Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * vMTRR implementation
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 * Copyright(C) 2015 Intel Corporation.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 * Marcelo Tosatti <mtosatti@redhat.com>
13 * Paolo Bonzini <pbonzini@redhat.com>
14 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
15 */
16
17#include <linux/kvm_host.h>
18#include <asm/mtrr.h>
19
20#include "cpuid.h"
21#include "mmu.h"
22
23#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
24#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
25#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
26
27static bool msr_mtrr_valid(unsigned msr)
28{
29 switch (msr) {
30 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
31 case MSR_MTRRfix64K_00000:
32 case MSR_MTRRfix16K_80000:
33 case MSR_MTRRfix16K_A0000:
34 case MSR_MTRRfix4K_C0000:
35 case MSR_MTRRfix4K_C8000:
36 case MSR_MTRRfix4K_D0000:
37 case MSR_MTRRfix4K_D8000:
38 case MSR_MTRRfix4K_E0000:
39 case MSR_MTRRfix4K_E8000:
40 case MSR_MTRRfix4K_F0000:
41 case MSR_MTRRfix4K_F8000:
42 case MSR_MTRRdefType:
43 case MSR_IA32_CR_PAT:
44 return true;
45 }
46 return false;
47}
48
49static bool valid_mtrr_type(unsigned t)
50{
51 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
52}
53
54bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
55{
56 int i;
57 u64 mask;
58
59 if (!msr_mtrr_valid(msr))
60 return false;
61
62 if (msr == MSR_IA32_CR_PAT) {
63 return kvm_pat_valid(data);
64 } else if (msr == MSR_MTRRdefType) {
65 if (data & ~0xcff)
66 return false;
67 return valid_mtrr_type(data & 0xff);
68 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
69 for (i = 0; i < 8 ; i++)
70 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
71 return false;
72 return true;
73 }
74
75 /* variable MTRRs */
76 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
77
78 mask = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
79 if ((msr & 1) == 0) {
80 /* MTRR base */
81 if (!valid_mtrr_type(data & 0xff))
82 return false;
83 mask |= 0xf00;
84 } else
85 /* MTRR mask */
86 mask |= 0x7ff;
87
88 return (data & mask) == 0;
89}
90EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
91
92static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
93{
94 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
95}
96
97static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
98{
99 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
100}
101
102static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
103{
104 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
105}
106
107static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
108{
109 /*
110 * Intel SDM 11.11.2.2: all MTRRs are disabled when
111 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
112 * memory type is applied to all of physical memory.
113 *
114 * However, virtual machines can be run with CPUID such that
115 * there are no MTRRs. In that case, the firmware will never
116 * enable MTRRs and it is obviously undesirable to run the
117 * guest entirely with UC memory and we use WB.
118 */
119 if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
120 return MTRR_TYPE_UNCACHABLE;
121 else
122 return MTRR_TYPE_WRBACK;
123}
124
125/*
126* Three terms are used in the following code:
127* - segment, it indicates the address segments covered by fixed MTRRs.
128* - unit, it corresponds to the MSR entry in the segment.
129* - range, a range is covered in one memory cache type.
130*/
131struct fixed_mtrr_segment {
132 u64 start;
133 u64 end;
134
135 int range_shift;
136
137 /* the start position in kvm_mtrr.fixed_ranges[]. */
138 int range_start;
139};
140
141static struct fixed_mtrr_segment fixed_seg_table[] = {
142 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
143 {
144 .start = 0x0,
145 .end = 0x80000,
146 .range_shift = 16, /* 64K */
147 .range_start = 0,
148 },
149
150 /*
151 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
152 * 16K fixed mtrr.
153 */
154 {
155 .start = 0x80000,
156 .end = 0xc0000,
157 .range_shift = 14, /* 16K */
158 .range_start = 8,
159 },
160
161 /*
162 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
163 * 4K fixed mtrr.
164 */
165 {
166 .start = 0xc0000,
167 .end = 0x100000,
168 .range_shift = 12, /* 12K */
169 .range_start = 24,
170 }
171};
172
173/*
174 * The size of unit is covered in one MSR, one MSR entry contains
175 * 8 ranges so that unit size is always 8 * 2^range_shift.
