Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/memblock.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END	}
  77#endif
  78
  79int flush_page_for_dma_global = 1;
  80
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 104static struct bit_map srmmu_nocache_map;
 105
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111{
 112	pte_t pte;
 113
 114	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115	set_pte((pte_t *)ctxp, pte);
 116}
 117
 118/*
 119 * Locations of MSI Registers.
 120 */
 121#define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
 122
 123/*
 124 * Useful bits in the MSI Registers.
 125 */
 126#define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
 127
 128static void msi_set_sync(void)
 129{
 130	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131			      "andn %%g3, %2, %%g3\n\t"
 132			      "sta %%g3, [%0] %1\n\t" : :
 133			      "r" (MSI_MBUS_ARBEN),
 134			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 135}
 136
 137void pmd_set(pmd_t *pmdp, pte_t *ptep)
 138{
 139	unsigned long ptp = __nocache_pa(ptep) >> 4;
 140	set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
 141}
 142
 143/*
 144 * size: bytes to allocate in the nocache area.
 145 * align: bytes, number to align at.
 146 * Returns the virtual address of the allocated area.
 147 */
 148static void *__srmmu_get_nocache(int size, int align)
 149{
 150	int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
 151	unsigned long addr;
 152
 153	if (size < minsz) {
 154		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 155		       size);
 156		size = minsz;
 157	}
 158	if (size & (minsz - 1)) {
 159		printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
 160		       size);
 161		size += minsz - 1;
 162	}
 163	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 164
 165	offset = bit_map_string_get(&srmmu_nocache_map,
 166				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 167				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 168	if (offset == -1) {
 169		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 170		       size, (int) srmmu_nocache_size,
 171		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 172		return NULL;
 173	}
 174
 175	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 176	return (void *)addr;
 177}
 178
 179void *srmmu_get_nocache(int size, int align)
 180{
 181	void *tmp;
 182
 183	tmp = __srmmu_get_nocache(size, align);
 184
 185	if (tmp)
 186		memset(tmp, 0, size);
 187
 188	return tmp;
 189}
 190
 191void srmmu_free_nocache(void *addr, int size)
 192{
 193	unsigned long vaddr;
 194	int offset;
 195
 196	vaddr = (unsigned long)addr;
 197	if (vaddr < SRMMU_NOCACHE_VADDR) {
 198		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 199		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 200		BUG();
 201	}
 202	if (vaddr + size > srmmu_nocache_end) {
 203		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 204		    vaddr, srmmu_nocache_end);
 205		BUG();
 206	}
 207	if (!is_power_of_2(size)) {
 208		printk("Size 0x%x is not a power of 2\n", size);
 209		BUG();
 210	}
 211	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 212		printk("Size 0x%x is too small\n", size);
 213		BUG();
 214	}
 215	if (vaddr & (size - 1)) {
 216		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 217		BUG();
 218	}
 219
 220	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 221	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 222
 223	bit_map_clear(&srmmu_nocache_map, offset, size);
 224}
 225
 226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 227						 unsigned long end);
 228
 229/* Return how much physical memory we have.  */
 230static unsigned long __init probe_memory(void)
 231{
 232	unsigned long total = 0;
 233	int i;
 234
 235	for (i = 0; sp_banks[i].num_bytes; i++)
 236		total += sp_banks[i].num_bytes;
 237
 238	return total;
 239}
 240
 241/*
 242 * Reserve nocache dynamically proportionally to the amount of
 243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 244 */
 245static void __init srmmu_nocache_calcsize(void)
 246{
 247	unsigned long sysmemavail = probe_memory() / 1024;
 248	int srmmu_nocache_npages;
 249
 250	srmmu_nocache_npages =
 251		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 252
 253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 254	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 255	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 256		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 257
 258	/* anything above 1280 blows up */
 259	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 260		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 261
 262	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 263	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 264}
 265
 266static void __init srmmu_nocache_init(void)
 267{
 268	void *srmmu_nocache_bitmap;
 269	unsigned int bitmap_bits;
 270	pgd_t *pgd;
 271	p4d_t *p4d;
 272	pud_t *pud;
 273	pmd_t *pmd;
 274	pte_t *pte;
 275	unsigned long paddr, vaddr;
 276	unsigned long pteval;
 277
 278	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 279
 280	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 281					    SRMMU_NOCACHE_ALIGN_MAX);
 282	if (!srmmu_nocache_pool)
 283		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 284		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 285	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 286
 287	srmmu_nocache_bitmap =
 288		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 289			       SMP_CACHE_BYTES);
 290	if (!srmmu_nocache_bitmap)
 291		panic("%s: Failed to allocate %zu bytes\n", __func__,
 292		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 293	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 294
 295	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 296	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 297	init_mm.pgd = srmmu_swapper_pg_dir;
 298
 299	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 300
 301	paddr = __pa((unsigned long)srmmu_nocache_pool);
 302	vaddr = SRMMU_NOCACHE_VADDR;
 303
 304	while (vaddr < srmmu_nocache_end) {
 305		pgd = pgd_offset_k(vaddr);
 306		p4d = p4d_offset(pgd, vaddr);
 307		pud = pud_offset(p4d, vaddr);
 308		pmd = pmd_offset(__nocache_fix(pud), vaddr);
 309		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 310
 311		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 312
 313		if (srmmu_cache_pagetables)
 314			pteval |= SRMMU_CACHE;
 315
 316		set_pte(__nocache_fix(pte), __pte(pteval));
 317
 318		vaddr += PAGE_SIZE;
 319		paddr += PAGE_SIZE;
 320	}
 321
 322	flush_cache_all();
 323	flush_tlb_all();
 324}
 325
 326pgd_t *get_pgd_fast(void)
 327{
 328	pgd_t *pgd = NULL;
 329
 330	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 331	if (pgd) {
 332		pgd_t *init = pgd_offset_k(0);
 333		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 334		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 335						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 336	}
 337
 338	return pgd;
 339}
 340
 341/*
 342 * Hardware needs alignment to 256 only, but we align to whole page size
 343 * to reduce fragmentation problems due to the buddy principle.
 344 * XXX Provide actual fragmentation statistics in /proc.
 345 *
 346 * Alignments up to the page size are the same for physical and virtual
 347 * addresses of the nocache area.
 348 */
 349pgtable_t pte_alloc_one(struct mm_struct *mm)
 350{
 351	pte_t *ptep;
 352	struct page *page;
 353
 354	if (!(ptep = pte_alloc_one_kernel(mm)))
 355		return NULL;
 356	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 357	spin_lock(&mm->page_table_lock);
 358	if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
 359		page_ref_dec(page);
 360		ptep = NULL;
 361	}
 362	spin_unlock(&mm->page_table_lock);
 363
 364	return ptep;
 365}
 366
 367void pte_free(struct mm_struct *mm, pgtable_t ptep)
 368{
 369	struct page *page;
 370
 371	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 372	spin_lock(&mm->page_table_lock);
 373	if (page_ref_dec_return(page) == 1)
 374		pgtable_pte_page_dtor(page);
 375	spin_unlock(&mm->page_table_lock);
 376
 377	srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
 378}
 379
 380/* context handling - a dynamically sized pool is used */
 381#define NO_CONTEXT	-1
 382
 383struct ctx_list {
 384	struct ctx_list *next;
 385	struct ctx_list *prev;
 386	unsigned int ctx_number;
 387	struct mm_struct *ctx_mm;
 388};
 389
 390static struct ctx_list *ctx_list_pool;
 391static struct ctx_list ctx_free;
 392static struct ctx_list ctx_used;
 393
 394/* At boot time we determine the number of contexts */
 395static int num_contexts;
 396
 397static inline void remove_from_ctx_list(struct ctx_list *entry)
 398{
 399	entry->next->prev = entry->prev;
 400	entry->prev->next = entry->next;
 401}
 402
 403static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 404{
 405	entry->next = head;
 406	(entry->prev = head->prev)->next = entry;
 407	head->prev = entry;
 408}
 409#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 410#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 411
 412
 413static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 414{
 415	struct ctx_list *ctxp;
 416
 417	ctxp = ctx_free.next;
 418	if (ctxp != &ctx_free) {
 419		remove_from_ctx_list(ctxp);
 420		add_to_used_ctxlist(ctxp);
 421		mm->context = ctxp->ctx_number;
 422		ctxp->ctx_mm = mm;
 423		return;
 424	}
 425	ctxp = ctx_used.next;
 426	if (ctxp->ctx_mm == old_mm)
 427		ctxp = ctxp->next;
 428	if (ctxp == &ctx_used)
 429		panic("out of mmu contexts");
 430	flush_cache_mm(ctxp->ctx_mm);
 431	flush_tlb_mm(ctxp->ctx_mm);
 432	remove_from_ctx_list(ctxp);
 433	add_to_used_ctxlist(ctxp);
 434	ctxp->ctx_mm->context = NO_CONTEXT;
 435	ctxp->ctx_mm = mm;
 436	mm->context = ctxp->ctx_number;
 437}
 438
 439static inline void free_context(int context)
 440{
 441	struct ctx_list *ctx_old;
 442
 443	ctx_old = ctx_list_pool + context;
 444	remove_from_ctx_list(ctx_old);
 445	add_to_free_ctxlist(ctx_old);
 446}
 447
 448static void __init sparc_context_init(int numctx)
 449{
 450	int ctx;
 451	unsigned long size;
 452
 453	size = numctx * sizeof(struct ctx_list);
 454	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 455	if (!ctx_list_pool)
 456		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 457
 458	for (ctx = 0; ctx < numctx; ctx++) {
 459		struct ctx_list *clist;
 460
 461		clist = (ctx_list_pool + ctx);
 462		clist->ctx_number = ctx;
 463		clist->ctx_mm = NULL;
 464	}
 465	ctx_free.next = ctx_free.prev = &ctx_free;
 466	ctx_used.next = ctx_used.prev = &ctx_used;
 467	for (ctx = 0; ctx < numctx; ctx++)
 468		add_to_free_ctxlist(ctx_list_pool + ctx);
 469}
 470
 471void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 472	       struct task_struct *tsk)
 473{
 474	unsigned long flags;
 475
 476	if (mm->context == NO_CONTEXT) {
 477		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 478		alloc_context(old_mm, mm);
 479		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 480		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 481	}
 482
 483	if (sparc_cpu_model == sparc_leon)
 484		leon_switch_mm();
 485
 486	if (is_hypersparc)
 487		hyper_flush_whole_icache();
 488
 489	srmmu_set_context(mm->context);
 490}
 491
 492/* Low level IO area allocation on the SRMMU. */
 493static inline void srmmu_mapioaddr(unsigned long physaddr,
 494				   unsigned long virt_addr, int bus_type)
 495{
 496	pgd_t *pgdp;
 497	p4d_t *p4dp;
 498	pud_t *pudp;
 499	pmd_t *pmdp;
 500	pte_t *ptep;
 501	unsigned long tmp;
 502
 503	physaddr &= PAGE_MASK;
 504	pgdp = pgd_offset_k(virt_addr);
 505	p4dp = p4d_offset(pgdp, virt_addr);
 506	pudp = pud_offset(p4dp, virt_addr);
 507	pmdp = pmd_offset(pudp, virt_addr);
 508	ptep = pte_offset_kernel(pmdp, virt_addr);
 509	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 510
 511	/* I need to test whether this is consistent over all
 512	 * sun4m's.  The bus_type represents the upper 4 bits of
 513	 * 36-bit physical address on the I/O space lines...
