Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11
  12#include <linux/kvm_host.h>
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
  21#include <asm/sgx.h>
  22#include <asm/cpuid.h>
  23#include "cpuid.h"
  24#include "lapic.h"
  25#include "mmu.h"
  26#include "trace.h"
  27#include "pmu.h"
  28
  29/*
  30 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  31 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  32 */
  33u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  34EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  35
  36u32 xstate_required_size(u64 xstate_bv, bool compacted)
  37{
  38	int feature_bit = 0;
  39	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  40
  41	xstate_bv &= XFEATURE_MASK_EXTEND;
  42	while (xstate_bv) {
  43		if (xstate_bv & 0x1) {
  44		        u32 eax, ebx, ecx, edx, offset;
  45		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  46			/* ECX[1]: 64B alignment in compacted form */
  47			if (compacted)
  48				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
  49			else
  50				offset = ebx;
  51			ret = max(ret, offset + eax);
  52		}
  53
  54		xstate_bv >>= 1;
  55		feature_bit++;
  56	}
  57
  58	return ret;
  59}
  60
  61/*
  62 * This one is tied to SSB in the user API, and not
  63 * visible in /proc/cpuinfo.
  64 */
  65#define KVM_X86_FEATURE_AMD_PSFD	(13*32+28) /* Predictive Store Forwarding Disable */
  66
  67#define F feature_bit
  68
  69/* Scattered Flag - For features that are scattered by cpufeatures.h. */
  70#define SF(name)						\
  71({								\
  72	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
  73	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
  74})
  75
  76/*
  77 * Magic value used by KVM when querying userspace-provided CPUID entries and
  78 * doesn't care about the CPIUD index because the index of the function in
  79 * question is not significant.  Note, this magic value must have at least one
  80 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
  81 * to avoid false positives when processing guest CPUID input.
  82 */
  83#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
  84
  85static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
  86	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
  87{
  88	struct kvm_cpuid_entry2 *e;
  89	int i;
  90
  91	for (i = 0; i < nent; i++) {
  92		e = &entries[i];
  93
  94		if (e->function != function)
  95			continue;
  96
  97		/*
  98		 * If the index isn't significant, use the first entry with a
  99		 * matching function.  It's userspace's responsibilty to not
 100		 * provide "duplicate" entries in all cases.
 101		 */
 102		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
 103			return e;
 104
 105
 106		/*
 107		 * Similarly, use the first matching entry if KVM is doing a
 108		 * lookup (as opposed to emulating CPUID) for a function that's
 109		 * architecturally defined as not having a significant index.
 110		 */
 111		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
 112			/*
 113			 * Direct lookups from KVM should not diverge from what
 114			 * KVM defines internally (the architectural behavior).
 115			 */
 116			WARN_ON_ONCE(cpuid_function_is_indexed(function));
 117			return e;
 118		}
 119	}
 120
 121	return NULL;
 122}
 123
 124static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
 125			   struct kvm_cpuid_entry2 *entries,
 126			   int nent)
 127{
 128	struct kvm_cpuid_entry2 *best;
 129	u64 xfeatures;
 130
 131	/*
 132	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 133	 * canonical address checks; exit if it is ever changed.
 134	 */
 135	best = cpuid_entry2_find(entries, nent, 0x80000008,
 136				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 137	if (best) {
 138		int vaddr_bits = (best->eax & 0xff00) >> 8;
 139
 140		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 141			return -EINVAL;
 142	}
 143
 144	/*
 145	 * Exposing dynamic xfeatures to the guest requires additional
 146	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
 147	 */
 148	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 149	if (!best)
 150		return 0;
 151
 152	xfeatures = best->eax | ((u64)best->edx << 32);
 153	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
 154	if (!xfeatures)
 155		return 0;
 156
 157	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
 158}
 159
 160/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
 161static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 162				 int nent)
 163{
 164	struct kvm_cpuid_entry2 *orig;
 165	int i;
 166
 167	if (nent != vcpu->arch.cpuid_nent)
 168		return -EINVAL;
 169
 170	for (i = 0; i < nent; i++) {
 171		orig = &vcpu->arch.cpuid_entries[i];
 172		if (e2[i].function != orig->function ||
 173		    e2[i].index != orig->index ||
 174		    e2[i].flags != orig->flags ||
 175		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
 176		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
 177			return -EINVAL;
 178	}
 179
 180	return 0;
 181}
 182
 183static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
 184{
 185	u32 function;
 186	struct kvm_cpuid_entry2 *entry;
 187
 188	vcpu->arch.kvm_cpuid_base = 0;
 189
 190	for_each_possible_hypervisor_cpuid_base(function) {
 191		entry = kvm_find_cpuid_entry(vcpu, function);
 192
 193		if (entry) {
 194			u32 signature[3];
 195
 196			signature[0] = entry->ebx;
 197			signature[1] = entry->ecx;
 198			signature[2] = entry->edx;
 199
 200			BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
 201			if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
 202				vcpu->arch.kvm_cpuid_base = function;
 203				break;
 204			}
 205		}
 206	}
 207}
 208
 209static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
 210					      struct kvm_cpuid_entry2 *entries, int nent)
 211{
 212	u32 base = vcpu->arch.kvm_cpuid_base;
 213
 214	if (!base)
 215		return NULL;
 216
 217	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
 218				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 219}
 220
 221static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
 222{
 223	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
 224					     vcpu->arch.cpuid_nent);
 225}
 226
 227void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
 228{
 229	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
 230
 231	/*
 232	 * save the feature bitmap to avoid cpuid lookup for every PV
 233	 * operation
 234	 */
 235	if (best)
 236		vcpu->arch.pv_cpuid.features = best->eax;
 237}
 238
 239/*
 240 * Calculate guest's supported XCR0 taking into account guest CPUID data and
 241 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
 242 */
 243static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
 244{
 245	struct kvm_cpuid_entry2 *best;
 246
 247	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 248	if (!best)
 249		return 0;
 250
 251	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
 252}
 253
 254static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
 255				       int nent)
 256{
 257	struct kvm_cpuid_entry2 *best;
 258	u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
 259
 260	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 261	if (best) {
 262		/* Update OSXSAVE bit */
 263		if (boot_cpu_has(X86_FEATURE_XSAVE))
 264			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 265				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
 266
 267		cpuid_entry_change(best, X86_FEATURE_APIC,
 268			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 269	}
 270
 271	best = cpuid_entry2_find(entries, nent, 7, 0);
 272	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 273		cpuid_entry_change(best, X86_FEATURE_OSPKE,
 274				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
 275
 276	best = cpuid_entry2_find(entries, nent, 0xD, 0);
 277	if (best)
 278		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 279
 280	best = cpuid_entry2_find(entries, nent, 0xD, 1);
 281	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 282		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 283		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 284
 285	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
 286	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 287		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 288		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 289
 290	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 291		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 292		if (best)
 293			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 294					   vcpu->arch.ia32_misc_enable_msr &
 295					   MSR_IA32_MISC_ENABLE_MWAIT);
 296	}
 297
 298	/*
 299	 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
 300	 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
 301	 * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
 302	 * at the time of EENTER, thus adjust the allowed XFRM by the guest's
 303	 * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
 304	 * '1' even on CPUs that don't support XSAVE.
 305	 */
 306	best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
 307	if (best) {
 308		best->ecx &= guest_supported_xcr0 & 0xffffffff;
 309		best->edx &= guest_supported_xcr0 >> 32;
 310		best->ecx |= XFEATURE_MASK_FPSSE;
 311	}
 312}
 313
 314void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 315{
 316	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 317}
 318EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 319
 320static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
 321{
 322	struct kvm_cpuid_entry2 *entry;
 323
 324	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
 325				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 326	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
 327}
 328
 329static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 330{
 331	struct kvm_lapic *apic = vcpu->arch.apic;
 332	struct kvm_cpuid_entry2 *best;
 333
 334	best = kvm_find_cpuid_entry(vcpu, 1);
 
 
 335	if (best && apic) {
 336		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 337			apic->lapic_timer.timer_mode_mask = 3 << 17;
 338		else
 339			apic->lapic_timer.timer_mode_mask = 1 << 17;
 340
 341		kvm_apic_set_version(vcpu);
 342	}
 343
 344	vcpu->arch.guest_supported_xcr0 =
 345		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 346
 347	/*
 348	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
 349	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
 350	 * supported by the host.
 351	 */
 352	vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 |
 353						       XFEATURE_MASK_FPSSE;
 354
 355	kvm_update_pv_runtime(vcpu);
 356
 357	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 358	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 359
 360	kvm_pmu_refresh(vcpu);
 361	vcpu->arch.cr4_guest_rsvd_bits =
 362	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 
 
 363
 364	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
 365						    vcpu->arch.cpuid_nent));
 
 
 366
 367	/* Invoke the vendor callback only after the above state is updated. */
 368	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
 
