *drvdata, const char *fmt, ...)
4193{
4194	va_list vargs;
4195	struct device *dev;
4196
4197	va_start(vargs, fmt);
4198	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4199					  fmt, vargs);
4200	va_end(vargs);
4201	return dev;
4202}
4203EXPORT_SYMBOL_GPL(device_create);
4204
4205/**
4206 * device_create_with_groups - creates a device and registers it with sysfs
4207 * @class: pointer to the struct class that this device should be registered to
4208 * @parent: pointer to the parent struct device of this new device, if any
4209 * @devt: the dev_t for the char device to be added
4210 * @drvdata: the data to be added to the device for callbacks
4211 * @groups: NULL-terminated list of attribute groups to be created
4212 * @fmt: string for the device's name
4213 *
4214 * This function can be used by char device classes.  A struct device
4215 * will be created in sysfs, registered to the specified class.
4216 * Additional attributes specified in the groups parameter will also
4217 * be created automatically.
4218 *
4219 * A "dev" file will be created, showing the dev_t for the device, if
4220 * the dev_t is not 0,0.
4221 * If a pointer to a parent struct device is passed in, the newly created
4222 * struct device will be a child of that device in sysfs.
4223 * The pointer to the struct device will be returned from the call.
4224 * Any further sysfs files that might be required can be created using this
4225 * pointer.
4226 *
4227 * Returns &struct device pointer on success, or ERR_PTR() on error.
4228 *
4229 * Note: the struct class passed to this function must have previously
4230 * been created with a call to class_create().
4231 */
4232struct device *device_create_with_groups(struct class *class,
4233					 struct device *parent, dev_t devt,
4234					 void *drvdata,
4235					 const struct attribute_group **groups,
4236					 const char *fmt, ...)
4237{
4238	va_list vargs;
4239	struct device *dev;
4240
4241	va_start(vargs, fmt);
4242	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4243					 fmt, vargs);
4244	va_end(vargs);
4245	return dev;
4246}
4247EXPORT_SYMBOL_GPL(device_create_with_groups);
4248
4249/**
4250 * device_destroy - removes a device that was created with device_create()
4251 * @class: pointer to the struct class that this device was registered with
4252 * @devt: the dev_t of the device that was previously registered
4253 *
4254 * This call unregisters and cleans up a device that was created with a
4255 * call to device_create().
4256 */
4257void device_destroy(struct class *class, dev_t devt)
4258{
4259	struct device *dev;
4260
4261	dev = class_find_device_by_devt(class, devt);
4262	if (dev) {
4263		put_device(dev);
4264		device_unregister(dev);
4265	}
4266}
4267EXPORT_SYMBOL_GPL(device_destroy);
4268
4269/**
4270 * device_rename - renames a device
4271 * @dev: the pointer to the struct device to be renamed
4272 * @new_name: the new name of the device
4273 *
4274 * It is the responsibility of the caller to provide mutual
4275 * exclusion between two different calls of device_rename
4276 * on the same device to ensure that new_name is valid and
4277 * won't conflict with other devices.
4278 *
4279 * Note: Don't call this function.  Currently, the networking layer calls this
4280 * function, but that will change.  The following text from Kay Sievers offers
4281 * some insight:
 
 
 
4282 *
4283 * Renaming devices is racy at many levels, symlinks and other stuff are not
4284 * replaced atomically, and you get a "move" uevent, but it's not easy to
4285 * connect the event to the old and new device. Device nodes are not renamed at
4286 * all, there isn't even support for that in the kernel now.
4287 *
4288 * In the meantime, during renaming, your target name might be taken by another
4289 * driver, creating conflicts. Or the old name is taken directly after you
4290 * renamed it -- then you get events for the same DEVPATH, before you even see
4291 * the "move" event. It's just a mess, and nothing new should ever rely on
4292 * kernel device renaming. Besides that, it's not even implemented now for
4293 * other things than (driver-core wise very simple) network devices.
4294 *
4295 * We are currently about to change network renaming in udev to completely
4296 * disallow renaming of devices in the same namespace as the kernel uses,
4297 * because we can't solve the problems properly, that arise with swapping names
4298 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4299 * be allowed to some other name than eth[0-9]*, for the aforementioned
4300 * reasons.
4301 *
4302 * Make up a "real" name in the driver before you register anything, or add
4303 * some other attributes for userspace to find the device, or use udev to add
4304 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4305 * don't even want to get into that and try to implement the missing pieces in
4306 * the core. We really have other pieces to fix in the driver core mess. :)
4307 */
4308int device_rename(struct device *dev, const char *new_name)
4309{
 
4310	struct kobject *kobj = &dev->kobj;
4311	char *old_device_name = NULL;
4312	int error;
 
4313
4314	dev = get_device(dev);
4315	if (!dev)
4316		return -EINVAL;
4317
4318	dev_dbg(dev, "renaming to %s\n", new_name);
4319
4320	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4321	if (!old_device_name) {
4322		error = -ENOMEM;
4323		goto out;
4324	}
4325
4326	if (dev->class) {
4327		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4328					     kobj, old_device_name,
 
 
 
 
 
 
4329					     new_name, kobject_namespace(kobj));
4330		if (error)
4331			goto out;
 
 
4332	}
4333
4334	error = kobject_rename(kobj, new_name);
4335	if (error)
4336		goto out;
4337
4338out:
 
 
 
 
 
4339	put_device(dev);
4340
4341	kfree(old_device_name);
4342
4343	return error;
4344}
4345EXPORT_SYMBOL_GPL(device_rename);
4346
4347static int device_move_class_links(struct device *dev,
4348				   struct device *old_parent,
4349				   struct device *new_parent)
4350{
4351	int error = 0;
4352
4353	if (old_parent)
4354		sysfs_remove_link(&dev->kobj, "device");
4355	if (new_parent)
4356		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4357					  "device");
4358	return error;
4359}
4360
4361/**
4362 * device_move - moves a device to a new parent
4363 * @dev: the pointer to the struct device to be moved
4364 * @new_parent: the new parent of the device (can be NULL)
4365 * @dpm_order: how to reorder the dpm_list
4366 */
4367int device_move(struct device *dev, struct device *new_parent,
4368		enum dpm_order dpm_order)
4369{
4370	int error;
4371	struct device *old_parent;
4372	struct kobject *new_parent_kobj;
4373
4374	dev = get_device(dev);
4375	if (!dev)
4376		return -EINVAL;
4377
4378	device_pm_lock();
4379	new_parent = get_device(new_parent);
4380	new_parent_kobj = get_device_parent(dev, new_parent);
4381	if (IS_ERR(new_parent_kobj)) {
4382		error = PTR_ERR(new_parent_kobj);
4383		put_device(new_parent);
4384		goto out;
4385	}
4386
4387	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4388		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4389	error = kobject_move(&dev->kobj, new_parent_kobj);
4390	if (error) {
4391		cleanup_glue_dir(dev, new_parent_kobj);
4392		put_device(new_parent);
4393		goto out;
4394	}
4395	old_parent = dev->parent;
4396	dev->parent = new_parent;
4397	if (old_parent)
4398		klist_remove(&dev->p->knode_parent);
4399	if (new_parent) {
4400		klist_add_tail(&dev->p->knode_parent,
4401			       &new_parent->p->klist_children);
4402		set_dev_node(dev, dev_to_node(new_parent));
4403	}
4404
4405	if (dev->class) {
4406		error = device_move_class_links(dev, old_parent, new_parent);
4407		if (error) {
4408			/* We ignore errors on cleanup since we're hosed anyway... */
4409			device_move_class_links(dev, new_parent, old_parent);
4410			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4411				if (new_parent)
4412					klist_remove(&dev->p->knode_parent);
4413				dev->parent = old_parent;
4414				if (old_parent) {
4415					klist_add_tail(&dev->p->knode_parent,
4416						       &old_parent->p->klist_children);
4417					set_dev_node(dev, dev_to_node(old_parent));
4418				}
4419			}
4420			cleanup_glue_dir(dev, new_parent_kobj);
4421			put_device(new_parent);
4422			goto out;
4423		}
4424	}
4425	switch (dpm_order) {
4426	case DPM_ORDER_NONE:
4427		break;
4428	case DPM_ORDER_DEV_AFTER_PARENT:
4429		device_pm_move_after(dev, new_parent);
4430		devices_kset_move_after(dev, new_parent);
4431		break;
4432	case DPM_ORDER_PARENT_BEFORE_DEV:
4433		device_pm_move_before(new_parent, dev);
4434		devices_kset_move_before(new_parent, dev);
4435		break;
4436	case DPM_ORDER_DEV_LAST:
4437		device_pm_move_last(dev);
4438		devices_kset_move_last(dev);
4439		break;
4440	}
4441
4442	put_device(old_parent);
4443out:
4444	device_pm_unlock();
4445	put_device(dev);
4446	return error;
4447}
4448EXPORT_SYMBOL_GPL(device_move);
4449
4450static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4451				     kgid_t kgid)
4452{
4453	struct kobject *kobj = &dev->kobj;
4454	struct class *class = dev->class;
4455	const struct device_type *type = dev->type;
4456	int error;
4457
4458	if (class) {
4459		/*
4460		 * Change the device groups of the device class for @dev to
4461		 * @kuid/@kgid.
4462		 */
4463		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4464						  kgid);
4465		if (error)
4466			return error;
4467	}
4468
4469	if (type) {
4470		/*
4471		 * Change the device groups of the device type for @dev to
4472		 * @kuid/@kgid.
4473		 */
4474		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4475						  kgid);
4476		if (error)
4477			return error;
4478	}
4479
4480	/* Change the device groups of @dev to @kuid/@kgid. */
4481	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4482	if (error)
4483		return error;
4484
4485	if (device_supports_offline(dev) && !dev->offline_disabled) {
4486		/* Change online device attributes of @dev to @kuid/@kgid. */
4487		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4488						kuid, kgid);
4489		if (error)
4490			return error;
4491	}
4492
4493	return 0;
4494}
4495
4496/**
4497 * device_change_owner - change the owner of an existing device.
4498 * @dev: device.
4499 * @kuid: new owner's kuid
4500 * @kgid: new owner's kgid
4501 *
4502 * This changes the owner of @dev and its corresponding sysfs entries to
4503 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4504 * core.
4505 *
4506 * Returns 0 on success or error code on failure.
4507 */
4508int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4509{
4510	int error;
4511	struct kobject *kobj = &dev->kobj;
 
4512
4513	dev = get_device(dev);
4514	if (!dev)
4515		return -EINVAL;
4516
4517	/*
4518	 * Change the kobject and the default attributes and groups of the
4519	 * ktype associated with it to @kuid/@kgid.
4520	 */
4521	error = sysfs_change_owner(kobj, kuid, kgid);
4522	if (error)
4523		goto out;
4524
4525	/*
4526	 * Change the uevent file for @dev to the new owner. The uevent file
4527	 * was created in a separate step when @dev got added and we mirror
4528	 * that step here.
4529	 */
4530	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4531					kgid);
4532	if (error)
4533		goto out;
4534
4535	/*
4536	 * Change the device groups, the device groups associated with the
4537	 * device class, and the groups associated with the device type of @dev
4538	 * to @kuid/@kgid.
4539	 */
4540	error = device_attrs_change_owner(dev, kuid, kgid);
4541	if (error)
4542		goto out;
4543
4544	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4545	if (error)
4546		goto out;
4547
4548#ifdef CONFIG_BLOCK
4549	if (sysfs_deprecated && dev->class == &block_class)
4550		goto out;
4551#endif
4552
4553	/*
4554	 * Change the owner of the symlink located in the class directory of
4555	 * the device class associated with @dev which points to the actual
4556	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4557	 * symlink shows the same permissions as its target.
4558	 */
4559	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4560					dev_name(dev), kuid, kgid);
4561	if (error)
4562		goto out;
 
 
 
4563
4564out:
4565	put_device(dev);
4566	return error;
4567}
4568EXPORT_SYMBOL_GPL(device_change_owner);
4569
4570/**
4571 * device_shutdown - call ->shutdown() on each device to shutdown.
4572 */
4573void device_shutdown(void)
4574{
4575	struct device *dev, *parent;
4576
4577	wait_for_device_probe();
4578	device_block_probing();
4579
4580	cpufreq_suspend();
4581
4582	spin_lock(&devices_kset->list_lock);
4583	/*
4584	 * Walk the devices list backward, shutting down each in turn.
4585	 * Beware that device unplug events may also start pulling
4586	 * devices offline, even as the system is shutting down.
4587	 */
4588	while (!list_empty(&devices_kset->list)) {
4589		dev = list_entry(devices_kset->list.prev, struct device,
4590				kobj.entry);
4591
4592		/*
4593		 * hold reference count of device's parent to
4594		 * prevent it from being freed because parent's
4595		 * lock is to be held
4596		 */
4597		parent = get_device(dev->parent);
4598		get_device(dev);
4599		/*
4600		 * Make sure the device is off the kset list, in the
4601		 * event that dev->*->shutdown() doesn't remove it.
4602		 */
4603		list_del_init(&dev->kobj.entry);
4604		spin_unlock(&devices_kset->list_lock);
4605
4606		/* hold lock to avoid race with probe/release */
4607		if (parent)
4608			device_lock(parent);
4609		device_lock(dev);
4610
4611		/* Don't allow any more runtime suspends */
4612		pm_runtime_get_noresume(dev);
4613		pm_runtime_barrier(dev);
4614
4615		if (dev->class && dev->class->shutdown_pre) {
4616			if (initcall_debug)
4617				dev_info(dev, "shutdown_pre\n");
4618			dev->class->shutdown_pre(dev);
4619		}
4620		if (dev->bus && dev->bus->shutdown) {
4621			if (initcall_debug)
4622				dev_info(dev, "shutdown\n");
4623			dev->bus->shutdown(dev);
4624		} else if (dev->driver && dev->driver->shutdown) {
4625			if (initcall_debug)
4626				dev_info(dev, "shutdown\n");
4627			dev->driver->shutdown(dev);
4628		}
4629
4630		device_unlock(dev);
4631		if (parent)
4632			device_unlock(parent);
4633
4634		put_device(dev);
4635		put_device(parent);
4636
4637		spin_lock(&devices_kset->list_lock);
4638	}
4639	spin_unlock(&devices_kset->list_lock);
4640}
4641
4642/*
4643 * Device logging functions
4644 */
4645
4646#ifdef CONFIG_PRINTK
4647static void
4648set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4649{
4650	const char *subsys;
4651
4652	memset(dev_info, 0, sizeof(*dev_info));
4653
4654	if (dev->class)
4655		subsys = dev->class->name;
4656	else if (dev->bus)
4657		subsys = dev->bus->name;
4658	else
4659		return;
4660
4661	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4662
4663	/*
4664	 * Add device identifier DEVICE=:
4665	 *   b12:8         block dev_t
4666	 *   c127:3        char dev_t
4667	 *   n8            netdev ifindex
4668	 *   +sound:card0  subsystem:devname
4669	 */
4670	if (MAJOR(dev->devt)) {
4671		char c;
4672
4673		if (strcmp(subsys, "block") == 0)
4674			c = 'b';
4675		else
4676			c = 'c';
4677
4678		snprintf(dev_info->device, sizeof(dev_info->device),
4679			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4680	} else if (strcmp(subsys, "net") == 0) {
4681		struct net_device *net = to_net_dev(dev);
4682
4683		snprintf(dev_info->device, sizeof(dev_info->device),
4684			 "n%u", net->ifindex);
4685	} else {
4686		snprintf(dev_info->device, sizeof(dev_info->device),
4687			 "+%s:%s", subsys, dev_name(dev));
4688	}
4689}
4690
4691int dev_vprintk_emit(int level, const struct device *dev,
4692		     const char *fmt, va_list args)
4693{
4694	struct dev_printk_info dev_info;
4695
4696	set_dev_info(dev, &dev_info);
4697
4698	return vprintk_emit(0, level, &dev_info, fmt, args);
4699}
4700EXPORT_SYMBOL(dev_vprintk_emit);
4701
4702int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4703{
4704	va_list args;
4705	int r;
4706
4707	va_start(args, fmt);
4708
4709	r = dev_vprintk_emit(level, dev, fmt, args);
4710
4711	va_end(args);
4712
4713	return r;
4714}
4715EXPORT_SYMBOL(dev_printk_emit);
4716
4717static void __dev_printk(const char *level, const struct device *dev,
4718			struct va_format *vaf)
4719{
4720	if (dev)
4721		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4722				dev_driver_string(dev), dev_name(dev), vaf);
4723	else
4724		printk("%s(NULL device *): %pV", level, vaf);
4725}
4726
4727void _dev_printk(const char *level, const struct device *dev,
4728		 const char *fmt, ...)
4729{
4730	struct va_format vaf;
4731	va_list args;
4732
4733	va_start(args, fmt);
4734
4735	vaf.fmt = fmt;
4736	vaf.va = &args;
4737
4738	__dev_printk(level, dev, &vaf);
4739
4740	va_end(args);
4741}
4742EXPORT_SYMBOL(_dev_printk);
4743
4744#define define_dev_printk_level(func, kern_level)		\
4745void func(const struct device *dev, const char *fmt, ...)	\
4746{								\
4747	struct va_format vaf;					\
4748	va_list args;						\
4749								\
4750	va_start(args, fmt);					\
4751								\
4752	vaf.fmt = fmt;						\
4753	vaf.va = &args;						\
4754								\
4755	__dev_printk(kern_level, dev, &vaf);			\
4756								\
4757	va_end(args);						\
4758}								\
4759EXPORT_SYMBOL(func);
4760
4761define_dev_printk_level(_dev_emerg, KERN_EMERG);
4762define_dev_printk_level(_dev_alert, KERN_ALERT);
4763define_dev_printk_level(_dev_crit, KERN_CRIT);
4764define_dev_printk_level(_dev_err, KERN_ERR);
4765define_dev_printk_level(_dev_warn, KERN_WARNING);
4766define_dev_printk_level(_dev_notice, KERN_NOTICE);
4767define_dev_printk_level(_dev_info, KERN_INFO);
4768
4769#endif
4770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4771/**
4772 * dev_err_probe - probe error check and log helper
4773 * @dev: the pointer to the struct device
4774 * @err: error value to test
4775 * @fmt: printf-style format string
4776 * @...: arguments as specified in the format string
4777 *
4778 * This helper implements common pattern present in probe functions for error
4779 * checking: print debug or error message depending if the error value is
4780 * -EPROBE_DEFER and propagate error upwards.
4781 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4782 * checked later by reading devices_deferred debugfs attribute.
4783 * It replaces code sequence::
4784 *
4785 * 	if (err != -EPROBE_DEFER)
4786 * 		dev_err(dev, ...);
4787 * 	else
4788 * 		dev_dbg(dev, ...);
4789 * 	return err;
4790 *
4791 * with::
4792 *
4793 * 	return dev_err_probe(dev, err, ...);
4794 *
4795 * Note that it is deemed acceptable to use this function for error
4796 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4797 * The benefit compared to a normal dev_err() is the standardized format
4798 * of the error code and the fact that the error code is returned.
 
 
4799 *
4800 * Returns @err.
4801 *
4802 */
4803int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4804{
4805	struct va_format vaf;
4806	va_list args;
4807
4808	va_start(args, fmt);
4809	vaf.fmt = fmt;
4810	vaf.va = &args;
4811
4812	if (err != -EPROBE_DEFER) {
4813		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4814	} else {
4815		device_set_deferred_probe_reason(dev, &vaf);
4816		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4817	}
4818
4819	va_end(args);
4820
4821	return err;
4822}
4823EXPORT_SYMBOL_GPL(dev_err_probe);
4824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4825static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4826{
4827	return fwnode && !IS_ERR(fwnode->secondary);
4828}
4829
4830/**
4831 * set_primary_fwnode - Change the primary firmware node of a given device.
4832 * @dev: Device to handle.
4833 * @fwnode: New primary firmware node of the device.
4834 *
4835 * Set the device's firmware node pointer to @fwnode, but if a secondary
4836 * firmware node of the device is present, preserve it.
4837 *
4838 * Valid fwnode cases are:
4839 *  - primary --> secondary --> -ENODEV
4840 *  - primary --> NULL
4841 *  - secondary --> -ENODEV
4842 *  - NULL
4843 */
4844void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4845{
4846	struct device *parent = dev->parent;
4847	struct fwnode_handle *fn = dev->fwnode;
4848
4849	if (fwnode) {
4850		if (fwnode_is_primary(fn))
4851			fn = fn->secondary;
4852
4853		if (fn) {
4854			WARN_ON(fwnode->secondary);
4855			fwnode->secondary = fn;
4856		}
4857		dev->fwnode = fwnode;
4858	} else {
4859		if (fwnode_is_primary(fn)) {
4860			dev->fwnode = fn->secondary;
 
 
 
 
 
4861			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4862			if (!(parent && fn == parent->fwnode))
4863				fn->secondary = NULL;
4864		} else {
4865			dev->fwnode = NULL;
4866		}
4867	}
4868}
4869EXPORT_SYMBOL_GPL(set_primary_fwnode);
4870
4871/**
4872 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4873 * @dev: Device to handle.
4874 * @fwnode: New secondary firmware node of the device.
4875 *
4876 * If a primary firmware node of the device is present, set its secondary
4877 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4878 * @fwnode.
4879 */
4880void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4881{
4882	if (fwnode)
4883		fwnode->secondary = ERR_PTR(-ENODEV);
4884
4885	if (fwnode_is_primary(dev->fwnode))
4886		dev->fwnode->secondary = fwnode;
4887	else
4888		dev->fwnode = fwnode;
4889}
4890EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4891
4892/**
4893 * device_set_of_node_from_dev - reuse device-tree node of another device
4894 * @dev: device whose device-tree node is being set
4895 * @dev2: device whose device-tree node is being reused
4896 *
4897 * Takes another reference to the new device-tree node after first dropping
4898 * any reference held to the old node.
4899 */
4900void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4901{
4902	of_node_put(dev->of_node);
4903	dev->of_node = of_node_get(dev2->of_node);
4904	dev->of_node_reused = true;
4905}
4906EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4907
4908void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4909{
4910	dev->fwnode = fwnode;
4911	dev->of_node = to_of_node(fwnode);
4912}
4913EXPORT_SYMBOL_GPL(device_set_node);
4914
4915int device_match_name(struct device *dev, const void *name)
4916{
4917	return sysfs_streq(dev_name(dev), name);
4918}
4919EXPORT_SYMBOL_GPL(device_match_name);
4920
4921int device_match_of_node(struct device *dev, const void *np)
4922{
4923	return dev->of_node == np;
4924}
4925EXPORT_SYMBOL_GPL(device_match_of_node);
4926
4927int device_match_fwnode(struct device *dev, const void *fwnode)
4928{
4929	return dev_fwnode(dev) == fwnode;
4930}
4931EXPORT_SYMBOL_GPL(device_match_fwnode);
4932
4933int device_match_devt(struct device *dev, const void *pdevt)
4934{
4935	return dev->devt == *(dev_t *)pdevt;
4936}
4937EXPORT_SYMBOL_GPL(device_match_devt);
4938
4939int device_match_acpi_dev(struct device *dev, const void *adev)
4940{
4941	return ACPI_COMPANION(dev) == adev;
4942}
4943EXPORT_SYMBOL(device_match_acpi_dev);
4944
4945int device_match_acpi_handle(struct device *dev, const void *handle)
4946{
4947	return ACPI_HANDLE(dev) == handle;
4948}
4949EXPORT_SYMBOL(device_match_acpi_handle);
4950
4951int device_match_any(struct device *dev, const void *unused)
4952{
4953	return 1;
4954}
4955EXPORT_SYMBOL_GPL(device_match_any);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/blkdev.h>
  13#include <linux/cleanup.h>
  14#include <linux/cpufreq.h>
  15#include <linux/device.h>
  16#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  17#include <linux/err.h>
  18#include <linux/fwnode.h>
  19#include <linux/init.h>
  20#include <linux/kdev_t.h>
  21#include <linux/kstrtox.h>
  22#include <linux/module.h>
  23#include <linux/mutex.h>
  24#include <linux/netdevice.h>
 