176 */
177static u64 fixed_mtrr_seg_unit_size(int seg)
178{
179 return 8 << fixed_seg_table[seg].range_shift;
180}
181
182static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
183{
184 switch (msr) {
185 case MSR_MTRRfix64K_00000:
186 *seg = 0;
187 *unit = 0;
188 break;
189 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
190 *seg = 1;
191 *unit = array_index_nospec(
192 msr - MSR_MTRRfix16K_80000,
193 MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
194 break;
195 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
196 *seg = 2;
197 *unit = array_index_nospec(
198 msr - MSR_MTRRfix4K_C0000,
199 MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
200 break;
201 default:
202 return false;
203 }
204
205 return true;
206}
207
208static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
209{
210 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
211 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
212
213 *start = mtrr_seg->start + unit * unit_size;
214 *end = *start + unit_size;
215 WARN_ON(*end > mtrr_seg->end);
216}
217
218static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
219{
220 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
221
222 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
223 > mtrr_seg->end);
224
225 /* each unit has 8 ranges. */
226 return mtrr_seg->range_start + 8 * unit;
227}
228
229static int fixed_mtrr_seg_end_range_index(int seg)
230{
231 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
232 int n;
233
234 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
235 return mtrr_seg->range_start + n - 1;
236}
237
238static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
239{
240 int seg, unit;
241
242 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
243 return false;
244
245 fixed_mtrr_seg_unit_range(seg, unit, start, end);
246 return true;
247}
248
249static int fixed_msr_to_range_index(u32 msr)
250{
251 int seg, unit;
252
253 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
254 return -1;
255
256 return fixed_mtrr_seg_unit_range_index(seg, unit);
257}
258
259static int fixed_mtrr_addr_to_seg(u64 addr)
260{
261 struct fixed_mtrr_segment *mtrr_seg;
262 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
263
264 for (seg = 0; seg < seg_num; seg++) {
265 mtrr_seg = &fixed_seg_table[seg];
266 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
267 return seg;
268 }
269
270 return -1;
271}
272
273static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
274{
275 struct fixed_mtrr_segment *mtrr_seg;
276 int index;
277
278 mtrr_seg = &fixed_seg_table[seg];
279 index = mtrr_seg->range_start;
280 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
281 return index;
282}
283
284static u64 fixed_mtrr_range_end_addr(int seg, int index)
285{
286 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
287 int pos = index - mtrr_seg->range_start;
288
289 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
290}
291
292static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
293{
294 u64 mask;
295
296 *start = range->base & PAGE_MASK;
297
298 mask = range->mask & PAGE_MASK;
299
300 /* This cannot overflow because writing to the reserved bits of
301 * variable MTRRs causes a #GP.
302 */
303 *end = (*start | ~mask) + 1;
304}
305
306static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
307{
308 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
309 gfn_t start, end;
310 int index;
311
312 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
313 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
314 return;
315
316 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
317 return;
318
319 /* fixed MTRRs. */
320 if (fixed_msr_to_range(msr, &start, &end)) {
321 if (!fixed_mtrr_is_enabled(mtrr_state))
322 return;
323 } else if (msr == MSR_MTRRdefType) {
324 start = 0x0;
325 end = ~0ULL;
326 } else {
327 /* variable range MTRRs. */
328 index = (msr - 0x200) / 2;
329 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
330 }
331
332 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
333}
334
335static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
336{
337 return (range->mask & (1 << 11)) != 0;
338}
339
340static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
341{
342 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
343 struct kvm_mtrr_range *tmp, *cur;
344 int index, is_mtrr_mask;
345
346 index = (msr - 0x200) / 2;
347 is_mtrr_mask = msr - 0x200 - 2 * index;
348 cur = &mtrr_state->var_ranges[index];
349
350 /* remove the entry if it's in the list. */
351 if (var_mtrr_range_is_valid(cur))
352 list_del(&mtrr_state->var_ranges[index].node);
353
354 /*
355 * Set all illegal GPA bits in the mask, since those bits must
356 * implicitly be 0. The bits are then cleared when reading them.
