Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * vMTRR implementation
  4 *
  5 * Copyright (C) 2006 Qumranet, Inc.
  6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  7 * Copyright(C) 2015 Intel Corporation.
  8 *
  9 * Authors:
 10 *   Yaniv Kamay  <yaniv@qumranet.com>
 11 *   Avi Kivity   <avi@qumranet.com>
 12 *   Marcelo Tosatti <mtosatti@redhat.com>
 13 *   Paolo Bonzini <pbonzini@redhat.com>
 14 *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
 
 
 
 15 */
 16
 17#include <linux/kvm_host.h>
 18#include <asm/mtrr.h>
 19
 20#include "cpuid.h"
 21#include "mmu.h"
 22
 23#define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
 24#define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
 25#define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)
 26
 27static bool msr_mtrr_valid(unsigned msr)
 28{
 29	switch (msr) {
 30	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
 31	case MSR_MTRRfix64K_00000:
 32	case MSR_MTRRfix16K_80000:
 33	case MSR_MTRRfix16K_A0000:
 34	case MSR_MTRRfix4K_C0000:
 35	case MSR_MTRRfix4K_C8000:
 36	case MSR_MTRRfix4K_D0000:
 37	case MSR_MTRRfix4K_D8000:
 38	case MSR_MTRRfix4K_E0000:
 39	case MSR_MTRRfix4K_E8000:
 40	case MSR_MTRRfix4K_F0000:
 41	case MSR_MTRRfix4K_F8000:
 42	case MSR_MTRRdefType:
 43	case MSR_IA32_CR_PAT:
 44		return true;
 45	}
 46	return false;
 47}
 48
 
 
 
 
 
 49static bool valid_mtrr_type(unsigned t)
 50{
 51	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
 52}
 53
 54bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 55{
 56	int i;
 57	u64 mask;
 58
 59	if (!msr_mtrr_valid(msr))
 60		return false;
 61
 62	if (msr == MSR_IA32_CR_PAT) {
 63		return kvm_pat_valid(data);
 
 
 
 64	} else if (msr == MSR_MTRRdefType) {
 65		if (data & ~0xcff)
 66			return false;
 67		return valid_mtrr_type(data & 0xff);
 68	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
 69		for (i = 0; i < 8 ; i++)
 70			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
 71				return false;
 72		return true;
 73	}
 74
 75	/* variable MTRRs */
 76	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
 77
 78	mask = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 79	if ((msr & 1) == 0) {
 80		/* MTRR base */
 81		if (!valid_mtrr_type(data & 0xff))
 82			return false;
 83		mask |= 0xf00;
 84	} else
 85		/* MTRR mask */
 86		mask |= 0x7ff;
 
 
 
 
 87
 88	return (data & mask) == 0;
 89}
 90EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
 91
 92static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
 93{
 94	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
 95}
 96
 97static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
 98{
 99	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
100}
101
102static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
103{
104	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
105}
106
107static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
108{
109	/*
110	 * Intel SDM 11.11.2.2: all MTRRs are disabled when
111	 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
112	 * memory type is applied to all of physical memory.
113	 *
114	 * However, virtual machines can be run with CPUID such that
115	 * there are no MTRRs.  In that case, the firmware will never
116	 * enable MTRRs and it is obviously undesirable to run the
117	 * guest entirely with UC memory and we use WB.
118	 */
119	if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
120		return MTRR_TYPE_UNCACHABLE;
121	else
122		return MTRR_TYPE_WRBACK;
123}
124
125/*
126* Three terms are used in the following code:
127* - segment, it indicates the address segments covered by fixed MTRRs.
128* - unit, it corresponds to the MSR entry in the segment.
129* - range, a range is covered in one memory cache type.
130*/
131struct fixed_mtrr_segment {
132	u64 start;
133	u64 end;
134
135	int range_shift;
136
137	/* the start position in kvm_mtrr.fixed_ranges[]. */
138	int range_start;
139};
140
141static struct fixed_mtrr_segment fixed_seg_table[] = {
142	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
143	{
144		.start = 0x0,
145		.end = 0x80000,
146		.range_shift = 16, /* 64K */
147		.range_start = 0,
148	},
149
150	/*
151	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
152	 * 16K fixed mtrr.
153	 */
154	{
155		.start = 0x80000,
156		.end = 0xc0000,
157		.range_shift = 14, /* 16K */
158		.range_start = 8,
159	},
160
161	/*
162	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
163	 * 4K fixed mtrr.