 
 369
 370	/*
 371	 * Except for the MMU, which needs to do its thing any vendor specific
 372	 * adjustments to the reserved GPA bits.
 373	 */
 374	kvm_mmu_after_set_cpuid(vcpu);
 
 
 
 
 
 
 
 375}
 376
 377int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 378{
 379	struct kvm_cpuid_entry2 *best;
 380
 381	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
 382	if (!best || best->eax < 0x80000008)
 383		goto not_found;
 384	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
 385	if (best)
 386		return best->eax & 0xff;
 387not_found:
 388	return 36;
 389}
 390
 391/*
 392 * This "raw" version returns the reserved GPA bits without any adjustments for
 393 * encryption technologies that usurp bits.  The raw mask should be used if and
 394 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 395 */
 396u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 397{
 398	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 399}
 400
 401static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 402                        int nent)
 403{
 404	int r;
 405
 406	__kvm_update_cpuid_runtime(vcpu, e2, nent);
 407
 408	/*
 409	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
 410	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
 411	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
 412	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
 413	 * the core vCPU model on the fly. It would've been better to forbid any
 414	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
 415	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
 416	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
 417	 * whether the supplied CPUID data is equal to what's already set.
 418	 */
 419	if (vcpu->arch.last_vmentry_cpu != -1) {
 420		r = kvm_cpuid_check_equal(vcpu, e2, nent);
 421		if (r)
 422			return r;
 423
 424		kvfree(e2);
 425		return 0;
 426	}
 427
 428	if (kvm_cpuid_has_hyperv(e2, nent)) {
 429		r = kvm_hv_vcpu_init(vcpu);
 430		if (r)
 431			return r;
 432	}
 433
 434	r = kvm_check_cpuid(vcpu, e2, nent);
 435	if (r)
 436		return r;
 437
 438	kvfree(vcpu->arch.cpuid_entries);
 439	vcpu->arch.cpuid_entries = e2;
 440	vcpu->arch.cpuid_nent = nent;
 441
 442	kvm_update_kvm_cpuid_base(vcpu);
 443	kvm_vcpu_after_set_cpuid(vcpu);
 444
 445	return 0;
 446}
 447
 448/* when an old userspace process fills a new kernel module */
 449int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 450			     struct kvm_cpuid *cpuid,
 451			     struct kvm_cpuid_entry __user *entries)
 452{
 453	int r, i;
 454	struct kvm_cpuid_entry *e = NULL;
 455	struct kvm_cpuid_entry2 *e2 = NULL;
 456
 
 457	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 458		return -E2BIG;
 459
 460	if (cpuid->nent) {
 461		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
 462		if (IS_ERR(e))
 463			return PTR_ERR(e);
 464
 465		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 466		if (!e2) {
 467			r = -ENOMEM;
 468			goto out_free_cpuid;
 469		}
 470	}
 471	for (i = 0; i < cpuid->nent; i++) {
 472		e2[i].function = e[i].function;
 473		e2[i].eax = e[i].eax;
 474		e2[i].ebx = e[i].ebx;
 475		e2[i].ecx = e[i].ecx;
 476		e2[i].edx = e[i].edx;
 477		e2[i].index = 0;
 478		e2[i].flags = 0;
 479		e2[i].padding[0] = 0;
 480		e2[i].padding[1] = 0;
 481		e2[i].padding[2] = 0;
 
 
 
 
 
 
 
 482	}
 483
 484	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 485	if (r)
 486		kvfree(e2);
 487
 488out_free_cpuid:
 489	kvfree(e);
 490
 
 
 491	return r;
 492}
 493
 494int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 495			      struct kvm_cpuid2 *cpuid,
 496			      struct kvm_cpuid_entry2 __user *entries)
 497{
 498	struct kvm_cpuid_entry2 *e2 = NULL;
 499	int r;
 500
 
 501	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 502		return -E2BIG;
 503
 504	if (cpuid->nent) {
 505		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
 506		if (IS_ERR(e2))
 507			return PTR_ERR(e2);
 
 
 
 
 508	}
 509
 510	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 511	if (r)
 512		kvfree(e2);
 513
 514	return r;
 515}
 516
 517int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 518			      struct kvm_cpuid2 *cpuid,
 519			      struct kvm_cpuid_entry2 __user *entries)
 520{
 521	int r;
 522
 523	r = -E2BIG;
 524	if (cpuid->nent < vcpu->arch.cpuid_nent)
 525		goto out;
 526	r = -EFAULT;
 527	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 528			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 529		goto out;
 530	return 0;
 531
 532out:
 533	cpuid->nent = vcpu->arch.cpuid_nent;
 534	return r;
 535}
 536
 537/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 538static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 539{
 540	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 541	struct kvm_cpuid_entry2 entry;
 542
 543	reverse_cpuid_check(leaf);
 
 544
 545	cpuid_count(cpuid.function, cpuid.index,
 546		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 547
 548	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 549}
 550
 551static __always_inline
 552void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
 553{
 554	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
 555	BUILD_BUG_ON(leaf < NCAPINTS);
 556
 557	kvm_cpu_caps[leaf] = mask;
 558
 559	__kvm_cpu_cap_mask(leaf);
 560}
 561
 562static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 563{
 564	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
 565	BUILD_BUG_ON(leaf >= NCAPINTS);
 566
 567	kvm_cpu_caps[leaf] &= mask;
 568
 569	__kvm_cpu_cap_mask(leaf);
 570}
 571
 572void kvm_set_cpu_caps(void)
 573{
 
 574#ifdef CONFIG_X86_64
 575	unsigned int f_gbpages = F(GBPAGES);
 576	unsigned int f_lm = F(LM);
 577	unsigned int f_xfd = F(XFD);
 578#else
 579	unsigned int f_gbpages = 0;
 580	unsigned int f_lm = 0;
 581	unsigned int f_xfd = 0;
 582#endif
 583	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 584
 585	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 586		     sizeof(boot_cpu_data.x86_capability));
 587
 588	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 589	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 590
 591	kvm_cpu_cap_mask(CPUID_1_ECX,
 592		/*
 593		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 594		 * advertised to guests via CPUID!
 595		 */
 596		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 597		0 /* DS-CPL, VMX, SMX, EST */ |
 598		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 599		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 600		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 601		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 602		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 603		F(F16C) | F(RDRAND)
 604	);
 605	/* KVM emulates x2apic in software irrespective of host support. */
 606	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 607
 608	kvm_cpu_cap_mask(CPUID_1_EDX,
 609		F(FPU) | F(VME) | F(DE) | F(PSE) |
 610		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 611		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 612		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 613		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 614		0 /* Reserved, DS, ACPI */ | F(MMX) |
 615		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 616		0 /* HTT, TM, Reserved, PBE */
 617	);
 618
 619	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 620		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
 621		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
 622		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
 623		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
 624		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
 625		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
 626		F(AVX512VL));
 627
 628	kvm_cpu_cap_mask(CPUID_7_ECX,
 629		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 630		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 631		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 632		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 633		F(SGX_LC) | F(BUS_LOCK_DETECT)
 634	);
 635	/* Set LA57 based on hardware capability. */
 636	if (cpuid_ecx(7) & F(LA57))
 637		kvm_cpu_cap_set(X86_FEATURE_LA57);
 638
 639	/*
 640	 * PKU not yet implemented for shadow paging and requires OSPKE
 641	 * to be set on the host. Clear it if that is not the case
 642	 */
 643	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 644		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 645
 646	kvm_cpu_cap_mask(CPUID_7_EDX,
 647		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 648		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 649		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 650		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
 651		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
 652	);
 653
 654	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 655	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 656	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 657
 658	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 659		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 660	if (boot_cpu_has(X86_FEATURE_STIBP))
 661		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 662	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 663		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 664
 665	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 666		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) | F(AMX_FP16) |
 667		F(AVX_IFMA)
 668	);
 669
 670	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
 671		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI)
 672	);
 673
 674	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 675		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
 676	);
 677
 678	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
 679		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
 680	);
 681
 682	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 683		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 684		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 685		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 686		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 687		F(TOPOEXT) | 0 /* PERFCTR_CORE */
 688	);
 689
 690	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 691		F(FPU) | F(VME) | F(DE) | F(PSE) |
 692		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 693		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 694		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 695		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 696		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 697		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 698		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 699	);
 700
 701	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 702		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 703
 704	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 705		F(CLZERO) | F(XSAVEERPTR) |
 706		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 707		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
 708		__feature_bit(KVM_X86_FEATURE_AMD_PSFD)
 709	);
 710
 711	/*
 712	 * AMD has separate bits for each SPEC_CTRL bit.
 713	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 714	 * record that in cpufeatures so use them.
 715	 */
 716	if (boot_cpu_has(X86_FEATURE_IBPB))
 717		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 718	if (boot_cpu_has(X86_FEATURE_IBRS))
 719		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 720	if (boot_cpu_has(X86_FEATURE_STIBP))
 721		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 722	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 723		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 724	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 725		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 726	/*
 727	 * The preference is to use SPEC CTRL MSR instead of the
 728	 * VIRT_SPEC MSR.
 729	 */
 730	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 731	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 732		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 733
 734	/*
 735	 * Hide all SVM features by default, SVM will set the cap bits for
 736	 * features it emulates and/or exposes for L1.
 737	 */
 738	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 739
 740	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 741		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
 742		F(SME_COHERENT));
 743
 744	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 745		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 746		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 747		F(PMM) | F(PMM_EN)
 748	);
 749
 750	/*
 751	 * Hide RDTSCP and RDPID if either feature is reported as supported but
 752	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 753	 * should never happen, but the guest will likely crash if RDTSCP or
 754	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 755	 * the past.  For example, the sanity check may fire if this instance of
 756	 * KVM is running as L1 on top of an older, broken KVM.
 757	 */
 758	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 759		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 760		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 761		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 762		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 763	}
 764}
 765EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 766
 767struct kvm_cpuid_array {
 768	struct kvm_cpuid_entry2 *entries;
 769	int maxnent;
 770	int nent;
 771};
 772
 773static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
 774{
 775	if (array->nent >= array->maxnent)
 776		return NULL;
 777
 778	return &array->entries[array->nent++];
 779}
 780
 781static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 782					      u32 function, u32 index)
 783{
 784	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
 785
 786	if (!entry)
 787		return NULL;
 788
 789	memset(entry, 0, sizeof(*entry));
 