  25#include <linux/notifier.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
 
 
  28#include <linux/pm_runtime.h>
 
 
  29#include <linux/sched/mm.h>
  30#include <linux/sched/signal.h>
  31#include <linux/slab.h>
  32#include <linux/string_helpers.h>
  33#include <linux/swiotlb.h>
  34#include <linux/sysfs.h>
 
  35
  36#include "base.h"
  37#include "physical_location.h"
  38#include "power/power.h"
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
  40/* Device links support. */
  41static LIST_HEAD(deferred_sync);
  42static unsigned int defer_sync_state_count = 1;
  43static DEFINE_MUTEX(fwnode_link_lock);
  44static bool fw_devlink_is_permissive(void);
  45static void __fw_devlink_link_to_consumers(struct device *dev);
  46static bool fw_devlink_drv_reg_done;
  47static bool fw_devlink_best_effort;
  48static struct workqueue_struct *device_link_wq;
  49
  50/**
  51 * __fwnode_link_add - Create a link between two fwnode_handles.
  52 * @con: Consumer end of the link.
  53 * @sup: Supplier end of the link.
  54 * @flags: Link flags.
  55 *
  56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  57 * represents the detail that the firmware lists @sup fwnode as supplying a
  58 * resource to @con.
  59 *
  60 * The driver core will use the fwnode link to create a device link between the
  61 * two device objects corresponding to @con and @sup when they are created. The
  62 * driver core will automatically delete the fwnode link between @con and @sup
  63 * after doing that.
  64 *
  65 * Attempts to create duplicate links between the same pair of fwnode handles
  66 * are ignored and there is no reference counting.
  67 */
  68static int __fwnode_link_add(struct fwnode_handle *con,
  69			     struct fwnode_handle *sup, u8 flags)
  70{
  71	struct fwnode_link *link;
 
 
 
  72
  73	list_for_each_entry(link, &sup->consumers, s_hook)
  74		if (link->consumer == con) {
  75			link->flags |= flags;
  76			return 0;
  77		}
  78
  79	link = kzalloc(sizeof(*link), GFP_KERNEL);
  80	if (!link)
  81		return -ENOMEM;
 
 
  82
  83	link->supplier = sup;
  84	INIT_LIST_HEAD(&link->s_hook);
  85	link->consumer = con;
  86	INIT_LIST_HEAD(&link->c_hook);
  87	link->flags = flags;
  88
  89	list_add(&link->s_hook, &sup->consumers);
  90	list_add(&link->c_hook, &con->suppliers);
  91	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
  92		 con, sup);
 
 
  93
  94	return 0;
  95}
  96
  97int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
  98		    u8 flags)
  99{
 100	guard(mutex)(&fwnode_link_lock);
 101
 102	return __fwnode_link_add(con, sup, flags);
 103}
 104
 105/**
 106 * __fwnode_link_del - Delete a link between two fwnode_handles.
 107 * @link: the fwnode_link to be deleted
 108 *
 109 * The fwnode_link_lock needs to be held when this function is called.
 110 */
 111static void __fwnode_link_del(struct fwnode_link *link)
 112{
 113	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
 114		 link->consumer, link->supplier);
 115	list_del(&link->s_hook);
 116	list_del(&link->c_hook);
 117	kfree(link);
 118}
 119
 120/**
 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
 122 * @link: the fwnode_link to be marked
 123 *
 124 * The fwnode_link_lock needs to be held when this function is called.
 125 */
 126static void __fwnode_link_cycle(struct fwnode_link *link)
 127{
 128	pr_debug("%pfwf: cycle: depends on %pfwf\n",
 129		 link->consumer, link->supplier);
 130	link->flags |= FWLINK_FLAG_CYCLE;
 131}
 132
 133/**
 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 135 * @fwnode: fwnode whose supplier links need to be deleted
 136 *
 137 * Deletes all supplier links connecting directly to @fwnode.
 138 */
 139static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 140{
 141	struct fwnode_link *link, *tmp;
 142
 143	guard(mutex)(&fwnode_link_lock);
 144
 145	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
 146		__fwnode_link_del(link);
 
 147}
 148
 149/**
 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 151 * @fwnode: fwnode whose consumer links need to be deleted
 152 *
 153 * Deletes all consumer links connecting directly to @fwnode.
 154 */
 155static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 156{
 157	struct fwnode_link *link, *tmp;
 158
 159	guard(mutex)(&fwnode_link_lock);
 160
 161	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
 162		__fwnode_link_del(link);
 
 163}
 164
 165/**
 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 167 * @fwnode: fwnode whose links needs to be deleted
 168 *
 169 * Deletes all links connecting directly to a fwnode.
 170 */
 171void fwnode_links_purge(struct fwnode_handle *fwnode)
 172{
 173	fwnode_links_purge_suppliers(fwnode);
 174	fwnode_links_purge_consumers(fwnode);
 175}
 176
 177void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 178{
 179	struct fwnode_handle *child;
 180
 181	/* Don't purge consumer links of an added child */
 182	if (fwnode->dev)
 183		return;
 184
 185	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 186	fwnode_links_purge_consumers(fwnode);
 187
 188	fwnode_for_each_available_child_node(fwnode, child)
 189		fw_devlink_purge_absent_suppliers(child);
 190}
 191EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 192
 193/**
 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
 195 * @from: move consumers away from this fwnode
 196 * @to: move consumers to this fwnode
 197 *
 198 * Move all consumer links from @from fwnode to @to fwnode.
 199 */
 200static void __fwnode_links_move_consumers(struct fwnode_handle *from,
 201					  struct fwnode_handle *to)
 202{
 203	struct fwnode_link *link, *tmp;
 204
 205	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
 206		__fwnode_link_add(link->consumer, to, link->flags);
 207		__fwnode_link_del(link);
 208	}
 209}
 210
 211/**
 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
 213 * @fwnode: fwnode from which to pick up dangling consumers
 214 * @new_sup: fwnode of new supplier
 215 *
 216 * If the @fwnode has a corresponding struct device and the device supports
 217 * probing (that is, added to a bus), then we want to let fw_devlink create
 218 * MANAGED device links to this device, so leave @fwnode and its descendant's
 219 * fwnode links alone.
 220 *
 221 * Otherwise, move its consumers to the new supplier @new_sup.
 222 */
 223static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
 224						   struct fwnode_handle *new_sup)
 225{
 226	struct fwnode_handle *child;
 227
 228	if (fwnode->dev && fwnode->dev->bus)
 229		return;
 230
 231	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 232	__fwnode_links_move_consumers(fwnode, new_sup);
 233
 234	fwnode_for_each_available_child_node(fwnode, child)
 235		__fw_devlink_pickup_dangling_consumers(child, new_sup);
 236}
 237
 238static DEFINE_MUTEX(device_links_lock);
 239DEFINE_STATIC_SRCU(device_links_srcu);
 240
 241static inline void device_links_write_lock(void)
 242{
 243	mutex_lock(&device_links_lock);
 244}
 245
 246static inline void device_links_write_unlock(void)
 247{
 248	mutex_unlock(&device_links_lock);
 249}
 250
 251int device_links_read_lock(void) __acquires(&device_links_srcu)
 252{
 253	return srcu_read_lock(&device_links_srcu);
 254}
 255
 256void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 257{
 258	srcu_read_unlock(&device_links_srcu, idx);
 259}
 260
 261int device_links_read_lock_held(void)
 262{
 263	return srcu_read_lock_held(&device_links_srcu);
 264}
 265
 266static void device_link_synchronize_removal(void)
 267{
 268	synchronize_srcu(&device_links_srcu);
 269}
 270
 271static void device_link_remove_from_lists(struct device_link *link)
 272{
 273	list_del_rcu(&link->s_node);
 274	list_del_rcu(&link->c_node);
 275}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276
 277static bool device_is_ancestor(struct device *dev, struct device *target)
 278{
 279	while (target->parent) {
 280		target = target->parent;
 281		if (dev == target)
 282			return true;
 283	}
 284	return false;
 285}
 286
 287#define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
 288				 DL_FLAG_CYCLE | \
 289				 DL_FLAG_MANAGED)
 290static inline bool device_link_flag_is_sync_state_only(u32 flags)
 291{
 292	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
 293}
 294
 295/**
 296 * device_is_dependent - Check if one device depends on another one
 297 * @dev: Device to check dependencies for.
 298 * @target: Device to check against.
 299 *
 300 * Check if @target depends on @dev or any device dependent on it (its child or
 301 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 302 */
 303static int device_is_dependent(struct device *dev, void *target)
 304{
 305	struct device_link *link;
 306	int ret;
 307
 308	/*
 309	 * The "ancestors" check is needed to catch the case when the target
 310	 * device has not been completely initialized yet and it is still
 311	 * missing from the list of children of its parent device.
 312	 */
 313	if (dev == target || device_is_ancestor(dev, target))
 314		return 1;
 315
 316	ret = device_for_each_child(dev, target, device_is_dependent);
 317	if (ret)
 318		return ret;
 319
 320	list_for_each_entry(link, &dev->links.consumers, s_node) {
 321		if (device_link_flag_is_sync_state_only(link->flags))
 
 322			continue;
 323
 324		if (link->consumer == target)
 325			return 1;
 326
 327		ret = device_is_dependent(link->consumer, target);
 328		if (ret)
 329			break;
 330	}
 331	return ret;
 332}
 333
 334static void device_link_init_status(struct device_link *link,
 335				    struct device *consumer,
 336				    struct device *supplier)
 337{
 338	switch (supplier->links.status) {
 339	case DL_DEV_PROBING:
 340		switch (consumer->links.status) {
 341		case DL_DEV_PROBING:
 342			/*
 343			 * A consumer driver can create a link to a supplier
 344			 * that has not completed its probing yet as long as it
 345			 * knows that the supplier is already functional (for
 346			 * example, it has just acquired some resources from the
 347			 * supplier).
 348			 */
 349			link->status = DL_STATE_CONSUMER_PROBE;
 350			break;
 351		default:
 352			link->status = DL_STATE_DORMANT;
 353			break;
 354		}
 355		break;
 356	case DL_DEV_DRIVER_BOUND:
 357		switch (consumer->links.status) {
 358		case DL_DEV_PROBING:
 359			link->status = DL_STATE_CONSUMER_PROBE;
 360			break;
 361		case DL_DEV_DRIVER_BOUND:
 362			link->status = DL_STATE_ACTIVE;
 363			break;
 364		default:
 365			link->status = DL_STATE_AVAILABLE;
 366			break;
 367		}
 368		break;
 369	case DL_DEV_UNBINDING:
 370		link->status = DL_STATE_SUPPLIER_UNBIND;
 371		break;
 372	default:
 373		link->status = DL_STATE_DORMANT;
 374		break;
 375	}
 376}
 377
 378static int device_reorder_to_tail(struct device *dev, void *not_used)
 379{
 380	struct device_link *link;
 381
 382	/*
 383	 * Devices that have not been registered yet will be put to the ends
 384	 * of the lists during the registration, so skip them here.
 385	 */
 386	if (device_is_registered(dev))
 387		devices_kset_move_last(dev);
 388
 389	if (device_pm_initialized(dev))
 390		device_pm_move_last(dev);
 391
 392	device_for_each_child(dev, NULL, device_reorder_to_tail);
 393	list_for_each_entry(link, &dev->links.consumers, s_node) {
 394		if (device_link_flag_is_sync_state_only(link->flags))
 
 395			continue;
 396		device_reorder_to_tail(link->consumer, NULL);
 397	}
 398
 399	return 0;
 400}
 401
 402/**
 403 * device_pm_move_to_tail - Move set of devices to the end of device lists
 404 * @dev: Device to move
 405 *
 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 407 *
 408 * It moves the @dev along with all of its children and all of its consumers
 409 * to the ends of the device_kset and dpm_list, recursively.
 410 */
 411void device_pm_move_to_tail(struct device *dev)
 412{
 413	int idx;
 414
 415	idx = device_links_read_lock();
 416	device_pm_lock();
 417	device_reorder_to_tail(dev, NULL);
 418	device_pm_unlock();
 419	device_links_read_unlock(idx);
 420}
 421
 422#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 423
 424static ssize_t status_show(struct device *dev,
 425			   struct device_attribute *attr, char *buf)
 426{
 427	const char *output;
 428
 429	switch (to_devlink(dev)->status) {
 430	case DL_STATE_NONE:
 431		output = "not tracked";
 432		break;
 433	case DL_STATE_DORMANT:
 434		output = "dormant";
 435		break;
 436	case DL_STATE_AVAILABLE:
 437		output = "available";
 438		break;
 439	case DL_STATE_CONSUMER_PROBE:
 440		output = "consumer probing";
 441		break;
 442	case DL_STATE_ACTIVE:
 443		output = "active";
 444		break;
 445	case DL_STATE_SUPPLIER_UNBIND:
 446		output = "supplier unbinding";
 447		break;
 448	default:
 449		output = "unknown";
 450		break;
 451	}
 452
 453	return sysfs_emit(buf, "%s\n", output);
 454}
 455static DEVICE_ATTR_RO(status);
 456
 457static ssize_t auto_remove_on_show(struct device *dev,
 458				   struct device_attribute *attr, char *buf)
 459{
 460	struct device_link *link = to_devlink(dev);
 461	const char *output;
 462
 463	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 464		output = "supplier unbind";
 465	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 466		output = "consumer unbind";
 467	else
 468		output = "never";
 469
 470	return sysfs_emit(buf, "%s\n", output);
 471}
 472static DEVICE_ATTR_RO(auto_remove_on);
 473
 474static ssize_t runtime_pm_show(struct device *dev,
 475			       struct device_attribute *attr, char *buf)
 476{
 477	struct device_link *link = to_devlink(dev);
 478
 479	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 480}
 481static DEVICE_ATTR_RO(runtime_pm);
 482
 483static ssize_t sync_state_only_show(struct device *dev,
 484				    struct device_attribute *attr, char *buf)
 485{
 486	struct device_link *link = to_devlink(dev);
 487
 488	return sysfs_emit(buf, "%d\n",
 489			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 490}
 491static DEVICE_ATTR_RO(sync_state_only);
 492
 493static struct attribute *devlink_attrs[] = {
 494	&dev_attr_status.attr,
 495	&dev_attr_auto_remove_on.attr,
 496	&dev_attr_runtime_pm.attr,
 497	&dev_attr_sync_state_only.attr,
 498	NULL,
 499};
 500ATTRIBUTE_GROUPS(devlink);
 501
 502static void device_link_release_fn(struct work_struct *work)
 503{
 504	struct device_link *link = container_of(work, struct device_link, rm_work);
 505
 506	/* Ensure that all references to the link object have been dropped. */
 507	device_link_synchronize_removal();
 508
 509	pm_runtime_release_supplier(link);
 510	/*
 511	 * If supplier_preactivated is set, the link has been dropped between
 512	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
 513	 * in __driver_probe_device().  In that case, drop the supplier's
 514	 * PM-runtime usage counter to remove the reference taken by
 515	 * pm_runtime_get_suppliers().
 516	 */
 517	if (link->supplier_preactivated)
 518		pm_runtime_put_noidle(link->supplier);
 519
 520	pm_request_idle(link->supplier);
 521
 522	put_device(link->consumer);
 523	put_device(link->supplier);
 524	kfree(link);
 525}
 526
 527static void devlink_dev_release(struct device *dev)
 528{
 529	struct device_link *link = to_devlink(dev);
 530
 531	INIT_WORK(&link->rm_work, device_link_release_fn);
 532	/*
 533	 * It may take a while to complete this work because of the SRCU
 534	 * synchronization in device_link_release_fn() and if the consumer or
 535	 * supplier devices get deleted when it runs, so put it into the
 536	 * dedicated workqueue.
 537	 */
 538	queue_work(device_link_wq, &link->rm_work);
 539}
 540
 541/**
 542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
 543 */
 544void device_link_wait_removal(void)
 545{
 546	/*
 547	 * devlink removal jobs are queued in the dedicated work queue.
 548	 * To be sure that all removal jobs are terminated, ensure that any
 549	 * scheduled work has run to completion.
 550	 */
 551	flush_workqueue(device_link_wq);
 552}
 553EXPORT_SYMBOL_GPL(device_link_wait_removal);
 554
 555static const struct class devlink_class = {
 556	.name = "devlink",
 
 557	.dev_groups = devlink_groups,
 558	.dev_release = devlink_dev_release,
 559};
 560
 561static int devlink_add_symlinks(struct device *dev)
 
 562{
 563	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
 564	int ret;
 
 565	struct device_link *link = to_devlink(dev);
 566	struct device *sup = link->supplier;
 567	struct device *con = link->consumer;
 
 
 
 
 
 
 
 
 
 568
 569	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 570	if (ret)
 571		goto out;
 572
 573	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 574	if (ret)
 575		goto err_con;
 576
 577	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 578	if (!buf_con) {
 579		ret = -ENOMEM;
 580		goto err_con_dev;
 581	}
 582
 583	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
 584	if (ret)
 585		goto err_con_dev;
 586
 587	buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 588	if (!buf_sup) {
 589		ret = -ENOMEM;
 590		goto err_sup_dev;
 591	}
 592
 593	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
 594	if (ret)
 595		goto err_sup_dev;
 596
 597	goto out;
 598
 599err_sup_dev:
 600	sysfs_remove_link(&sup->kobj, buf_con);
 
 601err_con_dev:
 602	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 603err_con:
 604	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 605out:
 
 606	return ret;
 607}
 608
 609static void devlink_remove_symlinks(struct device *dev)
 
 610{
 611	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
 612	struct device_link *link = to_devlink(dev);
 
 613	struct device *sup = link->supplier;
 614	struct device *con = link->consumer;
 
 615
 616	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 617	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 618
 
 
 
 
 
 
 
 
 
 
 619	if (device_is_registered(con)) {
 620		buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 621		if (!buf_sup)
 622			goto out;
 623		sysfs_remove_link(&con->kobj, buf_sup);
 624	}
 625
 626	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 627	if (!buf_con)
 628		goto out;
 629	sysfs_remove_link(&sup->kobj, buf_con);
 630
 631	return;
 632
 633out:
 634	WARN(1, "Unable to properly free device link symlinks!\n");
 635}
 636
 637static struct class_interface devlink_class_intf = {
 638	.class = &devlink_class,
 639	.add_dev = devlink_add_symlinks,
 640	.remove_dev = devlink_remove_symlinks,
 641};
 642
 643static int __init devlink_class_init(void)
 644{
 645	int ret;
 646
 647	ret = class_register(&devlink_class);
 648	if (ret)
 649		return ret;
 650
 651	ret = class_interface_register(&devlink_class_intf);
 652	if (ret)
 653		class_unregister(&devlink_class);
 654
 655	return ret;
 656}
 657postcore_initcall(devlink_class_init);
 658
 659#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 660			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 661			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 662			       DL_FLAG_SYNC_STATE_ONLY | \
 663			       DL_FLAG_INFERRED | \
 664			       DL_FLAG_CYCLE)
 665
 666#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 667			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 668
 669/**
 670 * device_link_add - Create a link between two devices.
 671 * @consumer: Consumer end of the link.
 672 * @supplier: Supplier end of the link.
 673 * @flags: Link flags.
 674 *
 675 * Return: On success, a device_link struct will be returned.
 676 *         On error or invalid flag settings, NULL will be returned.
 677 *
 678 * The caller is responsible for the proper synchronization of the link creation
 679 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 680 * runtime PM framework to take the link into account.  Second, if the
 681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 682 * be forced into the active meta state and reference-counted upon the creation
 683 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 684 * ignored.
 685 *
 686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 687 * expected to release the link returned by it directly with the help of either
 688 * device_link_del() or device_link_remove().
 689 *
 690 * If that flag is not set, however, the caller of this function is handing the
 691 * management of the link over to the driver core entirely and its return value
 692 * can only be used to check whether or not the link is present.  In that case,
 693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 694 * flags can be used to indicate to the driver core when the link can be safely
 695 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 696 * that the link is not going to be used (by the given caller of this function)
 697 * after unbinding the consumer or supplier driver, respectively, from its
 698 * device, so the link can be deleted at that point.  If none of them is set,
 699 * the link will be maintained until one of the devices pointed to by it (either
 700 * the consumer or the supplier) is unregistered.
 701 *
 702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 705 * be used to request the driver core to automatically probe for a consumer
 706 * driver after successfully binding a driver to the supplier device.
 707 *
 708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 710 * the same time is invalid and will cause NULL to be returned upfront.
 711 * However, if a device link between the given @consumer and @supplier pair
 712 * exists already when this function is called for them, the existing link will
 713 * be returned regardless of its current type and status (the link's flags may
 714 * be modified then).  The caller of this function is then expected to treat
 715 * the link as though it has just been created, so (in particular) if
 716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 717 * explicitly when not needed any more (as stated above).
 718 *
 719 * A side effect of the link creation is re-ordering of dpm_list and the
 720 * devices_kset list by moving the consumer device and all devices depending
 721 * on it to the ends of these lists (that does not happen to devices that have
 722 * not been registered when this function is called).
 723 *
 724 * The supplier device is required to be registered when this function is called
 725 * and NULL will be returned if that is not the case.  The consumer device need
 726 * not be registered, however.
 727 */
 728struct device_link *device_link_add(struct device *consumer,
 729				    struct device *supplier, u32 flags)
 730{
 731	struct device_link *link;
 732
 733	if (!consumer || !supplier || consumer == supplier ||
 734	    flags & ~DL_ADD_VALID_FLAGS ||
 735	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 
 