164	 */
165	{
166		.start = 0xc0000,
167		.end = 0x100000,
168		.range_shift = 12, /* 12K */
169		.range_start = 24,
170	}
171};
172
173/*
174 * The size of unit is covered in one MSR, one MSR entry contains
175 * 8 ranges so that unit size is always 8 * 2^range_shift.
176 */
177static u64 fixed_mtrr_seg_unit_size(int seg)
178{
179	return 8 << fixed_seg_table[seg].range_shift;
180}
181
182static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
183{
184	switch (msr) {
185	case MSR_MTRRfix64K_00000:
186		*seg = 0;
187		*unit = 0;
188		break;
189	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
190		*seg = 1;
191		*unit = array_index_nospec(
192			msr - MSR_MTRRfix16K_80000,
193			MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
194		break;
195	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
196		*seg = 2;
197		*unit = array_index_nospec(
198			msr - MSR_MTRRfix4K_C0000,
199			MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
200		break;
201	default:
202		return false;
203	}
204
205	return true;
206}
207
208static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
209{
210	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
211	u64 unit_size = fixed_mtrr_seg_unit_size(seg);
212
213	*start = mtrr_seg->start + unit * unit_size;
214	*end = *start + unit_size;
215	WARN_ON(*end > mtrr_seg->end);
216}
217
218static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
219{
220	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
221
222	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
223		> mtrr_seg->end);
224
225	/* each unit has 8 ranges. */
226	return mtrr_seg->range_start + 8 * unit;
227}
228
229static int fixed_mtrr_seg_end_range_index(int seg)
230{
231	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
232	int n;
233
234	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
235	return mtrr_seg->range_start + n - 1;
236}
237
238static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
239{
240	int seg, unit;
241
242	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
243		return false;
244
245	fixed_mtrr_seg_unit_range(seg, unit, start, end);
246	return true;
247}
248
249static int fixed_msr_to_range_index(u32 msr)
250{
251	int seg, unit;
252
253	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
254		return -1;
255
256	return fixed_mtrr_seg_unit_range_index(seg, unit);
257}
258
259static int fixed_mtrr_addr_to_seg(u64 addr)
260{
261	struct fixed_mtrr_segment *mtrr_seg;
262	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
263
264	for (seg = 0; seg < seg_num; seg++) {
265		mtrr_seg = &fixed_seg_table[seg];
266		if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
267			return seg;
268	}
269
270	return -1;
271}
272
273static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
274{
275	struct fixed_mtrr_segment *mtrr_seg;
276	int index;
277
278	mtrr_seg = &fixed_seg_table[seg];
279	index = mtrr_seg->range_start;
280	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
281	return index;
282}
283
284static u64 fixed_mtrr_range_end_addr(int seg, int index)
285{
286	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
287	int pos = index - mtrr_seg->range_start;
288
289	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
290}
291
292static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
293{
294	u64 mask;
295
296	*start = range->base & PAGE_MASK;
297
298	mask = range->mask & PAGE_MASK;
299
300	/* This cannot overflow because writing to the reserved bits of
301	 * variable MTRRs causes a #GP.
302	 */
303	*end = (*start | ~mask) + 1;
304}
305
306static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
307{
308	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
309	gfn_t start, end;
310	int index;
311
312	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
313	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
314		return;
315
316	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
317		return;
318
319	/* fixed MTRRs. */
320	if (fixed_msr_to_range(msr, &start, &end)) {
321		if (!fixed_mtrr_is_enabled(mtrr_state))
322			return;
323	} else if (msr == MSR_MTRRdefType) {
324		start = 0x0;
325		end = ~0ULL;
326	} else {
327		/* variable range MTRRs. */
328		index = (msr - 0x200) / 2;
329		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
330	}
331
332	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
333}
334
335static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
336{
337	return (range->mask & (1 << 11)) != 0;
338}
339
340static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
341{
342	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
343	struct kvm_mtrr_range *tmp, *cur;
344	int index, is_mtrr_mask;
345
346	index = (msr - 0x200) / 2;
347	is_mtrr_mask = msr - 0x200 - 2 * index;
348	cur = &mtrr_state->var_ranges[index];
349
350	/* remove the entry if it's in the list. */
351	if (var_mtrr_range_is_valid(cur))
352		list_del(&mtrr_state->var_ranges[index].node);
353
354	/*
355	 * Set all illegal GPA bits in the mask, since those bits must
356	 * implicitly be 0.  The bits are then cleared when reading them.
