Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * vMTRR implementation
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 * Copyright(C) 2015 Intel Corporation.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 * Marcelo Tosatti <mtosatti@redhat.com>
13 * Paolo Bonzini <pbonzini@redhat.com>
14 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
15 */
16
17#include <linux/kvm_host.h>
18#include <asm/mtrr.h>
19
20#include "cpuid.h"
21#include "mmu.h"
22
23#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
24#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
25#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
26
27static bool msr_mtrr_valid(unsigned msr)
28{
29 switch (msr) {
30 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
31 case MSR_MTRRfix64K_00000:
32 case MSR_MTRRfix16K_80000:
33 case MSR_MTRRfix16K_A0000:
34 case MSR_MTRRfix4K_C0000:
35 case MSR_MTRRfix4K_C8000:
36 case MSR_MTRRfix4K_D0000:
37 case MSR_MTRRfix4K_D8000:
38 case MSR_MTRRfix4K_E0000:
39 case MSR_MTRRfix4K_E8000:
40 case MSR_MTRRfix4K_F0000:
41 case MSR_MTRRfix4K_F8000:
42 case MSR_MTRRdefType:
43 case MSR_IA32_CR_PAT:
44 return true;
45 }
46 return false;
47}
48
49static bool valid_mtrr_type(unsigned t)
50{
51 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
52}
53
54bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
55{
56 int i;
57 u64 mask;
58
59 if (!msr_mtrr_valid(msr))
60 return false;
61
62 if (msr == MSR_IA32_CR_PAT) {
63 return kvm_pat_valid(data);
64 } else if (msr == MSR_MTRRdefType) {
65 if (data & ~0xcff)
66 return false;
67 return valid_mtrr_type(data & 0xff);
68 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
69 for (i = 0; i < 8 ; i++)
70 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
71 return false;
72 return true;
73 }
74
75 /* variable MTRRs */
76 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
77
78 mask = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
79 if ((msr & 1) == 0) {
80 /* MTRR base */
81 if (!valid_mtrr_type(data & 0xff))
82 return false;
83 mask |= 0xf00;
84 } else
85 /* MTRR mask */
86 mask |= 0x7ff;
87
88 return (data & mask) == 0;
89}
90EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
91
92static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
93{
94 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
95}
96
97static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
98{
99 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
100}
101
102static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
103{
104 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
105}
106
107static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
108{
109 /*
110 * Intel SDM 11.11.2.2: all MTRRs are disabled when
111 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
112 * memory type is applied to all of physical memory.
113 *
114 * However, virtual machines can be run with CPUID such that
115 * there are no MTRRs. In that case, the firmware will never
116 * enable MTRRs and it is obviously undesirable to run the
117 * guest entirely with UC memory and we use WB.
118 */
119 if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
120 return MTRR_TYPE_UNCACHABLE;
121 else
122 return MTRR_TYPE_WRBACK;
123}
124
125/*
126* Three terms are used in the following code:
127* - segment, it indicates the address segments covered by fixed MTRRs.
128* - unit, it corresponds to the MSR entry in the segment.
129* - range, a range is covered in one memory cache type.
130*/
131struct fixed_mtrr_segment {
132 u64 start;
133 u64 end;
134
135 int range_shift;
136
137 /* the start position in kvm_mtrr.fixed_ranges[]. */
138 int range_start;
139};
140
141static struct fixed_mtrr_segment fixed_seg_table[] = {
142 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
143 {
144 .start = 0x0,
145 .end = 0x80000,
146 .range_shift = 16, /* 64K */
147 .range_start = 0,
148 },
149
150 /*
151 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
152 * 16K fixed mtrr.
153 */
154 {
155 .start = 0x80000,
156 .end = 0xc0000,
157 .range_shift = 14, /* 16K */
158 .range_start = 8,
159 },
160
161 /*
162 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
163 * 4K fixed mtrr.
164 */
165 {
166 .start = 0xc0000,
167 .end = 0x100000,
168 .range_shift = 12, /* 12K */
169 .range_start = 24,
170 }
171};
172
173/*
174 * The size of unit is covered in one MSR, one MSR entry contains
175 * 8 ranges so that unit size is always 8 * 2^range_shift.