 790	entry->function = function;
 791	entry->index = index;
 792	switch (function & 0xC0000000) {
 793	case 0x40000000:
 794		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
 795		return entry;
 796
 797	case 0x80000000:
 798		/*
 799		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
 800		 * would result in out-of-bounds calls to do_host_cpuid.
 801		 */
 802		{
 803			static int max_cpuid_80000000;
 804			if (!READ_ONCE(max_cpuid_80000000))
 805				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
 806			if (function > READ_ONCE(max_cpuid_80000000))
 807				return entry;
 808		}
 809		break;
 810
 811	default:
 812		break;
 813	}
 814
 815	cpuid_count(entry->function, entry->index,
 816		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 817
 818	if (cpuid_function_is_indexed(function))
 
 
 
 
 
 
 
 
 
 
 
 
 819		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 
 
 820
 821	return entry;
 822}
 823
 824static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 825{
 826	struct kvm_cpuid_entry2 *entry;
 827
 828	if (array->nent >= array->maxnent)
 829		return -E2BIG;
 830
 831	entry = &array->entries[array->nent];
 832	entry->function = func;
 833	entry->index = 0;
 834	entry->flags = 0;
 835
 836	switch (func) {
 837	case 0:
 838		entry->eax = 7;
 839		++array->nent;
 840		break;
 841	case 1:
 842		entry->ecx = F(MOVBE);
 843		++array->nent;
 844		break;
 845	case 7:
 846		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 847		entry->eax = 0;
 848		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 849			entry->ecx = F(RDPID);
 850		++array->nent;
 851		break;
 852	default:
 853		break;
 854	}
 855
 856	return 0;
 857}
 858
 859static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 860{
 861	struct kvm_cpuid_entry2 *entry;
 862	int r, i, max_idx;
 863
 864	/* all calls to cpuid_count() should be made on the same cpu */
 865	get_cpu();
 866
 867	r = -E2BIG;
 868
 869	entry = do_host_cpuid(array, function, 0);
 870	if (!entry)
 871		goto out;
 872
 873	switch (function) {
 874	case 0:
 875		/* Limited to the highest leaf implemented in KVM. */
 876		entry->eax = min(entry->eax, 0x1fU);
 877		break;
 878	case 1:
 879		cpuid_entry_override(entry, CPUID_1_EDX);
 880		cpuid_entry_override(entry, CPUID_1_ECX);
 881		break;
 882	case 2:
 883		/*
 884		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 885		 * CPUID(function=2, index=0) may return different results each
 886		 * time, with the least-significant byte in EAX enumerating the
 887		 * number of times software should do CPUID(2, 0).
 888		 *
 889		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 890		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 891		 * return 01H. Software should ignore this value and not
 892		 * interpret it as an informational descriptor", while AMD's
 893		 * APM states that CPUID(2) is reserved.
 894		 *
 895		 * WARN if a frankenstein CPU that supports virtualization and
 896		 * a stateful CPUID.0x2 is encountered.
 897		 */
 898		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 899		break;
 900	/* functions 4 and 0x8000001d have additional index. */
 901	case 4:
 902	case 0x8000001d:
 903		/*
 904		 * Read entries until the cache type in the previous entry is
 905		 * zero, i.e. indicates an invalid entry.
 906		 */
 907		for (i = 1; entry->eax & 0x1f; ++i) {
 908			entry = do_host_cpuid(array, function, i);
 909			if (!entry)
 910				goto out;
 911		}
 912		break;
 913	case 6: /* Thermal management */
 914		entry->eax = 0x4; /* allow ARAT */
 915		entry->ebx = 0;
 916		entry->ecx = 0;
 917		entry->edx = 0;
 918		break;
 919	/* function 7 has additional index. */
 920	case 7:
 921		entry->eax = min(entry->eax, 1u);
 922		cpuid_entry_override(entry, CPUID_7_0_EBX);
 923		cpuid_entry_override(entry, CPUID_7_ECX);
 924		cpuid_entry_override(entry, CPUID_7_EDX);
 925
 926		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
 927		if (entry->eax == 1) {
 928			entry = do_host_cpuid(array, function, 1);
 929			if (!entry)
 930				goto out;
 931
 932			cpuid_entry_override(entry, CPUID_7_1_EAX);
 933			cpuid_entry_override(entry, CPUID_7_1_EDX);
 934			entry->ebx = 0;
 935			entry->ecx = 0;
 
 936		}
 937		break;
 
 
 938	case 0xa: { /* Architectural Performance Monitoring */
 
 939		union cpuid10_eax eax;
 940		union cpuid10_edx edx;
 941
 942		if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
 943			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 944			break;
 945		}
 
 
 
 
 946
 947		eax.split.version_id = kvm_pmu_cap.version;
 948		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
 949		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
 950		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
 951		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
 952		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
 953
 954		if (kvm_pmu_cap.version)
 955			edx.split.anythread_deprecated = 1;
 956		edx.split.reserved1 = 0;
 957		edx.split.reserved2 = 0;
 958
 959		entry->eax = eax.full;
 960		entry->ebx = kvm_pmu_cap.events_mask;
 961		entry->ecx = 0;
 962		entry->edx = edx.full;
 963		break;
 964	}
 
 
 
 
 965	case 0x1f:
 966	case 0xb:
 967		/*
 968		 * No topology; a valid topology is indicated by the presence
 969		 * of subleaf 1.
 
 970		 */
 971		entry->eax = entry->ebx = entry->ecx = 0;
 
 
 
 
 972		break;
 973	case 0xd: {
 974		u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm();
 975		u64 permitted_xss = kvm_caps.supported_xss;
 976
 977		entry->eax &= permitted_xcr0;
 978		entry->ebx = xstate_required_size(permitted_xcr0, false);
 979		entry->ecx = entry->ebx;
 980		entry->edx &= permitted_xcr0 >> 32;
 981		if (!permitted_xcr0)
 982			break;
 983
 984		entry = do_host_cpuid(array, function, 1);
 985		if (!entry)
 986			goto out;
 987
 988		cpuid_entry_override(entry, CPUID_D_1_EAX);
 989		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
 990			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
 991							  true);
 992		else {
 993			WARN_ON_ONCE(permitted_xss != 0);
 994			entry->ebx = 0;
 995		}
 996		entry->ecx &= permitted_xss;
 997		entry->edx &= permitted_xss >> 32;
 998
 999		for (i = 2; i < 64; ++i) {
1000			bool s_state;
1001			if (permitted_xcr0 & BIT_ULL(i))
1002				s_state = false;
1003			else if (permitted_xss & BIT_ULL(i))
1004				s_state = true;
1005			else
1006				continue;
1007
1008			entry = do_host_cpuid(array, function, i);
1009			if (!entry)
1010				goto out;
1011
1012			/*
1013			 * The supported check above should have filtered out
1014			 * invalid sub-leafs.  Only valid sub-leafs should
1015			 * reach this point, and they should have a non-zero
1016			 * save state size.  Furthermore, check whether the
1017			 * processor agrees with permitted_xcr0/permitted_xss
1018			 * on whether this is an XCR0- or IA32_XSS-managed area.
1019			 */
1020			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1021				--array->nent;
1022				continue;
1023			}
1024
1025			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1026				entry->ecx &= ~BIT_ULL(2);
1027			entry->edx = 0;
1028		}
1029		break;
1030	}
1031	case 0x12:
1032		/* Intel SGX */
1033		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1034			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1035			break;
1036		}
1037
1038		/*
1039		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1040		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1041		 * are restricted by kernel and KVM capabilities (like most
1042		 * feature flags), while enclave size is unrestricted.
1043		 */
1044		cpuid_entry_override(entry, CPUID_12_EAX);
1045		entry->ebx &= SGX_MISC_EXINFO;
1046
1047		entry = do_host_cpuid(array, function, 1);
1048		if (!entry)
1049			goto out;
1050
1051		/*
1052		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1053		 * feature flags.  Advertise all supported flags, including
1054		 * privileged attributes that require explicit opt-in from
1055		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1056		 * expected to derive it from supported XCR0.
1057		 */
1058		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1059		entry->ebx &= 0;
1060		break;
1061	/* Intel PT */
1062	case 0x14:
1063		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1064			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1065			break;
1066		}
1067
1068		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1069			if (!do_host_cpuid(array, function, i))
1070				goto out;
1071		}
1072		break;
1073	/* Intel AMX TILE */
1074	case 0x1d:
1075		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1076			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1077			break;
1078		}
1079
1080		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1081			if (!do_host_cpuid(array, function, i))
1082				goto out;
1083		}
1084		break;
1085	case 0x1e: /* TMUL information */
1086		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1087			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1088			break;
1089		}
1090		break;
1091	case KVM_CPUID_SIGNATURE: {
1092		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
 