357	 */
358	if (!is_mtrr_mask)
359		cur->base = data;
360	else
361		cur->mask = data | kvm_vcpu_reserved_gpa_bits_raw(vcpu);
362
363	/* add it to the list if it's enabled. */
364	if (var_mtrr_range_is_valid(cur)) {
365		list_for_each_entry(tmp, &mtrr_state->head, node)
366			if (cur->base >= tmp->base)
367				break;
368		list_add_tail(&cur->node, &tmp->node);
369	}
370}
371
372int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
373{
374	int index;
375
376	if (!kvm_mtrr_valid(vcpu, msr, data))
377		return 1;
378
379	index = fixed_msr_to_range_index(msr);
380	if (index >= 0)
381		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
382	else if (msr == MSR_MTRRdefType)
383		vcpu->arch.mtrr_state.deftype = data;
384	else if (msr == MSR_IA32_CR_PAT)
385		vcpu->arch.pat = data;
386	else
387		set_var_mtrr_msr(vcpu, msr, data);
388
389	update_mtrr(vcpu, msr);
390	return 0;
391}
392
393int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
394{
395	int index;
396
397	/* MSR_MTRRcap is a readonly MSR. */
398	if (msr == MSR_MTRRcap) {
399		/*
400		 * SMRR = 0
401		 * WC = 1
402		 * FIX = 1
403		 * VCNT = KVM_NR_VAR_MTRR
404		 */
405		*pdata = 0x500 | KVM_NR_VAR_MTRR;
406		return 0;
407	}
408
409	if (!msr_mtrr_valid(msr))
410		return 1;
411
412	index = fixed_msr_to_range_index(msr);
413	if (index >= 0)
414		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
415	else if (msr == MSR_MTRRdefType)
416		*pdata = vcpu->arch.mtrr_state.deftype;
417	else if (msr == MSR_IA32_CR_PAT)
418		*pdata = vcpu->arch.pat;
419	else {	/* Variable MTRRs */
420		int is_mtrr_mask;
421
422		index = (msr - 0x200) / 2;
423		is_mtrr_mask = msr - 0x200 - 2 * index;
424		if (!is_mtrr_mask)
425			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
426		else
427			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
428
429		*pdata &= ~kvm_vcpu_reserved_gpa_bits_raw(vcpu);
430	}
431
432	return 0;
433}
434
435void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
436{
437	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
438}
439
440struct mtrr_iter {
441	/* input fields. */
442	struct kvm_mtrr *mtrr_state;
443	u64 start;
444	u64 end;
445
446	/* output fields. */
447	int mem_type;
448	/* mtrr is completely disabled? */
449	bool mtrr_disabled;
450	/* [start, end) is not fully covered in MTRRs? */
451	bool partial_map;
452
453	/* private fields. */
454	union {
455		/* used for fixed MTRRs. */
456		struct {
457			int index;
458			int seg;
459		};
460
461		/* used for var MTRRs. */
462		struct {
463			struct kvm_mtrr_range *range;
464			/* max address has been covered in var MTRRs. */
465			u64 start_max;
466		};
467	};
468
469	bool fixed;
470};
471
472static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
473{
474	int seg, index;
475
476	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
477		return false;
478
479	seg = fixed_mtrr_addr_to_seg(iter->start);
480	if (seg < 0)
481		return false;
482
483	iter->fixed = true;
484	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
485	iter->index = index;
486	iter->seg = seg;
487	return true;
488}
489
490static bool match_var_range(struct mtrr_iter *iter,
491			    struct kvm_mtrr_range *range)
492{
493	u64 start, end;
494
495	var_mtrr_range(range, &start, &end);
496	if (!(start >= iter->end || end <= iter->start)) {
497		iter->range = range;
498
499		/*
500		 * the function is called when we do kvm_mtrr.head walking.
501		 * Range has the minimum base address which interleaves
502		 * [looker->start_max, looker->end).
