Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/kstrtox.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/string.h>
  21#include <linux/kdev_t.h>
  22#include <linux/notifier.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/blkdev.h>
  26#include <linux/mutex.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/netdevice.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/mm.h>
  31#include <linux/swiotlb.h>
  32#include <linux/sysfs.h>
  33#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  34
  35#include "base.h"
  36#include "physical_location.h"
  37#include "power/power.h"
  38
  39#ifdef CONFIG_SYSFS_DEPRECATED
  40#ifdef CONFIG_SYSFS_DEPRECATED_V2
  41long sysfs_deprecated = 1;
  42#else
  43long sysfs_deprecated = 0;
  44#endif
  45static int __init sysfs_deprecated_setup(char *arg)
  46{
  47	return kstrtol(arg, 10, &sysfs_deprecated);
  48}
  49early_param("sysfs.deprecated", sysfs_deprecated_setup);
  50#endif
  51
  52/* Device links support. */
  53static LIST_HEAD(deferred_sync);
  54static unsigned int defer_sync_state_count = 1;
  55static DEFINE_MUTEX(fwnode_link_lock);
  56static bool fw_devlink_is_permissive(void);
  57static bool fw_devlink_drv_reg_done;
  58static bool fw_devlink_best_effort;
  59
  60/**
  61 * fwnode_link_add - Create a link between two fwnode_handles.
  62 * @con: Consumer end of the link.
  63 * @sup: Supplier end of the link.
  64 *
  65 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  66 * represents the detail that the firmware lists @sup fwnode as supplying a
  67 * resource to @con.
  68 *
  69 * The driver core will use the fwnode link to create a device link between the
  70 * two device objects corresponding to @con and @sup when they are created. The
  71 * driver core will automatically delete the fwnode link between @con and @sup
  72 * after doing that.
  73 *
  74 * Attempts to create duplicate links between the same pair of fwnode handles
  75 * are ignored and there is no reference counting.
  76 */
  77int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
  78{
  79	struct fwnode_link *link;
  80	int ret = 0;
  81
  82	mutex_lock(&fwnode_link_lock);
  83
  84	list_for_each_entry(link, &sup->consumers, s_hook)
  85		if (link->consumer == con)
  86			goto out;
  87
  88	link = kzalloc(sizeof(*link), GFP_KERNEL);
  89	if (!link) {
  90		ret = -ENOMEM;
  91		goto out;
  92	}
  93
  94	link->supplier = sup;
  95	INIT_LIST_HEAD(&link->s_hook);
  96	link->consumer = con;
  97	INIT_LIST_HEAD(&link->c_hook);
  98
  99	list_add(&link->s_hook, &sup->consumers);
 100	list_add(&link->c_hook, &con->suppliers);
 101	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
 102		 con, sup);
 103out:
 104	mutex_unlock(&fwnode_link_lock);
 105
 106	return ret;
 107}
 108
 109/**
 110 * __fwnode_link_del - Delete a link between two fwnode_handles.
 111 * @link: the fwnode_link to be deleted
 112 *
 113 * The fwnode_link_lock needs to be held when this function is called.
 114 */
 115static void __fwnode_link_del(struct fwnode_link *link)
 116{
 117	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
 118		 link->consumer, link->supplier);
 119	list_del(&link->s_hook);
 120	list_del(&link->c_hook);
 121	kfree(link);
 122}
 123
 124/**
 125 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 126 * @fwnode: fwnode whose supplier links need to be deleted
 127 *
 128 * Deletes all supplier links connecting directly to @fwnode.
 129 */
 130static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 131{
 132	struct fwnode_link *link, *tmp;
 133
 134	mutex_lock(&fwnode_link_lock);
 135	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
 136		__fwnode_link_del(link);
 
 
 
 137	mutex_unlock(&fwnode_link_lock);
 138}
 139
 140/**
 141 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 142 * @fwnode: fwnode whose consumer links need to be deleted
 143 *
 144 * Deletes all consumer links connecting directly to @fwnode.
 145 */
 146static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 147{
 148	struct fwnode_link *link, *tmp;
 149
 150	mutex_lock(&fwnode_link_lock);
 151	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
 152		__fwnode_link_del(link);
 
 
 
 153	mutex_unlock(&fwnode_link_lock);
 154}
 155
 156/**
 157 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 158 * @fwnode: fwnode whose links needs to be deleted
 159 *
 160 * Deletes all links connecting directly to a fwnode.
 161 */
 162void fwnode_links_purge(struct fwnode_handle *fwnode)
 163{
 164	fwnode_links_purge_suppliers(fwnode);
 165	fwnode_links_purge_consumers(fwnode);
 166}
 167
 168void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 169{
 170	struct fwnode_handle *child;
 171
 172	/* Don't purge consumer links of an added child */
 173	if (fwnode->dev)
 174		return;
 175
 176	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 177	fwnode_links_purge_consumers(fwnode);
 178
 179	fwnode_for_each_available_child_node(fwnode, child)
 180		fw_devlink_purge_absent_suppliers(child);
 181}
 182EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 183
 184#ifdef CONFIG_SRCU
 185static DEFINE_MUTEX(device_links_lock);
 186DEFINE_STATIC_SRCU(device_links_srcu);
 187
 188static inline void device_links_write_lock(void)
 189{
 190	mutex_lock(&device_links_lock);
 191}
 192
 193static inline void device_links_write_unlock(void)
 194{
 195	mutex_unlock(&device_links_lock);
 196}
 197
 198int device_links_read_lock(void) __acquires(&device_links_srcu)
 199{
 200	return srcu_read_lock(&device_links_srcu);
 201}
 202
 203void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 204{
 205	srcu_read_unlock(&device_links_srcu, idx);
 206}
 207
 208int device_links_read_lock_held(void)
 209{
 210	return srcu_read_lock_held(&device_links_srcu);
 211}
 212
 213static void device_link_synchronize_removal(void)
 214{
 215	synchronize_srcu(&device_links_srcu);
 216}
 217
 218static void device_link_remove_from_lists(struct device_link *link)
 219{
 220	list_del_rcu(&link->s_node);
 221	list_del_rcu(&link->c_node);
 222}
 223#else /* !CONFIG_SRCU */
 224static DECLARE_RWSEM(device_links_lock);
 225
 226static inline void device_links_write_lock(void)
 227{
 228	down_write(&device_links_lock);
 229}
 230
 231static inline void device_links_write_unlock(void)
 232{
 233	up_write(&device_links_lock);
 234}
 235
 236int device_links_read_lock(void)
 237{
 238	down_read(&device_links_lock);
 239	return 0;
 240}
 241
 242void device_links_read_unlock(int not_used)
 243{
 244	up_read(&device_links_lock);
 245}
 246
 247#ifdef CONFIG_DEBUG_LOCK_ALLOC
 248int device_links_read_lock_held(void)
 249{
 250	return lockdep_is_held(&device_links_lock);
 251}
 252#endif
 253
 254static inline void device_link_synchronize_removal(void)
 255{
 256}
 257
 258static void device_link_remove_from_lists(struct device_link *link)
 259{
 260	list_del(&link->s_node);
 261	list_del(&link->c_node);
 262}
 263#endif /* !CONFIG_SRCU */
 264
 265static bool device_is_ancestor(struct device *dev, struct device *target)
 266{
 267	while (target->parent) {
 268		target = target->parent;
 269		if (dev == target)
 270			return true;
 271	}
 272	return false;
 273}
 274
 275/**
 276 * device_is_dependent - Check if one device depends on another one
 277 * @dev: Device to check dependencies for.
 278 * @target: Device to check against.
 279 *
 280 * Check if @target depends on @dev or any device dependent on it (its child or
 281 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 282 */
 283int device_is_dependent(struct device *dev, void *target)
 284{
 285	struct device_link *link;
 286	int ret;
 287
 288	/*
 289	 * The "ancestors" check is needed to catch the case when the target
 290	 * device has not been completely initialized yet and it is still
 291	 * missing from the list of children of its parent device.
 292	 */
 293	if (dev == target || device_is_ancestor(dev, target))
 294		return 1;
 295
 296	ret = device_for_each_child(dev, target, device_is_dependent);
 297	if (ret)
 298		return ret;
 299
 300	list_for_each_entry(link, &dev->links.consumers, s_node) {
 301		if ((link->flags & ~DL_FLAG_INFERRED) ==
 302		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 303			continue;
 304
 305		if (link->consumer == target)
 306			return 1;
 307
 308		ret = device_is_dependent(link->consumer, target);
 309		if (ret)
 310			break;
 311	}
 312	return ret;
 313}
 314
 315static void device_link_init_status(struct device_link *link,
 316				    struct device *consumer,
 317				    struct device *supplier)
 318{
 319	switch (supplier->links.status) {
 320	case DL_DEV_PROBING:
 321		switch (consumer->links.status) {
 322		case DL_DEV_PROBING:
 323			/*
 324			 * A consumer driver can create a link to a supplier
 325			 * that has not completed its probing yet as long as it
 326			 * knows that the supplier is already functional (for
 327			 * example, it has just acquired some resources from the
 328			 * supplier).
 329			 */
 330			link->status = DL_STATE_CONSUMER_PROBE;
 331			break;
 332		default:
 333			link->status = DL_STATE_DORMANT;
 334			break;
 335		}
 336		break;
 337	case DL_DEV_DRIVER_BOUND:
 338		switch (consumer->links.status) {
 339		case DL_DEV_PROBING:
 340			link->status = DL_STATE_CONSUMER_PROBE;
 341			break;
 342		case DL_DEV_DRIVER_BOUND:
 343			link->status = DL_STATE_ACTIVE;
 344			break;
 345		default:
 346			link->status = DL_STATE_AVAILABLE;
 347			break;
 348		}
 349		break;
 350	case DL_DEV_UNBINDING:
 351		link->status = DL_STATE_SUPPLIER_UNBIND;
 352		break;
 353	default:
 354		link->status = DL_STATE_DORMANT;
 355		break;
 356	}
 357}
 358
 359static int device_reorder_to_tail(struct device *dev, void *not_used)
 360{
 361	struct device_link *link;
 362
 363	/*
 364	 * Devices that have not been registered yet will be put to the ends
 365	 * of the lists during the registration, so skip them here.
 366	 */
 367	if (device_is_registered(dev))
 368		devices_kset_move_last(dev);
 369
 370	if (device_pm_initialized(dev))
 371		device_pm_move_last(dev);
 372
 373	device_for_each_child(dev, NULL, device_reorder_to_tail);
 374	list_for_each_entry(link, &dev->links.consumers, s_node) {
 375		if ((link->flags & ~DL_FLAG_INFERRED) ==
 376		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 377			continue;
 378		device_reorder_to_tail(link->consumer, NULL);
 379	}
 380
 381	return 0;
 382}
 383
 384/**
 385 * device_pm_move_to_tail - Move set of devices to the end of device lists
 386 * @dev: Device to move
 387 *
 388 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 389 *
 390 * It moves the @dev along with all of its children and all of its consumers
 391 * to the ends of the device_kset and dpm_list, recursively.
 392 */
 393void device_pm_move_to_tail(struct device *dev)
 394{
 395	int idx;
 396
 397	idx = device_links_read_lock();
 398	device_pm_lock();
 399	device_reorder_to_tail(dev, NULL);
 400	device_pm_unlock();
 401	device_links_read_unlock(idx);
 402}
 403
 404#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 405
 406static ssize_t status_show(struct device *dev,
 407			   struct device_attribute *attr, char *buf)
 408{
 409	const char *output;
 410
 411	switch (to_devlink(dev)->status) {
 412	case DL_STATE_NONE:
 413		output = "not tracked";
 414		break;
 415	case DL_STATE_DORMANT:
 416		output = "dormant";
 417		break;
 418	case DL_STATE_AVAILABLE:
 419		output = "available";
 420		break;
 421	case DL_STATE_CONSUMER_PROBE:
 422		output = "consumer probing";
 423		break;
 424	case DL_STATE_ACTIVE:
 425		output = "active";
 426		break;
 427	case DL_STATE_SUPPLIER_UNBIND:
 428		output = "supplier unbinding";
 429		break;
 430	default:
 431		output = "unknown";
 432		break;
 433	}
 434
 435	return sysfs_emit(buf, "%s\n", output);
 436}
 437static DEVICE_ATTR_RO(status);
 438
 439static ssize_t auto_remove_on_show(struct device *dev,
 440				   struct device_attribute *attr, char *buf)
 441{
 442	struct device_link *link = to_devlink(dev);
 443	const char *output;
 444
 445	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 446		output = "supplier unbind";
 447	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 448		output = "consumer unbind";
 449	else
 450		output = "never";
 451
 452	return sysfs_emit(buf, "%s\n", output);
 453}
 454static DEVICE_ATTR_RO(auto_remove_on);
 455
 456static ssize_t runtime_pm_show(struct device *dev,
 457			       struct device_attribute *attr, char *buf)
 458{
 459	struct device_link *link = to_devlink(dev);
 460
 461	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 462}
 463static DEVICE_ATTR_RO(runtime_pm);
 464
 465static ssize_t sync_state_only_show(struct device *dev,
 466				    struct device_attribute *attr, char *buf)
 467{
 468	struct device_link *link = to_devlink(dev);
 469
 470	return sysfs_emit(buf, "%d\n",
 471			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 472}
 473static DEVICE_ATTR_RO(sync_state_only);
 474
 475static struct attribute *devlink_attrs[] = {
 476	&dev_attr_status.attr,
 477	&dev_attr_auto_remove_on.attr,
 478	&dev_attr_runtime_pm.attr,
 479	&dev_attr_sync_state_only.attr,
 480	NULL,
 481};
 482ATTRIBUTE_GROUPS(devlink);
 483
 484static void device_link_release_fn(struct work_struct *work)
 485{
 486	struct device_link *link = container_of(work, struct device_link, rm_work);
 487
 488	/* Ensure that all references to the link object have been dropped. */
 489	device_link_synchronize_removal();
 490
 491	pm_runtime_release_supplier(link);
 492	/*
 493	 * If supplier_preactivated is set, the link has been dropped between
 494	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
 495	 * in __driver_probe_device().  In that case, drop the supplier's
 496	 * PM-runtime usage counter to remove the reference taken by
 497	 * pm_runtime_get_suppliers().
 498	 */
 499	if (link->supplier_preactivated)
 500		pm_runtime_put_noidle(link->supplier);
 501
 502	pm_request_idle(link->supplier);
 503
 504	put_device(link->consumer);
 505	put_device(link->supplier);
 506	kfree(link);
 507}
 508
 509static void devlink_dev_release(struct device *dev)
 510{
 511	struct device_link *link = to_devlink(dev);
 512
 513	INIT_WORK(&link->rm_work, device_link_release_fn);
 514	/*
 515	 * It may take a while to complete this work because of the SRCU
 516	 * synchronization in device_link_release_fn() and if the consumer or
 517	 * supplier devices get deleted when it runs, so put it into the "long"
 518	 * workqueue.
 519	 */
 520	queue_work(system_long_wq, &link->rm_work);
 521}
 522
 523static struct class devlink_class = {
 524	.name = "devlink",
 525	.owner = THIS_MODULE,
 526	.dev_groups = devlink_groups,
 527	.dev_release = devlink_dev_release,
 528};
 529
 530static int devlink_add_symlinks(struct device *dev,
 531				struct class_interface *class_intf)
 532{
 533	int ret;
 534	size_t len;
 535	struct device_link *link = to_devlink(dev);
 536	struct device *sup = link->supplier;
 537	struct device *con = link->consumer;
 538	char *buf;
 539
 540	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 541		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 542	len += strlen(":");
 543	len += strlen("supplier:") + 1;
 544	buf = kzalloc(len, GFP_KERNEL);
 545	if (!buf)
 546		return -ENOMEM;
 547
 548	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 549	if (ret)
 550		goto out;
 551
 552	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 553	if (ret)
 554		goto err_con;
 555
 556	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 557	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 558	if (ret)
 559		goto err_con_dev;
 560
 561	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 562	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 563	if (ret)
 564		goto err_sup_dev;
 565
 566	goto out;
 567
 568err_sup_dev:
 569	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 570	sysfs_remove_link(&sup->kobj, buf);
 571err_con_dev:
 572	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 573err_con:
 574	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 575out:
 576	kfree(buf);
 577	return ret;
 578}
 579
 580static void devlink_remove_symlinks(struct device *dev,
 581				   struct class_interface *class_intf)
 582{
 583	struct device_link *link = to_devlink(dev);
 584	size_t len;
 585	struct device *sup = link->supplier;
 586	struct device *con = link->consumer;
 587	char *buf;
 588
 589	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 590	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 591
 592	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 593		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 594	len += strlen(":");
 595	len += strlen("supplier:") + 1;
 596	buf = kzalloc(len, GFP_KERNEL);
 597	if (!buf) {
 598		WARN(1, "Unable to properly free device link symlinks!\n");
 599		return;
 600	}
 601
 602	if (device_is_registered(con)) {
 603		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 604		sysfs_remove_link(&con->kobj, buf);
 605	}
 606	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 607	sysfs_remove_link(&sup->kobj, buf);
 608	kfree(buf);
 609}
 610
 611static struct class_interface devlink_class_intf = {
 612	.class = &devlink_class,
 613	.add_dev = devlink_add_symlinks,
 614	.remove_dev = devlink_remove_symlinks,
 615};
 616
 617static int __init devlink_class_init(void)
 618{
 619	int ret;
 620
 621	ret = class_register(&devlink_class);
 622	if (ret)
 623		return ret;
 624
 625	ret = class_interface_register(&devlink_class_intf);
 626	if (ret)
 627		class_unregister(&devlink_class);
 628
 629	return ret;
 630}
 631postcore_initcall(devlink_class_init);
 632
 633#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 634			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 635			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 636			       DL_FLAG_SYNC_STATE_ONLY | \
 637			       DL_FLAG_INFERRED)
 638
 639#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 640			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 641
 642/**
 643 * device_link_add - Create a link between two devices.
 644 * @consumer: Consumer end of the link.
 645 * @supplier: Supplier end of the link.
 646 * @flags: Link flags.
 647 *
 648 * The caller is responsible for the proper synchronization of the link creation
 649 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 650 * runtime PM framework to take the link into account.  Second, if the
 651 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 652 * be forced into the active meta state and reference-counted upon the creation
 653 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 654 * ignored.
 655 *
 656 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 657 * expected to release the link returned by it directly with the help of either
 658 * device_link_del() or device_link_remove().
 659 *
 660 * If that flag is not set, however, the caller of this function is handing the
 661 * management of the link over to the driver core entirely and its return value
 662 * can only be used to check whether or not the link is present.  In that case,
 663 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 664 * flags can be used to indicate to the driver core when the link can be safely
 665 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 666 * that the link is not going to be used (by the given caller of this function)
 667 * after unbinding the consumer or supplier driver, respectively, from its
 668 * device, so the link can be deleted at that point.  If none of them is set,
 669 * the link will be maintained until one of the devices pointed to by it (either
 670 * the consumer or the supplier) is unregistered.
 671 *
 672 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 673 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 674 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 675 * be used to request the driver core to automatically probe for a consumer
 676 * driver after successfully binding a driver to the supplier device.
 677 *
 678 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 679 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 680 * the same time is invalid and will cause NULL to be returned upfront.
 681 * However, if a device link between the given @consumer and @supplier pair
 682 * exists already when this function is called for them, the existing link will
 683 * be returned regardless of its current type and status (the link's flags may
 684 * be modified then).  The caller of this function is then expected to treat
 685 * the link as though it has just been created, so (in particular) if
 686 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 687 * explicitly when not needed any more (as stated above).
 688 *
 689 * A side effect of the link creation is re-ordering of dpm_list and the
 690 * devices_kset list by moving the consumer device and all devices depending
 691 * on it to the ends of these lists (that does not happen to devices that have
 692 * not been registered when this function is called).
 693 *
 694 * The supplier device is required to be registered when this function is called
 695 * and NULL will be returned if that is not the case.  The consumer device need
 696 * not be registered, however.
 697 */
 698struct device_link *device_link_add(struct device *consumer,
 699				    struct device *supplier, u32 flags)
 700{
 701	struct device_link *link;
 702
 703	if (!consumer || !supplier || consumer == supplier ||
 704	    flags & ~DL_ADD_VALID_FLAGS ||
 705	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 706	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 707	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
 708	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 709	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 710		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 711		return NULL;
 712
 713	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 714		if (pm_runtime_get_sync(supplier) < 0) {
 715			pm_runtime_put_noidle(supplier);
 716			return NULL;
 717		}
 718	}
 719
 720	if (!(flags & DL_FLAG_STATELESS))
 721		flags |= DL_FLAG_MANAGED;
 722
 723	device_links_write_lock();
 724	device_pm_lock();
 725
 726	/*
 727	 * If the supplier has not been fully registered yet or there is a
 728	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 729	 * the supplier already in the graph, return NULL. If the link is a
 730	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 731	 * because it only affects sync_state() callbacks.
 732	 */
 733	if (!device_pm_initialized(supplier)
 734	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 735		  device_is_dependent(consumer, supplier))) {
 736		link = NULL;
 737		goto out;
 738	}
 739
 740	/*
 741	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 742	 * So, only create it if the consumer hasn't probed yet.
 743	 */
 744	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 745	    consumer->links.status != DL_DEV_NO_DRIVER &&
 746	    consumer->links.status != DL_DEV_PROBING) {
 747		link = NULL;
 748		goto out;
 749	}
 750
 751	/*
 752	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 753	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 754	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 755	 */
 756	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 757		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 758
 759	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 760		if (link->consumer != consumer)
 761			continue;
 762
 763		if (link->flags & DL_FLAG_INFERRED &&
 764		    !(flags & DL_FLAG_INFERRED))
 765			link->flags &= ~DL_FLAG_INFERRED;
 766
 767		if (flags & DL_FLAG_PM_RUNTIME) {
 768			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 769				pm_runtime_new_link(consumer);
 770				link->flags |= DL_FLAG_PM_RUNTIME;
 771			}
 772			if (flags & DL_FLAG_RPM_ACTIVE)
 773				refcount_inc(&link->rpm_active);
 774		}
 775
 776		if (flags & DL_FLAG_STATELESS) {
 777			kref_get(&link->kref);
 778			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 779			    !(link->flags & DL_FLAG_STATELESS)) {
 780				link->flags |= DL_FLAG_STATELESS;
 781				goto reorder;
 782			} else {
 783				link->flags |= DL_FLAG_STATELESS;
 784				goto out;
 785			}
 786		}
 787
 788		/*
 789		 * If the life time of the link following from the new flags is
 790		 * longer than indicated by the flags of the existing link,
 791		 * update the existing link to stay around longer.
 792		 */
 793		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 794			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 795				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 796				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 797			}
 798		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 799			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 800					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 801		}
 802		if (!(link->flags & DL_FLAG_MANAGED)) {
 803			kref_get(&link->kref);
 804			link->flags |= DL_FLAG_MANAGED;
 805			device_link_init_status(link, consumer, supplier);
 806		}
 807		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 808		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 809			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 810			goto reorder;
 811		}
 812
 813		goto out;
 814	}
 815
 816	link = kzalloc(sizeof(*link), GFP_KERNEL);
 817	if (!link)
 818		goto out;
 819
 820	refcount_set(&link->rpm_active, 1);
 821
 822	get_device(supplier);
 823	link->supplier = supplier;
 824	INIT_LIST_HEAD(&link->s_node);
 825	get_device(consumer);
 826	link->consumer = consumer;
 827	INIT_LIST_HEAD(&link->c_node);
 828	link->flags = flags;
 829	kref_init(&link->kref);
 830
 831	link->link_dev.class = &devlink_class;
 832	device_set_pm_not_required(&link->link_dev);
 833	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 834		     dev_bus_name(supplier), dev_name(supplier),
 835		     dev_bus_name(consumer), dev_name(consumer));
 836	if (device_register(&link->link_dev)) {
 837		put_device(&link->link_dev);
 
