Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
 
 
 
 
  10 */
  11
  12#include <linux/kvm_host.h>
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
  21#include <asm/sgx.h>
  22#include <asm/cpuid.h>
  23#include "cpuid.h"
  24#include "lapic.h"
  25#include "mmu.h"
  26#include "trace.h"
  27#include "pmu.h"
  28
  29/*
  30 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  31 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  32 */
  33u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  34EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  35
  36u32 xstate_required_size(u64 xstate_bv, bool compacted)
  37{
  38	int feature_bit = 0;
  39	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  40
  41	xstate_bv &= XFEATURE_MASK_EXTEND;
  42	while (xstate_bv) {
  43		if (xstate_bv & 0x1) {
  44		        u32 eax, ebx, ecx, edx, offset;
  45		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  46			/* ECX[1]: 64B alignment in compacted form */
  47			if (compacted)
  48				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
  49			else
  50				offset = ebx;
  51			ret = max(ret, offset + eax);
  52		}
  53
  54		xstate_bv >>= 1;
  55		feature_bit++;
  56	}
  57
  58	return ret;
  59}
  60
  61/*
  62 * This one is tied to SSB in the user API, and not
  63 * visible in /proc/cpuinfo.
  64 */
  65#define KVM_X86_FEATURE_AMD_PSFD	(13*32+28) /* Predictive Store Forwarding Disable */
  66
  67#define F feature_bit
  68
  69/* Scattered Flag - For features that are scattered by cpufeatures.h. */
  70#define SF(name)						\
  71({								\
  72	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
  73	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
  74})
  75
  76/*
  77 * Magic value used by KVM when querying userspace-provided CPUID entries and
  78 * doesn't care about the CPIUD index because the index of the function in
  79 * question is not significant.  Note, this magic value must have at least one
  80 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
  81 * to avoid false positives when processing guest CPUID input.
  82 */
  83#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
  84
  85static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
  86	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
  87{
  88	struct kvm_cpuid_entry2 *e;
  89	int i;
  90
  91	for (i = 0; i < nent; i++) {
  92		e = &entries[i];
  93
  94		if (e->function != function)
  95			continue;
 
  96
  97		/*
  98		 * If the index isn't significant, use the first entry with a
  99		 * matching function.  It's userspace's responsibilty to not
 100		 * provide "duplicate" entries in all cases.
 101		 */
 102		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
 103			return e;
 104
 
 
 105
 106		/*
 107		 * Similarly, use the first matching entry if KVM is doing a
 108		 * lookup (as opposed to emulating CPUID) for a function that's
 109		 * architecturally defined as not having a significant index.
 110		 */
 111		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
 112			/*
 113			 * Direct lookups from KVM should not diverge from what
 114			 * KVM defines internally (the architectural behavior).
 115			 */
 116			WARN_ON_ONCE(cpuid_function_is_indexed(function));
 117			return e;
 118		}
 119	}
 120
 121	return NULL;
 122}
 123
 124static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
 125			   struct kvm_cpuid_entry2 *entries,
 126			   int nent)
 127{
 128	struct kvm_cpuid_entry2 *best;
 129	u64 xfeatures;
 130
 131	/*
 132	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 133	 * canonical address checks; exit if it is ever changed.
 134	 */
 135	best = cpuid_entry2_find(entries, nent, 0x80000008,
 136				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 137	if (best) {
 138		int vaddr_bits = (best->eax & 0xff00) >> 8;
 139
 140		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 141			return -EINVAL;
 142	}
 143
 144	/*
 145	 * Exposing dynamic xfeatures to the guest requires additional
 146	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
 147	 */
 148	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 149	if (!best)
 150		return 0;
 151
 152	xfeatures = best->eax | ((u64)best->edx << 32);
 153	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
 154	if (!xfeatures)
 155		return 0;
 156
 157	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
 158}
 159
 160/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
 161static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 162				 int nent)
 163{
 164	struct kvm_cpuid_entry2 *orig;
 165	int i;
 166
 167	if (nent != vcpu->arch.cpuid_nent)
 168		return -EINVAL;
 169
 170	for (i = 0; i < nent; i++) {
 171		orig = &vcpu->arch.cpuid_entries[i];
 172		if (e2[i].function != orig->function ||
 173		    e2[i].index != orig->index ||
 174		    e2[i].flags != orig->flags ||
 175		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
 176		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
 177			return -EINVAL;
 178	}
 179
 180	return 0;
 181}
 
 182
 183static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
 184{
 185	u32 function;
 186	struct kvm_cpuid_entry2 *entry;
 187
 188	vcpu->arch.kvm_cpuid_base = 0;
 189
 190	for_each_possible_hypervisor_cpuid_base(function) {
 191		entry = kvm_find_cpuid_entry(vcpu, function);
 192
 193		if (entry) {
 194			u32 signature[3];
 195
 196			signature[0] = entry->ebx;
 197			signature[1] = entry->ecx;
 198			signature[2] = entry->edx;
 199
 200			BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
 201			if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
 202				vcpu->arch.kvm_cpuid_base = function;
 203				break;
 204			}
 
 
 205		}
 206	}
 207}
 208
 209static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
 210					      struct kvm_cpuid_entry2 *entries, int nent)
 211{
 212	u32 base = vcpu->arch.kvm_cpuid_base;
 213
 214	if (!base)
 215		return NULL;
 216
 217	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
 218				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 219}
 220
 221static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
 222{
 223	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
 224					     vcpu->arch.cpuid_nent);
 225}
 
 
 
 
 
 
 226
 227void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
 228{
 229	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
 230
 231	/*
 232	 * save the feature bitmap to avoid cpuid lookup for every PV
 233	 * operation
 234	 */
 235	if (best)
 236		vcpu->arch.pv_cpuid.features = best->eax;
 237}
 238
 239/*
 240 * Calculate guest's supported XCR0 taking into account guest CPUID data and
 241 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
 242 */
 243static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
 244{
 245	struct kvm_cpuid_entry2 *best;
 246
 247	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 248	if (!best)
 249		return 0;
 250
 251	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
 252}
 253
 254static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
 255				       int nent)
 256{
 257	struct kvm_cpuid_entry2 *best;
 258	u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
 259
 260	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 261	if (best) {
 262		/* Update OSXSAVE bit */
 263		if (boot_cpu_has(X86_FEATURE_XSAVE))
 264			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 265				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
 266
 267		cpuid_entry_change(best, X86_FEATURE_APIC,
 268			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 269	}
 270
 271	best = cpuid_entry2_find(entries, nent, 7, 0);
 272	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 273		cpuid_entry_change(best, X86_FEATURE_OSPKE,
 274				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
 275
 276	best = cpuid_entry2_find(entries, nent, 0xD, 0);
 277	if (best)
 278		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 279
 280	best = cpuid_entry2_find(entries, nent, 0xD, 1);
 281	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 282		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 283		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 284
 285	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
 286	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 287		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 288		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 289
 290	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 291		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 292		if (best)
 293			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 294					   vcpu->arch.ia32_misc_enable_msr &
 295					   MSR_IA32_MISC_ENABLE_MWAIT);
 296	}
 297
 298	/*
 299	 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
 300	 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
 301	 * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
 302	 * at the time of EENTER, thus adjust the allowed XFRM by the guest's
 303	 * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
 304	 * '1' even on CPUs that don't support XSAVE.
 305	 */
 306	best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
 307	if (best) {
 308		best->ecx &= guest_supported_xcr0 & 0xffffffff;
 309		best->edx &= guest_supported_xcr0 >> 32;
 310		best->ecx |= XFEATURE_MASK_FPSSE;
 311	}
 312}
 313
 314void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 315{
 316	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 317}
 318EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 319
 320static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
 321{
 322	struct kvm_cpuid_entry2 *entry;
 323
 324	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
 325				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 326	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
 327}
 328
 329static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 330{
 331	struct kvm_lapic *apic = vcpu->arch.apic;
 332	struct kvm_cpuid_entry2 *best;
 333
 334	best = kvm_find_cpuid_entry(vcpu, 1);
 335	if (best && apic) {
 336		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 337			apic->lapic_timer.timer_mode_mask = 3 << 17;
 338		else
 339			apic->lapic_timer.timer_mode_mask = 1 << 17;
 340
 341		kvm_apic_set_version(vcpu);
 
 
 
 
 
 
 
 
 