176 */
177static u64 fixed_mtrr_seg_unit_size(int seg)
178{
179 return 8 << fixed_seg_table[seg].range_shift;
180}
181
182static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
183{
184 switch (msr) {
185 case MSR_MTRRfix64K_00000:
186 *seg = 0;
187 *unit = 0;
188 break;
189 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
190 *seg = 1;
191 *unit = array_index_nospec(
192 msr - MSR_MTRRfix16K_80000,
193 MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
194 break;
195 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
196 *seg = 2;
197 *unit = array_index_nospec(
198 msr - MSR_MTRRfix4K_C0000,
199 MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
200 break;
201 default:
202 return false;
203 }
204
205 return true;
206}
207
208static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
209{
210 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
211 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
212
213 *start = mtrr_seg->start + unit * unit_size;
214 *end = *start + unit_size;
215 WARN_ON(*end > mtrr_seg->end);
216}
217
218static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
219{
220 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
221
222 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
223 > mtrr_seg->end);
224
225 /* each unit has 8 ranges. */
226 return mtrr_seg->range_start + 8 * unit;
227}
228
229static int fixed_mtrr_seg_end_range_index(int seg)
230{
231 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
232 int n;
233
234 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
235 return mtrr_seg->range_start + n - 1;
236}
237
238static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
239{
240 int seg, unit;
241
242 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
243 return false;
244
245 fixed_mtrr_seg_unit_range(seg, unit, start, end);
246 return true;
247}
248
249static int fixed_msr_to_range_index(u32 msr)
250{
251 int seg, unit;
252
253 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
254 return -1;
255
256 return fixed_mtrr_seg_unit_range_index(seg, unit);
257}
258
259static int fixed_mtrr_addr_to_seg(u64 addr)
260{
261 struct fixed_mtrr_segment *mtrr_seg;
262 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
263
264 for (seg = 0; seg < seg_num; seg++) {
265 mtrr_seg = &fixed_seg_table[seg];
266 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
267 return seg;
268 }
269
270 return -1;
271}
272
273static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
274{
275 struct fixed_mtrr_segment *mtrr_seg;
276 int index;
277
278 mtrr_seg = &fixed_seg_table[seg];
279 index = mtrr_seg->range_start;
280 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
281 return index;
282}
283
284static u64 fixed_mtrr_range_end_addr(int seg, int index)
285{
286 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
287 int pos = index - mtrr_seg->range_start;
288
289 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
290}
291
292static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
293{
294 u64 mask;
295
296 *start = range->base & PAGE_MASK;
297
298 mask = range->mask & PAGE_MASK;
299
300 /* This cannot overflow because writing to the reserved bits of
301 * variable MTRRs causes a #GP.
302 */
303 *end = (*start | ~mask) + 1;
304}
305
306static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
307{
308 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
309 gfn_t start, end;
310 int index;
311
312 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
313 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
314 return;
315
316 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
317 return;
318
319 /* fixed MTRRs. */
320 if (fixed_msr_to_range(msr, &start, &end)) {
321 if (!fixed_mtrr_is_enabled(mtrr_state))
322 return;
323 } else if (msr == MSR_MTRRdefType) {
324 start = 0x0;
325 end = ~0ULL;
326 } else {
327 /* variable range MTRRs. */
328 index = (msr - 0x200) / 2;
329 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
330 }
331
332 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
333}
334
335static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
336{
337 return (range->mask & (1 << 11)) != 0;
338}
339
340static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
341{
342 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
343 struct kvm_mtrr_range *tmp, *cur;
344 int index, is_mtrr_mask;
345
346 index = (msr - 0x200) / 2;
347 is_mtrr_mask = msr - 0x200 - 2 * index;
348 cur = &mtrr_state->var_ranges[index];
349
350 /* remove the entry if it's in the list. */
351 if (var_mtrr_range_is_valid(cur))
352 list_del(&mtrr_state->var_ranges[index].node);
353
354 /*
355 * Set all illegal GPA bits in the mask, since those bits must
356 * implicitly be 0. The bits are then cleared when reading them.