 
 838		link = NULL;
 839		goto out;
 840	}
 841
 842	if (flags & DL_FLAG_PM_RUNTIME) {
 843		if (flags & DL_FLAG_RPM_ACTIVE)
 844			refcount_inc(&link->rpm_active);
 845
 846		pm_runtime_new_link(consumer);
 847	}
 848
 849	/* Determine the initial link state. */
 850	if (flags & DL_FLAG_STATELESS)
 851		link->status = DL_STATE_NONE;
 852	else
 853		device_link_init_status(link, consumer, supplier);
 854
 855	/*
 856	 * Some callers expect the link creation during consumer driver probe to
 857	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 858	 */
 859	if (link->status == DL_STATE_CONSUMER_PROBE &&
 860	    flags & DL_FLAG_PM_RUNTIME)
 861		pm_runtime_resume(supplier);
 862
 863	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 864	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 865
 866	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 867		dev_dbg(consumer,
 868			"Linked as a sync state only consumer to %s\n",
 869			dev_name(supplier));
 870		goto out;
 871	}
 872
 873reorder:
 874	/*
 875	 * Move the consumer and all of the devices depending on it to the end
 876	 * of dpm_list and the devices_kset list.
 877	 *
 878	 * It is necessary to hold dpm_list locked throughout all that or else
 879	 * we may end up suspending with a wrong ordering of it.
 880	 */
 881	device_reorder_to_tail(consumer, NULL);
 882
 883	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 884
 885out:
 886	device_pm_unlock();
 887	device_links_write_unlock();
 888
 889	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 890		pm_runtime_put(supplier);
 891
 892	return link;
 893}
 894EXPORT_SYMBOL_GPL(device_link_add);
 895
 896static void __device_link_del(struct kref *kref)
 897{
 898	struct device_link *link = container_of(kref, struct device_link, kref);
 899
 900	dev_dbg(link->consumer, "Dropping the link to %s\n",
 901		dev_name(link->supplier));
 902
 903	pm_runtime_drop_link(link);
 904
 905	device_link_remove_from_lists(link);
 906	device_unregister(&link->link_dev);
 907}
 908
 909static void device_link_put_kref(struct device_link *link)
 910{
 911	if (link->flags & DL_FLAG_STATELESS)
 912		kref_put(&link->kref, __device_link_del);
 913	else if (!device_is_registered(link->consumer))
 914		__device_link_del(&link->kref);
 915	else
 916		WARN(1, "Unable to drop a managed device link reference\n");
 917}
 918
 919/**
 920 * device_link_del - Delete a stateless link between two devices.
 921 * @link: Device link to delete.
 922 *
 923 * The caller must ensure proper synchronization of this function with runtime
 924 * PM.  If the link was added multiple times, it needs to be deleted as often.
 925 * Care is required for hotplugged devices:  Their links are purged on removal
 926 * and calling device_link_del() is then no longer allowed.
 927 */
 928void device_link_del(struct device_link *link)
 929{
 930	device_links_write_lock();
 931	device_link_put_kref(link);
 932	device_links_write_unlock();
 933}
 934EXPORT_SYMBOL_GPL(device_link_del);
 935
 936/**
 937 * device_link_remove - Delete a stateless link between two devices.
 938 * @consumer: Consumer end of the link.
 939 * @supplier: Supplier end of the link.
 940 *
 941 * The caller must ensure proper synchronization of this function with runtime
 942 * PM.
 943 */
 944void device_link_remove(void *consumer, struct device *supplier)
 945{
 946	struct device_link *link;
 947
 948	if (WARN_ON(consumer == supplier))
 949		return;
 950
 951	device_links_write_lock();
 952
 953	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 954		if (link->consumer == consumer) {
 955			device_link_put_kref(link);
 956			break;
 957		}
 958	}
 959
 960	device_links_write_unlock();
 961}
 962EXPORT_SYMBOL_GPL(device_link_remove);
 963
 964static void device_links_missing_supplier(struct device *dev)
 965{
 966	struct device_link *link;
 967
 968	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 969		if (link->status != DL_STATE_CONSUMER_PROBE)
 970			continue;
 971
 972		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 973			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 974		} else {
 975			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 976			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 977		}
 978	}
 979}
 980
 981static bool dev_is_best_effort(struct device *dev)
 982{
 983	return (fw_devlink_best_effort && dev->can_match) ||
 984		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
 985}
 986
 987/**
 988 * device_links_check_suppliers - Check presence of supplier drivers.
 989 * @dev: Consumer device.
 990 *
 991 * Check links from this device to any suppliers.  Walk the list of the device's
 992 * links to suppliers and see if all of them are available.  If not, simply
 993 * return -EPROBE_DEFER.
 994 *
 995 * We need to guarantee that the supplier will not go away after the check has
 996 * been positive here.  It only can go away in __device_release_driver() and
 997 * that function  checks the device's links to consumers.  This means we need to
 998 * mark the link as "consumer probe in progress" to make the supplier removal
 999 * wait for us to complete (or bad things may happen).
1000 *
1001 * Links without the DL_FLAG_MANAGED flag set are ignored.
1002 */
1003int device_links_check_suppliers(struct device *dev)
1004{
1005	struct device_link *link;
1006	int ret = 0, fwnode_ret = 0;
1007	struct fwnode_handle *sup_fw;
1008
1009	/*
1010	 * Device waiting for supplier to become available is not allowed to
1011	 * probe.
1012	 */
1013	mutex_lock(&fwnode_link_lock);
1014	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
1015	    !fw_devlink_is_permissive()) {
1016		sup_fw = list_first_entry(&dev->fwnode->suppliers,
1017					  struct fwnode_link,
1018					  c_hook)->supplier;
1019		if (!dev_is_best_effort(dev)) {
1020			fwnode_ret = -EPROBE_DEFER;
1021			dev_err_probe(dev, -EPROBE_DEFER,
1022				    "wait for supplier %pfwP\n", sup_fw);
1023		} else {
1024			fwnode_ret = -EAGAIN;
1025		}
1026	}
1027	mutex_unlock(&fwnode_link_lock);
1028	if (fwnode_ret == -EPROBE_DEFER)
1029		return fwnode_ret;
1030
1031	device_links_write_lock();
1032
1033	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1034		if (!(link->flags & DL_FLAG_MANAGED))
1035			continue;
1036
1037		if (link->status != DL_STATE_AVAILABLE &&
1038		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1039
1040			if (dev_is_best_effort(dev) &&
1041			    link->flags & DL_FLAG_INFERRED &&
1042			    !link->supplier->can_match) {
1043				ret = -EAGAIN;
1044				continue;
1045			}
1046
1047			device_links_missing_supplier(dev);
1048			dev_err_probe(dev, -EPROBE_DEFER,
1049				      "supplier %s not ready\n",
1050				      dev_name(link->supplier));
1051			ret = -EPROBE_DEFER;
1052			break;
1053		}
1054		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1055	}
1056	dev->links.status = DL_DEV_PROBING;
1057
1058	device_links_write_unlock();
1059
1060	return ret ? ret : fwnode_ret;
1061}
1062
1063/**
1064 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1065 * @dev: Device to call sync_state() on
1066 * @list: List head to queue the @dev on
1067 *
1068 * Queues a device for a sync_state() callback when the device links write lock
1069 * isn't held. This allows the sync_state() execution flow to use device links
1070 * APIs.  The caller must ensure this function is called with
1071 * device_links_write_lock() held.
1072 *
1073 * This function does a get_device() to make sure the device is not freed while
1074 * on this list.
1075 *
1076 * So the caller must also ensure that device_links_flush_sync_list() is called
1077 * as soon as the caller releases device_links_write_lock().  This is necessary
1078 * to make sure the sync_state() is called in a timely fashion and the
1079 * put_device() is called on this device.
1080 */
1081static void __device_links_queue_sync_state(struct device *dev,
1082					    struct list_head *list)
1083{
1084	struct device_link *link;
1085
1086	if (!dev_has_sync_state(dev))
1087		return;
1088	if (dev->state_synced)
1089		return;
1090
1091	list_for_each_entry(link, &dev->links.consumers, s_node) {
1092		if (!(link->flags & DL_FLAG_MANAGED))
1093			continue;
1094		if (link->status != DL_STATE_ACTIVE)
1095			return;
1096	}
1097
1098	/*
1099	 * Set the flag here to avoid adding the same device to a list more
1100	 * than once. This can happen if new consumers get added to the device
1101	 * and probed before the list is flushed.
1102	 */
1103	dev->state_synced = true;
1104
1105	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1106		return;
1107
1108	get_device(dev);
1109	list_add_tail(&dev->links.defer_sync, list);
1110}
1111
1112/**
1113 * device_links_flush_sync_list - Call sync_state() on a list of devices
1114 * @list: List of devices to call sync_state() on
1115 * @dont_lock_dev: Device for which lock is already held by the caller
1116 *
1117 * Calls sync_state() on all the devices that have been queued for it. This
1118 * function is used in conjunction with __device_links_queue_sync_state(). The
1119 * @dont_lock_dev parameter is useful when this function is called from a
1120 * context where a device lock is already held.
1121 */
1122static void device_links_flush_sync_list(struct list_head *list,
1123					 struct device *dont_lock_dev)
1124{
1125	struct device *dev, *tmp;
1126
1127	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1128		list_del_init(&dev->links.defer_sync);
1129
1130		if (dev != dont_lock_dev)
1131			device_lock(dev);
1132
1133		if (dev->bus->sync_state)
1134			dev->bus->sync_state(dev);
1135		else if (dev->driver && dev->driver->sync_state)
1136			dev->driver->sync_state(dev);
1137
1138		if (dev != dont_lock_dev)
1139			device_unlock(dev);
1140
1141		put_device(dev);
1142	}
1143}
1144
1145void device_links_supplier_sync_state_pause(void)
1146{
1147	device_links_write_lock();
1148	defer_sync_state_count++;
1149	device_links_write_unlock();
1150}
1151
1152void device_links_supplier_sync_state_resume(void)
1153{
1154	struct device *dev, *tmp;
1155	LIST_HEAD(sync_list);
1156
1157	device_links_write_lock();
1158	if (!defer_sync_state_count) {
1159		WARN(true, "Unmatched sync_state pause/resume!");
1160		goto out;
1161	}
1162	defer_sync_state_count--;
1163	if (defer_sync_state_count)
1164		goto out;
1165
1166	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1167		/*
1168		 * Delete from deferred_sync list before queuing it to
1169		 * sync_list because defer_sync is used for both lists.
1170		 */
1171		list_del_init(&dev->links.defer_sync);
1172		__device_links_queue_sync_state(dev, &sync_list);
1173	}
1174out:
1175	device_links_write_unlock();
1176
1177	device_links_flush_sync_list(&sync_list, NULL);
1178}
1179
1180static int sync_state_resume_initcall(void)
1181{
1182	device_links_supplier_sync_state_resume();
1183	return 0;
1184}
1185late_initcall(sync_state_resume_initcall);
1186
1187static void __device_links_supplier_defer_sync(struct device *sup)
1188{
1189	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1190		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1191}
1192
1193static void device_link_drop_managed(struct device_link *link)
1194{
1195	link->flags &= ~DL_FLAG_MANAGED;
1196	WRITE_ONCE(link->status, DL_STATE_NONE);
1197	kref_put(&link->kref, __device_link_del);
1198}
1199
1200static ssize_t waiting_for_supplier_show(struct device *dev,
1201					 struct device_attribute *attr,
1202					 char *buf)
1203{
1204	bool val;
1205
1206	device_lock(dev);
1207	val = !list_empty(&dev->fwnode->suppliers);
1208	device_unlock(dev);
1209	return sysfs_emit(buf, "%u\n", val);
1210}
1211static DEVICE_ATTR_RO(waiting_for_supplier);
1212
1213/**
1214 * device_links_force_bind - Prepares device to be force bound
1215 * @dev: Consumer device.
1216 *
1217 * device_bind_driver() force binds a device to a driver without calling any
1218 * driver probe functions. So the consumer really isn't going to wait for any
1219 * supplier before it's bound to the driver. We still want the device link
1220 * states to be sensible when this happens.
1221 *
1222 * In preparation for device_bind_driver(), this function goes through each
1223 * supplier device links and checks if the supplier is bound. If it is, then
1224 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1225 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1226 */
1227void device_links_force_bind(struct device *dev)
1228{
1229	struct device_link *link, *ln;
1230
1231	device_links_write_lock();
1232
1233	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1234		if (!(link->flags & DL_FLAG_MANAGED))
1235			continue;
1236
1237		if (link->status != DL_STATE_AVAILABLE) {
1238			device_link_drop_managed(link);
1239			continue;
1240		}
1241		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1242	}
1243	dev->links.status = DL_DEV_PROBING;
1244
1245	device_links_write_unlock();
1246}
1247
1248/**
1249 * device_links_driver_bound - Update device links after probing its driver.
1250 * @dev: Device to update the links for.
1251 *
1252 * The probe has been successful, so update links from this device to any
1253 * consumers by changing their status to "available".
1254 *
1255 * Also change the status of @dev's links to suppliers to "active".
1256 *
1257 * Links without the DL_FLAG_MANAGED flag set are ignored.
1258 */
1259void device_links_driver_bound(struct device *dev)
1260{
1261	struct device_link *link, *ln;
1262	LIST_HEAD(sync_list);
1263
1264	/*
1265	 * If a device binds successfully, it's expected to have created all
1266	 * the device links it needs to or make new device links as it needs
1267	 * them. So, fw_devlink no longer needs to create device links to any
1268	 * of the device's suppliers.
1269	 *
1270	 * Also, if a child firmware node of this bound device is not added as
1271	 * a device by now, assume it is never going to be added and make sure
1272	 * other devices don't defer probe indefinitely by waiting for such a
1273	 * child device.
1274	 */
1275	if (dev->fwnode && dev->fwnode->dev == dev) {
1276		struct fwnode_handle *child;
1277		fwnode_links_purge_suppliers(dev->fwnode);
1278		fwnode_for_each_available_child_node(dev->fwnode, child)
1279			fw_devlink_purge_absent_suppliers(child);
1280	}
1281	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1282
1283	device_links_write_lock();
1284
1285	list_for_each_entry(link, &dev->links.consumers, s_node) {
1286		if (!(link->flags & DL_FLAG_MANAGED))
1287			continue;
1288
1289		/*
1290		 * Links created during consumer probe may be in the "consumer
1291		 * probe" state to start with if the supplier is still probing
1292		 * when they are created and they may become "active" if the
1293		 * consumer probe returns first.  Skip them here.
1294		 */
1295		if (link->status == DL_STATE_CONSUMER_PROBE ||
1296		    link->status == DL_STATE_ACTIVE)
1297			continue;
1298
1299		WARN_ON(link->status != DL_STATE_DORMANT);
1300		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1301
1302		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1303			driver_deferred_probe_add(link->consumer);
1304	}
1305
1306	if (defer_sync_state_count)
1307		__device_links_supplier_defer_sync(dev);
1308	else
1309		__device_links_queue_sync_state(dev, &sync_list);
1310
1311	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1312		struct device *supplier;
1313
1314		if (!(link->flags & DL_FLAG_MANAGED))
1315			continue;
1316
1317		supplier = link->supplier;
1318		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1319			/*
1320			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1321			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1322			 * save to drop the managed link completely.
1323			 */
1324			device_link_drop_managed(link);
1325		} else if (dev_is_best_effort(dev) &&
1326			   link->flags & DL_FLAG_INFERRED &&
1327			   link->status != DL_STATE_CONSUMER_PROBE &&
1328			   !link->supplier->can_match) {
1329			/*
1330			 * When dev_is_best_effort() is true, we ignore device
1331			 * links to suppliers that don't have a driver.  If the
1332			 * consumer device still managed to probe, there's no
1333			 * point in maintaining a device link in a weird state
1334			 * (consumer probed before supplier). So delete it.
1335			 */
1336			device_link_drop_managed(link);
1337		} else {
1338			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1339			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1340		}
1341
1342		/*
1343		 * This needs to be done even for the deleted
1344		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1345		 * device link that was preventing the supplier from getting a
1346		 * sync_state() call.
1347		 */
1348		if (defer_sync_state_count)
1349			__device_links_supplier_defer_sync(supplier);
1350		else
1351			__device_links_queue_sync_state(supplier, &sync_list);
1352	}
1353
1354	dev->links.status = DL_DEV_DRIVER_BOUND;
1355
1356	device_links_write_unlock();
1357
1358	device_links_flush_sync_list(&sync_list, dev);
1359}
1360
1361/**
1362 * __device_links_no_driver - Update links of a device without a driver.
1363 * @dev: Device without a drvier.
1364 *
1365 * Delete all non-persistent links from this device to any suppliers.
1366 *
1367 * Persistent links stay around, but their status is changed to "available",
1368 * unless they already are in the "supplier unbind in progress" state in which
1369 * case they need not be updated.
1370 *
1371 * Links without the DL_FLAG_MANAGED flag set are ignored.
1372 */
1373static void __device_links_no_driver(struct device *dev)
1374{
1375	struct device_link *link, *ln;
1376
1377	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1378		if (!(link->flags & DL_FLAG_MANAGED))
1379			continue;
1380
1381		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1382			device_link_drop_managed(link);
1383			continue;
1384		}
1385
1386		if (link->status != DL_STATE_CONSUMER_PROBE &&
1387		    link->status != DL_STATE_ACTIVE)
1388			continue;
1389
1390		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1391			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1392		} else {
1393			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1394			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1395		}
1396	}
1397
1398	dev->links.status = DL_DEV_NO_DRIVER;
1399}
1400
1401/**
1402 * device_links_no_driver - Update links after failing driver probe.
1403 * @dev: Device whose driver has just failed to probe.
1404 *
1405 * Clean up leftover links to consumers for @dev and invoke
1406 * %__device_links_no_driver() to update links to suppliers for it as
1407 * appropriate.
1408 *
1409 * Links without the DL_FLAG_MANAGED flag set are ignored.
1410 */
1411void device_links_no_driver(struct device *dev)
1412{
1413	struct device_link *link;
1414
1415	device_links_write_lock();
1416
1417	list_for_each_entry(link, &dev->links.consumers, s_node) {
1418		if (!(link->flags & DL_FLAG_MANAGED))
1419			continue;
1420
1421		/*
1422		 * The probe has failed, so if the status of the link is
1423		 * "consumer probe" or "active", it must have been added by
1424		 * a probing consumer while this device was still probing.
1425		 * Change its state to "dormant", as it represents a valid
1426		 * relationship, but it is not functionally meaningful.
1427		 */
1428		if (link->status == DL_STATE_CONSUMER_PROBE ||
1429		    link->status == DL_STATE_ACTIVE)
1430			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1431	}
1432
1433	__device_links_no_driver(dev);
1434
1435	device_links_write_unlock();
1436}
1437
1438/**
1439 * device_links_driver_cleanup - Update links after driver removal.
1440 * @dev: Device whose driver has just gone away.
1441 *
1442 * Update links to consumers for @dev by changing their status to "dormant" and
1443 * invoke %__device_links_no_driver() to update links to suppliers for it as
1444 * appropriate.
1445 *
1446 * Links without the DL_FLAG_MANAGED flag set are ignored.
1447 */
1448void device_links_driver_cleanup(struct device *dev)
1449{
1450	struct device_link *link, *ln;
1451
1452	device_links_write_lock();
1453
1454	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1455		if (!(link->flags & DL_FLAG_MANAGED))
1456			continue;
1457
1458		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1459		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1460
1461		/*
1462		 * autoremove the links between this @dev and its consumer
1463		 * devices that are not active, i.e. where the link state
1464		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1465		 */
1466		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1467		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1468			device_link_drop_managed(link);
1469
1470		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1471	}
1472
1473	list_del_init(&dev->links.defer_sync);
1474	__device_links_no_driver(dev);
1475
1476	device_links_write_unlock();
1477}
1478
1479/**
1480 * device_links_busy - Check if there are any busy links to consumers.
1481 * @dev: Device to check.
1482 *
1483 * Check each consumer of the device and return 'true' if its link's status
1484 * is one of "consumer probe" or "active" (meaning that the given consumer is
1485 * probing right now or its driver is present).  Otherwise, change the link
1486 * state to "supplier unbind" to prevent the consumer from being probed
1487 * successfully going forward.
1488 *
1489 * Return 'false' if there are no probing or active consumers.
1490 *
1491 * Links without the DL_FLAG_MANAGED flag set are ignored.
1492 */
1493bool device_links_busy(struct device *dev)
1494{
1495	struct device_link *link;
1496	bool ret = false;
1497
1498	device_links_write_lock();
1499
1500	list_for_each_entry(link, &dev->links.consumers, s_node) {
1501		if (!(link->flags & DL_FLAG_MANAGED))
1502			continue;
1503
1504		if (link->status == DL_STATE_CONSUMER_PROBE
1505		    || link->status == DL_STATE_ACTIVE) {
1506			ret = true;
1507			break;
1508		}
1509		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1510	}
1511
1512	dev->links.status = DL_DEV_UNBINDING;
1513
1514	device_links_write_unlock();
1515	return ret;
1516}
1517
1518/**
1519 * device_links_unbind_consumers - Force unbind consumers of the given device.
1520 * @dev: Device to unbind the consumers of.
1521 *
1522 * Walk the list of links to consumers for @dev and if any of them is in the
1523 * "consumer probe" state, wait for all device probes in progress to complete
1524 * and start over.
1525 *
1526 * If that's not the case, change the status of the link to "supplier unbind"
1527 * and check if the link was in the "active" state.  If so, force the consumer
1528 * driver to unbind and start over (the consumer will not re-probe as we have
1529 * changed the state of the link already).
1530 *
1531 * Links without the DL_FLAG_MANAGED flag set are ignored.
1532 */
1533void device_links_unbind_consumers(struct device *dev)
1534{
1535	struct device_link *link;
1536
1537 start:
1538	device_links_write_lock();
1539
1540	list_for_each_entry(link, &dev->links.consumers, s_node) {
1541		enum device_link_state status;
1542
1543		if (!(link->flags & DL_FLAG_MANAGED) ||
1544		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1545			continue;
1546
1547		status = link->status;
1548		if (status == DL_STATE_CONSUMER_PROBE) {
1549			device_links_write_unlock();
1550
1551			wait_for_device_probe();
1552			goto start;
1553		}
1554		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1555		if (status == DL_STATE_ACTIVE) {
1556			struct device *consumer = link->consumer;
1557
1558			get_device(consumer);
1559
1560			device_links_write_unlock();
1561
1562			device_release_driver_internal(consumer, NULL,
1563						       consumer->parent);
1564			put_device(consumer);
1565			goto start;
1566		}
1567	}
1568
1569	device_links_write_unlock();
1570}
1571
1572/**
1573 * device_links_purge - Delete existing links to other devices.
1574 * @dev: Target device.
1575 */
1576static void device_links_purge(struct device *dev)
1577{
1578	struct device_link *link, *ln;
1579
1580	if (dev->class == &devlink_class)
1581		return;
1582
1583	/*
1584	 * Delete all of the remaining links from this device to any other
1585	 * devices (either consumers or suppliers).
1586	 */
1587	device_links_write_lock();
1588
1589	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1590		WARN_ON(link->status == DL_STATE_ACTIVE);
1591		__device_link_del(&link->kref);
1592	}
1593
1594	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1595		WARN_ON(link->status != DL_STATE_DORMANT &&
1596			link->status != DL_STATE_NONE);
1597		__device_link_del(&link->kref);
1598	}
1599
1600	device_links_write_unlock();
1601}
1602
1603#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1604					 DL_FLAG_SYNC_STATE_ONLY)
1605#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1606					 DL_FLAG_AUTOPROBE_CONSUMER)
1607#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1608					 DL_FLAG_PM_RUNTIME)
1609
1610static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1611static int __init fw_devlink_setup(char *arg)
1612{
1613	if (!arg)
1614		return -EINVAL;
1615
1616	if (strcmp(arg, "off") == 0) {
1617		fw_devlink_flags = 0;
1618	} else if (strcmp(arg, "permissive") == 0) {
1619		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1620	} else if (strcmp(arg, "on") == 0) {
1621		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1622	} else if (strcmp(arg, "rpm") == 0) {
1623		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1624	}
1625	return 0;
1626}
1627early_param("fw_devlink", fw_devlink_setup);
1628
1629static bool fw_devlink_strict;
1630static int __init fw_devlink_strict_setup(char *arg)
1631{
1632	return kstrtobool(arg, &fw_devlink_strict);
1633}
1634early_param("fw_devlink.strict", fw_devlink_strict_setup);
1635
1636u32 fw_devlink_get_flags(void)
1637{
1638	return fw_devlink_flags;
1639}
1640
1641static bool fw_devlink_is_permissive(void)
1642{
1643	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1644}
1645
1646bool fw_devlink_is_strict(void)
1647{
1648	return fw_devlink_strict && !fw_devlink_is_permissive();
1649}
1650
1651static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1652{
1653	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1654		return;
1655
1656	fwnode_call_int_op(fwnode, add_links);
1657	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1658}
1659
1660static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1661{
1662	struct fwnode_handle *child = NULL;
1663
1664	fw_devlink_parse_fwnode(fwnode);
1665
1666	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1667		fw_devlink_parse_fwtree(child);
1668}
1669
1670static void fw_devlink_relax_link(struct device_link *link)
1671{
1672	if (!(link->flags & DL_FLAG_INFERRED))
1673		return;
1674
1675	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1676		return;
1677
1678	pm_runtime_drop_link(link);
1679	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1680	dev_dbg(link->consumer, "Relaxing link with %s\n",
1681		dev_name(link->supplier));
1682}
1683
1684static int fw_devlink_no_driver(struct device *dev, void *data)
1685{
1686	struct device_link *link = to_devlink(dev);
1687
1688	if (!link->supplier->can_match)
1689		fw_devlink_relax_link(link);
1690
1691	return 0;
1692}
1693
1694void fw_devlink_drivers_done(void)
1695{
1696	fw_devlink_drv_reg_done = true;
1697	device_links_write_lock();
1698	class_for_each_device(&devlink_class, NULL, NULL,
1699			      fw_devlink_no_driver);
1700	device_links_write_unlock();
1701}
1702
1703/**
1704 * wait_for_init_devices_probe - Try to probe any device needed for init
1705 *
1706 * Some devices might need to be probed and bound successfully before the kernel
1707 * boot sequence can finish and move on to init/userspace. For example, a
1708 * network interface might need to be bound to be able to mount a NFS rootfs.
1709 *
1710 * With fw_devlink=on by default, some of these devices might be blocked from
1711 * probing because they are waiting on a optional supplier that doesn't have a
1712 * driver. While fw_devlink will eventually identify such devices and unblock
1713 * the probing automatically, it might be too late by the time it unblocks the
1714 * probing of devices. For example, the IP4 autoconfig might timeout before
1715 * fw_devlink unblocks probing of the network interface.
1716 *
1717 * This function is available to temporarily try and probe all devices that have
1718 * a driver even if some of their suppliers haven't been added or don't have
1719 * drivers.
1720 *
1721 * The drivers can then decide which of the suppliers are optional vs mandatory
1722 * and probe the device if possible. By the time this function returns, all such
1723 * "best effort" probes are guaranteed to be completed. If a device successfully
1724 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1725 * device where the supplier hasn't yet probed successfully because they have to
1726 * be optional dependencies.
1727 *
1728 * Any devices that didn't successfully probe go back to being treated as if
1729 * this function was never called.
1730 *
1731 * This also means that some devices that aren't needed for init and could have
1732 * waited for their optional supplier to probe (when the supplier's module is
1733 * loaded later on) would end up probing prematurely with limited functionality.
1734 * So call this function only when boot would fail without it.
1735 */
1736void __init wait_for_init_devices_probe(void)
1737{
1738	if (!fw_devlink_flags || fw_devlink_is_permissive())
1739		return;
1740
1741	/*
1742	 * Wait for all ongoing probes to finish so that the "best effort" is
1743	 * only applied to devices that can't probe otherwise.
1744	 */
1745	wait_for_device_probe();
1746
1747	pr_info("Trying to probe devices needed for running init ...\n");
1748	fw_devlink_best_effort = true;
1749	driver_deferred_probe_trigger();
1750
1751	/*
1752	 * Wait for all "best effort" probes to finish before going back to
1753	 * normal enforcement.
1754	 */
1755	wait_for_device_probe();
1756	fw_devlink_best_effort = false;
1757}
1758
1759static void fw_devlink_unblock_consumers(struct device *dev)
1760{
1761	struct device_link *link;
1762
1763	if (!fw_devlink_flags || fw_devlink_is_permissive())
1764		return;
1765
1766	device_links_write_lock();
1767	list_for_each_entry(link, &dev->links.consumers, s_node)
1768		fw_devlink_relax_link(link);
1769	device_links_write_unlock();
1770}
1771
1772/**
1773 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1774 * @con: Device to check dependencies for.
1775 * @sup: Device to check against.
1776 *
1777 * Check if @sup depends on @con or any device dependent on it (its child or
1778 * its consumer etc).  When such a cyclic dependency is found, convert all
1779 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1780 * This is the equivalent of doing fw_devlink=permissive just between the
1781 * devices in the cycle. We need to do this because, at this point, fw_devlink
1782 * can't tell which of these dependencies is not a real dependency.
1783 *
1784 * Return 1 if a cycle is found. Otherwise, return 0.
1785 */
1786static int fw_devlink_relax_cycle(struct device *con, void *sup)
1787{
1788	struct device_link *link;
1789	int ret;
1790
1791	if (con == sup)
1792		return 1;
1793
1794	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1795	if (ret)
1796		return ret;
1797
1798	list_for_each_entry(link, &con->links.consumers, s_node) {
1799		if ((link->flags & ~DL_FLAG_INFERRED) ==
1800		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1801			continue;
1802
1803		if (!fw_devlink_relax_cycle(link->consumer, sup))
1804			continue;
1805
1806		ret = 1;
1807
1808		fw_devlink_relax_link(link);
1809	}
1810	return ret;
1811}
1812
1813/**
1814 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1815 * @con: consumer device for the device link
1816 * @sup_handle: fwnode handle of supplier
1817 * @flags: devlink flags
1818 *
1819 * This function will try to create a device link between the consumer device
1820 * @con and the supplier device represented by @sup_handle.
1821 *
1822 * The supplier has to be provided as a fwnode because incorrect cycles in
1823 * fwnode links can sometimes cause the supplier device to never be created.
1824 * This function detects such cases and returns an error if it cannot create a
1825 * device link from the consumer to a missing supplier.
1826 *
1827 * Returns,
1828 * 0 on successfully creating a device link
1829 * -EINVAL if the device link cannot be created as expected
1830 * -EAGAIN if the device link cannot be created right now, but it may be
1831 *  possible to do that in the future
1832 */
1833static int fw_devlink_create_devlink(struct device *con,
1834				     struct fwnode_handle *sup_handle, u32 flags)
1835{
1836	struct device *sup_dev;
1837	int ret = 0;
1838
1839	/*
1840	 * In some cases, a device P might also be a supplier to its child node
1841	 * C. However, this would defer the probe of C until the probe of P
1842	 * completes successfully. This is perfectly fine in the device driver
1843	 * model. device_add() doesn't guarantee probe completion of the device
1844	 * by the time it returns.
1845	 *
1846	 * However, there are a few drivers that assume C will finish probing
1847	 * as soon as it's added and before P finishes probing. So, we provide
1848	 * a flag to let fw_devlink know not to delay the probe of C until the
1849	 * probe of P completes successfully.
1850	 *
1851	 * When such a flag is set, we can't create device links where P is the
1852	 * supplier of C as that would delay the probe of C.
1853	 */
1854	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1855	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1856		return -EINVAL;
1857
1858	sup_dev = get_dev_from_fwnode(sup_handle);
1859	if (sup_dev) {
1860		/*
1861		 * If it's one of those drivers that don't actually bind to
1862		 * their device using driver core, then don't wait on this
1863		 * supplier device indefinitely.
1864		 */
1865		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1866		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1867			ret = -EINVAL;
1868			goto out;
1869		}
1870
1871		/*
1872		 * If this fails, it is due to cycles in device links.  Just
1873		 * give up on this link and treat it as invalid.
1874		 */
1875		if (!device_link_add(con, sup_dev, flags) &&
1876		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1877			dev_info(con, "Fixing up cyclic dependency with %s\n",
1878				 dev_name(sup_dev));
1879			device_links_write_lock();
1880			fw_devlink_relax_cycle(con, sup_dev);
1881			device_links_write_unlock();
1882			device_link_add(con, sup_dev,
1883					FW_DEVLINK_FLAGS_PERMISSIVE);
1884			ret = -EINVAL;
1885		}
1886
1887		goto out;
1888	}
1889
1890	/* Supplier that's already initialized without a struct device. */
1891	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1892		return -EINVAL;
1893
1894	/*
1895	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1896	 * cycles. So cycle detection isn't necessary and shouldn't be
1897	 * done.
1898	 */
1899	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1900		return -EAGAIN;
1901
1902	/*
1903	 * If we can't find the supplier device from its fwnode, it might be
1904	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1905	 * be broken by applying logic. Check for these types of cycles and
1906	 * break them so that devices in the cycle probe properly.
1907	 *
1908	 * If the supplier's parent is dependent on the consumer, then the
1909	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1910	 * can't tell which of the inferred dependencies are incorrect, don't
1911	 * enforce probe ordering between any of the devices in this cyclic
1912	 * dependency. Do this by relaxing all the fw_devlink device links in
1913	 * this cycle and by treating the fwnode link between the consumer and
1914	 * the supplier as an invalid dependency.
1915	 */
1916	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1917	if (sup_dev && device_is_dependent(con, sup_dev)) {
1918		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1919			 sup_handle, dev_name(sup_dev));
1920		device_links_write_lock();
1921		fw_devlink_relax_cycle(con, sup_dev);
1922		device_links_write_unlock();
1923		ret = -EINVAL;
1924	} else {
1925		/*
1926		 * Can't check for cycles or no cycles. So let's try
1927		 * again later.
1928		 */
1929		ret = -EAGAIN;
1930	}
1931
1932out:
1933	put_device(sup_dev);
1934	return ret;
1935}
1936
1937/**
1938 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1939 * @dev: Device that needs to be linked to its consumers
1940 *
1941 * This function looks at all the consumer fwnodes of @dev and creates device
1942 * links between the consumer device and @dev (supplier).
1943 *
1944 * If the consumer device has not been added yet, then this function creates a
1945 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1946 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1947 * sync_state() callback before the real consumer device gets to be added and
1948 * then probed.
1949 *
1950 * Once device links are created from the real consumer to @dev (supplier), the
1951 * fwnode links are deleted.
1952 */
1953static void __fw_devlink_link_to_consumers(struct device *dev)
1954{
1955	struct fwnode_handle *fwnode = dev->fwnode;
1956	struct fwnode_link *link, *tmp;
1957
1958	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1959		u32 dl_flags = fw_devlink_get_flags();
1960		struct device *con_dev;
1961		bool own_link = true;
1962		int ret;
1963
1964		con_dev = get_dev_from_fwnode(link->consumer);
1965		/*
1966		 * If consumer device is not available yet, make a "proxy"
1967		 * SYNC_STATE_ONLY link from the consumer's parent device to
1968		 * the supplier device. This is necessary to make sure the
1969		 * supplier doesn't get a sync_state() callback before the real
1970		 * consumer can create a device link to the supplier.
1971		 *
1972		 * This proxy link step is needed to handle the case where the
1973		 * consumer's parent device is added before the supplier.
1974		 */
1975		if (!con_dev) {
1976			con_dev = fwnode_get_next_parent_dev(link->consumer);
1977			/*
1978			 * However, if the consumer's parent device is also the
1979			 * parent of the supplier, don't create a
1980			 * consumer-supplier link from the parent to its child
1981			 * device. Such a dependency is impossible.
1982			 */
1983			if (con_dev &&
1984			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1985				put_device(con_dev);
1986				con_dev = NULL;
1987			} else {
1988				own_link = false;
1989				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1990			}
1991		}
1992
1993		if (!con_dev)
1994			continue;
1995
1996		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1997		put_device(con_dev);
1998		if (!own_link || ret == -EAGAIN)
1999			continue;
2000
2001		__fwnode_link_del(link);
 
 
2002	}
2003}
2004
2005/**
2006 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2007 * @dev: The consumer device that needs to be linked to its suppliers
2008 * @fwnode: Root of the fwnode tree that is used to create device links
2009 *
2010 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2011 * @fwnode and creates device links between @dev (consumer) and all the
2012 * supplier devices of the entire fwnode tree at @fwnode.
2013 *
2014 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2015 * and the real suppliers of @dev. Once these device links are created, the
2016 * fwnode links are deleted. When such device links are successfully created,
2017 * this function is called recursively on those supplier devices. This is
2018 * needed to detect and break some invalid cycles in fwnode links.  See
2019 * fw_devlink_create_devlink() for more details.
2020 *
2021 * In addition, it also looks at all the suppliers of the entire fwnode tree
2022 * because some of the child devices of @dev that have not been added yet
2023 * (because @dev hasn't probed) might already have their suppliers added to
2024 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2025 * @dev (consumer) and these suppliers to make sure they don't execute their
2026 * sync_state() callbacks before these child devices have a chance to create
2027 * their device links. The fwnode links that correspond to the child devices
2028 * aren't delete because they are needed later to create the device links
2029 * between the real consumer and supplier devices.
2030 */
2031static void __fw_devlink_link_to_suppliers(struct device *dev,
2032					   struct fwnode_handle *fwnode)
2033{
2034	bool own_link = (dev->fwnode == fwnode);
2035	struct fwnode_link *link, *tmp;
2036	struct fwnode_handle *child = NULL;
2037	u32 dl_flags;
2038
2039	if (own_link)
2040		dl_flags = fw_devlink_get_flags();
2041	else
2042		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2043
2044	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2045		int ret;
2046		struct device *sup_dev;
2047		struct fwnode_handle *sup = link->supplier;
2048
2049		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
2050		if (!own_link || ret == -EAGAIN)
2051			continue;
2052
2053		__fwnode_link_del(link);
 
 
2054
2055		/* If no device link was created, nothing more to do. */
2056		if (ret)
2057			continue;
2058
2059		/*
2060		 * If a device link was successfully created to a supplier, we
2061		 * now need to try and link the supplier to all its suppliers.
2062		 *
2063		 * This is needed to detect and delete false dependencies in
2064		 * fwnode links that haven't been converted to a device link
2065		 * yet. See comments in fw_devlink_create_devlink() for more
2066		 * details on the false dependency.
2067		 *
2068		 * Without deleting these false dependencies, some devices will
2069		 * never probe because they'll keep waiting for their false
2070		 * dependency fwnode links to be converted to device links.
2071		 */
2072		sup_dev = get_dev_from_fwnode(sup);
2073		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
2074		put_device(sup_dev);
2075	}
2076
2077	/*
2078	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2079	 * all the descendants. This proxy link step is needed to handle the
2080	 * case where the supplier is added before the consumer's parent device
2081	 * (@dev).
2082	 */
2083	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2084		__fw_devlink_link_to_suppliers(dev, child);
2085}
2086
2087static void fw_devlink_link_device(struct device *dev)
2088{
2089	struct fwnode_handle *fwnode = dev->fwnode;
2090
2091	if (!fw_devlink_flags)
2092		return;
2093
2094	fw_devlink_parse_fwtree(fwnode);
2095
2096	mutex_lock(&fwnode_link_lock);
2097	__fw_devlink_link_to_consumers(dev);
2098	__fw_devlink_link_to_suppliers(dev, fwnode);
2099	mutex_unlock(&fwnode_link_lock);
2100}
2101
2102/* Device links support end. */
2103
2104int (*platform_notify)(struct device *dev) = NULL;
2105int (*platform_notify_remove)(struct device *dev) = NULL;
2106static struct kobject *dev_kobj;
2107struct kobject *sysfs_dev_char_kobj;
2108struct kobject *sysfs_dev_block_kobj;
2109
2110static DEFINE_MUTEX(device_hotplug_lock);
2111
2112void lock_device_hotplug(void)
2113{
2114	mutex_lock(&device_hotplug_lock);
2115}
2116
2117void unlock_device_hotplug(void)
2118{
2119	mutex_unlock(&device_hotplug_lock);
2120}
2121
2122int lock_device_hotplug_sysfs(void)
2123{
2124	if (mutex_trylock(&device_hotplug_lock))
2125		return 0;
2126
2127	/* Avoid busy looping (5 ms of sleep should do). */
2128	msleep(5);
2129	return restart_syscall();
2130}
2131
2132#ifdef CONFIG_BLOCK
2133static inline int device_is_not_partition(struct device *dev)
2134{
2135	return !(dev->type == &part_type);
2136}
2137#else
2138static inline int device_is_not_partition(struct device *dev)
2139{
2140	return 1;
2141}
2142#endif
2143
2144static void device_platform_notify(struct device *dev)
 
2145{
2146	acpi_device_notify(dev);
2147
2148	software_node_notify(dev);
2149
2150	if (platform_notify)
2151		platform_notify(dev);
2152}
2153
2154static void device_platform_notify_remove(struct device *dev)
2155{
2156	acpi_device_notify_remove(dev);
2157
2158	software_node_notify_remove(dev);
 
 
2159
2160	if (platform_notify_remove)
 
 
2161		platform_notify_remove(dev);
 
2162}
2163
2164/**
2165 * dev_driver_string - Return a device's driver name, if at all possible
2166 * @dev: struct device to get the name of
2167 *
2168 * Will return the device's driver's name if it is bound to a device.  If
2169 * the device is not bound to a driver, it will return the name of the bus
2170 * it is attached to.  If it is not attached to a bus either, an empty
2171 * string will be returned.
2172 */
2173const char *dev_driver_string(const struct device *dev)
2174{
2175	struct device_driver *drv;
2176
2177	/* dev->driver can change to NULL underneath us because of unbinding,
2178	 * so be careful about accessing it.  dev->bus and dev->class should
2179	 * never change once they are set, so they don't need special care.
2180	 */
2181	drv = READ_ONCE(dev->driver);
2182	return drv ? drv->name : dev_bus_name(dev);
2183}
2184EXPORT_SYMBOL(dev_driver_string);
2185
2186#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2187
2188static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2189			     char *buf)
2190{
2191	struct device_attribute *dev_attr = to_dev_attr(attr);
2192	struct device *dev = kobj_to_dev(kobj);
2193	ssize_t ret = -EIO;
2194
2195	if (dev_attr->show)
2196		ret = dev_attr->show(dev, dev_attr, buf);
2197	if (ret >= (ssize_t)PAGE_SIZE) {
2198		printk("dev_attr_show: %pS returned bad count\n",
2199				dev_attr->show);
2200	}
2201	return ret;
2202}
2203
2204static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2205			      const char *buf, size_t count)
2206{
2207	struct device_attribute *dev_attr = to_dev_attr(attr);
2208	struct device *dev = kobj_to_dev(kobj);
2209	ssize_t ret = -EIO;
2210
2211	if (dev_attr->store)
2212		ret = dev_attr->store(dev, dev_attr, buf, count);
2213	return ret;
2214}
2215
2216static const struct sysfs_ops dev_sysfs_ops = {
2217	.show	= dev_attr_show,
2218	.store	= dev_attr_store,
2219};
2220
2221#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2222
2223ssize_t device_store_ulong(struct device *dev,
2224			   struct device_attribute *attr,
2225			   const char *buf, size_t size)
2226{
2227	struct dev_ext_attribute *ea = to_ext_attr(attr);
2228	int ret;
2229	unsigned long new;
2230
2231	ret = kstrtoul(buf, 0, &new);
2232	if (ret)
2233		return ret;
2234	*(unsigned long *)(ea->var) = new;
2235	/* Always return full write size even if we didn't consume all */
2236	return size;
2237}
2238EXPORT_SYMBOL_GPL(device_store_ulong);
2239
2240ssize_t device_show_ulong(struct device *dev,
2241			  struct device_attribute *attr,
2242			  char *buf)
2243{
2244	struct dev_ext_attribute *ea = to_ext_attr(attr);
2245	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2246}
2247EXPORT_SYMBOL_GPL(device_show_ulong);
2248
2249ssize_t device_store_int(struct device *dev,
2250			 struct device_attribute *attr,
2251			 const char *buf, size_t size)
2252{
2253	struct dev_ext_attribute *ea = to_ext_attr(attr);
2254	int ret;
2255	long new;
2256
2257	ret = kstrtol(buf, 0, &new);
2258	if (ret)
2259		return ret;
2260
2261	if (new > INT_MAX || new < INT_MIN)
2262		return -EINVAL;
2263	*(int *)(ea->var) = new;
2264	/* Always return full write size even if we didn't consume all */
2265	return size;
2266}
2267EXPORT_SYMBOL_GPL(device_store_int);
2268
2269ssize_t device_show_int(struct device *dev,
2270			struct device_attribute *attr,
2271			char *buf)
2272{
2273	struct dev_ext_attribute *ea = to_ext_attr(attr);
2274
2275	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2276}
2277EXPORT_SYMBOL_GPL(device_show_int);
2278
2279ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2280			  const char *buf, size_t size)
2281{
2282	struct dev_ext_attribute *ea = to_ext_attr(attr);
2283
2284	if (kstrtobool(buf, ea->var) < 0)
2285		return -EINVAL;
2286
2287	return size;
2288}
2289EXPORT_SYMBOL_GPL(device_store_bool);
2290
2291ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2292			 char *buf)
2293{
2294	struct dev_ext_attribute *ea = to_ext_attr(attr);
2295
2296	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2297}
2298EXPORT_SYMBOL_GPL(device_show_bool);
2299
2300/**
2301 * device_release - free device structure.
2302 * @kobj: device's kobject.
2303 *
2304 * This is called once the reference count for the object
2305 * reaches 0. We forward the call to the device's release
2306 * method, which should handle actually freeing the structure.
2307 */
2308static void device_release(struct kobject *kobj)
2309{
2310	struct device *dev = kobj_to_dev(kobj);
2311	struct device_private *p = dev->p;
2312
2313	/*
2314	 * Some platform devices are driven without driver attached
2315	 * and managed resources may have been acquired.  Make sure
2316	 * all resources are released.
2317	 *
2318	 * Drivers still can add resources into device after device
2319	 * is deleted but alive, so release devres here to avoid
2320	 * possible memory leak.
2321	 */
2322	devres_release_all(dev);
2323
2324	kfree(dev->dma_range_map);
2325
2326	if (dev->release)
2327		dev->release(dev);
2328	else if (dev->type && dev->type->release)
2329		dev->type->release(dev);
2330	else if (dev->class && dev->class->dev_release)
2331		dev->class->dev_release(dev);
2332	else
2333		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2334			dev_name(dev));
2335	kfree(p);
2336}
2337
2338static const void *device_namespace(const struct kobject *kobj)
2339{
2340	const struct device *dev = kobj_to_dev(kobj);
2341	const void *ns = NULL;
2342
2343	if (dev->class && dev->class->ns_type)
2344		ns = dev->class->namespace(dev);
2345
2346	return ns;
2347}
2348
2349static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2350{
2351	const struct device *dev = kobj_to_dev(kobj);
2352
2353	if (dev->class && dev->class->get_ownership)
2354		dev->class->get_ownership(dev, uid, gid);
2355}
2356
2357static struct kobj_type device_ktype = {
2358	.release	= device_release,
2359	.sysfs_ops	= &dev_sysfs_ops,
2360	.namespace	= device_namespace,
2361	.get_ownership	= device_get_ownership,
2362};
2363
2364
2365static int dev_uevent_filter(const struct kobject *kobj)
2366{
2367	const struct kobj_type *ktype = get_ktype(kobj);
2368
2369	if (ktype == &device_ktype) {
2370		const struct device *dev = kobj_to_dev(kobj);
2371		if (dev->bus)
2372			return 1;
2373		if (dev->class)
2374			return 1;
2375	}
2376	return 0;
2377}
2378
2379static const char *dev_uevent_name(const struct kobject *kobj)
2380{
2381	const struct device *dev = kobj_to_dev(kobj);
2382
2383	if (dev->bus)
2384		return dev->bus->name;
2385	if (dev->class)
2386		return dev->class->name;
2387	return NULL;
2388}
2389
2390static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
 