 
 342	}
 343
 344	vcpu->arch.guest_supported_xcr0 =
 345		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 346
 347	/*
 348	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
 349	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
 350	 * supported by the host.
 351	 */
 352	vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 |
 353						       XFEATURE_MASK_FPSSE;
 354
 355	kvm_update_pv_runtime(vcpu);
 356
 357	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 358	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 359
 360	kvm_pmu_refresh(vcpu);
 361	vcpu->arch.cr4_guest_rsvd_bits =
 362	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 363
 364	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
 365						    vcpu->arch.cpuid_nent));
 366
 367	/* Invoke the vendor callback only after the above state is updated. */
 368	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
 369
 370	/*
 371	 * Except for the MMU, which needs to do its thing any vendor specific
 372	 * adjustments to the reserved GPA bits.
 373	 */
 374	kvm_mmu_after_set_cpuid(vcpu);
 375}
 376
 377int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 378{
 379	struct kvm_cpuid_entry2 *best;
 380
 381	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
 382	if (!best || best->eax < 0x80000008)
 383		goto not_found;
 384	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
 385	if (best)
 386		return best->eax & 0xff;
 387not_found:
 388	return 36;
 389}
 390
 391/*
 392 * This "raw" version returns the reserved GPA bits without any adjustments for
 393 * encryption technologies that usurp bits.  The raw mask should be used if and
 394 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 395 */
 396u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 397{
 398	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 399}
 400
 401static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 402                        int nent)
 403{
 404	int r;
 405
 406	__kvm_update_cpuid_runtime(vcpu, e2, nent);
 407
 408	/*
 409	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
 410	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
 411	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
 412	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
 413	 * the core vCPU model on the fly. It would've been better to forbid any
 414	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
 415	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
 416	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
 417	 * whether the supplied CPUID data is equal to what's already set.
 418	 */
 419	if (vcpu->arch.last_vmentry_cpu != -1) {
 420		r = kvm_cpuid_check_equal(vcpu, e2, nent);
 421		if (r)
 422			return r;
 423
 424		kvfree(e2);
 425		return 0;
 426	}
 427
 428	if (kvm_cpuid_has_hyperv(e2, nent)) {
 429		r = kvm_hv_vcpu_init(vcpu);
 430		if (r)
 431			return r;
 432	}
 433
 434	r = kvm_check_cpuid(vcpu, e2, nent);
 435	if (r)
 436		return r;
 437
 438	kvfree(vcpu->arch.cpuid_entries);
 439	vcpu->arch.cpuid_entries = e2;
 440	vcpu->arch.cpuid_nent = nent;
 441
 442	kvm_update_kvm_cpuid_base(vcpu);
 443	kvm_vcpu_after_set_cpuid(vcpu);
 444
 445	return 0;
 446}
 447
 448/* when an old userspace process fills a new kernel module */
 449int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 450			     struct kvm_cpuid *cpuid,
 451			     struct kvm_cpuid_entry __user *entries)
 452{
 453	int r, i;
 454	struct kvm_cpuid_entry *e = NULL;
 455	struct kvm_cpuid_entry2 *e2 = NULL;
 456
 
 457	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 458		return -E2BIG;
 459
 460	if (cpuid->nent) {
 461		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
 462		if (IS_ERR(e))
 463			return PTR_ERR(e);
 464
 465		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 466		if (!e2) {
 467			r = -ENOMEM;
 468			goto out_free_cpuid;
 469		}
 470	}
 471	for (i = 0; i < cpuid->nent; i++) {
 472		e2[i].function = e[i].function;
 473		e2[i].eax = e[i].eax;
 474		e2[i].ebx = e[i].ebx;
 475		e2[i].ecx = e[i].ecx;
 476		e2[i].edx = e[i].edx;
 477		e2[i].index = 0;
 478		e2[i].flags = 0;
 479		e2[i].padding[0] = 0;
 480		e2[i].padding[1] = 0;
 481		e2[i].padding[2] = 0;
 482	}
 483
 484	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 485	if (r)
 486		kvfree(e2);
 487
 488out_free_cpuid:
 489	kvfree(e);
 490
 
 
 491	return r;
 492}
 493
 494int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 495			      struct kvm_cpuid2 *cpuid,
 496			      struct kvm_cpuid_entry2 __user *entries)
 497{
 498	struct kvm_cpuid_entry2 *e2 = NULL;
 499	int r;
 500
 
 501	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 502		return -E2BIG;
 503
 504	if (cpuid->nent) {
 505		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
 506		if (IS_ERR(e2))
 507			return PTR_ERR(e2);
 508	}
 509
 510	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 511	if (r)
 512		kvfree(e2);
 513
 514	return r;
 515}
 516
 517int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 518			      struct kvm_cpuid2 *cpuid,
 519			      struct kvm_cpuid_entry2 __user *entries)
 520{
 521	int r;
 522
 523	r = -E2BIG;
 524	if (cpuid->nent < vcpu->arch.cpuid_nent)
 525		goto out;
 526	r = -EFAULT;
 527	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 528			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 529		goto out;
 530	return 0;
 531
 532out:
 533	cpuid->nent = vcpu->arch.cpuid_nent;
 534	return r;
 535}
 536
 537/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 538static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 539{
 540	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 541	struct kvm_cpuid_entry2 entry;
 542
 543	reverse_cpuid_check(leaf);
 544
 545	cpuid_count(cpuid.function, cpuid.index,
 546		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 547
 548	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 549}
 550
 551static __always_inline
 552void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
 553{
 554	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
 555	BUILD_BUG_ON(leaf < NCAPINTS);
 556
 557	kvm_cpu_caps[leaf] = mask;
 558
 559	__kvm_cpu_cap_mask(leaf);
 560}
 561
 562static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 
 563{
 564	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
 565	BUILD_BUG_ON(leaf >= NCAPINTS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	kvm_cpu_caps[leaf] &= mask;
 
 568
 569	__kvm_cpu_cap_mask(leaf);
 570}
 571
 572void kvm_set_cpu_caps(void)
 
 573{
 
 
 574#ifdef CONFIG_X86_64
 575	unsigned int f_gbpages = F(GBPAGES);
 576	unsigned int f_lm = F(LM);
 577	unsigned int f_xfd = F(XFD);
 578#else
 579	unsigned int f_gbpages = 0;
 580	unsigned int f_lm = 0;
 581	unsigned int f_xfd = 0;
 582#endif
 583	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 584
 585	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 586		     sizeof(boot_cpu_data.x86_capability));
 587
 588	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 589	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 590
 591	kvm_cpu_cap_mask(CPUID_1_ECX,
 592		/*
 593		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 594		 * advertised to guests via CPUID!
 595		 */
 596		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 597		0 /* DS-CPL, VMX, SMX, EST */ |
 598		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 599		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 600		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 601		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 602		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 603		F(F16C) | F(RDRAND)
 604	);
 605	/* KVM emulates x2apic in software irrespective of host support. */
 606	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 607
 608	kvm_cpu_cap_mask(CPUID_1_EDX,
 