357 */
358 if (!is_mtrr_mask)
359 cur->base = data;
360 else
361 cur->mask = data | kvm_vcpu_reserved_gpa_bits_raw(vcpu);
362
363 /* add it to the list if it's enabled. */
364 if (var_mtrr_range_is_valid(cur)) {
365 list_for_each_entry(tmp, &mtrr_state->head, node)
366 if (cur->base >= tmp->base)
367 break;
368 list_add_tail(&cur->node, &tmp->node);
369 }
370}
371
372int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
373{
374 int index;
375
376 if (!kvm_mtrr_valid(vcpu, msr, data))
377 return 1;
378
379 index = fixed_msr_to_range_index(msr);
380 if (index >= 0)
381 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
382 else if (msr == MSR_MTRRdefType)
383 vcpu->arch.mtrr_state.deftype = data;
384 else if (msr == MSR_IA32_CR_PAT)
385 vcpu->arch.pat = data;
386 else
387 set_var_mtrr_msr(vcpu, msr, data);
388
389 update_mtrr(vcpu, msr);
390 return 0;
391}
392
393int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
394{
395 int index;
396
397 /* MSR_MTRRcap is a readonly MSR. */
398 if (msr == MSR_MTRRcap) {
399 /*
400 * SMRR = 0
401 * WC = 1
402 * FIX = 1
403 * VCNT = KVM_NR_VAR_MTRR
404 */
405 *pdata = 0x500 | KVM_NR_VAR_MTRR;
406 return 0;
407 }
408
409 if (!msr_mtrr_valid(msr))
410 return 1;
411
412 index = fixed_msr_to_range_index(msr);
413 if (index >= 0)
414 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
415 else if (msr == MSR_MTRRdefType)
416 *pdata = vcpu->arch.mtrr_state.deftype;
417 else if (msr == MSR_IA32_CR_PAT)
418 *pdata = vcpu->arch.pat;
419 else { /* Variable MTRRs */
420 int is_mtrr_mask;
421
422 index = (msr - 0x200) / 2;
423 is_mtrr_mask = msr - 0x200 - 2 * index;
424 if (!is_mtrr_mask)
425 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
426 else
427 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
428
429 *pdata &= ~kvm_vcpu_reserved_gpa_bits_raw(vcpu);
430 }
431
432 return 0;
433}
434
435void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
436{
437 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
438}
439
440struct mtrr_iter {
441 /* input fields. */
442 struct kvm_mtrr *mtrr_state;
443 u64 start;
444 u64 end;
445
446 /* output fields. */
447 int mem_type;
448 /* mtrr is completely disabled? */
449 bool mtrr_disabled;
450 /* [start, end) is not fully covered in MTRRs? */
451 bool partial_map;
452
453 /* private fields. */
454 union {
455 /* used for fixed MTRRs. */
456 struct {
457 int index;
458 int seg;
459 };
460
461 /* used for var MTRRs. */
462 struct {
463 struct kvm_mtrr_range *range;
464 /* max address has been covered in var MTRRs. */
465 u64 start_max;
466 };
467 };
468
469 bool fixed;
470};
471
472static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
473{
474 int seg, index;
475
476 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
477 return false;
478
479 seg = fixed_mtrr_addr_to_seg(iter->start);
480 if (seg < 0)
481 return false;
482
483 iter->fixed = true;
484 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
485 iter->index = index;
486 iter->seg = seg;
487 return true;
488}
489
490static bool match_var_range(struct mtrr_iter *iter,
491 struct kvm_mtrr_range *range)
492{
493 u64 start, end;
494
495 var_mtrr_range(range, &start, &end);
496 if (!(start >= iter->end || end <= iter->start)) {
497 iter->range = range;
498
499 /*
500 * the function is called when we do kvm_mtrr.head walking.
501 * Range has the minimum base address which interleaves
502 * [looker->start_max, looker->end).