 736	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 737	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 738		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 739		return NULL;
 740
 741	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 742		if (pm_runtime_get_sync(supplier) < 0) {
 743			pm_runtime_put_noidle(supplier);
 744			return NULL;
 745		}
 746	}
 747
 748	if (!(flags & DL_FLAG_STATELESS))
 749		flags |= DL_FLAG_MANAGED;
 750
 751	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 752	    !device_link_flag_is_sync_state_only(flags))
 753		return NULL;
 754
 755	device_links_write_lock();
 756	device_pm_lock();
 757
 758	/*
 759	 * If the supplier has not been fully registered yet or there is a
 760	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 761	 * the supplier already in the graph, return NULL. If the link is a
 762	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 763	 * because it only affects sync_state() callbacks.
 764	 */
 765	if (!device_pm_initialized(supplier)
 766	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 767		  device_is_dependent(consumer, supplier))) {
 768		link = NULL;
 769		goto out;
 770	}
 771
 772	/*
 773	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 774	 * So, only create it if the consumer hasn't probed yet.
 775	 */
 776	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 777	    consumer->links.status != DL_DEV_NO_DRIVER &&
 778	    consumer->links.status != DL_DEV_PROBING) {
 779		link = NULL;
 780		goto out;
 781	}
 782
 783	/*
 784	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 785	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 786	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 787	 */
 788	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 789		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 790
 791	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 792		if (link->consumer != consumer)
 793			continue;
 794
 795		if (link->flags & DL_FLAG_INFERRED &&
 796		    !(flags & DL_FLAG_INFERRED))
 797			link->flags &= ~DL_FLAG_INFERRED;
 798
 799		if (flags & DL_FLAG_PM_RUNTIME) {
 800			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 801				pm_runtime_new_link(consumer);
 802				link->flags |= DL_FLAG_PM_RUNTIME;
 803			}
 804			if (flags & DL_FLAG_RPM_ACTIVE)
 805				refcount_inc(&link->rpm_active);
 806		}
 807
 808		if (flags & DL_FLAG_STATELESS) {
 809			kref_get(&link->kref);
 810			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 811			    !(link->flags & DL_FLAG_STATELESS)) {
 812				link->flags |= DL_FLAG_STATELESS;
 813				goto reorder;
 814			} else {
 815				link->flags |= DL_FLAG_STATELESS;
 816				goto out;
 817			}
 818		}
 819
 820		/*
 821		 * If the life time of the link following from the new flags is
 822		 * longer than indicated by the flags of the existing link,
 823		 * update the existing link to stay around longer.
 824		 */
 825		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 826			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 827				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 828				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 829			}
 830		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 831			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 832					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 833		}
 834		if (!(link->flags & DL_FLAG_MANAGED)) {
 835			kref_get(&link->kref);
 836			link->flags |= DL_FLAG_MANAGED;
 837			device_link_init_status(link, consumer, supplier);
 838		}
 839		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 840		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 841			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 842			goto reorder;
 843		}
 844
 845		goto out;
 846	}
 847
 848	link = kzalloc(sizeof(*link), GFP_KERNEL);
 849	if (!link)
 850		goto out;
 851
 852	refcount_set(&link->rpm_active, 1);
 853
 854	get_device(supplier);
 855	link->supplier = supplier;
 856	INIT_LIST_HEAD(&link->s_node);
 857	get_device(consumer);
 858	link->consumer = consumer;
 859	INIT_LIST_HEAD(&link->c_node);
 860	link->flags = flags;
 861	kref_init(&link->kref);
 862
 863	link->link_dev.class = &devlink_class;
 864	device_set_pm_not_required(&link->link_dev);
 865	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 866		     dev_bus_name(supplier), dev_name(supplier),
 867		     dev_bus_name(consumer), dev_name(consumer));
 868	if (device_register(&link->link_dev)) {
 869		put_device(&link->link_dev);
 870		link = NULL;
 871		goto out;
 872	}
 873
 874	if (flags & DL_FLAG_PM_RUNTIME) {
 875		if (flags & DL_FLAG_RPM_ACTIVE)
 876			refcount_inc(&link->rpm_active);
 877
 878		pm_runtime_new_link(consumer);
 879	}
 880
 881	/* Determine the initial link state. */
 882	if (flags & DL_FLAG_STATELESS)
 883		link->status = DL_STATE_NONE;
 884	else
 885		device_link_init_status(link, consumer, supplier);
 886
 887	/*
 888	 * Some callers expect the link creation during consumer driver probe to
 889	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 890	 */
 891	if (link->status == DL_STATE_CONSUMER_PROBE &&
 892	    flags & DL_FLAG_PM_RUNTIME)
 893		pm_runtime_resume(supplier);
 894
 895	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 896	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 897
 898	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 899		dev_dbg(consumer,
 900			"Linked as a sync state only consumer to %s\n",
 901			dev_name(supplier));
 902		goto out;
 903	}
 904
 905reorder:
 906	/*
 907	 * Move the consumer and all of the devices depending on it to the end
 908	 * of dpm_list and the devices_kset list.
 909	 *
 910	 * It is necessary to hold dpm_list locked throughout all that or else
 911	 * we may end up suspending with a wrong ordering of it.
 912	 */
 913	device_reorder_to_tail(consumer, NULL);
 914
 915	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 916
 917out:
 918	device_pm_unlock();
 919	device_links_write_unlock();
 920
 921	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 922		pm_runtime_put(supplier);
 923
 924	return link;
 925}
 926EXPORT_SYMBOL_GPL(device_link_add);
 927
 928static void __device_link_del(struct kref *kref)
 929{
 930	struct device_link *link = container_of(kref, struct device_link, kref);
 931
 932	dev_dbg(link->consumer, "Dropping the link to %s\n",
 933		dev_name(link->supplier));
 934
 935	pm_runtime_drop_link(link);
 936
 937	device_link_remove_from_lists(link);
 938	device_unregister(&link->link_dev);
 939}
 940
 941static void device_link_put_kref(struct device_link *link)
 942{
 943	if (link->flags & DL_FLAG_STATELESS)
 944		kref_put(&link->kref, __device_link_del);
 945	else if (!device_is_registered(link->consumer))
 946		__device_link_del(&link->kref);
 947	else
 948		WARN(1, "Unable to drop a managed device link reference\n");
 949}
 950
 951/**
 952 * device_link_del - Delete a stateless link between two devices.
 953 * @link: Device link to delete.
 954 *
 955 * The caller must ensure proper synchronization of this function with runtime
 956 * PM.  If the link was added multiple times, it needs to be deleted as often.
 957 * Care is required for hotplugged devices:  Their links are purged on removal
 958 * and calling device_link_del() is then no longer allowed.
 959 */
 960void device_link_del(struct device_link *link)
 961{
 962	device_links_write_lock();
 963	device_link_put_kref(link);
 964	device_links_write_unlock();
 965}
 966EXPORT_SYMBOL_GPL(device_link_del);
 967
 968/**
 969 * device_link_remove - Delete a stateless link between two devices.
 970 * @consumer: Consumer end of the link.
 971 * @supplier: Supplier end of the link.
 972 *
 973 * The caller must ensure proper synchronization of this function with runtime
 974 * PM.
 975 */
 976void device_link_remove(void *consumer, struct device *supplier)
 977{
 978	struct device_link *link;
 979
 980	if (WARN_ON(consumer == supplier))
 981		return;
 982
 983	device_links_write_lock();
 984
 985	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 986		if (link->consumer == consumer) {
 987			device_link_put_kref(link);
 988			break;
 989		}
 990	}
 991
 992	device_links_write_unlock();
 993}
 994EXPORT_SYMBOL_GPL(device_link_remove);
 995
 996static void device_links_missing_supplier(struct device *dev)
 997{
 998	struct device_link *link;
 999
1000	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001		if (link->status != DL_STATE_CONSUMER_PROBE)
1002			continue;
1003
1004		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006		} else {
1007			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009		}
1010	}
1011}
1012
1013static bool dev_is_best_effort(struct device *dev)
1014{
1015	return (fw_devlink_best_effort && dev->can_match) ||
1016		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017}
1018
1019static struct fwnode_handle *fwnode_links_check_suppliers(
1020						struct fwnode_handle *fwnode)
1021{
1022	struct fwnode_link *link;
1023
1024	if (!fwnode || fw_devlink_is_permissive())
1025		return NULL;
1026
1027	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028		if (!(link->flags &
1029		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030			return link->supplier;
1031
1032	return NULL;
1033}
1034
1035/**
1036 * device_links_check_suppliers - Check presence of supplier drivers.
1037 * @dev: Consumer device.
1038 *
1039 * Check links from this device to any suppliers.  Walk the list of the device's
1040 * links to suppliers and see if all of them are available.  If not, simply
1041 * return -EPROBE_DEFER.
1042 *
1043 * We need to guarantee that the supplier will not go away after the check has
1044 * been positive here.  It only can go away in __device_release_driver() and
1045 * that function  checks the device's links to consumers.  This means we need to
1046 * mark the link as "consumer probe in progress" to make the supplier removal
1047 * wait for us to complete (or bad things may happen).
1048 *
1049 * Links without the DL_FLAG_MANAGED flag set are ignored.
1050 */
1051int device_links_check_suppliers(struct device *dev)
1052{
1053	struct device_link *link;
1054	int ret = 0, fwnode_ret = 0;
1055	struct fwnode_handle *sup_fw;
1056
1057	/*
1058	 * Device waiting for supplier to become available is not allowed to
1059	 * probe.
1060	 */
1061	scoped_guard(mutex, &fwnode_link_lock) {
1062		sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063		if (sup_fw) {
1064			if (dev_is_best_effort(dev))
1065				fwnode_ret = -EAGAIN;
1066			else
1067				return dev_err_probe(dev, -EPROBE_DEFER,
1068						     "wait for supplier %pfwf\n", sup_fw);
 
 
 
 
1069		}
1070	}
 
 
 
1071
1072	device_links_write_lock();
1073
1074	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1075		if (!(link->flags & DL_FLAG_MANAGED))
1076			continue;
1077
1078		if (link->status != DL_STATE_AVAILABLE &&
1079		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1080
1081			if (dev_is_best_effort(dev) &&
1082			    link->flags & DL_FLAG_INFERRED &&
1083			    !link->supplier->can_match) {
1084				ret = -EAGAIN;
1085				continue;
1086			}
1087
1088			device_links_missing_supplier(dev);
1089			ret = dev_err_probe(dev, -EPROBE_DEFER,
1090					    "supplier %s not ready\n", dev_name(link->supplier));
 
 
1091			break;
1092		}
1093		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1094	}
1095	dev->links.status = DL_DEV_PROBING;
1096
1097	device_links_write_unlock();
1098
1099	return ret ? ret : fwnode_ret;
1100}
1101
1102/**
1103 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1104 * @dev: Device to call sync_state() on
1105 * @list: List head to queue the @dev on
1106 *
1107 * Queues a device for a sync_state() callback when the device links write lock
1108 * isn't held. This allows the sync_state() execution flow to use device links
1109 * APIs.  The caller must ensure this function is called with
1110 * device_links_write_lock() held.
1111 *
1112 * This function does a get_device() to make sure the device is not freed while
1113 * on this list.
1114 *
1115 * So the caller must also ensure that device_links_flush_sync_list() is called
1116 * as soon as the caller releases device_links_write_lock().  This is necessary
1117 * to make sure the sync_state() is called in a timely fashion and the
1118 * put_device() is called on this device.
1119 */
1120static void __device_links_queue_sync_state(struct device *dev,
1121					    struct list_head *list)
1122{
1123	struct device_link *link;
1124
1125	if (!dev_has_sync_state(dev))
1126		return;
1127	if (dev->state_synced)
1128		return;
1129
1130	list_for_each_entry(link, &dev->links.consumers, s_node) {
1131		if (!(link->flags & DL_FLAG_MANAGED))
1132			continue;
1133		if (link->status != DL_STATE_ACTIVE)
1134			return;
1135	}
1136
1137	/*
1138	 * Set the flag here to avoid adding the same device to a list more
1139	 * than once. This can happen if new consumers get added to the device
1140	 * and probed before the list is flushed.
1141	 */
1142	dev->state_synced = true;
1143
1144	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1145		return;
1146
1147	get_device(dev);
1148	list_add_tail(&dev->links.defer_sync, list);
1149}
1150
1151/**
1152 * device_links_flush_sync_list - Call sync_state() on a list of devices
1153 * @list: List of devices to call sync_state() on
1154 * @dont_lock_dev: Device for which lock is already held by the caller
1155 *
1156 * Calls sync_state() on all the devices that have been queued for it. This
1157 * function is used in conjunction with __device_links_queue_sync_state(). The
1158 * @dont_lock_dev parameter is useful when this function is called from a
1159 * context where a device lock is already held.
1160 */
1161static void device_links_flush_sync_list(struct list_head *list,
1162					 struct device *dont_lock_dev)
1163{
1164	struct device *dev, *tmp;
1165
1166	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1167		list_del_init(&dev->links.defer_sync);
1168
1169		if (dev != dont_lock_dev)
1170			device_lock(dev);
1171
1172		dev_sync_state(dev);
 
 
 