1093		entry->eax = KVM_CPUID_FEATURES;
1094		entry->ebx = sigptr[0];
1095		entry->ecx = sigptr[1];
1096		entry->edx = sigptr[2];
1097		break;
1098	}
1099	case KVM_CPUID_FEATURES:
1100		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1101			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1102			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1103			     (1 << KVM_FEATURE_ASYNC_PF) |
1104			     (1 << KVM_FEATURE_PV_EOI) |
1105			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1106			     (1 << KVM_FEATURE_PV_UNHALT) |
1107			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1108			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1109			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1110			     (1 << KVM_FEATURE_POLL_CONTROL) |
1111			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1112			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1113
1114		if (sched_info_on())
1115			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1116
1117		entry->ebx = 0;
1118		entry->ecx = 0;
1119		entry->edx = 0;
1120		break;
1121	case 0x80000000:
1122		entry->eax = min(entry->eax, 0x80000021);
1123		/*
1124		 * Serializing LFENCE is reported in a multitude of ways, and
1125		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1126		 * userspace by providing the CPUID leaf ourselves.
1127		 *
1128		 * However, only do it if the host has CPUID leaf 0x8000001d.
1129		 * QEMU thinks that it can query the host blindly for that
1130		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1131		 * above.  The processor merrily returns values from the
1132		 * highest Intel leaf which QEMU tries to use as the guest's
1133		 * 0x8000001d.  Even worse, this can result in an infinite
1134		 * loop if said highest leaf has no subleaves indexed by ECX.
1135		 */
1136		if (entry->eax >= 0x8000001d &&
1137		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1138		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1139			entry->eax = max(entry->eax, 0x80000021);
1140		break;
1141	case 0x80000001:
1142		entry->ebx &= ~GENMASK(27, 16);
1143		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1144		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1145		break;
1146	case 0x80000006:
1147		/* Drop reserved bits, pass host L2 cache and TLB info. */
1148		entry->edx &= ~GENMASK(17, 16);
1149		break;
1150	case 0x80000007: /* Advanced power management */
1151		/* invariant TSC is CPUID.80000007H:EDX[8] */
1152		entry->edx &= (1 << 8);
1153		/* mask against host */
1154		entry->edx &= boot_cpu_data.x86_power;
1155		entry->eax = entry->ebx = entry->ecx = 0;
1156		break;
1157	case 0x80000008: {
1158		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1159		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1160		unsigned phys_as = entry->eax & 0xff;
1161
1162		/*
1163		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1164		 * the guest operates in the same PA space as the host, i.e.
1165		 * reductions in MAXPHYADDR for memory encryption affect shadow
1166		 * paging, too.
1167		 *
1168		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
1169		 * provided, use the raw bare metal MAXPHYADDR as reductions to
1170		 * the HPAs do not affect GPAs.
1171		 */
1172		if (!tdp_enabled)
1173			g_phys_as = boot_cpu_data.x86_phys_bits;
1174		else if (!g_phys_as)
1175			g_phys_as = phys_as;
1176
1177		entry->eax = g_phys_as | (virt_as << 8);
1178		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1179		entry->edx = 0;
1180		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1181		break;
1182	}
1183	case 0x8000000A:
1184		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1185			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1186			break;
1187		}
1188		entry->eax = 1; /* SVM revision 1 */
1189		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1190				   ASID emulation to nested SVM */
1191		entry->ecx = 0; /* Reserved */
1192		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1193		break;
1194	case 0x80000019:
1195		entry->ecx = entry->edx = 0;
1196		break;
1197	case 0x8000001a:
1198		entry->eax &= GENMASK(2, 0);
1199		entry->ebx = entry->ecx = entry->edx = 0;
1200		break;
1201	case 0x8000001e:
1202		/* Do not return host topology information.  */
1203		entry->eax = entry->ebx = entry->ecx = 0;
1204		entry->edx = 0; /* reserved */
1205		break;
 
1206	case 0x8000001F:
1207		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1208			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1209		} else {
1210			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1211			/* Clear NumVMPL since KVM does not support VMPL.  */
1212			entry->ebx &= ~GENMASK(31, 12);
1213			/*
1214			 * Enumerate '0' for "PA bits reduction", the adjusted
1215			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1216			 */
1217			entry->ebx &= ~GENMASK(11, 6);
1218		}
1219		break;
1220	case 0x80000020:
1221		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1222		break;
1223	case 0x80000021:
1224		entry->ebx = entry->ecx = entry->edx = 0;
1225		/*
1226		 * Pass down these bits:
1227		 *    EAX      0      NNDBP, Processor ignores nested data breakpoints
1228		 *    EAX      2      LAS, LFENCE always serializing
1229		 *    EAX      6      NSCB, Null selector clear base
1230		 *
1231		 * Other defined bits are for MSRs that KVM does not expose:
1232		 *   EAX      3      SPCL, SMM page configuration lock
1233		 *   EAX      13     PCMSR, Prefetch control MSR
1234		 *
1235		 * KVM doesn't support SMM_CTL.
1236		 *   EAX       9     SMM_CTL MSR is not supported
1237		 */
1238		entry->eax &= BIT(0) | BIT(2) | BIT(6);
1239		entry->eax |= BIT(9);
1240		if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
1241			entry->eax |= BIT(2);
1242		if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1243			entry->eax |= BIT(6);
1244		break;
1245	/*Add support for Centaur's CPUID instruction*/
1246	case 0xC0000000:
1247		/*Just support up to 0xC0000004 now*/
1248		entry->eax = min(entry->eax, 0xC0000004);
1249		break;
1250	case 0xC0000001:
1251		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1252		break;
1253	case 3: /* Processor serial number */
1254	case 5: /* MONITOR/MWAIT */
1255	case 0xC0000002:
1256	case 0xC0000003:
1257	case 0xC0000004:
1258	default:
1259		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1260		break;
1261	}
1262
1263	r = 0;
1264
1265out:
1266	put_cpu();
1267
1268	return r;
1269}
1270
1271static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1272			 unsigned int type)
1273{
1274	if (type == KVM_GET_EMULATED_CPUID)
1275		return __do_cpuid_func_emulated(array, func);
1276
1277	return __do_cpuid_func(array, func);
1278}
1279
1280#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1281
1282static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1283			  unsigned int type)
1284{
1285	u32 limit;
1286	int r;
1287
1288	if (func == CENTAUR_CPUID_SIGNATURE &&
1289	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1290		return 0;
1291
1292	r = do_cpuid_func(array, func, type);
1293	if (r)
1294		return r;
1295
1296	limit = array->entries[array->nent - 1].eax;
1297	for (func = func + 1; func <= limit; ++func) {
1298		r = do_cpuid_func(array, func, type);
1299		if (r)
1300			break;
1301	}
1302
1303	return r;
1304}
1305
1306static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1307				 __u32 num_entries, unsigned int ioctl_type)
1308{
1309	int i;
1310	__u32 pad[3];
1311
1312	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1313		return false;
1314
1315	/*
1316	 * We want to make sure that ->padding is being passed clean from
1317	 * userspace in case we want to use it for something in the future.
1318	 *
1319	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1320	 * have to give ourselves satisfied only with the emulated side. /me
1321	 * sheds a tear.
1322	 */
1323	for (i = 0; i < num_entries; i++) {
1324		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1325			return true;
1326
1327		if (pad[0] || pad[1] || pad[2])
1328			return true;
1329	}
1330	return false;
1331}
1332
1333int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1334			    struct kvm_cpuid_entry2 __user *entries,
1335			    unsigned int type)
1336{
1337	static const u32 funcs[] = {
1338		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1339	};
1340
1341	struct kvm_cpuid_array array = {
1342		.nent = 0,
1343	};
1344	int r, i;
1345
1346	if (cpuid->nent < 1)
1347		return -E2BIG;
1348	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1349		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1350
1351	if (sanity_check_entries(entries, cpuid->nent, type))
1352		return -EINVAL;
1353
1354	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
 