 514	 */
 515	tmp |= (bus_type << 28);
 516	tmp |= SRMMU_PRIV;
 517	__flush_page_to_ram(virt_addr);
 518	set_pte(ptep, __pte(tmp));
 519}
 520
 521void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 522		      unsigned long xva, unsigned int len)
 523{
 524	while (len != 0) {
 525		len -= PAGE_SIZE;
 526		srmmu_mapioaddr(xpa, xva, bus);
 527		xva += PAGE_SIZE;
 528		xpa += PAGE_SIZE;
 529	}
 530	flush_tlb_all();
 531}
 532
 533static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 534{
 535	pgd_t *pgdp;
 536	p4d_t *p4dp;
 537	pud_t *pudp;
 538	pmd_t *pmdp;
 539	pte_t *ptep;
 540
 541
 542	pgdp = pgd_offset_k(virt_addr);
 543	p4dp = p4d_offset(pgdp, virt_addr);
 544	pudp = pud_offset(p4dp, virt_addr);
 545	pmdp = pmd_offset(pudp, virt_addr);
 546	ptep = pte_offset_kernel(pmdp, virt_addr);
 547
 548	/* No need to flush uncacheable page. */
 549	__pte_clear(ptep);
 550}
 551
 552void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 553{
 554	while (len != 0) {
 555		len -= PAGE_SIZE;
 556		srmmu_unmapioaddr(virt_addr);
 557		virt_addr += PAGE_SIZE;
 558	}
 559	flush_tlb_all();
 560}
 561
 562/* tsunami.S */
 563extern void tsunami_flush_cache_all(void);
 564extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 565extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 566extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 567extern void tsunami_flush_page_to_ram(unsigned long page);
 568extern void tsunami_flush_page_for_dma(unsigned long page);
 569extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 570extern void tsunami_flush_tlb_all(void);
 571extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 572extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 573extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 574extern void tsunami_setup_blockops(void);
 575
 576/* swift.S */
 577extern void swift_flush_cache_all(void);
 578extern void swift_flush_cache_mm(struct mm_struct *mm);
 579extern void swift_flush_cache_range(struct vm_area_struct *vma,
 580				    unsigned long start, unsigned long end);
 581extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 582extern void swift_flush_page_to_ram(unsigned long page);
 583extern void swift_flush_page_for_dma(unsigned long page);
 584extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 585extern void swift_flush_tlb_all(void);
 586extern void swift_flush_tlb_mm(struct mm_struct *mm);
 587extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 588				  unsigned long start, unsigned long end);
 589extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 590
 591#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 592void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 593{
 594	int cctx, ctx1;
 595
 596	page &= PAGE_MASK;
 597	if ((ctx1 = vma->vm_mm->context) != -1) {
 598		cctx = srmmu_get_context();
 599/* Is context # ever different from current context? P3 */
 600		if (cctx != ctx1) {
 601			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 602			srmmu_set_context(ctx1);
 603			swift_flush_page(page);
 604			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 605					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 606			srmmu_set_context(cctx);
 607		} else {
 608			 /* Rm. prot. bits from virt. c. */
 609			/* swift_flush_cache_all(); */
 610			/* swift_flush_cache_page(vma, page); */
 611			swift_flush_page(page);
 612
 613			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 614				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 615			/* same as above: srmmu_flush_tlb_page() */
 616		}
 617	}
 618}
 619#endif
 620
 621/*
 622 * The following are all MBUS based SRMMU modules, and therefore could
 623 * be found in a multiprocessor configuration.  On the whole, these
 624 * chips seems to be much more touchy about DVMA and page tables
 625 * with respect to cache coherency.
 626 */
 627
 628/* viking.S */
 629extern void viking_flush_cache_all(void);
 630extern void viking_flush_cache_mm(struct mm_struct *mm);
 631extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 632				     unsigned long end);
 633extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 634extern void viking_flush_page_to_ram(unsigned long page);
 635extern void viking_flush_page_for_dma(unsigned long page);
 636extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 637extern void viking_flush_page(unsigned long page);
 638extern void viking_mxcc_flush_page(unsigned long page);
 639extern void viking_flush_tlb_all(void);
 640extern void viking_flush_tlb_mm(struct mm_struct *mm);
 641extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 642				   unsigned long end);
 643extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 644				  unsigned long page);
 645extern void sun4dsmp_flush_tlb_all(void);
 646extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 647extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 648				   unsigned long end);
 649extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 650				  unsigned long page);
 651
 652/* hypersparc.S */
 653extern void hypersparc_flush_cache_all(void);
 654extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 655extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 656extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 657extern void hypersparc_flush_page_to_ram(unsigned long page);
 658extern void hypersparc_flush_page_for_dma(unsigned long page);
 659extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 660extern void hypersparc_flush_tlb_all(void);
 661extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 662extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 663extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 664extern void hypersparc_setup_blockops(void);
 665
 666/*
 667 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 668 *       kernel mappings are done with one single contiguous chunk of
 669 *       ram.  On small ram machines (classics mainly) we only get
 670 *       around 8mb mapped for us.
 671 */
 672
 673static void __init early_pgtable_allocfail(char *type)
 674{
 675	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 676	prom_halt();
 677}
 678
 679static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 680							unsigned long end)
 681{
 682	pgd_t *pgdp;
 683	p4d_t *p4dp;
 684	pud_t *pudp;
 685	pmd_t *pmdp;
 686	pte_t *ptep;
 687
 688	while (start < end) {
 689		pgdp = pgd_offset_k(start);
 690		p4dp = p4d_offset(pgdp, start);
 691		pudp = pud_offset(p4dp, start);
 692		if (pud_none(*__nocache_fix(pudp))) {
 693			pmdp = __srmmu_get_nocache(
 694			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 695			if (pmdp == NULL)
 696				early_pgtable_allocfail("pmd");
 697			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 698			pud_set(__nocache_fix(pudp), pmdp);
 699		}
 700		pmdp = pmd_offset(__nocache_fix(pudp), start);
 701		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 702			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 703			if (ptep == NULL)
 704				early_pgtable_allocfail("pte");
 705			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 706			pmd_set(__nocache_fix(pmdp), ptep);
 707		}
 708		if (start > (0xffffffffUL - PMD_SIZE))
 709			break;
 710		start = (start + PMD_SIZE) & PMD_MASK;
 711	}
 712}
 713
 714static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 715						  unsigned long end)
 716{
 717	pgd_t *pgdp;
 718	p4d_t *p4dp;
 719	pud_t *pudp;
 720	pmd_t *pmdp;
 721	pte_t *ptep;
 722
 723	while (start < end) {
 724		pgdp = pgd_offset_k(start);
 725		p4dp = p4d_offset(pgdp, start);
 726		pudp = pud_offset(p4dp, start);
 727		if (pud_none(*pudp)) {
 728			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 729			if (pmdp == NULL)
 730				early_pgtable_allocfail("pmd");
 731			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 732			pud_set((pud_t *)pgdp, pmdp);
 733		}
 734		pmdp = pmd_offset(pudp, start);
 735		if (srmmu_pmd_none(*pmdp)) {
 736			ptep = __srmmu_get_nocache(PTE_SIZE,
 737							     PTE_SIZE);
 738			if (ptep == NULL)
 739				early_pgtable_allocfail("pte");
 740			memset(ptep, 0, PTE_SIZE);
 741			pmd_set(pmdp, ptep);
 742		}
 743		if (start > (0xffffffffUL - PMD_SIZE))
 744			break;
 745		start = (start + PMD_SIZE) & PMD_MASK;
 746	}
 747}
 748
 749/* These flush types are not available on all chips... */
 750static inline unsigned long srmmu_probe(unsigned long vaddr)
 751{
 752	unsigned long retval;
 753
 754	if (sparc_cpu_model != sparc_leon) {
 755
 756		vaddr &= PAGE_MASK;
 757		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 758				     "=r" (retval) :
 759				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 760	} else {
 761		retval = leon_swprobe(vaddr, NULL);
 762	}
 763	return retval;
 764}
 765
 766/*
 767 * This is much cleaner than poking around physical address space
 768 * looking at the prom's page table directly which is what most
 769 * other OS's do.  Yuck... this is much better.