2391{
2392	struct device *dev = kobj_to_dev(kobj);
2393	int retval = 0;
2394
2395	/* add device node properties if present */
2396	if (MAJOR(dev->devt)) {
2397		const char *tmp;
2398		const char *name;
2399		umode_t mode = 0;
2400		kuid_t uid = GLOBAL_ROOT_UID;
2401		kgid_t gid = GLOBAL_ROOT_GID;
2402
2403		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2404		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2405		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2406		if (name) {
2407			add_uevent_var(env, "DEVNAME=%s", name);
2408			if (mode)
2409				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2410			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2411				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2412			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2413				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2414			kfree(tmp);
2415		}
2416	}
2417
2418	if (dev->type && dev->type->name)
2419		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2420
2421	if (dev->driver)
2422		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2423
2424	/* Add common DT information about the device */
2425	of_device_uevent(dev, env);
2426
2427	/* have the bus specific function add its stuff */
2428	if (dev->bus && dev->bus->uevent) {
2429		retval = dev->bus->uevent(dev, env);
2430		if (retval)
2431			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2432				 dev_name(dev), __func__, retval);
2433	}
2434
2435	/* have the class specific function add its stuff */
2436	if (dev->class && dev->class->dev_uevent) {
2437		retval = dev->class->dev_uevent(dev, env);
2438		if (retval)
2439			pr_debug("device: '%s': %s: class uevent() "
2440				 "returned %d\n", dev_name(dev),
2441				 __func__, retval);
2442	}
2443
2444	/* have the device type specific function add its stuff */
2445	if (dev->type && dev->type->uevent) {
2446		retval = dev->type->uevent(dev, env);
2447		if (retval)
2448			pr_debug("device: '%s': %s: dev_type uevent() "
2449				 "returned %d\n", dev_name(dev),
2450				 __func__, retval);
2451	}
2452
2453	return retval;
2454}
2455
2456static const struct kset_uevent_ops device_uevent_ops = {
2457	.filter =	dev_uevent_filter,
2458	.name =		dev_uevent_name,
2459	.uevent =	dev_uevent,
2460};
2461
2462static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2463			   char *buf)
2464{
2465	struct kobject *top_kobj;
2466	struct kset *kset;
2467	struct kobj_uevent_env *env = NULL;
2468	int i;
2469	int len = 0;
2470	int retval;
2471
2472	/* search the kset, the device belongs to */
2473	top_kobj = &dev->kobj;
2474	while (!top_kobj->kset && top_kobj->parent)
2475		top_kobj = top_kobj->parent;
2476	if (!top_kobj->kset)
2477		goto out;
2478
2479	kset = top_kobj->kset;
2480	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2481		goto out;
2482
2483	/* respect filter */
2484	if (kset->uevent_ops && kset->uevent_ops->filter)
2485		if (!kset->uevent_ops->filter(&dev->kobj))
2486			goto out;
2487
2488	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2489	if (!env)
2490		return -ENOMEM;
2491
2492	/* let the kset specific function add its keys */
2493	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2494	if (retval)
2495		goto out;
2496
2497	/* copy keys to file */
2498	for (i = 0; i < env->envp_idx; i++)
2499		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2500out:
2501	kfree(env);
2502	return len;
2503}
2504
2505static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2506			    const char *buf, size_t count)
2507{
2508	int rc;
2509
2510	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2511
2512	if (rc) {
2513		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2514		return rc;
2515	}
2516
2517	return count;
2518}
2519static DEVICE_ATTR_RW(uevent);
2520
2521static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2522			   char *buf)
2523{
2524	bool val;
2525
2526	device_lock(dev);
2527	val = !dev->offline;
2528	device_unlock(dev);
2529	return sysfs_emit(buf, "%u\n", val);
2530}
2531
2532static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2533			    const char *buf, size_t count)
2534{
2535	bool val;
2536	int ret;
2537
2538	ret = kstrtobool(buf, &val);
2539	if (ret < 0)
2540		return ret;
2541
2542	ret = lock_device_hotplug_sysfs();
2543	if (ret)
2544		return ret;
2545
2546	ret = val ? device_online(dev) : device_offline(dev);
2547	unlock_device_hotplug();
2548	return ret < 0 ? ret : count;
2549}
2550static DEVICE_ATTR_RW(online);
2551
2552static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2553			      char *buf)
2554{
2555	const char *loc;
2556
2557	switch (dev->removable) {
2558	case DEVICE_REMOVABLE:
2559		loc = "removable";
2560		break;
2561	case DEVICE_FIXED:
2562		loc = "fixed";
2563		break;
2564	default:
2565		loc = "unknown";
2566	}
2567	return sysfs_emit(buf, "%s\n", loc);
2568}
2569static DEVICE_ATTR_RO(removable);
2570
2571int device_add_groups(struct device *dev, const struct attribute_group **groups)
2572{
2573	return sysfs_create_groups(&dev->kobj, groups);
2574}
2575EXPORT_SYMBOL_GPL(device_add_groups);
2576
2577void device_remove_groups(struct device *dev,
2578			  const struct attribute_group **groups)
2579{
2580	sysfs_remove_groups(&dev->kobj, groups);
2581}
2582EXPORT_SYMBOL_GPL(device_remove_groups);
2583
2584union device_attr_group_devres {
2585	const struct attribute_group *group;
2586	const struct attribute_group **groups;
2587};
2588
 
 
 
 
 
2589static void devm_attr_group_remove(struct device *dev, void *res)
2590{
2591	union device_attr_group_devres *devres = res;
2592	const struct attribute_group *group = devres->group;
2593
2594	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2595	sysfs_remove_group(&dev->kobj, group);
2596}
2597
2598static void devm_attr_groups_remove(struct device *dev, void *res)
2599{
2600	union device_attr_group_devres *devres = res;
2601	const struct attribute_group **groups = devres->groups;
2602
2603	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2604	sysfs_remove_groups(&dev->kobj, groups);
2605}
2606
2607/**
2608 * devm_device_add_group - given a device, create a managed attribute group
2609 * @dev:	The device to create the group for
2610 * @grp:	The attribute group to create
2611 *
2612 * This function creates a group for the first time.  It will explicitly
2613 * warn and error if any of the attribute files being created already exist.
2614 *
2615 * Returns 0 on success or error code on failure.
2616 */
2617int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2618{
2619	union device_attr_group_devres *devres;
2620	int error;
2621
2622	devres = devres_alloc(devm_attr_group_remove,
2623			      sizeof(*devres), GFP_KERNEL);
2624	if (!devres)
2625		return -ENOMEM;
2626
2627	error = sysfs_create_group(&dev->kobj, grp);
2628	if (error) {
2629		devres_free(devres);
2630		return error;
2631	}
2632
2633	devres->group = grp;
2634	devres_add(dev, devres);
2635	return 0;
2636}
2637EXPORT_SYMBOL_GPL(devm_device_add_group);
2638
2639/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2640 * devm_device_add_groups - create a bunch of managed attribute groups
2641 * @dev:	The device to create the group for
2642 * @groups:	The attribute groups to create, NULL terminated
2643 *
2644 * This function creates a bunch of managed attribute groups.  If an error
2645 * occurs when creating a group, all previously created groups will be
2646 * removed, unwinding everything back to the original state when this
2647 * function was called.  It will explicitly warn and error if any of the
2648 * attribute files being created already exist.
2649 *
2650 * Returns 0 on success or error code from sysfs_create_group on failure.
2651 */
2652int devm_device_add_groups(struct device *dev,
2653			   const struct attribute_group **groups)
2654{
2655	union device_attr_group_devres *devres;
2656	int error;
2657
2658	devres = devres_alloc(devm_attr_groups_remove,
2659			      sizeof(*devres), GFP_KERNEL);
2660	if (!devres)
2661		return -ENOMEM;
2662
2663	error = sysfs_create_groups(&dev->kobj, groups);
2664	if (error) {
2665		devres_free(devres);
2666		return error;
2667	}
2668
2669	devres->groups = groups;
2670	devres_add(dev, devres);
2671	return 0;
2672}
2673EXPORT_SYMBOL_GPL(devm_device_add_groups);
2674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2675static int device_add_attrs(struct device *dev)
2676{
2677	struct class *class = dev->class;
2678	const struct device_type *type = dev->type;
2679	int error;
2680
2681	if (class) {
2682		error = device_add_groups(dev, class->dev_groups);
2683		if (error)
2684			return error;
2685	}
2686
2687	if (type) {
2688		error = device_add_groups(dev, type->groups);
2689		if (error)
2690			goto err_remove_class_groups;
2691	}
2692
2693	error = device_add_groups(dev, dev->groups);
2694	if (error)
2695		goto err_remove_type_groups;
2696
2697	if (device_supports_offline(dev) && !dev->offline_disabled) {
2698		error = device_create_file(dev, &dev_attr_online);
2699		if (error)
2700			goto err_remove_dev_groups;
2701	}
2702
2703	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2704		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2705		if (error)
2706			goto err_remove_dev_online;
2707	}
2708
2709	if (dev_removable_is_valid(dev)) {
2710		error = device_create_file(dev, &dev_attr_removable);
2711		if (error)
2712			goto err_remove_dev_waiting_for_supplier;
2713	}
2714
2715	if (dev_add_physical_location(dev)) {
2716		error = device_add_group(dev,
2717			&dev_attr_physical_location_group);
2718		if (error)
2719			goto err_remove_dev_removable;
2720	}
2721
2722	return 0;
2723
2724 err_remove_dev_removable:
2725	device_remove_file(dev, &dev_attr_removable);
2726 err_remove_dev_waiting_for_supplier:
2727	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2728 err_remove_dev_online:
2729	device_remove_file(dev, &dev_attr_online);
2730 err_remove_dev_groups:
2731	device_remove_groups(dev, dev->groups);
2732 err_remove_type_groups:
2733	if (type)
2734		device_remove_groups(dev, type->groups);
2735 err_remove_class_groups:
2736	if (class)
2737		device_remove_groups(dev, class->dev_groups);
2738
2739	return error;
2740}
2741
2742static void device_remove_attrs(struct device *dev)
2743{
2744	struct class *class = dev->class;
2745	const struct device_type *type = dev->type;
2746
2747	if (dev->physical_location) {
2748		device_remove_group(dev, &dev_attr_physical_location_group);
2749		kfree(dev->physical_location);
2750	}
2751
2752	device_remove_file(dev, &dev_attr_removable);
2753	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2754	device_remove_file(dev, &dev_attr_online);
2755	device_remove_groups(dev, dev->groups);
2756
2757	if (type)
2758		device_remove_groups(dev, type->groups);
2759
2760	if (class)
2761		device_remove_groups(dev, class->dev_groups);
2762}
2763
2764static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2765			char *buf)
2766{
2767	return print_dev_t(buf, dev->devt);
2768}
2769static DEVICE_ATTR_RO(dev);
2770
2771/* /sys/devices/ */
2772struct kset *devices_kset;
2773
2774/**
2775 * devices_kset_move_before - Move device in the devices_kset's list.
2776 * @deva: Device to move.
2777 * @devb: Device @deva should come before.
2778 */
2779static void devices_kset_move_before(struct device *deva, struct device *devb)
2780{
2781	if (!devices_kset)
2782		return;
2783	pr_debug("devices_kset: Moving %s before %s\n",
2784		 dev_name(deva), dev_name(devb));
2785	spin_lock(&devices_kset->list_lock);
2786	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2787	spin_unlock(&devices_kset->list_lock);
2788}
2789
2790/**
2791 * devices_kset_move_after - Move device in the devices_kset's list.
2792 * @deva: Device to move
2793 * @devb: Device @deva should come after.
2794 */
2795static void devices_kset_move_after(struct device *deva, struct device *devb)
2796{
2797	if (!devices_kset)
2798		return;
2799	pr_debug("devices_kset: Moving %s after %s\n",
2800		 dev_name(deva), dev_name(devb));
2801	spin_lock(&devices_kset->list_lock);
2802	list_move(&deva->kobj.entry, &devb->kobj.entry);
2803	spin_unlock(&devices_kset->list_lock);
2804}
2805
2806/**
2807 * devices_kset_move_last - move the device to the end of devices_kset's list.
2808 * @dev: device to move
2809 */
2810void devices_kset_move_last(struct device *dev)
2811{
2812	if (!devices_kset)
2813		return;
2814	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2815	spin_lock(&devices_kset->list_lock);
2816	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2817	spin_unlock(&devices_kset->list_lock);
2818}
2819
2820/**
2821 * device_create_file - create sysfs attribute file for device.
2822 * @dev: device.
2823 * @attr: device attribute descriptor.
2824 */
2825int device_create_file(struct device *dev,
2826		       const struct device_attribute *attr)
2827{
2828	int error = 0;
2829
2830	if (dev) {
2831		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2832			"Attribute %s: write permission without 'store'\n",
2833			attr->attr.name);
2834		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2835			"Attribute %s: read permission without 'show'\n",
2836			attr->attr.name);
2837		error = sysfs_create_file(&dev->kobj, &attr->attr);
2838	}
2839
2840	return error;
2841}
2842EXPORT_SYMBOL_GPL(device_create_file);
2843
2844/**
2845 * device_remove_file - remove sysfs attribute file.
2846 * @dev: device.
2847 * @attr: device attribute descriptor.
2848 */
2849void device_remove_file(struct device *dev,
2850			const struct device_attribute *attr)
2851{
2852	if (dev)
2853		sysfs_remove_file(&dev->kobj, &attr->attr);
2854}
2855EXPORT_SYMBOL_GPL(device_remove_file);
2856
2857/**
2858 * device_remove_file_self - remove sysfs attribute file from its own method.
2859 * @dev: device.
2860 * @attr: device attribute descriptor.
2861 *
2862 * See kernfs_remove_self() for details.
2863 */
2864bool device_remove_file_self(struct device *dev,
2865			     const struct device_attribute *attr)
2866{
2867	if (dev)
2868		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2869	else
2870		return false;
2871}
2872EXPORT_SYMBOL_GPL(device_remove_file_self);
2873
2874/**
2875 * device_create_bin_file - create sysfs binary attribute file for device.
2876 * @dev: device.
2877 * @attr: device binary attribute descriptor.
2878 */
2879int device_create_bin_file(struct device *dev,
2880			   const struct bin_attribute *attr)
2881{
2882	int error = -EINVAL;
2883	if (dev)
2884		error = sysfs_create_bin_file(&dev->kobj, attr);
2885	return error;
2886}
2887EXPORT_SYMBOL_GPL(device_create_bin_file);
2888
2889/**
2890 * device_remove_bin_file - remove sysfs binary attribute file
2891 * @dev: device.
2892 * @attr: device binary attribute descriptor.
2893 */
2894void device_remove_bin_file(struct device *dev,
2895			    const struct bin_attribute *attr)
2896{
2897	if (dev)
2898		sysfs_remove_bin_file(&dev->kobj, attr);
2899}
2900EXPORT_SYMBOL_GPL(device_remove_bin_file);
2901
2902static void klist_children_get(struct klist_node *n)
2903{
2904	struct device_private *p = to_device_private_parent(n);
2905	struct device *dev = p->device;
2906
2907	get_device(dev);
2908}
2909
2910static void klist_children_put(struct klist_node *n)
2911{
2912	struct device_private *p = to_device_private_parent(n);
2913	struct device *dev = p->device;
2914
2915	put_device(dev);
2916}
2917
2918/**
2919 * device_initialize - init device structure.
2920 * @dev: device.
2921 *
2922 * This prepares the device for use by other layers by initializing
2923 * its fields.
2924 * It is the first half of device_register(), if called by
2925 * that function, though it can also be called separately, so one
2926 * may use @dev's fields. In particular, get_device()/put_device()
2927 * may be used for reference counting of @dev after calling this
2928 * function.
2929 *
2930 * All fields in @dev must be initialized by the caller to 0, except
2931 * for those explicitly set to some other value.  The simplest
2932 * approach is to use kzalloc() to allocate the structure containing
2933 * @dev.
2934 *
2935 * NOTE: Use put_device() to give up your reference instead of freeing
2936 * @dev directly once you have called this function.
2937 */
2938void device_initialize(struct device *dev)
2939{
2940	dev->kobj.kset = devices_kset;
2941	kobject_init(&dev->kobj, &device_ktype);
2942	INIT_LIST_HEAD(&dev->dma_pools);
2943	mutex_init(&dev->mutex);
 
 
 
2944	lockdep_set_novalidate_class(&dev->mutex);
2945	spin_lock_init(&dev->devres_lock);
2946	INIT_LIST_HEAD(&dev->devres_head);
2947	device_pm_init(dev);
2948	set_dev_node(dev, NUMA_NO_NODE);
 
 
 
 
2949	INIT_LIST_HEAD(&dev->links.consumers);
2950	INIT_LIST_HEAD(&dev->links.suppliers);
2951	INIT_LIST_HEAD(&dev->links.defer_sync);
2952	dev->links.status = DL_DEV_NO_DRIVER;
2953#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2954    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2955    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2956	dev->dma_coherent = dma_default_coherent;
2957#endif
2958#ifdef CONFIG_SWIOTLB
2959	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2960#endif
2961}
2962EXPORT_SYMBOL_GPL(device_initialize);
2963
2964struct kobject *virtual_device_parent(struct device *dev)
2965{
2966	static struct kobject *virtual_dir = NULL;
2967
2968	if (!virtual_dir)
2969		virtual_dir = kobject_create_and_add("virtual",
2970						     &devices_kset->kobj);
2971
2972	return virtual_dir;
2973}
2974
2975struct class_dir {
2976	struct kobject kobj;
2977	struct class *class;
2978};
2979
2980#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2981
2982static void class_dir_release(struct kobject *kobj)
2983{
2984	struct class_dir *dir = to_class_dir(kobj);
2985	kfree(dir);
2986}
2987
2988static const
2989struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
2990{
2991	const struct class_dir *dir = to_class_dir(kobj);
2992	return dir->class->ns_type;
2993}
2994
2995static struct kobj_type class_dir_ktype = {
2996	.release	= class_dir_release,
2997	.sysfs_ops	= &kobj_sysfs_ops,
2998	.child_ns_type	= class_dir_child_ns_type
2999};
3000
3001static struct kobject *
3002class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3003{
3004	struct class_dir *dir;
3005	int retval;
3006
3007	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3008	if (!dir)
3009		return ERR_PTR(-ENOMEM);
3010
3011	dir->class = class;
3012	kobject_init(&dir->kobj, &class_dir_ktype);
3013
3014	dir->kobj.kset = &class->p->glue_dirs;
3015
3016	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3017	if (retval < 0) {
3018		kobject_put(&dir->kobj);
3019		return ERR_PTR(retval);
3020	}
3021	return &dir->kobj;
3022}
3023
3024static DEFINE_MUTEX(gdp_mutex);
3025
3026static struct kobject *get_device_parent(struct device *dev,
3027					 struct device *parent)
3028{
3029	if (dev->class) {
3030		struct kobject *kobj = NULL;
3031		struct kobject *parent_kobj;
3032		struct kobject *k;
3033
3034#ifdef CONFIG_BLOCK
3035		/* block disks show up in /sys/block */
3036		if (sysfs_deprecated && dev->class == &block_class) {
3037			if (parent && parent->class == &block_class)
3038				return &parent->kobj;
3039			return &block_class.p->subsys.kobj;
3040		}
3041#endif
3042
3043		/*
3044		 * If we have no parent, we live in "virtual".
3045		 * Class-devices with a non class-device as parent, live
3046		 * in a "glue" directory to prevent namespace collisions.
3047		 */
3048		if (parent == NULL)
3049			parent_kobj = virtual_device_parent(dev);
3050		else if (parent->class && !dev->class->ns_type)
3051			return &parent->kobj;
3052		else
3053			parent_kobj = &parent->kobj;
3054
3055		mutex_lock(&gdp_mutex);
3056
3057		/* find our class-directory at the parent and reference it */
3058		spin_lock(&dev->class->p->glue_dirs.list_lock);
3059		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3060			if (k->parent == parent_kobj) {
3061				kobj = kobject_get(k);
3062				break;
3063			}
3064		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3065		if (kobj) {
3066			mutex_unlock(&gdp_mutex);
3067			return kobj;
3068		}
3069
3070		/* or create a new class-directory at the parent device */
3071		k = class_dir_create_and_add(dev->class, parent_kobj);
3072		/* do not emit an uevent for this simple "glue" directory */
3073		mutex_unlock(&gdp_mutex);
3074		return k;
3075	}
3076
3077	/* subsystems can specify a default root directory for their devices */
3078	if (!parent && dev->bus && dev->bus->dev_root)
3079		return &dev->bus->dev_root->kobj;
3080
3081	if (parent)
3082		return &parent->kobj;
3083	return NULL;
3084}
3085
3086static inline bool live_in_glue_dir(struct kobject *kobj,
3087				    struct device *dev)
3088{
3089	if (!kobj || !dev->class ||
3090	    kobj->kset != &dev->class->p->glue_dirs)
3091		return false;
3092	return true;
3093}
3094
3095static inline struct kobject *get_glue_dir(struct device *dev)
3096{
3097	return dev->kobj.parent;
3098}
3099
3100/**
3101 * kobject_has_children - Returns whether a kobject has children.
3102 * @kobj: the object to test
3103 *
3104 * This will return whether a kobject has other kobjects as children.
3105 *
3106 * It does NOT account for the presence of attribute files, only sub
3107 * directories. It also assumes there is no concurrent addition or
3108 * removal of such children, and thus relies on external locking.
3109 */
3110static inline bool kobject_has_children(struct kobject *kobj)
3111{
3112	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3113
3114	return kobj->sd && kobj->sd->dir.subdirs;
3115}
3116
3117/*
3118 * make sure cleaning up dir as the last step, we need to make
3119 * sure .release handler of kobject is run with holding the
3120 * global lock
3121 */
3122static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3123{
3124	unsigned int ref;
3125
3126	/* see if we live in a "glue" directory */
3127	if (!live_in_glue_dir(glue_dir, dev))
3128		return;
3129
3130	mutex_lock(&gdp_mutex);
3131	/**
3132	 * There is a race condition between removing glue directory
3133	 * and adding a new device under the glue directory.
3134	 *
3135	 * CPU1:                                         CPU2:
3136	 *
3137	 * device_add()
3138	 *   get_device_parent()
3139	 *     class_dir_create_and_add()
3140	 *       kobject_add_internal()
3141	 *         create_dir()    // create glue_dir
3142	 *
3143	 *                                               device_add()
3144	 *                                                 get_device_parent()
3145	 *                                                   kobject_get() // get glue_dir
3146	 *
3147	 * device_del()
3148	 *   cleanup_glue_dir()
3149	 *     kobject_del(glue_dir)
3150	 *
3151	 *                                               kobject_add()
3152	 *                                                 kobject_add_internal()
3153	 *                                                   create_dir() // in glue_dir
3154	 *                                                     sysfs_create_dir_ns()
3155	 *                                                       kernfs_create_dir_ns(sd)
3156	 *
3157	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3158	 *       sysfs_put()        // free glue_dir->sd
3159	 *
3160	 *                                                         // sd is freed
3161	 *                                                         kernfs_new_node(sd)
3162	 *                                                           kernfs_get(glue_dir)
3163	 *                                                           kernfs_add_one()
3164	 *                                                           kernfs_put()
3165	 *
3166	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3167	 * a new device under glue dir, the glue_dir kobject reference count
3168	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3169	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3170	 * and sysfs_put(). This result in glue_dir->sd is freed.
3171	 *
3172	 * Then the CPU2 will see a stale "empty" but still potentially used
3173	 * glue dir around in kernfs_new_node().
3174	 *
3175	 * In order to avoid this happening, we also should make sure that
3176	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3177	 * for glue_dir kobj is 1.
3178	 */
3179	ref = kref_read(&glue_dir->kref);
3180	if (!kobject_has_children(glue_dir) && !--ref)
3181		kobject_del(glue_dir);
3182	kobject_put(glue_dir);
3183	mutex_unlock(&gdp_mutex);
3184}
3185
3186static int device_add_class_symlinks(struct device *dev)
3187{
3188	struct device_node *of_node = dev_of_node(dev);
3189	int error;
3190
3191	if (of_node) {
3192		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3193		if (error)
3194			dev_warn(dev, "Error %d creating of_node link\n",error);
3195		/* An error here doesn't warrant bringing down the device */
3196	}
3197
3198	if (!dev->class)
3199		return 0;
3200
3201	error = sysfs_create_link(&dev->kobj,
3202				  &dev->class->p->subsys.kobj,
3203				  "subsystem");
3204	if (error)
3205		goto out_devnode;
3206
3207	if (dev->parent && device_is_not_partition(dev)) {
3208		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3209					  "device");
3210		if (error)
3211			goto out_subsys;
3212	}
3213
3214#ifdef CONFIG_BLOCK
3215	/* /sys/block has directories and does not need symlinks */
3216	if (sysfs_deprecated && dev->class == &block_class)
3217		return 0;
3218#endif
3219
3220	/* link in the class directory pointing to the device */
3221	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3222				  &dev->kobj, dev_name(dev));
3223	if (error)
3224		goto out_device;
3225
3226	return 0;
3227
3228out_device:
3229	sysfs_remove_link(&dev->kobj, "device");
3230
3231out_subsys:
3232	sysfs_remove_link(&dev->kobj, "subsystem");
3233out_devnode:
3234	sysfs_remove_link(&dev->kobj, "of_node");
3235	return error;
3236}
3237
3238static void device_remove_class_symlinks(struct device *dev)
3239{
3240	if (dev_of_node(dev))
3241		sysfs_remove_link(&dev->kobj, "of_node");
3242
3243	if (!dev->class)
3244		return;
3245
3246	if (dev->parent && device_is_not_partition(dev))
3247		sysfs_remove_link(&dev->kobj, "device");
3248	sysfs_remove_link(&dev->kobj, "subsystem");
3249#ifdef CONFIG_BLOCK
3250	if (sysfs_deprecated && dev->class == &block_class)
3251		return;
3252#endif
3253	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3254}
3255
3256/**
3257 * dev_set_name - set a device name
3258 * @dev: device
3259 * @fmt: format string for the device's name
3260 */
3261int dev_set_name(struct device *dev, const char *fmt, ...)
3262{
3263	va_list vargs;
3264	int err;
3265
3266	va_start(vargs, fmt);
3267	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3268	va_end(vargs);
3269	return err;
3270}
3271EXPORT_SYMBOL_GPL(dev_set_name);
3272
3273/**
3274 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3275 * @dev: device
3276 *
3277 * By default we select char/ for new entries.  Setting class->dev_obj
3278 * to NULL prevents an entry from being created.  class->dev_kobj must
3279 * be set (or cleared) before any devices are registered to the class
3280 * otherwise device_create_sys_dev_entry() and
3281 * device_remove_sys_dev_entry() will disagree about the presence of
3282 * the link.
3283 */
3284static struct kobject *device_to_dev_kobj(struct device *dev)
3285{
3286	struct kobject *kobj;
3287
3288	if (dev->class)
3289		kobj = dev->class->dev_kobj;
3290	else
3291		kobj = sysfs_dev_char_kobj;
3292
3293	return kobj;
3294}
3295
3296static int device_create_sys_dev_entry(struct device *dev)
3297{
3298	struct kobject *kobj = device_to_dev_kobj(dev);
3299	int error = 0;
3300	char devt_str[15];
3301
3302	if (kobj) {
3303		format_dev_t(devt_str, dev->devt);
3304		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3305	}
3306
3307	return error;
3308}
3309
3310static void device_remove_sys_dev_entry(struct device *dev)
3311{
3312	struct kobject *kobj = device_to_dev_kobj(dev);
3313	char devt_str[15];
3314
3315	if (kobj) {
3316		format_dev_t(devt_str, dev->devt);
3317		sysfs_remove_link(kobj, devt_str);
3318	}
3319}
3320
3321static int device_private_init(struct device *dev)
3322{
3323	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3324	if (!dev->p)
3325		return -ENOMEM;
3326	dev->p->device = dev;
3327	klist_init(&dev->p->klist_children, klist_children_get,
3328		   klist_children_put);
3329	INIT_LIST_HEAD(&dev->p->deferred_probe);
3330	return 0;
3331}
3332
3333/**
3334 * device_add - add device to device hierarchy.
3335 * @dev: device.
3336 *
3337 * This is part 2 of device_register(), though may be called
3338 * separately _iff_ device_initialize() has been called separately.
3339 *
3340 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3341 * to the global and sibling lists for the device, then
3342 * adds it to the other relevant subsystems of the driver model.
3343 *
3344 * Do not call this routine or device_register() more than once for
3345 * any device structure.  The driver model core is not designed to work
3346 * with devices that get unregistered and then spring back to life.
3347 * (Among other things, it's very hard to guarantee that all references
3348 * to the previous incarnation of @dev have been dropped.)  Allocate
3349 * and register a fresh new struct device instead.
3350 *
3351 * NOTE: _Never_ directly free @dev after calling this function, even
3352 * if it returned an error! Always use put_device() to give up your
3353 * reference instead.
3354 *
3355 * Rule of thumb is: if device_add() succeeds, you should call
3356 * device_del() when you want to get rid of it. If device_add() has
3357 * *not* succeeded, use *only* put_device() to drop the reference
3358 * count.
3359 */
3360int device_add(struct device *dev)
3361{
3362	struct device *parent;
3363	struct kobject *kobj;
3364	struct class_interface *class_intf;
3365	int error = -EINVAL;
3366	struct kobject *glue_dir = NULL;
3367
3368	dev = get_device(dev);
3369	if (!dev)
3370		goto done;
3371
3372	if (!dev->p) {
3373		error = device_private_init(dev);
3374		if (error)
3375			goto done;
3376	}
3377
3378	/*
3379	 * for statically allocated devices, which should all be converted
3380	 * some day, we need to initialize the name. We prevent reading back
3381	 * the name, and force the use of dev_name()
3382	 */
3383	if (dev->init_name) {
3384		dev_set_name(dev, "%s", dev->init_name);
3385		dev->init_name = NULL;
3386	}
3387
3388	/* subsystems can specify simple device enumeration */
3389	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3390		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3391
3392	if (!dev_name(dev)) {
3393		error = -EINVAL;
3394		goto name_error;
3395	}
3396
3397	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3398
3399	parent = get_device(dev->parent);
3400	kobj = get_device_parent(dev, parent);
3401	if (IS_ERR(kobj)) {
3402		error = PTR_ERR(kobj);
3403		goto parent_error;
3404	}
3405	if (kobj)
3406		dev->kobj.parent = kobj;
3407
3408	/* use parent numa_node */
3409	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3410		set_dev_node(dev, dev_to_node(parent));
3411
3412	/* first, register with generic layer. */
3413	/* we require the name to be set before, and pass NULL */
3414	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3415	if (error) {
3416		glue_dir = get_glue_dir(dev);
3417		goto Error;
3418	}
3419
3420	/* notify platform of device entry */
3421	device_platform_notify(dev);
 
 
3422
3423	error = device_create_file(dev, &dev_attr_uevent);
3424	if (error)
3425		goto attrError;
3426
3427	error = device_add_class_symlinks(dev);
3428	if (error)
3429		goto SymlinkError;
3430	error = device_add_attrs(dev);
3431	if (error)
3432		goto AttrsError;
3433	error = bus_add_device(dev);
3434	if (error)
3435		goto BusError;
3436	error = dpm_sysfs_add(dev);
3437	if (error)
3438		goto DPMError;
3439	device_pm_add(dev);
3440
3441	if (MAJOR(dev->devt)) {
3442		error = device_create_file(dev, &dev_attr_dev);
3443		if (error)
3444			goto DevAttrError;
3445
3446		error = device_create_sys_dev_entry(dev);
3447		if (error)
3448			goto SysEntryError;
3449
3450		devtmpfs_create_node(dev);
3451	}
3452
3453	/* Notify clients of device addition.  This call must come
3454	 * after dpm_sysfs_add() and before kobject_uevent().
3455	 */
3456	if (dev->bus)
3457		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3458					     BUS_NOTIFY_ADD_DEVICE, dev);
3459
3460	kobject_uevent(&dev->kobj, KOBJ_ADD);
3461
3462	/*
3463	 * Check if any of the other devices (consumers) have been waiting for
3464	 * this device (supplier) to be added so that they can create a device
3465	 * link to it.
3466	 *
3467	 * This needs to happen after device_pm_add() because device_link_add()
3468	 * requires the supplier be registered before it's called.
3469	 *
3470	 * But this also needs to happen before bus_probe_device() to make sure
3471	 * waiting consumers can link to it before the driver is bound to the
3472	 * device and the driver sync_state callback is called for this device.
3473	 */
3474	if (dev->fwnode && !dev->fwnode->dev) {
3475		dev->fwnode->dev = dev;
3476		fw_devlink_link_device(dev);
3477	}
3478
3479	bus_probe_device(dev);
3480
3481	/*
3482	 * If all driver registration is done and a newly added device doesn't
3483	 * match with any driver, don't block its consumers from probing in
3484	 * case the consumer device is able to operate without this supplier.
3485	 */
3486	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3487		fw_devlink_unblock_consumers(dev);
3488
3489	if (parent)
3490		klist_add_tail(&dev->p->knode_parent,
3491			       &parent->p->klist_children);
3492
3493	if (dev->class) {
3494		mutex_lock(&dev->class->p->mutex);
3495		/* tie the class to the device */
3496		klist_add_tail(&dev->p->knode_class,
3497			       &dev->class->p->klist_devices);
3498
3499		/* notify any interfaces that the device is here */
3500		list_for_each_entry(class_intf,
3501				    &dev->class->p->interfaces, node)
3502			if (class_intf->add_dev)
3503				class_intf->add_dev(dev, class_intf);
3504		mutex_unlock(&dev->class->p->mutex);
3505	}
3506done:
3507	put_device(dev);
3508	return error;
3509 SysEntryError:
3510	if (MAJOR(dev->devt))
3511		device_remove_file(dev, &dev_attr_dev);
3512 DevAttrError:
3513	device_pm_remove(dev);
3514	dpm_sysfs_remove(dev);
3515 DPMError:
3516	bus_remove_device(dev);
3517 BusError:
3518	device_remove_attrs(dev);
3519 AttrsError:
3520	device_remove_class_symlinks(dev);
3521 SymlinkError:
3522	device_remove_file(dev, &dev_attr_uevent);
3523 attrError:
3524	device_platform_notify_remove(dev);
 
3525	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3526	glue_dir = get_glue_dir(dev);
3527	kobject_del(&dev->kobj);
3528 Error:
3529	cleanup_glue_dir(dev, glue_dir);
3530parent_error:
3531	put_device(parent);
3532name_error:
3533	kfree(dev->p);
3534	dev->p = NULL;
3535	goto done;
3536}
3537EXPORT_SYMBOL_GPL(device_add);
3538
3539/**
3540 * device_register - register a device with the system.
3541 * @dev: pointer to the device structure
3542 *
3543 * This happens in two clean steps - initialize the device
3544 * and add it to the system. The two steps can be called
3545 * separately, but this is the easiest and most common.
3546 * I.e. you should only call the two helpers separately if
3547 * have a clearly defined need to use and refcount the device
3548 * before it is added to the hierarchy.
3549 *
3550 * For more information, see the kerneldoc for device_initialize()
3551 * and device_add().
3552 *
3553 * NOTE: _Never_ directly free @dev after calling this function, even
3554 * if it returned an error! Always use put_device() to give up the
3555 * reference initialized in this function instead.
3556 */
3557int device_register(struct device *dev)
3558{
3559	device_initialize(dev);
3560	return device_add(dev);
3561}
3562EXPORT_SYMBOL_GPL(device_register);
3563
3564/**
3565 * get_device - increment reference count for device.
3566 * @dev: device.
3567 *
3568 * This simply forwards the call to kobject_get(), though
3569 * we do take care to provide for the case that we get a NULL
3570 * pointer passed in.
3571 */
3572struct device *get_device(struct device *dev)
3573{
3574	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3575}
3576EXPORT_SYMBOL_GPL(get_device);
3577
3578/**
3579 * put_device - decrement reference count.
3580 * @dev: device in question.
3581 */
3582void put_device(struct device *dev)
3583{
3584	/* might_sleep(); */
3585	if (dev)
3586		kobject_put(&dev->kobj);
3587}
3588EXPORT_SYMBOL_GPL(put_device);
3589
3590bool kill_device(struct device *dev)
3591{
3592	/*
3593	 * Require the device lock and set the "dead" flag to guarantee that
3594	 * the update behavior is consistent with the other bitfields near
3595	 * it and that we cannot have an asynchronous probe routine trying
3596	 * to run while we are tearing out the bus/class/sysfs from
3597	 * underneath the device.
3598	 */
3599	device_lock_assert(dev);
3600
3601	if (dev->p->dead)
3602		return false;
3603	dev->p->dead = true;
3604	return true;
3605}
3606EXPORT_SYMBOL_GPL(kill_device);
3607
3608/**
3609 * device_del - delete device from system.
3610 * @dev: device.
3611 *
3612 * This is the first part of the device unregistration
3613 * sequence. This removes the device from the lists we control
3614 * from here, has it removed from the other driver model
3615 * subsystems it was added to in device_add(), and removes it
3616 * from the kobject hierarchy.
3617 *
3618 * NOTE: this should be called manually _iff_ device_add() was
3619 * also called manually.
3620 */
3621void device_del(struct device *dev)
3622{
3623	struct device *parent = dev->parent;
3624	struct kobject *glue_dir = NULL;
3625	struct class_interface *class_intf;
3626	unsigned int noio_flag;
3627
3628	device_lock(dev);
3629	kill_device(dev);
3630	device_unlock(dev);
3631
3632	if (dev->fwnode && dev->fwnode->dev == dev)
3633		dev->fwnode->dev = NULL;
3634
3635	/* Notify clients of device removal.  This call must come
3636	 * before dpm_sysfs_remove().
3637	 */
3638	noio_flag = memalloc_noio_save();
3639	if (dev->bus)
3640		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3641					     BUS_NOTIFY_DEL_DEVICE, dev);
3642
3643	dpm_sysfs_remove(dev);
3644	if (parent)
3645		klist_del(&dev->p->knode_parent);
3646	if (MAJOR(dev->devt)) {
3647		devtmpfs_delete_node(dev);
3648		device_remove_sys_dev_entry(dev);
3649		device_remove_file(dev, &dev_attr_dev);
3650	}
3651	if (dev->class) {
3652		device_remove_class_symlinks(dev);
3653
3654		mutex_lock(&dev->class->p->mutex);
3655		/* notify any interfaces that the device is now gone */
3656		list_for_each_entry(class_intf,
3657				    &dev->class->p->interfaces, node)
3658			if (class_intf->remove_dev)
3659				class_intf->remove_dev(dev, class_intf);
3660		/* remove the device from the class list */
3661		klist_del(&dev->p->knode_class);
3662		mutex_unlock(&dev->class->p->mutex);
3663	}
3664	device_remove_file(dev, &dev_attr_uevent);
3665	device_remove_attrs(dev);
3666	bus_remove_device(dev);
3667	device_pm_remove(dev);
3668	driver_deferred_probe_del(dev);
3669	device_platform_notify_remove(dev);
 