357 */
358 if (!is_mtrr_mask)
359 cur->base = data;
360 else
361 cur->mask = data | kvm_vcpu_reserved_gpa_bits_raw(vcpu);
362
363 /* add it to the list if it's enabled. */
364 if (var_mtrr_range_is_valid(cur)) {
365 list_for_each_entry(tmp, &mtrr_state->head, node)
366 if (cur->base >= tmp->base)
367 break;
368 list_add_tail(&cur->node, &tmp->node);
369 }
370}
371
372int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
373{
374 int index;
375
376 if (!kvm_mtrr_valid(vcpu, msr, data))
377 return 1;
378
379 index = fixed_msr_to_range_index(msr);
380 if (index >= 0)
381 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
382 else if (msr == MSR_MTRRdefType)
383 vcpu->arch.mtrr_state.deftype = data;
384 else if (msr == MSR_IA32_CR_PAT)
385 vcpu->arch.pat = data;
386 else
387 set_var_mtrr_msr(vcpu, msr, data);
388
389 update_mtrr(vcpu, msr);
390 return 0;
391}
392
393int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
394{
395 int index;
396
397 /* MSR_MTRRcap is a readonly MSR. */
398 if (msr == MSR_MTRRcap) {
399 /*
400 * SMRR = 0
401 * WC = 1
402 * FIX = 1
403 * VCNT = KVM_NR_VAR_MTRR
404 */
405 *pdata = 0x500 | KVM_NR_VAR_MTRR;
406 return 0;
407 }
408
409 if (!msr_mtrr_valid(msr))
410 return 1;
411
412 index = fixed_msr_to_range_index(msr);
413 if (index >= 0)
414 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
415 else if (msr == MSR_MTRRdefType)
416 *pdata = vcpu->arch.mtrr_state.deftype;
417 else if (msr == MSR_IA32_CR_PAT)
418 *pdata = vcpu->arch.pat;
419 else { /* Variable MTRRs */
420 int is_mtrr_mask;
421
422 index = (msr - 0x200) / 2;
423 is_mtrr_mask = msr - 0x200 - 2 * index;
424 if (!is_mtrr_mask)
425 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
426 else
427 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
428
429 *pdata &= ~kvm_vcpu_reserved_gpa_bits_raw(vcpu);
430 }
431
432 return 0;
433}
434
435void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
436{
437 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
438}
439
440struct mtrr_iter {
441 /* input fields. */
442 struct kvm_mtrr *mtrr_state;
443 u64 start;
444 u64 end;
445
446 /* output fields. */
447 int mem_type;
448 /* mtrr is completely disabled? */
449 bool mtrr_disabled;
450 /* [start, end) is not fully covered in MTRRs? */
451 bool partial_map;
452
453 /* private fields. */
454 union {
455 /* used for fixed MTRRs. */
456 struct {
457 int index;
458 int seg;
459 };
460
461 /* used for var MTRRs. */
462 struct {
463 struct kvm_mtrr_range *range;
464 /* max address has been covered in var MTRRs. */
465 u64 start_max;
466 };
467 };
468
469 bool fixed;
470};
471
472static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
473{
474 int seg, index;
475
476 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
477 return false;
478
479 seg = fixed_mtrr_addr_to_seg(iter->start);
480 if (seg < 0)
481 return false;
482
483 iter->fixed = true;
484 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
485 iter->index = index;
486 iter->seg = seg;
487 return true;
488}
489
490static bool match_var_range(struct mtrr_iter *iter,
491 struct kvm_mtrr_range *range)
492{
493 u64 start, end;
494
495 var_mtrr_range(range, &start, &end);
496 if (!(start >= iter->end || end <= iter->start)) {
497 iter->range = range;
498
499 /*
500 * the function is called when we do kvm_mtrr.head walking.
501 * Range has the minimum base address which interleaves
502 * [looker->start_max, looker->end).