503		 */
504		iter->partial_map |= iter->start_max < start;
505
506		/* update the max address has been covered. */
507		iter->start_max = max(iter->start_max, end);
508		return true;
509	}
510
511	return false;
512}
513
514static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
515{
516	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
517
518	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
519		if (match_var_range(iter, iter->range))
520			return;
521
522	iter->range = NULL;
523	iter->partial_map |= iter->start_max < iter->end;
524}
525
526static void mtrr_lookup_var_start(struct mtrr_iter *iter)
527{
528	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
529
530	iter->fixed = false;
531	iter->start_max = iter->start;
532	iter->range = NULL;
533	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
534
535	__mtrr_lookup_var_next(iter);
536}
537
538static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
539{
540	/* terminate the lookup. */
541	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
542		iter->fixed = false;
543		iter->range = NULL;
544		return;
545	}
546
547	iter->index++;
548
549	/* have looked up for all fixed MTRRs. */
550	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
551		return mtrr_lookup_var_start(iter);
552
553	/* switch to next segment. */
554	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
555		iter->seg++;
556}
557
558static void mtrr_lookup_var_next(struct mtrr_iter *iter)
559{
560	__mtrr_lookup_var_next(iter);
561}
562
563static void mtrr_lookup_start(struct mtrr_iter *iter)
564{
565	if (!mtrr_is_enabled(iter->mtrr_state)) {
566		iter->mtrr_disabled = true;
567		return;
568	}
569
570	if (!mtrr_lookup_fixed_start(iter))
571		mtrr_lookup_var_start(iter);
572}
573
574static void mtrr_lookup_init(struct mtrr_iter *iter,
575			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
576{
577	iter->mtrr_state = mtrr_state;
578	iter->start = start;
579	iter->end = end;
580	iter->mtrr_disabled = false;
581	iter->partial_map = false;
582	iter->fixed = false;
583	iter->range = NULL;
584
585	mtrr_lookup_start(iter);
586}
587
588static bool mtrr_lookup_okay(struct mtrr_iter *iter)
589{
590	if (iter->fixed) {
591		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
592		return true;
593	}
594
595	if (iter->range) {
596		iter->mem_type = iter->range->base & 0xff;
597		return true;
598	}
599
600	return false;
601}
602
603static void mtrr_lookup_next(struct mtrr_iter *iter)
604{
605	if (iter->fixed)
606		mtrr_lookup_fixed_next(iter);
607	else
608		mtrr_lookup_var_next(iter);
609}
610
611#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
612	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
613	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
614
615u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
616{
617	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
618	struct mtrr_iter iter;
619	u64 start, end;
620	int type = -1;
621	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
622			       | (1 << MTRR_TYPE_WRTHROUGH);
623
624	start = gfn_to_gpa(gfn);
625	end = start + PAGE_SIZE;
626
627	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
628		int curr_type = iter.mem_type;
629
630		/*
631		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
632		 * Precedences.
633		 */
634
635		if (type == -1) {
636			type = curr_type;
637			continue;
638		}
639
640		/*
641		 * If two or more variable memory ranges match and the
642		 * memory types are identical, then that memory type is
643		 * used.
644		 */
645		if (type == curr_type)
646			continue;
647
648		/*
649		 * If two or more variable memory ranges match and one of
650		 * the memory types is UC, the UC memory type used.
651		 */
652		if (curr_type == MTRR_TYPE_UNCACHABLE)
653			return MTRR_TYPE_UNCACHABLE;
654
655		/*
656		 * If two or more variable memory ranges match and the
657		 * memory types are WT and WB, the WT memory type is used.
658		 */
659		if (((1 << type) & wt_wb_mask) &&
660		      ((1 << curr_type) & wt_wb_mask)) {
661			type = MTRR_TYPE_WRTHROUGH;
662			continue;
663		}
664
665		/*
666		 * For overlaps not defined by the above rules, processor
667		 * behavior is undefined.
668		 */
669
670		/* We use WB for this undefined behavior. :( */
671		return MTRR_TYPE_WRBACK;
672	}
673
674	if (iter.mtrr_disabled)
675		return mtrr_disabled_type(vcpu);
676
677	/* not contained in any MTRRs. */
678	if (type == -1)
679		return mtrr_default_type(mtrr_state);
680
681	/*
682	 * We just check one page, partially covered by MTRRs is
683	 * impossible.
684	 */
685	WARN_ON(iter.partial_map);
686
687	return type;
688}
689EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
690
691bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
692					  int page_num)
693{
694	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
695	struct mtrr_iter iter;
696	u64 start, end;
697	int type = -1;
698
699	start = gfn_to_gpa(gfn);
700	end = gfn_to_gpa(gfn + page_num);
701	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
702		if (type == -1) {
703			type = iter.mem_type;
704			continue;
705		}
706
707		if (type != iter.mem_type)
708			return false;
709	}
710
711	if (iter.mtrr_disabled)
712		return true;
713
714	if (!iter.partial_map)
715		return true;
716
717	if (type == -1)
718		return true;
719
720	return type == mtrr_default_type(mtrr_state);
721}
v4.17
 
  1/*
  2 * vMTRR implementation
  3 *
  4 * Copyright (C) 2006 Qumranet, Inc.