3670	device_links_purge(dev);
3671
3672	if (dev->bus)
3673		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3674					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3675	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3676	glue_dir = get_glue_dir(dev);
3677	kobject_del(&dev->kobj);
3678	cleanup_glue_dir(dev, glue_dir);
3679	memalloc_noio_restore(noio_flag);
3680	put_device(parent);
3681}
3682EXPORT_SYMBOL_GPL(device_del);
3683
3684/**
3685 * device_unregister - unregister device from system.
3686 * @dev: device going away.
3687 *
3688 * We do this in two parts, like we do device_register(). First,
3689 * we remove it from all the subsystems with device_del(), then
3690 * we decrement the reference count via put_device(). If that
3691 * is the final reference count, the device will be cleaned up
3692 * via device_release() above. Otherwise, the structure will
3693 * stick around until the final reference to the device is dropped.
3694 */
3695void device_unregister(struct device *dev)
3696{
3697	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3698	device_del(dev);
3699	put_device(dev);
3700}
3701EXPORT_SYMBOL_GPL(device_unregister);
3702
3703static struct device *prev_device(struct klist_iter *i)
3704{
3705	struct klist_node *n = klist_prev(i);
3706	struct device *dev = NULL;
3707	struct device_private *p;
3708
3709	if (n) {
3710		p = to_device_private_parent(n);
3711		dev = p->device;
3712	}
3713	return dev;
3714}
3715
3716static struct device *next_device(struct klist_iter *i)
3717{
3718	struct klist_node *n = klist_next(i);
3719	struct device *dev = NULL;
3720	struct device_private *p;
3721
3722	if (n) {
3723		p = to_device_private_parent(n);
3724		dev = p->device;
3725	}
3726	return dev;
3727}
3728
3729/**
3730 * device_get_devnode - path of device node file
3731 * @dev: device
3732 * @mode: returned file access mode
3733 * @uid: returned file owner
3734 * @gid: returned file group
3735 * @tmp: possibly allocated string
3736 *
3737 * Return the relative path of a possible device node.
3738 * Non-default names may need to allocate a memory to compose
3739 * a name. This memory is returned in tmp and needs to be
3740 * freed by the caller.
3741 */
3742const char *device_get_devnode(struct device *dev,
3743			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3744			       const char **tmp)
3745{
3746	char *s;
3747
3748	*tmp = NULL;
3749
3750	/* the device type may provide a specific name */
3751	if (dev->type && dev->type->devnode)
3752		*tmp = dev->type->devnode(dev, mode, uid, gid);
3753	if (*tmp)
3754		return *tmp;
3755
3756	/* the class may provide a specific name */
3757	if (dev->class && dev->class->devnode)
3758		*tmp = dev->class->devnode(dev, mode);
3759	if (*tmp)
3760		return *tmp;
3761
3762	/* return name without allocation, tmp == NULL */
3763	if (strchr(dev_name(dev), '!') == NULL)
3764		return dev_name(dev);
3765
3766	/* replace '!' in the name with '/' */
3767	s = kstrdup(dev_name(dev), GFP_KERNEL);
3768	if (!s)
3769		return NULL;
3770	strreplace(s, '!', '/');
3771	return *tmp = s;
3772}
3773
3774/**
3775 * device_for_each_child - device child iterator.
3776 * @parent: parent struct device.
3777 * @fn: function to be called for each device.
3778 * @data: data for the callback.
3779 *
3780 * Iterate over @parent's child devices, and call @fn for each,
3781 * passing it @data.
3782 *
3783 * We check the return of @fn each time. If it returns anything
3784 * other than 0, we break out and return that value.
3785 */
3786int device_for_each_child(struct device *parent, void *data,
3787			  int (*fn)(struct device *dev, void *data))
3788{
3789	struct klist_iter i;
3790	struct device *child;
3791	int error = 0;
3792
3793	if (!parent->p)
3794		return 0;
3795
3796	klist_iter_init(&parent->p->klist_children, &i);
3797	while (!error && (child = next_device(&i)))
3798		error = fn(child, data);
3799	klist_iter_exit(&i);
3800	return error;
3801}
3802EXPORT_SYMBOL_GPL(device_for_each_child);
3803
3804/**
3805 * device_for_each_child_reverse - device child iterator in reversed order.
3806 * @parent: parent struct device.
3807 * @fn: function to be called for each device.
3808 * @data: data for the callback.
3809 *
3810 * Iterate over @parent's child devices, and call @fn for each,
3811 * passing it @data.
3812 *
3813 * We check the return of @fn each time. If it returns anything
3814 * other than 0, we break out and return that value.
3815 */
3816int device_for_each_child_reverse(struct device *parent, void *data,
3817				  int (*fn)(struct device *dev, void *data))
3818{
3819	struct klist_iter i;
3820	struct device *child;
3821	int error = 0;
3822
3823	if (!parent->p)
3824		return 0;
3825
3826	klist_iter_init(&parent->p->klist_children, &i);
3827	while ((child = prev_device(&i)) && !error)
3828		error = fn(child, data);
3829	klist_iter_exit(&i);
3830	return error;
3831}
3832EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3833
3834/**
3835 * device_find_child - device iterator for locating a particular device.
3836 * @parent: parent struct device
3837 * @match: Callback function to check device
3838 * @data: Data to pass to match function
3839 *
3840 * This is similar to the device_for_each_child() function above, but it
3841 * returns a reference to a device that is 'found' for later use, as
3842 * determined by the @match callback.
3843 *
3844 * The callback should return 0 if the device doesn't match and non-zero
3845 * if it does.  If the callback returns non-zero and a reference to the
3846 * current device can be obtained, this function will return to the caller
3847 * and not iterate over any more devices.
3848 *
3849 * NOTE: you will need to drop the reference with put_device() after use.
3850 */
3851struct device *device_find_child(struct device *parent, void *data,
3852				 int (*match)(struct device *dev, void *data))
3853{
3854	struct klist_iter i;
3855	struct device *child;
3856
3857	if (!parent)
3858		return NULL;
3859
3860	klist_iter_init(&parent->p->klist_children, &i);
3861	while ((child = next_device(&i)))
3862		if (match(child, data) && get_device(child))
3863			break;
3864	klist_iter_exit(&i);
3865	return child;
3866}
3867EXPORT_SYMBOL_GPL(device_find_child);
3868
3869/**
3870 * device_find_child_by_name - device iterator for locating a child device.
3871 * @parent: parent struct device
3872 * @name: name of the child device
3873 *
3874 * This is similar to the device_find_child() function above, but it
3875 * returns a reference to a device that has the name @name.
3876 *
3877 * NOTE: you will need to drop the reference with put_device() after use.
3878 */
3879struct device *device_find_child_by_name(struct device *parent,
3880					 const char *name)
3881{
3882	struct klist_iter i;
3883	struct device *child;
3884
3885	if (!parent)
3886		return NULL;
3887
3888	klist_iter_init(&parent->p->klist_children, &i);
3889	while ((child = next_device(&i)))
3890		if (sysfs_streq(dev_name(child), name) && get_device(child))
3891			break;
3892	klist_iter_exit(&i);
3893	return child;
3894}
3895EXPORT_SYMBOL_GPL(device_find_child_by_name);
3896
3897static int match_any(struct device *dev, void *unused)
3898{
3899	return 1;
3900}
3901
3902/**
3903 * device_find_any_child - device iterator for locating a child device, if any.
3904 * @parent: parent struct device
3905 *
3906 * This is similar to the device_find_child() function above, but it
3907 * returns a reference to a child device, if any.
3908 *
3909 * NOTE: you will need to drop the reference with put_device() after use.
3910 */
3911struct device *device_find_any_child(struct device *parent)
3912{
3913	return device_find_child(parent, NULL, match_any);
3914}
3915EXPORT_SYMBOL_GPL(device_find_any_child);
3916
3917int __init devices_init(void)
3918{
3919	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3920	if (!devices_kset)
3921		return -ENOMEM;
3922	dev_kobj = kobject_create_and_add("dev", NULL);
3923	if (!dev_kobj)
3924		goto dev_kobj_err;
3925	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3926	if (!sysfs_dev_block_kobj)
3927		goto block_kobj_err;
3928	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3929	if (!sysfs_dev_char_kobj)
3930		goto char_kobj_err;
3931
3932	return 0;
3933
3934 char_kobj_err:
3935	kobject_put(sysfs_dev_block_kobj);
3936 block_kobj_err:
3937	kobject_put(dev_kobj);
3938 dev_kobj_err:
3939	kset_unregister(devices_kset);
3940	return -ENOMEM;
3941}
3942
3943static int device_check_offline(struct device *dev, void *not_used)
3944{
3945	int ret;
3946
3947	ret = device_for_each_child(dev, NULL, device_check_offline);
3948	if (ret)
3949		return ret;
3950
3951	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3952}
3953
3954/**
3955 * device_offline - Prepare the device for hot-removal.
3956 * @dev: Device to be put offline.
3957 *
3958 * Execute the device bus type's .offline() callback, if present, to prepare
3959 * the device for a subsequent hot-removal.  If that succeeds, the device must
3960 * not be used until either it is removed or its bus type's .online() callback
3961 * is executed.
3962 *
3963 * Call under device_hotplug_lock.
3964 */
3965int device_offline(struct device *dev)
3966{
3967	int ret;
3968
3969	if (dev->offline_disabled)
3970		return -EPERM;
3971
3972	ret = device_for_each_child(dev, NULL, device_check_offline);
3973	if (ret)
3974		return ret;
3975
3976	device_lock(dev);
3977	if (device_supports_offline(dev)) {
3978		if (dev->offline) {
3979			ret = 1;
3980		} else {
3981			ret = dev->bus->offline(dev);
3982			if (!ret) {
3983				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3984				dev->offline = true;
3985			}
3986		}
3987	}
3988	device_unlock(dev);
3989
3990	return ret;
3991}
3992
3993/**
3994 * device_online - Put the device back online after successful device_offline().
3995 * @dev: Device to be put back online.
3996 *
3997 * If device_offline() has been successfully executed for @dev, but the device
3998 * has not been removed subsequently, execute its bus type's .online() callback
3999 * to indicate that the device can be used again.
4000 *
4001 * Call under device_hotplug_lock.
4002 */
4003int device_online(struct device *dev)
4004{
4005	int ret = 0;
4006
4007	device_lock(dev);
4008	if (device_supports_offline(dev)) {
4009		if (dev->offline) {
4010			ret = dev->bus->online(dev);
4011			if (!ret) {
4012				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4013				dev->offline = false;
4014			}
4015		} else {
4016			ret = 1;
4017		}
4018	}
4019	device_unlock(dev);
4020
4021	return ret;
4022}
4023
4024struct root_device {
4025	struct device dev;
4026	struct module *owner;
4027};
4028
4029static inline struct root_device *to_root_device(struct device *d)
4030{
4031	return container_of(d, struct root_device, dev);
4032}
4033
4034static void root_device_release(struct device *dev)
4035{
4036	kfree(to_root_device(dev));
4037}
4038
4039/**
4040 * __root_device_register - allocate and register a root device
4041 * @name: root device name
4042 * @owner: owner module of the root device, usually THIS_MODULE
4043 *
4044 * This function allocates a root device and registers it
4045 * using device_register(). In order to free the returned
4046 * device, use root_device_unregister().
4047 *
4048 * Root devices are dummy devices which allow other devices
4049 * to be grouped under /sys/devices. Use this function to
4050 * allocate a root device and then use it as the parent of
4051 * any device which should appear under /sys/devices/{name}
4052 *
4053 * The /sys/devices/{name} directory will also contain a
4054 * 'module' symlink which points to the @owner directory
4055 * in sysfs.
4056 *
4057 * Returns &struct device pointer on success, or ERR_PTR() on error.
4058 *
4059 * Note: You probably want to use root_device_register().
4060 */
4061struct device *__root_device_register(const char *name, struct module *owner)
4062{
4063	struct root_device *root;
4064	int err = -ENOMEM;
4065
4066	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4067	if (!root)
4068		return ERR_PTR(err);
4069
4070	err = dev_set_name(&root->dev, "%s", name);
4071	if (err) {
4072		kfree(root);
4073		return ERR_PTR(err);
4074	}
4075
4076	root->dev.release = root_device_release;
4077
4078	err = device_register(&root->dev);
4079	if (err) {
4080		put_device(&root->dev);
4081		return ERR_PTR(err);
4082	}
4083
4084#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4085	if (owner) {
4086		struct module_kobject *mk = &owner->mkobj;
4087
4088		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4089		if (err) {
4090			device_unregister(&root->dev);
4091			return ERR_PTR(err);
4092		}
4093		root->owner = owner;
4094	}
4095#endif
4096
4097	return &root->dev;
4098}
4099EXPORT_SYMBOL_GPL(__root_device_register);
4100
4101/**
4102 * root_device_unregister - unregister and free a root device
4103 * @dev: device going away
4104 *
4105 * This function unregisters and cleans up a device that was created by
4106 * root_device_register().
4107 */
4108void root_device_unregister(struct device *dev)
4109{
4110	struct root_device *root = to_root_device(dev);
4111
4112	if (root->owner)
4113		sysfs_remove_link(&root->dev.kobj, "module");
4114
4115	device_unregister(dev);
4116}
4117EXPORT_SYMBOL_GPL(root_device_unregister);
4118
4119
4120static void device_create_release(struct device *dev)
4121{
4122	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4123	kfree(dev);
4124}
4125
4126static __printf(6, 0) struct device *
4127device_create_groups_vargs(struct class *class, struct device *parent,
4128			   dev_t devt, void *drvdata,
4129			   const struct attribute_group **groups,
4130			   const char *fmt, va_list args)
4131{
4132	struct device *dev = NULL;
4133	int retval = -ENODEV;
4134
4135	if (IS_ERR_OR_NULL(class))
4136		goto error;
4137
4138	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4139	if (!dev) {
4140		retval = -ENOMEM;
4141		goto error;
4142	}
4143
4144	device_initialize(dev);
4145	dev->devt = devt;
4146	dev->class = class;
4147	dev->parent = parent;
4148	dev->groups = groups;
4149	dev->release = device_create_release;
4150	dev_set_drvdata(dev, drvdata);
4151
4152	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4153	if (retval)
4154		goto error;
4155
4156	retval = device_add(dev);
4157	if (retval)
4158		goto error;
4159
4160	return dev;
4161
4162error:
4163	put_device(dev);
4164	return ERR_PTR(retval);
4165}
4166
4167/**
4168 * device_create - creates a device and registers it with sysfs
4169 * @class: pointer to the struct class that this device should be registered to
4170 * @parent: pointer to the parent struct device of this new device, if any
4171 * @devt: the dev_t for the char device to be added
4172 * @drvdata: the data to be added to the device for callbacks
4173 * @fmt: string for the device's name
4174 *
4175 * This function can be used by char device classes.  A struct device
4176 * will be created in sysfs, registered to the specified class.
4177 *
4178 * A "dev" file will be created, showing the dev_t for the device, if
4179 * the dev_t is not 0,0.
4180 * If a pointer to a parent struct device is passed in, the newly created
4181 * struct device will be a child of that device in sysfs.
4182 * The pointer to the struct device will be returned from the call.
4183 * Any further sysfs files that might be required can be created using this
4184 * pointer.
4185 *
4186 * Returns &struct device pointer on success, or ERR_PTR() on error.
4187 *
4188 * Note: the struct class passed to this function must have previously
4189 * been created with a call to class_create().
4190 */
4191struct device *device_create(struct class *class, struct device *parent,
4192			     dev_t devt, void *drvdata, const char *fmt, ...)
4193{
4194	va_list vargs;
4195	struct device *dev;
4196
4197	va_start(vargs, fmt);
4198	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4199					  fmt, vargs);
4200	va_end(vargs);
4201	return dev;
4202}
4203EXPORT_SYMBOL_GPL(device_create);
4204
4205/**
4206 * device_create_with_groups - creates a device and registers it with sysfs
4207 * @class: pointer to the struct class that this device should be registered to
4208 * @parent: pointer to the parent struct device of this new device, if any
4209 * @devt: the dev_t for the char device to be added
4210 * @drvdata: the data to be added to the device for callbacks
4211 * @groups: NULL-terminated list of attribute groups to be created
4212 * @fmt: string for the device's name
4213 *
4214 * This function can be used by char device classes.  A struct device
4215 * will be created in sysfs, registered to the specified class.
4216 * Additional attributes specified in the groups parameter will also
4217 * be created automatically.
4218 *
4219 * A "dev" file will be created, showing the dev_t for the device, if
4220 * the dev_t is not 0,0.
4221 * If a pointer to a parent struct device is passed in, the newly created
4222 * struct device will be a child of that device in sysfs.
4223 * The pointer to the struct device will be returned from the call.
4224 * Any further sysfs files that might be required can be created using this
4225 * pointer.
4226 *
4227 * Returns &struct device pointer on success, or ERR_PTR() on error.
4228 *
4229 * Note: the struct class passed to this function must have previously
4230 * been created with a call to class_create().
4231 */
4232struct device *device_create_with_groups(struct class *class,
4233					 struct device *parent, dev_t devt,
4234					 void *drvdata,
4235					 const struct attribute_group **groups,
4236					 const char *fmt, ...)
4237{
4238	va_list vargs;
4239	struct device *dev;
4240
4241	va_start(vargs, fmt);
4242	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4243					 fmt, vargs);
4244	va_end(vargs);
4245	return dev;
4246}
4247EXPORT_SYMBOL_GPL(device_create_with_groups);
4248
4249/**
4250 * device_destroy - removes a device that was created with device_create()
4251 * @class: pointer to the struct class that this device was registered with
4252 * @devt: the dev_t of the device that was previously registered
4253 *
4254 * This call unregisters and cleans up a device that was created with a
4255 * call to device_create().
4256 */
4257void device_destroy(struct class *class, dev_t devt)
4258{
4259	struct device *dev;
4260
4261	dev = class_find_device_by_devt(class, devt);
4262	if (dev) {
4263		put_device(dev);
4264		device_unregister(dev);
4265	}
4266}
4267EXPORT_SYMBOL_GPL(device_destroy);
4268
4269/**
4270 * device_rename - renames a device
4271 * @dev: the pointer to the struct device to be renamed
4272 * @new_name: the new name of the device
4273 *
4274 * It is the responsibility of the caller to provide mutual
4275 * exclusion between two different calls of device_rename
4276 * on the same device to ensure that new_name is valid and
4277 * won't conflict with other devices.
4278 *
4279 * Note: Don't call this function.  Currently, the networking layer calls this
4280 * function, but that will change.  The following text from Kay Sievers offers
4281 * some insight:
4282 *
4283 * Renaming devices is racy at many levels, symlinks and other stuff are not
4284 * replaced atomically, and you get a "move" uevent, but it's not easy to
4285 * connect the event to the old and new device. Device nodes are not renamed at
4286 * all, there isn't even support for that in the kernel now.
4287 *
4288 * In the meantime, during renaming, your target name might be taken by another
4289 * driver, creating conflicts. Or the old name is taken directly after you
4290 * renamed it -- then you get events for the same DEVPATH, before you even see
4291 * the "move" event. It's just a mess, and nothing new should ever rely on
4292 * kernel device renaming. Besides that, it's not even implemented now for
4293 * other things than (driver-core wise very simple) network devices.
4294 *
4295 * We are currently about to change network renaming in udev to completely
4296 * disallow renaming of devices in the same namespace as the kernel uses,
4297 * because we can't solve the problems properly, that arise with swapping names
4298 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4299 * be allowed to some other name than eth[0-9]*, for the aforementioned
4300 * reasons.
4301 *
4302 * Make up a "real" name in the driver before you register anything, or add
4303 * some other attributes for userspace to find the device, or use udev to add
4304 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4305 * don't even want to get into that and try to implement the missing pieces in
4306 * the core. We really have other pieces to fix in the driver core mess. :)
4307 */
4308int device_rename(struct device *dev, const char *new_name)
4309{
4310	struct kobject *kobj = &dev->kobj;
4311	char *old_device_name = NULL;
4312	int error;
4313
4314	dev = get_device(dev);
4315	if (!dev)
4316		return -EINVAL;
4317
4318	dev_dbg(dev, "renaming to %s\n", new_name);
4319
4320	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4321	if (!old_device_name) {
4322		error = -ENOMEM;
4323		goto out;
4324	}
4325
4326	if (dev->class) {
4327		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4328					     kobj, old_device_name,
4329					     new_name, kobject_namespace(kobj));
4330		if (error)
4331			goto out;
4332	}
4333
4334	error = kobject_rename(kobj, new_name);
4335	if (error)
4336		goto out;
4337
4338out:
4339	put_device(dev);
4340
4341	kfree(old_device_name);
4342
4343	return error;
4344}
4345EXPORT_SYMBOL_GPL(device_rename);
4346
4347static int device_move_class_links(struct device *dev,
4348				   struct device *old_parent,
4349				   struct device *new_parent)
4350{
4351	int error = 0;
4352
4353	if (old_parent)
4354		sysfs_remove_link(&dev->kobj, "device");
4355	if (new_parent)
4356		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4357					  "device");
4358	return error;
4359}
4360
4361/**
4362 * device_move - moves a device to a new parent
4363 * @dev: the pointer to the struct device to be moved
4364 * @new_parent: the new parent of the device (can be NULL)
4365 * @dpm_order: how to reorder the dpm_list
4366 */
4367int device_move(struct device *dev, struct device *new_parent,
4368		enum dpm_order dpm_order)
4369{
4370	int error;
4371	struct device *old_parent;
4372	struct kobject *new_parent_kobj;
4373
4374	dev = get_device(dev);
4375	if (!dev)
4376		return -EINVAL;
4377
4378	device_pm_lock();
4379	new_parent = get_device(new_parent);
4380	new_parent_kobj = get_device_parent(dev, new_parent);
4381	if (IS_ERR(new_parent_kobj)) {
4382		error = PTR_ERR(new_parent_kobj);
4383		put_device(new_parent);
4384		goto out;
4385	}
4386
4387	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4388		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4389	error = kobject_move(&dev->kobj, new_parent_kobj);
4390	if (error) {
4391		cleanup_glue_dir(dev, new_parent_kobj);
4392		put_device(new_parent);
4393		goto out;
4394	}
4395	old_parent = dev->parent;
4396	dev->parent = new_parent;
4397	if (old_parent)
4398		klist_remove(&dev->p->knode_parent);
4399	if (new_parent) {
4400		klist_add_tail(&dev->p->knode_parent,
4401			       &new_parent->p->klist_children);
4402		set_dev_node(dev, dev_to_node(new_parent));
4403	}
4404
4405	if (dev->class) {
4406		error = device_move_class_links(dev, old_parent, new_parent);
4407		if (error) {
4408			/* We ignore errors on cleanup since we're hosed anyway... */
4409			device_move_class_links(dev, new_parent, old_parent);
4410			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4411				if (new_parent)
4412					klist_remove(&dev->p->knode_parent);
4413				dev->parent = old_parent;
4414				if (old_parent) {
4415					klist_add_tail(&dev->p->knode_parent,
4416						       &old_parent->p->klist_children);
4417					set_dev_node(dev, dev_to_node(old_parent));
4418				}
4419			}
4420			cleanup_glue_dir(dev, new_parent_kobj);
4421			put_device(new_parent);
4422			goto out;
4423		}
4424	}
4425	switch (dpm_order) {
4426	case DPM_ORDER_NONE:
4427		break;
4428	case DPM_ORDER_DEV_AFTER_PARENT:
4429		device_pm_move_after(dev, new_parent);
4430		devices_kset_move_after(dev, new_parent);
4431		break;
4432	case DPM_ORDER_PARENT_BEFORE_DEV:
4433		device_pm_move_before(new_parent, dev);
4434		devices_kset_move_before(new_parent, dev);
4435		break;
4436	case DPM_ORDER_DEV_LAST:
4437		device_pm_move_last(dev);
4438		devices_kset_move_last(dev);
4439		break;
4440	}
4441
4442	put_device(old_parent);
4443out:
4444	device_pm_unlock();
4445	put_device(dev);
4446	return error;
4447}
4448EXPORT_SYMBOL_GPL(device_move);
4449
4450static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4451				     kgid_t kgid)
4452{
4453	struct kobject *kobj = &dev->kobj;
4454	struct class *class = dev->class;
4455	const struct device_type *type = dev->type;
4456	int error;
4457
4458	if (class) {
4459		/*
4460		 * Change the device groups of the device class for @dev to
4461		 * @kuid/@kgid.
4462		 */
4463		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4464						  kgid);
4465		if (error)
4466			return error;
4467	}
4468
4469	if (type) {
4470		/*
4471		 * Change the device groups of the device type for @dev to
4472		 * @kuid/@kgid.
4473		 */
4474		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4475						  kgid);
4476		if (error)
4477			return error;
4478	}
4479
4480	/* Change the device groups of @dev to @kuid/@kgid. */
4481	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4482	if (error)
4483		return error;
4484
4485	if (device_supports_offline(dev) && !dev->offline_disabled) {
4486		/* Change online device attributes of @dev to @kuid/@kgid. */
4487		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4488						kuid, kgid);
4489		if (error)
4490			return error;
4491	}
4492
4493	return 0;
4494}
4495
4496/**
4497 * device_change_owner - change the owner of an existing device.
4498 * @dev: device.
4499 * @kuid: new owner's kuid
4500 * @kgid: new owner's kgid
4501 *
4502 * This changes the owner of @dev and its corresponding sysfs entries to
4503 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4504 * core.
4505 *
4506 * Returns 0 on success or error code on failure.
4507 */
4508int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4509{
4510	int error;
4511	struct kobject *kobj = &dev->kobj;
4512
4513	dev = get_device(dev);
4514	if (!dev)
4515		return -EINVAL;
4516
4517	/*
4518	 * Change the kobject and the default attributes and groups of the
4519	 * ktype associated with it to @kuid/@kgid.
4520	 */
4521	error = sysfs_change_owner(kobj, kuid, kgid);
4522	if (error)
4523		goto out;
4524
4525	/*
4526	 * Change the uevent file for @dev to the new owner. The uevent file
4527	 * was created in a separate step when @dev got added and we mirror
4528	 * that step here.
4529	 */
4530	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4531					kgid);
4532	if (error)
4533		goto out;
4534
4535	/*
4536	 * Change the device groups, the device groups associated with the
4537	 * device class, and the groups associated with the device type of @dev
4538	 * to @kuid/@kgid.
4539	 */
4540	error = device_attrs_change_owner(dev, kuid, kgid);
4541	if (error)
4542		goto out;
4543
4544	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4545	if (error)
4546		goto out;
4547
4548#ifdef CONFIG_BLOCK
4549	if (sysfs_deprecated && dev->class == &block_class)
4550		goto out;
4551#endif
4552
4553	/*
4554	 * Change the owner of the symlink located in the class directory of
4555	 * the device class associated with @dev which points to the actual
4556	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4557	 * symlink shows the same permissions as its target.
4558	 */
4559	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4560					dev_name(dev), kuid, kgid);
4561	if (error)
4562		goto out;
4563
4564out:
4565	put_device(dev);
4566	return error;
4567}
4568EXPORT_SYMBOL_GPL(device_change_owner);
4569
4570/**
4571 * device_shutdown - call ->shutdown() on each device to shutdown.
4572 */
4573void device_shutdown(void)
4574{
4575	struct device *dev, *parent;
4576
4577	wait_for_device_probe();
4578	device_block_probing();
4579
4580	cpufreq_suspend();
4581
4582	spin_lock(&devices_kset->list_lock);
4583	/*
4584	 * Walk the devices list backward, shutting down each in turn.
4585	 * Beware that device unplug events may also start pulling
4586	 * devices offline, even as the system is shutting down.
4587	 */
4588	while (!list_empty(&devices_kset->list)) {
4589		dev = list_entry(devices_kset->list.prev, struct device,
4590				kobj.entry);
4591
4592		/*
4593		 * hold reference count of device's parent to
4594		 * prevent it from being freed because parent's
4595		 * lock is to be held
4596		 */
4597		parent = get_device(dev->parent);
4598		get_device(dev);
4599		/*
4600		 * Make sure the device is off the kset list, in the
4601		 * event that dev->*->shutdown() doesn't remove it.
4602		 */
4603		list_del_init(&dev->kobj.entry);
4604		spin_unlock(&devices_kset->list_lock);
4605
4606		/* hold lock to avoid race with probe/release */
4607		if (parent)
4608			device_lock(parent);
4609		device_lock(dev);
4610
4611		/* Don't allow any more runtime suspends */
4612		pm_runtime_get_noresume(dev);
4613		pm_runtime_barrier(dev);
4614
4615		if (dev->class && dev->class->shutdown_pre) {
4616			if (initcall_debug)
4617				dev_info(dev, "shutdown_pre\n");
4618			dev->class->shutdown_pre(dev);
4619		}
4620		if (dev->bus && dev->bus->shutdown) {
4621			if (initcall_debug)
4622				dev_info(dev, "shutdown\n");
4623			dev->bus->shutdown(dev);
4624		} else if (dev->driver && dev->driver->shutdown) {
4625			if (initcall_debug)
4626				dev_info(dev, "shutdown\n");
4627			dev->driver->shutdown(dev);
4628		}
4629
4630		device_unlock(dev);
4631		if (parent)
4632			device_unlock(parent);
4633
4634		put_device(dev);
4635		put_device(parent);
4636
4637		spin_lock(&devices_kset->list_lock);
4638	}
4639	spin_unlock(&devices_kset->list_lock);
4640}
4641
4642/*
4643 * Device logging functions
4644 */
4645
4646#ifdef CONFIG_PRINTK
4647static void
4648set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4649{
4650	const char *subsys;
4651
4652	memset(dev_info, 0, sizeof(*dev_info));
4653
4654	if (dev->class)
4655		subsys = dev->class->name;
4656	else if (dev->bus)
4657		subsys = dev->bus->name;
4658	else
4659		return;
4660
4661	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4662
4663	/*
4664	 * Add device identifier DEVICE=:
4665	 *   b12:8         block dev_t
4666	 *   c127:3        char dev_t
4667	 *   n8            netdev ifindex
4668	 *   +sound:card0  subsystem:devname
4669	 */
4670	if (MAJOR(dev->devt)) {
4671		char c;
4672
4673		if (strcmp(subsys, "block") == 0)
4674			c = 'b';
4675		else
4676			c = 'c';
4677
4678		snprintf(dev_info->device, sizeof(dev_info->device),
4679			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4680	} else if (strcmp(subsys, "net") == 0) {
4681		struct net_device *net = to_net_dev(dev);
4682
4683		snprintf(dev_info->device, sizeof(dev_info->device),
4684			 "n%u", net->ifindex);
4685	} else {
4686		snprintf(dev_info->device, sizeof(dev_info->device),
4687			 "+%s:%s", subsys, dev_name(dev));
4688	}
4689}
4690
4691int dev_vprintk_emit(int level, const struct device *dev,
4692		     const char *fmt, va_list args)
4693{
4694	struct dev_printk_info dev_info;
4695
4696	set_dev_info(dev, &dev_info);
4697
4698	return vprintk_emit(0, level, &dev_info, fmt, args);
4699}
4700EXPORT_SYMBOL(dev_vprintk_emit);
4701
4702int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4703{
4704	va_list args;
4705	int r;
4706
4707	va_start(args, fmt);
4708
4709	r = dev_vprintk_emit(level, dev, fmt, args);
4710
4711	va_end(args);
4712
4713	return r;
4714}
4715EXPORT_SYMBOL(dev_printk_emit);
4716
4717static void __dev_printk(const char *level, const struct device *dev,
4718			struct va_format *vaf)
4719{
4720	if (dev)
4721		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4722				dev_driver_string(dev), dev_name(dev), vaf);
4723	else
4724		printk("%s(NULL device *): %pV", level, vaf);
4725}
4726
4727void _dev_printk(const char *level, const struct device *dev,
4728		 const char *fmt, ...)
4729{
4730	struct va_format vaf;
4731	va_list args;
4732
4733	va_start(args, fmt);
4734
4735	vaf.fmt = fmt;
4736	vaf.va = &args;
4737
4738	__dev_printk(level, dev, &vaf);
4739
4740	va_end(args);
4741}
4742EXPORT_SYMBOL(_dev_printk);
4743
4744#define define_dev_printk_level(func, kern_level)		\
4745void func(const struct device *dev, const char *fmt, ...)	\
4746{								\
4747	struct va_format vaf;					\
4748	va_list args;						\
4749								\
4750	va_start(args, fmt);					\
4751								\
4752	vaf.fmt = fmt;						\
4753	vaf.va = &args;						\
4754								\
4755	__dev_printk(kern_level, dev, &vaf);			\
4756								\
4757	va_end(args);						\
4758}								\
4759EXPORT_SYMBOL(func);
4760
4761define_dev_printk_level(_dev_emerg, KERN_EMERG);
4762define_dev_printk_level(_dev_alert, KERN_ALERT);
4763define_dev_printk_level(_dev_crit, KERN_CRIT);
4764define_dev_printk_level(_dev_err, KERN_ERR);
4765define_dev_printk_level(_dev_warn, KERN_WARNING);
4766define_dev_printk_level(_dev_notice, KERN_NOTICE);
4767define_dev_printk_level(_dev_info, KERN_INFO);
4768
4769#endif
4770
4771/**
4772 * dev_err_probe - probe error check and log helper
4773 * @dev: the pointer to the struct device
4774 * @err: error value to test
4775 * @fmt: printf-style format string
4776 * @...: arguments as specified in the format string
4777 *
4778 * This helper implements common pattern present in probe functions for error
4779 * checking: print debug or error message depending if the error value is
4780 * -EPROBE_DEFER and propagate error upwards.
4781 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4782 * checked later by reading devices_deferred debugfs attribute.
4783 * It replaces code sequence::
4784 *
4785 * 	if (err != -EPROBE_DEFER)
4786 * 		dev_err(dev, ...);
4787 * 	else
4788 * 		dev_dbg(dev, ...);
4789 * 	return err;
4790 *
4791 * with::
4792 *
4793 * 	return dev_err_probe(dev, err, ...);
4794 *
4795 * Note that it is deemed acceptable to use this function for error
4796 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4797 * The benefit compared to a normal dev_err() is the standardized format
4798 * of the error code and the fact that the error code is returned.
4799 *
4800 * Returns @err.
4801 *
4802 */
4803int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4804{
4805	struct va_format vaf;
4806	va_list args;
4807
4808	va_start(args, fmt);
4809	vaf.fmt = fmt;
4810	vaf.va = &args;
4811
4812	if (err != -EPROBE_DEFER) {
4813		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4814	} else {
4815		device_set_deferred_probe_reason(dev, &vaf);
4816		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4817	}
4818
4819	va_end(args);
4820
4821	return err;
4822}
4823EXPORT_SYMBOL_GPL(dev_err_probe);
4824
4825static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4826{
4827	return fwnode && !IS_ERR(fwnode->secondary);
4828}
4829
4830/**
4831 * set_primary_fwnode - Change the primary firmware node of a given device.
4832 * @dev: Device to handle.
4833 * @fwnode: New primary firmware node of the device.
4834 *
4835 * Set the device's firmware node pointer to @fwnode, but if a secondary
4836 * firmware node of the device is present, preserve it.
4837 *
4838 * Valid fwnode cases are:
4839 *  - primary --> secondary --> -ENODEV
4840 *  - primary --> NULL
4841 *  - secondary --> -ENODEV
4842 *  - NULL
4843 */
4844void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4845{
4846	struct device *parent = dev->parent;
4847	struct fwnode_handle *fn = dev->fwnode;
4848
4849	if (fwnode) {
4850		if (fwnode_is_primary(fn))
4851			fn = fn->secondary;
4852
4853		if (fn) {
4854			WARN_ON(fwnode->secondary);
4855			fwnode->secondary = fn;
4856		}
4857		dev->fwnode = fwnode;
4858	} else {
4859		if (fwnode_is_primary(fn)) {
4860			dev->fwnode = fn->secondary;
4861			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4862			if (!(parent && fn == parent->fwnode))
4863				fn->secondary = NULL;
4864		} else {
4865			dev->fwnode = NULL;
4866		}
4867	}
4868}
4869EXPORT_SYMBOL_GPL(set_primary_fwnode);
4870
4871/**
4872 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4873 * @dev: Device to handle.
4874 * @fwnode: New secondary firmware node of the device.
4875 *
4876 * If a primary firmware node of the device is present, set its secondary
4877 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4878 * @fwnode.
4879 */
4880void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4881{
4882	if (fwnode)
4883		fwnode->secondary = ERR_PTR(-ENODEV);
4884
4885	if (fwnode_is_primary(dev->fwnode))
4886		dev->fwnode->secondary = fwnode;
4887	else
4888		dev->fwnode = fwnode;
4889}
4890EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4891
4892/**
4893 * device_set_of_node_from_dev - reuse device-tree node of another device
4894 * @dev: device whose device-tree node is being set
4895 * @dev2: device whose device-tree node is being reused
4896 *
4897 * Takes another reference to the new device-tree node after first dropping
4898 * any reference held to the old node.
4899 */
4900void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4901{
4902	of_node_put(dev->of_node);
4903	dev->of_node = of_node_get(dev2->of_node);
4904	dev->of_node_reused = true;
4905}
4906EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4907
4908void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4909{
4910	dev->fwnode = fwnode;
4911	dev->of_node = to_of_node(fwnode);
4912}
4913EXPORT_SYMBOL_GPL(device_set_node);
4914
4915int device_match_name(struct device *dev, const void *name)
4916{
4917	return sysfs_streq(dev_name(dev), name);
4918}
4919EXPORT_SYMBOL_GPL(device_match_name);
4920
4921int device_match_of_node(struct device *dev, const void *np)
4922{
4923	return dev->of_node == np;
4924}
4925EXPORT_SYMBOL_GPL(device_match_of_node);
4926
4927int device_match_fwnode(struct device *dev, const void *fwnode)
4928{
4929	return dev_fwnode(dev) == fwnode;
4930}
4931EXPORT_SYMBOL_GPL(device_match_fwnode);
4932
4933int device_match_devt(struct device *dev, const void *pdevt)
4934{
4935	return dev->devt == *(dev_t *)pdevt;
4936}
4937EXPORT_SYMBOL_GPL(device_match_devt);
4938
4939int device_match_acpi_dev(struct device *dev, const void *adev)
4940{
4941	return ACPI_COMPANION(dev) == adev;
4942}
4943EXPORT_SYMBOL(device_match_acpi_dev);
4944
4945int device_match_acpi_handle(struct device *dev, const void *handle)
4946{
4947	return ACPI_HANDLE(dev) == handle;
4948}
4949EXPORT_SYMBOL(device_match_acpi_handle);
4950
4951int device_match_any(struct device *dev, const void *unused)
4952{
4953	return 1;
4954}
4955EXPORT_SYMBOL_GPL(device_match_any);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
 