 770 */
 771static void __init srmmu_inherit_prom_mappings(unsigned long start,
 772					       unsigned long end)
 773{
 774	unsigned long probed;
 775	unsigned long addr;
 776	pgd_t *pgdp;
 777	p4d_t *p4dp;
 778	pud_t *pudp;
 779	pmd_t *pmdp;
 780	pte_t *ptep;
 781	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 782
 783	while (start <= end) {
 784		if (start == 0)
 785			break; /* probably wrap around */
 786		if (start == 0xfef00000)
 787			start = KADB_DEBUGGER_BEGVM;
 788		probed = srmmu_probe(start);
 789		if (!probed) {
 790			/* continue probing until we find an entry */
 791			start += PAGE_SIZE;
 792			continue;
 793		}
 794
 795		/* A red snapper, see what it really is. */
 796		what = 0;
 797		addr = start - PAGE_SIZE;
 798
 799		if (!(start & ~(PMD_MASK))) {
 800			if (srmmu_probe(addr + PMD_SIZE) == probed)
 801				what = 1;
 802		}
 803
 804		if (!(start & ~(PGDIR_MASK))) {
 805			if (srmmu_probe(addr + PGDIR_SIZE) == probed)
 806				what = 2;
 807		}
 808
 809		pgdp = pgd_offset_k(start);
 810		p4dp = p4d_offset(pgdp, start);
 811		pudp = pud_offset(p4dp, start);
 812		if (what == 2) {
 813			*__nocache_fix(pgdp) = __pgd(probed);
 814			start += PGDIR_SIZE;
 815			continue;
 816		}
 817		if (pud_none(*__nocache_fix(pudp))) {
 818			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 819						   SRMMU_PMD_TABLE_SIZE);
 820			if (pmdp == NULL)
 821				early_pgtable_allocfail("pmd");
 822			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 823			pud_set(__nocache_fix(pudp), pmdp);
 824		}
 825		pmdp = pmd_offset(__nocache_fix(pudp), start);
 826		if (what == 1) {
 827			*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
 828			start += PMD_SIZE;
 829			continue;
 830		}
 831		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 832			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 833			if (ptep == NULL)
 834				early_pgtable_allocfail("pte");
 835			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 836			pmd_set(__nocache_fix(pmdp), ptep);
 837		}
 838		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 839		*__nocache_fix(ptep) = __pte(probed);
 840		start += PAGE_SIZE;
 841	}
 842}
 843
 844#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 845
 846/* Create a third-level SRMMU 16MB page mapping. */
 847static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 848{
 849	pgd_t *pgdp = pgd_offset_k(vaddr);
 850	unsigned long big_pte;
 851
 852	big_pte = KERNEL_PTE(phys_base >> 4);
 853	*__nocache_fix(pgdp) = __pgd(big_pte);
 854}
 855
 856/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 857static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 858{
 859	unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
 860	unsigned long vstart = (vbase & PGDIR_MASK);
 861	unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 862	/* Map "low" memory only */
 863	const unsigned long min_vaddr = PAGE_OFFSET;
 864	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 865
 866	if (vstart < min_vaddr || vstart >= max_vaddr)
 867		return vstart;
 868
 869	if (vend > max_vaddr || vend < min_vaddr)
 870		vend = max_vaddr;
 871
 872	while (vstart < vend) {
 873		do_large_mapping(vstart, pstart);
 874		vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
 875	}
 876	return vstart;
 877}
 878
 879static void __init map_kernel(void)
 880{
 881	int i;
 882
 883	if (phys_base > 0) {
 884		do_large_mapping(PAGE_OFFSET, phys_base);
 885	}
 886
 887	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 888		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 889	}
 890}
 891
 892void (*poke_srmmu)(void) = NULL;
 893
 894void __init srmmu_paging_init(void)
 895{
 896	int i;
 897	phandle cpunode;
 898	char node_str[128];
 899	pgd_t *pgd;
 900	p4d_t *p4d;
 901	pud_t *pud;
 902	pmd_t *pmd;
 903	pte_t *pte;
 904	unsigned long pages_avail;
 905
 906	init_mm.context = (unsigned long) NO_CONTEXT;
 907	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 908
 909	if (sparc_cpu_model == sun4d)
 910		num_contexts = 65536; /* We know it is Viking */
 911	else {
 912		/* Find the number of contexts on the srmmu. */
 913		cpunode = prom_getchild(prom_root_node);
 914		num_contexts = 0;
 915		while (cpunode != 0) {
 916			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 917			if (!strcmp(node_str, "cpu")) {
 918				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 919				break;
 920			}
 921			cpunode = prom_getsibling(cpunode);
 922		}
 923	}
 924
 925	if (!num_contexts) {
 926		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 927		prom_halt();
 928	}
 929
 930	pages_avail = 0;
 931	last_valid_pfn = bootmem_init(&pages_avail);
 932
 933	srmmu_nocache_calcsize();
 934	srmmu_nocache_init();
 935	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 936	map_kernel();
 937
 938	/* ctx table has to be physically aligned to its size */
 939	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 940	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 941
 942	for (i = 0; i < num_contexts; i++)
 943		srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 944
 945	flush_cache_all();
 946	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 947#ifdef CONFIG_SMP
 948	/* Stop from hanging here... */
 949	local_ops->tlb_all();
 950#else
 951	flush_tlb_all();
 952#endif
 953	poke_srmmu();
 954
 955	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 956	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 957
 958	srmmu_allocate_ptable_skeleton(
 959		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 960	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 961
 962	pgd = pgd_offset_k(PKMAP_BASE);
 963	p4d = p4d_offset(pgd, PKMAP_BASE);
 964	pud = pud_offset(p4d, PKMAP_BASE);
 965	pmd = pmd_offset(pud, PKMAP_BASE);
 966	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 967	pkmap_page_table = pte;
 968
 969	flush_cache_all();
 970	flush_tlb_all();
 971
 972	sparc_context_init(num_contexts);
 973
 
 
 974	{
 975		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
 976
 977		max_zone_pfn[ZONE_DMA] = max_low_pfn;
 978		max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
 979		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
 980
 981		free_area_init(max_zone_pfn);
 982	}
 983}
 984
 985void mmu_info(struct seq_file *m)
 986{
 987	seq_printf(m,
 988		   "MMU type\t: %s\n"
 989		   "contexts\t: %d\n"
 990		   "nocache total\t: %ld\n"
 991		   "nocache used\t: %d\n",
 992		   srmmu_name,
 993		   num_contexts,
 994		   srmmu_nocache_size,
 995		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 996}
 997
 998int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 999{
1000	mm->context = NO_CONTEXT;
1001	return 0;
1002}
1003
1004void destroy_context(struct mm_struct *mm)
1005{
1006	unsigned long flags;
1007
1008	if (mm->context != NO_CONTEXT) {
1009		flush_cache_mm(mm);
1010		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1011		flush_tlb_mm(mm);
1012		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1013		free_context(mm->context);
1014		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1015		mm->context = NO_CONTEXT;
1016	}
1017}
1018
1019/* Init various srmmu chip types. */
1020static void __init srmmu_is_bad(void)
1021{
1022	prom_printf("Could not determine SRMMU chip type.\n");
1023	prom_halt();
1024}
1025
1026static void __init init_vac_layout(void)
1027{
1028	phandle nd;
1029	int cache_lines;
1030	char node_str[128];
1031#ifdef CONFIG_SMP
1032	int cpu = 0;
1033	unsigned long max_size = 0;
1034	unsigned long min_line_size = 0x10000000;
1035#endif
1036
1037	nd = prom_getchild(prom_root_node);
1038	while ((nd = prom_getsibling(nd)) != 0) {
1039		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1040		if (!strcmp(node_str, "cpu")) {
1041			vac_line_size = prom_getint(nd, "cache-line-size");
1042			if (vac_line_size == -1) {
1043				prom_printf("can't determine cache-line-size, halting.\n");
1044				prom_halt();
1045			}
1046			cache_lines = prom_getint(nd, "cache-nlines");
1047			if (cache_lines == -1) {
1048				prom_printf("can't determine cache-nlines, halting.\n");
1049				prom_halt();
1050			}
1051
1052			vac_cache_size = cache_lines * vac_line_size;
1053#ifdef CONFIG_SMP
1054			if (vac_cache_size > max_size)
1055				max_size = vac_cache_size;
1056			if (vac_line_size < min_line_size)
1057				min_line_size = vac_line_size;
1058			//FIXME: cpus not contiguous!!