  5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  6 * Copyright(C) 2015 Intel Corporation.
  7 *
  8 * Authors:
  9 *   Yaniv Kamay  <yaniv@qumranet.com>
 10 *   Avi Kivity   <avi@qumranet.com>
 11 *   Marcelo Tosatti <mtosatti@redhat.com>
 12 *   Paolo Bonzini <pbonzini@redhat.com>
 13 *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
 14 *
 15 * This work is licensed under the terms of the GNU GPL, version 2.  See
 16 * the COPYING file in the top-level directory.
 17 */
 18
 19#include <linux/kvm_host.h>
 20#include <asm/mtrr.h>
 21
 22#include "cpuid.h"
 23#include "mmu.h"
 24
 25#define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
 26#define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
 27#define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)
 28
 29static bool msr_mtrr_valid(unsigned msr)
 30{
 31	switch (msr) {
 32	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
 33	case MSR_MTRRfix64K_00000:
 34	case MSR_MTRRfix16K_80000:
 35	case MSR_MTRRfix16K_A0000:
 36	case MSR_MTRRfix4K_C0000:
 37	case MSR_MTRRfix4K_C8000:
 38	case MSR_MTRRfix4K_D0000:
 39	case MSR_MTRRfix4K_D8000:
 40	case MSR_MTRRfix4K_E0000:
 41	case MSR_MTRRfix4K_E8000:
 42	case MSR_MTRRfix4K_F0000:
 43	case MSR_MTRRfix4K_F8000:
 44	case MSR_MTRRdefType:
 45	case MSR_IA32_CR_PAT:
 46		return true;
 47	}
 48	return false;
 49}
 50
 51static bool valid_pat_type(unsigned t)
 52{
 53	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
 54}
 55
 56static bool valid_mtrr_type(unsigned t)
 57{
 58	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
 59}
 60
 61bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 62{
 63	int i;
 64	u64 mask;
 65
 66	if (!msr_mtrr_valid(msr))
 67		return false;
 68
 69	if (msr == MSR_IA32_CR_PAT) {
 70		for (i = 0; i < 8; i++)
 71			if (!valid_pat_type((data >> (i * 8)) & 0xff))
 72				return false;
 73		return true;
 74	} else if (msr == MSR_MTRRdefType) {
 75		if (data & ~0xcff)
 76			return false;
 77		return valid_mtrr_type(data & 0xff);
 78	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
 79		for (i = 0; i < 8 ; i++)
 80			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
 81				return false;
 82		return true;
 83	}
 84
 85	/* variable MTRRs */
 86	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
 87
 88	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
 89	if ((msr & 1) == 0) {
 90		/* MTRR base */
 91		if (!valid_mtrr_type(data & 0xff))
 92			return false;
 93		mask |= 0xf00;
 94	} else
 95		/* MTRR mask */
 96		mask |= 0x7ff;
 97	if (data & mask) {
 98		kvm_inject_gp(vcpu, 0);
 99		return false;
100	}
101
102	return true;
103}
104EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
105
106static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
107{
108	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
109}
110
111static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
112{
113	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
114}
115
116static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
117{
118	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
119}
120
121static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
122{
123	/*
124	 * Intel SDM 11.11.2.2: all MTRRs are disabled when
125	 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
126	 * memory type is applied to all of physical memory.
127	 *
128	 * However, virtual machines can be run with CPUID such that
129	 * there are no MTRRs.  In that case, the firmware will never
130	 * enable MTRRs and it is obviously undesirable to run the
131	 * guest entirely with UC memory and we use WB.
132	 */
133	if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
134		return MTRR_TYPE_UNCACHABLE;
135	else
136		return MTRR_TYPE_WRBACK;
137}
138
139/*
140* Three terms are used in the following code:
141* - segment, it indicates the address segments covered by fixed MTRRs.
142* - unit, it corresponds to the MSR entry in the segment.
143* - range, a range is covered in one memory cache type.
144*/
145struct fixed_mtrr_segment {
146	u64 start;
147	u64 end;
148
149	int range_shift;
150
151	/* the start position in kvm_mtrr.fixed_ranges[]. */
152	int range_start;
153};
154
155static struct fixed_mtrr_segment fixed_seg_table[] = {
156	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
157	{
158		.start = 0x0,
159		.end = 0x80000,
160		.range_shift = 16, /* 64K */
161		.range_start = 0,
162	},
163
164	/*
165	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
166	 * 16K fixed mtrr.