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sched/mm.h>
 
  30#include <linux/sysfs.h>
  31#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  32
  33#include "base.h"
 
  34#include "power/power.h"
  35
  36#ifdef CONFIG_SYSFS_DEPRECATED
  37#ifdef CONFIG_SYSFS_DEPRECATED_V2
  38long sysfs_deprecated = 1;
  39#else
  40long sysfs_deprecated = 0;
  41#endif
  42static int __init sysfs_deprecated_setup(char *arg)
  43{
  44	return kstrtol(arg, 10, &sysfs_deprecated);
  45}
  46early_param("sysfs.deprecated", sysfs_deprecated_setup);
  47#endif
  48
  49/* Device links support. */
  50static LIST_HEAD(deferred_sync);
  51static unsigned int defer_sync_state_count = 1;
  52static DEFINE_MUTEX(fwnode_link_lock);
  53static bool fw_devlink_is_permissive(void);
  54static bool fw_devlink_drv_reg_done;
 
  55
  56/**
  57 * fwnode_link_add - Create a link between two fwnode_handles.
  58 * @con: Consumer end of the link.
  59 * @sup: Supplier end of the link.
  60 *
  61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  62 * represents the detail that the firmware lists @sup fwnode as supplying a
  63 * resource to @con.
  64 *
  65 * The driver core will use the fwnode link to create a device link between the
  66 * two device objects corresponding to @con and @sup when they are created. The
  67 * driver core will automatically delete the fwnode link between @con and @sup
  68 * after doing that.
  69 *
  70 * Attempts to create duplicate links between the same pair of fwnode handles
  71 * are ignored and there is no reference counting.
  72 */
  73int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
  74{
  75	struct fwnode_link *link;
  76	int ret = 0;
  77
  78	mutex_lock(&fwnode_link_lock);
  79
  80	list_for_each_entry(link, &sup->consumers, s_hook)
  81		if (link->consumer == con)
  82			goto out;
  83
  84	link = kzalloc(sizeof(*link), GFP_KERNEL);
  85	if (!link) {
  86		ret = -ENOMEM;
  87		goto out;
  88	}
  89
  90	link->supplier = sup;
  91	INIT_LIST_HEAD(&link->s_hook);
  92	link->consumer = con;
  93	INIT_LIST_HEAD(&link->c_hook);
  94
  95	list_add(&link->s_hook, &sup->consumers);
  96	list_add(&link->c_hook, &con->suppliers);
 
 
  97out:
  98	mutex_unlock(&fwnode_link_lock);
  99
 100	return ret;
 101}
 102
 103/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 105 * @fwnode: fwnode whose supplier links need to be deleted
 106 *
 107 * Deletes all supplier links connecting directly to @fwnode.
 108 */
 109static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 110{
 111	struct fwnode_link *link, *tmp;
 112
 113	mutex_lock(&fwnode_link_lock);
 114	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
 115		list_del(&link->s_hook);
 116		list_del(&link->c_hook);
 117		kfree(link);
 118	}
 119	mutex_unlock(&fwnode_link_lock);
 120}
 121
 122/**
 123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 124 * @fwnode: fwnode whose consumer links need to be deleted
 125 *
 126 * Deletes all consumer links connecting directly to @fwnode.
 127 */
 128static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 129{
 130	struct fwnode_link *link, *tmp;
 131
 132	mutex_lock(&fwnode_link_lock);
 133	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
 134		list_del(&link->s_hook);
 135		list_del(&link->c_hook);
 136		kfree(link);
 137	}
 138	mutex_unlock(&fwnode_link_lock);
 139}
 140
 141/**
 142 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 143 * @fwnode: fwnode whose links needs to be deleted
 144 *
 145 * Deletes all links connecting directly to a fwnode.
 146 */
 147void fwnode_links_purge(struct fwnode_handle *fwnode)
 148{
 149	fwnode_links_purge_suppliers(fwnode);
 150	fwnode_links_purge_consumers(fwnode);
 151}
 152
 153void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 154{
 155	struct fwnode_handle *child;
 156
 157	/* Don't purge consumer links of an added child */
 158	if (fwnode->dev)
 159		return;
 160
 161	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 162	fwnode_links_purge_consumers(fwnode);
 163
 164	fwnode_for_each_available_child_node(fwnode, child)
 165		fw_devlink_purge_absent_suppliers(child);
 166}
 167EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 168
 169#ifdef CONFIG_SRCU
 170static DEFINE_MUTEX(device_links_lock);
 171DEFINE_STATIC_SRCU(device_links_srcu);
 172
 173static inline void device_links_write_lock(void)
 174{
 175	mutex_lock(&device_links_lock);
 176}
 177
 178static inline void device_links_write_unlock(void)
 179{
 180	mutex_unlock(&device_links_lock);
 181}
 182
 183int device_links_read_lock(void) __acquires(&device_links_srcu)
 184{
 185	return srcu_read_lock(&device_links_srcu);
 186}
 187
 188void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 189{
 190	srcu_read_unlock(&device_links_srcu, idx);
 191}
 192
 193int device_links_read_lock_held(void)
 194{
 195	return srcu_read_lock_held(&device_links_srcu);
 196}
 197
 198static void device_link_synchronize_removal(void)
 199{
 200	synchronize_srcu(&device_links_srcu);
 201}
 202
 203static void device_link_remove_from_lists(struct device_link *link)
 204{
 205	list_del_rcu(&link->s_node);
 206	list_del_rcu(&link->c_node);
 207}
 208#else /* !CONFIG_SRCU */
 209static DECLARE_RWSEM(device_links_lock);
 210
 211static inline void device_links_write_lock(void)
 212{
 213	down_write(&device_links_lock);
 214}
 215
 216static inline void device_links_write_unlock(void)
 217{
 218	up_write(&device_links_lock);
 219}
 220
 221int device_links_read_lock(void)
 222{
 223	down_read(&device_links_lock);
 224	return 0;
 225}
 226
 227void device_links_read_unlock(int not_used)
 228{
 229	up_read(&device_links_lock);
 230}
 231
 232#ifdef CONFIG_DEBUG_LOCK_ALLOC
 233int device_links_read_lock_held(void)
 234{
 235	return lockdep_is_held(&device_links_lock);
 236}
 237#endif
 238
 239static inline void device_link_synchronize_removal(void)
 240{
 241}
 242
 243static void device_link_remove_from_lists(struct device_link *link)
 244{
 245	list_del(&link->s_node);
 246	list_del(&link->c_node);
 247}
 248#endif /* !CONFIG_SRCU */
 249
 250static bool device_is_ancestor(struct device *dev, struct device *target)
 251{
 252	while (target->parent) {
 253		target = target->parent;
 254		if (dev == target)
 255			return true;
 256	}
 257	return false;
 258}
 259
 260/**
 261 * device_is_dependent - Check if one device depends on another one
 262 * @dev: Device to check dependencies for.
 263 * @target: Device to check against.
 264 *
 265 * Check if @target depends on @dev or any device dependent on it (its child or
 266 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 267 */
 268int device_is_dependent(struct device *dev, void *target)
 269{
 270	struct device_link *link;
 271	int ret;
 272
 273	/*
 274	 * The "ancestors" check is needed to catch the case when the target
 275	 * device has not been completely initialized yet and it is still
 276	 * missing from the list of children of its parent device.
 277	 */
 278	if (dev == target || device_is_ancestor(dev, target))
 279		return 1;
 280
 281	ret = device_for_each_child(dev, target, device_is_dependent);
 282	if (ret)
 283		return ret;
 284
 285	list_for_each_entry(link, &dev->links.consumers, s_node) {
 286		if ((link->flags & ~DL_FLAG_INFERRED) ==
 287		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 288			continue;
 289
 290		if (link->consumer == target)
 291			return 1;
 292
 293		ret = device_is_dependent(link->consumer, target);
 294		if (ret)
 295			break;
 296	}
 297	return ret;
 298}
 299
 300static void device_link_init_status(struct device_link *link,
 301				    struct device *consumer,
 302				    struct device *supplier)
 303{
 304	switch (supplier->links.status) {
 305	case DL_DEV_PROBING:
 306		switch (consumer->links.status) {
 307		case DL_DEV_PROBING:
 308			/*
 309			 * A consumer driver can create a link to a supplier
 310			 * that has not completed its probing yet as long as it
 311			 * knows that the supplier is already functional (for
 312			 * example, it has just acquired some resources from the
 313			 * supplier).
 314			 */
 315			link->status = DL_STATE_CONSUMER_PROBE;
 316			break;
 317		default:
 318			link->status = DL_STATE_DORMANT;
 319			break;
 320		}
 321		break;
 322	case DL_DEV_DRIVER_BOUND:
 323		switch (consumer->links.status) {
 324		case DL_DEV_PROBING:
 325			link->status = DL_STATE_CONSUMER_PROBE;
 326			break;
 327		case DL_DEV_DRIVER_BOUND:
 328			link->status = DL_STATE_ACTIVE;
 329			break;
 330		default:
 331			link->status = DL_STATE_AVAILABLE;
 332			break;
 333		}
 334		break;
 335	case DL_DEV_UNBINDING:
 336		link->status = DL_STATE_SUPPLIER_UNBIND;
 337		break;
 338	default:
 339		link->status = DL_STATE_DORMANT;
 340		break;
 341	}
 342}
 343
 344static int device_reorder_to_tail(struct device *dev, void *not_used)
 345{
 346	struct device_link *link;
 347
 348	/*
 349	 * Devices that have not been registered yet will be put to the ends
 350	 * of the lists during the registration, so skip them here.
 351	 */
 352	if (device_is_registered(dev))
 353		devices_kset_move_last(dev);
 354
 355	if (device_pm_initialized(dev))
 356		device_pm_move_last(dev);
 357
 358	device_for_each_child(dev, NULL, device_reorder_to_tail);
 359	list_for_each_entry(link, &dev->links.consumers, s_node) {
 360		if ((link->flags & ~DL_FLAG_INFERRED) ==
 361		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 362			continue;
 363		device_reorder_to_tail(link->consumer, NULL);
 364	}
 365
 366	return 0;
 367}
 368
 369/**
 370 * device_pm_move_to_tail - Move set of devices to the end of device lists
 371 * @dev: Device to move
 372 *
 373 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 374 *
 375 * It moves the @dev along with all of its children and all of its consumers
 376 * to the ends of the device_kset and dpm_list, recursively.
 377 */
 378void device_pm_move_to_tail(struct device *dev)
 379{
 380	int idx;
 381
 382	idx = device_links_read_lock();
 383	device_pm_lock();
 384	device_reorder_to_tail(dev, NULL);
 385	device_pm_unlock();
 386	device_links_read_unlock(idx);
 387}
 388
 389#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 390
 391static ssize_t status_show(struct device *dev,
 392			   struct device_attribute *attr, char *buf)
 393{
 394	const char *output;
 395
 396	switch (to_devlink(dev)->status) {
 397	case DL_STATE_NONE:
 398		output = "not tracked";
 399		break;
 400	case DL_STATE_DORMANT:
 401		output = "dormant";
 402		break;
 403	case DL_STATE_AVAILABLE:
 404		output = "available";
 405		break;
 406	case DL_STATE_CONSUMER_PROBE:
 407		output = "consumer probing";
 408		break;
 409	case DL_STATE_ACTIVE:
 410		output = "active";
 411		break;
 412	case DL_STATE_SUPPLIER_UNBIND:
 413		output = "supplier unbinding";
 414		break;
 415	default:
 416		output = "unknown";
 417		break;
 418	}
 419
 420	return sysfs_emit(buf, "%s\n", output);
 421}
 422static DEVICE_ATTR_RO(status);
 423
 424static ssize_t auto_remove_on_show(struct device *dev,
 425				   struct device_attribute *attr, char *buf)
 426{
 427	struct device_link *link = to_devlink(dev);
 428	const char *output;
 429
 430	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 431		output = "supplier unbind";
 432	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 433		output = "consumer unbind";
 434	else
 435		output = "never";
 436
 437	return sysfs_emit(buf, "%s\n", output);
 438}
 439static DEVICE_ATTR_RO(auto_remove_on);
 440
 441static ssize_t runtime_pm_show(struct device *dev,
 442			       struct device_attribute *attr, char *buf)
 443{
 444	struct device_link *link = to_devlink(dev);
 445
 446	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 447}
 448static DEVICE_ATTR_RO(runtime_pm);
 449
 450static ssize_t sync_state_only_show(struct device *dev,
 451				    struct device_attribute *attr, char *buf)
 452{
 453	struct device_link *link = to_devlink(dev);
 454
 455	return sysfs_emit(buf, "%d\n",
 456			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 457}
 458static DEVICE_ATTR_RO(sync_state_only);
 459
 460static struct attribute *devlink_attrs[] = {
 461	&dev_attr_status.attr,
 462	&dev_attr_auto_remove_on.attr,
 463	&dev_attr_runtime_pm.attr,
 464	&dev_attr_sync_state_only.attr,
 465	NULL,
 466};
 467ATTRIBUTE_GROUPS(devlink);
 468
 469static void device_link_release_fn(struct work_struct *work)
 470{
 471	struct device_link *link = container_of(work, struct device_link, rm_work);
 472
 473	/* Ensure that all references to the link object have been dropped. */
 474	device_link_synchronize_removal();
 475
 476	while (refcount_dec_not_one(&link->rpm_active))
 477		pm_runtime_put(link->supplier);
 
 
 
 
 
 
 
 
 
 
 478
 479	put_device(link->consumer);
 480	put_device(link->supplier);
 481	kfree(link);
 482}
 483
 484static void devlink_dev_release(struct device *dev)
 485{
 486	struct device_link *link = to_devlink(dev);
 487
 488	INIT_WORK(&link->rm_work, device_link_release_fn);
 489	/*
 490	 * It may take a while to complete this work because of the SRCU
 491	 * synchronization in device_link_release_fn() and if the consumer or
 492	 * supplier devices get deleted when it runs, so put it into the "long"
 493	 * workqueue.
 494	 */
 495	queue_work(system_long_wq, &link->rm_work);
 496}
 497
 498static struct class devlink_class = {
 499	.name = "devlink",
 500	.owner = THIS_MODULE,
 501	.dev_groups = devlink_groups,
 502	.dev_release = devlink_dev_release,
 503};
 504
 505static int devlink_add_symlinks(struct device *dev,
 506				struct class_interface *class_intf)
 507{
 508	int ret;
 509	size_t len;
 510	struct device_link *link = to_devlink(dev);
 511	struct device *sup = link->supplier;
 512	struct device *con = link->consumer;
 513	char *buf;
 514
 515	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 516		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 517	len += strlen(":");
 518	len += strlen("supplier:") + 1;
 519	buf = kzalloc(len, GFP_KERNEL);
 520	if (!buf)
 521		return -ENOMEM;
 522
 523	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 524	if (ret)
 525		goto out;
 526
 527	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 528	if (ret)
 529		goto err_con;
 530
 531	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 532	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 533	if (ret)
 534		goto err_con_dev;
 535
 536	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 537	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 538	if (ret)
 539		goto err_sup_dev;
 540
 541	goto out;
 542
 543err_sup_dev:
 544	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 545	sysfs_remove_link(&sup->kobj, buf);
 546err_con_dev:
 547	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 548err_con:
 549	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 550out:
 551	kfree(buf);
 552	return ret;
 553}
 554
 555static void devlink_remove_symlinks(struct device *dev,
 556				   struct class_interface *class_intf)
 557{
 558	struct device_link *link = to_devlink(dev);
 559	size_t len;
 560	struct device *sup = link->supplier;
 561	struct device *con = link->consumer;
 562	char *buf;
 563
 564	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 565	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 566
 567	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 568		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 569	len += strlen(":");
 570	len += strlen("supplier:") + 1;
 571	buf = kzalloc(len, GFP_KERNEL);
 572	if (!buf) {
 573		WARN(1, "Unable to properly free device link symlinks!\n");
 574		return;
 575	}
 576
 577	if (device_is_registered(con)) {
 578		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 579		sysfs_remove_link(&con->kobj, buf);
 580	}
 581	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 582	sysfs_remove_link(&sup->kobj, buf);
 583	kfree(buf);
 584}
 585
 586static struct class_interface devlink_class_intf = {
 587	.class = &devlink_class,
 588	.add_dev = devlink_add_symlinks,
 589	.remove_dev = devlink_remove_symlinks,
 590};
 591
 592static int __init devlink_class_init(void)
 593{
 594	int ret;
 595
 596	ret = class_register(&devlink_class);
 597	if (ret)
 598		return ret;
 599
 600	ret = class_interface_register(&devlink_class_intf);
 601	if (ret)
 602		class_unregister(&devlink_class);
 603
 604	return ret;
 605}
 606postcore_initcall(devlink_class_init);
 607
 608#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 609			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 610			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 611			       DL_FLAG_SYNC_STATE_ONLY | \
 612			       DL_FLAG_INFERRED)
 613
 614#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 615			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 616
 617/**
 618 * device_link_add - Create a link between two devices.
 619 * @consumer: Consumer end of the link.
 620 * @supplier: Supplier end of the link.
 621 * @flags: Link flags.
 622 *
 623 * The caller is responsible for the proper synchronization of the link creation
 624 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 625 * runtime PM framework to take the link into account.  Second, if the
 626 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 627 * be forced into the active meta state and reference-counted upon the creation
 628 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 629 * ignored.
 630 *
 631 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 632 * expected to release the link returned by it directly with the help of either
 633 * device_link_del() or device_link_remove().
 634 *
 635 * If that flag is not set, however, the caller of this function is handing the
 636 * management of the link over to the driver core entirely and its return value
 637 * can only be used to check whether or not the link is present.  In that case,
 638 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 639 * flags can be used to indicate to the driver core when the link can be safely
 640 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 641 * that the link is not going to be used (by the given caller of this function)
 642 * after unbinding the consumer or supplier driver, respectively, from its
 643 * device, so the link can be deleted at that point.  If none of them is set,
 644 * the link will be maintained until one of the devices pointed to by it (either
 645 * the consumer or the supplier) is unregistered.
 646 *
 647 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 648 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 649 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 650 * be used to request the driver core to automatically probe for a consumer
 651 * driver after successfully binding a driver to the supplier device.
 652 *
 653 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 654 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 655 * the same time is invalid and will cause NULL to be returned upfront.
 656 * However, if a device link between the given @consumer and @supplier pair
 657 * exists already when this function is called for them, the existing link will
 658 * be returned regardless of its current type and status (the link's flags may
 659 * be modified then).  The caller of this function is then expected to treat
 660 * the link as though it has just been created, so (in particular) if
 661 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 662 * explicitly when not needed any more (as stated above).
 663 *
 664 * A side effect of the link creation is re-ordering of dpm_list and the
 665 * devices_kset list by moving the consumer device and all devices depending
 666 * on it to the ends of these lists (that does not happen to devices that have
 667 * not been registered when this function is called).
 668 *
 669 * The supplier device is required to be registered when this function is called
 670 * and NULL will be returned if that is not the case.  The consumer device need
 671 * not be registered, however.
 672 */
 673struct device_link *device_link_add(struct device *consumer,
 674				    struct device *supplier, u32 flags)
 675{
 676	struct device_link *link;
 677
 678	if (!consumer || !supplier || consumer == supplier ||
 679	    flags & ~DL_ADD_VALID_FLAGS ||
 680	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 681	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 682	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
 683	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 684	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 685		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 686		return NULL;
 687
 688	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 689		if (pm_runtime_get_sync(supplier) < 0) {
 690			pm_runtime_put_noidle(supplier);
 691			return NULL;
 692		}
 693	}
 694
 695	if (!(flags & DL_FLAG_STATELESS))
 696		flags |= DL_FLAG_MANAGED;
 697
 698	device_links_write_lock();
 699	device_pm_lock();
 700
 701	/*
 702	 * If the supplier has not been fully registered yet or there is a
 703	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 704	 * the supplier already in the graph, return NULL. If the link is a
 705	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 706	 * because it only affects sync_state() callbacks.
 707	 */
 708	if (!device_pm_initialized(supplier)
 709	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 710		  device_is_dependent(consumer, supplier))) {
 711		link = NULL;
 712		goto out;
 713	}
 714
 715	/*
 716	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 717	 * So, only create it if the consumer hasn't probed yet.
 718	 */
 719	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 720	    consumer->links.status != DL_DEV_NO_DRIVER &&
 721	    consumer->links.status != DL_DEV_PROBING) {
 722		link = NULL;
 723		goto out;
 724	}
 725
 726	/*
 727	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 728	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 729	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 730	 */
 731	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 732		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 733
 734	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 735		if (link->consumer != consumer)
 736			continue;
 737
 738		if (link->flags & DL_FLAG_INFERRED &&
 739		    !(flags & DL_FLAG_INFERRED))
 740			link->flags &= ~DL_FLAG_INFERRED;
 741
 742		if (flags & DL_FLAG_PM_RUNTIME) {
 743			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 744				pm_runtime_new_link(consumer);
 745				link->flags |= DL_FLAG_PM_RUNTIME;
 746			}
 747			if (flags & DL_FLAG_RPM_ACTIVE)
 748				refcount_inc(&link->rpm_active);
 749		}
 750
 751		if (flags & DL_FLAG_STATELESS) {
 752			kref_get(&link->kref);
 753			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 754			    !(link->flags & DL_FLAG_STATELESS)) {
 755				link->flags |= DL_FLAG_STATELESS;
 756				goto reorder;
 757			} else {
 758				link->flags |= DL_FLAG_STATELESS;
 759				goto out;
 760			}
 761		}
 762
 763		/*
 764		 * If the life time of the link following from the new flags is
 765		 * longer than indicated by the flags of the existing link,
 766		 * update the existing link to stay around longer.
 767		 */
 768		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 769			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 770				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 771				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 772			}
 773		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 774			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 775					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 776		}
 777		if (!(link->flags & DL_FLAG_MANAGED)) {
 778			kref_get(&link->kref);
 779			link->flags |= DL_FLAG_MANAGED;
 780			device_link_init_status(link, consumer, supplier);
 781		}
 782		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 783		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 784			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 785			goto reorder;
 786		}
 787
 788		goto out;
 789	}
 790
 791	link = kzalloc(sizeof(*link), GFP_KERNEL);
 792	if (!link)
 793		goto out;
 794
 795	refcount_set(&link->rpm_active, 1);
 796
 797	get_device(supplier);
 798	link->supplier = supplier;
 799	INIT_LIST_HEAD(&link->s_node);
 800	get_device(consumer);
 801	link->consumer = consumer;
 802	INIT_LIST_HEAD(&link->c_node);
 803	link->flags = flags;
 804	kref_init(&link->kref);
 805
 806	link->link_dev.class = &devlink_class;
 807	device_set_pm_not_required(&link->link_dev);
 808	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 809		     dev_bus_name(supplier), dev_name(supplier),
 810		     dev_bus_name(consumer), dev_name(consumer));
 811	if (device_register(&link->link_dev)) {
 812		put_device(consumer);
 813		put_device(supplier);
 814		kfree(link);
 815		link = NULL;
 816		goto out;
 817	}
 818
 819	if (flags & DL_FLAG_PM_RUNTIME) {
 820		if (flags & DL_FLAG_RPM_ACTIVE)
 821			refcount_inc(&link->rpm_active);
 822
 823		pm_runtime_new_link(consumer);
 824	}
 825
 826	/* Determine the initial link state. */
 827	if (flags & DL_FLAG_STATELESS)
 828		link->status = DL_STATE_NONE;
 829	else
 830		device_link_init_status(link, consumer, supplier);
 831
 832	/*
 833	 * Some callers expect the link creation during consumer driver probe to
 834	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 835	 */
 836	if (link->status == DL_STATE_CONSUMER_PROBE &&
 837	    flags & DL_FLAG_PM_RUNTIME)
 838		pm_runtime_resume(supplier);
 839
 840	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 841	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 842
 843	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 844		dev_dbg(consumer,
 845			"Linked as a sync state only consumer to %s\n",
 846			dev_name(supplier));
 847		goto out;
 848	}
 849
 850reorder:
 851	/*
 852	 * Move the consumer and all of the devices depending on it to the end
 853	 * of dpm_list and the devices_kset list.
 854	 *
 855	 * It is necessary to hold dpm_list locked throughout all that or else
 856	 * we may end up suspending with a wrong ordering of it.
 857	 */
 858	device_reorder_to_tail(consumer, NULL);
 859
 860	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 861
 862out:
 863	device_pm_unlock();
 864	device_links_write_unlock();
 865
 866	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 867		pm_runtime_put(supplier);
 868
 869	return link;
 870}
 871EXPORT_SYMBOL_GPL(device_link_add);
 872
 873static void __device_link_del(struct kref *kref)
 874{
 875	struct device_link *link = container_of(kref, struct device_link, kref);
 876
 877	dev_dbg(link->consumer, "Dropping the link to %s\n",
 878		dev_name(link->supplier));
 879
 880	pm_runtime_drop_link(link);
 881
 882	device_link_remove_from_lists(link);
 883	device_unregister(&link->link_dev);
 884}
 885
 886static void device_link_put_kref(struct device_link *link)
 887{
 888	if (link->flags & DL_FLAG_STATELESS)
 889		kref_put(&link->kref, __device_link_del);
 890	else if (!device_is_registered(link->consumer))
 891		__device_link_del(&link->kref);
 892	else
 893		WARN(1, "Unable to drop a managed device link reference\n");
 894}
 895
 896/**
 897 * device_link_del - Delete a stateless link between two devices.
 898 * @link: Device link to delete.
 899 *
 900 * The caller must ensure proper synchronization of this function with runtime
 901 * PM.  If the link was added multiple times, it needs to be deleted as often.
 902 * Care is required for hotplugged devices:  Their links are purged on removal
 903 * and calling device_link_del() is then no longer allowed.
 904 */
 905void device_link_del(struct device_link *link)
 906{
 907	device_links_write_lock();
 908	device_link_put_kref(link);
 909	device_links_write_unlock();
 910}
 911EXPORT_SYMBOL_GPL(device_link_del);
 912
 913/**
 914 * device_link_remove - Delete a stateless link between two devices.
 915 * @consumer: Consumer end of the link.
 916 * @supplier: Supplier end of the link.
 917 *
 918 * The caller must ensure proper synchronization of this function with runtime
 919 * PM.
 920 */
 921void device_link_remove(void *consumer, struct device *supplier)
 922{
 923	struct device_link *link;
 924
 925	if (WARN_ON(consumer == supplier))
 926		return;
 927
 928	device_links_write_lock();
 929
 930	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 931		if (link->consumer == consumer) {
 932			device_link_put_kref(link);
 933			break;
 934		}
 935	}
 936
 937	device_links_write_unlock();
 938}
 939EXPORT_SYMBOL_GPL(device_link_remove);
 940
 941static void device_links_missing_supplier(struct device *dev)
 942{
 943	struct device_link *link;
 944
 945	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 946		if (link->status != DL_STATE_CONSUMER_PROBE)
 947			continue;
 948
 949		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 950			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 951		} else {
 952			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 953			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 954		}
 955	}
 956}
 957
 
 
 
 
 
 
 958/**
 959 * device_links_check_suppliers - Check presence of supplier drivers.
 960 * @dev: Consumer device.
 961 *
 962 * Check links from this device to any suppliers.  Walk the list of the device's
 963 * links to suppliers and see if all of them are available.  If not, simply
 964 * return -EPROBE_DEFER.
 965 *
 966 * We need to guarantee that the supplier will not go away after the check has
 967 * been positive here.  It only can go away in __device_release_driver() and
 968 * that function  checks the device's links to consumers.  This means we need to
 969 * mark the link as "consumer probe in progress" to make the supplier removal
 970 * wait for us to complete (or bad things may happen).
 971 *
 972 * Links without the DL_FLAG_MANAGED flag set are ignored.
 973 */
 974int device_links_check_suppliers(struct device *dev)
 975{
 976	struct device_link *link;
 977	int ret = 0;
 
 978
 979	/*
 980	 * Device waiting for supplier to become available is not allowed to
 981	 * probe.
 982	 */
 983	mutex_lock(&fwnode_link_lock);
 984	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
 985	    !fw_devlink_is_permissive()) {
 986		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
 987			list_first_entry(&dev->fwnode->suppliers,
 988			struct fwnode_link,
 989			c_hook)->supplier);
 990		mutex_unlock(&fwnode_link_lock);
 991		return -EPROBE_DEFER;
 
 
 
 
 992	}
 993	mutex_unlock(&fwnode_link_lock);
 
 
 994
 995	device_links_write_lock();
 996
 997	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 998		if (!(link->flags & DL_FLAG_MANAGED))
 999			continue;
1000
1001		if (link->status != DL_STATE_AVAILABLE &&
1002		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
 
 
 
 
 
 
 
 
1003			device_links_missing_supplier(dev);
1004			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1005				dev_name(link->supplier));
 
1006			ret = -EPROBE_DEFER;
1007			break;
1008		}
1009		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1010	}
1011	dev->links.status = DL_DEV_PROBING;
1012
1013	device_links_write_unlock();
1014	return ret;
 
1015}
1016
1017/**
1018 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1019 * @dev: Device to call sync_state() on
1020 * @list: List head to queue the @dev on
1021 *
1022 * Queues a device for a sync_state() callback when the device links write lock
1023 * isn't held. This allows the sync_state() execution flow to use device links
1024 * APIs.  The caller must ensure this function is called with
1025 * device_links_write_lock() held.
1026 *
1027 * This function does a get_device() to make sure the device is not freed while
1028 * on this list.
1029 *
1030 * So the caller must also ensure that device_links_flush_sync_list() is called
1031 * as soon as the caller releases device_links_write_lock().  This is necessary
1032 * to make sure the sync_state() is called in a timely fashion and the
1033 * put_device() is called on this device.
1034 */
1035static void __device_links_queue_sync_state(struct device *dev,
1036					    struct list_head *list)
1037{
1038	struct device_link *link;
1039
1040	if (!dev_has_sync_state(dev))
1041		return;
1042	if (dev->state_synced)
1043		return;
1044
1045	list_for_each_entry(link, &dev->links.consumers, s_node) {
1046		if (!(link->flags & DL_FLAG_MANAGED))
1047			continue;
1048		if (link->status != DL_STATE_ACTIVE)
1049			return;
1050	}
1051
1052	/*
1053	 * Set the flag here to avoid adding the same device to a list more
1054	 * than once. This can happen if new consumers get added to the device
1055	 * and probed before the list is flushed.
1056	 */
1057	dev->state_synced = true;
1058
1059	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1060		return;
1061
1062	get_device(dev);
1063	list_add_tail(&dev->links.defer_sync, list);
1064}
1065
1066/**
1067 * device_links_flush_sync_list - Call sync_state() on a list of devices
1068 * @list: List of devices to call sync_state() on
1069 * @dont_lock_dev: Device for which lock is already held by the caller
1070 *
1071 * Calls sync_state() on all the devices that have been queued for it. This
1072 * function is used in conjunction with __device_links_queue_sync_state(). The
1073 * @dont_lock_dev parameter is useful when this function is called from a
1074 * context where a device lock is already held.
1075 */
1076static void device_links_flush_sync_list(struct list_head *list,
1077					 struct device *dont_lock_dev)
1078{
1079	struct device *dev, *tmp;
1080
1081	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1082		list_del_init(&dev->links.defer_sync);
1083
1084		if (dev != dont_lock_dev)
1085			device_lock(dev);
1086
1087		if (dev->bus->sync_state)
1088			dev->bus->sync_state(dev);
1089		else if (dev->driver && dev->driver->sync_state)
1090			dev->driver->sync_state(dev);
1091
1092		if (dev != dont_lock_dev)
1093			device_unlock(dev);
1094
1095		put_device(dev);
1096	}
1097}
1098
1099void device_links_supplier_sync_state_pause(void)
1100{
1101	device_links_write_lock();
1102	defer_sync_state_count++;
1103	device_links_write_unlock();
1104}
1105
1106void device_links_supplier_sync_state_resume(void)
1107{
1108	struct device *dev, *tmp;
1109	LIST_HEAD(sync_list);
1110
1111	device_links_write_lock();
1112	if (!defer_sync_state_count) {
1113		WARN(true, "Unmatched sync_state pause/resume!");
1114		goto out;
1115	}
1116	defer_sync_state_count--;
1117	if (defer_sync_state_count)
1118		goto out;
1119
1120	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1121		/*
1122		 * Delete from deferred_sync list before queuing it to
1123		 * sync_list because defer_sync is used for both lists.
1124		 */
1125		list_del_init(&dev->links.defer_sync);
1126		__device_links_queue_sync_state(dev, &sync_list);
1127	}
1128out:
1129	device_links_write_unlock();
1130
1131	device_links_flush_sync_list(&sync_list, NULL);
1132}
1133
1134static int sync_state_resume_initcall(void)
1135{
1136	device_links_supplier_sync_state_resume();
1137	return 0;
1138}
1139late_initcall(sync_state_resume_initcall);
1140
1141static void __device_links_supplier_defer_sync(struct device *sup)
1142{
1143	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1144		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1145}
1146
1147static void device_link_drop_managed(struct device_link *link)
1148{
1149	link->flags &= ~DL_FLAG_MANAGED;
1150	WRITE_ONCE(link->status, DL_STATE_NONE);
1151	kref_put(&link->kref, __device_link_del);
1152}
1153
1154static ssize_t waiting_for_supplier_show(struct device *dev,
1155					 struct device_attribute *attr,
1156					 char *buf)
1157{
1158	bool val;
1159
1160	device_lock(dev);
1161	val = !list_empty(&dev->fwnode->suppliers);
1162	device_unlock(dev);
1163	return sysfs_emit(buf, "%u\n", val);
1164}
1165static DEVICE_ATTR_RO(waiting_for_supplier);
1166
1167/**
1168 * device_links_force_bind - Prepares device to be force bound
1169 * @dev: Consumer device.
1170 *
1171 * device_bind_driver() force binds a device to a driver without calling any
1172 * driver probe functions. So the consumer really isn't going to wait for any
1173 * supplier before it's bound to the driver. We still want the device link
1174 * states to be sensible when this happens.
1175 *
1176 * In preparation for device_bind_driver(), this function goes through each
1177 * supplier device links and checks if the supplier is bound. If it is, then
1178 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1179 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1180 */
1181void device_links_force_bind(struct device *dev)
1182{
1183	struct device_link *link, *ln;
1184
1185	device_links_write_lock();
1186
1187	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1188		if (!(link->flags & DL_FLAG_MANAGED))
1189			continue;
1190
1191		if (link->status != DL_STATE_AVAILABLE) {
1192			device_link_drop_managed(link);
1193			continue;
1194		}
1195		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1196	}
1197	dev->links.status = DL_DEV_PROBING;
1198
1199	device_links_write_unlock();
1200}
1201
1202/**
1203 * device_links_driver_bound - Update device links after probing its driver.
1204 * @dev: Device to update the links for.
1205 *
1206 * The probe has been successful, so update links from this device to any
1207 * consumers by changing their status to "available".
1208 *
1209 * Also change the status of @dev's links to suppliers to "active".
1210 *
1211 * Links without the DL_FLAG_MANAGED flag set are ignored.
1212 */
1213void device_links_driver_bound(struct device *dev)
1214{
1215	struct device_link *link, *ln;
1216	LIST_HEAD(sync_list);
1217
1218	/*
1219	 * If a device binds successfully, it's expected to have created all
1220	 * the device links it needs to or make new device links as it needs
1221	 * them. So, fw_devlink no longer needs to create device links to any
1222	 * of the device's suppliers.
1223	 *
1224	 * Also, if a child firmware node of this bound device is not added as
1225	 * a device by now, assume it is never going to be added and make sure
1226	 * other devices don't defer probe indefinitely by waiting for such a
1227	 * child device.
1228	 */
1229	if (dev->fwnode && dev->fwnode->dev == dev) {
1230		struct fwnode_handle *child;
1231		fwnode_links_purge_suppliers(dev->fwnode);
1232		fwnode_for_each_available_child_node(dev->fwnode, child)
1233			fw_devlink_purge_absent_suppliers(child);
1234	}
1235	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1236
1237	device_links_write_lock();
1238
1239	list_for_each_entry(link, &dev->links.consumers, s_node) {
1240		if (!(link->flags & DL_FLAG_MANAGED))
1241			continue;
1242
1243		/*
1244		 * Links created during consumer probe may be in the "consumer
1245		 * probe" state to start with if the supplier is still probing
1246		 * when they are created and they may become "active" if the
1247		 * consumer probe returns first.  Skip them here.
1248		 */
1249		if (link->status == DL_STATE_CONSUMER_PROBE ||
1250		    link->status == DL_STATE_ACTIVE)
1251			continue;
1252
1253		WARN_ON(link->status != DL_STATE_DORMANT);
1254		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1255
1256		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1257			driver_deferred_probe_add(link->consumer);
1258	}
1259
1260	if (defer_sync_state_count)
1261		__device_links_supplier_defer_sync(dev);
1262	else
1263		__device_links_queue_sync_state(dev, &sync_list);
1264
1265	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1266		struct device *supplier;
1267
1268		if (!(link->flags & DL_FLAG_MANAGED))
1269			continue;
1270
1271		supplier = link->supplier;
1272		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1273			/*
1274			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1275			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1276			 * save to drop the managed link completely.
1277			 */
1278			device_link_drop_managed(link);
 