1059			cpu++;
1060			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1061				break;
1062#else
1063			break;
1064#endif
1065		}
1066	}
1067	if (nd == 0) {
1068		prom_printf("No CPU nodes found, halting.\n");
1069		prom_halt();
1070	}
1071#ifdef CONFIG_SMP
1072	vac_cache_size = max_size;
1073	vac_line_size = min_line_size;
1074#endif
1075	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1076	       (int)vac_cache_size, (int)vac_line_size);
1077}
1078
1079static void poke_hypersparc(void)
1080{
1081	volatile unsigned long clear;
1082	unsigned long mreg = srmmu_get_mmureg();
1083
1084	hyper_flush_unconditional_combined();
1085
1086	mreg &= ~(HYPERSPARC_CWENABLE);
1087	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1088	mreg |= (HYPERSPARC_CMODE);
1089
1090	srmmu_set_mmureg(mreg);
1091
1092#if 0 /* XXX I think this is bad news... -DaveM */
1093	hyper_clear_all_tags();
1094#endif
1095
1096	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1097	hyper_flush_whole_icache();
1098	clear = srmmu_get_faddr();
1099	clear = srmmu_get_fstatus();
1100}
1101
1102static const struct sparc32_cachetlb_ops hypersparc_ops = {
1103	.cache_all	= hypersparc_flush_cache_all,
1104	.cache_mm	= hypersparc_flush_cache_mm,
1105	.cache_page	= hypersparc_flush_cache_page,
1106	.cache_range	= hypersparc_flush_cache_range,
1107	.tlb_all	= hypersparc_flush_tlb_all,
1108	.tlb_mm		= hypersparc_flush_tlb_mm,
1109	.tlb_page	= hypersparc_flush_tlb_page,
1110	.tlb_range	= hypersparc_flush_tlb_range,
1111	.page_to_ram	= hypersparc_flush_page_to_ram,
1112	.sig_insns	= hypersparc_flush_sig_insns,
1113	.page_for_dma	= hypersparc_flush_page_for_dma,
1114};
1115
1116static void __init init_hypersparc(void)
1117{
1118	srmmu_name = "ROSS HyperSparc";
1119	srmmu_modtype = HyperSparc;
1120
1121	init_vac_layout();
1122
1123	is_hypersparc = 1;
1124	sparc32_cachetlb_ops = &hypersparc_ops;
1125
1126	poke_srmmu = poke_hypersparc;
1127
1128	hypersparc_setup_blockops();
1129}
1130
1131static void poke_swift(void)
1132{
1133	unsigned long mreg;
1134
1135	/* Clear any crap from the cache or else... */
1136	swift_flush_cache_all();
1137
1138	/* Enable I & D caches */
1139	mreg = srmmu_get_mmureg();
1140	mreg |= (SWIFT_IE | SWIFT_DE);
1141	/*
1142	 * The Swift branch folding logic is completely broken.  At
1143	 * trap time, if things are just right, if can mistakenly
1144	 * think that a trap is coming from kernel mode when in fact
1145	 * it is coming from user mode (it mis-executes the branch in
1146	 * the trap code).  So you see things like crashme completely
1147	 * hosing your machine which is completely unacceptable.  Turn
1148	 * this shit off... nice job Fujitsu.
1149	 */
1150	mreg &= ~(SWIFT_BF);
1151	srmmu_set_mmureg(mreg);
1152}
1153
1154static const struct sparc32_cachetlb_ops swift_ops = {
1155	.cache_all	= swift_flush_cache_all,
1156	.cache_mm	= swift_flush_cache_mm,
1157	.cache_page	= swift_flush_cache_page,
1158	.cache_range	= swift_flush_cache_range,
1159	.tlb_all	= swift_flush_tlb_all,
1160	.tlb_mm		= swift_flush_tlb_mm,
1161	.tlb_page	= swift_flush_tlb_page,
1162	.tlb_range	= swift_flush_tlb_range,
1163	.page_to_ram	= swift_flush_page_to_ram,
1164	.sig_insns	= swift_flush_sig_insns,
1165	.page_for_dma	= swift_flush_page_for_dma,
1166};
1167
1168#define SWIFT_MASKID_ADDR  0x10003018
1169static void __init init_swift(void)
1170{
1171	unsigned long swift_rev;
1172
1173	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1174			     "srl %0, 0x18, %0\n\t" :
1175			     "=r" (swift_rev) :
1176			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1177	srmmu_name = "Fujitsu Swift";
1178	switch (swift_rev) {
1179	case 0x11:
1180	case 0x20:
1181	case 0x23:
1182	case 0x30:
1183		srmmu_modtype = Swift_lots_o_bugs;
1184		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1185		/*
1186		 * Gee george, I wonder why Sun is so hush hush about
1187		 * this hardware bug... really braindamage stuff going
1188		 * on here.  However I think we can find a way to avoid
1189		 * all of the workaround overhead under Linux.  Basically,
1190		 * any page fault can cause kernel pages to become user
1191		 * accessible (the mmu gets confused and clears some of
1192		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1193		 * horrible eh?  But wait, after extensive testing it appears
1194		 * that if you use pgd_t level large kernel pte's (like the
1195		 * 4MB pages on the Pentium) the bug does not get tripped
1196		 * at all.  This avoids almost all of the major overhead.
1197		 * Welcome to a world where your vendor tells you to,
1198		 * "apply this kernel patch" instead of "sorry for the
1199		 * broken hardware, send it back and we'll give you
1200		 * properly functioning parts"
1201		 */
1202		break;
1203	case 0x25:
1204	case 0x31:
1205		srmmu_modtype = Swift_bad_c;
1206		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1207		/*
1208		 * You see Sun allude to this hardware bug but never
1209		 * admit things directly, they'll say things like,
1210		 * "the Swift chip cache problems" or similar.
1211		 */
1212		break;
1213	default:
1214		srmmu_modtype = Swift_ok;
1215		break;
1216	}
1217
1218	sparc32_cachetlb_ops = &swift_ops;
1219	flush_page_for_dma_global = 0;
1220
1221	/*
1222	 * Are you now convinced that the Swift is one of the
1223	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1224	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1225	 * you examined the microcode of the Swift you'd find
1226	 * XXX's all over the place.
1227	 */
1228	poke_srmmu = poke_swift;
1229}
1230
1231static void turbosparc_flush_cache_all(void)
1232{
1233	flush_user_windows();
1234	turbosparc_idflash_clear();
1235}
1236
1237static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1238{
1239	FLUSH_BEGIN(mm)
1240	flush_user_windows();
1241	turbosparc_idflash_clear();
1242	FLUSH_END
1243}
1244
1245static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1246{
1247	FLUSH_BEGIN(vma->vm_mm)
1248	flush_user_windows();
1249	turbosparc_idflash_clear();
1250	FLUSH_END
1251}
1252
1253static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1254{
1255	FLUSH_BEGIN(vma->vm_mm)
1256	flush_user_windows();
1257	if (vma->vm_flags & VM_EXEC)
1258		turbosparc_flush_icache();
1259	turbosparc_flush_dcache();
1260	FLUSH_END
1261}
1262
1263/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1264static void turbosparc_flush_page_to_ram(unsigned long page)
1265{
1266#ifdef TURBOSPARC_WRITEBACK
1267	volatile unsigned long clear;
1268
1269	if (srmmu_probe(page))
1270		turbosparc_flush_page_cache(page);
1271	clear = srmmu_get_fstatus();
1272#endif
1273}
1274
1275static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1276{
1277}
1278
1279static void turbosparc_flush_page_for_dma(unsigned long page)
1280{
1281	turbosparc_flush_dcache();
1282}
1283
1284static void turbosparc_flush_tlb_all(void)
1285{
1286	srmmu_flush_whole_tlb();
1287}
1288
1289static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1290{
1291	FLUSH_BEGIN(mm)
1292	srmmu_flush_whole_tlb();
1293	FLUSH_END
1294}
1295
1296static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1297{
1298	FLUSH_BEGIN(vma->vm_mm)
1299	srmmu_flush_whole_tlb();
1300	FLUSH_END
1301}
1302
1303static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1304{
1305	FLUSH_BEGIN(vma->vm_mm)
1306	srmmu_flush_whole_tlb();
1307	FLUSH_END
1308}
1309
1310
1311static void poke_turbosparc(void)
1312{
1313	unsigned long mreg = srmmu_get_mmureg();
1314	unsigned long ccreg;
1315
1316	/* Clear any crap from the cache or else... */
1317	turbosparc_flush_cache_all();
1318	/* Temporarily disable I & D caches */
1319	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1320	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1321	srmmu_set_mmureg(mreg);
1322
1323	ccreg = turbosparc_get_ccreg();
1324
1325#ifdef TURBOSPARC_WRITEBACK
1326	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1327	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1328			/* Write-back D-cache, emulate VLSI
1329			 * abortion number three, not number one */
1330#else
1331	/* For now let's play safe, optimize later */
1332	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1333			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1334	ccreg &= ~(TURBOSPARC_uS2);
1335			/* Emulate VLSI abortion number three, not number one */
1336#endif
1337
1338	switch (ccreg & 7) {
1339	case 0: /* No SE cache */
1340	case 7: /* Test mode */
1341		break;
1342	default:
1343		ccreg |= (TURBOSPARC_SCENABLE);
1344	}
1345	turbosparc_set_ccreg(ccreg);
1346
1347	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1348	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1349	srmmu_set_mmureg(mreg);
1350}
1351
1352static const struct sparc32_cachetlb_ops turbosparc_ops = {
1353	.cache_all	= turbosparc_flush_cache_all,
1354	.cache_mm	= turbosparc_flush_cache_mm,
1355	.cache_page	= turbosparc_flush_cache_page,
1356	.cache_range	= turbosparc_flush_cache_range,
1357	.tlb_all	= turbosparc_flush_tlb_all,
1358	.tlb_mm		= turbosparc_flush_tlb_mm,
1359	.tlb_page	= turbosparc_flush_tlb_page,
1360	.tlb_range	= turbosparc_flush_tlb_range,
1361	.page_to_ram	= turbosparc_flush_page_to_ram,
1362	.sig_insns	= turbosparc_flush_sig_insns,
1363	.page_for_dma	= turbosparc_flush_page_for_dma,
1364};
1365
1366static void __init init_turbosparc(void)
1367{
1368	srmmu_name = "Fujitsu TurboSparc";
1369	srmmu_modtype = TurboSparc;
1370	sparc32_cachetlb_ops = &turbosparc_ops;
1371	poke_srmmu = poke_turbosparc;
1372}
1373
1374static void poke_tsunami(void)
1375{
1376	unsigned long mreg = srmmu_get_mmureg();
1377
1378	tsunami_flush_icache();
1379	tsunami_flush_dcache();
1380	mreg &= ~TSUNAMI_ITD;
1381	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1382	srmmu_set_mmureg(mreg);
1383}
1384
1385static const struct sparc32_cachetlb_ops tsunami_ops = {
1386	.cache_all	= tsunami_flush_cache_all,
1387	.cache_mm	= tsunami_flush_cache_mm,
1388	.cache_page	= tsunami_flush_cache_page,
1389	.cache_range	= tsunami_flush_cache_range,
1390	.tlb_all	= tsunami_flush_tlb_all,
1391	.tlb_mm		= tsunami_flush_tlb_mm,
1392	.tlb_page	= tsunami_flush_tlb_page,
1393	.tlb_range	= tsunami_flush_tlb_range,
1394	.page_to_ram	= tsunami_flush_page_to_ram,
1395	.sig_insns	= tsunami_flush_sig_insns,
1396	.page_for_dma	= tsunami_flush_page_for_dma,
1397};
1398
1399static void __init init_tsunami(void)
1400{
1401	/*
1402	 * Tsunami's pretty sane, Sun and TI actually got it
1403	 * somewhat right this time.  Fujitsu should have
1404	 * taken some lessons from them.