167	 */
168	{
169		.start = 0x80000,
170		.end = 0xc0000,
171		.range_shift = 14, /* 16K */
172		.range_start = 8,
173	},
174
175	/*
176	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
177	 * 4K fixed mtrr.
178	 */
179	{
180		.start = 0xc0000,
181		.end = 0x100000,
182		.range_shift = 12, /* 12K */
183		.range_start = 24,
184	}
185};
186
187/*
188 * The size of unit is covered in one MSR, one MSR entry contains
189 * 8 ranges so that unit size is always 8 * 2^range_shift.
190 */
191static u64 fixed_mtrr_seg_unit_size(int seg)
192{
193	return 8 << fixed_seg_table[seg].range_shift;
194}
195
196static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
197{
198	switch (msr) {
199	case MSR_MTRRfix64K_00000:
200		*seg = 0;
201		*unit = 0;
202		break;
203	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
204		*seg = 1;
205		*unit = msr - MSR_MTRRfix16K_80000;
 
 
206		break;
207	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
208		*seg = 2;
209		*unit = msr - MSR_MTRRfix4K_C0000;
 
 
210		break;
211	default:
212		return false;
213	}
214
215	return true;
216}
217
218static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
219{
220	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
221	u64 unit_size = fixed_mtrr_seg_unit_size(seg);
222
223	*start = mtrr_seg->start + unit * unit_size;
224	*end = *start + unit_size;
225	WARN_ON(*end > mtrr_seg->end);
226}
227
228static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
229{
230	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
231
232	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
233		> mtrr_seg->end);
234
235	/* each unit has 8 ranges. */
236	return mtrr_seg->range_start + 8 * unit;
237}
238
239static int fixed_mtrr_seg_end_range_index(int seg)
240{
241	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
242	int n;
243
244	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
245	return mtrr_seg->range_start + n - 1;
246}
247
248static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
249{
250	int seg, unit;
251
252	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
253		return false;
254
255	fixed_mtrr_seg_unit_range(seg, unit, start, end);
256	return true;
257}
258
259static int fixed_msr_to_range_index(u32 msr)
260{
261	int seg, unit;
262
263	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
264		return -1;
265
266	return fixed_mtrr_seg_unit_range_index(seg, unit);
267}
268
269static int fixed_mtrr_addr_to_seg(u64 addr)
270{
271	struct fixed_mtrr_segment *mtrr_seg;
272	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
273
274	for (seg = 0; seg < seg_num; seg++) {
275		mtrr_seg = &fixed_seg_table[seg];
276		if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
277			return seg;
278	}
279
280	return -1;
281}
282
283static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
284{
285	struct fixed_mtrr_segment *mtrr_seg;
286	int index;
287
288	mtrr_seg = &fixed_seg_table[seg];
289	index = mtrr_seg->range_start;
290	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
291	return index;
292}
293
294static u64 fixed_mtrr_range_end_addr(int seg, int index)
295{
296	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
297	int pos = index - mtrr_seg->range_start;
298
299	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
300}
301
302static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
303{
304	u64 mask;
305
306	*start = range->base & PAGE_MASK;
307
308	mask = range->mask & PAGE_MASK;
309
310	/* This cannot overflow because writing to the reserved bits of
311	 * variable MTRRs causes a #GP.
312	 */
313	*end = (*start | ~mask) + 1;
314}
315
316static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
317{
318	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
319	gfn_t start, end;
320	int index;
321
322	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
323	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
324		return;
325
326	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
327		return;
328
329	/* fixed MTRRs. */
330	if (fixed_msr_to_range(msr, &start, &end)) {
331		if (!fixed_mtrr_is_enabled(mtrr_state))
332			return;
333	} else if (msr == MSR_MTRRdefType) {
334		start = 0x0;
335		end = ~0ULL;
336	} else {
337		/* variable range MTRRs. */
338		index = (msr - 0x200) / 2;
339		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
340	}
341
342	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
343}
344
345static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
346{
347	return (range->mask & (1 << 11)) != 0;
348}
349
350static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
351{
352	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
353	struct kvm_mtrr_range *tmp, *cur;
354	int index, is_mtrr_mask;
355
356	index = (msr - 0x200) / 2;
357	is_mtrr_mask = msr - 0x200 - 2 * index;
358	cur = &mtrr_state->var_ranges[index];
359
360	/* remove the entry if it's in the list. */
361	if (var_mtrr_range_is_valid(cur))
362		list_del(&mtrr_state->var_ranges[index].node);
363
364	/* Extend the mask with all 1 bits to the left, since those
365	 * bits must implicitly be 0.  The bits are then cleared
366	 * when reading them.