503 */
504 iter->partial_map |= iter->start_max < start;
505
506 /* update the max address has been covered. */
507 iter->start_max = max(iter->start_max, end);
508 return true;
509 }
510
511 return false;
512}
513
514static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
515{
516 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
517
518 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
519 if (match_var_range(iter, iter->range))
520 return;
521
522 iter->range = NULL;
523 iter->partial_map |= iter->start_max < iter->end;
524}
525
526static void mtrr_lookup_var_start(struct mtrr_iter *iter)
527{
528 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
529
530 iter->fixed = false;
531 iter->start_max = iter->start;
532 iter->range = NULL;
533 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
534
535 __mtrr_lookup_var_next(iter);
536}
537
538static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
539{
540 /* terminate the lookup. */
541 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
542 iter->fixed = false;
543 iter->range = NULL;
544 return;
545 }
546
547 iter->index++;
548
549 /* have looked up for all fixed MTRRs. */
550 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
551 return mtrr_lookup_var_start(iter);
552
553 /* switch to next segment. */
554 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
555 iter->seg++;
556}
557
558static void mtrr_lookup_var_next(struct mtrr_iter *iter)
559{
560 __mtrr_lookup_var_next(iter);
561}
562
563static void mtrr_lookup_start(struct mtrr_iter *iter)
564{
565 if (!mtrr_is_enabled(iter->mtrr_state)) {
566 iter->mtrr_disabled = true;
567 return;
568 }
569
570 if (!mtrr_lookup_fixed_start(iter))
571 mtrr_lookup_var_start(iter);
572}
573
574static void mtrr_lookup_init(struct mtrr_iter *iter,
575 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
576{
577 iter->mtrr_state = mtrr_state;
578 iter->start = start;
579 iter->end = end;
580 iter->mtrr_disabled = false;
581 iter->partial_map = false;
582 iter->fixed = false;
583 iter->range = NULL;
584
585 mtrr_lookup_start(iter);
586}
587
588static bool mtrr_lookup_okay(struct mtrr_iter *iter)
589{
590 if (iter->fixed) {
591 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
592 return true;
593 }
594
595 if (iter->range) {
596 iter->mem_type = iter->range->base & 0xff;
597 return true;
598 }
599
600 return false;
601}
602
603static void mtrr_lookup_next(struct mtrr_iter *iter)
604{
605 if (iter->fixed)
606 mtrr_lookup_fixed_next(iter);
607 else
608 mtrr_lookup_var_next(iter);
609}
610
611#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
612 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
613 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
614
615u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
616{
617 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
618 struct mtrr_iter iter;
619 u64 start, end;
620 int type = -1;
621 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
622 | (1 << MTRR_TYPE_WRTHROUGH);
623
624 start = gfn_to_gpa(gfn);
625 end = start + PAGE_SIZE;
626
627 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
628 int curr_type = iter.mem_type;
629
630 /*
631 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
632 * Precedences.
633 */
634
635 if (type == -1) {
636 type = curr_type;
637 continue;
638 }
639
640 /*
641 * If two or more variable memory ranges match and the
642 * memory types are identical, then that memory type is
643 * used.
644 */
645 if (type == curr_type)
646 continue;
647
648 /*
649 * If two or more variable memory ranges match and one of
650 * the memory types is UC, the UC memory type used.
651 */
652 if (curr_type == MTRR_TYPE_UNCACHABLE)
653 return MTRR_TYPE_UNCACHABLE;
654
655 /*
656 * If two or more variable memory ranges match and the
657 * memory types are WT and WB, the WT memory type is used.
658 */
659 if (((1 << type) & wt_wb_mask) &&
660 ((1 << curr_type) & wt_wb_mask)) {
661 type = MTRR_TYPE_WRTHROUGH;
662 continue;
663 }
664
665 /*
666 * For overlaps not defined by the above rules, processor
667 * behavior is undefined.
668 */
669
670 /* We use WB for this undefined behavior. :( */
671 return MTRR_TYPE_WRBACK;
672 }
673
674 if (iter.mtrr_disabled)
675 return mtrr_disabled_type(vcpu);
676
677 /* not contained in any MTRRs. */
678 if (type == -1)
679 return mtrr_default_type(mtrr_state);
680
681 /*
682 * We just check one page, partially covered by MTRRs is
683 * impossible.
684 */
685 WARN_ON(iter.partial_map);
686
687 return type;
688}
689EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
690
691bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
692 int page_num)
693{
694 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
695 struct mtrr_iter iter;
696 u64 start, end;
697 int type = -1;
698
699 start = gfn_to_gpa(gfn);
700 end = gfn_to_gpa(gfn + page_num);
701 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
702 if (type == -1) {
703 type = iter.mem_type;
704 continue;
705 }
706
707 if (type != iter.mem_type)
708 return false;
709 }
710
711 if (iter.mtrr_disabled)
712 return true;
713
714 if (!iter.partial_map)
715 return true;
716
717 if (type == -1)
718 return true;
719
720 return type == mtrr_default_type(mtrr_state);
721}
1/*
2 * vMTRR implementation
3 *
4 * Copyright (C) 2006 Qumranet, Inc.