1405	 */
1406
1407	srmmu_name = "TI Tsunami";
1408	srmmu_modtype = Tsunami;
1409	sparc32_cachetlb_ops = &tsunami_ops;
1410	poke_srmmu = poke_tsunami;
1411
1412	tsunami_setup_blockops();
1413}
1414
1415static void poke_viking(void)
1416{
1417	unsigned long mreg = srmmu_get_mmureg();
1418	static int smp_catch;
1419
1420	if (viking_mxcc_present) {
1421		unsigned long mxcc_control = mxcc_get_creg();
1422
1423		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1424		mxcc_control &= ~(MXCC_CTL_RRC);
1425		mxcc_set_creg(mxcc_control);
1426
1427		/*
1428		 * We don't need memory parity checks.
1429		 * XXX This is a mess, have to dig out later. ecd.
1430		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1431		 */
1432
1433		/* We do cache ptables on MXCC. */
1434		mreg |= VIKING_TCENABLE;
1435	} else {
1436		unsigned long bpreg;
1437
1438		mreg &= ~(VIKING_TCENABLE);
1439		if (smp_catch++) {
1440			/* Must disable mixed-cmd mode here for other cpu's. */
1441			bpreg = viking_get_bpreg();
1442			bpreg &= ~(VIKING_ACTION_MIX);
1443			viking_set_bpreg(bpreg);
1444
1445			/* Just in case PROM does something funny. */
1446			msi_set_sync();
1447		}
1448	}
1449
1450	mreg |= VIKING_SPENABLE;
1451	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1452	mreg |= VIKING_SBENABLE;
1453	mreg &= ~(VIKING_ACENABLE);
1454	srmmu_set_mmureg(mreg);
1455}
1456
1457static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1458	.cache_all	= viking_flush_cache_all,
1459	.cache_mm	= viking_flush_cache_mm,
1460	.cache_page	= viking_flush_cache_page,
1461	.cache_range	= viking_flush_cache_range,
1462	.tlb_all	= viking_flush_tlb_all,
1463	.tlb_mm		= viking_flush_tlb_mm,
1464	.tlb_page	= viking_flush_tlb_page,
1465	.tlb_range	= viking_flush_tlb_range,
1466	.page_to_ram	= viking_flush_page_to_ram,
1467	.sig_insns	= viking_flush_sig_insns,
1468	.page_for_dma	= viking_flush_page_for_dma,
1469};
1470
1471#ifdef CONFIG_SMP
1472/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1473 * perform the local TLB flush and all the other cpus will see it.
1474 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1475 * that requires that we add some synchronization to these flushes.
1476 *
1477 * The bug is that the fifo which keeps track of all the pending TLB
1478 * broadcasts in the system is an entry or two too small, so if we
1479 * have too many going at once we'll overflow that fifo and lose a TLB
1480 * flush resulting in corruption.
1481 *
1482 * Our workaround is to take a global spinlock around the TLB flushes,
1483 * which guarentees we won't ever have too many pending.  It's a big
1484 * hammer, but a semaphore like system to make sure we only have N TLB
1485 * flushes going at once will require SMP locking anyways so there's
1486 * no real value in trying any harder than this.
1487 */
1488static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1489	.cache_all	= viking_flush_cache_all,
1490	.cache_mm	= viking_flush_cache_mm,
1491	.cache_page	= viking_flush_cache_page,
1492	.cache_range	= viking_flush_cache_range,
1493	.tlb_all	= sun4dsmp_flush_tlb_all,
1494	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1495	.tlb_page	= sun4dsmp_flush_tlb_page,
1496	.tlb_range	= sun4dsmp_flush_tlb_range,
1497	.page_to_ram	= viking_flush_page_to_ram,
1498	.sig_insns	= viking_flush_sig_insns,
1499	.page_for_dma	= viking_flush_page_for_dma,
1500};
1501#endif
1502
1503static void __init init_viking(void)
1504{
1505	unsigned long mreg = srmmu_get_mmureg();
1506
1507	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1508	if (mreg & VIKING_MMODE) {
1509		srmmu_name = "TI Viking";
1510		viking_mxcc_present = 0;
1511		msi_set_sync();
1512
1513		/*
1514		 * We need this to make sure old viking takes no hits
1515		 * on it's cache for dma snoops to workaround the
1516		 * "load from non-cacheable memory" interrupt bug.
1517		 * This is only necessary because of the new way in
1518		 * which we use the IOMMU.
1519		 */
1520		viking_ops.page_for_dma = viking_flush_page;
1521#ifdef CONFIG_SMP
1522		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1523#endif
1524		flush_page_for_dma_global = 0;
1525	} else {
1526		srmmu_name = "TI Viking/MXCC";
1527		viking_mxcc_present = 1;
1528		srmmu_cache_pagetables = 1;
1529	}
1530
1531	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1532		&viking_ops;
1533#ifdef CONFIG_SMP
1534	if (sparc_cpu_model == sun4d)
1535		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1536			&viking_sun4d_smp_ops;
1537#endif
1538
1539	poke_srmmu = poke_viking;
1540}
1541
1542/* Probe for the srmmu chip version. */
1543static void __init get_srmmu_type(void)
1544{
1545	unsigned long mreg, psr;
1546	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1547
1548	srmmu_modtype = SRMMU_INVAL_MOD;
1549	hwbug_bitmask = 0;
1550
1551	mreg = srmmu_get_mmureg(); psr = get_psr();
1552	mod_typ = (mreg & 0xf0000000) >> 28;
1553	mod_rev = (mreg & 0x0f000000) >> 24;
1554	psr_typ = (psr >> 28) & 0xf;
1555	psr_vers = (psr >> 24) & 0xf;
1556
1557	/* First, check for sparc-leon. */
1558	if (sparc_cpu_model == sparc_leon) {
1559		init_leon();
1560		return;
1561	}
1562
1563	/* Second, check for HyperSparc or Cypress. */
1564	if (mod_typ == 1) {
1565		switch (mod_rev) {
1566		case 7:
1567			/* UP or MP Hypersparc */
1568			init_hypersparc();
1569			break;
1570		case 0:
1571		case 2:
1572		case 10:
1573		case 11:
1574		case 12:
1575		case 13:
1576		case 14:
1577		case 15:
1578		default:
1579			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1580			prom_halt();
1581			break;
1582		}
1583		return;
1584	}
1585
1586	/* Now Fujitsu TurboSparc. It might happen that it is
1587	 * in Swift emulation mode, so we will check later...
1588	 */
1589	if (psr_typ == 0 && psr_vers == 5) {
1590		init_turbosparc();
1591		return;
1592	}
1593
1594	/* Next check for Fujitsu Swift. */
1595	if (psr_typ == 0 && psr_vers == 4) {
1596		phandle cpunode;
1597		char node_str[128];
1598
1599		/* Look if it is not a TurboSparc emulating Swift... */
1600		cpunode = prom_getchild(prom_root_node);
1601		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1602			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1603			if (!strcmp(node_str, "cpu")) {
1604				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1605				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1606					init_turbosparc();
1607					return;
1608				}
1609				break;
1610			}
1611		}
1612
1613		init_swift();
1614		return;
1615	}
1616
1617	/* Now the Viking family of srmmu. */
1618	if (psr_typ == 4 &&
1619	   ((psr_vers == 0) ||
1620	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1621		init_viking();
1622		return;
1623	}
1624
1625	/* Finally the Tsunami. */
1626	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1627		init_tsunami();
1628		return;
1629	}
1630
1631	/* Oh well */
1632	srmmu_is_bad();
1633}
1634
1635#ifdef CONFIG_SMP
1636/* Local cross-calls. */
1637static void smp_flush_page_for_dma(unsigned long page)
1638{
1639	xc1(local_ops->page_for_dma, page);
1640	local_ops->page_for_dma(page);
1641}
1642
1643static void smp_flush_cache_all(void)
1644{
1645	xc0(local_ops->cache_all);
1646	local_ops->cache_all();
1647}
1648
1649static void smp_flush_tlb_all(void)
1650{
1651	xc0(local_ops->tlb_all);
1652	local_ops->tlb_all();
1653}
1654
1655static void smp_flush_cache_mm(struct mm_struct *mm)
1656{
1657	if (mm->context != NO_CONTEXT) {
1658		cpumask_t cpu_mask;
1659		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1660		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1661		if (!cpumask_empty(&cpu_mask))
1662			xc1(local_ops->cache_mm, (unsigned long)mm);
1663		local_ops->cache_mm(mm);
1664	}
1665}
1666
1667static void smp_flush_tlb_mm(struct mm_struct *mm)
1668{
1669	if (mm->context != NO_CONTEXT) {
1670		cpumask_t cpu_mask;
1671		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673		if (!cpumask_empty(&cpu_mask)) {
1674			xc1(local_ops->tlb_mm, (unsigned long)mm);
1675			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1676				cpumask_copy(mm_cpumask(mm),
1677					     cpumask_of(smp_processor_id()));
1678		}
1679		local_ops->tlb_mm(mm);
1680	}
1681}
1682
1683static void smp_flush_cache_range(struct vm_area_struct *vma,
1684				  unsigned long start,
1685				  unsigned long end)
1686{
1687	struct mm_struct *mm = vma->vm_mm;
1688
1689	if (mm->context != NO_CONTEXT) {
1690		cpumask_t cpu_mask;
1691		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1692		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1693		if (!cpumask_empty(&cpu_mask))
1694			xc3(local_ops->cache_range, (unsigned long)vma, start,
1695			    end);
1696		local_ops->cache_range(vma, start, end);
1697	}
1698}
1699
1700static void smp_flush_tlb_range(struct vm_area_struct *vma,
1701				unsigned long start,
1702				unsigned long end)
1703{
1704	struct mm_struct *mm = vma->vm_mm;
1705
1706	if (mm->context != NO_CONTEXT) {
1707		cpumask_t cpu_mask;
1708		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710		if (!cpumask_empty(&cpu_mask))
1711			xc3(local_ops->tlb_range, (unsigned long)vma, start,
1712			    end);
1713		local_ops->tlb_range(vma, start, end);
1714	}
1715}
1716
1717static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1718{
1719	struct mm_struct *mm = vma->vm_mm;
1720
1721	if (mm->context != NO_CONTEXT) {
1722		cpumask_t cpu_mask;
1723		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725		if (!cpumask_empty(&cpu_mask))
1726			xc2(local_ops->cache_page, (unsigned long)vma, page);
 
1727		local_ops->cache_page(vma, page);
1728	}
1729}
1730
1731static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1732{
1733	struct mm_struct *mm = vma->vm_mm;
1734
1735	if (mm->context != NO_CONTEXT) {
1736		cpumask_t cpu_mask;
1737		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1738		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1739		if (!cpumask_empty(&cpu_mask))
1740			xc2(local_ops->tlb_page, (unsigned long)vma, page);
 
1741		local_ops->tlb_page(vma, page);
1742	}
1743}
1744
1745static void smp_flush_page_to_ram(unsigned long page)
1746{
1747	/* Current theory is that those who call this are the one's
1748	 * who have just dirtied their cache with the pages contents
1749	 * in kernel space, therefore we only run this on local cpu.