367	 */
368	if (!is_mtrr_mask)
369		cur->base = data;
370	else
371		cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
372
373	/* add it to the list if it's enabled. */
374	if (var_mtrr_range_is_valid(cur)) {
375		list_for_each_entry(tmp, &mtrr_state->head, node)
376			if (cur->base >= tmp->base)
377				break;
378		list_add_tail(&cur->node, &tmp->node);
379	}
380}
381
382int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
383{
384	int index;
385
386	if (!kvm_mtrr_valid(vcpu, msr, data))
387		return 1;
388
389	index = fixed_msr_to_range_index(msr);
390	if (index >= 0)
391		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
392	else if (msr == MSR_MTRRdefType)
393		vcpu->arch.mtrr_state.deftype = data;
394	else if (msr == MSR_IA32_CR_PAT)
395		vcpu->arch.pat = data;
396	else
397		set_var_mtrr_msr(vcpu, msr, data);
398
399	update_mtrr(vcpu, msr);
400	return 0;
401}
402
403int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
404{
405	int index;
406
407	/* MSR_MTRRcap is a readonly MSR. */
408	if (msr == MSR_MTRRcap) {
409		/*
410		 * SMRR = 0
411		 * WC = 1
412		 * FIX = 1
413		 * VCNT = KVM_NR_VAR_MTRR
414		 */
415		*pdata = 0x500 | KVM_NR_VAR_MTRR;
416		return 0;
417	}
418
419	if (!msr_mtrr_valid(msr))
420		return 1;
421
422	index = fixed_msr_to_range_index(msr);
423	if (index >= 0)
424		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
425	else if (msr == MSR_MTRRdefType)
426		*pdata = vcpu->arch.mtrr_state.deftype;
427	else if (msr == MSR_IA32_CR_PAT)
428		*pdata = vcpu->arch.pat;
429	else {	/* Variable MTRRs */
430		int is_mtrr_mask;
431
432		index = (msr - 0x200) / 2;
433		is_mtrr_mask = msr - 0x200 - 2 * index;
434		if (!is_mtrr_mask)
435			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
436		else
437			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
438
439		*pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
440	}
441
442	return 0;
443}
444
445void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
446{
447	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
448}
449
450struct mtrr_iter {
451	/* input fields. */
452	struct kvm_mtrr *mtrr_state;
453	u64 start;
454	u64 end;
455
456	/* output fields. */
457	int mem_type;
458	/* mtrr is completely disabled? */
459	bool mtrr_disabled;
460	/* [start, end) is not fully covered in MTRRs? */
461	bool partial_map;
462
463	/* private fields. */
464	union {
465		/* used for fixed MTRRs. */
466		struct {
467			int index;
468			int seg;
469		};
470
471		/* used for var MTRRs. */
472		struct {
473			struct kvm_mtrr_range *range;
474			/* max address has been covered in var MTRRs. */
475			u64 start_max;
476		};
477	};
478
479	bool fixed;
480};
481
482static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
483{
484	int seg, index;
485
486	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
487		return false;
488
489	seg = fixed_mtrr_addr_to_seg(iter->start);
490	if (seg < 0)
491		return false;
492
493	iter->fixed = true;
494	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
495	iter->index = index;
496	iter->seg = seg;
497	return true;
498}
499
500static bool match_var_range(struct mtrr_iter *iter,
501			    struct kvm_mtrr_range *range)
502{
503	u64 start, end;
504
505	var_mtrr_range(range, &start, &end);
506	if (!(start >= iter->end || end <= iter->start)) {
507		iter->range = range;
508
509		/*
510		 * the function is called when we do kvm_mtrr.head walking.
511		 * Range has the minimum base address which interleaves
512		 * [looker->start_max, looker->end).