1173
1174		if (dev != dont_lock_dev)
1175			device_unlock(dev);
1176
1177		put_device(dev);
1178	}
1179}
1180
1181void device_links_supplier_sync_state_pause(void)
1182{
1183	device_links_write_lock();
1184	defer_sync_state_count++;
1185	device_links_write_unlock();
1186}
1187
1188void device_links_supplier_sync_state_resume(void)
1189{
1190	struct device *dev, *tmp;
1191	LIST_HEAD(sync_list);
1192
1193	device_links_write_lock();
1194	if (!defer_sync_state_count) {
1195		WARN(true, "Unmatched sync_state pause/resume!");
1196		goto out;
1197	}
1198	defer_sync_state_count--;
1199	if (defer_sync_state_count)
1200		goto out;
1201
1202	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1203		/*
1204		 * Delete from deferred_sync list before queuing it to
1205		 * sync_list because defer_sync is used for both lists.
1206		 */
1207		list_del_init(&dev->links.defer_sync);
1208		__device_links_queue_sync_state(dev, &sync_list);
1209	}
1210out:
1211	device_links_write_unlock();
1212
1213	device_links_flush_sync_list(&sync_list, NULL);
1214}
1215
1216static int sync_state_resume_initcall(void)
1217{
1218	device_links_supplier_sync_state_resume();
1219	return 0;
1220}
1221late_initcall(sync_state_resume_initcall);
1222
1223static void __device_links_supplier_defer_sync(struct device *sup)
1224{
1225	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1226		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1227}
1228
1229static void device_link_drop_managed(struct device_link *link)
1230{
1231	link->flags &= ~DL_FLAG_MANAGED;
1232	WRITE_ONCE(link->status, DL_STATE_NONE);
1233	kref_put(&link->kref, __device_link_del);
1234}
1235
1236static ssize_t waiting_for_supplier_show(struct device *dev,
1237					 struct device_attribute *attr,
1238					 char *buf)
1239{
1240	bool val;
1241
1242	device_lock(dev);
1243	scoped_guard(mutex, &fwnode_link_lock)
1244		val = !!fwnode_links_check_suppliers(dev->fwnode);
1245	device_unlock(dev);
1246	return sysfs_emit(buf, "%u\n", val);
1247}
1248static DEVICE_ATTR_RO(waiting_for_supplier);
1249
1250/**
1251 * device_links_force_bind - Prepares device to be force bound
1252 * @dev: Consumer device.
1253 *
1254 * device_bind_driver() force binds a device to a driver without calling any
1255 * driver probe functions. So the consumer really isn't going to wait for any
1256 * supplier before it's bound to the driver. We still want the device link
1257 * states to be sensible when this happens.
1258 *
1259 * In preparation for device_bind_driver(), this function goes through each
1260 * supplier device links and checks if the supplier is bound. If it is, then
1261 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1262 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1263 */
1264void device_links_force_bind(struct device *dev)
1265{
1266	struct device_link *link, *ln;
1267
1268	device_links_write_lock();
1269
1270	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1271		if (!(link->flags & DL_FLAG_MANAGED))
1272			continue;
1273
1274		if (link->status != DL_STATE_AVAILABLE) {
1275			device_link_drop_managed(link);
1276			continue;
1277		}
1278		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1279	}
1280	dev->links.status = DL_DEV_PROBING;
1281
1282	device_links_write_unlock();
1283}
1284
1285/**
1286 * device_links_driver_bound - Update device links after probing its driver.
1287 * @dev: Device to update the links for.
1288 *
1289 * The probe has been successful, so update links from this device to any
1290 * consumers by changing their status to "available".
1291 *
1292 * Also change the status of @dev's links to suppliers to "active".
1293 *
1294 * Links without the DL_FLAG_MANAGED flag set are ignored.
1295 */
1296void device_links_driver_bound(struct device *dev)
1297{
1298	struct device_link *link, *ln;
1299	LIST_HEAD(sync_list);
1300
1301	/*
1302	 * If a device binds successfully, it's expected to have created all
1303	 * the device links it needs to or make new device links as it needs
1304	 * them. So, fw_devlink no longer needs to create device links to any
1305	 * of the device's suppliers.
1306	 *
1307	 * Also, if a child firmware node of this bound device is not added as a
1308	 * device by now, assume it is never going to be added. Make this bound
1309	 * device the fallback supplier to the dangling consumers of the child
1310	 * firmware node because this bound device is probably implementing the
1311	 * child firmware node functionality and we don't want the dangling
1312	 * consumers to defer probe indefinitely waiting for a device for the
1313	 * child firmware node.
1314	 */
1315	if (dev->fwnode && dev->fwnode->dev == dev) {
1316		struct fwnode_handle *child;
1317
1318		fwnode_links_purge_suppliers(dev->fwnode);
1319
1320		guard(mutex)(&fwnode_link_lock);
1321
1322		fwnode_for_each_available_child_node(dev->fwnode, child)
1323			__fw_devlink_pickup_dangling_consumers(child,
1324							       dev->fwnode);
1325		__fw_devlink_link_to_consumers(dev);
1326	}
1327	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1328
1329	device_links_write_lock();
1330
1331	list_for_each_entry(link, &dev->links.consumers, s_node) {
1332		if (!(link->flags & DL_FLAG_MANAGED))
1333			continue;
1334
1335		/*
1336		 * Links created during consumer probe may be in the "consumer
1337		 * probe" state to start with if the supplier is still probing
1338		 * when they are created and they may become "active" if the
1339		 * consumer probe returns first.  Skip them here.
1340		 */
1341		if (link->status == DL_STATE_CONSUMER_PROBE ||
1342		    link->status == DL_STATE_ACTIVE)
1343			continue;
1344
1345		WARN_ON(link->status != DL_STATE_DORMANT);
1346		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347
1348		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1349			driver_deferred_probe_add(link->consumer);
1350	}
1351
1352	if (defer_sync_state_count)
1353		__device_links_supplier_defer_sync(dev);
1354	else
1355		__device_links_queue_sync_state(dev, &sync_list);
1356
1357	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1358		struct device *supplier;
1359
1360		if (!(link->flags & DL_FLAG_MANAGED))
1361			continue;
1362
1363		supplier = link->supplier;
1364		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1365			/*
1366			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1367			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1368			 * save to drop the managed link completely.
1369			 */
1370			device_link_drop_managed(link);
1371		} else if (dev_is_best_effort(dev) &&
1372			   link->flags & DL_FLAG_INFERRED &&
1373			   link->status != DL_STATE_CONSUMER_PROBE &&
1374			   !link->supplier->can_match) {
1375			/*
1376			 * When dev_is_best_effort() is true, we ignore device
1377			 * links to suppliers that don't have a driver.  If the
1378			 * consumer device still managed to probe, there's no
1379			 * point in maintaining a device link in a weird state
1380			 * (consumer probed before supplier). So delete it.
1381			 */
1382			device_link_drop_managed(link);
1383		} else {
1384			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1385			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1386		}
1387
1388		/*
1389		 * This needs to be done even for the deleted
1390		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1391		 * device link that was preventing the supplier from getting a
1392		 * sync_state() call.
1393		 */
1394		if (defer_sync_state_count)
1395			__device_links_supplier_defer_sync(supplier);
1396		else
1397			__device_links_queue_sync_state(supplier, &sync_list);
1398	}
1399
1400	dev->links.status = DL_DEV_DRIVER_BOUND;
1401
1402	device_links_write_unlock();
1403
1404	device_links_flush_sync_list(&sync_list, dev);
1405}
1406
1407/**
1408 * __device_links_no_driver - Update links of a device without a driver.
1409 * @dev: Device without a drvier.
1410 *
1411 * Delete all non-persistent links from this device to any suppliers.
1412 *
1413 * Persistent links stay around, but their status is changed to "available",
1414 * unless they already are in the "supplier unbind in progress" state in which
1415 * case they need not be updated.
1416 *
1417 * Links without the DL_FLAG_MANAGED flag set are ignored.
1418 */
1419static void __device_links_no_driver(struct device *dev)
1420{
1421	struct device_link *link, *ln;
1422
1423	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1424		if (!(link->flags & DL_FLAG_MANAGED))
1425			continue;
1426
1427		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1428			device_link_drop_managed(link);
1429			continue;
1430		}
1431
1432		if (link->status != DL_STATE_CONSUMER_PROBE &&
1433		    link->status != DL_STATE_ACTIVE)
1434			continue;
1435
1436		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1437			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1438		} else {
1439			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1440			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1441		}
1442	}
1443
1444	dev->links.status = DL_DEV_NO_DRIVER;
1445}
1446
1447/**
1448 * device_links_no_driver - Update links after failing driver probe.
1449 * @dev: Device whose driver has just failed to probe.
1450 *
1451 * Clean up leftover links to consumers for @dev and invoke
1452 * %__device_links_no_driver() to update links to suppliers for it as
1453 * appropriate.
1454 *
1455 * Links without the DL_FLAG_MANAGED flag set are ignored.
1456 */
1457void device_links_no_driver(struct device *dev)
1458{
1459	struct device_link *link;
1460
1461	device_links_write_lock();
1462
1463	list_for_each_entry(link, &dev->links.consumers, s_node) {
1464		if (!(link->flags & DL_FLAG_MANAGED))
1465			continue;
1466
1467		/*
1468		 * The probe has failed, so if the status of the link is
1469		 * "consumer probe" or "active", it must have been added by
1470		 * a probing consumer while this device was still probing.
1471		 * Change its state to "dormant", as it represents a valid
1472		 * relationship, but it is not functionally meaningful.
1473		 */
1474		if (link->status == DL_STATE_CONSUMER_PROBE ||
1475		    link->status == DL_STATE_ACTIVE)
1476			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1477	}
1478
1479	__device_links_no_driver(dev);
1480
1481	device_links_write_unlock();
1482}
1483
1484/**
1485 * device_links_driver_cleanup - Update links after driver removal.
1486 * @dev: Device whose driver has just gone away.
1487 *
1488 * Update links to consumers for @dev by changing their status to "dormant" and
1489 * invoke %__device_links_no_driver() to update links to suppliers for it as
1490 * appropriate.
1491 *
1492 * Links without the DL_FLAG_MANAGED flag set are ignored.
1493 */
1494void device_links_driver_cleanup(struct device *dev)
1495{
1496	struct device_link *link, *ln;
1497
1498	device_links_write_lock();
1499
1500	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1501		if (!(link->flags & DL_FLAG_MANAGED))
1502			continue;
1503
1504		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1505		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1506
1507		/*
1508		 * autoremove the links between this @dev and its consumer
1509		 * devices that are not active, i.e. where the link state
1510		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1511		 */
1512		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1513		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1514			device_link_drop_managed(link);
1515
1516		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1517	}
1518
1519	list_del_init(&dev->links.defer_sync);
1520	__device_links_no_driver(dev);
1521
1522	device_links_write_unlock();
1523}
1524
1525/**
1526 * device_links_busy - Check if there are any busy links to consumers.
1527 * @dev: Device to check.
1528 *
1529 * Check each consumer of the device and return 'true' if its link's status
1530 * is one of "consumer probe" or "active" (meaning that the given consumer is
1531 * probing right now or its driver is present).  Otherwise, change the link
1532 * state to "supplier unbind" to prevent the consumer from being probed
1533 * successfully going forward.
1534 *
1535 * Return 'false' if there are no probing or active consumers.
1536 *
1537 * Links without the DL_FLAG_MANAGED flag set are ignored.
1538 */
1539bool device_links_busy(struct device *dev)
1540{
1541	struct device_link *link;
1542	bool ret = false;
1543
1544	device_links_write_lock();
1545
1546	list_for_each_entry(link, &dev->links.consumers, s_node) {
1547		if (!(link->flags & DL_FLAG_MANAGED))
1548			continue;
1549
1550		if (link->status == DL_STATE_CONSUMER_PROBE
1551		    || link->status == DL_STATE_ACTIVE) {
1552			ret = true;
1553			break;
1554		}
1555		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1556	}
1557
1558	dev->links.status = DL_DEV_UNBINDING;
1559
1560	device_links_write_unlock();
1561	return ret;
1562}
1563
1564/**
1565 * device_links_unbind_consumers - Force unbind consumers of the given device.
1566 * @dev: Device to unbind the consumers of.
1567 *
1568 * Walk the list of links to consumers for @dev and if any of them is in the
1569 * "consumer probe" state, wait for all device probes in progress to complete
1570 * and start over.
1571 *
1572 * If that's not the case, change the status of the link to "supplier unbind"
1573 * and check if the link was in the "active" state.  If so, force the consumer
1574 * driver to unbind and start over (the consumer will not re-probe as we have
1575 * changed the state of the link already).
1576 *
1577 * Links without the DL_FLAG_MANAGED flag set are ignored.
1578 */
1579void device_links_unbind_consumers(struct device *dev)
1580{
1581	struct device_link *link;
1582
1583 start:
1584	device_links_write_lock();
1585
1586	list_for_each_entry(link, &dev->links.consumers, s_node) {
1587		enum device_link_state status;
1588
1589		if (!(link->flags & DL_FLAG_MANAGED) ||
1590		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1591			continue;
1592
1593		status = link->status;
1594		if (status == DL_STATE_CONSUMER_PROBE) {
1595			device_links_write_unlock();
1596
1597			wait_for_device_probe();
1598			goto start;
1599		}
1600		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1601		if (status == DL_STATE_ACTIVE) {
1602			struct device *consumer = link->consumer;
1603
1604			get_device(consumer);
1605
1606			device_links_write_unlock();
1607
1608			device_release_driver_internal(consumer, NULL,
1609						       consumer->parent);
1610			put_device(consumer);
1611			goto start;
1612		}
1613	}
1614
1615	device_links_write_unlock();
1616}
1617
1618/**
1619 * device_links_purge - Delete existing links to other devices.
1620 * @dev: Target device.
1621 */
1622static void device_links_purge(struct device *dev)
1623{
1624	struct device_link *link, *ln;
1625
1626	if (dev->class == &devlink_class)
1627		return;
1628
1629	/*
1630	 * Delete all of the remaining links from this device to any other
1631	 * devices (either consumers or suppliers).
1632	 */
1633	device_links_write_lock();
1634
1635	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1636		WARN_ON(link->status == DL_STATE_ACTIVE);
1637		__device_link_del(&link->kref);
1638	}
1639
1640	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1641		WARN_ON(link->status != DL_STATE_DORMANT &&
1642			link->status != DL_STATE_NONE);
1643		__device_link_del(&link->kref);
1644	}
1645
1646	device_links_write_unlock();
1647}
1648
1649#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1650					 DL_FLAG_SYNC_STATE_ONLY)
1651#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1652					 DL_FLAG_AUTOPROBE_CONSUMER)
1653#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1654					 DL_FLAG_PM_RUNTIME)
1655
1656static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1657static int __init fw_devlink_setup(char *arg)
1658{
1659	if (!arg)
1660		return -EINVAL;
1661
1662	if (strcmp(arg, "off") == 0) {
1663		fw_devlink_flags = 0;
1664	} else if (strcmp(arg, "permissive") == 0) {
1665		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1666	} else if (strcmp(arg, "on") == 0) {
1667		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1668	} else if (strcmp(arg, "rpm") == 0) {
1669		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1670	}
1671	return 0;
1672}
1673early_param("fw_devlink", fw_devlink_setup);
1674
1675static bool fw_devlink_strict;
1676static int __init fw_devlink_strict_setup(char *arg)
1677{
1678	return kstrtobool(arg, &fw_devlink_strict);
1679}
1680early_param("fw_devlink.strict", fw_devlink_strict_setup);
1681
1682#define FW_DEVLINK_SYNC_STATE_STRICT	0
1683#define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1684
1685#ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1686static int fw_devlink_sync_state;
1687#else
1688static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1689#endif
1690
1691static int __init fw_devlink_sync_state_setup(char *arg)
1692{
1693	if (!arg)
1694		return -EINVAL;
1695
1696	if (strcmp(arg, "strict") == 0) {
1697		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1698		return 0;
1699	} else if (strcmp(arg, "timeout") == 0) {
1700		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1701		return 0;
1702	}
1703	return -EINVAL;
1704}
1705early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1706
1707static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1708{
1709	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1710		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1711
1712	return fw_devlink_flags;
1713}
1714
1715static bool fw_devlink_is_permissive(void)
1716{
1717	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1718}
1719
1720bool fw_devlink_is_strict(void)
1721{
1722	return fw_devlink_strict && !fw_devlink_is_permissive();
1723}
1724
1725static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1726{
1727	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1728		return;
1729
1730	fwnode_call_int_op(fwnode, add_links);
1731	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1732}
1733
1734static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1735{
1736	struct fwnode_handle *child = NULL;
1737
1738	fw_devlink_parse_fwnode(fwnode);
1739
1740	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1741		fw_devlink_parse_fwtree(child);
1742}
1743
1744static void fw_devlink_relax_link(struct device_link *link)
1745{
1746	if (!(link->flags & DL_FLAG_INFERRED))
1747		return;
1748
1749	if (device_link_flag_is_sync_state_only(link->flags))
1750		return;
1751
1752	pm_runtime_drop_link(link);
1753	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1754	dev_dbg(link->consumer, "Relaxing link with %s\n",
1755		dev_name(link->supplier));
1756}
1757
1758static int fw_devlink_no_driver(struct device *dev, void *data)
1759{
1760	struct device_link *link = to_devlink(dev);
1761
1762	if (!link->supplier->can_match)
1763		fw_devlink_relax_link(link);
1764
1765	return 0;
1766}
1767
1768void fw_devlink_drivers_done(void)
1769{
1770	fw_devlink_drv_reg_done = true;
1771	device_links_write_lock();
1772	class_for_each_device(&devlink_class, NULL, NULL,
1773			      fw_devlink_no_driver);
1774	device_links_write_unlock();
1775}
1776
1777static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1778{
1779	struct device_link *link = to_devlink(dev);
1780	struct device *sup = link->supplier;
1781
1782	if (!(link->flags & DL_FLAG_MANAGED) ||
1783	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1784	    !dev_has_sync_state(sup))
1785		return 0;
1786
1787	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1788		dev_warn(sup, "sync_state() pending due to %s\n",
1789			 dev_name(link->consumer));
1790		return 0;
1791	}
1792
1793	if (!list_empty(&sup->links.defer_sync))
1794		return 0;
1795
1796	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1797	sup->state_synced = true;
1798	get_device(sup);
1799	list_add_tail(&sup->links.defer_sync, data);
1800
1801	return 0;
1802}
1803
1804void fw_devlink_probing_done(void)
1805{
1806	LIST_HEAD(sync_list);
1807
1808	device_links_write_lock();
1809	class_for_each_device(&devlink_class, NULL, &sync_list,
1810			      fw_devlink_dev_sync_state);
1811	device_links_write_unlock();
1812	device_links_flush_sync_list(&sync_list, NULL);
1813}
1814
1815/**
1816 * wait_for_init_devices_probe - Try to probe any device needed for init
1817 *
1818 * Some devices might need to be probed and bound successfully before the kernel
1819 * boot sequence can finish and move on to init/userspace. For example, a
1820 * network interface might need to be bound to be able to mount a NFS rootfs.
1821 *
1822 * With fw_devlink=on by default, some of these devices might be blocked from
1823 * probing because they are waiting on a optional supplier that doesn't have a
1824 * driver. While fw_devlink will eventually identify such devices and unblock
1825 * the probing automatically, it might be too late by the time it unblocks the
1826 * probing of devices. For example, the IP4 autoconfig might timeout before
1827 * fw_devlink unblocks probing of the network interface.
1828 *
1829 * This function is available to temporarily try and probe all devices that have
1830 * a driver even if some of their suppliers haven't been added or don't have
1831 * drivers.
1832 *
1833 * The drivers can then decide which of the suppliers are optional vs mandatory
1834 * and probe the device if possible. By the time this function returns, all such
1835 * "best effort" probes are guaranteed to be completed. If a device successfully
1836 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1837 * device where the supplier hasn't yet probed successfully because they have to
1838 * be optional dependencies.
1839 *
1840 * Any devices that didn't successfully probe go back to being treated as if
1841 * this function was never called.
1842 *
1843 * This also means that some devices that aren't needed for init and could have
1844 * waited for their optional supplier to probe (when the supplier's module is
1845 * loaded later on) would end up probing prematurely with limited functionality.
1846 * So call this function only when boot would fail without it.
1847 */
1848void __init wait_for_init_devices_probe(void)
1849{
1850	if (!fw_devlink_flags || fw_devlink_is_permissive())
1851		return;
1852
1853	/*
1854	 * Wait for all ongoing probes to finish so that the "best effort" is
1855	 * only applied to devices that can't probe otherwise.
1856	 */
1857	wait_for_device_probe();
1858
1859	pr_info("Trying to probe devices needed for running init ...\n");
1860	fw_devlink_best_effort = true;
1861	driver_deferred_probe_trigger();
1862
1863	/*
1864	 * Wait for all "best effort" probes to finish before going back to
1865	 * normal enforcement.
1866	 */
1867	wait_for_device_probe();
1868	fw_devlink_best_effort = false;
1869}
1870
1871static void fw_devlink_unblock_consumers(struct device *dev)
1872{
1873	struct device_link *link;
1874
1875	if (!fw_devlink_flags || fw_devlink_is_permissive())
1876		return;
1877
1878	device_links_write_lock();
1879	list_for_each_entry(link, &dev->links.consumers, s_node)
1880		fw_devlink_relax_link(link);
1881	device_links_write_unlock();
1882}
1883
1884#define get_dev_from_fwnode(fwnode)	get_device((fwnode)->dev)
1885
1886static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1887{
1888	struct device *dev;
1889	bool ret;
1890
1891	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1892		return false;
1893
1894	dev = get_dev_from_fwnode(fwnode);
1895	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1896	put_device(dev);
1897
1898	return ret;
1899}
1900
1901static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1902{
1903	struct fwnode_handle *parent;
1904
1905	fwnode_for_each_parent_node(fwnode, parent) {
1906		if (fwnode_init_without_drv(parent)) {
1907			fwnode_handle_put(parent);
1908			return true;
1909		}
1910	}
1911
1912	return false;
1913}
1914
1915/**
1916 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1917 * @ancestor: Firmware which is tested for being an ancestor
1918 * @child: Firmware which is tested for being the child
 
 
 
 
 
 
 
1919 *
1920 * A node is considered an ancestor of itself too.
1921 *
1922 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1923 */
1924static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1925				  const struct fwnode_handle *child)
1926{
1927	struct fwnode_handle *parent;
 
1928
1929	if (IS_ERR_OR_NULL(ancestor))
1930		return false;
1931
1932	if (child == ancestor)
1933		return true;
 
1934
1935	fwnode_for_each_parent_node(child, parent) {
1936		if (parent == ancestor) {
1937			fwnode_handle_put(parent);
1938			return true;
1939		}
1940	}
1941	return false;
1942}
1943
1944/**
1945 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1946 * @fwnode: firmware node
1947 *
1948 * Given a firmware node (@fwnode), this function finds its closest ancestor
1949 * firmware node that has a corresponding struct device and returns that struct
1950 * device.
1951 *
1952 * The caller is responsible for calling put_device() on the returned device
1953 * pointer.
1954 *
1955 * Return: a pointer to the device of the @fwnode's closest ancestor.
1956 */
1957static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1958{
1959	struct fwnode_handle *parent;
1960	struct device *dev;
1961
1962	fwnode_for_each_parent_node(fwnode, parent) {
1963		dev = get_dev_from_fwnode(parent);
1964		if (dev) {
1965			fwnode_handle_put(parent);
1966			return dev;
1967		}
1968	}
1969	return NULL;
1970}
1971
1972/**
1973 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1974 * @con_handle: Potential consumer device fwnode.
1975 * @sup_handle: Potential supplier's fwnode.
1976 *
1977 * Needs to be called with fwnode_lock and device link lock held.
1978 *
1979 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1980 * depend on @con. This function can detect multiple cyles between @sup_handle
1981 * and @con. When such dependency cycles are found, convert all device links
1982 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1983 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1984 * converted into a device link in the future, they are created as
1985 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1986 * fw_devlink=permissive just between the devices in the cycle. We need to do
1987 * this because, at this point, fw_devlink can't tell which of these
1988 * dependencies is not a real dependency.
1989 *
1990 * Return true if one or more cycles were found. Otherwise, return false.
1991 */
1992static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1993				 struct fwnode_handle *sup_handle)
1994{
1995	struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1996	struct fwnode_link *link;
1997	struct device_link *dev_link;
1998	bool ret = false;
1999
2000	if (!sup_handle)
2001		return false;
2002
2003	/*
2004	 * We aren't trying to find all cycles. Just a cycle between con and
2005	 * sup_handle.
2006	 */
2007	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2008		return false;
2009
2010	sup_handle->flags |= FWNODE_FLAG_VISITED;
2011
2012	/* Termination condition. */
2013	if (sup_handle == con_handle) {
2014		pr_debug("----- cycle: start -----\n");
2015		ret = true;
2016		goto out;
2017	}
2018
2019	sup_dev = get_dev_from_fwnode(sup_handle);
2020	con_dev = get_dev_from_fwnode(con_handle);
2021	/*
2022	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2023	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2024	 * further.
2025	 */
2026	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2027	    con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2028		ret = false;
2029		goto out;
2030	}
2031
2032	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2033		if (link->flags & FWLINK_FLAG_IGNORE)
2034			continue;
2035
2036		if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2037			__fwnode_link_cycle(link);
2038			ret = true;
2039		}
2040	}
2041
2042	/*
2043	 * Give priority to device parent over fwnode parent to account for any
2044	 * quirks in how fwnodes are converted to devices.
2045	 */
2046	if (sup_dev)
2047		par_dev = get_device(sup_dev->parent);
2048	else
2049		par_dev = fwnode_get_next_parent_dev(sup_handle);
2050
2051	if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2052		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2053			 par_dev->fwnode);
2054		ret = true;
2055	}
2056
2057	if (!sup_dev)
2058		goto out;
2059
2060	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2061		/*
2062		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2063		 * such due to a cycle.
2064		 */
2065		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2066		    !(dev_link->flags & DL_FLAG_CYCLE))
2067			continue;
2068
2069		if (__fw_devlink_relax_cycles(con_handle,
2070					      dev_link->supplier->fwnode)) {
2071			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2072				 dev_link->supplier->fwnode);
2073			fw_devlink_relax_link(dev_link);
2074			dev_link->flags |= DL_FLAG_CYCLE;
2075			ret = true;
2076		}
2077	}
2078
2079out:
2080	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2081	put_device(sup_dev);
2082	put_device(con_dev);
2083	put_device(par_dev);
2084	return ret;
2085}
2086
2087/**
2088 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2089 * @con: consumer device for the device link
2090 * @sup_handle: fwnode handle of supplier
2091 * @link: fwnode link that's being converted to a device link
2092 *
2093 * This function will try to create a device link between the consumer device
2094 * @con and the supplier device represented by @sup_handle.
2095 *
2096 * The supplier has to be provided as a fwnode because incorrect cycles in
2097 * fwnode links can sometimes cause the supplier device to never be created.
2098 * This function detects such cases and returns an error if it cannot create a
2099 * device link from the consumer to a missing supplier.
2100 *
2101 * Returns,
2102 * 0 on successfully creating a device link
2103 * -EINVAL if the device link cannot be created as expected
2104 * -EAGAIN if the device link cannot be created right now, but it may be
2105 *  possible to do that in the future
2106 */
2107static int fw_devlink_create_devlink(struct device *con,
2108				     struct fwnode_handle *sup_handle,
2109				     struct fwnode_link *link)
2110{
2111	struct device *sup_dev;
2112	int ret = 0;
2113	u32 flags;
2114
2115	if (link->flags & FWLINK_FLAG_IGNORE)
2116		return 0;
2117
2118	/*
2119	 * In some cases, a device P might also be a supplier to its child node
2120	 * C. However, this would defer the probe of C until the probe of P
2121	 * completes successfully. This is perfectly fine in the device driver
2122	 * model. device_add() doesn't guarantee probe completion of the device
2123	 * by the time it returns.
2124	 *
2125	 * However, there are a few drivers that assume C will finish probing
2126	 * as soon as it's added and before P finishes probing. So, we provide
2127	 * a flag to let fw_devlink know not to delay the probe of C until the
2128	 * probe of P completes successfully.
2129	 *
2130	 * When such a flag is set, we can't create device links where P is the
2131	 * supplier of C as that would delay the probe of C.
2132	 */
2133	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2134	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2135		return -EINVAL;
2136
2137	/*
2138	 * Don't try to optimize by not calling the cycle detection logic under
2139	 * certain conditions. There's always some corner case that won't get
2140	 * detected.
2141	 */
2142	device_links_write_lock();
2143	if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2144		__fwnode_link_cycle(link);
2145		pr_debug("----- cycle: end -----\n");
2146		pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2147			link->consumer, sup_handle);
2148	}
2149	device_links_write_unlock();
2150
2151	if (con->fwnode == link->consumer)
2152		flags = fw_devlink_get_flags(link->flags);
2153	else
2154		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2155
2156	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2157		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2158	else
2159		sup_dev = get_dev_from_fwnode(sup_handle);
2160
2161	if (sup_dev) {
2162		/*
2163		 * If it's one of those drivers that don't actually bind to
2164		 * their device using driver core, then don't wait on this
2165		 * supplier device indefinitely.
2166		 */
2167		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2168		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2169			dev_dbg(con,
2170				"Not linking %pfwf - dev might never probe\n",
2171				sup_handle);
2172			ret = -EINVAL;
2173			goto out;
2174		}
2175
2176		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2177			dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2178				flags, dev_name(sup_dev), link->consumer);
 
 
 
 
 
 
 
 
 
 
2179			ret = -EINVAL;
2180		}
2181
2182		goto out;
2183	}
2184
 
 
 
 
 
 
 
 
 
 
 
 
2185	/*
2186	 * Supplier or supplier's ancestor already initialized without a struct
2187	 * device or being probed by a driver.
 
 
 
 
 
 
 
 
 
 
2188	 */
2189	if (fwnode_init_without_drv(sup_handle) ||
2190	    fwnode_ancestor_init_without_drv(sup_handle)) {
2191		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2192			sup_handle);
2193		return -EINVAL;
 
 
 
 
 
 
 
 
 
2194	}
2195
2196	ret = -EAGAIN;
2197out:
2198	put_device(sup_dev);
2199	return ret;
2200}
2201
2202/**
2203 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2204 * @dev: Device that needs to be linked to its consumers
2205 *
2206 * This function looks at all the consumer fwnodes of @dev and creates device
2207 * links between the consumer device and @dev (supplier).
2208 *
2209 * If the consumer device has not been added yet, then this function creates a
2210 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2211 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2212 * sync_state() callback before the real consumer device gets to be added and
2213 * then probed.
2214 *
2215 * Once device links are created from the real consumer to @dev (supplier), the
2216 * fwnode links are deleted.
2217 */
2218static void __fw_devlink_link_to_consumers(struct device *dev)
2219{
2220	struct fwnode_handle *fwnode = dev->fwnode;
2221	struct fwnode_link *link, *tmp;
2222
2223	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
 
2224		struct device *con_dev;
2225		bool own_link = true;
2226		int ret;
2227
2228		con_dev = get_dev_from_fwnode(link->consumer);
2229		/*
2230		 * If consumer device is not available yet, make a "proxy"
2231		 * SYNC_STATE_ONLY link from the consumer's parent device to
2232		 * the supplier device. This is necessary to make sure the
2233		 * supplier doesn't get a sync_state() callback before the real
2234		 * consumer can create a device link to the supplier.
2235		 *
2236		 * This proxy link step is needed to handle the case where the
2237		 * consumer's parent device is added before the supplier.
2238		 */
2239		if (!con_dev) {
2240			con_dev = fwnode_get_next_parent_dev(link->consumer);
2241			/*
2242			 * However, if the consumer's parent device is also the
2243			 * parent of the supplier, don't create a
2244			 * consumer-supplier link from the parent to its child
2245			 * device. Such a dependency is impossible.
2246			 */
2247			if (con_dev &&
2248			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2249				put_device(con_dev);
2250				con_dev = NULL;
2251			} else {
2252				own_link = false;
 
2253			}
2254		}
2255
2256		if (!con_dev)
2257			continue;
2258
2259		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2260		put_device(con_dev);
2261		if (!own_link || ret == -EAGAIN)
2262			continue;
2263
2264		__fwnode_link_del(link);
2265	}
2266}
2267
2268/**
2269 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2270 * @dev: The consumer device that needs to be linked to its suppliers
2271 * @fwnode: Root of the fwnode tree that is used to create device links
2272 *
2273 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2274 * @fwnode and creates device links between @dev (consumer) and all the
2275 * supplier devices of the entire fwnode tree at @fwnode.
2276 *
2277 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2278 * and the real suppliers of @dev. Once these device links are created, the
2279 * fwnode links are deleted.
 