1355	if (!array.entries)
1356		return -ENOMEM;
1357
1358	array.maxnent = cpuid->nent;
1359
1360	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1361		r = get_cpuid_func(&array, funcs[i], type);
1362		if (r)
1363			goto out_free;
1364	}
1365	cpuid->nent = array.nent;
1366
1367	if (copy_to_user(entries, array.entries,
1368			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1369		r = -EFAULT;
1370
1371out_free:
1372	kvfree(array.entries);
1373	return r;
1374}
1375
1376struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1377						    u32 function, u32 index)
1378{
1379	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1380				 function, index);
1381}
1382EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1383
1384struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1385					      u32 function)
1386{
1387	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1388				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 
 
 
 
 
 
 
 
 
1389}
1390EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1391
1392/*
1393 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1394 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1395 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1396 * range.  Centaur/VIA follows Intel semantics.
1397 *
1398 * A leaf is considered out-of-range if its function is higher than the maximum
1399 * supported leaf of its associated class or if its associated class does not
1400 * exist.
1401 *
1402 * There are three primary classes to be considered, with their respective
1403 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1404 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1405 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1406 *
1407 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1408 *  - Hypervisor: 0x40000000 - 0x4fffffff
1409 *  - Extended:   0x80000000 - 0xbfffffff
1410 *  - Centaur:    0xc0000000 - 0xcfffffff
1411 *
1412 * The Hypervisor class is further subdivided into sub-classes that each act as
1413 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1414 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1415 * CPUID sub-classes are:
1416 *
1417 *  - HyperV:     0x40000000 - 0x400000ff
1418 *  - KVM:        0x40000100 - 0x400001ff
1419 */
1420static struct kvm_cpuid_entry2 *
1421get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1422{
1423	struct kvm_cpuid_entry2 *basic, *class;
1424	u32 function = *fn_ptr;
1425
1426	basic = kvm_find_cpuid_entry(vcpu, 0);
1427	if (!basic)
1428		return NULL;
1429
1430	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1431	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1432		return NULL;
1433
1434	if (function >= 0x40000000 && function <= 0x4fffffff)
1435		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1436	else if (function >= 0xc0000000)
1437		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1438	else
1439		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1440
1441	if (class && function <= class->eax)
1442		return NULL;
1443
1444	/*
1445	 * Leaf specific adjustments are also applied when redirecting to the
1446	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1447	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1448	 * needs to be pulled from CPUID.0xb.1.
1449	 */
1450	*fn_ptr = basic->eax;
1451
1452	/*
1453	 * The class does not exist or the requested function is out of range;
1454	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1455	 * the original requested leaf is observed!
1456	 */
1457	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1458}
1459
1460bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1461	       u32 *ecx, u32 *edx, bool exact_only)
1462{
1463	u32 orig_function = *eax, function = *eax, index = *ecx;
1464	struct kvm_cpuid_entry2 *entry;
1465	bool exact, used_max_basic = false;
1466
1467	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1468	exact = !!entry;
1469
1470	if (!entry && !exact_only) {
1471		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1472		used_max_basic = !!entry;
1473	}
1474
1475	if (entry) {
1476		*eax = entry->eax;
1477		*ebx = entry->ebx;
1478		*ecx = entry->ecx;
1479		*edx = entry->edx;
1480		if (function == 7 && index == 0) {
1481			u64 data;
1482		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1483			    (data & TSX_CTRL_CPUID_CLEAR))
1484				*ebx &= ~(F(RTM) | F(HLE));
1485		}
1486	} else {
1487		*eax = *ebx = *ecx = *edx = 0;
1488		/*
1489		 * When leaf 0BH or 1FH is defined, CL is pass-through
1490		 * and EDX is always the x2APIC ID, even for undefined
1491		 * subleaves. Index 1 will exist iff the leaf is
1492		 * implemented, so we pass through CL iff leaf 1
1493		 * exists. EDX can be copied from any existing index.
1494		 */
1495		if (function == 0xb || function == 0x1f) {
1496			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1497			if (entry) {
1498				*ecx = index & 0xff;
1499				*edx = entry->edx;
1500			}
1501		}
1502	}
1503	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1504			used_max_basic);
1505	return exact;
1506}
1507EXPORT_SYMBOL_GPL(kvm_cpuid);
1508
1509int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1510{
1511	u32 eax, ebx, ecx, edx;
1512
1513	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1514		return 1;
1515
1516	eax = kvm_rax_read(vcpu);
1517	ecx = kvm_rcx_read(vcpu);
1518	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1519	kvm_rax_write(vcpu, eax);
1520	kvm_rbx_write(vcpu, ebx);
1521	kvm_rcx_write(vcpu, ecx);
1522	kvm_rdx_write(vcpu, edx);
1523	return kvm_skip_emulated_instruction(vcpu);
1524}
1525EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11
  12#include <linux/kvm_host.h>
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
 
 
  21#include "cpuid.h"
  22#include "lapic.h"
  23#include "mmu.h"
  24#include "trace.h"
  25#include "pmu.h"
  26
  27/*
  28 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  29 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  30 */
  31u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
  32EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  33
  34static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  35{
  36	int feature_bit = 0;
  37	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  38
  39	xstate_bv &= XFEATURE_MASK_EXTEND;
  40	while (xstate_bv) {
  41		if (xstate_bv & 0x1) {
  42		        u32 eax, ebx, ecx, edx, offset;
  43		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  44			offset = compacted ? ret : ebx;
 
 
 
 
  45			ret = max(ret, offset + eax);
  46		}
  47
  48		xstate_bv >>= 1;
  49		feature_bit++;
  50	}
  51
  52	return ret;
  53}
  54
 
 
 
 
 
 
  55#define F feature_bit
  56
  57static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58{
  59	struct kvm_cpuid_entry2 *best;
 
  60
  61	/*
  62	 * The existing code assumes virtual address is 48-bit or 57-bit in the
  63	 * canonical address checks; exit if it is ever changed.
  64	 */
  65	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 
  66	if (best) {
  67		int vaddr_bits = (best->eax & 0xff00) >> 8;
  68
  69		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
  70			return -EINVAL;
  71	}
  72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73	return 0;
  74}
  75
  76void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77{
  78	struct kvm_cpuid_entry2 *best;
 
  79
  80	best = kvm_find_cpuid_entry(vcpu, 1, 0);
  81	if (best) {
  82		/* Update OSXSAVE bit */
  83		if (boot_cpu_has(X86_FEATURE_XSAVE))
  84			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
  85				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
  86
  87		cpuid_entry_change(best, X86_FEATURE_APIC,
  88			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
  89	}
  90
  91	best = kvm_find_cpuid_entry(vcpu, 7, 0);
  92	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
  93		cpuid_entry_change(best, X86_FEATURE_OSPKE,
  94				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
  95
  96	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
  97	if (best)
  98		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
  99
 100	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
 101	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 102		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 103		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 104
 105	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 106	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 107		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 108		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 109
 110	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 111		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 112		if (best)
 113			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 114					   vcpu->arch.ia32_misc_enable_msr &
 115					   MSR_IA32_MISC_ENABLE_MWAIT);
 116	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117}
 118
 119static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 120{
 121	struct kvm_lapic *apic = vcpu->arch.apic;
 122	struct kvm_cpuid_entry2 *best;
 123
 124	kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
 125
 126	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 127	if (best && apic) {
 128		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 129			apic->lapic_timer.timer_mode_mask = 3 << 17;
 130		else
 131			apic->lapic_timer.timer_mode_mask = 1 << 17;
 132
 133		kvm_apic_set_version(vcpu);
 134	}
 135
 136	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 137	if (!best)
 138		vcpu->arch.guest_supported_xcr0 = 0;
 139	else
 140		vcpu->arch.guest_supported_xcr0 =
 141			(best->eax | ((u64)best->edx << 32)) & supported_xcr0;
 
 
 
 
 