 609		F(FPU) | F(VME) | F(DE) | F(PSE) |
 610		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 611		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 612		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 613		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 614		0 /* Reserved, DS, ACPI */ | F(MMX) |
 615		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 616		0 /* HTT, TM, Reserved, PBE */
 617	);
 618
 619	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 620		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
 621		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
 622		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
 623		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
 624		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
 625		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
 626		F(AVX512VL));
 627
 628	kvm_cpu_cap_mask(CPUID_7_ECX,
 629		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 630		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 631		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 632		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 633		F(SGX_LC) | F(BUS_LOCK_DETECT)
 634	);
 635	/* Set LA57 based on hardware capability. */
 636	if (cpuid_ecx(7) & F(LA57))
 637		kvm_cpu_cap_set(X86_FEATURE_LA57);
 638
 639	/*
 640	 * PKU not yet implemented for shadow paging and requires OSPKE
 641	 * to be set on the host. Clear it if that is not the case
 642	 */
 643	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 644		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 645
 646	kvm_cpu_cap_mask(CPUID_7_EDX,
 647		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 648		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 649		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 650		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
 651		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
 652	);
 653
 654	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 655	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 656	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 657
 658	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 659		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 660	if (boot_cpu_has(X86_FEATURE_STIBP))
 661		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 662	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 663		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 664
 665	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 666		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) | F(AMX_FP16) |
 667		F(AVX_IFMA)
 668	);
 669
 670	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
 671		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI)
 672	);
 673
 674	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 675		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
 676	);
 677
 678	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
 679		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
 680	);
 681
 682	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 683		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 684		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 685		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 686		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 687		F(TOPOEXT) | 0 /* PERFCTR_CORE */
 688	);
 689
 690	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 691		F(FPU) | F(VME) | F(DE) | F(PSE) |
 692		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 693		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 694		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 695		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 696		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 697		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 698		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 699	);
 700
 701	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 702		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 703
 704	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 705		F(CLZERO) | F(XSAVEERPTR) |
 706		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 707		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
 708		__feature_bit(KVM_X86_FEATURE_AMD_PSFD)
 709	);
 710
 711	/*
 712	 * AMD has separate bits for each SPEC_CTRL bit.
 713	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 714	 * record that in cpufeatures so use them.
 715	 */
 716	if (boot_cpu_has(X86_FEATURE_IBPB))
 717		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 718	if (boot_cpu_has(X86_FEATURE_IBRS))
 719		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 720	if (boot_cpu_has(X86_FEATURE_STIBP))
 721		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 722	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 723		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 724	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 725		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 726	/*
 727	 * The preference is to use SPEC CTRL MSR instead of the
 728	 * VIRT_SPEC MSR.
 729	 */
 730	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 731	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 732		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 733
 734	/*
 735	 * Hide all SVM features by default, SVM will set the cap bits for
 736	 * features it emulates and/or exposes for L1.
 737	 */
 738	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 739
 740	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 741		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
 742		F(SME_COHERENT));
 743
 744	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 
 745		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 746		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 747		F(PMM) | F(PMM_EN)
 748	);
 749
 750	/*
 751	 * Hide RDTSCP and RDPID if either feature is reported as supported but
 752	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 753	 * should never happen, but the guest will likely crash if RDTSCP or
 754	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 755	 * the past.  For example, the sanity check may fire if this instance of
 756	 * KVM is running as L1 on top of an older, broken KVM.
 757	 */
 758	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 759		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 760		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 761		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 762		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 763	}
 764}
 765EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 766
 767struct kvm_cpuid_array {
 768	struct kvm_cpuid_entry2 *entries;
 769	int maxnent;
 770	int nent;
 771};
 772
 773static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
 774{
 775	if (array->nent >= array->maxnent)
 776		return NULL;
 777
 778	return &array->entries[array->nent++];
 779}
 780
 781static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 782					      u32 function, u32 index)
 783{
 784	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
 785
 786	if (!entry)
 787		return NULL;
 788
 789	memset(entry, 0, sizeof(*entry));
 790	entry->function = function;
 791	entry->index = index;
 792	switch (function & 0xC0000000) {
 793	case 0x40000000:
 794		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
 795		return entry;
 796
 797	case 0x80000000:
 798		/*
 799		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
 800		 * would result in out-of-bounds calls to do_host_cpuid.
 801		 */
 802		{
 803			static int max_cpuid_80000000;
 804			if (!READ_ONCE(max_cpuid_80000000))
 805				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
 806			if (function > READ_ONCE(max_cpuid_80000000))
 807				return entry;
 808		}
 809		break;
 810
 811	default:
 812		break;
 813	}
 814
 815	cpuid_count(entry->function, entry->index,
 816		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 817
 818	if (cpuid_function_is_indexed(function))
 819		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 820
 821	return entry;
 822}
 823
 824static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 825{
 826	struct kvm_cpuid_entry2 *entry;
 827
 828	if (array->nent >= array->maxnent)
 829		return -E2BIG;
 830
 831	entry = &array->entries[array->nent];
 832	entry->function = func;
 833	entry->index = 0;
 834	entry->flags = 0;
 835
 836	switch (func) {
 837	case 0:
 838		entry->eax = 7;
 839		++array->nent;
 840		break;
 841	case 1:
 842		entry->ecx = F(MOVBE);
 843		++array->nent;
 844		break;
 845	case 7:
 846		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 847		entry->eax = 0;
 848		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 849			entry->ecx = F(RDPID);
 850		++array->nent;
 851		break;
 852	default:
 853		break;
 854	}
 855
 856	return 0;
 857}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858
 859static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 860{
 861	struct kvm_cpuid_entry2 *entry;
 862	int r, i, max_idx;
 863
 864	/* all calls to cpuid_count() should be made on the same cpu */
 865	get_cpu();
 866
 867	r = -E2BIG;
 868
 869	entry = do_host_cpuid(array, function, 0);
 870	if (!entry)
 871		goto out;
 872
 
 
 
 873	switch (function) {
 874	case 0:
 875		/* Limited to the highest leaf implemented in KVM. */
 876		entry->eax = min(entry->eax, 0x1fU);
 877		break;
 878	case 1:
 879		cpuid_entry_override(entry, CPUID_1_EDX);
 880		cpuid_entry_override(entry, CPUID_1_ECX);
 881		break;
 882	case 2:
 883		/*
 884		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 885		 * CPUID(function=2, index=0) may return different results each
 886		 * time, with the least-significant byte in EAX enumerating the
 887		 * number of times software should do CPUID(2, 0).
 888		 *
 889		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 890		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 891		 * return 01H. Software should ignore this value and not
 892		 * interpret it as an informational descriptor", while AMD's
 893		 * APM states that CPUID(2) is reserved.
 894		 *
 895		 * WARN if a frankenstein CPU that supports virtualization and
 896		 * a stateful CPUID.0x2 is encountered.
 897		 */
 898		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 
 
 
 
 
 899		break;
 900	/* functions 4 and 0x8000001d have additional index. */
 901	case 4:
 902	case 0x8000001d:
 903		/*
 904		 * Read entries until the cache type in the previous entry is
 905		 * zero, i.e. indicates an invalid entry.
 906		 */
 907		for (i = 1; entry->eax & 0x1f; ++i) {
 908			entry = do_host_cpuid(array, function, i);
 909			if (!entry)
 910				goto out;
 
 
 
 
 
 
 
 
 911		}
 912		break;
 
 913	case 6: /* Thermal management */
 914		entry->eax = 0x4; /* allow ARAT */
 915		entry->ebx = 0;
 916		entry->ecx = 0;
 917		entry->edx = 0;
 918		break;
 919	/* function 7 has additional index. */
 920	case 7:
 921		entry->eax = min(entry->eax, 1u);
 922		cpuid_entry_override(entry, CPUID_7_0_EBX);
 923		cpuid_entry_override(entry, CPUID_7_ECX);
 924		cpuid_entry_override(entry, CPUID_7_EDX);
 925
 926		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
 927		if (entry->eax == 1) {
 928			entry = do_host_cpuid(array, function, 1);
 929			if (!entry)
 930				goto out;
 931
 932			cpuid_entry_override(entry, CPUID_7_1_EAX);
 933			cpuid_entry_override(entry, CPUID_7_1_EDX);
 
 
 
 
 
 
 
 934			entry->ebx = 0;
 935			entry->ecx = 0;
 
 936		}
 
 
 
 
 937		break;
 938	case 0xa: { /* Architectural Performance Monitoring */
 
 939		union cpuid10_eax eax;
 940		union cpuid10_edx edx;
 941
 942		if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
 943			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 944			break;
 945		}
 
 
 