 
 
 
 
 
 
 
 
 
 
 
1279		} else {
1280			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1281			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1282		}
1283
1284		/*
1285		 * This needs to be done even for the deleted
1286		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1287		 * device link that was preventing the supplier from getting a
1288		 * sync_state() call.
1289		 */
1290		if (defer_sync_state_count)
1291			__device_links_supplier_defer_sync(supplier);
1292		else
1293			__device_links_queue_sync_state(supplier, &sync_list);
1294	}
1295
1296	dev->links.status = DL_DEV_DRIVER_BOUND;
1297
1298	device_links_write_unlock();
1299
1300	device_links_flush_sync_list(&sync_list, dev);
1301}
1302
1303/**
1304 * __device_links_no_driver - Update links of a device without a driver.
1305 * @dev: Device without a drvier.
1306 *
1307 * Delete all non-persistent links from this device to any suppliers.
1308 *
1309 * Persistent links stay around, but their status is changed to "available",
1310 * unless they already are in the "supplier unbind in progress" state in which
1311 * case they need not be updated.
1312 *
1313 * Links without the DL_FLAG_MANAGED flag set are ignored.
1314 */
1315static void __device_links_no_driver(struct device *dev)
1316{
1317	struct device_link *link, *ln;
1318
1319	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1320		if (!(link->flags & DL_FLAG_MANAGED))
1321			continue;
1322
1323		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1324			device_link_drop_managed(link);
1325			continue;
1326		}
1327
1328		if (link->status != DL_STATE_CONSUMER_PROBE &&
1329		    link->status != DL_STATE_ACTIVE)
1330			continue;
1331
1332		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1333			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1334		} else {
1335			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1336			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1337		}
1338	}
1339
1340	dev->links.status = DL_DEV_NO_DRIVER;
1341}
1342
1343/**
1344 * device_links_no_driver - Update links after failing driver probe.
1345 * @dev: Device whose driver has just failed to probe.
1346 *
1347 * Clean up leftover links to consumers for @dev and invoke
1348 * %__device_links_no_driver() to update links to suppliers for it as
1349 * appropriate.
1350 *
1351 * Links without the DL_FLAG_MANAGED flag set are ignored.
1352 */
1353void device_links_no_driver(struct device *dev)
1354{
1355	struct device_link *link;
1356
1357	device_links_write_lock();
1358
1359	list_for_each_entry(link, &dev->links.consumers, s_node) {
1360		if (!(link->flags & DL_FLAG_MANAGED))
1361			continue;
1362
1363		/*
1364		 * The probe has failed, so if the status of the link is
1365		 * "consumer probe" or "active", it must have been added by
1366		 * a probing consumer while this device was still probing.
1367		 * Change its state to "dormant", as it represents a valid
1368		 * relationship, but it is not functionally meaningful.
1369		 */
1370		if (link->status == DL_STATE_CONSUMER_PROBE ||
1371		    link->status == DL_STATE_ACTIVE)
1372			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1373	}
1374
1375	__device_links_no_driver(dev);
1376
1377	device_links_write_unlock();
1378}
1379
1380/**
1381 * device_links_driver_cleanup - Update links after driver removal.
1382 * @dev: Device whose driver has just gone away.
1383 *
1384 * Update links to consumers for @dev by changing their status to "dormant" and
1385 * invoke %__device_links_no_driver() to update links to suppliers for it as
1386 * appropriate.
1387 *
1388 * Links without the DL_FLAG_MANAGED flag set are ignored.
1389 */
1390void device_links_driver_cleanup(struct device *dev)
1391{
1392	struct device_link *link, *ln;
1393
1394	device_links_write_lock();
1395
1396	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1397		if (!(link->flags & DL_FLAG_MANAGED))
1398			continue;
1399
1400		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1401		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1402
1403		/*
1404		 * autoremove the links between this @dev and its consumer
1405		 * devices that are not active, i.e. where the link state
1406		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1407		 */
1408		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1409		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1410			device_link_drop_managed(link);
1411
1412		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1413	}
1414
1415	list_del_init(&dev->links.defer_sync);
1416	__device_links_no_driver(dev);
1417
1418	device_links_write_unlock();
1419}
1420
1421/**
1422 * device_links_busy - Check if there are any busy links to consumers.
1423 * @dev: Device to check.
1424 *
1425 * Check each consumer of the device and return 'true' if its link's status
1426 * is one of "consumer probe" or "active" (meaning that the given consumer is
1427 * probing right now or its driver is present).  Otherwise, change the link
1428 * state to "supplier unbind" to prevent the consumer from being probed
1429 * successfully going forward.
1430 *
1431 * Return 'false' if there are no probing or active consumers.
1432 *
1433 * Links without the DL_FLAG_MANAGED flag set are ignored.
1434 */
1435bool device_links_busy(struct device *dev)
1436{
1437	struct device_link *link;
1438	bool ret = false;
1439
1440	device_links_write_lock();
1441
1442	list_for_each_entry(link, &dev->links.consumers, s_node) {
1443		if (!(link->flags & DL_FLAG_MANAGED))
1444			continue;
1445
1446		if (link->status == DL_STATE_CONSUMER_PROBE
1447		    || link->status == DL_STATE_ACTIVE) {
1448			ret = true;
1449			break;
1450		}
1451		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1452	}
1453
1454	dev->links.status = DL_DEV_UNBINDING;
1455
1456	device_links_write_unlock();
1457	return ret;
1458}
1459
1460/**
1461 * device_links_unbind_consumers - Force unbind consumers of the given device.
1462 * @dev: Device to unbind the consumers of.
1463 *
1464 * Walk the list of links to consumers for @dev and if any of them is in the
1465 * "consumer probe" state, wait for all device probes in progress to complete
1466 * and start over.
1467 *
1468 * If that's not the case, change the status of the link to "supplier unbind"
1469 * and check if the link was in the "active" state.  If so, force the consumer
1470 * driver to unbind and start over (the consumer will not re-probe as we have
1471 * changed the state of the link already).
1472 *
1473 * Links without the DL_FLAG_MANAGED flag set are ignored.
1474 */
1475void device_links_unbind_consumers(struct device *dev)
1476{
1477	struct device_link *link;
1478
1479 start:
1480	device_links_write_lock();
1481
1482	list_for_each_entry(link, &dev->links.consumers, s_node) {
1483		enum device_link_state status;
1484
1485		if (!(link->flags & DL_FLAG_MANAGED) ||
1486		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1487			continue;
1488
1489		status = link->status;
1490		if (status == DL_STATE_CONSUMER_PROBE) {
1491			device_links_write_unlock();
1492
1493			wait_for_device_probe();
1494			goto start;
1495		}
1496		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1497		if (status == DL_STATE_ACTIVE) {
1498			struct device *consumer = link->consumer;
1499
1500			get_device(consumer);
1501
1502			device_links_write_unlock();
1503
1504			device_release_driver_internal(consumer, NULL,
1505						       consumer->parent);
1506			put_device(consumer);
1507			goto start;
1508		}
1509	}
1510
1511	device_links_write_unlock();
1512}
1513
1514/**
1515 * device_links_purge - Delete existing links to other devices.
1516 * @dev: Target device.
1517 */
1518static void device_links_purge(struct device *dev)
1519{
1520	struct device_link *link, *ln;
1521
1522	if (dev->class == &devlink_class)
1523		return;
1524
1525	/*
1526	 * Delete all of the remaining links from this device to any other
1527	 * devices (either consumers or suppliers).
1528	 */
1529	device_links_write_lock();
1530
1531	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1532		WARN_ON(link->status == DL_STATE_ACTIVE);
1533		__device_link_del(&link->kref);
1534	}
1535
1536	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1537		WARN_ON(link->status != DL_STATE_DORMANT &&
1538			link->status != DL_STATE_NONE);
1539		__device_link_del(&link->kref);
1540	}
1541
1542	device_links_write_unlock();
1543}
1544
1545#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1546					 DL_FLAG_SYNC_STATE_ONLY)
1547#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1548					 DL_FLAG_AUTOPROBE_CONSUMER)
1549#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1550					 DL_FLAG_PM_RUNTIME)
1551
1552static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1553static int __init fw_devlink_setup(char *arg)
1554{
1555	if (!arg)
1556		return -EINVAL;
1557
1558	if (strcmp(arg, "off") == 0) {
1559		fw_devlink_flags = 0;
1560	} else if (strcmp(arg, "permissive") == 0) {
1561		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1562	} else if (strcmp(arg, "on") == 0) {
1563		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1564	} else if (strcmp(arg, "rpm") == 0) {
1565		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1566	}
1567	return 0;
1568}
1569early_param("fw_devlink", fw_devlink_setup);
1570
1571static bool fw_devlink_strict;
1572static int __init fw_devlink_strict_setup(char *arg)
1573{
1574	return strtobool(arg, &fw_devlink_strict);
1575}
1576early_param("fw_devlink.strict", fw_devlink_strict_setup);
1577
1578u32 fw_devlink_get_flags(void)
1579{
1580	return fw_devlink_flags;
1581}
1582
1583static bool fw_devlink_is_permissive(void)
1584{
1585	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1586}
1587
1588bool fw_devlink_is_strict(void)
1589{
1590	return fw_devlink_strict && !fw_devlink_is_permissive();
1591}
1592
1593static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1594{
1595	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1596		return;
1597
1598	fwnode_call_int_op(fwnode, add_links);
1599	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1600}
1601
1602static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1603{
1604	struct fwnode_handle *child = NULL;
1605
1606	fw_devlink_parse_fwnode(fwnode);
1607
1608	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1609		fw_devlink_parse_fwtree(child);
1610}
1611
1612static void fw_devlink_relax_link(struct device_link *link)
1613{
1614	if (!(link->flags & DL_FLAG_INFERRED))
1615		return;
1616
1617	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1618		return;
1619
1620	pm_runtime_drop_link(link);
1621	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1622	dev_dbg(link->consumer, "Relaxing link with %s\n",
1623		dev_name(link->supplier));
1624}
1625
1626static int fw_devlink_no_driver(struct device *dev, void *data)
1627{
1628	struct device_link *link = to_devlink(dev);
1629
1630	if (!link->supplier->can_match)
1631		fw_devlink_relax_link(link);
1632
1633	return 0;
1634}
1635
1636void fw_devlink_drivers_done(void)
1637{
1638	fw_devlink_drv_reg_done = true;
1639	device_links_write_lock();
1640	class_for_each_device(&devlink_class, NULL, NULL,
1641			      fw_devlink_no_driver);
1642	device_links_write_unlock();
1643}
1644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645static void fw_devlink_unblock_consumers(struct device *dev)
1646{
1647	struct device_link *link;
1648
1649	if (!fw_devlink_flags || fw_devlink_is_permissive())
1650		return;
1651
1652	device_links_write_lock();
1653	list_for_each_entry(link, &dev->links.consumers, s_node)
1654		fw_devlink_relax_link(link);
1655	device_links_write_unlock();
1656}
1657
1658/**
1659 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1660 * @con: Device to check dependencies for.
1661 * @sup: Device to check against.
1662 *
1663 * Check if @sup depends on @con or any device dependent on it (its child or
1664 * its consumer etc).  When such a cyclic dependency is found, convert all
1665 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1666 * This is the equivalent of doing fw_devlink=permissive just between the
1667 * devices in the cycle. We need to do this because, at this point, fw_devlink
1668 * can't tell which of these dependencies is not a real dependency.
1669 *
1670 * Return 1 if a cycle is found. Otherwise, return 0.
1671 */
1672static int fw_devlink_relax_cycle(struct device *con, void *sup)
1673{
1674	struct device_link *link;
1675	int ret;
1676
1677	if (con == sup)
1678		return 1;
1679
1680	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1681	if (ret)
1682		return ret;
1683
1684	list_for_each_entry(link, &con->links.consumers, s_node) {
1685		if ((link->flags & ~DL_FLAG_INFERRED) ==
1686		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1687			continue;
1688
1689		if (!fw_devlink_relax_cycle(link->consumer, sup))
1690			continue;
1691
1692		ret = 1;
1693
1694		fw_devlink_relax_link(link);
1695	}
1696	return ret;
1697}
1698
1699/**
1700 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1701 * @con: consumer device for the device link
1702 * @sup_handle: fwnode handle of supplier
1703 * @flags: devlink flags
1704 *
1705 * This function will try to create a device link between the consumer device
1706 * @con and the supplier device represented by @sup_handle.
1707 *
1708 * The supplier has to be provided as a fwnode because incorrect cycles in
1709 * fwnode links can sometimes cause the supplier device to never be created.
1710 * This function detects such cases and returns an error if it cannot create a
1711 * device link from the consumer to a missing supplier.
1712 *
1713 * Returns,
1714 * 0 on successfully creating a device link
1715 * -EINVAL if the device link cannot be created as expected
1716 * -EAGAIN if the device link cannot be created right now, but it may be
1717 *  possible to do that in the future
1718 */
1719static int fw_devlink_create_devlink(struct device *con,
1720				     struct fwnode_handle *sup_handle, u32 flags)
1721{
1722	struct device *sup_dev;
1723	int ret = 0;
1724
1725	/*
1726	 * In some cases, a device P might also be a supplier to its child node
1727	 * C. However, this would defer the probe of C until the probe of P
1728	 * completes successfully. This is perfectly fine in the device driver
1729	 * model. device_add() doesn't guarantee probe completion of the device
1730	 * by the time it returns.
1731	 *
1732	 * However, there are a few drivers that assume C will finish probing
1733	 * as soon as it's added and before P finishes probing. So, we provide
1734	 * a flag to let fw_devlink know not to delay the probe of C until the
1735	 * probe of P completes successfully.
1736	 *
1737	 * When such a flag is set, we can't create device links where P is the
1738	 * supplier of C as that would delay the probe of C.
1739	 */
1740	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1741	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1742		return -EINVAL;
1743
1744	sup_dev = get_dev_from_fwnode(sup_handle);
1745	if (sup_dev) {
1746		/*
1747		 * If it's one of those drivers that don't actually bind to
1748		 * their device using driver core, then don't wait on this
1749		 * supplier device indefinitely.
1750		 */
1751		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1752		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1753			ret = -EINVAL;
1754			goto out;
1755		}
1756
1757		/*
1758		 * If this fails, it is due to cycles in device links.  Just
1759		 * give up on this link and treat it as invalid.
1760		 */
1761		if (!device_link_add(con, sup_dev, flags) &&
1762		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1763			dev_info(con, "Fixing up cyclic dependency with %s\n",
1764				 dev_name(sup_dev));
1765			device_links_write_lock();
1766			fw_devlink_relax_cycle(con, sup_dev);
1767			device_links_write_unlock();
1768			device_link_add(con, sup_dev,
1769					FW_DEVLINK_FLAGS_PERMISSIVE);
1770			ret = -EINVAL;
1771		}
1772
1773		goto out;
1774	}
1775
1776	/* Supplier that's already initialized without a struct device. */
1777	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1778		return -EINVAL;
1779
1780	/*
1781	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1782	 * cycles. So cycle detection isn't necessary and shouldn't be
1783	 * done.
1784	 */
1785	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1786		return -EAGAIN;
1787
1788	/*
1789	 * If we can't find the supplier device from its fwnode, it might be
1790	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1791	 * be broken by applying logic. Check for these types of cycles and
1792	 * break them so that devices in the cycle probe properly.
1793	 *
1794	 * If the supplier's parent is dependent on the consumer, then the
1795	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1796	 * can't tell which of the inferred dependencies are incorrect, don't
1797	 * enforce probe ordering between any of the devices in this cyclic
1798	 * dependency. Do this by relaxing all the fw_devlink device links in
1799	 * this cycle and by treating the fwnode link between the consumer and
1800	 * the supplier as an invalid dependency.
1801	 */
1802	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1803	if (sup_dev && device_is_dependent(con, sup_dev)) {
1804		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1805			 sup_handle, dev_name(sup_dev));
1806		device_links_write_lock();
1807		fw_devlink_relax_cycle(con, sup_dev);
1808		device_links_write_unlock();
1809		ret = -EINVAL;
1810	} else {
1811		/*
1812		 * Can't check for cycles or no cycles. So let's try
1813		 * again later.
1814		 */
1815		ret = -EAGAIN;
1816	}
1817
1818out:
1819	put_device(sup_dev);
1820	return ret;
1821}
1822
1823/**
1824 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1825 * @dev: Device that needs to be linked to its consumers
1826 *
1827 * This function looks at all the consumer fwnodes of @dev and creates device
1828 * links between the consumer device and @dev (supplier).
1829 *
1830 * If the consumer device has not been added yet, then this function creates a
1831 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1832 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1833 * sync_state() callback before the real consumer device gets to be added and
1834 * then probed.
1835 *
1836 * Once device links are created from the real consumer to @dev (supplier), the
1837 * fwnode links are deleted.
1838 */
1839static void __fw_devlink_link_to_consumers(struct device *dev)
1840{
1841	struct fwnode_handle *fwnode = dev->fwnode;
1842	struct fwnode_link *link, *tmp;
1843
1844	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1845		u32 dl_flags = fw_devlink_get_flags();
1846		struct device *con_dev;
1847		bool own_link = true;
1848		int ret;
1849
1850		con_dev = get_dev_from_fwnode(link->consumer);
1851		/*
1852		 * If consumer device is not available yet, make a "proxy"
1853		 * SYNC_STATE_ONLY link from the consumer's parent device to
1854		 * the supplier device. This is necessary to make sure the
1855		 * supplier doesn't get a sync_state() callback before the real
1856		 * consumer can create a device link to the supplier.
1857		 *
1858		 * This proxy link step is needed to handle the case where the
1859		 * consumer's parent device is added before the supplier.
1860		 */
1861		if (!con_dev) {
1862			con_dev = fwnode_get_next_parent_dev(link->consumer);
1863			/*
1864			 * However, if the consumer's parent device is also the
1865			 * parent of the supplier, don't create a
1866			 * consumer-supplier link from the parent to its child
1867			 * device. Such a dependency is impossible.
1868			 */
1869			if (con_dev &&
1870			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1871				put_device(con_dev);
1872				con_dev = NULL;
1873			} else {
1874				own_link = false;
1875				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1876			}
1877		}
1878
1879		if (!con_dev)
1880			continue;
1881
1882		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1883		put_device(con_dev);
1884		if (!own_link || ret == -EAGAIN)
1885			continue;
1886
1887		list_del(&link->s_hook);
1888		list_del(&link->c_hook);
1889		kfree(link);
1890	}
1891}
1892
1893/**
1894 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1895 * @dev: The consumer device that needs to be linked to its suppliers
1896 * @fwnode: Root of the fwnode tree that is used to create device links
1897 *
1898 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1899 * @fwnode and creates device links between @dev (consumer) and all the
1900 * supplier devices of the entire fwnode tree at @fwnode.
1901 *
1902 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1903 * and the real suppliers of @dev. Once these device links are created, the
1904 * fwnode links are deleted. When such device links are successfully created,
1905 * this function is called recursively on those supplier devices. This is
1906 * needed to detect and break some invalid cycles in fwnode links.  See
1907 * fw_devlink_create_devlink() for more details.
1908 *
1909 * In addition, it also looks at all the suppliers of the entire fwnode tree
1910 * because some of the child devices of @dev that have not been added yet
1911 * (because @dev hasn't probed) might already have their suppliers added to
1912 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1913 * @dev (consumer) and these suppliers to make sure they don't execute their
1914 * sync_state() callbacks before these child devices have a chance to create
1915 * their device links. The fwnode links that correspond to the child devices
1916 * aren't delete because they are needed later to create the device links
1917 * between the real consumer and supplier devices.
1918 */
1919static void __fw_devlink_link_to_suppliers(struct device *dev,
1920					   struct fwnode_handle *fwnode)
1921{
1922	bool own_link = (dev->fwnode == fwnode);
1923	struct fwnode_link *link, *tmp;
1924	struct fwnode_handle *child = NULL;
1925	u32 dl_flags;
1926
1927	if (own_link)
1928		dl_flags = fw_devlink_get_flags();
1929	else
1930		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1931
1932	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1933		int ret;
1934		struct device *sup_dev;
1935		struct fwnode_handle *sup = link->supplier;
1936
1937		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1938		if (!own_link || ret == -EAGAIN)
1939			continue;
1940
1941		list_del(&link->s_hook);
1942		list_del(&link->c_hook);
1943		kfree(link);
1944
1945		/* If no device link was created, nothing more to do. */
1946		if (ret)
1947			continue;
1948
1949		/*
1950		 * If a device link was successfully created to a supplier, we
1951		 * now need to try and link the supplier to all its suppliers.
1952		 *
1953		 * This is needed to detect and delete false dependencies in
1954		 * fwnode links that haven't been converted to a device link
1955		 * yet. See comments in fw_devlink_create_devlink() for more
1956		 * details on the false dependency.
1957		 *
1958		 * Without deleting these false dependencies, some devices will
1959		 * never probe because they'll keep waiting for their false
1960		 * dependency fwnode links to be converted to device links.
1961		 */
1962		sup_dev = get_dev_from_fwnode(sup);
1963		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1964		put_device(sup_dev);
1965	}
1966
1967	/*
1968	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1969	 * all the descendants. This proxy link step is needed to handle the
1970	 * case where the supplier is added before the consumer's parent device
1971	 * (@dev).
1972	 */
1973	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1974		__fw_devlink_link_to_suppliers(dev, child);
1975}
1976
1977static void fw_devlink_link_device(struct device *dev)
1978{
1979	struct fwnode_handle *fwnode = dev->fwnode;
1980
1981	if (!fw_devlink_flags)
1982		return;
1983
1984	fw_devlink_parse_fwtree(fwnode);
1985
1986	mutex_lock(&fwnode_link_lock);
1987	__fw_devlink_link_to_consumers(dev);
1988	__fw_devlink_link_to_suppliers(dev, fwnode);
1989	mutex_unlock(&fwnode_link_lock);
1990}
1991
1992/* Device links support end. */
1993
1994int (*platform_notify)(struct device *dev) = NULL;
1995int (*platform_notify_remove)(struct device *dev) = NULL;
1996static struct kobject *dev_kobj;
1997struct kobject *sysfs_dev_char_kobj;
1998struct kobject *sysfs_dev_block_kobj;
1999
2000static DEFINE_MUTEX(device_hotplug_lock);
2001
2002void lock_device_hotplug(void)
2003{
2004	mutex_lock(&device_hotplug_lock);
2005}
2006
2007void unlock_device_hotplug(void)
2008{
2009	mutex_unlock(&device_hotplug_lock);
2010}
2011
2012int lock_device_hotplug_sysfs(void)
2013{
2014	if (mutex_trylock(&device_hotplug_lock))
2015		return 0;
2016
2017	/* Avoid busy looping (5 ms of sleep should do). */
2018	msleep(5);
2019	return restart_syscall();
2020}
2021
2022#ifdef CONFIG_BLOCK
2023static inline int device_is_not_partition(struct device *dev)
2024{
2025	return !(dev->type == &part_type);
2026}
2027#else
2028static inline int device_is_not_partition(struct device *dev)
2029{
2030	return 1;
2031}
2032#endif
2033
2034static int
2035device_platform_notify(struct device *dev, enum kobject_action action)
2036{
2037	int ret;
 
 
 
 
 
 
2038
2039	ret = acpi_platform_notify(dev, action);
2040	if (ret)
2041		return ret;
2042
2043	ret = software_node_notify(dev, action);
2044	if (ret)
2045		return ret;
2046
2047	if (platform_notify && action == KOBJ_ADD)
2048		platform_notify(dev);
2049	else if (platform_notify_remove && action == KOBJ_REMOVE)
2050		platform_notify_remove(dev);
2051	return 0;
2052}
2053
2054/**
2055 * dev_driver_string - Return a device's driver name, if at all possible
2056 * @dev: struct device to get the name of
2057 *
2058 * Will return the device's driver's name if it is bound to a device.  If
2059 * the device is not bound to a driver, it will return the name of the bus
2060 * it is attached to.  If it is not attached to a bus either, an empty
2061 * string will be returned.
2062 */
2063const char *dev_driver_string(const struct device *dev)
2064{
2065	struct device_driver *drv;
2066
2067	/* dev->driver can change to NULL underneath us because of unbinding,
2068	 * so be careful about accessing it.  dev->bus and dev->class should
2069	 * never change once they are set, so they don't need special care.
2070	 */
2071	drv = READ_ONCE(dev->driver);
2072	return drv ? drv->name : dev_bus_name(dev);
2073}
2074EXPORT_SYMBOL(dev_driver_string);
2075
2076#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2077
2078static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2079			     char *buf)
2080{
2081	struct device_attribute *dev_attr = to_dev_attr(attr);
2082	struct device *dev = kobj_to_dev(kobj);
2083	ssize_t ret = -EIO;
2084
2085	if (dev_attr->show)
2086		ret = dev_attr->show(dev, dev_attr, buf);
2087	if (ret >= (ssize_t)PAGE_SIZE) {
2088		printk("dev_attr_show: %pS returned bad count\n",
2089				dev_attr->show);
2090	}
2091	return ret;
2092}
2093
2094static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2095			      const char *buf, size_t count)
2096{
2097	struct device_attribute *dev_attr = to_dev_attr(attr);
2098	struct device *dev = kobj_to_dev(kobj);
2099	ssize_t ret = -EIO;
2100
2101	if (dev_attr->store)
2102		ret = dev_attr->store(dev, dev_attr, buf, count);
2103	return ret;
2104}
2105
2106static const struct sysfs_ops dev_sysfs_ops = {
2107	.show	= dev_attr_show,
2108	.store	= dev_attr_store,
2109};
2110
2111#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2112
2113ssize_t device_store_ulong(struct device *dev,
2114			   struct device_attribute *attr,
2115			   const char *buf, size_t size)
2116{
2117	struct dev_ext_attribute *ea = to_ext_attr(attr);
2118	int ret;
2119	unsigned long new;
2120
2121	ret = kstrtoul(buf, 0, &new);
2122	if (ret)
2123		return ret;
2124	*(unsigned long *)(ea->var) = new;
2125	/* Always return full write size even if we didn't consume all */
2126	return size;
2127}
2128EXPORT_SYMBOL_GPL(device_store_ulong);
2129
2130ssize_t device_show_ulong(struct device *dev,
2131			  struct device_attribute *attr,
2132			  char *buf)
2133{
2134	struct dev_ext_attribute *ea = to_ext_attr(attr);
2135	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2136}
2137EXPORT_SYMBOL_GPL(device_show_ulong);
2138
2139ssize_t device_store_int(struct device *dev,
2140			 struct device_attribute *attr,
2141			 const char *buf, size_t size)
2142{
2143	struct dev_ext_attribute *ea = to_ext_attr(attr);
2144	int ret;
2145	long new;
2146
2147	ret = kstrtol(buf, 0, &new);
2148	if (ret)
2149		return ret;
2150
2151	if (new > INT_MAX || new < INT_MIN)
2152		return -EINVAL;
2153	*(int *)(ea->var) = new;
2154	/* Always return full write size even if we didn't consume all */
2155	return size;
2156}
2157EXPORT_SYMBOL_GPL(device_store_int);
2158
2159ssize_t device_show_int(struct device *dev,
2160			struct device_attribute *attr,
2161			char *buf)
2162{
2163	struct dev_ext_attribute *ea = to_ext_attr(attr);
2164
2165	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2166}
2167EXPORT_SYMBOL_GPL(device_show_int);
2168
2169ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2170			  const char *buf, size_t size)
2171{
2172	struct dev_ext_attribute *ea = to_ext_attr(attr);
2173
2174	if (strtobool(buf, ea->var) < 0)
2175		return -EINVAL;
2176
2177	return size;
2178}
2179EXPORT_SYMBOL_GPL(device_store_bool);
2180
2181ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2182			 char *buf)
2183{
2184	struct dev_ext_attribute *ea = to_ext_attr(attr);
2185
2186	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2187}
2188EXPORT_SYMBOL_GPL(device_show_bool);
2189
2190/**
2191 * device_release - free device structure.
2192 * @kobj: device's kobject.
2193 *
2194 * This is called once the reference count for the object
2195 * reaches 0. We forward the call to the device's release
2196 * method, which should handle actually freeing the structure.
2197 */
2198static void device_release(struct kobject *kobj)
2199{
2200	struct device *dev = kobj_to_dev(kobj);
2201	struct device_private *p = dev->p;
2202
2203	/*
2204	 * Some platform devices are driven without driver attached
2205	 * and managed resources may have been acquired.  Make sure
2206	 * all resources are released.
2207	 *
2208	 * Drivers still can add resources into device after device
2209	 * is deleted but alive, so release devres here to avoid
2210	 * possible memory leak.
2211	 */
2212	devres_release_all(dev);
2213
2214	kfree(dev->dma_range_map);
2215
2216	if (dev->release)
2217		dev->release(dev);
2218	else if (dev->type && dev->type->release)
2219		dev->type->release(dev);
2220	else if (dev->class && dev->class->dev_release)
2221		dev->class->dev_release(dev);
2222	else
2223		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2224			dev_name(dev));
2225	kfree(p);
2226}
2227
2228static const void *device_namespace(struct kobject *kobj)
2229{
2230	struct device *dev = kobj_to_dev(kobj);
2231	const void *ns = NULL;
2232
2233	if (dev->class && dev->class->ns_type)
2234		ns = dev->class->namespace(dev);
2235
2236	return ns;
2237}
2238
2239static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2240{
2241	struct device *dev = kobj_to_dev(kobj);
2242
2243	if (dev->class && dev->class->get_ownership)
2244		dev->class->get_ownership(dev, uid, gid);
2245}
2246
2247static struct kobj_type device_ktype = {
2248	.release	= device_release,
2249	.sysfs_ops	= &dev_sysfs_ops,
2250	.namespace	= device_namespace,
2251	.get_ownership	= device_get_ownership,
2252};
2253
2254
2255static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2256{
2257	struct kobj_type *ktype = get_ktype(kobj);
2258
2259	if (ktype == &device_ktype) {
2260		struct device *dev = kobj_to_dev(kobj);
2261		if (dev->bus)
2262			return 1;
2263		if (dev->class)
2264			return 1;
2265	}
2266	return 0;
2267}
2268
2269static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2270{
2271	struct device *dev = kobj_to_dev(kobj);
2272
2273	if (dev->bus)
2274		return dev->bus->name;
2275	if (dev->class)
2276		return dev->class->name;
2277	return NULL;
2278}
2279
2280static int dev_uevent(struct kset *kset, struct kobject *kobj,
2281		      struct kobj_uevent_env *env)
2282{
2283	struct device *dev = kobj_to_dev(kobj);
2284	int retval = 0;
2285
2286	/* add device node properties if present */
2287	if (MAJOR(dev->devt)) {
2288		const char *tmp;
2289		const char *name;
2290		umode_t mode = 0;
2291		kuid_t uid = GLOBAL_ROOT_UID;
2292		kgid_t gid = GLOBAL_ROOT_GID;
2293
2294		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2295		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2296		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2297		if (name) {
2298			add_uevent_var(env, "DEVNAME=%s", name);
2299			if (mode)
2300				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2301			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2302				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2303			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2304				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2305			kfree(tmp);
2306		}
2307	}
2308
2309	if (dev->type && dev->type->name)
2310		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2311
2312	if (dev->driver)
2313		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2314
2315	/* Add common DT information about the device */
2316	of_device_uevent(dev, env);
2317
2318	/* have the bus specific function add its stuff */
2319	if (dev->bus && dev->bus->uevent) {
2320		retval = dev->bus->uevent(dev, env);
2321		if (retval)
2322			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2323				 dev_name(dev), __func__, retval);
2324	}
2325
2326	/* have the class specific function add its stuff */
2327	if (dev->class && dev->class->dev_uevent) {
2328		retval = dev->class->dev_uevent(dev, env);
2329		if (retval)
2330			pr_debug("device: '%s': %s: class uevent() "
2331				 "returned %d\n", dev_name(dev),
2332				 __func__, retval);
2333	}
2334
2335	/* have the device type specific function add its stuff */
2336	if (dev->type && dev->type->uevent) {
2337		retval = dev->type->uevent(dev, env);
2338		if (retval)
2339			pr_debug("device: '%s': %s: dev_type uevent() "
2340				 "returned %d\n", dev_name(dev),
2341				 __func__, retval);
2342	}
2343
2344	return retval;
2345}
2346
2347static const struct kset_uevent_ops device_uevent_ops = {
2348	.filter =	dev_uevent_filter,
2349	.name =		dev_uevent_name,
2350	.uevent =	dev_uevent,
2351};
2352
2353static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2354			   char *buf)
2355{
2356	struct kobject *top_kobj;
2357	struct kset *kset;
2358	struct kobj_uevent_env *env = NULL;
2359	int i;
2360	int len = 0;
2361	int retval;
2362
2363	/* search the kset, the device belongs to */
2364	top_kobj = &dev->kobj;
2365	while (!top_kobj->kset && top_kobj->parent)
2366		top_kobj = top_kobj->parent;
2367	if (!top_kobj->kset)
2368		goto out;
2369
2370	kset = top_kobj->kset;
2371	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2372		goto out;
2373
2374	/* respect filter */
2375	if (kset->uevent_ops && kset->uevent_ops->filter)
2376		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2377			goto out;
2378
2379	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2380	if (!env)
2381		return -ENOMEM;
2382
2383	/* let the kset specific function add its keys */
2384	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2385	if (retval)
2386		goto out;
2387
2388	/* copy keys to file */
2389	for (i = 0; i < env->envp_idx; i++)
2390		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2391out:
2392	kfree(env);
2393	return len;
2394}
2395
2396static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2397			    const char *buf, size_t count)
2398{
2399	int rc;
2400
2401	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2402
2403	if (rc) {
2404		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2405		return rc;
2406	}
2407
2408	return count;
2409}
2410static DEVICE_ATTR_RW(uevent);
2411
2412static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2413			   char *buf)
2414{
2415	bool val;
2416
2417	device_lock(dev);
2418	val = !dev->offline;
2419	device_unlock(dev);
2420	return sysfs_emit(buf, "%u\n", val);
2421}
2422
2423static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2424			    const char *buf, size_t count)
2425{
2426	bool val;
2427	int ret;
2428
2429	ret = strtobool(buf, &val);
2430	if (ret < 0)
2431		return ret;
2432
2433	ret = lock_device_hotplug_sysfs();
2434	if (ret)
2435		return ret;
2436
2437	ret = val ? device_online(dev) : device_offline(dev);
2438	unlock_device_hotplug();
2439	return ret < 0 ? ret : count;
2440}
2441static DEVICE_ATTR_RW(online);
2442
2443static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2444			      char *buf)
2445{
2446	const char *loc;
2447
2448	switch (dev->removable) {
2449	case DEVICE_REMOVABLE:
2450		loc = "removable";
2451		break;
2452	case DEVICE_FIXED:
2453		loc = "fixed";
2454		break;
2455	default:
2456		loc = "unknown";
2457	}
2458	return sysfs_emit(buf, "%s\n", loc);
2459}
2460static DEVICE_ATTR_RO(removable);
2461
2462int device_add_groups(struct device *dev, const struct attribute_group **groups)
2463{
2464	return sysfs_create_groups(&dev->kobj, groups);
2465}
2466EXPORT_SYMBOL_GPL(device_add_groups);
2467
2468void device_remove_groups(struct device *dev,
2469			  const struct attribute_group **groups)
2470{
2471	sysfs_remove_groups(&dev->kobj, groups);
2472}
2473EXPORT_SYMBOL_GPL(device_remove_groups);
2474
2475union device_attr_group_devres {
2476	const struct attribute_group *group;
2477	const struct attribute_group **groups;
2478};
2479
2480static int devm_attr_group_match(struct device *dev, void *res, void *data)
2481{
2482	return ((union device_attr_group_devres *)res)->group == data;
2483}
2484
2485static void devm_attr_group_remove(struct device *dev, void *res)
2486{
2487	union device_attr_group_devres *devres = res;
2488	const struct attribute_group *group = devres->group;
2489
2490	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2491	sysfs_remove_group(&dev->kobj, group);
2492}
2493
2494static void devm_attr_groups_remove(struct device *dev, void *res)
2495{
2496	union device_attr_group_devres *devres = res;
2497	const struct attribute_group **groups = devres->groups;
2498
2499	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2500	sysfs_remove_groups(&dev->kobj, groups);
2501}
2502
2503/**
2504 * devm_device_add_group - given a device, create a managed attribute group
2505 * @dev:	The device to create the group for
2506 * @grp:	The attribute group to create
2507 *
2508 * This function creates a group for the first time.  It will explicitly
2509 * warn and error if any of the attribute files being created already exist.
2510 *
2511 * Returns 0 on success or error code on failure.
2512 */
2513int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2514{
2515	union device_attr_group_devres *devres;
2516	int error;
2517
2518	devres = devres_alloc(devm_attr_group_remove,
2519			      sizeof(*devres), GFP_KERNEL);
2520	if (!devres)
2521		return -ENOMEM;
2522
2523	error = sysfs_create_group(&dev->kobj, grp);
2524	if (error) {
2525		devres_free(devres);
2526		return error;
2527	}
2528
2529	devres->group = grp;
2530	devres_add(dev, devres);
2531	return 0;
2532}
2533EXPORT_SYMBOL_GPL(devm_device_add_group);
2534
2535/**
2536 * devm_device_remove_group: remove a managed group from a device
2537 * @dev:	device to remove the group from
2538 * @grp:	group to remove
2539 *
2540 * This function removes a group of attributes from a device. The attributes
2541 * previously have to have been created for this group, otherwise it will fail.
2542 */
2543void devm_device_remove_group(struct device *dev,
2544			      const struct attribute_group *grp)
2545{
2546	WARN_ON(devres_release(dev, devm_attr_group_remove,
2547			       devm_attr_group_match,
2548			       /* cast away const */ (void *)grp));
2549}
2550EXPORT_SYMBOL_GPL(devm_device_remove_group);
2551
2552/**
2553 * devm_device_add_groups - create a bunch of managed attribute groups
2554 * @dev:	The device to create the group for
2555 * @groups:	The attribute groups to create, NULL terminated
2556 *
2557 * This function creates a bunch of managed attribute groups.  If an error
2558 * occurs when creating a group, all previously created groups will be
2559 * removed, unwinding everything back to the original state when this
2560 * function was called.  It will explicitly warn and error if any of the
2561 * attribute files being created already exist.
2562 *
2563 * Returns 0 on success or error code from sysfs_create_group on failure.
2564 */
2565int devm_device_add_groups(struct device *dev,
2566			   const struct attribute_group **groups)
2567{
2568	union device_attr_group_devres *devres;
2569	int error;
2570
2571	devres = devres_alloc(devm_attr_groups_remove,
2572			      sizeof(*devres), GFP_KERNEL);
2573	if (!devres)
2574		return -ENOMEM;
2575
2576	error = sysfs_create_groups(&dev->kobj, groups);
2577	if (error) {
2578		devres_free(devres);
2579		return error;
2580	}
2581
2582	devres->groups = groups;
2583	devres_add(dev, devres);
2584	return 0;
2585}
2586EXPORT_SYMBOL_GPL(devm_device_add_groups);
2587
2588/**
2589 * devm_device_remove_groups - remove a list of managed groups
2590 *
2591 * @dev:	The device for the groups to be removed from
2592 * @groups:	NULL terminated list of groups to be removed
2593 *
2594 * If groups is not NULL, remove the specified groups from the device.
2595 */
2596void devm_device_remove_groups(struct device *dev,
2597			       const struct attribute_group **groups)
2598{
2599	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2600			       devm_attr_group_match,
2601			       /* cast away const */ (void *)groups));
2602}
2603EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2604
2605static int device_add_attrs(struct device *dev)
2606{
2607	struct class *class = dev->class;
2608	const struct device_type *type = dev->type;
2609	int error;
2610
2611	if (class) {
2612		error = device_add_groups(dev, class->dev_groups);
2613		if (error)
2614			return error;
2615	}
2616
2617	if (type) {
2618		error = device_add_groups(dev, type->groups);
2619		if (error)
2620			goto err_remove_class_groups;
2621	}
2622
2623	error = device_add_groups(dev, dev->groups);
2624	if (error)
2625		goto err_remove_type_groups;
2626
2627	if (device_supports_offline(dev) && !dev->offline_disabled) {
2628		error = device_create_file(dev, &dev_attr_online);
2629		if (error)
2630			goto err_remove_dev_groups;
2631	}
2632
2633	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2634		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2635		if (error)
2636			goto err_remove_dev_online;
2637	}
2638
2639	if (dev_removable_is_valid(dev)) {
2640		error = device_create_file(dev, &dev_attr_removable);
2641		if (error)
2642			goto err_remove_dev_waiting_for_supplier;
2643	}
2644
 