 
 142
 143	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 144	kvm_mmu_reset_context(vcpu);
 145
 146	kvm_pmu_refresh(vcpu);
 147	vcpu->arch.cr4_guest_rsvd_bits =
 148	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 149	kvm_x86_ops.update_exception_bitmap(vcpu);
 150}
 151
 152static int is_efer_nx(void)
 153{
 154	return host_efer & EFER_NX;
 155}
 156
 157static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 158{
 159	int i;
 160	struct kvm_cpuid_entry2 *e, *entry;
 161
 162	entry = NULL;
 163	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 164		e = &vcpu->arch.cpuid_entries[i];
 165		if (e->function == 0x80000001) {
 166			entry = e;
 167			break;
 168		}
 169	}
 170	if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
 171		cpuid_entry_clear(entry, X86_FEATURE_NX);
 172		printk(KERN_INFO "kvm: guest NX capability removed\n");
 173	}
 174}
 175
 176int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 177{
 178	struct kvm_cpuid_entry2 *best;
 179
 180	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 181	if (!best || best->eax < 0x80000008)
 182		goto not_found;
 183	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 184	if (best)
 185		return best->eax & 0xff;
 186not_found:
 187	return 36;
 188}
 189EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190
 191/* when an old userspace process fills a new kernel module */
 192int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 193			     struct kvm_cpuid *cpuid,
 194			     struct kvm_cpuid_entry __user *entries)
 195{
 196	int r, i;
 197	struct kvm_cpuid_entry *cpuid_entries = NULL;
 
 198
 199	r = -E2BIG;
 200	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 201		goto out;
 
 202	if (cpuid->nent) {
 203		cpuid_entries = vmemdup_user(entries,
 204					     array_size(sizeof(struct kvm_cpuid_entry),
 205							cpuid->nent));
 206		if (IS_ERR(cpuid_entries)) {
 207			r = PTR_ERR(cpuid_entries);
 208			goto out;
 
 
 209		}
 210	}
 211	for (i = 0; i < cpuid->nent; i++) {
 212		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
 213		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
 214		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
 215		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
 216		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
 217		vcpu->arch.cpuid_entries[i].index = 0;
 218		vcpu->arch.cpuid_entries[i].flags = 0;
 219		vcpu->arch.cpuid_entries[i].padding[0] = 0;
 220		vcpu->arch.cpuid_entries[i].padding[1] = 0;
 221		vcpu->arch.cpuid_entries[i].padding[2] = 0;
 222	}
 223	vcpu->arch.cpuid_nent = cpuid->nent;
 224	r = kvm_check_cpuid(vcpu);
 225	if (r) {
 226		vcpu->arch.cpuid_nent = 0;
 227		kvfree(cpuid_entries);
 228		goto out;
 229	}
 230
 231	cpuid_fix_nx_cap(vcpu);
 232	kvm_update_cpuid_runtime(vcpu);
 233	kvm_vcpu_after_set_cpuid(vcpu);
 
 
 
 234
 235	kvfree(cpuid_entries);
 236out:
 237	return r;
 238}
 239
 240int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 241			      struct kvm_cpuid2 *cpuid,
 242			      struct kvm_cpuid_entry2 __user *entries)
 243{
 
 244	int r;
 245
 246	r = -E2BIG;
 247	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 248		goto out;
 249	r = -EFAULT;
 250	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
 251			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
 252		goto out;
 253	vcpu->arch.cpuid_nent = cpuid->nent;
 254	r = kvm_check_cpuid(vcpu);
 255	if (r) {
 256		vcpu->arch.cpuid_nent = 0;
 257		goto out;
 258	}
 259
 260	kvm_update_cpuid_runtime(vcpu);
 261	kvm_vcpu_after_set_cpuid(vcpu);
 262out:
 
 263	return r;
 264}
 265
 266int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 267			      struct kvm_cpuid2 *cpuid,
 268			      struct kvm_cpuid_entry2 __user *entries)
 269{
 270	int r;
 271
 272	r = -E2BIG;
 273	if (cpuid->nent < vcpu->arch.cpuid_nent)
 274		goto out;
 275	r = -EFAULT;
 276	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
 277			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 278		goto out;
 279	return 0;
 280
 281out:
 282	cpuid->nent = vcpu->arch.cpuid_nent;
 283	return r;
 284}
 285
 286static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 
 287{
 288	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 289	struct kvm_cpuid_entry2 entry;
 290
 291	reverse_cpuid_check(leaf);
 292	kvm_cpu_caps[leaf] &= mask;
 293
 294	cpuid_count(cpuid.function, cpuid.index,
 295		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 296
 297	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 298}
 299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300void kvm_set_cpu_caps(void)
 301{
 302	unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
 303#ifdef CONFIG_X86_64
 304	unsigned int f_gbpages = F(GBPAGES);
 305	unsigned int f_lm = F(LM);
 
 306#else
 307	unsigned int f_gbpages = 0;
 308	unsigned int f_lm = 0;
 
 309#endif
 
 310
 311	BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
 312		     sizeof(boot_cpu_data.x86_capability));
 313
 314	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 315	       sizeof(kvm_cpu_caps));
 316
 317	kvm_cpu_cap_mask(CPUID_1_ECX,
 318		/*
 319		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 320		 * advertised to guests via CPUID!
 321		 */
 322		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 323		0 /* DS-CPL, VMX, SMX, EST */ |
 324		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 325		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 326		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 327		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 328		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 329		F(F16C) | F(RDRAND)
 330	);
 331	/* KVM emulates x2apic in software irrespective of host support. */
 332	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 333
 334	kvm_cpu_cap_mask(CPUID_1_EDX,
 335		F(FPU) | F(VME) | F(DE) | F(PSE) |
 336		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 337		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 338		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 339		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 340		0 /* Reserved, DS, ACPI */ | F(MMX) |
 341		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 342		0 /* HTT, TM, Reserved, PBE */
 343	);
 344
 345	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 346		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
 347		F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
 348		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 349		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
 350		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
 351	);
 
 352
 353	kvm_cpu_cap_mask(CPUID_7_ECX,
 354		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 355		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 356		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 357		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
 
 358	);
 359	/* Set LA57 based on hardware capability. */
 360	if (cpuid_ecx(7) & F(LA57))
 361		kvm_cpu_cap_set(X86_FEATURE_LA57);
 362
 363	/*
 364	 * PKU not yet implemented for shadow paging and requires OSPKE
 365	 * to be set on the host. Clear it if that is not the case
 366	 */
 367	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 368		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 369
 370	kvm_cpu_cap_mask(CPUID_7_EDX,
 371		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 372		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 373		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 374		F(SERIALIZE)
 
 375	);
 376
 377	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 378	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 379	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 380
 381	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 382		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 383	if (boot_cpu_has(X86_FEATURE_STIBP))
 384		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 385	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 386		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 387
 388	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 389		F(AVX512_BF16)
 
 
 
 
 
 390	);
 391
 392	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 393		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
 
 
 
 
 394	);
 395
 396	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 397		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 398		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 399		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 400		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 401		F(TOPOEXT) | F(PERFCTR_CORE)
 402	);
 403
 404	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 405		F(FPU) | F(VME) | F(DE) | F(PSE) |
 406		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 407		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 408		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 409		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 410		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 411		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 412		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 413	);
 414
 415	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 416		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 417
 418	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 419		F(CLZERO) | F(XSAVEERPTR) |
 420		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 421		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
 
 422	);
 423
 424	/*
 425	 * AMD has separate bits for each SPEC_CTRL bit.
 426	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 427	 * record that in cpufeatures so use them.
 428	 */
 429	if (boot_cpu_has(X86_FEATURE_IBPB))
 430		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 431	if (boot_cpu_has(X86_FEATURE_IBRS))
 432		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 433	if (boot_cpu_has(X86_FEATURE_STIBP))
 434		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 435	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 436		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 437	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 438		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 439	/*
 440	 * The preference is to use SPEC CTRL MSR instead of the
 441	 * VIRT_SPEC MSR.
 442	 */
 443	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 444	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 445		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 446
 447	/*
 448	 * Hide all SVM features by default, SVM will set the cap bits for
 449	 * features it emulates and/or exposes for L1.
 450	 */
 451	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 452
 
 
 
 
 453	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 454		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 455		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 456		F(PMM) | F(PMM_EN)
 457	);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458}
 459EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 460
 461struct kvm_cpuid_array {
 462	struct kvm_cpuid_entry2 *entries;
 463	int maxnent;
 464	int nent;
 465};
 466
 
 
 
 
 
 
 
 
 467static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 468					      u32 function, u32 index)
 469{
 470	struct kvm_cpuid_entry2 *entry;
 471
 472	if (array->nent >= array->maxnent)
 473		return NULL;
 474
 475	entry = &array->entries[array->nent++];
 476
 477	entry->function = function;
 478	entry->index = index;
 479	entry->flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480
 481	cpuid_count(entry->function, entry->index,
 482		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 483
 484	switch (function) {
 485	case 4:
 486	case 7:
 487	case 0xb:
 488	case 0xd:
 489	case 0xf:
 490	case 0x10:
 491	case 0x12:
 492	case 0x14:
 493	case 0x17:
 494	case 0x18:
 495	case 0x1f:
 496	case 0x8000001d:
 497		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 498		break;
 499	}
 500
 501	return entry;
 502}
 503
 504static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 505{
 506	struct kvm_cpuid_entry2 *entry;
 507
 508	if (array->nent >= array->maxnent)
 509		return -E2BIG;
 510
 511	entry = &array->entries[array->nent];
 512	entry->function = func;
 513	entry->index = 0;
 514	entry->flags = 0;
 515
 516	switch (func) {
 517	case 0:
 518		entry->eax = 7;
 519		++array->nent;
 520		break;
 521	case 1:
 522		entry->ecx = F(MOVBE);
 523		++array->nent;
 524		break;
 525	case 7:
 526		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 527		entry->eax = 0;
 528		entry->ecx = F(RDPID);
 