 
 
2280 *
2281 * In addition, it also looks at all the suppliers of the entire fwnode tree
2282 * because some of the child devices of @dev that have not been added yet
2283 * (because @dev hasn't probed) might already have their suppliers added to
2284 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2285 * @dev (consumer) and these suppliers to make sure they don't execute their
2286 * sync_state() callbacks before these child devices have a chance to create
2287 * their device links. The fwnode links that correspond to the child devices
2288 * aren't delete because they are needed later to create the device links
2289 * between the real consumer and supplier devices.
2290 */
2291static void __fw_devlink_link_to_suppliers(struct device *dev,
2292					   struct fwnode_handle *fwnode)
2293{
2294	bool own_link = (dev->fwnode == fwnode);
2295	struct fwnode_link *link, *tmp;
2296	struct fwnode_handle *child = NULL;
 
 
 
 
 
 
2297
2298	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2299		int ret;
 
2300		struct fwnode_handle *sup = link->supplier;
2301
2302		ret = fw_devlink_create_devlink(dev, sup, link);
2303		if (!own_link || ret == -EAGAIN)
2304			continue;
2305
2306		__fwnode_link_del(link);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2307	}
2308
2309	/*
2310	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2311	 * all the descendants. This proxy link step is needed to handle the
2312	 * case where the supplier is added before the consumer's parent device
2313	 * (@dev).
2314	 */
2315	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2316		__fw_devlink_link_to_suppliers(dev, child);
2317}
2318
2319static void fw_devlink_link_device(struct device *dev)
2320{
2321	struct fwnode_handle *fwnode = dev->fwnode;
2322
2323	if (!fw_devlink_flags)
2324		return;
2325
2326	fw_devlink_parse_fwtree(fwnode);
2327
2328	guard(mutex)(&fwnode_link_lock);
2329
2330	__fw_devlink_link_to_consumers(dev);
2331	__fw_devlink_link_to_suppliers(dev, fwnode);
 
2332}
2333
2334/* Device links support end. */
2335
 
 
2336static struct kobject *dev_kobj;
2337
2338/* /sys/dev/char */
2339static struct kobject *sysfs_dev_char_kobj;
2340
2341/* /sys/dev/block */
2342static struct kobject *sysfs_dev_block_kobj;
2343
2344static DEFINE_MUTEX(device_hotplug_lock);
2345
2346void lock_device_hotplug(void)
2347{
2348	mutex_lock(&device_hotplug_lock);
2349}
2350
2351void unlock_device_hotplug(void)
2352{
2353	mutex_unlock(&device_hotplug_lock);
2354}
2355
2356int lock_device_hotplug_sysfs(void)
2357{
2358	if (mutex_trylock(&device_hotplug_lock))
2359		return 0;
2360
2361	/* Avoid busy looping (5 ms of sleep should do). */
2362	msleep(5);
2363	return restart_syscall();
2364}
2365
2366#ifdef CONFIG_BLOCK
2367static inline int device_is_not_partition(struct device *dev)
2368{
2369	return !(dev->type == &part_type);
2370}
2371#else
2372static inline int device_is_not_partition(struct device *dev)
2373{
2374	return 1;
2375}
2376#endif
2377
2378static void device_platform_notify(struct device *dev)
2379{
2380	acpi_device_notify(dev);
2381
2382	software_node_notify(dev);
 
 
 
2383}
2384
2385static void device_platform_notify_remove(struct device *dev)
2386{
 
 
2387	software_node_notify_remove(dev);
2388
2389	acpi_device_notify_remove(dev);
 
2390}
2391
2392/**
2393 * dev_driver_string - Return a device's driver name, if at all possible
2394 * @dev: struct device to get the name of
2395 *
2396 * Will return the device's driver's name if it is bound to a device.  If
2397 * the device is not bound to a driver, it will return the name of the bus
2398 * it is attached to.  If it is not attached to a bus either, an empty
2399 * string will be returned.
2400 */
2401const char *dev_driver_string(const struct device *dev)
2402{
2403	struct device_driver *drv;
2404
2405	/* dev->driver can change to NULL underneath us because of unbinding,
2406	 * so be careful about accessing it.  dev->bus and dev->class should
2407	 * never change once they are set, so they don't need special care.
2408	 */
2409	drv = READ_ONCE(dev->driver);
2410	return drv ? drv->name : dev_bus_name(dev);
2411}
2412EXPORT_SYMBOL(dev_driver_string);
2413
2414#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2415
2416static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2417			     char *buf)
2418{
2419	struct device_attribute *dev_attr = to_dev_attr(attr);
2420	struct device *dev = kobj_to_dev(kobj);
2421	ssize_t ret = -EIO;
2422
2423	if (dev_attr->show)
2424		ret = dev_attr->show(dev, dev_attr, buf);
2425	if (ret >= (ssize_t)PAGE_SIZE) {
2426		printk("dev_attr_show: %pS returned bad count\n",
2427				dev_attr->show);
2428	}
2429	return ret;
2430}
2431
2432static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2433			      const char *buf, size_t count)
2434{
2435	struct device_attribute *dev_attr = to_dev_attr(attr);
2436	struct device *dev = kobj_to_dev(kobj);
2437	ssize_t ret = -EIO;
2438
2439	if (dev_attr->store)
2440		ret = dev_attr->store(dev, dev_attr, buf, count);
2441	return ret;
2442}
2443
2444static const struct sysfs_ops dev_sysfs_ops = {
2445	.show	= dev_attr_show,
2446	.store	= dev_attr_store,
2447};
2448
2449#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2450
2451ssize_t device_store_ulong(struct device *dev,
2452			   struct device_attribute *attr,
2453			   const char *buf, size_t size)
2454{
2455	struct dev_ext_attribute *ea = to_ext_attr(attr);
2456	int ret;
2457	unsigned long new;
2458
2459	ret = kstrtoul(buf, 0, &new);
2460	if (ret)
2461		return ret;
2462	*(unsigned long *)(ea->var) = new;
2463	/* Always return full write size even if we didn't consume all */
2464	return size;
2465}
2466EXPORT_SYMBOL_GPL(device_store_ulong);
2467
2468ssize_t device_show_ulong(struct device *dev,
2469			  struct device_attribute *attr,
2470			  char *buf)
2471{
2472	struct dev_ext_attribute *ea = to_ext_attr(attr);
2473	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2474}
2475EXPORT_SYMBOL_GPL(device_show_ulong);
2476
2477ssize_t device_store_int(struct device *dev,
2478			 struct device_attribute *attr,
2479			 const char *buf, size_t size)
2480{
2481	struct dev_ext_attribute *ea = to_ext_attr(attr);
2482	int ret;
2483	long new;
2484
2485	ret = kstrtol(buf, 0, &new);
2486	if (ret)
2487		return ret;
2488
2489	if (new > INT_MAX || new < INT_MIN)
2490		return -EINVAL;
2491	*(int *)(ea->var) = new;
2492	/* Always return full write size even if we didn't consume all */
2493	return size;
2494}
2495EXPORT_SYMBOL_GPL(device_store_int);
2496
2497ssize_t device_show_int(struct device *dev,
2498			struct device_attribute *attr,
2499			char *buf)
2500{
2501	struct dev_ext_attribute *ea = to_ext_attr(attr);
2502
2503	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2504}
2505EXPORT_SYMBOL_GPL(device_show_int);
2506
2507ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2508			  const char *buf, size_t size)
2509{
2510	struct dev_ext_attribute *ea = to_ext_attr(attr);
2511
2512	if (kstrtobool(buf, ea->var) < 0)
2513		return -EINVAL;
2514
2515	return size;
2516}
2517EXPORT_SYMBOL_GPL(device_store_bool);
2518
2519ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2520			 char *buf)
2521{
2522	struct dev_ext_attribute *ea = to_ext_attr(attr);
2523
2524	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2525}
2526EXPORT_SYMBOL_GPL(device_show_bool);
2527
2528ssize_t device_show_string(struct device *dev,
2529			   struct device_attribute *attr, char *buf)
2530{
2531	struct dev_ext_attribute *ea = to_ext_attr(attr);
2532
2533	return sysfs_emit(buf, "%s\n", (char *)ea->var);
2534}
2535EXPORT_SYMBOL_GPL(device_show_string);
2536
2537/**
2538 * device_release - free device structure.
2539 * @kobj: device's kobject.
2540 *
2541 * This is called once the reference count for the object
2542 * reaches 0. We forward the call to the device's release
2543 * method, which should handle actually freeing the structure.
2544 */
2545static void device_release(struct kobject *kobj)
2546{
2547	struct device *dev = kobj_to_dev(kobj);
2548	struct device_private *p = dev->p;
2549
2550	/*
2551	 * Some platform devices are driven without driver attached
2552	 * and managed resources may have been acquired.  Make sure
2553	 * all resources are released.
2554	 *
2555	 * Drivers still can add resources into device after device
2556	 * is deleted but alive, so release devres here to avoid
2557	 * possible memory leak.
2558	 */
2559	devres_release_all(dev);
2560
2561	kfree(dev->dma_range_map);
2562
2563	if (dev->release)
2564		dev->release(dev);
2565	else if (dev->type && dev->type->release)
2566		dev->type->release(dev);
2567	else if (dev->class && dev->class->dev_release)
2568		dev->class->dev_release(dev);
2569	else
2570		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2571			dev_name(dev));
2572	kfree(p);
2573}
2574
2575static const void *device_namespace(const struct kobject *kobj)
2576{
2577	const struct device *dev = kobj_to_dev(kobj);
2578	const void *ns = NULL;
2579
2580	if (dev->class && dev->class->namespace)
2581		ns = dev->class->namespace(dev);
2582
2583	return ns;
2584}
2585
2586static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2587{
2588	const struct device *dev = kobj_to_dev(kobj);
2589
2590	if (dev->class && dev->class->get_ownership)
2591		dev->class->get_ownership(dev, uid, gid);
2592}
2593
2594static const struct kobj_type device_ktype = {
2595	.release	= device_release,
2596	.sysfs_ops	= &dev_sysfs_ops,
2597	.namespace	= device_namespace,
2598	.get_ownership	= device_get_ownership,
2599};
2600
2601
2602static int dev_uevent_filter(const struct kobject *kobj)
2603{
2604	const struct kobj_type *ktype = get_ktype(kobj);
2605
2606	if (ktype == &device_ktype) {
2607		const struct device *dev = kobj_to_dev(kobj);
2608		if (dev->bus)
2609			return 1;
2610		if (dev->class)
2611			return 1;
2612	}
2613	return 0;
2614}
2615
2616static const char *dev_uevent_name(const struct kobject *kobj)
2617{
2618	const struct device *dev = kobj_to_dev(kobj);
2619
2620	if (dev->bus)
2621		return dev->bus->name;
2622	if (dev->class)
2623		return dev->class->name;
2624	return NULL;
2625}
2626
2627static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2628{
2629	const struct device *dev = kobj_to_dev(kobj);
2630	int retval = 0;
2631
2632	/* add device node properties if present */
2633	if (MAJOR(dev->devt)) {
2634		const char *tmp;
2635		const char *name;
2636		umode_t mode = 0;
2637		kuid_t uid = GLOBAL_ROOT_UID;
2638		kgid_t gid = GLOBAL_ROOT_GID;
2639
2640		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2641		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2642		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2643		if (name) {
2644			add_uevent_var(env, "DEVNAME=%s", name);
2645			if (mode)
2646				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2647			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2648				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2649			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2650				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2651			kfree(tmp);
2652		}
2653	}
2654
2655	if (dev->type && dev->type->name)
2656		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2657
2658	if (dev->driver)
2659		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2660
2661	/* Add common DT information about the device */
2662	of_device_uevent(dev, env);
2663
2664	/* have the bus specific function add its stuff */
2665	if (dev->bus && dev->bus->uevent) {
2666		retval = dev->bus->uevent(dev, env);
2667		if (retval)
2668			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2669				 dev_name(dev), __func__, retval);
2670	}
2671
2672	/* have the class specific function add its stuff */
2673	if (dev->class && dev->class->dev_uevent) {
2674		retval = dev->class->dev_uevent(dev, env);
2675		if (retval)
2676			pr_debug("device: '%s': %s: class uevent() "
2677				 "returned %d\n", dev_name(dev),
2678				 __func__, retval);
2679	}
2680
2681	/* have the device type specific function add its stuff */
2682	if (dev->type && dev->type->uevent) {
2683		retval = dev->type->uevent(dev, env);
2684		if (retval)
2685			pr_debug("device: '%s': %s: dev_type uevent() "
2686				 "returned %d\n", dev_name(dev),
2687				 __func__, retval);
2688	}
2689
2690	return retval;
2691}
2692
2693static const struct kset_uevent_ops device_uevent_ops = {
2694	.filter =	dev_uevent_filter,
2695	.name =		dev_uevent_name,
2696	.uevent =	dev_uevent,
2697};
2698
2699static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2700			   char *buf)
2701{
2702	struct kobject *top_kobj;
2703	struct kset *kset;
2704	struct kobj_uevent_env *env = NULL;
2705	int i;
2706	int len = 0;
2707	int retval;
2708
2709	/* search the kset, the device belongs to */
2710	top_kobj = &dev->kobj;
2711	while (!top_kobj->kset && top_kobj->parent)
2712		top_kobj = top_kobj->parent;
2713	if (!top_kobj->kset)
2714		goto out;
2715
2716	kset = top_kobj->kset;
2717	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2718		goto out;
2719
2720	/* respect filter */
2721	if (kset->uevent_ops && kset->uevent_ops->filter)
2722		if (!kset->uevent_ops->filter(&dev->kobj))
2723			goto out;
2724
2725	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2726	if (!env)
2727		return -ENOMEM;
2728
2729	/* Synchronize with really_probe() */
2730	device_lock(dev);
2731	/* let the kset specific function add its keys */
2732	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2733	device_unlock(dev);
2734	if (retval)
2735		goto out;
2736
2737	/* copy keys to file */
2738	for (i = 0; i < env->envp_idx; i++)
2739		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2740out:
2741	kfree(env);
2742	return len;
2743}
2744
2745static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2746			    const char *buf, size_t count)
2747{
2748	int rc;
2749
2750	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2751
2752	if (rc) {
2753		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2754		return rc;
2755	}
2756
2757	return count;
2758}
2759static DEVICE_ATTR_RW(uevent);
2760
2761static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2762			   char *buf)
2763{
2764	bool val;
2765
2766	device_lock(dev);
2767	val = !dev->offline;
2768	device_unlock(dev);
2769	return sysfs_emit(buf, "%u\n", val);
2770}
2771
2772static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2773			    const char *buf, size_t count)
2774{
2775	bool val;
2776	int ret;
2777
2778	ret = kstrtobool(buf, &val);
2779	if (ret < 0)
2780		return ret;
2781
2782	ret = lock_device_hotplug_sysfs();
2783	if (ret)
2784		return ret;
2785
2786	ret = val ? device_online(dev) : device_offline(dev);
2787	unlock_device_hotplug();
2788	return ret < 0 ? ret : count;
2789}
2790static DEVICE_ATTR_RW(online);
2791
2792static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2793			      char *buf)
2794{
2795	const char *loc;
2796
2797	switch (dev->removable) {
2798	case DEVICE_REMOVABLE:
2799		loc = "removable";
2800		break;
2801	case DEVICE_FIXED:
2802		loc = "fixed";
2803		break;
2804	default:
2805		loc = "unknown";
2806	}
2807	return sysfs_emit(buf, "%s\n", loc);
2808}
2809static DEVICE_ATTR_RO(removable);
2810
2811int device_add_groups(struct device *dev, const struct attribute_group **groups)
2812{
2813	return sysfs_create_groups(&dev->kobj, groups);
2814}
2815EXPORT_SYMBOL_GPL(device_add_groups);
2816
2817void device_remove_groups(struct device *dev,
2818			  const struct attribute_group **groups)
2819{
2820	sysfs_remove_groups(&dev->kobj, groups);
2821}
2822EXPORT_SYMBOL_GPL(device_remove_groups);
2823
2824union device_attr_group_devres {
2825	const struct attribute_group *group;
2826	const struct attribute_group **groups;
2827};
2828
2829static void devm_attr_group_remove(struct device *dev, void *res)
2830{
2831	union device_attr_group_devres *devres = res;
2832	const struct attribute_group *group = devres->group;
2833
2834	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2835	sysfs_remove_group(&dev->kobj, group);
2836}
2837
 
 
 
 
 
 
 
 
 
2838/**
2839 * devm_device_add_group - given a device, create a managed attribute group
2840 * @dev:	The device to create the group for
2841 * @grp:	The attribute group to create
2842 *
2843 * This function creates a group for the first time.  It will explicitly
2844 * warn and error if any of the attribute files being created already exist.
2845 *
2846 * Returns 0 on success or error code on failure.
2847 */
2848int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2849{
2850	union device_attr_group_devres *devres;
2851	int error;
2852
2853	devres = devres_alloc(devm_attr_group_remove,
2854			      sizeof(*devres), GFP_KERNEL);
2855	if (!devres)
2856		return -ENOMEM;
2857
2858	error = sysfs_create_group(&dev->kobj, grp);
2859	if (error) {
2860		devres_free(devres);
2861		return error;
2862	}
2863
2864	devres->group = grp;
2865	devres_add(dev, devres);
2866	return 0;
2867}
2868EXPORT_SYMBOL_GPL(devm_device_add_group);
2869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870static int device_add_attrs(struct device *dev)
2871{
2872	const struct class *class = dev->class;
2873	const struct device_type *type = dev->type;
2874	int error;
2875
2876	if (class) {
2877		error = device_add_groups(dev, class->dev_groups);
2878		if (error)
2879			return error;
2880	}
2881
2882	if (type) {
2883		error = device_add_groups(dev, type->groups);
2884		if (error)
2885			goto err_remove_class_groups;
2886	}
2887
2888	error = device_add_groups(dev, dev->groups);
2889	if (error)
2890		goto err_remove_type_groups;
2891
2892	if (device_supports_offline(dev) && !dev->offline_disabled) {
2893		error = device_create_file(dev, &dev_attr_online);
2894		if (error)
2895			goto err_remove_dev_groups;
2896	}
2897
2898	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2899		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2900		if (error)
2901			goto err_remove_dev_online;
2902	}
2903
2904	if (dev_removable_is_valid(dev)) {
2905		error = device_create_file(dev, &dev_attr_removable);
2906		if (error)
2907			goto err_remove_dev_waiting_for_supplier;
2908	}
2909
2910	if (dev_add_physical_location(dev)) {
2911		error = device_add_group(dev,
2912			&dev_attr_physical_location_group);
2913		if (error)
2914			goto err_remove_dev_removable;
2915	}
2916
2917	return 0;
2918
2919 err_remove_dev_removable:
2920	device_remove_file(dev, &dev_attr_removable);
2921 err_remove_dev_waiting_for_supplier:
2922	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2923 err_remove_dev_online:
2924	device_remove_file(dev, &dev_attr_online);
2925 err_remove_dev_groups:
2926	device_remove_groups(dev, dev->groups);
2927 err_remove_type_groups:
2928	if (type)
2929		device_remove_groups(dev, type->groups);
2930 err_remove_class_groups:
2931	if (class)
2932		device_remove_groups(dev, class->dev_groups);
2933
2934	return error;
2935}
2936
2937static void device_remove_attrs(struct device *dev)
2938{
2939	const struct class *class = dev->class;
2940	const struct device_type *type = dev->type;
2941
2942	if (dev->physical_location) {
2943		device_remove_group(dev, &dev_attr_physical_location_group);
2944		kfree(dev->physical_location);
2945	}
2946
2947	device_remove_file(dev, &dev_attr_removable);
2948	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2949	device_remove_file(dev, &dev_attr_online);
2950	device_remove_groups(dev, dev->groups);
2951
2952	if (type)
2953		device_remove_groups(dev, type->groups);
2954
2955	if (class)
2956		device_remove_groups(dev, class->dev_groups);
2957}
2958
2959static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2960			char *buf)
2961{
2962	return print_dev_t(buf, dev->devt);
2963}
2964static DEVICE_ATTR_RO(dev);
2965
2966/* /sys/devices/ */
2967struct kset *devices_kset;
2968
2969/**
2970 * devices_kset_move_before - Move device in the devices_kset's list.
2971 * @deva: Device to move.
2972 * @devb: Device @deva should come before.
2973 */
2974static void devices_kset_move_before(struct device *deva, struct device *devb)
2975{
2976	if (!devices_kset)
2977		return;
2978	pr_debug("devices_kset: Moving %s before %s\n",
2979		 dev_name(deva), dev_name(devb));
2980	spin_lock(&devices_kset->list_lock);
2981	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2982	spin_unlock(&devices_kset->list_lock);
2983}
2984
2985/**
2986 * devices_kset_move_after - Move device in the devices_kset's list.
2987 * @deva: Device to move
2988 * @devb: Device @deva should come after.
2989 */
2990static void devices_kset_move_after(struct device *deva, struct device *devb)
2991{
2992	if (!devices_kset)
2993		return;
2994	pr_debug("devices_kset: Moving %s after %s\n",
2995		 dev_name(deva), dev_name(devb));
2996	spin_lock(&devices_kset->list_lock);
2997	list_move(&deva->kobj.entry, &devb->kobj.entry);
2998	spin_unlock(&devices_kset->list_lock);
2999}
3000
3001/**
3002 * devices_kset_move_last - move the device to the end of devices_kset's list.
3003 * @dev: device to move
3004 */
3005void devices_kset_move_last(struct device *dev)
3006{
3007	if (!devices_kset)
3008		return;
3009	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3010	spin_lock(&devices_kset->list_lock);
3011	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3012	spin_unlock(&devices_kset->list_lock);
3013}
3014
3015/**
3016 * device_create_file - create sysfs attribute file for device.
3017 * @dev: device.
3018 * @attr: device attribute descriptor.
3019 */
3020int device_create_file(struct device *dev,
3021		       const struct device_attribute *attr)
3022{
3023	int error = 0;
3024
3025	if (dev) {
3026		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3027			"Attribute %s: write permission without 'store'\n",
3028			attr->attr.name);
3029		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3030			"Attribute %s: read permission without 'show'\n",
3031			attr->attr.name);
3032		error = sysfs_create_file(&dev->kobj, &attr->attr);
3033	}
3034
3035	return error;
3036}
3037EXPORT_SYMBOL_GPL(device_create_file);
3038
3039/**
3040 * device_remove_file - remove sysfs attribute file.
3041 * @dev: device.
3042 * @attr: device attribute descriptor.
3043 */
3044void device_remove_file(struct device *dev,
3045			const struct device_attribute *attr)
3046{
3047	if (dev)
3048		sysfs_remove_file(&dev->kobj, &attr->attr);
3049}
3050EXPORT_SYMBOL_GPL(device_remove_file);
3051
3052/**
3053 * device_remove_file_self - remove sysfs attribute file from its own method.
3054 * @dev: device.
3055 * @attr: device attribute descriptor.
3056 *
3057 * See kernfs_remove_self() for details.
3058 */
3059bool device_remove_file_self(struct device *dev,
3060			     const struct device_attribute *attr)
3061{
3062	if (dev)
3063		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3064	else
3065		return false;
3066}
3067EXPORT_SYMBOL_GPL(device_remove_file_self);
3068
3069/**
3070 * device_create_bin_file - create sysfs binary attribute file for device.
3071 * @dev: device.
3072 * @attr: device binary attribute descriptor.
3073 */
3074int device_create_bin_file(struct device *dev,
3075			   const struct bin_attribute *attr)
3076{
3077	int error = -EINVAL;
3078	if (dev)
3079		error = sysfs_create_bin_file(&dev->kobj, attr);
3080	return error;
3081}
3082EXPORT_SYMBOL_GPL(device_create_bin_file);
3083
3084/**
3085 * device_remove_bin_file - remove sysfs binary attribute file
3086 * @dev: device.
3087 * @attr: device binary attribute descriptor.
3088 */
3089void device_remove_bin_file(struct device *dev,
3090			    const struct bin_attribute *attr)
3091{
3092	if (dev)
3093		sysfs_remove_bin_file(&dev->kobj, attr);
3094}
3095EXPORT_SYMBOL_GPL(device_remove_bin_file);
3096
3097static void klist_children_get(struct klist_node *n)
3098{
3099	struct device_private *p = to_device_private_parent(n);
3100	struct device *dev = p->device;
3101
3102	get_device(dev);
3103}
3104
3105static void klist_children_put(struct klist_node *n)
3106{
3107	struct device_private *p = to_device_private_parent(n);
3108	struct device *dev = p->device;
3109
3110	put_device(dev);
3111}
3112
3113/**
3114 * device_initialize - init device structure.
3115 * @dev: device.
3116 *
3117 * This prepares the device for use by other layers by initializing
3118 * its fields.
3119 * It is the first half of device_register(), if called by
3120 * that function, though it can also be called separately, so one
3121 * may use @dev's fields. In particular, get_device()/put_device()
3122 * may be used for reference counting of @dev after calling this
3123 * function.
3124 *
3125 * All fields in @dev must be initialized by the caller to 0, except
3126 * for those explicitly set to some other value.  The simplest
3127 * approach is to use kzalloc() to allocate the structure containing
3128 * @dev.
3129 *
3130 * NOTE: Use put_device() to give up your reference instead of freeing
3131 * @dev directly once you have called this function.
3132 */
3133void device_initialize(struct device *dev)
3134{
3135	dev->kobj.kset = devices_kset;
3136	kobject_init(&dev->kobj, &device_ktype);
3137	INIT_LIST_HEAD(&dev->dma_pools);
3138	mutex_init(&dev->mutex);
3139	lockdep_set_novalidate_class(&dev->mutex);
3140	spin_lock_init(&dev->devres_lock);
3141	INIT_LIST_HEAD(&dev->devres_head);
3142	device_pm_init(dev);
3143	set_dev_node(dev, NUMA_NO_NODE);
3144	INIT_LIST_HEAD(&dev->links.consumers);
3145	INIT_LIST_HEAD(&dev->links.suppliers);
3146	INIT_LIST_HEAD(&dev->links.defer_sync);
3147	dev->links.status = DL_DEV_NO_DRIVER;
3148#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3149    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3150    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3151	dev->dma_coherent = dma_default_coherent;
3152#endif
3153	swiotlb_dev_init(dev);
 