5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6 * Copyright(C) 2015 Intel Corporation.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 * Marcelo Tosatti <mtosatti@redhat.com>
12 * Paolo Bonzini <pbonzini@redhat.com>
13 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 */
18
19#include <linux/kvm_host.h>
20#include <asm/mtrr.h>
21
22#include "cpuid.h"
23#include "mmu.h"
24
25#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
26#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
27#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
28
29static bool msr_mtrr_valid(unsigned msr)
30{
31 switch (msr) {
32 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 case MSR_MTRRfix64K_00000:
34 case MSR_MTRRfix16K_80000:
35 case MSR_MTRRfix16K_A0000:
36 case MSR_MTRRfix4K_C0000:
37 case MSR_MTRRfix4K_C8000:
38 case MSR_MTRRfix4K_D0000:
39 case MSR_MTRRfix4K_D8000:
40 case MSR_MTRRfix4K_E0000:
41 case MSR_MTRRfix4K_E8000:
42 case MSR_MTRRfix4K_F0000:
43 case MSR_MTRRfix4K_F8000:
44 case MSR_MTRRdefType:
45 case MSR_IA32_CR_PAT:
46 return true;
47 }
48 return false;
49}
50
51static bool valid_pat_type(unsigned t)
52{
53 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
54}
55
56static bool valid_mtrr_type(unsigned t)
57{
58 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
59}
60
61bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
62{
63 int i;
64 u64 mask;
65
66 if (!msr_mtrr_valid(msr))
67 return false;
68
69 if (msr == MSR_IA32_CR_PAT) {
70 for (i = 0; i < 8; i++)
71 if (!valid_pat_type((data >> (i * 8)) & 0xff))
72 return false;
73 return true;
74 } else if (msr == MSR_MTRRdefType) {
75 if (data & ~0xcff)
76 return false;
77 return valid_mtrr_type(data & 0xff);
78 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
79 for (i = 0; i < 8 ; i++)
80 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
81 return false;
82 return true;
83 }
84
85 /* variable MTRRs */
86 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
87
88 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
89 if ((msr & 1) == 0) {
90 /* MTRR base */
91 if (!valid_mtrr_type(data & 0xff))
92 return false;
93 mask |= 0xf00;
94 } else
95 /* MTRR mask */
96 mask |= 0x7ff;
97 if (data & mask) {
98 kvm_inject_gp(vcpu, 0);
99 return false;
100 }
101
102 return true;
103}
104EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
105
106static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
107{
108 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
109}
110
111static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
112{
113 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
114}
115
116static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
117{
118 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
119}
120
121static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
122{
123 /*
124 * Intel SDM 11.11.2.2: all MTRRs are disabled when
125 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
126 * memory type is applied to all of physical memory.
127 *
128 * However, virtual machines can be run with CPUID such that
129 * there are no MTRRs. In that case, the firmware will never
130 * enable MTRRs and it is obviously undesirable to run the
131 * guest entirely with UC memory and we use WB.
132 */
133 if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
134 return MTRR_TYPE_UNCACHABLE;
135 else
136 return MTRR_TYPE_WRBACK;
137}
138
139/*
140* Three terms are used in the following code:
141* - segment, it indicates the address segments covered by fixed MTRRs.
142* - unit, it corresponds to the MSR entry in the segment.
143* - range, a range is covered in one memory cache type.
144*/
145struct fixed_mtrr_segment {
146 u64 start;
147 u64 end;
148
149 int range_shift;
150
151 /* the start position in kvm_mtrr.fixed_ranges[]. */
152 int range_start;
153};
154
155static struct fixed_mtrr_segment fixed_seg_table[] = {
156 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
157 {
158 .start = 0x0,
159 .end = 0x80000,
160 .range_shift = 16, /* 64K */
161 .range_start = 0,
162 },
163
164 /*
165 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
166 * 16K fixed mtrr.
167 */
168 {
169 .start = 0x80000,
170 .end = 0xc0000,
171 .range_shift = 14, /* 16K */
172 .range_start = 8,
173 },
174
175 /*
176 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
177 * 4K fixed mtrr.