 
 946
 947		eax.split.version_id = kvm_pmu_cap.version;
 948		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
 949		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
 950		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
 951		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
 952		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
 953
 954		if (kvm_pmu_cap.version)
 955			edx.split.anythread_deprecated = 1;
 956		edx.split.reserved1 = 0;
 957		edx.split.reserved2 = 0;
 958
 959		entry->eax = eax.full;
 960		entry->ebx = kvm_pmu_cap.events_mask;
 961		entry->ecx = 0;
 962		entry->edx = edx.full;
 963		break;
 964	}
 965	case 0x1f:
 966	case 0xb:
 967		/*
 968		 * No topology; a valid topology is indicated by the presence
 969		 * of subleaf 1.
 970		 */
 971		entry->eax = entry->ebx = entry->ecx = 0;
 972		break;
 973	case 0xd: {
 974		u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm();
 975		u64 permitted_xss = kvm_caps.supported_xss;
 976
 977		entry->eax &= permitted_xcr0;
 978		entry->ebx = xstate_required_size(permitted_xcr0, false);
 979		entry->ecx = entry->ebx;
 980		entry->edx &= permitted_xcr0 >> 32;
 981		if (!permitted_xcr0)
 982			break;
 983
 984		entry = do_host_cpuid(array, function, 1);
 985		if (!entry)
 986			goto out;
 987
 988		cpuid_entry_override(entry, CPUID_D_1_EAX);
 989		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
 990			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
 991							  true);
 992		else {
 993			WARN_ON_ONCE(permitted_xss != 0);
 994			entry->ebx = 0;
 995		}
 996		entry->ecx &= permitted_xss;
 997		entry->edx &= permitted_xss >> 32;
 998
 999		for (i = 2; i < 64; ++i) {
1000			bool s_state;
1001			if (permitted_xcr0 & BIT_ULL(i))
1002				s_state = false;
1003			else if (permitted_xss & BIT_ULL(i))
1004				s_state = true;
1005			else
1006				continue;
1007
1008			entry = do_host_cpuid(array, function, i);
1009			if (!entry)
1010				goto out;
1011
1012			/*
1013			 * The supported check above should have filtered out
1014			 * invalid sub-leafs.  Only valid sub-leafs should
1015			 * reach this point, and they should have a non-zero
1016			 * save state size.  Furthermore, check whether the
1017			 * processor agrees with permitted_xcr0/permitted_xss
1018			 * on whether this is an XCR0- or IA32_XSS-managed area.
1019			 */
1020			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1021				--array->nent;
1022				continue;
1023			}
1024
1025			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1026				entry->ecx &= ~BIT_ULL(2);
1027			entry->edx = 0;
1028		}
1029		break;
1030	}
1031	case 0x12:
1032		/* Intel SGX */
1033		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1034			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1035			break;
1036		}
1037
1038		/*
1039		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1040		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1041		 * are restricted by kernel and KVM capabilities (like most
1042		 * feature flags), while enclave size is unrestricted.
1043		 */
1044		cpuid_entry_override(entry, CPUID_12_EAX);
1045		entry->ebx &= SGX_MISC_EXINFO;
1046
1047		entry = do_host_cpuid(array, function, 1);
1048		if (!entry)
1049			goto out;
1050
1051		/*
1052		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1053		 * feature flags.  Advertise all supported flags, including
1054		 * privileged attributes that require explicit opt-in from
1055		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1056		 * expected to derive it from supported XCR0.
1057		 */
1058		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1059		entry->ebx &= 0;
1060		break;
1061	/* Intel PT */
1062	case 0x14:
1063		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1064			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1065			break;
1066		}
1067
1068		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1069			if (!do_host_cpuid(array, function, i))
 
1070				goto out;
1071		}
1072		break;
1073	/* Intel AMX TILE */
1074	case 0x1d:
1075		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1076			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1077			break;
1078		}
1079
1080		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1081			if (!do_host_cpuid(array, function, i))
1082				goto out;
1083		}
1084		break;
1085	case 0x1e: /* TMUL information */
1086		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1087			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1088			break;
 
 
 
 
 
 
 
 
 
 
 
 
1089		}
1090		break;
 
1091	case KVM_CPUID_SIGNATURE: {
1092		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
 
1093		entry->eax = KVM_CPUID_FEATURES;
1094		entry->ebx = sigptr[0];
1095		entry->ecx = sigptr[1];
1096		entry->edx = sigptr[2];
1097		break;
1098	}
1099	case KVM_CPUID_FEATURES:
1100		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1101			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1102			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1103			     (1 << KVM_FEATURE_ASYNC_PF) |
1104			     (1 << KVM_FEATURE_PV_EOI) |
1105			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1106			     (1 << KVM_FEATURE_PV_UNHALT) |
1107			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1108			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1109			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1110			     (1 << KVM_FEATURE_POLL_CONTROL) |
1111			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1112			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1113
1114		if (sched_info_on())
1115			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1116
1117		entry->ebx = 0;
1118		entry->ecx = 0;
1119		entry->edx = 0;
1120		break;
1121	case 0x80000000:
1122		entry->eax = min(entry->eax, 0x80000021);
1123		/*
1124		 * Serializing LFENCE is reported in a multitude of ways, and
1125		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1126		 * userspace by providing the CPUID leaf ourselves.
1127		 *
1128		 * However, only do it if the host has CPUID leaf 0x8000001d.
1129		 * QEMU thinks that it can query the host blindly for that
1130		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1131		 * above.  The processor merrily returns values from the
1132		 * highest Intel leaf which QEMU tries to use as the guest's
1133		 * 0x8000001d.  Even worse, this can result in an infinite
1134		 * loop if said highest leaf has no subleaves indexed by ECX.
1135		 */
1136		if (entry->eax >= 0x8000001d &&
1137		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1138		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1139			entry->eax = max(entry->eax, 0x80000021);
1140		break;
1141	case 0x80000001:
1142		entry->ebx &= ~GENMASK(27, 16);
1143		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1144		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1145		break;
1146	case 0x80000006:
1147		/* Drop reserved bits, pass host L2 cache and TLB info. */
1148		entry->edx &= ~GENMASK(17, 16);
1149		break;
1150	case 0x80000007: /* Advanced power management */
1151		/* invariant TSC is CPUID.80000007H:EDX[8] */
1152		entry->edx &= (1 << 8);
1153		/* mask against host */
1154		entry->edx &= boot_cpu_data.x86_power;
1155		entry->eax = entry->ebx = entry->ecx = 0;
1156		break;
1157	case 0x80000008: {
1158		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1159		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1160		unsigned phys_as = entry->eax & 0xff;
1161
1162		/*
1163		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1164		 * the guest operates in the same PA space as the host, i.e.
1165		 * reductions in MAXPHYADDR for memory encryption affect shadow
1166		 * paging, too.
1167		 *
1168		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
1169		 * provided, use the raw bare metal MAXPHYADDR as reductions to
1170		 * the HPAs do not affect GPAs.
1171		 */
1172		if (!tdp_enabled)
1173			g_phys_as = boot_cpu_data.x86_phys_bits;
1174		else if (!g_phys_as)
1175			g_phys_as = phys_as;
1176
1177		entry->eax = g_phys_as | (virt_as << 8);
1178		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1179		entry->edx = 0;
1180		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
 
 
 
 
 
 
 
 
 
 
 
 
 
1181		break;
1182	}
1183	case 0x8000000A:
1184		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1185			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1186			break;
1187		}
1188		entry->eax = 1; /* SVM revision 1 */
1189		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1190				   ASID emulation to nested SVM */
1191		entry->ecx = 0; /* Reserved */
1192		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1193		break;
1194	case 0x80000019:
1195		entry->ecx = entry->edx = 0;
1196		break;
1197	case 0x8000001a:
1198		entry->eax &= GENMASK(2, 0);
1199		entry->ebx = entry->ecx = entry->edx = 0;
1200		break;
1201	case 0x8000001e:
1202		/* Do not return host topology information.  */
1203		entry->eax = entry->ebx = entry->ecx = 0;
1204		entry->edx = 0; /* reserved */
1205		break;
1206	case 0x8000001F:
1207		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1208			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1209		} else {
1210			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1211			/* Clear NumVMPL since KVM does not support VMPL.  */
1212			entry->ebx &= ~GENMASK(31, 12);
1213			/*
1214			 * Enumerate '0' for "PA bits reduction", the adjusted
1215			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1216			 */
1217			entry->ebx &= ~GENMASK(11, 6);
1218		}
1219		break;
1220	case 0x80000020:
1221		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1222		break;
1223	case 0x80000021:
1224		entry->ebx = entry->ecx = entry->edx = 0;
1225		/*
1226		 * Pass down these bits:
1227		 *    EAX      0      NNDBP, Processor ignores nested data breakpoints
1228		 *    EAX      2      LAS, LFENCE always serializing
1229		 *    EAX      6      NSCB, Null selector clear base
1230		 *
1231		 * Other defined bits are for MSRs that KVM does not expose:
1232		 *   EAX      3      SPCL, SMM page configuration lock
1233		 *   EAX      13     PCMSR, Prefetch control MSR
1234		 *
1235		 * KVM doesn't support SMM_CTL.
1236		 *   EAX       9     SMM_CTL MSR is not supported
1237		 */
1238		entry->eax &= BIT(0) | BIT(2) | BIT(6);
1239		entry->eax |= BIT(9);
1240		if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
1241			entry->eax |= BIT(2);
1242		if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1243			entry->eax |= BIT(6);
1244		break;
1245	/*Add support for Centaur's CPUID instruction*/
1246	case 0xC0000000:
1247		/*Just support up to 0xC0000004 now*/
1248		entry->eax = min(entry->eax, 0xC0000004);
1249		break;
1250	case 0xC0000001:
1251		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
 