513		 */
514		iter->partial_map |= iter->start_max < start;
515
516		/* update the max address has been covered. */
517		iter->start_max = max(iter->start_max, end);
518		return true;
519	}
520
521	return false;
522}
523
524static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
525{
526	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
527
528	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
529		if (match_var_range(iter, iter->range))
530			return;
531
532	iter->range = NULL;
533	iter->partial_map |= iter->start_max < iter->end;
534}
535
536static void mtrr_lookup_var_start(struct mtrr_iter *iter)
537{
538	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
539
540	iter->fixed = false;
541	iter->start_max = iter->start;
542	iter->range = NULL;
543	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
544
545	__mtrr_lookup_var_next(iter);
546}
547
548static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
549{
550	/* terminate the lookup. */
551	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
552		iter->fixed = false;
553		iter->range = NULL;
554		return;
555	}
556
557	iter->index++;
558
559	/* have looked up for all fixed MTRRs. */
560	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
561		return mtrr_lookup_var_start(iter);
562
563	/* switch to next segment. */
564	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
565		iter->seg++;
566}
567
568static void mtrr_lookup_var_next(struct mtrr_iter *iter)
569{
570	__mtrr_lookup_var_next(iter);
571}
572
573static void mtrr_lookup_start(struct mtrr_iter *iter)
574{
575	if (!mtrr_is_enabled(iter->mtrr_state)) {
576		iter->mtrr_disabled = true;
577		return;
578	}
579
580	if (!mtrr_lookup_fixed_start(iter))
581		mtrr_lookup_var_start(iter);
582}
583
584static void mtrr_lookup_init(struct mtrr_iter *iter,
585			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
586{
587	iter->mtrr_state = mtrr_state;
588	iter->start = start;
589	iter->end = end;
590	iter->mtrr_disabled = false;
591	iter->partial_map = false;
592	iter->fixed = false;
593	iter->range = NULL;
594
595	mtrr_lookup_start(iter);
596}
597
598static bool mtrr_lookup_okay(struct mtrr_iter *iter)
599{
600	if (iter->fixed) {
601		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
602		return true;
603	}
604
605	if (iter->range) {
606		iter->mem_type = iter->range->base & 0xff;
607		return true;
608	}
609
610	return false;
611}
612
613static void mtrr_lookup_next(struct mtrr_iter *iter)
614{
615	if (iter->fixed)
616		mtrr_lookup_fixed_next(iter);
617	else
618		mtrr_lookup_var_next(iter);
619}
620
621#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
622	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
623	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
624
625u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
626{
627	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
628	struct mtrr_iter iter;
629	u64 start, end;
630	int type = -1;
631	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
632			       | (1 << MTRR_TYPE_WRTHROUGH);
633
634	start = gfn_to_gpa(gfn);
635	end = start + PAGE_SIZE;
636
637	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
638		int curr_type = iter.mem_type;
639
640		/*
641		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
642		 * Precedences.
643		 */
644
645		if (type == -1) {
646			type = curr_type;
647			continue;
648		}
649
650		/*
651		 * If two or more variable memory ranges match and the
652		 * memory types are identical, then that memory type is
653		 * used.
654		 */
655		if (type == curr_type)
656			continue;
657
658		/*
659		 * If two or more variable memory ranges match and one of
660		 * the memory types is UC, the UC memory type used.
661		 */
662		if (curr_type == MTRR_TYPE_UNCACHABLE)
663			return MTRR_TYPE_UNCACHABLE;
664
665		/*
666		 * If two or more variable memory ranges match and the
667		 * memory types are WT and WB, the WT memory type is used.
668		 */
669		if (((1 << type) & wt_wb_mask) &&
670		      ((1 << curr_type) & wt_wb_mask)) {
671			type = MTRR_TYPE_WRTHROUGH;
672			continue;
673		}
674
675		/*
676		 * For overlaps not defined by the above rules, processor
677		 * behavior is undefined.
678		 */
679
680		/* We use WB for this undefined behavior. :( */
681		return MTRR_TYPE_WRBACK;
682	}
683
684	if (iter.mtrr_disabled)
685		return mtrr_disabled_type(vcpu);
686
687	/* not contained in any MTRRs. */
688	if (type == -1)
689		return mtrr_default_type(mtrr_state);
690
691	/*
692	 * We just check one page, partially covered by MTRRs is
693	 * impossible.
694	 */
695	WARN_ON(iter.partial_map);
696
697	return type;
698}
699EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
700
701bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
702					  int page_num)
703{
704	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
705	struct mtrr_iter iter;
706	u64 start, end;
707	int type = -1;
708
709	start = gfn_to_gpa(gfn);
710	end = gfn_to_gpa(gfn + page_num);
711	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
712		if (type == -1) {
713			type = iter.mem_type;
714			continue;
715		}
716
717		if (type != iter.mem_type)
718			return false;
719	}
720
721	if (iter.mtrr_disabled)
722		return true;
723
724	if (!iter.partial_map)
725		return true;
726
727	if (type == -1)
728		return true;
729
730	return type == mtrr_default_type(mtrr_state);
731}