178 */
179 {
180 .start = 0xc0000,
181 .end = 0x100000,
182 .range_shift = 12, /* 12K */
183 .range_start = 24,
184 }
185};
186
187/*
188 * The size of unit is covered in one MSR, one MSR entry contains
189 * 8 ranges so that unit size is always 8 * 2^range_shift.
190 */
191static u64 fixed_mtrr_seg_unit_size(int seg)
192{
193 return 8 << fixed_seg_table[seg].range_shift;
194}
195
196static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
197{
198 switch (msr) {
199 case MSR_MTRRfix64K_00000:
200 *seg = 0;
201 *unit = 0;
202 break;
203 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
204 *seg = 1;
205 *unit = msr - MSR_MTRRfix16K_80000;
206 break;
207 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
208 *seg = 2;
209 *unit = msr - MSR_MTRRfix4K_C0000;
210 break;
211 default:
212 return false;
213 }
214
215 return true;
216}
217
218static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
219{
220 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
221 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
222
223 *start = mtrr_seg->start + unit * unit_size;
224 *end = *start + unit_size;
225 WARN_ON(*end > mtrr_seg->end);
226}
227
228static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
229{
230 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
231
232 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
233 > mtrr_seg->end);
234
235 /* each unit has 8 ranges. */
236 return mtrr_seg->range_start + 8 * unit;
237}
238
239static int fixed_mtrr_seg_end_range_index(int seg)
240{
241 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
242 int n;
243
244 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
245 return mtrr_seg->range_start + n - 1;
246}
247
248static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
249{
250 int seg, unit;
251
252 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
253 return false;
254
255 fixed_mtrr_seg_unit_range(seg, unit, start, end);
256 return true;
257}
258
259static int fixed_msr_to_range_index(u32 msr)
260{
261 int seg, unit;
262
263 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
264 return -1;
265
266 return fixed_mtrr_seg_unit_range_index(seg, unit);
267}
268
269static int fixed_mtrr_addr_to_seg(u64 addr)
270{
271 struct fixed_mtrr_segment *mtrr_seg;
272 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
273
274 for (seg = 0; seg < seg_num; seg++) {
275 mtrr_seg = &fixed_seg_table[seg];
276 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
277 return seg;
278 }
279
280 return -1;
281}
282
283static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
284{
285 struct fixed_mtrr_segment *mtrr_seg;
286 int index;
287
288 mtrr_seg = &fixed_seg_table[seg];
289 index = mtrr_seg->range_start;
290 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
291 return index;
292}
293
294static u64 fixed_mtrr_range_end_addr(int seg, int index)
295{
296 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
297 int pos = index - mtrr_seg->range_start;
298
299 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
300}
301
302static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
303{
304 u64 mask;
305
306 *start = range->base & PAGE_MASK;
307
308 mask = range->mask & PAGE_MASK;
309
310 /* This cannot overflow because writing to the reserved bits of
311 * variable MTRRs causes a #GP.
312 */
313 *end = (*start | ~mask) + 1;
314}
315
316static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
317{
318 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
319 gfn_t start, end;
320 int index;
321
322 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
323 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
324 return;
325
326 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
327 return;
328
329 /* fixed MTRRs. */
330 if (fixed_msr_to_range(msr, &start, &end)) {
331 if (!fixed_mtrr_is_enabled(mtrr_state))
332 return;
333 } else if (msr == MSR_MTRRdefType) {
334 start = 0x0;
335 end = ~0ULL;
336 } else {
337 /* variable range MTRRs. */
338 index = (msr - 0x200) / 2;
339 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
340 }
341
342 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
343}
344
345static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
346{
347 return (range->mask & (1 << 11)) != 0;
348}
349
350static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
351{
352 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
353 struct kvm_mtrr_range *tmp, *cur;
354 int index, is_mtrr_mask;
355
356 index = (msr - 0x200) / 2;
357 is_mtrr_mask = msr - 0x200 - 2 * index;
358 cur = &mtrr_state->var_ranges[index];
359
360 /* remove the entry if it's in the list. */
361 if (var_mtrr_range_is_valid(cur))
362 list_del(&mtrr_state->var_ranges[index].node);
363
364 /* Extend the mask with all 1 bits to the left, since those
365 * bits must implicitly be 0. The bits are then cleared
366 * when reading them.