1252		break;
1253	case 3: /* Processor serial number */
1254	case 5: /* MONITOR/MWAIT */
1255	case 0xC0000002:
1256	case 0xC0000003:
1257	case 0xC0000004:
1258	default:
1259		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1260		break;
1261	}
1262
 
 
1263	r = 0;
1264
1265out:
1266	put_cpu();
1267
1268	return r;
1269}
1270
1271static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1272			 unsigned int type)
1273{
1274	if (type == KVM_GET_EMULATED_CPUID)
1275		return __do_cpuid_func_emulated(array, func);
1276
1277	return __do_cpuid_func(array, func);
1278}
1279
1280#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1281
1282static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1283			  unsigned int type)
1284{
1285	u32 limit;
1286	int r;
1287
1288	if (func == CENTAUR_CPUID_SIGNATURE &&
1289	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1290		return 0;
1291
1292	r = do_cpuid_func(array, func, type);
1293	if (r)
1294		return r;
1295
1296	limit = array->entries[array->nent - 1].eax;
1297	for (func = func + 1; func <= limit; ++func) {
1298		r = do_cpuid_func(array, func, type);
1299		if (r)
1300			break;
1301	}
1302
1303	return r;
 
 
1304}
1305
1306static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1307				 __u32 num_entries, unsigned int ioctl_type)
1308{
1309	int i;
1310	__u32 pad[3];
1311
1312	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1313		return false;
1314
1315	/*
1316	 * We want to make sure that ->padding is being passed clean from
1317	 * userspace in case we want to use it for something in the future.
1318	 *
1319	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1320	 * have to give ourselves satisfied only with the emulated side. /me
1321	 * sheds a tear.
1322	 */
1323	for (i = 0; i < num_entries; i++) {
1324		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1325			return true;
1326
1327		if (pad[0] || pad[1] || pad[2])
1328			return true;
1329	}
1330	return false;
1331}
1332
1333int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1334			    struct kvm_cpuid_entry2 __user *entries,
1335			    unsigned int type)
1336{
1337	static const u32 funcs[] = {
1338		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
 
 
 
 
 
 
 
1339	};
1340
1341	struct kvm_cpuid_array array = {
1342		.nent = 0,
1343	};
1344	int r, i;
1345
1346	if (cpuid->nent < 1)
1347		return -E2BIG;
1348	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1349		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1350
1351	if (sanity_check_entries(entries, cpuid->nent, type))
1352		return -EINVAL;
1353
1354	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1355	if (!array.entries)
1356		return -ENOMEM;
 
1357
1358	array.maxnent = cpuid->nent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1359
1360	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1361		r = get_cpuid_func(&array, funcs[i], type);
1362		if (r)
1363			goto out_free;
1364	}
1365	cpuid->nent = array.nent;
1366
1367	if (copy_to_user(entries, array.entries,
1368			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1369		r = -EFAULT;
 
 
 
1370
1371out_free:
1372	kvfree(array.entries);
 
1373	return r;
1374}
1375
1376struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1377						    u32 function, u32 index)
1378{
1379	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1380				 function, index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381}
1382EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1383
1384struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1385					      u32 function)
1386{
1387	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1388				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 
 
 
 
 
 
 
 
 
 
 
 
 
1389}
1390EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1391
1392/*
1393 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1394 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1395 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1396 * range.  Centaur/VIA follows Intel semantics.
1397 *
1398 * A leaf is considered out-of-range if its function is higher than the maximum
1399 * supported leaf of its associated class or if its associated class does not
1400 * exist.
1401 *
1402 * There are three primary classes to be considered, with their respective
1403 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1404 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1405 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1406 *
1407 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1408 *  - Hypervisor: 0x40000000 - 0x4fffffff
1409 *  - Extended:   0x80000000 - 0xbfffffff
1410 *  - Centaur:    0xc0000000 - 0xcfffffff
1411 *
1412 * The Hypervisor class is further subdivided into sub-classes that each act as
1413 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1414 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1415 * CPUID sub-classes are:
1416 *
1417 *  - HyperV:     0x40000000 - 0x400000ff
1418 *  - KVM:        0x40000100 - 0x400001ff
1419 */
1420static struct kvm_cpuid_entry2 *
1421get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1422{
1423	struct kvm_cpuid_entry2 *basic, *class;
1424	u32 function = *fn_ptr;
1425
1426	basic = kvm_find_cpuid_entry(vcpu, 0);
1427	if (!basic)
1428		return NULL;
1429
1430	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1431	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1432		return NULL;
 
 
 
 
 
 
 
1433
1434	if (function >= 0x40000000 && function <= 0x4fffffff)
1435		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1436	else if (function >= 0xc0000000)
1437		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1438	else
1439		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1440
1441	if (class && function <= class->eax)
1442		return NULL;
1443
1444	/*
1445	 * Leaf specific adjustments are also applied when redirecting to the
1446	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1447	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1448	 * needs to be pulled from CPUID.0xb.1.
1449	 */
1450	*fn_ptr = basic->eax;
1451
1452	/*
1453	 * The class does not exist or the requested function is out of range;
1454	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1455	 * the original requested leaf is observed!
1456	 */
1457	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1458}
1459
1460bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1461	       u32 *ecx, u32 *edx, bool exact_only)
1462{
1463	u32 orig_function = *eax, function = *eax, index = *ecx;
1464	struct kvm_cpuid_entry2 *entry;
1465	bool exact, used_max_basic = false;
1466
1467	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1468	exact = !!entry;
1469
1470	if (!entry && !exact_only) {
1471		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1472		used_max_basic = !!entry;
1473	}
1474
1475	if (entry) {
1476		*eax = entry->eax;
1477		*ebx = entry->ebx;
1478		*ecx = entry->ecx;
1479		*edx = entry->edx;
1480		if (function == 7 && index == 0) {
1481			u64 data;
1482		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1483			    (data & TSX_CTRL_CPUID_CLEAR))
1484				*ebx &= ~(F(RTM) | F(HLE));
1485		}
1486	} else {
1487		*eax = *ebx = *ecx = *edx = 0;
1488		/*
1489		 * When leaf 0BH or 1FH is defined, CL is pass-through
1490		 * and EDX is always the x2APIC ID, even for undefined
1491		 * subleaves. Index 1 will exist iff the leaf is
1492		 * implemented, so we pass through CL iff leaf 1
1493		 * exists. EDX can be copied from any existing index.
1494		 */
1495		if (function == 0xb || function == 0x1f) {
1496			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1497			if (entry) {
1498				*ecx = index & 0xff;
1499				*edx = entry->edx;
1500			}
1501		}
1502	}
1503	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1504			used_max_basic);
1505	return exact;
1506}
1507EXPORT_SYMBOL_GPL(kvm_cpuid);
1508
1509int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1510{
1511	u32 eax, ebx, ecx, edx;
1512
1513	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1514		return 1;
1515
1516	eax = kvm_rax_read(vcpu);
1517	ecx = kvm_rcx_read(vcpu);
1518	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1519	kvm_rax_write(vcpu, eax);
1520	kvm_rbx_write(vcpu, ebx);
1521	kvm_rcx_write(vcpu, ecx);
1522	kvm_rdx_write(vcpu, edx);
1523	return kvm_skip_emulated_instruction(vcpu);
1524}
1525EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
v4.17
 
  1/*
  2 * Kernel-based Virtual Machine driver for Linux
  3 * cpuid support routines
  4 *
  5 * derived from arch/x86/kvm/x86.c
  6 *
  7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
  8 * Copyright IBM Corporation, 2008
  9 *
 10 * This work is licensed under the terms of the GNU GPL, version 2.  See
 11 * the COPYING file in the top-level directory.
 12 *
 13 */
 14
 15#include <linux/kvm_host.h>
 16#include <linux/export.h>
 17#include <linux/vmalloc.h>
 18#include <linux/uaccess.h>
 19#include <linux/sched/stat.h>
 20
 21#include <asm/processor.h>
 22#include <asm/user.h>
 23#include <asm/fpu/xstate.h>
 