1750	 *
1751	 * XXX This experiment failed, research further... -DaveM
1752	 */
1753#if 1
1754	xc1(local_ops->page_to_ram, page);
1755#endif
1756	local_ops->page_to_ram(page);
1757}
1758
1759static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1760{
1761	cpumask_t cpu_mask;
1762	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1763	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1764	if (!cpumask_empty(&cpu_mask))
1765		xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
 
1766	local_ops->sig_insns(mm, insn_addr);
1767}
1768
1769static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1770	.cache_all	= smp_flush_cache_all,
1771	.cache_mm	= smp_flush_cache_mm,
1772	.cache_page	= smp_flush_cache_page,
1773	.cache_range	= smp_flush_cache_range,
1774	.tlb_all	= smp_flush_tlb_all,
1775	.tlb_mm		= smp_flush_tlb_mm,
1776	.tlb_page	= smp_flush_tlb_page,
1777	.tlb_range	= smp_flush_tlb_range,
1778	.page_to_ram	= smp_flush_page_to_ram,
1779	.sig_insns	= smp_flush_sig_insns,
1780	.page_for_dma	= smp_flush_page_for_dma,
1781};
1782#endif
1783
1784/* Load up routines and constants for sun4m and sun4d mmu */
1785void __init load_mmu(void)
1786{
1787	/* Functions */
1788	get_srmmu_type();
1789
1790#ifdef CONFIG_SMP
1791	/* El switcheroo... */
1792	local_ops = sparc32_cachetlb_ops;
1793
1794	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1795		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1796		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1797		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1798		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1799	}
1800
1801	if (poke_srmmu == poke_viking) {
1802		/* Avoid unnecessary cross calls. */
1803		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1804		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1805		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1806		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1807
1808		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1809		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1810		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1811	}
1812
1813	/* It really is const after this point. */
1814	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1815		&smp_cachetlb_ops;
1816#endif
1817
1818	if (sparc_cpu_model != sun4d)
1819		ld_mmu_iommu();
1820#ifdef CONFIG_SMP
1821	if (sparc_cpu_model == sun4d)
1822		sun4d_init_smp();
1823	else if (sparc_cpu_model == sparc_leon)
1824		leon_init_smp();
1825	else
1826		sun4m_init_smp();
1827#endif
1828}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/memblock.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END	}
  77#endif
  78
  79int flush_page_for_dma_global = 1;
  80
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 104static struct bit_map srmmu_nocache_map;
 105
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111{
 112	pte_t pte;
 113
 114	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115	set_pte((pte_t *)ctxp, pte);
 116}
 117
 118/*
 119 * Locations of MSI Registers.
 120 */
 121#define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
 122
 123/*
 124 * Useful bits in the MSI Registers.
 125 */
 126#define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
 127
 128static void msi_set_sync(void)
 129{
 130	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131			      "andn %%g3, %2, %%g3\n\t"
 132			      "sta %%g3, [%0] %1\n\t" : :
 133			      "r" (MSI_MBUS_ARBEN),
 134			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 135}
 136
 137void pmd_set(pmd_t *pmdp, pte_t *ptep)
 138{
 139	unsigned long ptp = __nocache_pa(ptep) >> 4;
 140	set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
 141}
 142
 143/*
 144 * size: bytes to allocate in the nocache area.
 145 * align: bytes, number to align at.
 146 * Returns the virtual address of the allocated area.
 147 */
 148static void *__srmmu_get_nocache(int size, int align)
 149{
 150	int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
 151	unsigned long addr;
 152
 153	if (size < minsz) {
 154		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 155		       size);
 156		size = minsz;
 157	}
 158	if (size & (minsz - 1)) {
 159		printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
 160		       size);
 161		size += minsz - 1;
 162	}
 163	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 164
 165	offset = bit_map_string_get(&srmmu_nocache_map,
 166				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 167				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 168	if (offset == -1) {
 169		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 170		       size, (int) srmmu_nocache_size,
 171		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 172		return NULL;
 173	}
 174
 175	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 176	return (void *)addr;
 177}
 178
 179void *srmmu_get_nocache(int size, int align)
 180{
 181	void *tmp;
 182
 183	tmp = __srmmu_get_nocache(size, align);
 184
 185	if (tmp)
 186		memset(tmp, 0, size);
 187
 188	return tmp;
 189}
 190
 191void srmmu_free_nocache(void *addr, int size)
 192{
 193	unsigned long vaddr;
 194	int offset;
 195
 196	vaddr = (unsigned long)addr;
 197	if (vaddr < SRMMU_NOCACHE_VADDR) {
 198		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 199		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 200		BUG();
 201	}
 202	if (vaddr + size > srmmu_nocache_end) {
 203		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 204		    vaddr, srmmu_nocache_end);
 205		BUG();
 206	}
 207	if (!is_power_of_2(size)) {
 208		printk("Size 0x%x is not a power of 2\n", size);
 209		BUG();
 210	}
 211	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 212		printk("Size 0x%x is too small\n", size);
 213		BUG();
 214	}
 215	if (vaddr & (size - 1)) {
 216		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 217		BUG();
 218	}
 219
 220	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 221	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 222
 223	bit_map_clear(&srmmu_nocache_map, offset, size);
 224}
 225
 226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 227						 unsigned long end);
 228
 229/* Return how much physical memory we have.  */
 230static unsigned long __init probe_memory(void)
 231{
 232	unsigned long total = 0;
 233	int i;
 234
 235	for (i = 0; sp_banks[i].num_bytes; i++)
 236		total += sp_banks[i].num_bytes;
 237
 238	return total;
 239}
 240
 241/*
 242 * Reserve nocache dynamically proportionally to the amount of
 243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 244 */
 245static void __init srmmu_nocache_calcsize(void)
 246{
 247	unsigned long sysmemavail = probe_memory() / 1024;
 248	int srmmu_nocache_npages;
 249
 250	srmmu_nocache_npages =
 251		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 252
 253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 254	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 255	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 256		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 257
 258	/* anything above 1280 blows up */
 259	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 260		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 261
 262	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 263	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 264}
 265
 266static void __init srmmu_nocache_init(void)
 267{
 268	void *srmmu_nocache_bitmap;
 269	unsigned int bitmap_bits;
 270	pgd_t *pgd;
 271	p4d_t *p4d;
 272	pud_t *pud;
 273	pmd_t *pmd;
 274	pte_t *pte;
 275	unsigned long paddr, vaddr;
 276	unsigned long pteval;
 277
 278	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 279
 280	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 281					    SRMMU_NOCACHE_ALIGN_MAX);
 282	if (!srmmu_nocache_pool)
 283		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 284		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 285	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 286
 287	srmmu_nocache_bitmap =
 288		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 289			       SMP_CACHE_BYTES);
 290	if (!srmmu_nocache_bitmap)
 291		panic("%s: Failed to allocate %zu bytes\n", __func__,
 292		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 293	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 294
 295	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 296	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 297	init_mm.pgd = srmmu_swapper_pg_dir;
 298
 299	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 300
 301	paddr = __pa((unsigned long)srmmu_nocache_pool);
 302	vaddr = SRMMU_NOCACHE_VADDR;
 303
 304	while (vaddr < srmmu_nocache_end) {
 305		pgd = pgd_offset_k(vaddr);
 306		p4d = p4d_offset(pgd, vaddr);
 307		pud = pud_offset(p4d, vaddr);
 308		pmd = pmd_offset(__nocache_fix(pud), vaddr);
 309		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 310
 311		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 312
 313		if (srmmu_cache_pagetables)
 314			pteval |= SRMMU_CACHE;
 315
 316		set_pte(__nocache_fix(pte), __pte(pteval));
 317
 318		vaddr += PAGE_SIZE;
 319		paddr += PAGE_SIZE;
 320	}
 321
 322	flush_cache_all();
 323	flush_tlb_all();
 324}
 325
 326pgd_t *get_pgd_fast(void)
 327{
 328	pgd_t *pgd = NULL;
 329
 330	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 331	if (pgd) {
 332		pgd_t *init = pgd_offset_k(0);
 333		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 334		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 335						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 336	}
 337
 338	return pgd;
 339}
 340
 341/*
 342 * Hardware needs alignment to 256 only, but we align to whole page size
 343 * to reduce fragmentation problems due to the buddy principle.