 
 
 
 
 
 
2645	return 0;
2646
 
 
2647 err_remove_dev_waiting_for_supplier:
2648	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2649 err_remove_dev_online:
2650	device_remove_file(dev, &dev_attr_online);
2651 err_remove_dev_groups:
2652	device_remove_groups(dev, dev->groups);
2653 err_remove_type_groups:
2654	if (type)
2655		device_remove_groups(dev, type->groups);
2656 err_remove_class_groups:
2657	if (class)
2658		device_remove_groups(dev, class->dev_groups);
2659
2660	return error;
2661}
2662
2663static void device_remove_attrs(struct device *dev)
2664{
2665	struct class *class = dev->class;
2666	const struct device_type *type = dev->type;
2667
 
 
 
 
 
2668	device_remove_file(dev, &dev_attr_removable);
2669	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2670	device_remove_file(dev, &dev_attr_online);
2671	device_remove_groups(dev, dev->groups);
2672
2673	if (type)
2674		device_remove_groups(dev, type->groups);
2675
2676	if (class)
2677		device_remove_groups(dev, class->dev_groups);
2678}
2679
2680static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2681			char *buf)
2682{
2683	return print_dev_t(buf, dev->devt);
2684}
2685static DEVICE_ATTR_RO(dev);
2686
2687/* /sys/devices/ */
2688struct kset *devices_kset;
2689
2690/**
2691 * devices_kset_move_before - Move device in the devices_kset's list.
2692 * @deva: Device to move.
2693 * @devb: Device @deva should come before.
2694 */
2695static void devices_kset_move_before(struct device *deva, struct device *devb)
2696{
2697	if (!devices_kset)
2698		return;
2699	pr_debug("devices_kset: Moving %s before %s\n",
2700		 dev_name(deva), dev_name(devb));
2701	spin_lock(&devices_kset->list_lock);
2702	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2703	spin_unlock(&devices_kset->list_lock);
2704}
2705
2706/**
2707 * devices_kset_move_after - Move device in the devices_kset's list.
2708 * @deva: Device to move
2709 * @devb: Device @deva should come after.
2710 */
2711static void devices_kset_move_after(struct device *deva, struct device *devb)
2712{
2713	if (!devices_kset)
2714		return;
2715	pr_debug("devices_kset: Moving %s after %s\n",
2716		 dev_name(deva), dev_name(devb));
2717	spin_lock(&devices_kset->list_lock);
2718	list_move(&deva->kobj.entry, &devb->kobj.entry);
2719	spin_unlock(&devices_kset->list_lock);
2720}
2721
2722/**
2723 * devices_kset_move_last - move the device to the end of devices_kset's list.
2724 * @dev: device to move
2725 */
2726void devices_kset_move_last(struct device *dev)
2727{
2728	if (!devices_kset)
2729		return;
2730	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2731	spin_lock(&devices_kset->list_lock);
2732	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2733	spin_unlock(&devices_kset->list_lock);
2734}
2735
2736/**
2737 * device_create_file - create sysfs attribute file for device.
2738 * @dev: device.
2739 * @attr: device attribute descriptor.
2740 */
2741int device_create_file(struct device *dev,
2742		       const struct device_attribute *attr)
2743{
2744	int error = 0;
2745
2746	if (dev) {
2747		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2748			"Attribute %s: write permission without 'store'\n",
2749			attr->attr.name);
2750		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2751			"Attribute %s: read permission without 'show'\n",
2752			attr->attr.name);
2753		error = sysfs_create_file(&dev->kobj, &attr->attr);
2754	}
2755
2756	return error;
2757}
2758EXPORT_SYMBOL_GPL(device_create_file);
2759
2760/**
2761 * device_remove_file - remove sysfs attribute file.
2762 * @dev: device.
2763 * @attr: device attribute descriptor.
2764 */
2765void device_remove_file(struct device *dev,
2766			const struct device_attribute *attr)
2767{
2768	if (dev)
2769		sysfs_remove_file(&dev->kobj, &attr->attr);
2770}
2771EXPORT_SYMBOL_GPL(device_remove_file);
2772
2773/**
2774 * device_remove_file_self - remove sysfs attribute file from its own method.
2775 * @dev: device.
2776 * @attr: device attribute descriptor.
2777 *
2778 * See kernfs_remove_self() for details.
2779 */
2780bool device_remove_file_self(struct device *dev,
2781			     const struct device_attribute *attr)
2782{
2783	if (dev)
2784		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2785	else
2786		return false;
2787}
2788EXPORT_SYMBOL_GPL(device_remove_file_self);
2789
2790/**
2791 * device_create_bin_file - create sysfs binary attribute file for device.
2792 * @dev: device.
2793 * @attr: device binary attribute descriptor.
2794 */
2795int device_create_bin_file(struct device *dev,
2796			   const struct bin_attribute *attr)
2797{
2798	int error = -EINVAL;
2799	if (dev)
2800		error = sysfs_create_bin_file(&dev->kobj, attr);
2801	return error;
2802}
2803EXPORT_SYMBOL_GPL(device_create_bin_file);
2804
2805/**
2806 * device_remove_bin_file - remove sysfs binary attribute file
2807 * @dev: device.
2808 * @attr: device binary attribute descriptor.
2809 */
2810void device_remove_bin_file(struct device *dev,
2811			    const struct bin_attribute *attr)
2812{
2813	if (dev)
2814		sysfs_remove_bin_file(&dev->kobj, attr);
2815}
2816EXPORT_SYMBOL_GPL(device_remove_bin_file);
2817
2818static void klist_children_get(struct klist_node *n)
2819{
2820	struct device_private *p = to_device_private_parent(n);
2821	struct device *dev = p->device;
2822
2823	get_device(dev);
2824}
2825
2826static void klist_children_put(struct klist_node *n)
2827{
2828	struct device_private *p = to_device_private_parent(n);
2829	struct device *dev = p->device;
2830
2831	put_device(dev);
2832}
2833
2834/**
2835 * device_initialize - init device structure.
2836 * @dev: device.
2837 *
2838 * This prepares the device for use by other layers by initializing
2839 * its fields.
2840 * It is the first half of device_register(), if called by
2841 * that function, though it can also be called separately, so one
2842 * may use @dev's fields. In particular, get_device()/put_device()
2843 * may be used for reference counting of @dev after calling this
2844 * function.
2845 *
2846 * All fields in @dev must be initialized by the caller to 0, except
2847 * for those explicitly set to some other value.  The simplest
2848 * approach is to use kzalloc() to allocate the structure containing
2849 * @dev.
2850 *
2851 * NOTE: Use put_device() to give up your reference instead of freeing
2852 * @dev directly once you have called this function.
2853 */
2854void device_initialize(struct device *dev)
2855{
2856	dev->kobj.kset = devices_kset;
2857	kobject_init(&dev->kobj, &device_ktype);
2858	INIT_LIST_HEAD(&dev->dma_pools);
2859	mutex_init(&dev->mutex);
2860#ifdef CONFIG_PROVE_LOCKING
2861	mutex_init(&dev->lockdep_mutex);
2862#endif
2863	lockdep_set_novalidate_class(&dev->mutex);
2864	spin_lock_init(&dev->devres_lock);
2865	INIT_LIST_HEAD(&dev->devres_head);
2866	device_pm_init(dev);
2867	set_dev_node(dev, -1);
2868#ifdef CONFIG_GENERIC_MSI_IRQ
2869	raw_spin_lock_init(&dev->msi_lock);
2870	INIT_LIST_HEAD(&dev->msi_list);
2871#endif
2872	INIT_LIST_HEAD(&dev->links.consumers);
2873	INIT_LIST_HEAD(&dev->links.suppliers);
2874	INIT_LIST_HEAD(&dev->links.defer_sync);
2875	dev->links.status = DL_DEV_NO_DRIVER;
2876#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2877    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2878    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2879	dev->dma_coherent = dma_default_coherent;
2880#endif
 
 
 