367 */
368 if (!is_mtrr_mask)
369 cur->base = data;
370 else
371 cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
372
373 /* add it to the list if it's enabled. */
374 if (var_mtrr_range_is_valid(cur)) {
375 list_for_each_entry(tmp, &mtrr_state->head, node)
376 if (cur->base >= tmp->base)
377 break;
378 list_add_tail(&cur->node, &tmp->node);
379 }
380}
381
382int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
383{
384 int index;
385
386 if (!kvm_mtrr_valid(vcpu, msr, data))
387 return 1;
388
389 index = fixed_msr_to_range_index(msr);
390 if (index >= 0)
391 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
392 else if (msr == MSR_MTRRdefType)
393 vcpu->arch.mtrr_state.deftype = data;
394 else if (msr == MSR_IA32_CR_PAT)
395 vcpu->arch.pat = data;
396 else
397 set_var_mtrr_msr(vcpu, msr, data);
398
399 update_mtrr(vcpu, msr);
400 return 0;
401}
402
403int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
404{
405 int index;
406
407 /* MSR_MTRRcap is a readonly MSR. */
408 if (msr == MSR_MTRRcap) {
409 /*
410 * SMRR = 0
411 * WC = 1
412 * FIX = 1
413 * VCNT = KVM_NR_VAR_MTRR
414 */
415 *pdata = 0x500 | KVM_NR_VAR_MTRR;
416 return 0;
417 }
418
419 if (!msr_mtrr_valid(msr))
420 return 1;
421
422 index = fixed_msr_to_range_index(msr);
423 if (index >= 0)
424 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
425 else if (msr == MSR_MTRRdefType)
426 *pdata = vcpu->arch.mtrr_state.deftype;
427 else if (msr == MSR_IA32_CR_PAT)
428 *pdata = vcpu->arch.pat;
429 else { /* Variable MTRRs */
430 int is_mtrr_mask;
431
432 index = (msr - 0x200) / 2;
433 is_mtrr_mask = msr - 0x200 - 2 * index;
434 if (!is_mtrr_mask)
435 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
436 else
437 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
438
439 *pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
440 }
441
442 return 0;
443}
444
445void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
446{
447 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
448}
449
450struct mtrr_iter {
451 /* input fields. */
452 struct kvm_mtrr *mtrr_state;
453 u64 start;
454 u64 end;
455
456 /* output fields. */
457 int mem_type;
458 /* mtrr is completely disabled? */
459 bool mtrr_disabled;
460 /* [start, end) is not fully covered in MTRRs? */
461 bool partial_map;
462
463 /* private fields. */
464 union {
465 /* used for fixed MTRRs. */
466 struct {
467 int index;
468 int seg;
469 };
470
471 /* used for var MTRRs. */
472 struct {
473 struct kvm_mtrr_range *range;
474 /* max address has been covered in var MTRRs. */
475 u64 start_max;
476 };
477 };
478
479 bool fixed;
480};
481
482static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
483{
484 int seg, index;
485
486 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
487 return false;
488
489 seg = fixed_mtrr_addr_to_seg(iter->start);
490 if (seg < 0)
491 return false;
492
493 iter->fixed = true;
494 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
495 iter->index = index;
496 iter->seg = seg;
497 return true;
498}
499
500static bool match_var_range(struct mtrr_iter *iter,
501 struct kvm_mtrr_range *range)
502{
503 u64 start, end;
504
505 var_mtrr_range(range, &start, &end);
506 if (!(start >= iter->end || end <= iter->start)) {
507 iter->range = range;
508
509 /*
510 * the function is called when we do kvm_mtrr.head walking.
511 * Range has the minimum base address which interleaves
512 * [looker->start_max, looker->end).