503 */
504 iter->partial_map |= iter->start_max < start;
505
506 /* update the max address has been covered. */
507 iter->start_max = max(iter->start_max, end);
508 return true;
509 }
510
511 return false;
512}
513
514static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
515{
516 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
517
518 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
519 if (match_var_range(iter, iter->range))
520 return;
521
522 iter->range = NULL;
523 iter->partial_map |= iter->start_max < iter->end;
524}
525
526static void mtrr_lookup_var_start(struct mtrr_iter *iter)
527{
528 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
529
530 iter->fixed = false;
531 iter->start_max = iter->start;
532 iter->range = NULL;
533 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
534
535 __mtrr_lookup_var_next(iter);
536}
537
538static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
539{
540 /* terminate the lookup. */
541 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
542 iter->fixed = false;
543 iter->range = NULL;
544 return;
545 }
546
547 iter->index++;
548
549 /* have looked up for all fixed MTRRs. */
550 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
551 return mtrr_lookup_var_start(iter);
552
553 /* switch to next segment. */
554 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
555 iter->seg++;
556}
557
558static void mtrr_lookup_var_next(struct mtrr_iter *iter)
559{
560 __mtrr_lookup_var_next(iter);
561}
562
563static void mtrr_lookup_start(struct mtrr_iter *iter)
564{
565 if (!mtrr_is_enabled(iter->mtrr_state)) {
566 iter->mtrr_disabled = true;
567 return;
568 }
569
570 if (!mtrr_lookup_fixed_start(iter))
571 mtrr_lookup_var_start(iter);
572}
573
574static void mtrr_lookup_init(struct mtrr_iter *iter,
575 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
576{
577 iter->mtrr_state = mtrr_state;
578 iter->start = start;
579 iter->end = end;
580 iter->mtrr_disabled = false;
581 iter->partial_map = false;
582 iter->fixed = false;
583 iter->range = NULL;
584
585 mtrr_lookup_start(iter);
586}
587
588static bool mtrr_lookup_okay(struct mtrr_iter *iter)
589{
590 if (iter->fixed) {
591 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
592 return true;
593 }
594
595 if (iter->range) {
596 iter->mem_type = iter->range->base & 0xff;
597 return true;
598 }
599
600 return false;
601}
602
603static void mtrr_lookup_next(struct mtrr_iter *iter)
604{
605 if (iter->fixed)
606 mtrr_lookup_fixed_next(iter);
607 else
608 mtrr_lookup_var_next(iter);
609}
610
611#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
612 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
613 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
614
615u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
616{
617 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
618 struct mtrr_iter iter;
619 u64 start, end;
620 int type = -1;
621 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
622 | (1 << MTRR_TYPE_WRTHROUGH);
623
624 start = gfn_to_gpa(gfn);
625 end = start + PAGE_SIZE;
626
627 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
628 int curr_type = iter.mem_type;
629
630 /*
631 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
632 * Precedences.
633 */
634
635 if (type == -1) {
636 type = curr_type;
637 continue;
638 }
639
640 /*
641 * If two or more variable memory ranges match and the
642 * memory types are identical, then that memory type is
643 * used.
644 */
645 if (type == curr_type)
646 continue;
647
648 /*
649 * If two or more variable memory ranges match and one of
650 * the memory types is UC, the UC memory type used.
651 */
652 if (curr_type == MTRR_TYPE_UNCACHABLE)
653 return MTRR_TYPE_UNCACHABLE;
654
655 /*
656 * If two or more variable memory ranges match and the
657 * memory types are WT and WB, the WT memory type is used.
658 */
659 if (((1 << type) & wt_wb_mask) &&
660 ((1 << curr_type) & wt_wb_mask)) {
661 type = MTRR_TYPE_WRTHROUGH;
662 continue;
663 }
664
665 /*
666 * For overlaps not defined by the above rules, processor
667 * behavior is undefined.
668 */
669
670 /* We use WB for this undefined behavior. :( */
671 return MTRR_TYPE_WRBACK;
672 }
673
674 if (iter.mtrr_disabled)
675 return mtrr_disabled_type(vcpu);
676
677 /* not contained in any MTRRs. */
678 if (type == -1)
679 return mtrr_default_type(mtrr_state);
680
681 /*
682 * We just check one page, partially covered by MTRRs is
683 * impossible.