 344 * XXX Provide actual fragmentation statistics in /proc.
 345 *
 346 * Alignments up to the page size are the same for physical and virtual
 347 * addresses of the nocache area.
 348 */
 349pgtable_t pte_alloc_one(struct mm_struct *mm)
 350{
 351	pte_t *ptep;
 352	struct page *page;
 353
 354	if ((ptep = pte_alloc_one_kernel(mm)) == 0)
 355		return NULL;
 356	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 357	spin_lock(&mm->page_table_lock);
 358	if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
 359		page_ref_dec(page);
 360		ptep = NULL;
 361	}
 362	spin_unlock(&mm->page_table_lock);
 363
 364	return ptep;
 365}
 366
 367void pte_free(struct mm_struct *mm, pgtable_t ptep)
 368{
 369	struct page *page;
 370
 371	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 372	spin_lock(&mm->page_table_lock);
 373	if (page_ref_dec_return(page) == 1)
 374		pgtable_pte_page_dtor(page);
 375	spin_unlock(&mm->page_table_lock);
 376
 377	srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
 378}
 379
 380/* context handling - a dynamically sized pool is used */
 381#define NO_CONTEXT	-1
 382
 383struct ctx_list {
 384	struct ctx_list *next;
 385	struct ctx_list *prev;
 386	unsigned int ctx_number;
 387	struct mm_struct *ctx_mm;
 388};
 389
 390static struct ctx_list *ctx_list_pool;
 391static struct ctx_list ctx_free;
 392static struct ctx_list ctx_used;
 393
 394/* At boot time we determine the number of contexts */
 395static int num_contexts;
 396
 397static inline void remove_from_ctx_list(struct ctx_list *entry)
 398{
 399	entry->next->prev = entry->prev;
 400	entry->prev->next = entry->next;
 401}
 402
 403static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 404{
 405	entry->next = head;
 406	(entry->prev = head->prev)->next = entry;
 407	head->prev = entry;
 408}
 409#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 410#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 411
 412
 413static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 414{
 415	struct ctx_list *ctxp;
 416
 417	ctxp = ctx_free.next;
 418	if (ctxp != &ctx_free) {
 419		remove_from_ctx_list(ctxp);
 420		add_to_used_ctxlist(ctxp);
 421		mm->context = ctxp->ctx_number;
 422		ctxp->ctx_mm = mm;
 423		return;
 424	}
 425	ctxp = ctx_used.next;
 426	if (ctxp->ctx_mm == old_mm)
 427		ctxp = ctxp->next;
 428	if (ctxp == &ctx_used)
 429		panic("out of mmu contexts");
 430	flush_cache_mm(ctxp->ctx_mm);
 431	flush_tlb_mm(ctxp->ctx_mm);
 432	remove_from_ctx_list(ctxp);
 433	add_to_used_ctxlist(ctxp);
 434	ctxp->ctx_mm->context = NO_CONTEXT;
 435	ctxp->ctx_mm = mm;
 436	mm->context = ctxp->ctx_number;
 437}
 438
 439static inline void free_context(int context)
 440{
 441	struct ctx_list *ctx_old;
 442
 443	ctx_old = ctx_list_pool + context;
 444	remove_from_ctx_list(ctx_old);
 445	add_to_free_ctxlist(ctx_old);
 446}
 447
 448static void __init sparc_context_init(int numctx)
 449{
 450	int ctx;
 451	unsigned long size;
 452
 453	size = numctx * sizeof(struct ctx_list);
 454	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 455	if (!ctx_list_pool)
 456		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 457
 458	for (ctx = 0; ctx < numctx; ctx++) {
 459		struct ctx_list *clist;
 460
 461		clist = (ctx_list_pool + ctx);
 462		clist->ctx_number = ctx;
 463		clist->ctx_mm = NULL;
 464	}
 465	ctx_free.next = ctx_free.prev = &ctx_free;
 466	ctx_used.next = ctx_used.prev = &ctx_used;
 467	for (ctx = 0; ctx < numctx; ctx++)
 468		add_to_free_ctxlist(ctx_list_pool + ctx);
 469}
 470
 471void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 472	       struct task_struct *tsk)
 473{
 474	unsigned long flags;
 475
 476	if (mm->context == NO_CONTEXT) {
 477		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 478		alloc_context(old_mm, mm);
 479		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 480		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 481	}
 482
 483	if (sparc_cpu_model == sparc_leon)
 484		leon_switch_mm();
 485
 486	if (is_hypersparc)
 487		hyper_flush_whole_icache();
 488
 489	srmmu_set_context(mm->context);
 490}
 491
 492/* Low level IO area allocation on the SRMMU. */
 493static inline void srmmu_mapioaddr(unsigned long physaddr,
 494				   unsigned long virt_addr, int bus_type)
 495{
 496	pgd_t *pgdp;
 497	p4d_t *p4dp;
 498	pud_t *pudp;
 499	pmd_t *pmdp;
 500	pte_t *ptep;
 501	unsigned long tmp;
 502
 503	physaddr &= PAGE_MASK;
 504	pgdp = pgd_offset_k(virt_addr);
 505	p4dp = p4d_offset(pgdp, virt_addr);
 506	pudp = pud_offset(p4dp, virt_addr);
 507	pmdp = pmd_offset(pudp, virt_addr);
 508	ptep = pte_offset_kernel(pmdp, virt_addr);
 509	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 510
 511	/* I need to test whether this is consistent over all
 512	 * sun4m's.  The bus_type represents the upper 4 bits of
 513	 * 36-bit physical address on the I/O space lines...
 514	 */
 515	tmp |= (bus_type << 28);
 516	tmp |= SRMMU_PRIV;
 517	__flush_page_to_ram(virt_addr);
 518	set_pte(ptep, __pte(tmp));
 519}
 520
 521void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 522		      unsigned long xva, unsigned int len)
 523{
 524	while (len != 0) {
 525		len -= PAGE_SIZE;
 526		srmmu_mapioaddr(xpa, xva, bus);
 527		xva += PAGE_SIZE;
 528		xpa += PAGE_SIZE;
 529	}
 530	flush_tlb_all();
 531}
 532
 533static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 534{
 535	pgd_t *pgdp;
 536	p4d_t *p4dp;
 537	pud_t *pudp;
 538	pmd_t *pmdp;
 539	pte_t *ptep;
 540
 541
 542	pgdp = pgd_offset_k(virt_addr);
 543	p4dp = p4d_offset(pgdp, virt_addr);
 544	pudp = pud_offset(p4dp, virt_addr);
 545	pmdp = pmd_offset(pudp, virt_addr);
 546	ptep = pte_offset_kernel(pmdp, virt_addr);
 547
 548	/* No need to flush uncacheable page. */
 549	__pte_clear(ptep);
 550}
 551
 552void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 553{
 554	while (len != 0) {
 555		len -= PAGE_SIZE;
 556		srmmu_unmapioaddr(virt_addr);
 557		virt_addr += PAGE_SIZE;
 558	}
 559	flush_tlb_all();
 560}
 561
 562/* tsunami.S */
 563extern void tsunami_flush_cache_all(void);
 564extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 565extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 566extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 567extern void tsunami_flush_page_to_ram(unsigned long page);
 568extern void tsunami_flush_page_for_dma(unsigned long page);
 569extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 570extern void tsunami_flush_tlb_all(void);
 571extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 572extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 573extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 574extern void tsunami_setup_blockops(void);
 575
 576/* swift.S */
 577extern void swift_flush_cache_all(void);
 578extern void swift_flush_cache_mm(struct mm_struct *mm);
 579extern void swift_flush_cache_range(struct vm_area_struct *vma,
 580				    unsigned long start, unsigned long end);
 581extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 582extern void swift_flush_page_to_ram(unsigned long page);
 583extern void swift_flush_page_for_dma(unsigned long page);
 584extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 585extern void swift_flush_tlb_all(void);
 586extern void swift_flush_tlb_mm(struct mm_struct *mm);
 587extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 588				  unsigned long start, unsigned long end);
 589extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 590
 591#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 592void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 593{
 594	int cctx, ctx1;
 595
 596	page &= PAGE_MASK;
 597	if ((ctx1 = vma->vm_mm->context) != -1) {
 598		cctx = srmmu_get_context();
 599/* Is context # ever different from current context? P3 */
 600		if (cctx != ctx1) {
 601			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 602			srmmu_set_context(ctx1);
 603			swift_flush_page(page);
 604			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 605					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 606			srmmu_set_context(cctx);
 607		} else {
 608			 /* Rm. prot. bits from virt. c. */
 609			/* swift_flush_cache_all(); */
 610			/* swift_flush_cache_page(vma, page); */
 611			swift_flush_page(page);
 612
 613			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 614				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 615			/* same as above: srmmu_flush_tlb_page() */
 616		}
 617	}
 618}
 619#endif
 620
 621/*
 622 * The following are all MBUS based SRMMU modules, and therefore could
 623 * be found in a multiprocessor configuration.  On the whole, these
 624 * chips seems to be much more touchy about DVMA and page tables
 625 * with respect to cache coherency.