 
 24#include "cpuid.h"
 25#include "lapic.h"
 26#include "mmu.h"
 27#include "trace.h"
 28#include "pmu.h"
 29
 30static u32 xstate_required_size(u64 xstate_bv, bool compacted)
 
 
 
 
 
 
 
 31{
 32	int feature_bit = 0;
 33	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 34
 35	xstate_bv &= XFEATURE_MASK_EXTEND;
 36	while (xstate_bv) {
 37		if (xstate_bv & 0x1) {
 38		        u32 eax, ebx, ecx, edx, offset;
 39		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
 40			offset = compacted ? ret : ebx;
 
 
 
 
 41			ret = max(ret, offset + eax);
 42		}
 43
 44		xstate_bv >>= 1;
 45		feature_bit++;
 46	}
 47
 48	return ret;
 49}
 50
 51bool kvm_mpx_supported(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52{
 53	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
 54		 && kvm_x86_ops->mpx_supported());
 55}
 56EXPORT_SYMBOL_GPL(kvm_mpx_supported);
 
 57
 58u64 kvm_supported_xcr0(void)
 59{
 60	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
 61
 62	if (!kvm_mpx_supported())
 63		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
 
 
 
 
 
 64
 65	return xcr0;
 66}
 67
 68#define F(x) bit(X86_FEATURE_##x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 69
 70/* For scattered features from cpufeatures.h; we currently expose none */
 71#define KF(x) bit(KVM_CPUID_BIT_##x)
 72
 73int kvm_update_cpuid(struct kvm_vcpu *vcpu)
 
 
 74{
 75	struct kvm_cpuid_entry2 *best;
 76	struct kvm_lapic *apic = vcpu->arch.apic;
 
 
 
 
 
 
 
 
 
 
 
 
 
 77
 78	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 
 
 
 
 79	if (!best)
 80		return 0;
 81
 82	/* Update OSXSAVE bit */
 83	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
 84		best->ecx &= ~F(OSXSAVE);
 85		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
 86			best->ecx |= F(OSXSAVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87	}
 88
 89	best->edx &= ~F(APIC);
 90	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
 91		best->edx |= F(APIC);
 92
 93	if (apic) {
 94		if (best->ecx & F(TSC_DEADLINE_TIMER))
 95			apic->lapic_timer.timer_mode_mask = 3 << 17;
 96		else
 97			apic->lapic_timer.timer_mode_mask = 1 << 17;
 98	}
 
 
 
 
 
 
 
 
 
 
 99
100	best = kvm_find_cpuid_entry(vcpu, 7, 0);
101	if (best) {
102		/* Update OSPKE bit */
103		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104			best->ecx &= ~F(OSPKE);
105			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106				best->ecx |= F(OSPKE);
107		}
108	}
 
 
 
 
 
 
 
 
 
 
 
 
 
109
110	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111	if (!best) {
112		vcpu->arch.guest_supported_xcr0 = 0;
113		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114	} else {
115		vcpu->arch.guest_supported_xcr0 =
116			(best->eax | ((u64)best->edx << 32)) &
117			kvm_supported_xcr0();
118		vcpu->arch.guest_xstate_size = best->ebx =
119			xstate_required_size(vcpu->arch.xcr0, false);
120	}
121
122	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
125
126	/*
127	 * The existing code assumes virtual address is 48-bit or 57-bit in the
128	 * canonical address checks; exit if it is ever changed.
129	 */
130	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131	if (best) {
132		int vaddr_bits = (best->eax & 0xff00) >> 8;
 
 
 
133
134		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135			return -EINVAL;
136	}
137
138	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
142
143	/* Update physical-address width */
144	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
145	kvm_mmu_reset_context(vcpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
147	kvm_pmu_refresh(vcpu);
148	return 0;
 
149}
 
150
151static int is_efer_nx(void)
152{
153	unsigned long long efer = 0;
154
155	rdmsrl_safe(MSR_EFER, &efer);
156	return efer & EFER_NX;
 
157}
158
159static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
160{
161	int i;
162	struct kvm_cpuid_entry2 *e, *entry;
 
 
 
 
 
 
 
163
164	entry = NULL;
165	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
166		e = &vcpu->arch.cpuid_entries[i];
167		if (e->function == 0x80000001) {
168			entry = e;
169			break;
170		}
171	}
172	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
173		entry->edx &= ~F(NX);
174		printk(KERN_INFO "kvm: guest NX capability removed\n");
175	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176}
177
178int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
179{
180	struct kvm_cpuid_entry2 *best;
181
182	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
183	if (!best || best->eax < 0x80000008)
184		goto not_found;
185	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
186	if (best)
187		return best->eax & 0xff;
188not_found:
189	return 36;
190}
191EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
193/* when an old userspace process fills a new kernel module */
194int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
195			     struct kvm_cpuid *cpuid,
196			     struct kvm_cpuid_entry __user *entries)
197{
198	int r, i;
199	struct kvm_cpuid_entry *cpuid_entries = NULL;
 
200
201	r = -E2BIG;
202	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
203		goto out;
204	r = -ENOMEM;
205	if (cpuid->nent) {
206		cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
207					cpuid->nent);
208		if (!cpuid_entries)
209			goto out;
210		r = -EFAULT;
211		if (copy_from_user(cpuid_entries, entries,
212				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
213			goto out;
 
214	}
215	for (i = 0; i < cpuid->nent; i++) {
216		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
217		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
218		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
219		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
220		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
221		vcpu->arch.cpuid_entries[i].index = 0;
222		vcpu->arch.cpuid_entries[i].flags = 0;
223		vcpu->arch.cpuid_entries[i].padding[0] = 0;
224		vcpu->arch.cpuid_entries[i].padding[1] = 0;
225		vcpu->arch.cpuid_entries[i].padding[2] = 0;
226	}
227	vcpu->arch.cpuid_nent = cpuid->nent;
228	cpuid_fix_nx_cap(vcpu);
229	kvm_apic_set_version(vcpu);
230	kvm_x86_ops->cpuid_update(vcpu);
231	r = kvm_update_cpuid(vcpu);
 
 
232
233out:
234	vfree(cpuid_entries);
235	return r;
236}
237
238int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
239			      struct kvm_cpuid2 *cpuid,
240			      struct kvm_cpuid_entry2 __user *entries)
241{
 
242	int r;
243
244	r = -E2BIG;
245	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
246		goto out;
247	r = -EFAULT;
248	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
249			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
250		goto out;
251	vcpu->arch.cpuid_nent = cpuid->nent;
252	kvm_apic_set_version(vcpu);
253	kvm_x86_ops->cpuid_update(vcpu);
254	r = kvm_update_cpuid(vcpu);
255out:
 
 
256	return r;
257}
258
259int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
260			      struct kvm_cpuid2 *cpuid,
261			      struct kvm_cpuid_entry2 __user *entries)
262{
263	int r;
264
265	r = -E2BIG;
266	if (cpuid->nent < vcpu->arch.cpuid_nent)
267		goto out;
268	r = -EFAULT;
269	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
270			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
271		goto out;
272	return 0;
273
274out:
275	cpuid->nent = vcpu->arch.cpuid_nent;
276	return r;
277}
278
279static void cpuid_mask(u32 *word, int wordnum)
 
280{
281	*word &= boot_cpu_data.x86_capability[wordnum];
 
 
 
 
 
 
 
 
282}
283
284static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
285			   u32 index)
286{
287	entry->function = function;
288	entry->index = index;
289	cpuid_count(entry->function, entry->index,
290		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
291	entry->flags = 0;
 
292}
293
294static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
295				   u32 func, u32 index, int *nent, int maxnent)
296{
297	switch (func) {
298	case 0:
299		entry->eax = 7;
300		++*nent;
301		break;
302	case 1:
303		entry->ecx = F(MOVBE);
304		++*nent;
305		break;
306	case 7:
307		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
308		if (index == 0)
309			entry->ecx = F(RDPID);
310		++*nent;
311	default:
312		break;
313	}
314
315	entry->function = func;
316	entry->index = index;
317
318	return 0;
319}
320
321static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
322				 u32 index, int *nent, int maxnent)
323{
324	int r;
325	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
326#ifdef CONFIG_X86_64
327	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
328				? F(GBPAGES) : 0;
329	unsigned f_lm = F(LM);
330#else
331	unsigned f_gbpages = 0;
332	unsigned f_lm = 0;
 