 
3154}
3155EXPORT_SYMBOL_GPL(device_initialize);
3156
3157struct kobject *virtual_device_parent(void)
3158{
3159	static struct kobject *virtual_dir = NULL;
3160
3161	if (!virtual_dir)
3162		virtual_dir = kobject_create_and_add("virtual",
3163						     &devices_kset->kobj);
3164
3165	return virtual_dir;
3166}
3167
3168struct class_dir {
3169	struct kobject kobj;
3170	const struct class *class;
3171};
3172
3173#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3174
3175static void class_dir_release(struct kobject *kobj)
3176{
3177	struct class_dir *dir = to_class_dir(kobj);
3178	kfree(dir);
3179}
3180
3181static const
3182struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3183{
3184	const struct class_dir *dir = to_class_dir(kobj);
3185	return dir->class->ns_type;
3186}
3187
3188static const struct kobj_type class_dir_ktype = {
3189	.release	= class_dir_release,
3190	.sysfs_ops	= &kobj_sysfs_ops,
3191	.child_ns_type	= class_dir_child_ns_type
3192};
3193
3194static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3195						struct kobject *parent_kobj)
3196{
3197	struct class_dir *dir;
3198	int retval;
3199
3200	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3201	if (!dir)
3202		return ERR_PTR(-ENOMEM);
3203
3204	dir->class = sp->class;
3205	kobject_init(&dir->kobj, &class_dir_ktype);
3206
3207	dir->kobj.kset = &sp->glue_dirs;
3208
3209	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3210	if (retval < 0) {
3211		kobject_put(&dir->kobj);
3212		return ERR_PTR(retval);
3213	}
3214	return &dir->kobj;
3215}
3216
3217static DEFINE_MUTEX(gdp_mutex);
3218
3219static struct kobject *get_device_parent(struct device *dev,
3220					 struct device *parent)
3221{
3222	struct subsys_private *sp = class_to_subsys(dev->class);
3223	struct kobject *kobj = NULL;
3224
3225	if (sp) {
3226		struct kobject *parent_kobj;
3227		struct kobject *k;
3228
 
 
 
 
 
 
 
 
 
3229		/*
3230		 * If we have no parent, we live in "virtual".
3231		 * Class-devices with a non class-device as parent, live
3232		 * in a "glue" directory to prevent namespace collisions.
3233		 */
3234		if (parent == NULL)
3235			parent_kobj = virtual_device_parent();
3236		else if (parent->class && !dev->class->ns_type) {
3237			subsys_put(sp);
3238			return &parent->kobj;
3239		} else {
3240			parent_kobj = &parent->kobj;
3241		}
3242
3243		mutex_lock(&gdp_mutex);
3244
3245		/* find our class-directory at the parent and reference it */
3246		spin_lock(&sp->glue_dirs.list_lock);
3247		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3248			if (k->parent == parent_kobj) {
3249				kobj = kobject_get(k);
3250				break;
3251			}
3252		spin_unlock(&sp->glue_dirs.list_lock);
3253		if (kobj) {
3254			mutex_unlock(&gdp_mutex);
3255			subsys_put(sp);
3256			return kobj;
3257		}
3258
3259		/* or create a new class-directory at the parent device */
3260		k = class_dir_create_and_add(sp, parent_kobj);
3261		/* do not emit an uevent for this simple "glue" directory */
3262		mutex_unlock(&gdp_mutex);
3263		subsys_put(sp);
3264		return k;
3265	}
3266
3267	/* subsystems can specify a default root directory for their devices */
3268	if (!parent && dev->bus) {
3269		struct device *dev_root = bus_get_dev_root(dev->bus);
3270
3271		if (dev_root) {
3272			kobj = &dev_root->kobj;
3273			put_device(dev_root);
3274			return kobj;
3275		}
3276	}
3277
3278	if (parent)
3279		return &parent->kobj;
3280	return NULL;
3281}
3282
3283static inline bool live_in_glue_dir(struct kobject *kobj,
3284				    struct device *dev)
3285{
3286	struct subsys_private *sp;
3287	bool retval;
3288
3289	if (!kobj || !dev->class)
3290		return false;
3291
3292	sp = class_to_subsys(dev->class);
3293	if (!sp)
3294		return false;
3295
3296	if (kobj->kset == &sp->glue_dirs)
3297		retval = true;
3298	else
3299		retval = false;
3300
3301	subsys_put(sp);
3302	return retval;
3303}
3304
3305static inline struct kobject *get_glue_dir(struct device *dev)
3306{
3307	return dev->kobj.parent;
3308}
3309
3310/**
3311 * kobject_has_children - Returns whether a kobject has children.
3312 * @kobj: the object to test
3313 *
3314 * This will return whether a kobject has other kobjects as children.
3315 *
3316 * It does NOT account for the presence of attribute files, only sub
3317 * directories. It also assumes there is no concurrent addition or
3318 * removal of such children, and thus relies on external locking.
3319 */
3320static inline bool kobject_has_children(struct kobject *kobj)
3321{
3322	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3323
3324	return kobj->sd && kobj->sd->dir.subdirs;
3325}
3326
3327/*
3328 * make sure cleaning up dir as the last step, we need to make
3329 * sure .release handler of kobject is run with holding the
3330 * global lock
3331 */
3332static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3333{
3334	unsigned int ref;
3335
3336	/* see if we live in a "glue" directory */
3337	if (!live_in_glue_dir(glue_dir, dev))
3338		return;
3339
3340	mutex_lock(&gdp_mutex);
3341	/**
3342	 * There is a race condition between removing glue directory
3343	 * and adding a new device under the glue directory.
3344	 *
3345	 * CPU1:                                         CPU2:
3346	 *
3347	 * device_add()
3348	 *   get_device_parent()
3349	 *     class_dir_create_and_add()
3350	 *       kobject_add_internal()
3351	 *         create_dir()    // create glue_dir
3352	 *
3353	 *                                               device_add()
3354	 *                                                 get_device_parent()
3355	 *                                                   kobject_get() // get glue_dir
3356	 *
3357	 * device_del()
3358	 *   cleanup_glue_dir()
3359	 *     kobject_del(glue_dir)
3360	 *
3361	 *                                               kobject_add()
3362	 *                                                 kobject_add_internal()
3363	 *                                                   create_dir() // in glue_dir
3364	 *                                                     sysfs_create_dir_ns()
3365	 *                                                       kernfs_create_dir_ns(sd)
3366	 *
3367	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3368	 *       sysfs_put()        // free glue_dir->sd
3369	 *
3370	 *                                                         // sd is freed
3371	 *                                                         kernfs_new_node(sd)
3372	 *                                                           kernfs_get(glue_dir)
3373	 *                                                           kernfs_add_one()
3374	 *                                                           kernfs_put()
3375	 *
3376	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3377	 * a new device under glue dir, the glue_dir kobject reference count
3378	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3379	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3380	 * and sysfs_put(). This result in glue_dir->sd is freed.
3381	 *
3382	 * Then the CPU2 will see a stale "empty" but still potentially used
3383	 * glue dir around in kernfs_new_node().
3384	 *
3385	 * In order to avoid this happening, we also should make sure that
3386	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3387	 * for glue_dir kobj is 1.
3388	 */
3389	ref = kref_read(&glue_dir->kref);
3390	if (!kobject_has_children(glue_dir) && !--ref)
3391		kobject_del(glue_dir);
3392	kobject_put(glue_dir);
3393	mutex_unlock(&gdp_mutex);
3394}
3395
3396static int device_add_class_symlinks(struct device *dev)
3397{
3398	struct device_node *of_node = dev_of_node(dev);
3399	struct subsys_private *sp;
3400	int error;
3401
3402	if (of_node) {
3403		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3404		if (error)
3405			dev_warn(dev, "Error %d creating of_node link\n",error);
3406		/* An error here doesn't warrant bringing down the device */
3407	}
3408
3409	sp = class_to_subsys(dev->class);
3410	if (!sp)
3411		return 0;
3412
3413	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
 
 
3414	if (error)
3415		goto out_devnode;
3416
3417	if (dev->parent && device_is_not_partition(dev)) {
3418		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3419					  "device");
3420		if (error)
3421			goto out_subsys;
3422	}
3423
 
 
 
 
 
 
3424	/* link in the class directory pointing to the device */
3425	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
 
3426	if (error)
3427		goto out_device;
3428	goto exit;
 
3429
3430out_device:
3431	sysfs_remove_link(&dev->kobj, "device");
 
3432out_subsys:
3433	sysfs_remove_link(&dev->kobj, "subsystem");
3434out_devnode:
3435	sysfs_remove_link(&dev->kobj, "of_node");
3436exit:
3437	subsys_put(sp);
3438	return error;
3439}
3440
3441static void device_remove_class_symlinks(struct device *dev)
3442{
3443	struct subsys_private *sp = class_to_subsys(dev->class);
3444
3445	if (dev_of_node(dev))
3446		sysfs_remove_link(&dev->kobj, "of_node");
3447
3448	if (!sp)
3449		return;
3450
3451	if (dev->parent && device_is_not_partition(dev))
3452		sysfs_remove_link(&dev->kobj, "device");
3453	sysfs_remove_link(&dev->kobj, "subsystem");
3454	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3455	subsys_put(sp);
 
 
 
3456}
3457
3458/**
3459 * dev_set_name - set a device name
3460 * @dev: device
3461 * @fmt: format string for the device's name
3462 */
3463int dev_set_name(struct device *dev, const char *fmt, ...)
3464{
3465	va_list vargs;
3466	int err;
3467
3468	va_start(vargs, fmt);
3469	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3470	va_end(vargs);
3471	return err;
3472}
3473EXPORT_SYMBOL_GPL(dev_set_name);
3474
3475/* select a /sys/dev/ directory for the device */
 
 
 
 
 
 
 
 
 
 
3476static struct kobject *device_to_dev_kobj(struct device *dev)
3477{
3478	if (is_blockdev(dev))
3479		return sysfs_dev_block_kobj;
 
 
3480	else
3481		return sysfs_dev_char_kobj;
 
 
3482}
3483
3484static int device_create_sys_dev_entry(struct device *dev)
3485{
3486	struct kobject *kobj = device_to_dev_kobj(dev);
3487	int error = 0;
3488	char devt_str[15];
3489
3490	if (kobj) {
3491		format_dev_t(devt_str, dev->devt);
3492		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3493	}
3494
3495	return error;
3496}
3497
3498static void device_remove_sys_dev_entry(struct device *dev)
3499{
3500	struct kobject *kobj = device_to_dev_kobj(dev);
3501	char devt_str[15];
3502
3503	if (kobj) {
3504		format_dev_t(devt_str, dev->devt);
3505		sysfs_remove_link(kobj, devt_str);
3506	}
3507}
3508
3509static int device_private_init(struct device *dev)
3510{
3511	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3512	if (!dev->p)
3513		return -ENOMEM;
3514	dev->p->device = dev;
3515	klist_init(&dev->p->klist_children, klist_children_get,
3516		   klist_children_put);
3517	INIT_LIST_HEAD(&dev->p->deferred_probe);
3518	return 0;
3519}
3520
3521/**
3522 * device_add - add device to device hierarchy.
3523 * @dev: device.
3524 *
3525 * This is part 2 of device_register(), though may be called
3526 * separately _iff_ device_initialize() has been called separately.
3527 *
3528 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3529 * to the global and sibling lists for the device, then
3530 * adds it to the other relevant subsystems of the driver model.
3531 *
3532 * Do not call this routine or device_register() more than once for
3533 * any device structure.  The driver model core is not designed to work
3534 * with devices that get unregistered and then spring back to life.
3535 * (Among other things, it's very hard to guarantee that all references
3536 * to the previous incarnation of @dev have been dropped.)  Allocate
3537 * and register a fresh new struct device instead.
3538 *
3539 * NOTE: _Never_ directly free @dev after calling this function, even
3540 * if it returned an error! Always use put_device() to give up your
3541 * reference instead.
3542 *
3543 * Rule of thumb is: if device_add() succeeds, you should call
3544 * device_del() when you want to get rid of it. If device_add() has
3545 * *not* succeeded, use *only* put_device() to drop the reference
3546 * count.
3547 */
3548int device_add(struct device *dev)
3549{
3550	struct subsys_private *sp;
3551	struct device *parent;
3552	struct kobject *kobj;
3553	struct class_interface *class_intf;
3554	int error = -EINVAL;
3555	struct kobject *glue_dir = NULL;
3556
3557	dev = get_device(dev);
3558	if (!dev)
3559		goto done;
3560
3561	if (!dev->p) {
3562		error = device_private_init(dev);
3563		if (error)
3564			goto done;
3565	}
3566
3567	/*
3568	 * for statically allocated devices, which should all be converted
3569	 * some day, we need to initialize the name. We prevent reading back
3570	 * the name, and force the use of dev_name()
3571	 */
3572	if (dev->init_name) {
3573		error = dev_set_name(dev, "%s", dev->init_name);
3574		dev->init_name = NULL;
3575	}
3576
3577	if (dev_name(dev))
3578		error = 0;
3579	/* subsystems can specify simple device enumeration */
3580	else if (dev->bus && dev->bus->dev_name)
3581		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3582	else
 
3583		error = -EINVAL;
3584	if (error)
3585		goto name_error;
 
3586
3587	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3588
3589	parent = get_device(dev->parent);
3590	kobj = get_device_parent(dev, parent);
3591	if (IS_ERR(kobj)) {
3592		error = PTR_ERR(kobj);
3593		goto parent_error;
3594	}
3595	if (kobj)
3596		dev->kobj.parent = kobj;
3597
3598	/* use parent numa_node */
3599	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3600		set_dev_node(dev, dev_to_node(parent));
3601
3602	/* first, register with generic layer. */
3603	/* we require the name to be set before, and pass NULL */
3604	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3605	if (error) {
3606		glue_dir = kobj;
3607		goto Error;
3608	}
3609
3610	/* notify platform of device entry */
3611	device_platform_notify(dev);
3612
3613	error = device_create_file(dev, &dev_attr_uevent);
3614	if (error)
3615		goto attrError;
3616
3617	error = device_add_class_symlinks(dev);
3618	if (error)
3619		goto SymlinkError;
3620	error = device_add_attrs(dev);
3621	if (error)
3622		goto AttrsError;
3623	error = bus_add_device(dev);
3624	if (error)
3625		goto BusError;
3626	error = dpm_sysfs_add(dev);
3627	if (error)
3628		goto DPMError;
3629	device_pm_add(dev);
3630
3631	if (MAJOR(dev->devt)) {
3632		error = device_create_file(dev, &dev_attr_dev);
3633		if (error)
3634			goto DevAttrError;
3635
3636		error = device_create_sys_dev_entry(dev);
3637		if (error)
3638			goto SysEntryError;
3639
3640		devtmpfs_create_node(dev);
3641	}
3642
3643	/* Notify clients of device addition.  This call must come
3644	 * after dpm_sysfs_add() and before kobject_uevent().
3645	 */
3646	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
 
 
 
3647	kobject_uevent(&dev->kobj, KOBJ_ADD);
3648
3649	/*
3650	 * Check if any of the other devices (consumers) have been waiting for
3651	 * this device (supplier) to be added so that they can create a device
3652	 * link to it.
3653	 *
3654	 * This needs to happen after device_pm_add() because device_link_add()
3655	 * requires the supplier be registered before it's called.
3656	 *
3657	 * But this also needs to happen before bus_probe_device() to make sure
3658	 * waiting consumers can link to it before the driver is bound to the
3659	 * device and the driver sync_state callback is called for this device.
3660	 */
3661	if (dev->fwnode && !dev->fwnode->dev) {
3662		dev->fwnode->dev = dev;
3663		fw_devlink_link_device(dev);
3664	}
3665
3666	bus_probe_device(dev);
3667
3668	/*
3669	 * If all driver registration is done and a newly added device doesn't
3670	 * match with any driver, don't block its consumers from probing in
3671	 * case the consumer device is able to operate without this supplier.
3672	 */
3673	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3674		fw_devlink_unblock_consumers(dev);
3675
3676	if (parent)
3677		klist_add_tail(&dev->p->knode_parent,
3678			       &parent->p->klist_children);
3679
3680	sp = class_to_subsys(dev->class);
3681	if (sp) {
3682		mutex_lock(&sp->mutex);
3683		/* tie the class to the device */
3684		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
 
3685
3686		/* notify any interfaces that the device is here */
3687		list_for_each_entry(class_intf, &sp->interfaces, node)
 
3688			if (class_intf->add_dev)
3689				class_intf->add_dev(dev);
3690		mutex_unlock(&sp->mutex);
3691		subsys_put(sp);
3692	}
3693done:
3694	put_device(dev);
3695	return error;
3696 SysEntryError:
3697	if (MAJOR(dev->devt))
3698		device_remove_file(dev, &dev_attr_dev);
3699 DevAttrError:
3700	device_pm_remove(dev);
3701	dpm_sysfs_remove(dev);
3702 DPMError:
3703	dev->driver = NULL;
3704	bus_remove_device(dev);
3705 BusError:
3706	device_remove_attrs(dev);
3707 AttrsError:
3708	device_remove_class_symlinks(dev);
3709 SymlinkError:
3710	device_remove_file(dev, &dev_attr_uevent);
3711 attrError:
3712	device_platform_notify_remove(dev);
3713	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3714	glue_dir = get_glue_dir(dev);
3715	kobject_del(&dev->kobj);
3716 Error:
3717	cleanup_glue_dir(dev, glue_dir);
3718parent_error:
3719	put_device(parent);
3720name_error:
3721	kfree(dev->p);
3722	dev->p = NULL;
3723	goto done;
3724}
3725EXPORT_SYMBOL_GPL(device_add);
3726
3727/**
3728 * device_register - register a device with the system.
3729 * @dev: pointer to the device structure
3730 *
3731 * This happens in two clean steps - initialize the device
3732 * and add it to the system. The two steps can be called
3733 * separately, but this is the easiest and most common.
3734 * I.e. you should only call the two helpers separately if
3735 * have a clearly defined need to use and refcount the device
3736 * before it is added to the hierarchy.
3737 *
3738 * For more information, see the kerneldoc for device_initialize()
3739 * and device_add().
3740 *
3741 * NOTE: _Never_ directly free @dev after calling this function, even
3742 * if it returned an error! Always use put_device() to give up the
3743 * reference initialized in this function instead.
3744 */
3745int device_register(struct device *dev)
3746{
3747	device_initialize(dev);
3748	return device_add(dev);
3749}
3750EXPORT_SYMBOL_GPL(device_register);
3751
3752/**
3753 * get_device - increment reference count for device.
3754 * @dev: device.
3755 *
3756 * This simply forwards the call to kobject_get(), though
3757 * we do take care to provide for the case that we get a NULL
3758 * pointer passed in.
3759 */
3760struct device *get_device(struct device *dev)
3761{
3762	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3763}
3764EXPORT_SYMBOL_GPL(get_device);
3765
3766/**
3767 * put_device - decrement reference count.
3768 * @dev: device in question.
3769 */
3770void put_device(struct device *dev)
3771{
3772	/* might_sleep(); */
3773	if (dev)
3774		kobject_put(&dev->kobj);
3775}
3776EXPORT_SYMBOL_GPL(put_device);
3777
3778bool kill_device(struct device *dev)
3779{
3780	/*
3781	 * Require the device lock and set the "dead" flag to guarantee that
3782	 * the update behavior is consistent with the other bitfields near
3783	 * it and that we cannot have an asynchronous probe routine trying
3784	 * to run while we are tearing out the bus/class/sysfs from
3785	 * underneath the device.
3786	 */
3787	device_lock_assert(dev);
3788
3789	if (dev->p->dead)
3790		return false;
3791	dev->p->dead = true;
3792	return true;
3793}
3794EXPORT_SYMBOL_GPL(kill_device);
3795
3796/**
3797 * device_del - delete device from system.
3798 * @dev: device.
3799 *
3800 * This is the first part of the device unregistration
3801 * sequence. This removes the device from the lists we control
3802 * from here, has it removed from the other driver model
3803 * subsystems it was added to in device_add(), and removes it
3804 * from the kobject hierarchy.
3805 *
3806 * NOTE: this should be called manually _iff_ device_add() was
3807 * also called manually.
3808 */
3809void device_del(struct device *dev)
3810{
3811	struct subsys_private *sp;
3812	struct device *parent = dev->parent;
3813	struct kobject *glue_dir = NULL;
3814	struct class_interface *class_intf;
3815	unsigned int noio_flag;
3816
3817	device_lock(dev);
3818	kill_device(dev);
3819	device_unlock(dev);
3820
3821	if (dev->fwnode && dev->fwnode->dev == dev)
3822		dev->fwnode->dev = NULL;
3823
3824	/* Notify clients of device removal.  This call must come
3825	 * before dpm_sysfs_remove().
3826	 */
3827	noio_flag = memalloc_noio_save();
3828	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
 