684 */
685 WARN_ON(iter.partial_map);
686
687 return type;
688}
689EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
690
691bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
692 int page_num)
693{
694 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
695 struct mtrr_iter iter;
696 u64 start, end;
697 int type = -1;
698
699 start = gfn_to_gpa(gfn);
700 end = gfn_to_gpa(gfn + page_num);
701 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
702 if (type == -1) {
703 type = iter.mem_type;
704 continue;
705 }
706
707 if (type != iter.mem_type)
708 return false;
709 }
710
711 if (iter.mtrr_disabled)
712 return true;
713
714 if (!iter.partial_map)
715 return true;
716
717 if (type == -1)
718 return true;
719
720 return type == mtrr_default_type(mtrr_state);
721}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * vMTRR implementation
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 * Copyright(C) 2015 Intel Corporation.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 * Marcelo Tosatti <mtosatti@redhat.com>
13 * Paolo Bonzini <pbonzini@redhat.com>
14 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
15 */
16
17#include <linux/kvm_host.h>
18#include <asm/mtrr.h>
19
20#include "cpuid.h"
21#include "mmu.h"
22
23#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
24#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
25#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
26
27static bool msr_mtrr_valid(unsigned msr)
28{
29 switch (msr) {
30 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
31 case MSR_MTRRfix64K_00000:
32 case MSR_MTRRfix16K_80000:
33 case MSR_MTRRfix16K_A0000:
34 case MSR_MTRRfix4K_C0000:
35 case MSR_MTRRfix4K_C8000:
36 case MSR_MTRRfix4K_D0000:
37 case MSR_MTRRfix4K_D8000:
38 case MSR_MTRRfix4K_E0000:
39 case MSR_MTRRfix4K_E8000:
40 case MSR_MTRRfix4K_F0000:
41 case MSR_MTRRfix4K_F8000:
42 case MSR_MTRRdefType:
43 case MSR_IA32_CR_PAT:
44 return true;
45 }
46 return false;
47}
48
49static bool valid_mtrr_type(unsigned t)
50{
51 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
52}
53
54bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
55{
56 int i;
57 u64 mask;
58
59 if (!msr_mtrr_valid(msr))
60 return false;
61
62 if (msr == MSR_IA32_CR_PAT) {
63 return kvm_pat_valid(data);
64 } else if (msr == MSR_MTRRdefType) {
65 if (data & ~0xcff)
66 return false;
67 return valid_mtrr_type(data & 0xff);
68 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
69 for (i = 0; i < 8 ; i++)
70 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
71 return false;
72 return true;
73 }
74
75 /* variable MTRRs */
76 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
77
78 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
79 if ((msr & 1) == 0) {
80 /* MTRR base */
81 if (!valid_mtrr_type(data & 0xff))
82 return false;
83 mask |= 0xf00;
84 } else
85 /* MTRR mask */
86 mask |= 0x7ff;
87 if (data & mask) {
88 kvm_inject_gp(vcpu, 0);
89 return false;
90 }
91
92 return true;
93}
94EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
95
96static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
97{
98 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
99}
100
101static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
102{
103 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
104}
105
106static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
107{
108 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
109}
110
111static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
112{
113 /*
114 * Intel SDM 11.11.2.2: all MTRRs are disabled when
115 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
116 * memory type is applied to all of physical memory.
117 *
118 * However, virtual machines can be run with CPUID such that
119 * there are no MTRRs. In that case, the firmware will never
120 * enable MTRRs and it is obviously undesirable to run the
121 * guest entirely with UC memory and we use WB.
122 */
123 if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
124 return MTRR_TYPE_UNCACHABLE;
125 else
126 return MTRR_TYPE_WRBACK;
127}
128
129/*
130* Three terms are used in the following code:
131* - segment, it indicates the address segments covered by fixed MTRRs.
132* - unit, it corresponds to the MSR entry in the segment.
133* - range, a range is covered in one memory cache type.
134*/
135struct fixed_mtrr_segment {
136 u64 start;
137 u64 end;
138
139 int range_shift;
140
141 /* the start position in kvm_mtrr.fixed_ranges[]. */
142 int range_start;
143};
144
145static struct fixed_mtrr_segment fixed_seg_table[] = {
146 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
147 {
148 .start = 0x0,
149 .end = 0x80000,
150 .range_shift = 16, /* 64K */
151 .range_start = 0,
152 },
153
154 /*
155 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
156 * 16K fixed mtrr.
157 */
158 {
159 .start = 0x80000,
160 .end = 0xc0000,
161 .range_shift = 14, /* 16K */
162 .range_start = 8,
163 },
164
165 /*
166 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
167 * 4K fixed mtrr.
168 */
169 {
170 .start = 0xc0000,
171 .end = 0x100000,
172 .range_shift = 12, /* 12K */
173 .range_start = 24,
174 }
175};
176
177/*
178 * The size of unit is covered in one MSR, one MSR entry contains
179 * 8 ranges so that unit size is always 8 * 2^range_shift.