513 */
514 iter->partial_map |= iter->start_max < start;
515
516 /* update the max address has been covered. */
517 iter->start_max = max(iter->start_max, end);
518 return true;
519 }
520
521 return false;
522}
523
524static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
525{
526 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
527
528 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
529 if (match_var_range(iter, iter->range))
530 return;
531
532 iter->range = NULL;
533 iter->partial_map |= iter->start_max < iter->end;
534}
535
536static void mtrr_lookup_var_start(struct mtrr_iter *iter)
537{
538 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
539
540 iter->fixed = false;
541 iter->start_max = iter->start;
542 iter->range = NULL;
543 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
544
545 __mtrr_lookup_var_next(iter);
546}
547
548static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
549{
550 /* terminate the lookup. */
551 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
552 iter->fixed = false;
553 iter->range = NULL;
554 return;
555 }
556
557 iter->index++;
558
559 /* have looked up for all fixed MTRRs. */
560 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
561 return mtrr_lookup_var_start(iter);
562
563 /* switch to next segment. */
564 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
565 iter->seg++;
566}
567
568static void mtrr_lookup_var_next(struct mtrr_iter *iter)
569{
570 __mtrr_lookup_var_next(iter);
571}
572
573static void mtrr_lookup_start(struct mtrr_iter *iter)
574{
575 if (!mtrr_is_enabled(iter->mtrr_state)) {
576 iter->mtrr_disabled = true;
577 return;
578 }
579
580 if (!mtrr_lookup_fixed_start(iter))
581 mtrr_lookup_var_start(iter);
582}
583
584static void mtrr_lookup_init(struct mtrr_iter *iter,
585 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
586{
587 iter->mtrr_state = mtrr_state;
588 iter->start = start;
589 iter->end = end;
590 iter->mtrr_disabled = false;
591 iter->partial_map = false;
592 iter->fixed = false;
593 iter->range = NULL;
594
595 mtrr_lookup_start(iter);
596}
597
598static bool mtrr_lookup_okay(struct mtrr_iter *iter)
599{
600 if (iter->fixed) {
601 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
602 return true;
603 }
604
605 if (iter->range) {
606 iter->mem_type = iter->range->base & 0xff;
607 return true;
608 }
609
610 return false;
611}
612
613static void mtrr_lookup_next(struct mtrr_iter *iter)
614{
615 if (iter->fixed)
616 mtrr_lookup_fixed_next(iter);
617 else
618 mtrr_lookup_var_next(iter);
619}
620
621#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
622 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
623 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
624
625u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
626{
627 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
628 struct mtrr_iter iter;
629 u64 start, end;
630 int type = -1;
631 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
632 | (1 << MTRR_TYPE_WRTHROUGH);
633
634 start = gfn_to_gpa(gfn);
635 end = start + PAGE_SIZE;
636
637 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
638 int curr_type = iter.mem_type;
639
640 /*
641 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
642 * Precedences.
643 */
644
645 if (type == -1) {
646 type = curr_type;
647 continue;
648 }
649
650 /*
651 * If two or more variable memory ranges match and the
652 * memory types are identical, then that memory type is
653 * used.
654 */
655 if (type == curr_type)
656 continue;
657
658 /*
659 * If two or more variable memory ranges match and one of
660 * the memory types is UC, the UC memory type used.
661 */
662 if (curr_type == MTRR_TYPE_UNCACHABLE)
663 return MTRR_TYPE_UNCACHABLE;
664
665 /*
666 * If two or more variable memory ranges match and the
667 * memory types are WT and WB, the WT memory type is used.
668 */
669 if (((1 << type) & wt_wb_mask) &&
670 ((1 << curr_type) & wt_wb_mask)) {
671 type = MTRR_TYPE_WRTHROUGH;
672 continue;
673 }
674
675 /*
676 * For overlaps not defined by the above rules, processor
677 * behavior is undefined.
678 */
679
680 /* We use WB for this undefined behavior. :( */
681 return MTRR_TYPE_WRBACK;
682 }
683
684 if (iter.mtrr_disabled)
685 return mtrr_disabled_type(vcpu);
686
687 /* not contained in any MTRRs. */
688 if (type == -1)
689 return mtrr_default_type(mtrr_state);
690
691 /*
692 * We just check one page, partially covered by MTRRs is
693 * impossible.
694 */
695 WARN_ON(iter.partial_map);
696
697 return type;
698}
699EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
700
701bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
702 int page_num)
703{
704 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
705 struct mtrr_iter iter;
706 u64 start, end;
707 int type = -1;
708
709 start = gfn_to_gpa(gfn);
710 end = gfn_to_gpa(gfn + page_num);
711 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
712 if (type == -1) {
713 type = iter.mem_type;
714 continue;
715 }
716
717 if (type != iter.mem_type)
718 return false;
719 }
720
721 if (iter.mtrr_disabled)
722 return true;
723
724 if (!iter.partial_map)
725 return true;
726
727 if (type == -1)
728 return true;
729
730 return type == mtrr_default_type(mtrr_state);
731}