 
3829
3830	dpm_sysfs_remove(dev);
3831	if (parent)
3832		klist_del(&dev->p->knode_parent);
3833	if (MAJOR(dev->devt)) {
3834		devtmpfs_delete_node(dev);
3835		device_remove_sys_dev_entry(dev);
3836		device_remove_file(dev, &dev_attr_dev);
3837	}
3838
3839	sp = class_to_subsys(dev->class);
3840	if (sp) {
3841		device_remove_class_symlinks(dev);
3842
3843		mutex_lock(&sp->mutex);
3844		/* notify any interfaces that the device is now gone */
3845		list_for_each_entry(class_intf, &sp->interfaces, node)
 
3846			if (class_intf->remove_dev)
3847				class_intf->remove_dev(dev);
3848		/* remove the device from the class list */
3849		klist_del(&dev->p->knode_class);
3850		mutex_unlock(&sp->mutex);
3851		subsys_put(sp);
3852	}
3853	device_remove_file(dev, &dev_attr_uevent);
3854	device_remove_attrs(dev);
3855	bus_remove_device(dev);
3856	device_pm_remove(dev);
3857	driver_deferred_probe_del(dev);
3858	device_platform_notify_remove(dev);
3859	device_links_purge(dev);
3860
3861	/*
3862	 * If a device does not have a driver attached, we need to clean
3863	 * up any managed resources. We do this in device_release(), but
3864	 * it's never called (and we leak the device) if a managed
3865	 * resource holds a reference to the device. So release all
3866	 * managed resources here, like we do in driver_detach(). We
3867	 * still need to do so again in device_release() in case someone
3868	 * adds a new resource after this point, though.
3869	 */
3870	devres_release_all(dev);
3871
3872	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3873	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3874	glue_dir = get_glue_dir(dev);
3875	kobject_del(&dev->kobj);
3876	cleanup_glue_dir(dev, glue_dir);
3877	memalloc_noio_restore(noio_flag);
3878	put_device(parent);
3879}
3880EXPORT_SYMBOL_GPL(device_del);
3881
3882/**
3883 * device_unregister - unregister device from system.
3884 * @dev: device going away.
3885 *
3886 * We do this in two parts, like we do device_register(). First,
3887 * we remove it from all the subsystems with device_del(), then
3888 * we decrement the reference count via put_device(). If that
3889 * is the final reference count, the device will be cleaned up
3890 * via device_release() above. Otherwise, the structure will
3891 * stick around until the final reference to the device is dropped.
3892 */
3893void device_unregister(struct device *dev)
3894{
3895	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3896	device_del(dev);
3897	put_device(dev);
3898}
3899EXPORT_SYMBOL_GPL(device_unregister);
3900
3901static struct device *prev_device(struct klist_iter *i)
3902{
3903	struct klist_node *n = klist_prev(i);
3904	struct device *dev = NULL;
3905	struct device_private *p;
3906
3907	if (n) {
3908		p = to_device_private_parent(n);
3909		dev = p->device;
3910	}
3911	return dev;
3912}
3913
3914static struct device *next_device(struct klist_iter *i)
3915{
3916	struct klist_node *n = klist_next(i);
3917	struct device *dev = NULL;
3918	struct device_private *p;
3919
3920	if (n) {
3921		p = to_device_private_parent(n);
3922		dev = p->device;
3923	}
3924	return dev;
3925}
3926
3927/**
3928 * device_get_devnode - path of device node file
3929 * @dev: device
3930 * @mode: returned file access mode
3931 * @uid: returned file owner
3932 * @gid: returned file group
3933 * @tmp: possibly allocated string
3934 *
3935 * Return the relative path of a possible device node.
3936 * Non-default names may need to allocate a memory to compose
3937 * a name. This memory is returned in tmp and needs to be
3938 * freed by the caller.
3939 */
3940const char *device_get_devnode(const struct device *dev,
3941			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3942			       const char **tmp)
3943{
3944	char *s;
3945
3946	*tmp = NULL;
3947
3948	/* the device type may provide a specific name */
3949	if (dev->type && dev->type->devnode)
3950		*tmp = dev->type->devnode(dev, mode, uid, gid);
3951	if (*tmp)
3952		return *tmp;
3953
3954	/* the class may provide a specific name */
3955	if (dev->class && dev->class->devnode)
3956		*tmp = dev->class->devnode(dev, mode);
3957	if (*tmp)
3958		return *tmp;
3959
3960	/* return name without allocation, tmp == NULL */
3961	if (strchr(dev_name(dev), '!') == NULL)
3962		return dev_name(dev);
3963
3964	/* replace '!' in the name with '/' */
3965	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3966	if (!s)
3967		return NULL;
 
3968	return *tmp = s;
3969}
3970
3971/**
3972 * device_for_each_child - device child iterator.
3973 * @parent: parent struct device.
3974 * @fn: function to be called for each device.
3975 * @data: data for the callback.
3976 *
3977 * Iterate over @parent's child devices, and call @fn for each,
3978 * passing it @data.
3979 *
3980 * We check the return of @fn each time. If it returns anything
3981 * other than 0, we break out and return that value.
3982 */
3983int device_for_each_child(struct device *parent, void *data,
3984			  int (*fn)(struct device *dev, void *data))
3985{
3986	struct klist_iter i;
3987	struct device *child;
3988	int error = 0;
3989
3990	if (!parent || !parent->p)
3991		return 0;
3992
3993	klist_iter_init(&parent->p->klist_children, &i);
3994	while (!error && (child = next_device(&i)))
3995		error = fn(child, data);
3996	klist_iter_exit(&i);
3997	return error;
3998}
3999EXPORT_SYMBOL_GPL(device_for_each_child);
4000
4001/**
4002 * device_for_each_child_reverse - device child iterator in reversed order.
4003 * @parent: parent struct device.
4004 * @fn: function to be called for each device.
4005 * @data: data for the callback.
4006 *
4007 * Iterate over @parent's child devices, and call @fn for each,
4008 * passing it @data.
4009 *
4010 * We check the return of @fn each time. If it returns anything
4011 * other than 0, we break out and return that value.
4012 */
4013int device_for_each_child_reverse(struct device *parent, void *data,
4014				  int (*fn)(struct device *dev, void *data))
4015{
4016	struct klist_iter i;
4017	struct device *child;
4018	int error = 0;
4019
4020	if (!parent || !parent->p)
4021		return 0;
4022
4023	klist_iter_init(&parent->p->klist_children, &i);
4024	while ((child = prev_device(&i)) && !error)
4025		error = fn(child, data);
4026	klist_iter_exit(&i);
4027	return error;
4028}
4029EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4030
4031/**
4032 * device_for_each_child_reverse_from - device child iterator in reversed order.
4033 * @parent: parent struct device.
4034 * @from: optional starting point in child list
4035 * @fn: function to be called for each device.
4036 * @data: data for the callback.
4037 *
4038 * Iterate over @parent's child devices, starting at @from, and call @fn
4039 * for each, passing it @data. This helper is identical to
4040 * device_for_each_child_reverse() when @from is NULL.
4041 *
4042 * @fn is checked each iteration. If it returns anything other than 0,
4043 * iteration stop and that value is returned to the caller of
4044 * device_for_each_child_reverse_from();
4045 */
4046int device_for_each_child_reverse_from(struct device *parent,
4047				       struct device *from, const void *data,
4048				       int (*fn)(struct device *, const void *))
4049{
4050	struct klist_iter i;
4051	struct device *child;
4052	int error = 0;
4053
4054	if (!parent->p)
4055		return 0;
4056
4057	klist_iter_init_node(&parent->p->klist_children, &i,
4058			     (from ? &from->p->knode_parent : NULL));
4059	while ((child = prev_device(&i)) && !error)
4060		error = fn(child, data);
4061	klist_iter_exit(&i);
4062	return error;
4063}
4064EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4065
4066/**
4067 * device_find_child - device iterator for locating a particular device.
4068 * @parent: parent struct device
4069 * @match: Callback function to check device
4070 * @data: Data to pass to match function
4071 *
4072 * This is similar to the device_for_each_child() function above, but it
4073 * returns a reference to a device that is 'found' for later use, as
4074 * determined by the @match callback.
4075 *
4076 * The callback should return 0 if the device doesn't match and non-zero
4077 * if it does.  If the callback returns non-zero and a reference to the
4078 * current device can be obtained, this function will return to the caller
4079 * and not iterate over any more devices.
4080 *
4081 * NOTE: you will need to drop the reference with put_device() after use.
4082 */
4083struct device *device_find_child(struct device *parent, void *data,
4084				 int (*match)(struct device *dev, void *data))
4085{
4086	struct klist_iter i;
4087	struct device *child;
4088
4089	if (!parent || !parent->p)
4090		return NULL;
4091
4092	klist_iter_init(&parent->p->klist_children, &i);
4093	while ((child = next_device(&i)))
4094		if (match(child, data) && get_device(child))
4095			break;
4096	klist_iter_exit(&i);
4097	return child;
4098}
4099EXPORT_SYMBOL_GPL(device_find_child);
4100
4101/**
4102 * device_find_child_by_name - device iterator for locating a child device.
4103 * @parent: parent struct device
4104 * @name: name of the child device
4105 *
4106 * This is similar to the device_find_child() function above, but it
4107 * returns a reference to a device that has the name @name.
4108 *
4109 * NOTE: you will need to drop the reference with put_device() after use.
4110 */
4111struct device *device_find_child_by_name(struct device *parent,
4112					 const char *name)
4113{
4114	struct klist_iter i;
4115	struct device *child;
4116
4117	if (!parent)
4118		return NULL;
4119
4120	klist_iter_init(&parent->p->klist_children, &i);
4121	while ((child = next_device(&i)))
4122		if (sysfs_streq(dev_name(child), name) && get_device(child))
4123			break;
4124	klist_iter_exit(&i);
4125	return child;
4126}
4127EXPORT_SYMBOL_GPL(device_find_child_by_name);
4128
4129static int match_any(struct device *dev, void *unused)
4130{
4131	return 1;
4132}
4133
4134/**
4135 * device_find_any_child - device iterator for locating a child device, if any.
4136 * @parent: parent struct device
4137 *
4138 * This is similar to the device_find_child() function above, but it
4139 * returns a reference to a child device, if any.
4140 *
4141 * NOTE: you will need to drop the reference with put_device() after use.
4142 */
4143struct device *device_find_any_child(struct device *parent)
4144{
4145	return device_find_child(parent, NULL, match_any);
4146}
4147EXPORT_SYMBOL_GPL(device_find_any_child);
4148
4149int __init devices_init(void)
4150{
4151	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4152	if (!devices_kset)
4153		return -ENOMEM;
4154	dev_kobj = kobject_create_and_add("dev", NULL);
4155	if (!dev_kobj)
4156		goto dev_kobj_err;
4157	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4158	if (!sysfs_dev_block_kobj)
4159		goto block_kobj_err;
4160	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4161	if (!sysfs_dev_char_kobj)
4162		goto char_kobj_err;
4163	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4164	if (!device_link_wq)
4165		goto wq_err;
4166
4167	return 0;
4168
4169 wq_err:
4170	kobject_put(sysfs_dev_char_kobj);
4171 char_kobj_err:
4172	kobject_put(sysfs_dev_block_kobj);
4173 block_kobj_err:
4174	kobject_put(dev_kobj);
4175 dev_kobj_err:
4176	kset_unregister(devices_kset);
4177	return -ENOMEM;
4178}
4179
4180static int device_check_offline(struct device *dev, void *not_used)
4181{
4182	int ret;
4183
4184	ret = device_for_each_child(dev, NULL, device_check_offline);
4185	if (ret)
4186		return ret;
4187
4188	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4189}
4190
4191/**
4192 * device_offline - Prepare the device for hot-removal.
4193 * @dev: Device to be put offline.
4194 *
4195 * Execute the device bus type's .offline() callback, if present, to prepare
4196 * the device for a subsequent hot-removal.  If that succeeds, the device must
4197 * not be used until either it is removed or its bus type's .online() callback
4198 * is executed.
4199 *
4200 * Call under device_hotplug_lock.
4201 */
4202int device_offline(struct device *dev)
4203{
4204	int ret;
4205
4206	if (dev->offline_disabled)
4207		return -EPERM;
4208
4209	ret = device_for_each_child(dev, NULL, device_check_offline);
4210	if (ret)
4211		return ret;
4212
4213	device_lock(dev);
4214	if (device_supports_offline(dev)) {
4215		if (dev->offline) {
4216			ret = 1;
4217		} else {
4218			ret = dev->bus->offline(dev);
4219			if (!ret) {
4220				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4221				dev->offline = true;
4222			}
4223		}
4224	}
4225	device_unlock(dev);
4226
4227	return ret;
4228}
4229
4230/**
4231 * device_online - Put the device back online after successful device_offline().
4232 * @dev: Device to be put back online.
4233 *
4234 * If device_offline() has been successfully executed for @dev, but the device
4235 * has not been removed subsequently, execute its bus type's .online() callback
4236 * to indicate that the device can be used again.
4237 *
4238 * Call under device_hotplug_lock.
4239 */
4240int device_online(struct device *dev)
4241{
4242	int ret = 0;
4243
4244	device_lock(dev);
4245	if (device_supports_offline(dev)) {
4246		if (dev->offline) {
4247			ret = dev->bus->online(dev);
4248			if (!ret) {
4249				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4250				dev->offline = false;
4251			}
4252		} else {
4253			ret = 1;
4254		}
4255	}
4256	device_unlock(dev);
4257
4258	return ret;
4259}
4260
4261struct root_device {
4262	struct device dev;
4263	struct module *owner;
4264};
4265
4266static inline struct root_device *to_root_device(struct device *d)
4267{
4268	return container_of(d, struct root_device, dev);
4269}
4270
4271static void root_device_release(struct device *dev)
4272{
4273	kfree(to_root_device(dev));
4274}
4275
4276/**
4277 * __root_device_register - allocate and register a root device
4278 * @name: root device name
4279 * @owner: owner module of the root device, usually THIS_MODULE
4280 *
4281 * This function allocates a root device and registers it
4282 * using device_register(). In order to free the returned
4283 * device, use root_device_unregister().
4284 *
4285 * Root devices are dummy devices which allow other devices
4286 * to be grouped under /sys/devices. Use this function to
4287 * allocate a root device and then use it as the parent of
4288 * any device which should appear under /sys/devices/{name}
4289 *
4290 * The /sys/devices/{name} directory will also contain a
4291 * 'module' symlink which points to the @owner directory
4292 * in sysfs.
4293 *
4294 * Returns &struct device pointer on success, or ERR_PTR() on error.
4295 *
4296 * Note: You probably want to use root_device_register().
4297 */
4298struct device *__root_device_register(const char *name, struct module *owner)
4299{
4300	struct root_device *root;
4301	int err = -ENOMEM;
4302
4303	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4304	if (!root)
4305		return ERR_PTR(err);
4306
4307	err = dev_set_name(&root->dev, "%s", name);
4308	if (err) {
4309		kfree(root);
4310		return ERR_PTR(err);
4311	}
4312
4313	root->dev.release = root_device_release;
4314
4315	err = device_register(&root->dev);
4316	if (err) {
4317		put_device(&root->dev);
4318		return ERR_PTR(err);
4319	}
4320
4321#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4322	if (owner) {
4323		struct module_kobject *mk = &owner->mkobj;
4324
4325		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4326		if (err) {
4327			device_unregister(&root->dev);
4328			return ERR_PTR(err);
4329		}
4330		root->owner = owner;
4331	}
4332#endif
4333
4334	return &root->dev;
4335}
4336EXPORT_SYMBOL_GPL(__root_device_register);
4337
4338/**
4339 * root_device_unregister - unregister and free a root device
4340 * @dev: device going away
4341 *
4342 * This function unregisters and cleans up a device that was created by
4343 * root_device_register().
4344 */
4345void root_device_unregister(struct device *dev)
4346{
4347	struct root_device *root = to_root_device(dev);
4348
4349	if (root->owner)
4350		sysfs_remove_link(&root->dev.kobj, "module");
4351
4352	device_unregister(dev);
4353}
4354EXPORT_SYMBOL_GPL(root_device_unregister);
4355
4356
4357static void device_create_release(struct device *dev)
4358{
4359	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4360	kfree(dev);
4361}
4362
4363static __printf(6, 0) struct device *
4364device_create_groups_vargs(const struct class *class, struct device *parent,
4365			   dev_t devt, void *drvdata,
4366			   const struct attribute_group **groups,
4367			   const char *fmt, va_list args)
4368{
4369	struct device *dev = NULL;
4370	int retval = -ENODEV;
4371
4372	if (IS_ERR_OR_NULL(class))
4373		goto error;
4374
4375	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4376	if (!dev) {
4377		retval = -ENOMEM;
4378		goto error;
4379	}
4380
4381	device_initialize(dev);
4382	dev->devt = devt;
4383	dev->class = class;
4384	dev->parent = parent;
4385	dev->groups = groups;
4386	dev->release = device_create_release;
4387	dev_set_drvdata(dev, drvdata);
4388
4389	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4390	if (retval)
4391		goto error;
4392
4393	retval = device_add(dev);
4394	if (retval)
4395		goto error;
4396
4397	return dev;
4398
4399error:
4400	put_device(dev);
4401	return ERR_PTR(retval);
4402}
4403
4404/**
4405 * device_create - creates a device and registers it with sysfs
4406 * @class: pointer to the struct class that this device should be registered to
4407 * @parent: pointer to the parent struct device of this new device, if any
4408 * @devt: the dev_t for the char device to be added
4409 * @drvdata: the data to be added to the device for callbacks
4410 * @fmt: string for the device's name
4411 *
4412 * This function can be used by char device classes.  A struct device
4413 * will be created in sysfs, registered to the specified class.
4414 *
4415 * A "dev" file will be created, showing the dev_t for the device, if
4416 * the dev_t is not 0,0.
4417 * If a pointer to a parent struct device is passed in, the newly created
4418 * struct device will be a child of that device in sysfs.
4419 * The pointer to the struct device will be returned from the call.
4420 * Any further sysfs files that might be required can be created using this
4421 * pointer.
4422 *
4423 * Returns &struct device pointer on success, or ERR_PTR() on error.
 
 
 
4424 */
4425struct device *device_create(const struct class *class, struct device *parent,
4426			     dev_t devt, void *drvdata, const char *fmt, ...)
4427{
4428	va_list vargs;
4429	struct device *dev;
4430
4431	va_start(vargs, fmt);
4432	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4433					  fmt, vargs);
4434	va_end(vargs);
4435	return dev;
4436}
4437EXPORT_SYMBOL_GPL(device_create);
4438
4439/**
4440 * device_create_with_groups - creates a device and registers it with sysfs
4441 * @class: pointer to the struct class that this device should be registered to
4442 * @parent: pointer to the parent struct device of this new device, if any
4443 * @devt: the dev_t for the char device to be added
4444 * @drvdata: the data to be added to the device for callbacks
4445 * @groups: NULL-terminated list of attribute groups to be created
4446 * @fmt: string for the device's name
4447 *
4448 * This function can be used by char device classes.  A struct device
4449 * will be created in sysfs, registered to the specified class.
4450 * Additional attributes specified in the groups parameter will also
4451 * be created automatically.
4452 *
4453 * A "dev" file will be created, showing the dev_t for the device, if
4454 * the dev_t is not 0,0.
4455 * If a pointer to a parent struct device is passed in, the newly created
4456 * struct device will be a child of that device in sysfs.
4457 * The pointer to the struct device will be returned from the call.
4458 * Any further sysfs files that might be required can be created using this
4459 * pointer.
4460 *
4461 * Returns &struct device pointer on success, or ERR_PTR() on error.
 