180 */
181static u64 fixed_mtrr_seg_unit_size(int seg)
182{
183 return 8 << fixed_seg_table[seg].range_shift;
184}
185
186static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
187{
188 switch (msr) {
189 case MSR_MTRRfix64K_00000:
190 *seg = 0;
191 *unit = 0;
192 break;
193 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
194 *seg = 1;
195 *unit = array_index_nospec(
196 msr - MSR_MTRRfix16K_80000,
197 MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
198 break;
199 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
200 *seg = 2;
201 *unit = array_index_nospec(
202 msr - MSR_MTRRfix4K_C0000,
203 MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
204 break;
205 default:
206 return false;
207 }
208
209 return true;
210}
211
212static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
213{
214 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
215 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
216
217 *start = mtrr_seg->start + unit * unit_size;
218 *end = *start + unit_size;
219 WARN_ON(*end > mtrr_seg->end);
220}
221
222static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
223{
224 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
225
226 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
227 > mtrr_seg->end);
228
229 /* each unit has 8 ranges. */
230 return mtrr_seg->range_start + 8 * unit;
231}
232
233static int fixed_mtrr_seg_end_range_index(int seg)
234{
235 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
236 int n;
237
238 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
239 return mtrr_seg->range_start + n - 1;
240}
241
242static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
243{
244 int seg, unit;
245
246 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
247 return false;
248
249 fixed_mtrr_seg_unit_range(seg, unit, start, end);
250 return true;
251}
252
253static int fixed_msr_to_range_index(u32 msr)
254{
255 int seg, unit;
256
257 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
258 return -1;
259
260 return fixed_mtrr_seg_unit_range_index(seg, unit);
261}
262
263static int fixed_mtrr_addr_to_seg(u64 addr)
264{
265 struct fixed_mtrr_segment *mtrr_seg;
266 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
267
268 for (seg = 0; seg < seg_num; seg++) {
269 mtrr_seg = &fixed_seg_table[seg];
270 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
271 return seg;
272 }
273
274 return -1;
275}
276
277static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
278{
279 struct fixed_mtrr_segment *mtrr_seg;
280 int index;
281
282 mtrr_seg = &fixed_seg_table[seg];
283 index = mtrr_seg->range_start;
284 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
285 return index;
286}
287
288static u64 fixed_mtrr_range_end_addr(int seg, int index)
289{
290 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
291 int pos = index - mtrr_seg->range_start;
292
293 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
294}
295
296static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
297{
298 u64 mask;
299
300 *start = range->base & PAGE_MASK;
301
302 mask = range->mask & PAGE_MASK;
303
304 /* This cannot overflow because writing to the reserved bits of
305 * variable MTRRs causes a #GP.
306 */
307 *end = (*start | ~mask) + 1;
308}
309
310static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
311{
312 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
313 gfn_t start, end;
314 int index;
315
316 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
317 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
318 return;
319
320 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
321 return;
322
323 /* fixed MTRRs. */
324 if (fixed_msr_to_range(msr, &start, &end)) {
325 if (!fixed_mtrr_is_enabled(mtrr_state))
326 return;
327 } else if (msr == MSR_MTRRdefType) {
328 start = 0x0;
329 end = ~0ULL;
330 } else {
331 /* variable range MTRRs. */
332 index = (msr - 0x200) / 2;
333 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
334 }
335
336 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
337}
338
339static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
340{
341 return (range->mask & (1 << 11)) != 0;
342}
343
344static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
345{
346 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
347 struct kvm_mtrr_range *tmp, *cur;
348 int index, is_mtrr_mask;
349
350 index = (msr - 0x200) / 2;
351 is_mtrr_mask = msr - 0x200 - 2 * index;
352 cur = &mtrr_state->var_ranges[index];
353
354 /* remove the entry if it's in the list. */
355 if (var_mtrr_range_is_valid(cur))
356 list_del(&mtrr_state->var_ranges[index].node);
357
358 /* Extend the mask with all 1 bits to the left, since those
359 * bits must implicitly be 0. The bits are then cleared
360 * when reading them.