 529		++array->nent;
 
 530	default:
 531		break;
 532	}
 533
 534	return 0;
 535}
 536
 537static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 538{
 539	struct kvm_cpuid_entry2 *entry;
 540	int r, i, max_idx;
 541
 542	/* all calls to cpuid_count() should be made on the same cpu */
 543	get_cpu();
 544
 545	r = -E2BIG;
 546
 547	entry = do_host_cpuid(array, function, 0);
 548	if (!entry)
 549		goto out;
 550
 551	switch (function) {
 552	case 0:
 553		/* Limited to the highest leaf implemented in KVM. */
 554		entry->eax = min(entry->eax, 0x1fU);
 555		break;
 556	case 1:
 557		cpuid_entry_override(entry, CPUID_1_EDX);
 558		cpuid_entry_override(entry, CPUID_1_ECX);
 559		break;
 560	case 2:
 561		/*
 562		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 563		 * CPUID(function=2, index=0) may return different results each
 564		 * time, with the least-significant byte in EAX enumerating the
 565		 * number of times software should do CPUID(2, 0).
 566		 *
 567		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 568		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 569		 * return 01H. Software should ignore this value and not
 570		 * interpret it as an informational descriptor", while AMD's
 571		 * APM states that CPUID(2) is reserved.
 572		 *
 573		 * WARN if a frankenstein CPU that supports virtualization and
 574		 * a stateful CPUID.0x2 is encountered.
 575		 */
 576		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 577		break;
 578	/* functions 4 and 0x8000001d have additional index. */
 579	case 4:
 580	case 0x8000001d:
 581		/*
 582		 * Read entries until the cache type in the previous entry is
 583		 * zero, i.e. indicates an invalid entry.
 584		 */
 585		for (i = 1; entry->eax & 0x1f; ++i) {
 586			entry = do_host_cpuid(array, function, i);
 587			if (!entry)
 588				goto out;
 589		}
 590		break;
 591	case 6: /* Thermal management */
 592		entry->eax = 0x4; /* allow ARAT */
 593		entry->ebx = 0;
 594		entry->ecx = 0;
 595		entry->edx = 0;
 596		break;
 597	/* function 7 has additional index. */
 598	case 7:
 599		entry->eax = min(entry->eax, 1u);
 600		cpuid_entry_override(entry, CPUID_7_0_EBX);
 601		cpuid_entry_override(entry, CPUID_7_ECX);
 602		cpuid_entry_override(entry, CPUID_7_EDX);
 603
 604		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
 605		if (entry->eax == 1) {
 606			entry = do_host_cpuid(array, function, 1);
 607			if (!entry)
 608				goto out;
 609
 610			cpuid_entry_override(entry, CPUID_7_1_EAX);
 
 611			entry->ebx = 0;
 612			entry->ecx = 0;
 613			entry->edx = 0;
 614		}
 615		break;
 616	case 9:
 617		break;
 618	case 0xa: { /* Architectural Performance Monitoring */
 619		struct x86_pmu_capability cap;
 620		union cpuid10_eax eax;
 621		union cpuid10_edx edx;
 622
 623		perf_get_x86_pmu_capability(&cap);
 624
 625		/*
 626		 * Only support guest architectural pmu on a host
 627		 * with architectural pmu.
 628		 */
 629		if (!cap.version)
 630			memset(&cap, 0, sizeof(cap));
 631
 632		eax.split.version_id = min(cap.version, 2);
 633		eax.split.num_counters = cap.num_counters_gp;
 634		eax.split.bit_width = cap.bit_width_gp;
 635		eax.split.mask_length = cap.events_mask_len;
 636
 637		edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
 638		edx.split.bit_width_fixed = cap.bit_width_fixed;
 639		edx.split.reserved = 0;
 
 
 
 640
 641		entry->eax = eax.full;
 642		entry->ebx = cap.events_mask;
 643		entry->ecx = 0;
 644		entry->edx = edx.full;
 645		break;
 646	}
 647	/*
 648	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
 649	 * thus they can be handled by common code.
 650	 */
 651	case 0x1f:
 652	case 0xb:
 653		/*
 654		 * Populate entries until the level type (ECX[15:8]) of the
 655		 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
 656		 * the starting entry, filled by the primary do_host_cpuid().
 657		 */
 658		for (i = 1; entry->ecx & 0xff00; ++i) {
 659			entry = do_host_cpuid(array, function, i);
 660			if (!entry)
 661				goto out;
 662		}
 663		break;
 664	case 0xd:
 665		entry->eax &= supported_xcr0;
 666		entry->ebx = xstate_required_size(supported_xcr0, false);
 
 
 
 667		entry->ecx = entry->ebx;
 668		entry->edx &= supported_xcr0 >> 32;
 669		if (!supported_xcr0)
 670			break;
 671
 672		entry = do_host_cpuid(array, function, 1);
 673		if (!entry)
 674			goto out;
 675
 676		cpuid_entry_override(entry, CPUID_D_1_EAX);
 677		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
 678			entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
 679							  true);
 680		else {
 681			WARN_ON_ONCE(supported_xss != 0);
 682			entry->ebx = 0;
 683		}
 684		entry->ecx &= supported_xss;
 685		entry->edx &= supported_xss >> 32;
 686
 687		for (i = 2; i < 64; ++i) {
 688			bool s_state;
 689			if (supported_xcr0 & BIT_ULL(i))
 690				s_state = false;
 691			else if (supported_xss & BIT_ULL(i))
 692				s_state = true;
 693			else
 694				continue;
 695
 696			entry = do_host_cpuid(array, function, i);
 697			if (!entry)
 698				goto out;
 699
 700			/*
 701			 * The supported check above should have filtered out
 702			 * invalid sub-leafs.  Only valid sub-leafs should
 703			 * reach this point, and they should have a non-zero
 704			 * save state size.  Furthermore, check whether the
 705			 * processor agrees with supported_xcr0/supported_xss
 706			 * on whether this is an XCR0- or IA32_XSS-managed area.
 707			 */
 708			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
 709				--array->nent;
 710				continue;
 711			}
 
 
 
 712			entry->edx = 0;
 713		}
 714		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715	/* Intel PT */
 716	case 0x14:
 717		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
 718			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 719			break;
 720		}
 721
 722		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
 723			if (!do_host_cpuid(array, function, i))
 724				goto out;
 725		}
 726		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727	case KVM_CPUID_SIGNATURE: {
 728		static const char signature[12] = "KVMKVMKVM\0\0";
 729		const u32 *sigptr = (const u32 *)signature;
 730		entry->eax = KVM_CPUID_FEATURES;
 731		entry->ebx = sigptr[0];
 732		entry->ecx = sigptr[1];
 733		entry->edx = sigptr[2];
 734		break;
 735	}
 736	case KVM_CPUID_FEATURES:
 737		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 738			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
 739			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
 740			     (1 << KVM_FEATURE_ASYNC_PF) |
 741			     (1 << KVM_FEATURE_PV_EOI) |
 742			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 743			     (1 << KVM_FEATURE_PV_UNHALT) |
 744			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
 745			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
 746			     (1 << KVM_FEATURE_PV_SEND_IPI) |
 747			     (1 << KVM_FEATURE_POLL_CONTROL) |
 748			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
 749			     (1 << KVM_FEATURE_ASYNC_PF_INT);
 750
 751		if (sched_info_on())
 752			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 753
 754		entry->ebx = 0;
 755		entry->ecx = 0;
 756		entry->edx = 0;
 757		break;
 758	case 0x80000000:
 759		entry->eax = min(entry->eax, 0x8000001f);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760		break;
 761	case 0x80000001:
 
 762		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
 763		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
 764		break;
 765	case 0x80000006:
 766		/* L2 cache and TLB: pass through host info. */
 
 767		break;
 768	case 0x80000007: /* Advanced power management */
 769		/* invariant TSC is CPUID.80000007H:EDX[8] */
 770		entry->edx &= (1 << 8);
 771		/* mask against host */
 772		entry->edx &= boot_cpu_data.x86_power;
 773		entry->eax = entry->ebx = entry->ecx = 0;
 774		break;
 775	case 0x80000008: {
 776		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 777		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 778		unsigned phys_as = entry->eax & 0xff;
 779
 780		if (!g_phys_as)
 
 
 
 
 
 
 
 
 
 
 
 
 781			g_phys_as = phys_as;
 
 782		entry->eax = g_phys_as | (virt_as << 8);
 