 
 
4462 */
4463struct device *device_create_with_groups(const struct class *class,
4464					 struct device *parent, dev_t devt,
4465					 void *drvdata,
4466					 const struct attribute_group **groups,
4467					 const char *fmt, ...)
4468{
4469	va_list vargs;
4470	struct device *dev;
4471
4472	va_start(vargs, fmt);
4473	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4474					 fmt, vargs);
4475	va_end(vargs);
4476	return dev;
4477}
4478EXPORT_SYMBOL_GPL(device_create_with_groups);
4479
4480/**
4481 * device_destroy - removes a device that was created with device_create()
4482 * @class: pointer to the struct class that this device was registered with
4483 * @devt: the dev_t of the device that was previously registered
4484 *
4485 * This call unregisters and cleans up a device that was created with a
4486 * call to device_create().
4487 */
4488void device_destroy(const struct class *class, dev_t devt)
4489{
4490	struct device *dev;
4491
4492	dev = class_find_device_by_devt(class, devt);
4493	if (dev) {
4494		put_device(dev);
4495		device_unregister(dev);
4496	}
4497}
4498EXPORT_SYMBOL_GPL(device_destroy);
4499
4500/**
4501 * device_rename - renames a device
4502 * @dev: the pointer to the struct device to be renamed
4503 * @new_name: the new name of the device
4504 *
4505 * It is the responsibility of the caller to provide mutual
4506 * exclusion between two different calls of device_rename
4507 * on the same device to ensure that new_name is valid and
4508 * won't conflict with other devices.
4509 *
4510 * Note: given that some subsystems (networking and infiniband) use this
4511 * function, with no immediate plans for this to change, we cannot assume or
4512 * require that this function not be called at all.
4513 *
4514 * However, if you're writing new code, do not call this function. The following
4515 * text from Kay Sievers offers some insight:
4516 *
4517 * Renaming devices is racy at many levels, symlinks and other stuff are not
4518 * replaced atomically, and you get a "move" uevent, but it's not easy to
4519 * connect the event to the old and new device. Device nodes are not renamed at
4520 * all, there isn't even support for that in the kernel now.
4521 *
4522 * In the meantime, during renaming, your target name might be taken by another
4523 * driver, creating conflicts. Or the old name is taken directly after you
4524 * renamed it -- then you get events for the same DEVPATH, before you even see
4525 * the "move" event. It's just a mess, and nothing new should ever rely on
4526 * kernel device renaming. Besides that, it's not even implemented now for
4527 * other things than (driver-core wise very simple) network devices.
4528 *
 
 
 
 
 
 
 
4529 * Make up a "real" name in the driver before you register anything, or add
4530 * some other attributes for userspace to find the device, or use udev to add
4531 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4532 * don't even want to get into that and try to implement the missing pieces in
4533 * the core. We really have other pieces to fix in the driver core mess. :)
4534 */
4535int device_rename(struct device *dev, const char *new_name)
4536{
4537	struct subsys_private *sp = NULL;
4538	struct kobject *kobj = &dev->kobj;
4539	char *old_device_name = NULL;
4540	int error;
4541	bool is_link_renamed = false;
4542
4543	dev = get_device(dev);
4544	if (!dev)
4545		return -EINVAL;
4546
4547	dev_dbg(dev, "renaming to %s\n", new_name);
4548
4549	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4550	if (!old_device_name) {
4551		error = -ENOMEM;
4552		goto out;
4553	}
4554
4555	if (dev->class) {
4556		sp = class_to_subsys(dev->class);
4557
4558		if (!sp) {
4559			error = -EINVAL;
4560			goto out;
4561		}
4562
4563		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4564					     new_name, kobject_namespace(kobj));
4565		if (error)
4566			goto out;
4567
4568		is_link_renamed = true;
4569	}
4570
4571	error = kobject_rename(kobj, new_name);
 
 
 
4572out:
4573	if (error && is_link_renamed)
4574		sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4575				     old_device_name, kobject_namespace(kobj));
4576	subsys_put(sp);
4577
4578	put_device(dev);
4579
4580	kfree(old_device_name);
4581
4582	return error;
4583}
4584EXPORT_SYMBOL_GPL(device_rename);
4585
4586static int device_move_class_links(struct device *dev,
4587				   struct device *old_parent,
4588				   struct device *new_parent)
4589{
4590	int error = 0;
4591
4592	if (old_parent)
4593		sysfs_remove_link(&dev->kobj, "device");
4594	if (new_parent)
4595		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4596					  "device");
4597	return error;
4598}
4599
4600/**
4601 * device_move - moves a device to a new parent
4602 * @dev: the pointer to the struct device to be moved
4603 * @new_parent: the new parent of the device (can be NULL)
4604 * @dpm_order: how to reorder the dpm_list
4605 */
4606int device_move(struct device *dev, struct device *new_parent,
4607		enum dpm_order dpm_order)
4608{
4609	int error;
4610	struct device *old_parent;
4611	struct kobject *new_parent_kobj;
4612
4613	dev = get_device(dev);
4614	if (!dev)
4615		return -EINVAL;
4616
4617	device_pm_lock();
4618	new_parent = get_device(new_parent);
4619	new_parent_kobj = get_device_parent(dev, new_parent);
4620	if (IS_ERR(new_parent_kobj)) {
4621		error = PTR_ERR(new_parent_kobj);
4622		put_device(new_parent);
4623		goto out;
4624	}
4625
4626	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4627		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4628	error = kobject_move(&dev->kobj, new_parent_kobj);
4629	if (error) {
4630		cleanup_glue_dir(dev, new_parent_kobj);
4631		put_device(new_parent);
4632		goto out;
4633	}
4634	old_parent = dev->parent;
4635	dev->parent = new_parent;
4636	if (old_parent)
4637		klist_remove(&dev->p->knode_parent);
4638	if (new_parent) {
4639		klist_add_tail(&dev->p->knode_parent,
4640			       &new_parent->p->klist_children);
4641		set_dev_node(dev, dev_to_node(new_parent));
4642	}
4643
4644	if (dev->class) {
4645		error = device_move_class_links(dev, old_parent, new_parent);
4646		if (error) {
4647			/* We ignore errors on cleanup since we're hosed anyway... */
4648			device_move_class_links(dev, new_parent, old_parent);
4649			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4650				if (new_parent)
4651					klist_remove(&dev->p->knode_parent);
4652				dev->parent = old_parent;
4653				if (old_parent) {
4654					klist_add_tail(&dev->p->knode_parent,
4655						       &old_parent->p->klist_children);
4656					set_dev_node(dev, dev_to_node(old_parent));
4657				}
4658			}
4659			cleanup_glue_dir(dev, new_parent_kobj);
4660			put_device(new_parent);
4661			goto out;
4662		}
4663	}
4664	switch (dpm_order) {
4665	case DPM_ORDER_NONE:
4666		break;
4667	case DPM_ORDER_DEV_AFTER_PARENT:
4668		device_pm_move_after(dev, new_parent);
4669		devices_kset_move_after(dev, new_parent);
4670		break;
4671	case DPM_ORDER_PARENT_BEFORE_DEV:
4672		device_pm_move_before(new_parent, dev);
4673		devices_kset_move_before(new_parent, dev);
4674		break;
4675	case DPM_ORDER_DEV_LAST:
4676		device_pm_move_last(dev);
4677		devices_kset_move_last(dev);
4678		break;
4679	}
4680
4681	put_device(old_parent);
4682out:
4683	device_pm_unlock();
4684	put_device(dev);
4685	return error;
4686}
4687EXPORT_SYMBOL_GPL(device_move);
4688
4689static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4690				     kgid_t kgid)
4691{
4692	struct kobject *kobj = &dev->kobj;
4693	const struct class *class = dev->class;
4694	const struct device_type *type = dev->type;
4695	int error;
4696
4697	if (class) {
4698		/*
4699		 * Change the device groups of the device class for @dev to
4700		 * @kuid/@kgid.
4701		 */
4702		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4703						  kgid);
4704		if (error)
4705			return error;
4706	}
4707
4708	if (type) {
4709		/*
4710		 * Change the device groups of the device type for @dev to
4711		 * @kuid/@kgid.
4712		 */
4713		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4714						  kgid);
4715		if (error)
4716			return error;
4717	}
4718
4719	/* Change the device groups of @dev to @kuid/@kgid. */
4720	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4721	if (error)
4722		return error;
4723
4724	if (device_supports_offline(dev) && !dev->offline_disabled) {
4725		/* Change online device attributes of @dev to @kuid/@kgid. */
4726		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4727						kuid, kgid);
4728		if (error)
4729			return error;
4730	}
4731
4732	return 0;
4733}
4734
4735/**
4736 * device_change_owner - change the owner of an existing device.
4737 * @dev: device.
4738 * @kuid: new owner's kuid
4739 * @kgid: new owner's kgid
4740 *
4741 * This changes the owner of @dev and its corresponding sysfs entries to
4742 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4743 * core.
4744 *
4745 * Returns 0 on success or error code on failure.
4746 */
4747int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4748{
4749	int error;
4750	struct kobject *kobj = &dev->kobj;
4751	struct subsys_private *sp;
4752
4753	dev = get_device(dev);
4754	if (!dev)
4755		return -EINVAL;
4756
4757	/*
4758	 * Change the kobject and the default attributes and groups of the
4759	 * ktype associated with it to @kuid/@kgid.
4760	 */
4761	error = sysfs_change_owner(kobj, kuid, kgid);
4762	if (error)
4763		goto out;
4764
4765	/*
4766	 * Change the uevent file for @dev to the new owner. The uevent file
4767	 * was created in a separate step when @dev got added and we mirror
4768	 * that step here.
4769	 */
4770	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4771					kgid);
4772	if (error)
4773		goto out;
4774
4775	/*
4776	 * Change the device groups, the device groups associated with the
4777	 * device class, and the groups associated with the device type of @dev
4778	 * to @kuid/@kgid.
4779	 */
4780	error = device_attrs_change_owner(dev, kuid, kgid);
4781	if (error)
4782		goto out;
4783
4784	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4785	if (error)
4786		goto out;
4787
 
 
 
 
 
4788	/*
4789	 * Change the owner of the symlink located in the class directory of
4790	 * the device class associated with @dev which points to the actual
4791	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4792	 * symlink shows the same permissions as its target.
4793	 */
4794	sp = class_to_subsys(dev->class);
4795	if (!sp) {
4796		error = -EINVAL;
4797		goto out;
4798	}
4799	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4800	subsys_put(sp);
4801
4802out:
4803	put_device(dev);
4804	return error;
4805}
4806EXPORT_SYMBOL_GPL(device_change_owner);
4807
4808/**
4809 * device_shutdown - call ->shutdown() on each device to shutdown.
4810 */
4811void device_shutdown(void)
4812{
4813	struct device *dev, *parent;
4814
4815	wait_for_device_probe();
4816	device_block_probing();
4817
4818	cpufreq_suspend();
4819
4820	spin_lock(&devices_kset->list_lock);
4821	/*
4822	 * Walk the devices list backward, shutting down each in turn.
4823	 * Beware that device unplug events may also start pulling
4824	 * devices offline, even as the system is shutting down.
4825	 */
4826	while (!list_empty(&devices_kset->list)) {
4827		dev = list_entry(devices_kset->list.prev, struct device,
4828				kobj.entry);
4829
4830		/*
4831		 * hold reference count of device's parent to
4832		 * prevent it from being freed because parent's
4833		 * lock is to be held
4834		 */
4835		parent = get_device(dev->parent);
4836		get_device(dev);
4837		/*
4838		 * Make sure the device is off the kset list, in the
4839		 * event that dev->*->shutdown() doesn't remove it.
4840		 */
4841		list_del_init(&dev->kobj.entry);
4842		spin_unlock(&devices_kset->list_lock);
4843
4844		/* hold lock to avoid race with probe/release */
4845		if (parent)
4846			device_lock(parent);
4847		device_lock(dev);
4848
4849		/* Don't allow any more runtime suspends */
4850		pm_runtime_get_noresume(dev);
4851		pm_runtime_barrier(dev);
4852
4853		if (dev->class && dev->class->shutdown_pre) {
4854			if (initcall_debug)
4855				dev_info(dev, "shutdown_pre\n");
4856			dev->class->shutdown_pre(dev);
4857		}
4858		if (dev->bus && dev->bus->shutdown) {
4859			if (initcall_debug)
4860				dev_info(dev, "shutdown\n");
4861			dev->bus->shutdown(dev);
4862		} else if (dev->driver && dev->driver->shutdown) {
4863			if (initcall_debug)
4864				dev_info(dev, "shutdown\n");
4865			dev->driver->shutdown(dev);
4866		}
4867
4868		device_unlock(dev);
4869		if (parent)
4870			device_unlock(parent);
4871
4872		put_device(dev);
4873		put_device(parent);
4874
4875		spin_lock(&devices_kset->list_lock);
4876	}
4877	spin_unlock(&devices_kset->list_lock);
4878}
4879
4880/*
4881 * Device logging functions
4882 */
4883
4884#ifdef CONFIG_PRINTK
4885static void
4886set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4887{
4888	const char *subsys;
4889
4890	memset(dev_info, 0, sizeof(*dev_info));
4891
4892	if (dev->class)
4893		subsys = dev->class->name;
4894	else if (dev->bus)
4895		subsys = dev->bus->name;
4896	else
4897		return;
4898
4899	strscpy(dev_info->subsystem, subsys);
4900
4901	/*
4902	 * Add device identifier DEVICE=:
4903	 *   b12:8         block dev_t
4904	 *   c127:3        char dev_t
4905	 *   n8            netdev ifindex
4906	 *   +sound:card0  subsystem:devname
4907	 */
4908	if (MAJOR(dev->devt)) {
4909		char c;
4910
4911		if (strcmp(subsys, "block") == 0)
4912			c = 'b';
4913		else
4914			c = 'c';
4915
4916		snprintf(dev_info->device, sizeof(dev_info->device),
4917			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4918	} else if (strcmp(subsys, "net") == 0) {
4919		struct net_device *net = to_net_dev(dev);
4920
4921		snprintf(dev_info->device, sizeof(dev_info->device),
4922			 "n%u", net->ifindex);
4923	} else {
4924		snprintf(dev_info->device, sizeof(dev_info->device),
4925			 "+%s:%s", subsys, dev_name(dev));
4926	}
4927}
4928
4929int dev_vprintk_emit(int level, const struct device *dev,
4930		     const char *fmt, va_list args)
4931{
4932	struct dev_printk_info dev_info;
4933
4934	set_dev_info(dev, &dev_info);
4935
4936	return vprintk_emit(0, level, &dev_info, fmt, args);
4937}
4938EXPORT_SYMBOL(dev_vprintk_emit);
4939
4940int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4941{
4942	va_list args;
4943	int r;
4944
4945	va_start(args, fmt);
4946
4947	r = dev_vprintk_emit(level, dev, fmt, args);
4948
4949	va_end(args);
4950
4951	return r;
4952}
4953EXPORT_SYMBOL(dev_printk_emit);
4954
4955static void __dev_printk(const char *level, const struct device *dev,
4956			struct va_format *vaf)
4957{
4958	if (dev)
4959		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4960				dev_driver_string(dev), dev_name(dev), vaf);
4961	else
4962		printk("%s(NULL device *): %pV", level, vaf);
4963}
4964
4965void _dev_printk(const char *level, const struct device *dev,
4966		 const char *fmt, ...)
4967{
4968	struct va_format vaf;
4969	va_list args;
4970
4971	va_start(args, fmt);
4972
4973	vaf.fmt = fmt;
4974	vaf.va = &args;
4975
4976	__dev_printk(level, dev, &vaf);
4977
4978	va_end(args);
4979}
4980EXPORT_SYMBOL(_dev_printk);
4981
4982#define define_dev_printk_level(func, kern_level)		\
4983void func(const struct device *dev, const char *fmt, ...)	\
4984{								\
4985	struct va_format vaf;					\
4986	va_list args;						\
4987								\
4988	va_start(args, fmt);					\
4989								\
4990	vaf.fmt = fmt;						\
4991	vaf.va = &args;						\
4992								\
4993	__dev_printk(kern_level, dev, &vaf);			\
4994								\
4995	va_end(args);						\
4996}								\
4997EXPORT_SYMBOL(func);
4998
4999define_dev_printk_level(_dev_emerg, KERN_EMERG);
5000define_dev_printk_level(_dev_alert, KERN_ALERT);
5001define_dev_printk_level(_dev_crit, KERN_CRIT);
5002define_dev_printk_level(_dev_err, KERN_ERR);
5003define_dev_printk_level(_dev_warn, KERN_WARNING);
5004define_dev_printk_level(_dev_notice, KERN_NOTICE);
5005define_dev_printk_level(_dev_info, KERN_INFO);
5006
5007#endif
5008
5009static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
5010			       const char *fmt, va_list vargsp)
5011{
5012	struct va_format vaf;
5013	va_list vargs;
5014
5015	/*
5016	 * On x86_64 and possibly on other architectures, va_list is actually a
5017	 * size-1 array containing a structure.  As a result, function parameter
5018	 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
5019	 * T(*)[1], which is expected by its assignment to vaf.va below.
5020	 *
5021	 * One standard way to solve this mess is by creating a copy in a local
5022	 * variable of type va_list and then using a pointer to that local copy
5023	 * instead, which is the approach employed here.
5024	 */
5025	va_copy(vargs, vargsp);
5026
5027	vaf.fmt = fmt;
5028	vaf.va = &vargs;
5029
5030	switch (err) {
5031	case -EPROBE_DEFER:
5032		device_set_deferred_probe_reason(dev, &vaf);
5033		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5034		break;
5035
5036	case -ENOMEM:
5037		/* Don't print anything on -ENOMEM, there's already enough output */
5038		break;
5039
5040	default:
5041		/* Log fatal final failures as errors, otherwise produce warnings */
5042		if (fatal)
5043			dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5044		else
5045			dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5046		break;
5047	}
5048
5049	va_end(vargs);
5050}
5051
5052/**
5053 * dev_err_probe - probe error check and log helper
5054 * @dev: the pointer to the struct device
5055 * @err: error value to test
5056 * @fmt: printf-style format string
5057 * @...: arguments as specified in the format string
5058 *
5059 * This helper implements common pattern present in probe functions for error
5060 * checking: print debug or error message depending if the error value is
5061 * -EPROBE_DEFER and propagate error upwards.
5062 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5063 * checked later by reading devices_deferred debugfs attribute.
5064 * It replaces the following code sequence::
5065 *
5066 * 	if (err != -EPROBE_DEFER)
5067 * 		dev_err(dev, ...);
5068 * 	else
5069 * 		dev_dbg(dev, ...);
5070 * 	return err;
5071 *
5072 * with::
5073 *
5074 * 	return dev_err_probe(dev, err, ...);
5075 *
5076 * Using this helper in your probe function is totally fine even if @err
5077 * is known to never be -EPROBE_DEFER.
5078 * The benefit compared to a normal dev_err() is the standardized format
5079 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5080 * instead of "-35"), and having the error code returned allows more
5081 * compact error paths.
5082 *
5083 * Returns @err.
 
5084 */
5085int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5086{
5087	va_list vargs;
 
5088
5089	va_start(vargs, fmt);
 
 
5090
5091	/* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5092	__dev_probe_failed(dev, err, true, fmt, vargs);
 
 
 
 
5093
5094	va_end(vargs);
5095
5096	return err;
5097}
5098EXPORT_SYMBOL_GPL(dev_err_probe);
5099
5100/**
5101 * dev_warn_probe - probe error check and log helper
5102 * @dev: the pointer to the struct device
5103 * @err: error value to test
5104 * @fmt: printf-style format string
5105 * @...: arguments as specified in the format string
5106 *
5107 * This helper implements common pattern present in probe functions for error
5108 * checking: print debug or warning message depending if the error value is
5109 * -EPROBE_DEFER and propagate error upwards.
5110 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5111 * checked later by reading devices_deferred debugfs attribute.
5112 * It replaces the following code sequence::
5113 *
5114 * 	if (err != -EPROBE_DEFER)
5115 * 		dev_warn(dev, ...);
5116 * 	else
5117 * 		dev_dbg(dev, ...);
5118 * 	return err;
5119 *
5120 * with::
5121 *
5122 * 	return dev_warn_probe(dev, err, ...);
5123 *
5124 * Using this helper in your probe function is totally fine even if @err
5125 * is known to never be -EPROBE_DEFER.
5126 * The benefit compared to a normal dev_warn() is the standardized format
5127 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5128 * instead of "-35"), and having the error code returned allows more
5129 * compact error paths.
5130 *
5131 * Returns @err.
5132 */
5133int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5134{
5135	va_list vargs;
5136
5137	va_start(vargs, fmt);
5138
5139	/* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5140	__dev_probe_failed(dev, err, false, fmt, vargs);
5141
5142	va_end(vargs);
5143
5144	return err;
5145}
5146EXPORT_SYMBOL_GPL(dev_warn_probe);
5147
5148static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5149{
5150	return fwnode && !IS_ERR(fwnode->secondary);
5151}
5152
5153/**
5154 * set_primary_fwnode - Change the primary firmware node of a given device.
5155 * @dev: Device to handle.
5156 * @fwnode: New primary firmware node of the device.
5157 *
5158 * Set the device's firmware node pointer to @fwnode, but if a secondary
5159 * firmware node of the device is present, preserve it.
5160 *
5161 * Valid fwnode cases are:
5162 *  - primary --> secondary --> -ENODEV
5163 *  - primary --> NULL
5164 *  - secondary --> -ENODEV
5165 *  - NULL
5166 */
5167void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5168{
5169	struct device *parent = dev->parent;
5170	struct fwnode_handle *fn = dev->fwnode;
5171
5172	if (fwnode) {
5173		if (fwnode_is_primary(fn))
5174			fn = fn->secondary;
5175
5176		if (fn) {
5177			WARN_ON(fwnode->secondary);
5178			fwnode->secondary = fn;
5179		}
5180		dev->fwnode = fwnode;
5181	} else {
5182		if (fwnode_is_primary(fn)) {
5183			dev->fwnode = fn->secondary;
5184
5185			/* Skip nullifying fn->secondary if the primary is shared */
5186			if (parent && fn == parent->fwnode)
5187				return;
5188
5189			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5190			fn->secondary = NULL;
 
5191		} else {
5192			dev->fwnode = NULL;
5193		}
5194	}
5195}
5196EXPORT_SYMBOL_GPL(set_primary_fwnode);
5197
5198/**
5199 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5200 * @dev: Device to handle.
5201 * @fwnode: New secondary firmware node of the device.
5202 *
5203 * If a primary firmware node of the device is present, set its secondary
5204 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5205 * @fwnode.
5206 */
5207void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5208{
5209	if (fwnode)
5210		fwnode->secondary = ERR_PTR(-ENODEV);
5211
5212	if (fwnode_is_primary(dev->fwnode))
5213		dev->fwnode->secondary = fwnode;
5214	else
5215		dev->fwnode = fwnode;
5216}
5217EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5218
5219/**
5220 * device_set_of_node_from_dev - reuse device-tree node of another device
5221 * @dev: device whose device-tree node is being set
5222 * @dev2: device whose device-tree node is being reused
5223 *
5224 * Takes another reference to the new device-tree node after first dropping
5225 * any reference held to the old node.
5226 */
5227void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5228{
5229	of_node_put(dev->of_node);
5230	dev->of_node = of_node_get(dev2->of_node);
5231	dev->of_node_reused = true;
5232}
5233EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5234
5235void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5236{
5237	dev->fwnode = fwnode;
5238	dev->of_node = to_of_node(fwnode);
5239}
5240EXPORT_SYMBOL_GPL(device_set_node);
5241
5242int device_match_name(struct device *dev, const void *name)
5243{
5244	return sysfs_streq(dev_name(dev), name);
5245}
5246EXPORT_SYMBOL_GPL(device_match_name);
5247
5248int device_match_of_node(struct device *dev, const void *np)
5249{
5250	return dev->of_node == np;
5251}
5252EXPORT_SYMBOL_GPL(device_match_of_node);
5253
5254int device_match_fwnode(struct device *dev, const void *fwnode)
5255{
5256	return dev_fwnode(dev) == fwnode;
5257}
5258EXPORT_SYMBOL_GPL(device_match_fwnode);
5259
5260int device_match_devt(struct device *dev, const void *pdevt)
5261{
5262	return dev->devt == *(dev_t *)pdevt;
5263}
5264EXPORT_SYMBOL_GPL(device_match_devt);
5265
5266int device_match_acpi_dev(struct device *dev, const void *adev)
5267{
5268	return ACPI_COMPANION(dev) == adev;
5269}
5270EXPORT_SYMBOL(device_match_acpi_dev);
5271
5272int device_match_acpi_handle(struct device *dev, const void *handle)
5273{
5274	return ACPI_HANDLE(dev) == handle;
5275}
5276EXPORT_SYMBOL(device_match_acpi_handle);
5277
5278int device_match_any(struct device *dev, const void *unused)
5279{
5280	return 1;
5281}
5282EXPORT_SYMBOL_GPL(device_match_any);