361 */
362 if (!is_mtrr_mask)
363 cur->base = data;
364 else
365 cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
366
367 /* add it to the list if it's enabled. */
368 if (var_mtrr_range_is_valid(cur)) {
369 list_for_each_entry(tmp, &mtrr_state->head, node)
370 if (cur->base >= tmp->base)
371 break;
372 list_add_tail(&cur->node, &tmp->node);
373 }
374}
375
376int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
377{
378 int index;
379
380 if (!kvm_mtrr_valid(vcpu, msr, data))
381 return 1;
382
383 index = fixed_msr_to_range_index(msr);
384 if (index >= 0)
385 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
386 else if (msr == MSR_MTRRdefType)
387 vcpu->arch.mtrr_state.deftype = data;
388 else if (msr == MSR_IA32_CR_PAT)
389 vcpu->arch.pat = data;
390 else
391 set_var_mtrr_msr(vcpu, msr, data);
392
393 update_mtrr(vcpu, msr);
394 return 0;
395}
396
397int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
398{
399 int index;
400
401 /* MSR_MTRRcap is a readonly MSR. */
402 if (msr == MSR_MTRRcap) {
403 /*
404 * SMRR = 0
405 * WC = 1
406 * FIX = 1
407 * VCNT = KVM_NR_VAR_MTRR
408 */
409 *pdata = 0x500 | KVM_NR_VAR_MTRR;
410 return 0;
411 }
412
413 if (!msr_mtrr_valid(msr))
414 return 1;
415
416 index = fixed_msr_to_range_index(msr);
417 if (index >= 0)
418 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
419 else if (msr == MSR_MTRRdefType)
420 *pdata = vcpu->arch.mtrr_state.deftype;
421 else if (msr == MSR_IA32_CR_PAT)
422 *pdata = vcpu->arch.pat;
423 else { /* Variable MTRRs */
424 int is_mtrr_mask;
425
426 index = (msr - 0x200) / 2;
427 is_mtrr_mask = msr - 0x200 - 2 * index;
428 if (!is_mtrr_mask)
429 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
430 else
431 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
432
433 *pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
434 }
435
436 return 0;
437}
438
439void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
440{
441 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
442}
443
444struct mtrr_iter {
445 /* input fields. */
446 struct kvm_mtrr *mtrr_state;
447 u64 start;
448 u64 end;
449
450 /* output fields. */
451 int mem_type;
452 /* mtrr is completely disabled? */
453 bool mtrr_disabled;
454 /* [start, end) is not fully covered in MTRRs? */
455 bool partial_map;
456
457 /* private fields. */
458 union {
459 /* used for fixed MTRRs. */
460 struct {
461 int index;
462 int seg;
463 };
464
465 /* used for var MTRRs. */
466 struct {
467 struct kvm_mtrr_range *range;
468 /* max address has been covered in var MTRRs. */
469 u64 start_max;
470 };
471 };
472
473 bool fixed;
474};
475
476static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
477{
478 int seg, index;
479
480 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
481 return false;
482
483 seg = fixed_mtrr_addr_to_seg(iter->start);
484 if (seg < 0)
485 return false;
486
487 iter->fixed = true;
488 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
489 iter->index = index;
490 iter->seg = seg;
491 return true;
492}
493
494static bool match_var_range(struct mtrr_iter *iter,
495 struct kvm_mtrr_range *range)
496{
497 u64 start, end;
498
499 var_mtrr_range(range, &start, &end);
500 if (!(start >= iter->end || end <= iter->start)) {
501 iter->range = range;
502
503 /*
504 * the function is called when we do kvm_mtrr.head walking.
505 * Range has the minimum base address which interleaves
506 * [looker->start_max, looker->end).