333#endif
334	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
335	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
336	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
337	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
338	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339
340	/* cpuid 1.edx */
341	const u32 kvm_cpuid_1_edx_x86_features =
342		F(FPU) | F(VME) | F(DE) | F(PSE) |
343		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
344		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
345		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
346		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
347		0 /* Reserved, DS, ACPI */ | F(MMX) |
348		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
349		0 /* HTT, TM, Reserved, PBE */;
350	/* cpuid 0x80000001.edx */
351	const u32 kvm_cpuid_8000_0001_edx_x86_features =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352		F(FPU) | F(VME) | F(DE) | F(PSE) |
353		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
354		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
355		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
356		F(PAT) | F(PSE36) | 0 /* Reserved */ |
357		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
358		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
359		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
360	/* cpuid 1.ecx */
361	const u32 kvm_cpuid_1_ecx_x86_features =
362		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
363		 * but *not* advertised to guests via CPUID ! */
364		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
365		0 /* DS-CPL, VMX, SMX, EST */ |
366		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
367		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
368		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
369		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
370		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
371		F(F16C) | F(RDRAND);
372	/* cpuid 0x80000001.ecx */
373	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
374		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
375		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
376		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
377		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
378		F(TOPOEXT) | F(PERFCTR_CORE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379
380	/* cpuid 0x80000008.ebx */
381	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
382		F(AMD_IBPB) | F(AMD_IBRS) | F(VIRT_SSBD);
383
384	/* cpuid 0xC0000001.edx */
385	const u32 kvm_cpuid_C000_0001_edx_x86_features =
386		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
387		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
388		F(PMM) | F(PMM_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389
390	/* cpuid 7.0.ebx */
391	const u32 kvm_cpuid_7_0_ebx_x86_features =
392		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
393		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
394		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
395		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
396		F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
397
398	/* cpuid 0xD.1.eax */
399	const u32 kvm_cpuid_D_1_eax_x86_features =
400		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
401
402	/* cpuid 7.0.ecx*/
403	const u32 kvm_cpuid_7_0_ecx_x86_features =
404		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
405		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
406		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG);
407
408	/* cpuid 7.0.edx*/
409	const u32 kvm_cpuid_7_0_edx_x86_features =
410		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
411		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES);
412
413	/* all calls to cpuid_count() should be made on the same cpu */
414	get_cpu();
415
416	r = -E2BIG;
417
418	if (*nent >= maxnent)
 
419		goto out;
420
421	do_cpuid_1_ent(entry, function, index);
422	++*nent;
423
424	switch (function) {
425	case 0:
426		entry->eax = min(entry->eax, (u32)0xd);
 
427		break;
428	case 1:
429		entry->edx &= kvm_cpuid_1_edx_x86_features;
430		cpuid_mask(&entry->edx, CPUID_1_EDX);
431		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
432		cpuid_mask(&entry->ecx, CPUID_1_ECX);
433		/* we support x2apic emulation even if host does not support
434		 * it since we emulate x2apic in software */
435		entry->ecx |= F(X2APIC);
436		break;
437	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
438	 * may return different values. This forces us to get_cpu() before
439	 * issuing the first command, and also to emulate this annoying behavior
440	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
441	case 2: {
442		int t, times = entry->eax & 0xff;
443
444		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
445		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
446		for (t = 1; t < times; ++t) {
447			if (*nent >= maxnent)
448				goto out;
449
450			do_cpuid_1_ent(&entry[t], function, 0);
451			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
452			++*nent;
453		}
454		break;
455	}
456	/* function 4 has additional index. */
457	case 4: {
458		int i, cache_type;
459
460		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
461		/* read more entries until cache_type is zero */
462		for (i = 1; ; ++i) {
463			if (*nent >= maxnent)
 
464				goto out;
465
466			cache_type = entry[i - 1].eax & 0x1f;
467			if (!cache_type)
468				break;
469			do_cpuid_1_ent(&entry[i], function, i);
470			entry[i].flags |=
471			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
472			++*nent;
473		}
474		break;
475	}
476	case 6: /* Thermal management */
477		entry->eax = 0x4; /* allow ARAT */
478		entry->ebx = 0;
479		entry->ecx = 0;
480		entry->edx = 0;
481		break;
482	case 7: {
483		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
484		/* Mask ebx against host capability word 9 */
485		if (index == 0) {
486			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
487			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
488			// TSC_ADJUST is emulated
489			entry->ebx |= F(TSC_ADJUST);
490			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
491			cpuid_mask(&entry->ecx, CPUID_7_ECX);
492			entry->ecx |= f_umip;
493			/* PKU is not yet implemented for shadow paging. */
494			if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
495				entry->ecx &= ~F(PKU);
496			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
497			cpuid_mask(&entry->edx, CPUID_7_EDX);
498			/*
499			 * We emulate ARCH_CAPABILITIES in software even
500			 * if the host doesn't support it.
501			 */
502			entry->edx |= F(ARCH_CAPABILITIES);
503		} else {
504			entry->ebx = 0;
505			entry->ecx = 0;
506			entry->edx = 0;
507		}
508		entry->eax = 0;
509		break;
510	}
511	case 9:
512		break;
513	case 0xa: { /* Architectural Performance Monitoring */
514		struct x86_pmu_capability cap;
515		union cpuid10_eax eax;
516		union cpuid10_edx edx;
517
518		perf_get_x86_pmu_capability(&cap);
519
520		/*
521		 * Only support guest architectural pmu on a host
522		 * with architectural pmu.
523		 */
524		if (!cap.version)
525			memset(&cap, 0, sizeof(cap));
526
527		eax.split.version_id = min(cap.version, 2);
528		eax.split.num_counters = cap.num_counters_gp;
529		eax.split.bit_width = cap.bit_width_gp;
530		eax.split.mask_length = cap.events_mask_len;
531
532		edx.split.num_counters_fixed = cap.num_counters_fixed;
533		edx.split.bit_width_fixed = cap.bit_width_fixed;
534		edx.split.reserved = 0;
 
 
 
535
536		entry->eax = eax.full;
537		entry->ebx = cap.events_mask;
538		entry->ecx = 0;
539		entry->edx = edx.full;
540		break;
541	}
542	/* function 0xb has additional index. */
543	case 0xb: {
544		int i, level_type;
 
 
 
 
 
 
 
 
545
546		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
547		/* read more entries until level_type is zero */
548		for (i = 1; ; ++i) {
549			if (*nent >= maxnent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
550				goto out;
551
552			level_type = entry[i - 1].ecx & 0xff00;
553			if (!level_type)
554				break;
555			do_cpuid_1_ent(&entry[i], function, i);
556			entry[i].flags |=
557			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
558			++*nent;
 
 
 
 
 
 
 
 
 
559		}
560		break;
561	}
562	case 0xd: {
563		int idx, i;
564		u64 supported = kvm_supported_xcr0();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565
566		entry->eax &= supported;
567		entry->ebx = xstate_required_size(supported, false);
568		entry->ecx = entry->ebx;
569		entry->edx &= supported >> 32;
570		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
571		if (!supported)
 
 
 
 
 
 
 
 
572			break;
 
573
574		for (idx = 1, i = 1; idx < 64; ++idx) {
575			u64 mask = ((u64)1 << idx);
576			if (*nent >= maxnent)
577				goto out;
 
 
 
 
 
 
 
 
578
579			do_cpuid_1_ent(&entry[i], function, idx);
580			if (idx == 1) {
581				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
582				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
583				entry[i].ebx = 0;
584				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
585					entry[i].ebx =
586						xstate_required_size(supported,
587								     true);
588			} else {
589				if (entry[i].eax == 0 || !(supported & mask))
590					continue;
591				if (WARN_ON_ONCE(entry[i].ecx & 1))
592					continue;
593			}
594			entry[i].ecx = 0;
595			entry[i].edx = 0;
596			entry[i].flags |=
597			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
598			++*nent;
599			++i;
600		}
601		break;
602	}
603	case KVM_CPUID_SIGNATURE: {
604		static const char signature[12] = "KVMKVMKVM\0\0";
605		const u32 *sigptr = (const u32 *)signature;
606		entry->eax = KVM_CPUID_FEATURES;
607		entry->ebx = sigptr[0];
608		entry->ecx = sigptr[1];
609		entry->edx = sigptr[2];
610		break;
611	}
612	case KVM_CPUID_FEATURES:
613		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
614			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
615			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
616			     (1 << KVM_FEATURE_ASYNC_PF) |
617			     (1 << KVM_FEATURE_PV_EOI) |
618			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
619			     (1 << KVM_FEATURE_PV_UNHALT) |
620			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
621			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT);
 