2881}
2882EXPORT_SYMBOL_GPL(device_initialize);
2883
2884struct kobject *virtual_device_parent(struct device *dev)
2885{
2886	static struct kobject *virtual_dir = NULL;
2887
2888	if (!virtual_dir)
2889		virtual_dir = kobject_create_and_add("virtual",
2890						     &devices_kset->kobj);
2891
2892	return virtual_dir;
2893}
2894
2895struct class_dir {
2896	struct kobject kobj;
2897	struct class *class;
2898};
2899
2900#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2901
2902static void class_dir_release(struct kobject *kobj)
2903{
2904	struct class_dir *dir = to_class_dir(kobj);
2905	kfree(dir);
2906}
2907
2908static const
2909struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2910{
2911	struct class_dir *dir = to_class_dir(kobj);
2912	return dir->class->ns_type;
2913}
2914
2915static struct kobj_type class_dir_ktype = {
2916	.release	= class_dir_release,
2917	.sysfs_ops	= &kobj_sysfs_ops,
2918	.child_ns_type	= class_dir_child_ns_type
2919};
2920
2921static struct kobject *
2922class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2923{
2924	struct class_dir *dir;
2925	int retval;
2926
2927	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2928	if (!dir)
2929		return ERR_PTR(-ENOMEM);
2930
2931	dir->class = class;
2932	kobject_init(&dir->kobj, &class_dir_ktype);
2933
2934	dir->kobj.kset = &class->p->glue_dirs;
2935
2936	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2937	if (retval < 0) {
2938		kobject_put(&dir->kobj);
2939		return ERR_PTR(retval);
2940	}
2941	return &dir->kobj;
2942}
2943
2944static DEFINE_MUTEX(gdp_mutex);
2945
2946static struct kobject *get_device_parent(struct device *dev,
2947					 struct device *parent)
2948{
2949	if (dev->class) {
2950		struct kobject *kobj = NULL;
2951		struct kobject *parent_kobj;
2952		struct kobject *k;
2953
2954#ifdef CONFIG_BLOCK
2955		/* block disks show up in /sys/block */
2956		if (sysfs_deprecated && dev->class == &block_class) {
2957			if (parent && parent->class == &block_class)
2958				return &parent->kobj;
2959			return &block_class.p->subsys.kobj;
2960		}
2961#endif
2962
2963		/*
2964		 * If we have no parent, we live in "virtual".
2965		 * Class-devices with a non class-device as parent, live
2966		 * in a "glue" directory to prevent namespace collisions.
2967		 */
2968		if (parent == NULL)
2969			parent_kobj = virtual_device_parent(dev);
2970		else if (parent->class && !dev->class->ns_type)
2971			return &parent->kobj;
2972		else
2973			parent_kobj = &parent->kobj;
2974
2975		mutex_lock(&gdp_mutex);
2976
2977		/* find our class-directory at the parent and reference it */
2978		spin_lock(&dev->class->p->glue_dirs.list_lock);
2979		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2980			if (k->parent == parent_kobj) {
2981				kobj = kobject_get(k);
2982				break;
2983			}
2984		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2985		if (kobj) {
2986			mutex_unlock(&gdp_mutex);
2987			return kobj;
2988		}
2989
2990		/* or create a new class-directory at the parent device */
2991		k = class_dir_create_and_add(dev->class, parent_kobj);
2992		/* do not emit an uevent for this simple "glue" directory */
2993		mutex_unlock(&gdp_mutex);
2994		return k;
2995	}
2996
2997	/* subsystems can specify a default root directory for their devices */
2998	if (!parent && dev->bus && dev->bus->dev_root)
2999		return &dev->bus->dev_root->kobj;
3000
3001	if (parent)
3002		return &parent->kobj;
3003	return NULL;
3004}
3005
3006static inline bool live_in_glue_dir(struct kobject *kobj,
3007				    struct device *dev)
3008{
3009	if (!kobj || !dev->class ||
3010	    kobj->kset != &dev->class->p->glue_dirs)
3011		return false;
3012	return true;
3013}
3014
3015static inline struct kobject *get_glue_dir(struct device *dev)
3016{
3017	return dev->kobj.parent;
3018}
3019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3020/*
3021 * make sure cleaning up dir as the last step, we need to make
3022 * sure .release handler of kobject is run with holding the
3023 * global lock
3024 */
3025static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3026{
3027	unsigned int ref;
3028
3029	/* see if we live in a "glue" directory */
3030	if (!live_in_glue_dir(glue_dir, dev))
3031		return;
3032
3033	mutex_lock(&gdp_mutex);
3034	/**
3035	 * There is a race condition between removing glue directory
3036	 * and adding a new device under the glue directory.
3037	 *
3038	 * CPU1:                                         CPU2:
3039	 *
3040	 * device_add()
3041	 *   get_device_parent()
3042	 *     class_dir_create_and_add()
3043	 *       kobject_add_internal()
3044	 *         create_dir()    // create glue_dir
3045	 *
3046	 *                                               device_add()
3047	 *                                                 get_device_parent()
3048	 *                                                   kobject_get() // get glue_dir
3049	 *
3050	 * device_del()
3051	 *   cleanup_glue_dir()
3052	 *     kobject_del(glue_dir)
3053	 *
3054	 *                                               kobject_add()
3055	 *                                                 kobject_add_internal()
3056	 *                                                   create_dir() // in glue_dir
3057	 *                                                     sysfs_create_dir_ns()
3058	 *                                                       kernfs_create_dir_ns(sd)
3059	 *
3060	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3061	 *       sysfs_put()        // free glue_dir->sd
3062	 *
3063	 *                                                         // sd is freed
3064	 *                                                         kernfs_new_node(sd)
3065	 *                                                           kernfs_get(glue_dir)
3066	 *                                                           kernfs_add_one()
3067	 *                                                           kernfs_put()
3068	 *
3069	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3070	 * a new device under glue dir, the glue_dir kobject reference count
3071	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3072	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3073	 * and sysfs_put(). This result in glue_dir->sd is freed.
3074	 *
3075	 * Then the CPU2 will see a stale "empty" but still potentially used
3076	 * glue dir around in kernfs_new_node().
3077	 *
3078	 * In order to avoid this happening, we also should make sure that
3079	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3080	 * for glue_dir kobj is 1.
3081	 */
3082	ref = kref_read(&glue_dir->kref);
3083	if (!kobject_has_children(glue_dir) && !--ref)
3084		kobject_del(glue_dir);
3085	kobject_put(glue_dir);
3086	mutex_unlock(&gdp_mutex);
3087}
3088
3089static int device_add_class_symlinks(struct device *dev)
3090{
3091	struct device_node *of_node = dev_of_node(dev);
3092	int error;
3093
3094	if (of_node) {
3095		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3096		if (error)
3097			dev_warn(dev, "Error %d creating of_node link\n",error);
3098		/* An error here doesn't warrant bringing down the device */
3099	}
3100
3101	if (!dev->class)
3102		return 0;
3103
3104	error = sysfs_create_link(&dev->kobj,
3105				  &dev->class->p->subsys.kobj,
3106				  "subsystem");
3107	if (error)
3108		goto out_devnode;
3109
3110	if (dev->parent && device_is_not_partition(dev)) {
3111		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3112					  "device");
3113		if (error)
3114			goto out_subsys;
3115	}
3116
3117#ifdef CONFIG_BLOCK
3118	/* /sys/block has directories and does not need symlinks */
3119	if (sysfs_deprecated && dev->class == &block_class)
3120		return 0;
3121#endif
3122
3123	/* link in the class directory pointing to the device */
3124	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3125				  &dev->kobj, dev_name(dev));
3126	if (error)
3127		goto out_device;
3128
3129	return 0;
3130
3131out_device:
3132	sysfs_remove_link(&dev->kobj, "device");
3133
3134out_subsys:
3135	sysfs_remove_link(&dev->kobj, "subsystem");
3136out_devnode:
3137	sysfs_remove_link(&dev->kobj, "of_node");
3138	return error;
3139}
3140
3141static void device_remove_class_symlinks(struct device *dev)
3142{
3143	if (dev_of_node(dev))
3144		sysfs_remove_link(&dev->kobj, "of_node");
3145
3146	if (!dev->class)
3147		return;
3148
3149	if (dev->parent && device_is_not_partition(dev))
3150		sysfs_remove_link(&dev->kobj, "device");
3151	sysfs_remove_link(&dev->kobj, "subsystem");
3152#ifdef CONFIG_BLOCK
3153	if (sysfs_deprecated && dev->class == &block_class)
3154		return;
3155#endif
3156	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3157}
3158
3159/**
3160 * dev_set_name - set a device name
3161 * @dev: device
3162 * @fmt: format string for the device's name
3163 */
3164int dev_set_name(struct device *dev, const char *fmt, ...)
3165{
3166	va_list vargs;
3167	int err;
3168
3169	va_start(vargs, fmt);
3170	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3171	va_end(vargs);
3172	return err;
3173}
3174EXPORT_SYMBOL_GPL(dev_set_name);
3175
3176/**
3177 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3178 * @dev: device
3179 *
3180 * By default we select char/ for new entries.  Setting class->dev_obj
3181 * to NULL prevents an entry from being created.  class->dev_kobj must
3182 * be set (or cleared) before any devices are registered to the class
3183 * otherwise device_create_sys_dev_entry() and
3184 * device_remove_sys_dev_entry() will disagree about the presence of
3185 * the link.
3186 */
3187static struct kobject *device_to_dev_kobj(struct device *dev)
3188{
3189	struct kobject *kobj;
3190
3191	if (dev->class)
3192		kobj = dev->class->dev_kobj;
3193	else
3194		kobj = sysfs_dev_char_kobj;
3195
3196	return kobj;
3197}
3198
3199static int device_create_sys_dev_entry(struct device *dev)
3200{
3201	struct kobject *kobj = device_to_dev_kobj(dev);
3202	int error = 0;
3203	char devt_str[15];
3204
3205	if (kobj) {
3206		format_dev_t(devt_str, dev->devt);
3207		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3208	}
3209
3210	return error;
3211}
3212
3213static void device_remove_sys_dev_entry(struct device *dev)
3214{
3215	struct kobject *kobj = device_to_dev_kobj(dev);
3216	char devt_str[15];
3217
3218	if (kobj) {
3219		format_dev_t(devt_str, dev->devt);
3220		sysfs_remove_link(kobj, devt_str);
3221	}
3222}
3223
3224static int device_private_init(struct device *dev)
3225{
3226	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3227	if (!dev->p)
3228		return -ENOMEM;
3229	dev->p->device = dev;
3230	klist_init(&dev->p->klist_children, klist_children_get,
3231		   klist_children_put);
3232	INIT_LIST_HEAD(&dev->p->deferred_probe);
3233	return 0;
3234}
3235
3236/**
3237 * device_add - add device to device hierarchy.
3238 * @dev: device.
3239 *
3240 * This is part 2 of device_register(), though may be called
3241 * separately _iff_ device_initialize() has been called separately.
3242 *
3243 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3244 * to the global and sibling lists for the device, then
3245 * adds it to the other relevant subsystems of the driver model.
3246 *
3247 * Do not call this routine or device_register() more than once for
3248 * any device structure.  The driver model core is not designed to work
3249 * with devices that get unregistered and then spring back to life.
3250 * (Among other things, it's very hard to guarantee that all references
3251 * to the previous incarnation of @dev have been dropped.)  Allocate
3252 * and register a fresh new struct device instead.
3253 *
3254 * NOTE: _Never_ directly free @dev after calling this function, even
3255 * if it returned an error! Always use put_device() to give up your
3256 * reference instead.
3257 *
3258 * Rule of thumb is: if device_add() succeeds, you should call
3259 * device_del() when you want to get rid of it. If device_add() has
3260 * *not* succeeded, use *only* put_device() to drop the reference
3261 * count.
3262 */
3263int device_add(struct device *dev)
3264{
3265	struct device *parent;
3266	struct kobject *kobj;
3267	struct class_interface *class_intf;
3268	int error = -EINVAL;
3269	struct kobject *glue_dir = NULL;
3270
3271	dev = get_device(dev);
3272	if (!dev)
3273		goto done;
3274
3275	if (!dev->p) {
3276		error = device_private_init(dev);
3277		if (error)
3278			goto done;
3279	}
3280
3281	/*
3282	 * for statically allocated devices, which should all be converted
3283	 * some day, we need to initialize the name. We prevent reading back
3284	 * the name, and force the use of dev_name()
3285	 */
3286	if (dev->init_name) {
3287		dev_set_name(dev, "%s", dev->init_name);
3288		dev->init_name = NULL;
3289	}
3290
3291	/* subsystems can specify simple device enumeration */
3292	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3293		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3294
3295	if (!dev_name(dev)) {
3296		error = -EINVAL;
3297		goto name_error;
3298	}
3299
3300	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3301
3302	parent = get_device(dev->parent);
3303	kobj = get_device_parent(dev, parent);
3304	if (IS_ERR(kobj)) {
3305		error = PTR_ERR(kobj);
3306		goto parent_error;
3307	}
3308	if (kobj)
3309		dev->kobj.parent = kobj;
3310
3311	/* use parent numa_node */
3312	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3313		set_dev_node(dev, dev_to_node(parent));
3314
3315	/* first, register with generic layer. */
3316	/* we require the name to be set before, and pass NULL */
3317	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3318	if (error) {
3319		glue_dir = get_glue_dir(dev);
3320		goto Error;
3321	}
3322
3323	/* notify platform of device entry */
3324	error = device_platform_notify(dev, KOBJ_ADD);
3325	if (error)
3326		goto platform_error;
3327
3328	error = device_create_file(dev, &dev_attr_uevent);
3329	if (error)
3330		goto attrError;
3331
3332	error = device_add_class_symlinks(dev);
3333	if (error)
3334		goto SymlinkError;
3335	error = device_add_attrs(dev);
3336	if (error)
3337		goto AttrsError;
3338	error = bus_add_device(dev);
3339	if (error)
3340		goto BusError;
3341	error = dpm_sysfs_add(dev);
3342	if (error)
3343		goto DPMError;
3344	device_pm_add(dev);
3345
3346	if (MAJOR(dev->devt)) {
3347		error = device_create_file(dev, &dev_attr_dev);
3348		if (error)
3349			goto DevAttrError;
3350
3351		error = device_create_sys_dev_entry(dev);
3352		if (error)
3353			goto SysEntryError;
3354
3355		devtmpfs_create_node(dev);
3356	}
3357
3358	/* Notify clients of device addition.  This call must come
3359	 * after dpm_sysfs_add() and before kobject_uevent().
3360	 */
3361	if (dev->bus)
3362		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3363					     BUS_NOTIFY_ADD_DEVICE, dev);
3364
3365	kobject_uevent(&dev->kobj, KOBJ_ADD);
3366
3367	/*
3368	 * Check if any of the other devices (consumers) have been waiting for
3369	 * this device (supplier) to be added so that they can create a device
3370	 * link to it.
3371	 *
3372	 * This needs to happen after device_pm_add() because device_link_add()
3373	 * requires the supplier be registered before it's called.
3374	 *
3375	 * But this also needs to happen before bus_probe_device() to make sure
3376	 * waiting consumers can link to it before the driver is bound to the
3377	 * device and the driver sync_state callback is called for this device.
3378	 */
3379	if (dev->fwnode && !dev->fwnode->dev) {
3380		dev->fwnode->dev = dev;
3381		fw_devlink_link_device(dev);
3382	}
3383
3384	bus_probe_device(dev);
3385
3386	/*
3387	 * If all driver registration is done and a newly added device doesn't
3388	 * match with any driver, don't block its consumers from probing in
3389	 * case the consumer device is able to operate without this supplier.
3390	 */
3391	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3392		fw_devlink_unblock_consumers(dev);
3393
3394	if (parent)
3395		klist_add_tail(&dev->p->knode_parent,
3396			       &parent->p->klist_children);
3397
3398	if (dev->class) {
3399		mutex_lock(&dev->class->p->mutex);
3400		/* tie the class to the device */
3401		klist_add_tail(&dev->p->knode_class,
3402			       &dev->class->p->klist_devices);
3403
3404		/* notify any interfaces that the device is here */
3405		list_for_each_entry(class_intf,
3406				    &dev->class->p->interfaces, node)
3407			if (class_intf->add_dev)
3408				class_intf->add_dev(dev, class_intf);
3409		mutex_unlock(&dev->class->p->mutex);
3410	}
3411done:
3412	put_device(dev);
3413	return error;
3414 SysEntryError:
3415	if (MAJOR(dev->devt))
3416		device_remove_file(dev, &dev_attr_dev);
3417 DevAttrError:
3418	device_pm_remove(dev);
3419	dpm_sysfs_remove(dev);
3420 DPMError:
3421	bus_remove_device(dev);
3422 BusError:
3423	device_remove_attrs(dev);
3424 AttrsError:
3425	device_remove_class_symlinks(dev);
3426 SymlinkError:
3427	device_remove_file(dev, &dev_attr_uevent);
3428 attrError:
3429	device_platform_notify(dev, KOBJ_REMOVE);
3430platform_error:
3431	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3432	glue_dir = get_glue_dir(dev);
3433	kobject_del(&dev->kobj);
3434 Error:
3435	cleanup_glue_dir(dev, glue_dir);
3436parent_error:
3437	put_device(parent);
3438name_error:
3439	kfree(dev->p);
3440	dev->p = NULL;
3441	goto done;
3442}
3443EXPORT_SYMBOL_GPL(device_add);
3444
3445/**
3446 * device_register - register a device with the system.
3447 * @dev: pointer to the device structure
3448 *
3449 * This happens in two clean steps - initialize the device
3450 * and add it to the system. The two steps can be called
3451 * separately, but this is the easiest and most common.
3452 * I.e. you should only call the two helpers separately if
3453 * have a clearly defined need to use and refcount the device
3454 * before it is added to the hierarchy.
3455 *
3456 * For more information, see the kerneldoc for device_initialize()
3457 * and device_add().
3458 *
3459 * NOTE: _Never_ directly free @dev after calling this function, even
3460 * if it returned an error! Always use put_device() to give up the
3461 * reference initialized in this function instead.
3462 */
3463int device_register(struct device *dev)
3464{
3465	device_initialize(dev);
3466	return device_add(dev);
3467}
3468EXPORT_SYMBOL_GPL(device_register);
3469
3470/**
3471 * get_device - increment reference count for device.
3472 * @dev: device.
3473 *
3474 * This simply forwards the call to kobject_get(), though
3475 * we do take care to provide for the case that we get a NULL
3476 * pointer passed in.
3477 */
3478struct device *get_device(struct device *dev)
3479{
3480	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3481}
3482EXPORT_SYMBOL_GPL(get_device);
3483
3484/**
3485 * put_device - decrement reference count.
3486 * @dev: device in question.
3487 */
3488void put_device(struct device *dev)
3489{
3490	/* might_sleep(); */
3491	if (dev)
3492		kobject_put(&dev->kobj);
3493}
3494EXPORT_SYMBOL_GPL(put_device);
3495
3496bool kill_device(struct device *dev)
3497{
3498	/*
3499	 * Require the device lock and set the "dead" flag to guarantee that
3500	 * the update behavior is consistent with the other bitfields near
3501	 * it and that we cannot have an asynchronous probe routine trying
3502	 * to run while we are tearing out the bus/class/sysfs from
3503	 * underneath the device.
3504	 */
3505	device_lock_assert(dev);
3506
3507	if (dev->p->dead)
3508		return false;
3509	dev->p->dead = true;
3510	return true;
3511}
3512EXPORT_SYMBOL_GPL(kill_device);
3513
3514/**
3515 * device_del - delete device from system.
3516 * @dev: device.
3517 *
3518 * This is the first part of the device unregistration
3519 * sequence. This removes the device from the lists we control
3520 * from here, has it removed from the other driver model
3521 * subsystems it was added to in device_add(), and removes it
3522 * from the kobject hierarchy.
3523 *
3524 * NOTE: this should be called manually _iff_ device_add() was
3525 * also called manually.
3526 */
3527void device_del(struct device *dev)
3528{
3529	struct device *parent = dev->parent;
3530	struct kobject *glue_dir = NULL;
3531	struct class_interface *class_intf;
3532	unsigned int noio_flag;
3533
3534	device_lock(dev);
3535	kill_device(dev);
3536	device_unlock(dev);
3537
3538	if (dev->fwnode && dev->fwnode->dev == dev)
3539		dev->fwnode->dev = NULL;
3540
3541	/* Notify clients of device removal.  This call must come
3542	 * before dpm_sysfs_remove().
3543	 */
3544	noio_flag = memalloc_noio_save();
3545	if (dev->bus)
3546		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3547					     BUS_NOTIFY_DEL_DEVICE, dev);
3548
3549	dpm_sysfs_remove(dev);
3550	if (parent)
3551		klist_del(&dev->p->knode_parent);
3552	if (MAJOR(dev->devt)) {
3553		devtmpfs_delete_node(dev);
3554		device_remove_sys_dev_entry(dev);
3555		device_remove_file(dev, &dev_attr_dev);
3556	}
3557	if (dev->class) {
3558		device_remove_class_symlinks(dev);
3559
3560		mutex_lock(&dev->class->p->mutex);
3561		/* notify any interfaces that the device is now gone */
3562		list_for_each_entry(class_intf,
3563				    &dev->class->p->interfaces, node)
3564			if (class_intf->remove_dev)
3565				class_intf->remove_dev(dev, class_intf);
3566		/* remove the device from the class list */
3567		klist_del(&dev->p->knode_class);
3568		mutex_unlock(&dev->class->p->mutex);
3569	}
3570	device_remove_file(dev, &dev_attr_uevent);
3571	device_remove_attrs(dev);
3572	bus_remove_device(dev);
3573	device_pm_remove(dev);
3574	driver_deferred_probe_del(dev);
3575	device_platform_notify(dev, KOBJ_REMOVE);
3576	device_remove_properties(dev);
3577	device_links_purge(dev);
3578
3579	if (dev->bus)
3580		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3581					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3582	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3583	glue_dir = get_glue_dir(dev);
3584	kobject_del(&dev->kobj);
3585	cleanup_glue_dir(dev, glue_dir);
3586	memalloc_noio_restore(noio_flag);
3587	put_device(parent);
3588}
3589EXPORT_SYMBOL_GPL(device_del);
3590
3591/**
3592 * device_unregister - unregister device from system.
3593 * @dev: device going away.
3594 *
3595 * We do this in two parts, like we do device_register(). First,
3596 * we remove it from all the subsystems with device_del(), then
3597 * we decrement the reference count via put_device(). If that
3598 * is the final reference count, the device will be cleaned up
3599 * via device_release() above. Otherwise, the structure will
3600 * stick around until the final reference to the device is dropped.
3601 */
3602void device_unregister(struct device *dev)
3603{
3604	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3605	device_del(dev);
3606	put_device(dev);
3607}
3608EXPORT_SYMBOL_GPL(device_unregister);
3609
3610static struct device *prev_device(struct klist_iter *i)
3611{
3612	struct klist_node *n = klist_prev(i);
3613	struct device *dev = NULL;
3614	struct device_private *p;
3615
3616	if (n) {
3617		p = to_device_private_parent(n);
3618		dev = p->device;
3619	}
3620	return dev;
3621}
3622
3623static struct device *next_device(struct klist_iter *i)
3624{
3625	struct klist_node *n = klist_next(i);
3626	struct device *dev = NULL;
3627	struct device_private *p;
3628
3629	if (n) {
3630		p = to_device_private_parent(n);
3631		dev = p->device;
3632	}
3633	return dev;
3634}
3635
3636/**
3637 * device_get_devnode - path of device node file
3638 * @dev: device
3639 * @mode: returned file access mode
3640 * @uid: returned file owner
3641 * @gid: returned file group
3642 * @tmp: possibly allocated string
3643 *
3644 * Return the relative path of a possible device node.
3645 * Non-default names may need to allocate a memory to compose
3646 * a name. This memory is returned in tmp and needs to be
3647 * freed by the caller.
3648 */
3649const char *device_get_devnode(struct device *dev,
3650			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3651			       const char **tmp)
3652{
3653	char *s;
3654
3655	*tmp = NULL;
3656
3657	/* the device type may provide a specific name */
3658	if (dev->type && dev->type->devnode)
3659		*tmp = dev->type->devnode(dev, mode, uid, gid);
3660	if (*tmp)
3661		return *tmp;
3662
3663	/* the class may provide a specific name */
3664	if (dev->class && dev->class->devnode)
3665		*tmp = dev->class->devnode(dev, mode);
3666	if (*tmp)
3667		return *tmp;
3668
3669	/* return name without allocation, tmp == NULL */
3670	if (strchr(dev_name(dev), '!') == NULL)
3671		return dev_name(dev);
3672
3673	/* replace '!' in the name with '/' */
3674	s = kstrdup(dev_name(dev), GFP_KERNEL);
3675	if (!s)
3676		return NULL;
3677	strreplace(s, '!', '/');
3678	return *tmp = s;
3679}
3680
3681/**
3682 * device_for_each_child - device child iterator.
3683 * @parent: parent struct device.
3684 * @fn: function to be called for each device.
3685 * @data: data for the callback.
3686 *
3687 * Iterate over @parent's child devices, and call @fn for each,
3688 * passing it @data.
3689 *
3690 * We check the return of @fn each time. If it returns anything
3691 * other than 0, we break out and return that value.
3692 */
3693int device_for_each_child(struct device *parent, void *data,
3694			  int (*fn)(struct device *dev, void *data))
3695{
3696	struct klist_iter i;
3697	struct device *child;
3698	int error = 0;
3699
3700	if (!parent->p)
3701		return 0;
3702
3703	klist_iter_init(&parent->p->klist_children, &i);
3704	while (!error && (child = next_device(&i)))
3705		error = fn(child, data);
3706	klist_iter_exit(&i);
3707	return error;
3708}
3709EXPORT_SYMBOL_GPL(device_for_each_child);
3710
3711/**
3712 * device_for_each_child_reverse - device child iterator in reversed order.
3713 * @parent: parent struct device.
3714 * @fn: function to be called for each device.
3715 * @data: data for the callback.
3716 *
3717 * Iterate over @parent's child devices, and call @fn for each,
3718 * passing it @data.
3719 *
3720 * We check the return of @fn each time. If it returns anything
3721 * other than 0, we break out and return that value.
3722 */
3723int device_for_each_child_reverse(struct device *parent, void *data,
3724				  int (*fn)(struct device *dev, void *data))
3725{
3726	struct klist_iter i;
3727	struct device *child;
3728	int error = 0;
3729
3730	if (!parent->p)
3731		return 0;
3732
3733	klist_iter_init(&parent->p->klist_children, &i);
3734	while ((child = prev_device(&i)) && !error)
3735		error = fn(child, data);
3736	klist_iter_exit(&i);
3737	return error;
3738}
3739EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3740
3741/**
3742 * device_find_child - device iterator for locating a particular device.
3743 * @parent: parent struct device
3744 * @match: Callback function to check device
3745 * @data: Data to pass to match function
3746 *
3747 * This is similar to the device_for_each_child() function above, but it
3748 * returns a reference to a device that is 'found' for later use, as
3749 * determined by the @match callback.
3750 *
3751 * The callback should return 0 if the device doesn't match and non-zero
3752 * if it does.  If the callback returns non-zero and a reference to the
3753 * current device can be obtained, this function will return to the caller
3754 * and not iterate over any more devices.
3755 *
3756 * NOTE: you will need to drop the reference with put_device() after use.
3757 */
3758struct device *device_find_child(struct device *parent, void *data,
3759				 int (*match)(struct device *dev, void *data))
3760{
3761	struct klist_iter i;
3762	struct device *child;
3763
3764	if (!parent)
3765		return NULL;
3766
3767	klist_iter_init(&parent->p->klist_children, &i);
3768	while ((child = next_device(&i)))
3769		if (match(child, data) && get_device(child))
3770			break;
3771	klist_iter_exit(&i);
3772	return child;
3773}
3774EXPORT_SYMBOL_GPL(device_find_child);
3775
3776/**
3777 * device_find_child_by_name - device iterator for locating a child device.
3778 * @parent: parent struct device
3779 * @name: name of the child device
3780 *
3781 * This is similar to the device_find_child() function above, but it
3782 * returns a reference to a device that has the name @name.
3783 *
3784 * NOTE: you will need to drop the reference with put_device() after use.
3785 */
3786struct device *device_find_child_by_name(struct device *parent,
3787					 const char *name)
3788{
3789	struct klist_iter i;
3790	struct device *child;
3791
3792	if (!parent)
3793		return NULL;
3794
3795	klist_iter_init(&parent->p->klist_children, &i);
3796	while ((child = next_device(&i)))
3797		if (sysfs_streq(dev_name(child), name) && get_device(child))
3798			break;
3799	klist_iter_exit(&i);
3800	return child;
3801}
3802EXPORT_SYMBOL_GPL(device_find_child_by_name);
3803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3804int __init devices_init(void)
3805{
3806	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3807	if (!devices_kset)
3808		return -ENOMEM;
3809	dev_kobj = kobject_create_and_add("dev", NULL);
3810	if (!dev_kobj)
3811		goto dev_kobj_err;
3812	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3813	if (!sysfs_dev_block_kobj)
3814		goto block_kobj_err;
3815	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3816	if (!sysfs_dev_char_kobj)
3817		goto char_kobj_err;
3818
3819	return 0;
3820
3821 char_kobj_err:
3822	kobject_put(sysfs_dev_block_kobj);
3823 block_kobj_err:
3824	kobject_put(dev_kobj);
3825 dev_kobj_err:
3826	kset_unregister(devices_kset);
3827	return -ENOMEM;
3828}
3829
3830static int device_check_offline(struct device *dev, void *not_used)
3831{
3832	int ret;
3833
3834	ret = device_for_each_child(dev, NULL, device_check_offline);
3835	if (ret)
3836		return ret;
3837
3838	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3839}
3840
3841/**
3842 * device_offline - Prepare the device for hot-removal.
3843 * @dev: Device to be put offline.
3844 *
3845 * Execute the device bus type's .offline() callback, if present, to prepare
3846 * the device for a subsequent hot-removal.  If that succeeds, the device must
3847 * not be used until either it is removed or its bus type's .online() callback
3848 * is executed.
3849 *
3850 * Call under device_hotplug_lock.
3851 */
3852int device_offline(struct device *dev)
3853{
3854	int ret;
3855
3856	if (dev->offline_disabled)
3857		return -EPERM;
3858
3859	ret = device_for_each_child(dev, NULL, device_check_offline);
3860	if (ret)
3861		return ret;
3862
3863	device_lock(dev);
3864	if (device_supports_offline(dev)) {
3865		if (dev->offline) {
3866			ret = 1;
3867		} else {
3868			ret = dev->bus->offline(dev);
3869			if (!ret) {
3870				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3871				dev->offline = true;
3872			}
3873		}
3874	}
3875	device_unlock(dev);
3876
3877	return ret;
3878}
3879
3880/**
3881 * device_online - Put the device back online after successful device_offline().
3882 * @dev: Device to be put back online.
3883 *
3884 * If device_offline() has been successfully executed for @dev, but the device
3885 * has not been removed subsequently, execute its bus type's .online() callback
3886 * to indicate that the device can be used again.
3887 *
3888 * Call under device_hotplug_lock.
3889 */
3890int device_online(struct device *dev)
3891{
3892	int ret = 0;
3893
3894	device_lock(dev);
3895	if (device_supports_offline(dev)) {
3896		if (dev->offline) {
3897			ret = dev->bus->online(dev);
3898			if (!ret) {
3899				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3900				dev->offline = false;
3901			}
3902		} else {
3903			ret = 1;
3904		}
3905	}
3906	device_unlock(dev);
3907
3908	return ret;
3909}
3910
3911struct root_device {
3912	struct device dev;
3913	struct module *owner;
3914};
3915
3916static inline struct root_device *to_root_device(struct device *d)
3917{
3918	return container_of(d, struct root_device, dev);
3919}
3920
3921static void root_device_release(struct device *dev)
3922{
3923	kfree(to_root_device(dev));
3924}
3925
3926/**
3927 * __root_device_register - allocate and register a root device
3928 * @name: root device name
3929 * @owner: owner module of the root device, usually THIS_MODULE
3930 *
3931 * This function allocates a root device and registers it
3932 * using device_register(). In order to free the returned
3933 * device, use root_device_unregister().
3934 *
3935 * Root devices are dummy devices which allow other devices
3936 * to be grouped under /sys/devices. Use this function to
3937 * allocate a root device and then use it as the parent of
3938 * any device which should appear under /sys/devices/{name}
3939 *
3940 * The /sys/devices/{name} directory will also contain a
3941 * 'module' symlink which points to the @owner directory
3942 * in sysfs.
3943 *
3944 * Returns &struct device pointer on success, or ERR_PTR() on error.
3945 *
3946 * Note: You probably want to use root_device_register().
3947 */
3948struct device *__root_device_register(const char *name, struct module *owner)
3949{
3950	struct root_device *root;
3951	int err = -ENOMEM;
3952
3953	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3954	if (!root)
3955		return ERR_PTR(err);
3956
3957	err = dev_set_name(&root->dev, "%s", name);
3958	if (err) {
3959		kfree(root);
3960		return ERR_PTR(err);
3961	}
3962
3963	root->dev.release = root_device_release;
3964
3965	err = device_register(&root->dev);
3966	if (err) {
3967		put_device(&root->dev);
3968		return ERR_PTR(err);
3969	}
3970
3971#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3972	if (owner) {
3973		struct module_kobject *mk = &owner->mkobj;
3974
3975		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3976		if (err) {
3977			device_unregister(&root->dev);
3978			return ERR_PTR(err);
3979		}
3980		root->owner = owner;
3981	}
3982#endif
3983
3984	return &root->dev;
3985}
3986EXPORT_SYMBOL_GPL(__root_device_register);
3987
3988/**
3989 * root_device_unregister - unregister and free a root device
3990 * @dev: device going away
3991 *
3992 * This function unregisters and cleans up a device that was created by
3993 * root_device_register().
3994 */
3995void root_device_unregister(struct device *dev)
3996{
3997	struct root_device *root = to_root_device(dev);
3998
3999	if (root->owner)
4000		sysfs_remove_link(&root->dev.kobj, "module");
4001
4002	device_unregister(dev);
4003}
4004EXPORT_SYMBOL_GPL(root_device_unregister);
4005
4006
4007static void device_create_release(struct device *dev)
4008{
4009	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4010	kfree(dev);
4011}
4012
4013static __printf(6, 0) struct device *
4014device_create_groups_vargs(struct class *class, struct device *parent,
4015			   dev_t devt, void *drvdata,
4016			   const struct attribute_group **groups,
4017			   const char *fmt, va_list args)
4018{
4019	struct device *dev = NULL;
4020	int retval = -ENODEV;
4021
4022	if (class == NULL || IS_ERR(class))
4023		goto error;
4024
4025	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4026	if (!dev) {
4027		retval = -ENOMEM;
4028		goto error;
4029	}
4030
4031	device_initialize(dev);
4032	dev->devt = devt;
4033	dev->class = class;
4034	dev->parent = parent;
4035	dev->groups = groups;
4036	dev->release = device_create_release;
4037	dev_set_drvdata(dev, drvdata);
4038
4039	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4040	if (retval)
4041		goto error;
4042
4043	retval = device_add(dev);
4044	if (retval)
4045		goto error;
4046
4047	return dev;
4048
4049error:
4050	put_device(dev);
4051	return ERR_PTR(retval);
4052}
4053
4054/**
4055 * device_create - creates a device and registers it with sysfs
4056 * @class: pointer to the struct class that this device should be registered to
4057 * @parent: pointer to the parent struct device of this new device, if any
4058 * @devt: the dev_t for the char device to be added
4059 * @drvdata: the data to be added to the device for callbacks
4060 * @fmt: string for the device's name
4061 *
4062 * This function can be used by char device classes.  A struct device
4063 * will be created in sysfs, registered to the specified class.
4064 *
4065 * A "dev" file will be created, showing the dev_t for the device, if
4066 * the dev_t is not 0,0.
4067 * If a pointer to a parent struct device is passed in, the newly created
4068 * struct device will be a child of that device in sysfs.
4069 * The pointer to the struct device will be returned from the call.
4070 * Any further sysfs files that might be required can be created using this
4071 * pointer.
4072 *
4073 * Returns &struct device pointer on success, or ERR_PTR() on error.
4074 *
4075 * Note: the struct class passed to this function must have previously
4076 * been created with a call to class_create().
4077 */
4078struct device *device_create(struct class *class, struct device *parent,
4079			     dev_t devt, void *drvdata, const char *fmt, ...)
4080{
4081	va_list vargs;
4082	struct device *dev;
4083
4084	va_start(vargs, fmt);
4085	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4086					  fmt, vargs);
4087	va_end(vargs);
4088	return dev;
4089}
4090EXPORT_SYMBOL_GPL(device_create);
4091
4092/**
4093 * device_create_with_groups - creates a device and registers it with sysfs
4094 * @class: pointer to the struct class that this device should be registered to
4095 * @parent: pointer to the parent struct device of this new device, if any
4096 * @devt: the dev_t for the char device to be added
4097 * @drvdata: the data to be added to the device for callbacks
4098 * @groups: NULL-terminated list of attribute groups to be created
4099 * @fmt: string for the device's name
4100 *
4101 * This function can be used by char device classes.  A struct device
4102 * will be created in sysfs, registered to the specified class.
4103 * Additional attributes specified in the groups parameter will also
4104 * be created automatically.
4105 *
4106 * A "dev" file will be created, showing the dev_t for the device, if
4107 * the dev_t is not 0,0.
4108 * If a pointer to a parent struct device is passed in, the newly created
4109 * struct device will be a child of that device in sysfs.
4110 * The pointer to the struct device will be returned from the call.
4111 * Any further sysfs files that might be required can be created using this
4112 * pointer.
4113 *
4114 * Returns &struct device pointer on success, or ERR_PTR() on error.
4115 *
4116 * Note: the struct class passed to this function must have previously
4117 * been created with a call to class_create().
4118 */
4119struct device *device_create_with_groups(struct class *class,
4120					 struct device *parent, dev_t devt,
4121					 void *drvdata,
4122					 const struct attribute_group **groups,
4123					 const char *fmt, ...)
4124{
4125	va_list vargs;
4126	struct device *dev;
4127
4128	va_start(vargs, fmt);
4129	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4130					 fmt, vargs);
4131	va_end(vargs);
4132	return dev;
4133}
4134EXPORT_SYMBOL_GPL(device_create_with_groups);
4135
4136/**
4137 * device_destroy - removes a device that was created with device_create()
4138 * @class: pointer to the struct class that this device was registered with
4139 * @devt: the dev_t of the device that was previously registered
4140 *
4141 * This call unregisters and cleans up a device that was created with a
4142 * call to device_create().
4143 */
4144void device_destroy(struct class *class, dev_t devt)
4145{
4146	struct device *dev;
4147
4148	dev = class_find_device_by_devt(class, devt);
4149	if (dev) {
4150		put_device(dev);
4151		device_unregister(dev);
4152	}
4153}
4154EXPORT_SYMBOL_GPL(device_destroy);
4155
4156/**
4157 * device_rename - renames a device
4158 * @dev: the pointer to the struct device to be renamed
4159 * @new_name: the new name of the device
4160 *
4161 * It is the responsibility of the caller to provide mutual
4162 * exclusion between two different calls of device_rename
4163 * on the same device to ensure that new_name is valid and
4164 * won't conflict with other devices.
4165 *
4166 * Note: Don't call this function.  Currently, the networking layer calls this
4167 * function, but that will change.  The following text from Kay Sievers offers
4168 * some insight:
4169 *
4170 * Renaming devices is racy at many levels, symlinks and other stuff are not
4171 * replaced atomically, and you get a "move" uevent, but it's not easy to
4172 * connect the event to the old and new device. Device nodes are not renamed at
4173 * all, there isn't even support for that in the kernel now.
4174 *
4175 * In the meantime, during renaming, your target name might be taken by another
4176 * driver, creating conflicts. Or the old name is taken directly after you
4177 * renamed it -- then you get events for the same DEVPATH, before you even see
4178 * the "move" event. It's just a mess, and nothing new should ever rely on
4179 * kernel device renaming. Besides that, it's not even implemented now for
4180 * other things than (driver-core wise very simple) network devices.
4181 *
4182 * We are currently about to change network renaming in udev to completely
4183 * disallow renaming of devices in the same namespace as the kernel uses,
4184 * because we can't solve the problems properly, that arise with swapping names
4185 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4186 * be allowed to some other name than eth[0-9]*, for the aforementioned
4187 * reasons.
4188 *
4189 * Make up a "real" name in the driver before you register anything, or add
4190 * some other attributes for userspace to find the device, or use udev to add
4191 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4192 * don't even want to get into that and try to implement the missing pieces in
4193 * the core. We really have other pieces to fix in the driver core mess. :)
4194 */
4195int device_rename(struct device *dev, const char *new_name)
4196{
4197	struct kobject *kobj = &dev->kobj;
4198	char *old_device_name = NULL;
4199	int error;
4200
4201	dev = get_device(dev);
4202	if (!dev)
4203		return -EINVAL;
4204
4205	dev_dbg(dev, "renaming to %s\n", new_name);
4206
4207	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4208	if (!old_device_name) {
4209		error = -ENOMEM;
4210		goto out;
4211	}
4212
4213	if (dev->class) {
4214		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4215					     kobj, old_device_name,
4216					     new_name, kobject_namespace(kobj));
4217		if (error)
4218			goto out;
4219	}
4220
4221	error = kobject_rename(kobj, new_name);
4222	if (error)
4223		goto out;
4224
4225out:
4226	put_device(dev);
4227
4228	kfree(old_device_name);
4229
4230	return error;
4231}
4232EXPORT_SYMBOL_GPL(device_rename);
4233
4234static int device_move_class_links(struct device *dev,
4235				   struct device *old_parent,
4236				   struct device *new_parent)
4237{
4238	int error = 0;
4239
4240	if (old_parent)
4241		sysfs_remove_link(&dev->kobj, "device");
4242	if (new_parent)
4243		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4244					  "device");
4245	return error;
4246}
4247
4248/**
4249 * device_move - moves a device to a new parent
4250 * @dev: the pointer to the struct device to be moved
4251 * @new_parent: the new parent of the device (can be NULL)
4252 * @dpm_order: how to reorder the dpm_list
4253 */
4254int device_move(struct device *dev, struct device *new_parent,
4255		enum dpm_order dpm_order)
4256{
4257	int error;
4258	struct device *old_parent;
4259	struct kobject *new_parent_kobj;
4260
4261	dev = get_device(dev);
4262	if (!dev)
4263		return -EINVAL;
4264
4265	device_pm_lock();
4266	new_parent = get_device(new_parent);
4267	new_parent_kobj = get_device_parent(dev, new_parent);
4268	if (IS_ERR(new_parent_kobj)) {
4269		error = PTR_ERR(new_parent_kobj);
4270		put_device(new_parent);
4271		goto out;
4272	}
4273
4274	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4275		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4276	error = kobject_move(&dev->kobj, new_parent_kobj);
4277	if (error) {
4278		cleanup_glue_dir(dev, new_parent_kobj);
4279		put_device(new_parent);
4280		goto out;
4281	}
4282	old_parent = dev->parent;
4283	dev->parent = new_parent;
4284	if (old_parent)
4285		klist_remove(&dev->p->knode_parent);
4286	if (new_parent) {
4287		klist_add_tail(&dev->p->knode_parent,
4288			       &new_parent->p->klist_children);
4289		set_dev_node(dev, dev_to_node(new_parent));
4290	}
4291
4292	if (dev->class) {
4293		error = device_move_class_links(dev, old_parent, new_parent);
4294		if (error) {
4295			/* We ignore errors on cleanup since we're hosed anyway... */
4296			device_move_class_links(dev, new_parent, old_parent);
4297			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4298				if (new_parent)
4299					klist_remove(&dev->p->knode_parent);
4300				dev->parent = old_parent;
4301				if (old_parent) {
4302					klist_add_tail(&dev->p->knode_parent,
4303						       &old_parent->p->klist_children);
4304					set_dev_node(dev, dev_to_node(old_parent));
4305				}
4306			}
4307			cleanup_glue_dir(dev, new_parent_kobj);
4308			put_device(new_parent);
4309			goto out;
4310		}
4311	}
4312	switch (dpm_order) {
4313	case DPM_ORDER_NONE:
4314		break;
4315	case DPM_ORDER_DEV_AFTER_PARENT:
4316		device_pm_move_after(dev, new_parent);
4317		devices_kset_move_after(dev, new_parent);
4318		break;
4319	case DPM_ORDER_PARENT_BEFORE_DEV:
4320		device_pm_move_before(new_parent, dev);
4321		devices_kset_move_before(new_parent, dev);
4322		break;
4323	case DPM_ORDER_DEV_LAST:
4324		device_pm_move_last(dev);
4325		devices_kset_move_last(dev);
4326		break;
4327	}
4328
4329	put_device(old_parent);
4330out:
4331	device_pm_unlock();
4332	put_device(dev);
4333	return error;
4334}
4335EXPORT_SYMBOL_GPL(device_move);
4336
4337static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4338				     kgid_t kgid)
4339{
4340	struct kobject *kobj = &dev->kobj;
4341	struct class *class = dev->class;
4342	const struct device_type *type = dev->type;
4343	int error;
4344
4345	if (class) {
4346		/*
4347		 * Change the device groups of the device class for @dev to
4348		 * @kuid/@kgid.
4349		 */
4350		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4351						  kgid);
4352		if (error)
4353			return error;
4354	}
4355
4356	if (type) {
4357		/*
4358		 * Change the device groups of the device type for @dev to
4359		 * @kuid/@kgid.
4360		 */
4361		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4362						  kgid);
4363		if (error)
4364			return error;
4365	}
4366
4367	/* Change the device groups of @dev to @kuid/@kgid. */
4368	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4369	if (error)
4370		return error;
4371
4372	if (device_supports_offline(dev) && !dev->offline_disabled) {
4373		/* Change online device attributes of @dev to @kuid/@kgid. */
4374		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4375						kuid, kgid);
4376		if (error)
4377			return error;
4378	}
4379
4380	return 0;
4381}
4382
4383/**
4384 * device_change_owner - change the owner of an existing device.
4385 * @dev: device.
4386 * @kuid: new owner's kuid
4387 * @kgid: new owner's kgid
4388 *
4389 * This changes the owner of @dev and its corresponding sysfs entries to
4390 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4391 * core.
4392 *
4393 * Returns 0 on success or error code on failure.
4394 */
4395int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4396{
4397	int error;
4398	struct kobject *kobj = &dev->kobj;
4399
4400	dev = get_device(dev);
4401	if (!dev)
4402		return -EINVAL;
4403
4404	/*
4405	 * Change the kobject and the default attributes and groups of the
4406	 * ktype associated with it to @kuid/@kgid.
4407	 */
4408	error = sysfs_change_owner(kobj, kuid, kgid);
4409	if (error)
4410		goto out;
4411
4412	/*
4413	 * Change the uevent file for @dev to the new owner. The uevent file
4414	 * was created in a separate step when @dev got added and we mirror
4415	 * that step here.
4416	 */
4417	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4418					kgid);
4419	if (error)
4420		goto out;
4421
4422	/*
4423	 * Change the device groups, the device groups associated with the
4424	 * device class, and the groups associated with the device type of @dev
4425	 * to @kuid/@kgid.
4426	 */
4427	error = device_attrs_change_owner(dev, kuid, kgid);
4428	if (error)
4429		goto out;
4430
4431	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4432	if (error)
4433		goto out;
4434
4435#ifdef CONFIG_BLOCK
4436	if (sysfs_deprecated && dev->class == &block_class)
4437		goto out;
4438#endif
4439
4440	/*
4441	 * Change the owner of the symlink located in the class directory of
4442	 * the device class associated with @dev which points to the actual
4443	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4444	 * symlink shows the same permissions as its target.
4445	 */
4446	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4447					dev_name(dev), kuid, kgid);
4448	if (error)
4449		goto out;
4450
4451out:
4452	put_device(dev);
4453	return error;
4454}
4455EXPORT_SYMBOL_GPL(device_change_owner);
4456
4457/**
4458 * device_shutdown - call ->shutdown() on each device to shutdown.
4459 */
4460void device_shutdown(void)
4461{
4462	struct device *dev, *parent;
4463
4464	wait_for_device_probe();
4465	device_block_probing();
4466
4467	cpufreq_suspend();
4468
4469	spin_lock(&devices_kset->list_lock);
4470	/*
4471	 * Walk the devices list backward, shutting down each in turn.
4472	 * Beware that device unplug events may also start pulling
4473	 * devices offline, even as the system is shutting down.
4474	 */
4475	while (!list_empty(&devices_kset->list)) {
4476		dev = list_entry(devices_kset->list.prev, struct device,
4477				kobj.entry);
4478
4479		/*
4480		 * hold reference count of device's parent to
4481		 * prevent it from being freed because parent's
4482		 * lock is to be held
4483		 */
4484		parent = get_device(dev->parent);
4485		get_device(dev);
4486		/*
4487		 * Make sure the device is off the kset list, in the
4488		 * event that dev->*->shutdown() doesn't remove it.
4489		 */
4490		list_del_init(&dev->kobj.entry);
4491		spin_unlock(&devices_kset->list_lock);
4492
4493		/* hold lock to avoid race with probe/release */
4494		if (parent)
4495			device_lock(parent);
4496		device_lock(dev);
4497
4498		/* Don't allow any more runtime suspends */
4499		pm_runtime_get_noresume(dev);
4500		pm_runtime_barrier(dev);
4501
4502		if (dev->class && dev->class->shutdown_pre) {
4503			if (initcall_debug)
4504				dev_info(dev, "shutdown_pre\n");
4505			dev->class->shutdown_pre(dev);
4506		}
4507		if (dev->bus && dev->bus->shutdown) {
4508			if (initcall_debug)
4509				dev_info(dev, "shutdown\n");
4510			dev->bus->shutdown(dev);
4511		} else if (dev->driver && dev->driver->shutdown) {
4512			if (initcall_debug)
4513				dev_info(dev, "shutdown\n");
4514			dev->driver->shutdown(dev);
4515		}
4516
4517		device_unlock(dev);
4518		if (parent)
4519			device_unlock(parent);
4520
4521		put_device(dev);
4522		put_device(parent);
4523
4524		spin_lock(&devices_kset->list_lock);
4525	}
4526	spin_unlock(&devices_kset->list_lock);
4527}
4528
4529/*
4530 * Device logging functions
4531 */
4532
4533#ifdef CONFIG_PRINTK
4534static void
4535set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4536{
4537	const char *subsys;
4538
4539	memset(dev_info, 0, sizeof(*dev_info));
4540
4541	if (dev->class)
4542		subsys = dev->class->name;
4543	else if (dev->bus)
4544		subsys = dev->bus->name;
4545	else
4546		return;
4547
4548	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4549
4550	/*
4551	 * Add device identifier DEVICE=:
4552	 *   b12:8         block dev_t
4553	 *   c127:3        char dev_t
4554	 *   n8            netdev ifindex
4555	 *   +sound:card0  subsystem:devname
4556	 */
4557	if (MAJOR(dev->devt)) {
4558		char c;
4559
4560		if (strcmp(subsys, "block") == 0)
4561			c = 'b';
4562		else
4563			c = 'c';
4564
4565		snprintf(dev_info->device, sizeof(dev_info->device),
4566			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4567	} else if (strcmp(subsys, "net") == 0) {
4568		struct net_device *net = to_net_dev(dev);
4569
4570		snprintf(dev_info->device, sizeof(dev_info->device),
4571			 "n%u", net->ifindex);
4572	} else {
4573		snprintf(dev_info->device, sizeof(dev_info->device),
4574			 "+%s:%s", subsys, dev_name(dev));
4575	}
4576}
4577
4578int dev_vprintk_emit(int level, const struct device *dev,
4579		     const char *fmt, va_list args)
4580{
4581	struct dev_printk_info dev_info;
4582
4583	set_dev_info(dev, &dev_info);
4584
4585	return vprintk_emit(0, level, &dev_info, fmt, args);
4586}
4587EXPORT_SYMBOL(dev_vprintk_emit);
4588
4589int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4590{
4591	va_list args;
4592	int r;
4593
4594	va_start(args, fmt);
4595
4596	r = dev_vprintk_emit(level, dev, fmt, args);
4597
4598	va_end(args);
4599
4600	return r;
4601}
4602EXPORT_SYMBOL(dev_printk_emit);
4603
4604static void __dev_printk(const char *level, const struct device *dev,
4605			struct va_format *vaf)
4606{
4607	if (dev)
4608		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4609				dev_driver_string(dev), dev_name(dev), vaf);
4610	else
4611		printk("%s(NULL device *): %pV", level, vaf);
4612}
4613
4614void dev_printk(const char *level, const struct device *dev,
4615		const char *fmt, ...)
4616{
4617	struct va_format vaf;
4618	va_list args;
4619
4620	va_start(args, fmt);
4621
4622	vaf.fmt = fmt;
4623	vaf.va = &args;
4624
4625	__dev_printk(level, dev, &vaf);
4626
4627	va_end(args);
4628}
4629EXPORT_SYMBOL(dev_printk);
4630
4631#define define_dev_printk_level(func, kern_level)		\
4632void func(const struct device *dev, const char *fmt, ...)	\
4633{								\
4634	struct va_format vaf;					\
4635	va_list args;						\
4636								\
4637	va_start(args, fmt);					\
4638								\
4639	vaf.fmt = fmt;						\
4640	vaf.va = &args;						\
4641								\
4642	__dev_printk(kern_level, dev, &vaf);			\
4643								\
4644	va_end(args);						\
4645}								\
4646EXPORT_SYMBOL(func);
4647
4648define_dev_printk_level(_dev_emerg, KERN_EMERG);
4649define_dev_printk_level(_dev_alert, KERN_ALERT);
4650define_dev_printk_level(_dev_crit, KERN_CRIT);
4651define_dev_printk_level(_dev_err, KERN_ERR);
4652define_dev_printk_level(_dev_warn, KERN_WARNING);
4653define_dev_printk_level(_dev_notice, KERN_NOTICE);
4654define_dev_printk_level(_dev_info, KERN_INFO);
4655
4656#endif
4657
4658/**
4659 * dev_err_probe - probe error check and log helper
4660 * @dev: the pointer to the struct device
4661 * @err: error value to test
4662 * @fmt: printf-style format string
4663 * @...: arguments as specified in the format string
4664 *
4665 * This helper implements common pattern present in probe functions for error
4666 * checking: print debug or error message depending if the error value is
4667 * -EPROBE_DEFER and propagate error upwards.
4668 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4669 * checked later by reading devices_deferred debugfs attribute.
4670 * It replaces code sequence::
4671 *
4672 * 	if (err != -EPROBE_DEFER)
4673 * 		dev_err(dev, ...);
4674 * 	else
4675 * 		dev_dbg(dev, ...);
4676 * 	return err;
4677 *
4678 * with::
4679 *
4680 * 	return dev_err_probe(dev, err, ...);
4681 *
 
 
 
 
 
4682 * Returns @err.
4683 *
4684 */
4685int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4686{
4687	struct va_format vaf;
4688	va_list args;
4689
4690	va_start(args, fmt);
4691	vaf.fmt = fmt;
4692	vaf.va = &args;
4693
4694	if (err != -EPROBE_DEFER) {
4695		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4696	} else {
4697		device_set_deferred_probe_reason(dev, &vaf);
4698		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4699	}
4700
4701	va_end(args);
4702
4703	return err;
4704}
4705EXPORT_SYMBOL_GPL(dev_err_probe);
4706
4707static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4708{
4709	return fwnode && !IS_ERR(fwnode->secondary);
4710}
4711
4712/**
4713 * set_primary_fwnode - Change the primary firmware node of a given device.
4714 * @dev: Device to handle.
4715 * @fwnode: New primary firmware node of the device.
4716 *
4717 * Set the device's firmware node pointer to @fwnode, but if a secondary
4718 * firmware node of the device is present, preserve it.
4719 *
4720 * Valid fwnode cases are:
4721 *  - primary --> secondary --> -ENODEV
4722 *  - primary --> NULL
4723 *  - secondary --> -ENODEV
4724 *  - NULL
4725 */
4726void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4727{
4728	struct device *parent = dev->parent;
4729	struct fwnode_handle *fn = dev->fwnode;
4730
4731	if (fwnode) {
4732		if (fwnode_is_primary(fn))
4733			fn = fn->secondary;
4734
4735		if (fn) {
4736			WARN_ON(fwnode->secondary);
4737			fwnode->secondary = fn;
4738		}
4739		dev->fwnode = fwnode;
4740	} else {
4741		if (fwnode_is_primary(fn)) {
4742			dev->fwnode = fn->secondary;
4743			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4744			if (!(parent && fn == parent->fwnode))
4745				fn->secondary = NULL;
4746		} else {
4747			dev->fwnode = NULL;
4748		}
4749	}
4750}
4751EXPORT_SYMBOL_GPL(set_primary_fwnode);
4752
4753/**
4754 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4755 * @dev: Device to handle.
4756 * @fwnode: New secondary firmware node of the device.
4757 *
4758 * If a primary firmware node of the device is present, set its secondary
4759 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4760 * @fwnode.
4761 */
4762void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4763{
4764	if (fwnode)
4765		fwnode->secondary = ERR_PTR(-ENODEV);
4766
4767	if (fwnode_is_primary(dev->fwnode))
4768		dev->fwnode->secondary = fwnode;
4769	else
4770		dev->fwnode = fwnode;
4771}
4772EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4773
4774/**
4775 * device_set_of_node_from_dev - reuse device-tree node of another device
4776 * @dev: device whose device-tree node is being set
4777 * @dev2: device whose device-tree node is being reused
4778 *
4779 * Takes another reference to the new device-tree node after first dropping
4780 * any reference held to the old node.
4781 */
4782void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4783{
4784	of_node_put(dev->of_node);
4785	dev->of_node = of_node_get(dev2->of_node);
4786	dev->of_node_reused = true;
4787}
4788EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4789
4790void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4791{
4792	dev->fwnode = fwnode;
4793	dev->of_node = to_of_node(fwnode);
4794}
4795EXPORT_SYMBOL_GPL(device_set_node);
4796
4797int device_match_name(struct device *dev, const void *name)
4798{
4799	return sysfs_streq(dev_name(dev), name);
4800}
4801EXPORT_SYMBOL_GPL(device_match_name);
4802
4803int device_match_of_node(struct device *dev, const void *np)
4804{
4805	return dev->of_node == np;
4806}
4807EXPORT_SYMBOL_GPL(device_match_of_node);
4808
4809int device_match_fwnode(struct device *dev, const void *fwnode)
4810{
4811	return dev_fwnode(dev) == fwnode;
4812}
4813EXPORT_SYMBOL_GPL(device_match_fwnode);
4814
4815int device_match_devt(struct device *dev, const void *pdevt)
4816{
4817	return dev->devt == *(dev_t *)pdevt;
4818}
4819EXPORT_SYMBOL_GPL(device_match_devt);
4820
4821int device_match_acpi_dev(struct device *dev, const void *adev)
4822{
4823	return ACPI_COMPANION(dev) == adev;
4824}
4825EXPORT_SYMBOL(device_match_acpi_dev);
 
 
 
 
 
 
4826
4827int device_match_any(struct device *dev, const void *unused)
4828{
4829	return 1;
4830}
4831EXPORT_SYMBOL_GPL(device_match_any);