507 */
508 iter->partial_map |= iter->start_max < start;
509
510 /* update the max address has been covered. */
511 iter->start_max = max(iter->start_max, end);
512 return true;
513 }
514
515 return false;
516}
517
518static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
519{
520 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
521
522 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
523 if (match_var_range(iter, iter->range))
524 return;
525
526 iter->range = NULL;
527 iter->partial_map |= iter->start_max < iter->end;
528}
529
530static void mtrr_lookup_var_start(struct mtrr_iter *iter)
531{
532 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
533
534 iter->fixed = false;
535 iter->start_max = iter->start;
536 iter->range = NULL;
537 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
538
539 __mtrr_lookup_var_next(iter);
540}
541
542static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
543{
544 /* terminate the lookup. */
545 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
546 iter->fixed = false;
547 iter->range = NULL;
548 return;
549 }
550
551 iter->index++;
552
553 /* have looked up for all fixed MTRRs. */
554 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
555 return mtrr_lookup_var_start(iter);
556
557 /* switch to next segment. */
558 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
559 iter->seg++;
560}
561
562static void mtrr_lookup_var_next(struct mtrr_iter *iter)
563{
564 __mtrr_lookup_var_next(iter);
565}
566
567static void mtrr_lookup_start(struct mtrr_iter *iter)
568{
569 if (!mtrr_is_enabled(iter->mtrr_state)) {
570 iter->mtrr_disabled = true;
571 return;
572 }
573
574 if (!mtrr_lookup_fixed_start(iter))
575 mtrr_lookup_var_start(iter);
576}
577
578static void mtrr_lookup_init(struct mtrr_iter *iter,
579 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
580{
581 iter->mtrr_state = mtrr_state;
582 iter->start = start;
583 iter->end = end;
584 iter->mtrr_disabled = false;
585 iter->partial_map = false;
586 iter->fixed = false;
587 iter->range = NULL;
588
589 mtrr_lookup_start(iter);
590}
591
592static bool mtrr_lookup_okay(struct mtrr_iter *iter)
593{
594 if (iter->fixed) {
595 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
596 return true;
597 }
598
599 if (iter->range) {
600 iter->mem_type = iter->range->base & 0xff;
601 return true;
602 }
603
604 return false;
605}
606
607static void mtrr_lookup_next(struct mtrr_iter *iter)
608{
609 if (iter->fixed)
610 mtrr_lookup_fixed_next(iter);
611 else
612 mtrr_lookup_var_next(iter);
613}
614
615#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
616 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
617 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
618
619u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
620{
621 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
622 struct mtrr_iter iter;
623 u64 start, end;
624 int type = -1;
625 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
626 | (1 << MTRR_TYPE_WRTHROUGH);
627
628 start = gfn_to_gpa(gfn);
629 end = start + PAGE_SIZE;
630
631 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
632 int curr_type = iter.mem_type;
633
634 /*
635 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
636 * Precedences.
637 */
638
639 if (type == -1) {
640 type = curr_type;
641 continue;
642 }
643
644 /*
645 * If two or more variable memory ranges match and the
646 * memory types are identical, then that memory type is
647 * used.
648 */
649 if (type == curr_type)
650 continue;
651
652 /*
653 * If two or more variable memory ranges match and one of
654 * the memory types is UC, the UC memory type used.
655 */
656 if (curr_type == MTRR_TYPE_UNCACHABLE)
657 return MTRR_TYPE_UNCACHABLE;
658
659 /*
660 * If two or more variable memory ranges match and the
661 * memory types are WT and WB, the WT memory type is used.
662 */
663 if (((1 << type) & wt_wb_mask) &&
664 ((1 << curr_type) & wt_wb_mask)) {
665 type = MTRR_TYPE_WRTHROUGH;
666 continue;
667 }
668
669 /*
670 * For overlaps not defined by the above rules, processor
671 * behavior is undefined.
672 */
673
674 /* We use WB for this undefined behavior. :( */
675 return MTRR_TYPE_WRBACK;
676 }
677
678 if (iter.mtrr_disabled)
679 return mtrr_disabled_type(vcpu);
680
681 /* not contained in any MTRRs. */
682 if (type == -1)
683 return mtrr_default_type(mtrr_state);
684
685 /*
686 * We just check one page, partially covered by MTRRs is
687 * impossible.
688 */
689 WARN_ON(iter.partial_map);
690
691 return type;
692}
693EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
694
695bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
696 int page_num)
697{
698 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
699 struct mtrr_iter iter;
700 u64 start, end;
701 int type = -1;
702
703 start = gfn_to_gpa(gfn);
704 end = gfn_to_gpa(gfn + page_num);
705 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
706 if (type == -1) {
707 type = iter.mem_type;
708 continue;
709 }
710
711 if (type != iter.mem_type)
712 return false;
713 }
714
715 if (iter.mtrr_disabled)
716 return true;
717
718 if (!iter.partial_map)
719 return true;
720
721 if (type == -1)
722 return true;
723
724 return type == mtrr_default_type(mtrr_state);
725}