 
 
 
622
623		if (sched_info_on())
624			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
625
626		entry->ebx = 0;
627		entry->ecx = 0;
628		entry->edx = 0;
629		break;
630	case 0x80000000:
631		entry->eax = min(entry->eax, 0x8000001f);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632		break;
633	case 0x80000001:
634		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
635		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
636		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
637		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
 
 
 
638		break;
639	case 0x80000007: /* Advanced power management */
640		/* invariant TSC is CPUID.80000007H:EDX[8] */
641		entry->edx &= (1 << 8);
642		/* mask against host */
643		entry->edx &= boot_cpu_data.x86_power;
644		entry->eax = entry->ebx = entry->ecx = 0;
645		break;
646	case 0x80000008: {
647		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
648		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
649		unsigned phys_as = entry->eax & 0xff;
650
651		if (!g_phys_as)
 
 
 
 
 
 
 
 
 
 
 
 
652			g_phys_as = phys_as;
 
653		entry->eax = g_phys_as | (virt_as << 8);
 
654		entry->edx = 0;
655		/*
656		 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
657		 * hardware cpuid
658		 */
659		if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
660			entry->ebx |= F(AMD_IBPB);
661		if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
662			entry->ebx |= F(AMD_IBRS);
663		if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
664			entry->ebx |= F(VIRT_SSBD);
665		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
666		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
667		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
668			entry->ebx |= F(VIRT_SSBD);
669		break;
670	}
 
 
 
 
 
 
 
 
 
 
 
671	case 0x80000019:
672		entry->ecx = entry->edx = 0;
673		break;
674	case 0x8000001a:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675		break;
676	case 0x8000001d:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677		break;
678	/*Add support for Centaur's CPUID instruction*/
679	case 0xC0000000:
680		/*Just support up to 0xC0000004 now*/
681		entry->eax = min(entry->eax, 0xC0000004);
682		break;
683	case 0xC0000001:
684		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
685		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
686		break;
687	case 3: /* Processor serial number */
688	case 5: /* MONITOR/MWAIT */
689	case 0xC0000002:
690	case 0xC0000003:
691	case 0xC0000004:
692	default:
693		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
694		break;
695	}
696
697	kvm_x86_ops->set_supported_cpuid(function, entry);
698
699	r = 0;
700
701out:
702	put_cpu();
703
704	return r;
705}
706
707static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
708			u32 idx, int *nent, int maxnent, unsigned int type)
709{
710	if (type == KVM_GET_EMULATED_CPUID)
711		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
712
713	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
714}
715
716#undef F
717
718struct kvm_cpuid_param {
719	u32 func;
720	u32 idx;
721	bool has_leaf_count;
722	bool (*qualifier)(const struct kvm_cpuid_param *param);
723};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724
725static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
726{
727	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
728}
729
730static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
731				 __u32 num_entries, unsigned int ioctl_type)
732{
733	int i;
734	__u32 pad[3];
735
736	if (ioctl_type != KVM_GET_EMULATED_CPUID)
737		return false;
738
739	/*
740	 * We want to make sure that ->padding is being passed clean from
741	 * userspace in case we want to use it for something in the future.
742	 *
743	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
744	 * have to give ourselves satisfied only with the emulated side. /me
745	 * sheds a tear.
746	 */
747	for (i = 0; i < num_entries; i++) {
748		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
749			return true;
750
751		if (pad[0] || pad[1] || pad[2])
752			return true;
753	}
754	return false;
755}
756
757int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
758			    struct kvm_cpuid_entry2 __user *entries,
759			    unsigned int type)
760{
761	struct kvm_cpuid_entry2 *cpuid_entries;
762	int limit, nent = 0, r = -E2BIG, i;
763	u32 func;
764	static const struct kvm_cpuid_param param[] = {
765		{ .func = 0, .has_leaf_count = true },
766		{ .func = 0x80000000, .has_leaf_count = true },
767		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
768		{ .func = KVM_CPUID_SIGNATURE },
769		{ .func = KVM_CPUID_FEATURES },
770	};
771
 
 
 
 
 
772	if (cpuid->nent < 1)
773		goto out;
774	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
775		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
776
777	if (sanity_check_entries(entries, cpuid->nent, type))
778		return -EINVAL;
779
780	r = -ENOMEM;
781	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
782	if (!cpuid_entries)
783		goto out;
784
785	r = 0;
786	for (i = 0; i < ARRAY_SIZE(param); i++) {
787		const struct kvm_cpuid_param *ent = &param[i];
788
789		if (ent->qualifier && !ent->qualifier(ent))
790			continue;
791
792		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
793				&nent, cpuid->nent, type);
794
795		if (r)
796			goto out_free;
797
798		if (!ent->has_leaf_count)
799			continue;
800
801		limit = cpuid_entries[nent - 1].eax;
802		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
803			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
804				     &nent, cpuid->nent, type);
805
 
 
806		if (r)
807			goto out_free;
808	}
 
809
810	r = -EFAULT;
811	if (copy_to_user(entries, cpuid_entries,
812			 nent * sizeof(struct kvm_cpuid_entry2)))
813		goto out_free;
814	cpuid->nent = nent;
815	r = 0;
816
817out_free:
818	vfree(cpuid_entries);
819out:
820	return r;
821}
822
823static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
 
824{
825	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
826	struct kvm_cpuid_entry2 *ej;
827	int j = i;
828	int nent = vcpu->arch.cpuid_nent;
829
830	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
831	/* when no next entry is found, the current entry[i] is reselected */
832	do {
833		j = (j + 1) % nent;
834		ej = &vcpu->arch.cpuid_entries[j];
835	} while (ej->function != e->function);
836
837	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
838
839	return j;
840}
841
842/* find an entry with matching function, matching index (if needed), and that
843 * should be read next (if it's stateful) */
844static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
845	u32 function, u32 index)
846{
847	if (e->function != function)
848		return 0;
849	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
850		return 0;
851	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
852	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
853		return 0;
854	return 1;
855}
 
856
857struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
858					      u32 function, u32 index)
859{
860	int i;
861	struct kvm_cpuid_entry2 *best = NULL;
862
863	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
864		struct kvm_cpuid_entry2 *e;
865
866		e = &vcpu->arch.cpuid_entries[i];
867		if (is_matching_cpuid_entry(e, function, index)) {
868			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
869				move_to_next_stateful_cpuid_entry(vcpu, i);
870			best = e;
871			break;
872		}
873	}
874	return best;
875}
876EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
877
878/*
879 * If no match is found, check whether we exceed the vCPU's limit
880 * and return the content of the highest valid _standard_ leaf instead.
881 * This is to satisfy the CPUID specification.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
882 */
883static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
884                                                  u32 function, u32 index)
885{
886	struct kvm_cpuid_entry2 *maxlevel;
 
887
888	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
889	if (!maxlevel || maxlevel->eax >= function)
 
 
 
 
890		return NULL;
891	if (function & 0x80000000) {
892		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
893		if (!maxlevel)
894			return NULL;
895	}
896	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
897}
898
899bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
900	       u32 *ecx, u32 *edx, bool check_limit)
901{
902	u32 function = *eax, index = *ecx;
903	struct kvm_cpuid_entry2 *best;
904	bool entry_found = true;
905
906	best = kvm_find_cpuid_entry(vcpu, function, index);
 
907
908	if (!best) {
909		entry_found = false;
910		if (!check_limit)
911			goto out;
 
 
 
912
913		best = check_cpuid_limit(vcpu, function, index);
914	}
 
 
 
 
 
915
916out:
917	if (best) {
918		*eax = best->eax;
919		*ebx = best->ebx;
920		*ecx = best->ecx;
921		*edx = best->edx;
922	} else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923		*eax = *ebx = *ecx = *edx = 0;
924	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
925	return entry_found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926}
927EXPORT_SYMBOL_GPL(kvm_cpuid);
928
929int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
930{
931	u32 eax, ebx, ecx, edx;
932
933	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
934		return 1;
935
936	eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
937	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
938	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
939	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
940	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
941	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
942	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
943	return kvm_skip_emulated_instruction(vcpu);
944}
945EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);