 783		entry->edx = 0;
 784		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
 785		break;
 786	}
 787	case 0x8000000A:
 788		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
 789			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 790			break;
 791		}
 792		entry->eax = 1; /* SVM revision 1 */
 793		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
 794				   ASID emulation to nested SVM */
 795		entry->ecx = 0; /* Reserved */
 796		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
 797		break;
 798	case 0x80000019:
 799		entry->ecx = entry->edx = 0;
 800		break;
 801	case 0x8000001a:
 
 
 
 802	case 0x8000001e:
 
 
 
 803		break;
 804	/* Support memory encryption cpuid if host supports it */
 805	case 0x8000001F:
 806		if (!boot_cpu_has(X86_FEATURE_SEV))
 807			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808		break;
 809	/*Add support for Centaur's CPUID instruction*/
 810	case 0xC0000000:
 811		/*Just support up to 0xC0000004 now*/
 812		entry->eax = min(entry->eax, 0xC0000004);
 813		break;
 814	case 0xC0000001:
 815		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
 816		break;
 817	case 3: /* Processor serial number */
 818	case 5: /* MONITOR/MWAIT */
 819	case 0xC0000002:
 820	case 0xC0000003:
 821	case 0xC0000004:
 822	default:
 823		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 824		break;
 825	}
 826
 827	r = 0;
 828
 829out:
 830	put_cpu();
 831
 832	return r;
 833}
 834
 835static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 836			 unsigned int type)
 837{
 838	if (type == KVM_GET_EMULATED_CPUID)
 839		return __do_cpuid_func_emulated(array, func);
 840
 841	return __do_cpuid_func(array, func);
 842}
 843
 844#define CENTAUR_CPUID_SIGNATURE 0xC0000000
 845
 846static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 847			  unsigned int type)
 848{
 849	u32 limit;
 850	int r;
 851
 852	if (func == CENTAUR_CPUID_SIGNATURE &&
 853	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
 854		return 0;
 855
 856	r = do_cpuid_func(array, func, type);
 857	if (r)
 858		return r;
 859
 860	limit = array->entries[array->nent - 1].eax;
 861	for (func = func + 1; func <= limit; ++func) {
 862		r = do_cpuid_func(array, func, type);
 863		if (r)
 864			break;
 865	}
 866
 867	return r;
 868}
 869
 870static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
 871				 __u32 num_entries, unsigned int ioctl_type)
 872{
 873	int i;
 874	__u32 pad[3];
 875
 876	if (ioctl_type != KVM_GET_EMULATED_CPUID)
 877		return false;
 878
 879	/*
 880	 * We want to make sure that ->padding is being passed clean from
 881	 * userspace in case we want to use it for something in the future.
 882	 *
 883	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
 884	 * have to give ourselves satisfied only with the emulated side. /me
 885	 * sheds a tear.
 886	 */
 887	for (i = 0; i < num_entries; i++) {
 888		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
 889			return true;
 890
 891		if (pad[0] || pad[1] || pad[2])
 892			return true;
 893	}
 894	return false;
 895}
 896
 897int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
 898			    struct kvm_cpuid_entry2 __user *entries,
 899			    unsigned int type)
 900{
 901	static const u32 funcs[] = {
 902		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
 903	};
 904
 905	struct kvm_cpuid_array array = {
 906		.nent = 0,
 907	};
 908	int r, i;
 909
 910	if (cpuid->nent < 1)
 911		return -E2BIG;
 912	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 913		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 914
 915	if (sanity_check_entries(entries, cpuid->nent, type))
 916		return -EINVAL;
 917
 918	array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
 919					   cpuid->nent));
 920	if (!array.entries)
 921		return -ENOMEM;
 922
 923	array.maxnent = cpuid->nent;
 924
 925	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
 926		r = get_cpuid_func(&array, funcs[i], type);
 927		if (r)
 928			goto out_free;
 929	}
 930	cpuid->nent = array.nent;
 931
 932	if (copy_to_user(entries, array.entries,
 933			 array.nent * sizeof(struct kvm_cpuid_entry2)))
 934		r = -EFAULT;
 935
 936out_free:
 937	vfree(array.entries);
 938	return r;
 939}
 940
 
 
 
 
 
 
 
 
 941struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 942					      u32 function, u32 index)
 943{
 944	struct kvm_cpuid_entry2 *e;
 945	int i;
 946
 947	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 948		e = &vcpu->arch.cpuid_entries[i];
 949
 950		if (e->function == function && (e->index == index ||
 951		    !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
 952			return e;
 953	}
 954	return NULL;
 955}
 956EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
 957
 958/*
 959 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
 960 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
 961 * returns all zeroes for any undefined leaf, whether or not the leaf is in
 962 * range.  Centaur/VIA follows Intel semantics.
 963 *
 964 * A leaf is considered out-of-range if its function is higher than the maximum
 965 * supported leaf of its associated class or if its associated class does not
 966 * exist.
 967 *
 968 * There are three primary classes to be considered, with their respective
 969 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
 970 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
 971 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
 972 *
 973 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
 974 *  - Hypervisor: 0x40000000 - 0x4fffffff
 975 *  - Extended:   0x80000000 - 0xbfffffff
 976 *  - Centaur:    0xc0000000 - 0xcfffffff
 977 *
 978 * The Hypervisor class is further subdivided into sub-classes that each act as
 979 * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
 980 * is advertising support for both HyperV and KVM, the resulting Hypervisor
 981 * CPUID sub-classes are:
 982 *
 983 *  - HyperV:     0x40000000 - 0x400000ff
 984 *  - KVM:        0x40000100 - 0x400001ff
 985 */
 986static struct kvm_cpuid_entry2 *
 987get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
 988{
 989	struct kvm_cpuid_entry2 *basic, *class;
 990	u32 function = *fn_ptr;
 991
 992	basic = kvm_find_cpuid_entry(vcpu, 0, 0);
 993	if (!basic)
 994		return NULL;
 995
 996	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
 997	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
 998		return NULL;
 999
1000	if (function >= 0x40000000 && function <= 0x4fffffff)
1001		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1002	else if (function >= 0xc0000000)
1003		class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1004	else
1005		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1006
1007	if (class && function <= class->eax)
1008		return NULL;
1009
1010	/*
1011	 * Leaf specific adjustments are also applied when redirecting to the
1012	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1013	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1014	 * needs to be pulled from CPUID.0xb.1.
1015	 */
1016	*fn_ptr = basic->eax;
1017
1018	/*
1019	 * The class does not exist or the requested function is out of range;
1020	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1021	 * the original requested leaf is observed!
1022	 */
1023	return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1024}
1025
1026bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1027	       u32 *ecx, u32 *edx, bool exact_only)
1028{
1029	u32 orig_function = *eax, function = *eax, index = *ecx;
1030	struct kvm_cpuid_entry2 *entry;
1031	bool exact, used_max_basic = false;
1032
1033	entry = kvm_find_cpuid_entry(vcpu, function, index);
1034	exact = !!entry;
1035
1036	if (!entry && !exact_only) {
1037		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1038		used_max_basic = !!entry;
1039	}
1040
1041	if (entry) {
1042		*eax = entry->eax;
1043		*ebx = entry->ebx;
1044		*ecx = entry->ecx;
1045		*edx = entry->edx;
1046		if (function == 7 && index == 0) {
1047			u64 data;
1048		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1049			    (data & TSX_CTRL_CPUID_CLEAR))
1050				*ebx &= ~(F(RTM) | F(HLE));
1051		}
1052	} else {
1053		*eax = *ebx = *ecx = *edx = 0;
1054		/*
1055		 * When leaf 0BH or 1FH is defined, CL is pass-through
1056		 * and EDX is always the x2APIC ID, even for undefined
1057		 * subleaves. Index 1 will exist iff the leaf is
1058		 * implemented, so we pass through CL iff leaf 1
1059		 * exists. EDX can be copied from any existing index.
1060		 */
1061		if (function == 0xb || function == 0x1f) {
1062			entry = kvm_find_cpuid_entry(vcpu, function, 1);
1063			if (entry) {
1064				*ecx = index & 0xff;
1065				*edx = entry->edx;
1066			}
1067		}
1068	}
1069	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1070			used_max_basic);
1071	return exact;
1072}
1073EXPORT_SYMBOL_GPL(kvm_cpuid);
1074
1075int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1076{
1077	u32 eax, ebx, ecx, edx;
1078
1079	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1080		return 1;
1081
1082	eax = kvm_rax_read(vcpu);
1083	ecx = kvm_rcx_read(vcpu);
1084	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1085	kvm_rax_write(vcpu, eax);
1086	kvm_rbx_write(vcpu, ebx);
1087	kvm_rcx_write(vcpu, ecx);
1088	kvm_rdx_write(vcpu, edx);
1089	return kvm_skip_emulated_instruction(vcpu);
1090}
1091EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);