 626 */
 627
 628/* viking.S */
 629extern void viking_flush_cache_all(void);
 630extern void viking_flush_cache_mm(struct mm_struct *mm);
 631extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 632				     unsigned long end);
 633extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 634extern void viking_flush_page_to_ram(unsigned long page);
 635extern void viking_flush_page_for_dma(unsigned long page);
 636extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 637extern void viking_flush_page(unsigned long page);
 638extern void viking_mxcc_flush_page(unsigned long page);
 639extern void viking_flush_tlb_all(void);
 640extern void viking_flush_tlb_mm(struct mm_struct *mm);
 641extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 642				   unsigned long end);
 643extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 644				  unsigned long page);
 645extern void sun4dsmp_flush_tlb_all(void);
 646extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 647extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 648				   unsigned long end);
 649extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 650				  unsigned long page);
 651
 652/* hypersparc.S */
 653extern void hypersparc_flush_cache_all(void);
 654extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 655extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 656extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 657extern void hypersparc_flush_page_to_ram(unsigned long page);
 658extern void hypersparc_flush_page_for_dma(unsigned long page);
 659extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 660extern void hypersparc_flush_tlb_all(void);
 661extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 662extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 663extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 664extern void hypersparc_setup_blockops(void);
 665
 666/*
 667 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 668 *       kernel mappings are done with one single contiguous chunk of
 669 *       ram.  On small ram machines (classics mainly) we only get
 670 *       around 8mb mapped for us.
 671 */
 672
 673static void __init early_pgtable_allocfail(char *type)
 674{
 675	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 676	prom_halt();
 677}
 678
 679static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 680							unsigned long end)
 681{
 682	pgd_t *pgdp;
 683	p4d_t *p4dp;
 684	pud_t *pudp;
 685	pmd_t *pmdp;
 686	pte_t *ptep;
 687
 688	while (start < end) {
 689		pgdp = pgd_offset_k(start);
 690		p4dp = p4d_offset(pgdp, start);
 691		pudp = pud_offset(p4dp, start);
 692		if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
 693			pmdp = __srmmu_get_nocache(
 694			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 695			if (pmdp == NULL)
 696				early_pgtable_allocfail("pmd");
 697			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 698			pud_set(__nocache_fix(pudp), pmdp);
 699		}
 700		pmdp = pmd_offset(__nocache_fix(pudp), start);
 701		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 702			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 703			if (ptep == NULL)
 704				early_pgtable_allocfail("pte");
 705			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 706			pmd_set(__nocache_fix(pmdp), ptep);
 707		}
 708		if (start > (0xffffffffUL - PMD_SIZE))
 709			break;
 710		start = (start + PMD_SIZE) & PMD_MASK;
 711	}
 712}
 713
 714static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 715						  unsigned long end)
 716{
 717	pgd_t *pgdp;
 718	p4d_t *p4dp;
 719	pud_t *pudp;
 720	pmd_t *pmdp;
 721	pte_t *ptep;
 722
 723	while (start < end) {
 724		pgdp = pgd_offset_k(start);
 725		p4dp = p4d_offset(pgdp, start);
 726		pudp = pud_offset(p4dp, start);
 727		if (pud_none(*pudp)) {
 728			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 729			if (pmdp == NULL)
 730				early_pgtable_allocfail("pmd");
 731			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 732			pud_set((pud_t *)pgdp, pmdp);
 733		}
 734		pmdp = pmd_offset(pudp, start);
 735		if (srmmu_pmd_none(*pmdp)) {
 736			ptep = __srmmu_get_nocache(PTE_SIZE,
 737							     PTE_SIZE);
 738			if (ptep == NULL)
 739				early_pgtable_allocfail("pte");
 740			memset(ptep, 0, PTE_SIZE);
 741			pmd_set(pmdp, ptep);
 742		}
 743		if (start > (0xffffffffUL - PMD_SIZE))
 744			break;
 745		start = (start + PMD_SIZE) & PMD_MASK;
 746	}
 747}
 748
 749/* These flush types are not available on all chips... */
 750static inline unsigned long srmmu_probe(unsigned long vaddr)
 751{
 752	unsigned long retval;
 753
 754	if (sparc_cpu_model != sparc_leon) {
 755
 756		vaddr &= PAGE_MASK;
 757		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 758				     "=r" (retval) :
 759				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 760	} else {
 761		retval = leon_swprobe(vaddr, NULL);
 762	}
 763	return retval;
 764}
 765
 766/*
 767 * This is much cleaner than poking around physical address space
 768 * looking at the prom's page table directly which is what most
 769 * other OS's do.  Yuck... this is much better.
 770 */
 771static void __init srmmu_inherit_prom_mappings(unsigned long start,
 772					       unsigned long end)
 773{
 774	unsigned long probed;
 775	unsigned long addr;
 776	pgd_t *pgdp;
 777	p4d_t *p4dp;
 778	pud_t *pudp;
 779	pmd_t *pmdp;
 780	pte_t *ptep;
 781	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 782
 783	while (start <= end) {
 784		if (start == 0)
 785			break; /* probably wrap around */
 786		if (start == 0xfef00000)
 787			start = KADB_DEBUGGER_BEGVM;
 788		probed = srmmu_probe(start);
 789		if (!probed) {
 790			/* continue probing until we find an entry */
 791			start += PAGE_SIZE;
 792			continue;
 793		}
 794
 795		/* A red snapper, see what it really is. */
 796		what = 0;
 797		addr = start - PAGE_SIZE;
 798
 799		if (!(start & ~(PMD_MASK))) {
 800			if (srmmu_probe(addr + PMD_SIZE) == probed)
 801				what = 1;
 802		}
 803
 804		if (!(start & ~(PGDIR_MASK))) {
 805			if (srmmu_probe(addr + PGDIR_SIZE) == probed)
 806				what = 2;
 807		}
 808
 809		pgdp = pgd_offset_k(start);
 810		p4dp = p4d_offset(pgdp, start);
 811		pudp = pud_offset(p4dp, start);
 812		if (what == 2) {
 813			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 814			start += PGDIR_SIZE;
 815			continue;
 816		}
 817		if (pud_none(*(pud_t *)__nocache_fix(pudp))) {
 818			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 819						   SRMMU_PMD_TABLE_SIZE);
 820			if (pmdp == NULL)
 821				early_pgtable_allocfail("pmd");
 822			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 823			pud_set(__nocache_fix(pudp), pmdp);
 824		}
 825		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 826		if (what == 1) {
 827			*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
 828			start += PMD_SIZE;
 829			continue;
 830		}
 831		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 832			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 833			if (ptep == NULL)
 834				early_pgtable_allocfail("pte");
 835			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 836			pmd_set(__nocache_fix(pmdp), ptep);
 837		}
 838		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 839		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
 840		start += PAGE_SIZE;
 841	}
 842}
 843
 844#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 845
 846/* Create a third-level SRMMU 16MB page mapping. */
 847static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 848{
 849	pgd_t *pgdp = pgd_offset_k(vaddr);
 850	unsigned long big_pte;
 851
 852	big_pte = KERNEL_PTE(phys_base >> 4);
 853	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 854}
 855
 856/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 857static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 858{
 859	unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
 860	unsigned long vstart = (vbase & PGDIR_MASK);
 861	unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 862	/* Map "low" memory only */
 863	const unsigned long min_vaddr = PAGE_OFFSET;
 864	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 865
 866	if (vstart < min_vaddr || vstart >= max_vaddr)
 867		return vstart;
 868
 869	if (vend > max_vaddr || vend < min_vaddr)
 870		vend = max_vaddr;
 871
 872	while (vstart < vend) {
 873		do_large_mapping(vstart, pstart);
 874		vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
 875	}
 876	return vstart;
 877}
 878
 879static void __init map_kernel(void)
 880{
 881	int i;
 882
 883	if (phys_base > 0) {
 884		do_large_mapping(PAGE_OFFSET, phys_base);
 885	}
 886
 887	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 888		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 889	}
 890}
 891
 892void (*poke_srmmu)(void) = NULL;
 893
 894void __init srmmu_paging_init(void)
 895{
 896	int i;
 897	phandle cpunode;
 898	char node_str[128];
 899	pgd_t *pgd;
 900	p4d_t *p4d;
 901	pud_t *pud;
 902	pmd_t *pmd;
 903	pte_t *pte;
 904	unsigned long pages_avail;
 905
 906	init_mm.context = (unsigned long) NO_CONTEXT;
 907	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 908
 909	if (sparc_cpu_model == sun4d)
 910		num_contexts = 65536; /* We know it is Viking */
 911	else {
 912		/* Find the number of contexts on the srmmu. */
 913		cpunode = prom_getchild(prom_root_node);
 914		num_contexts = 0;
 915		while (cpunode != 0) {
 916			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 917			if (!strcmp(node_str, "cpu")) {
 918				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 919				break;
 920			}
 921			cpunode = prom_getsibling(cpunode);
 922		}
 923	}
 924
 925	if (!num_contexts) {
 926		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 927		prom_halt();
 928	}
 929
 930	pages_avail = 0;
 931	last_valid_pfn = bootmem_init(&pages_avail);
 932
 933	srmmu_nocache_calcsize();
 934	srmmu_nocache_init();
 935	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 936	map_kernel();
 937
 938	/* ctx table has to be physically aligned to its size */
 939	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 940	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 941
 942	for (i = 0; i < num_contexts; i++)
 943		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 944
 945	flush_cache_all();
 946	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 947#ifdef CONFIG_SMP
 948	/* Stop from hanging here... */
 949	local_ops->tlb_all();
 950#else
 951	flush_tlb_all();
 952#endif
 953	poke_srmmu();
 954
 955	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 956	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 957
 958	srmmu_allocate_ptable_skeleton(
 959		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 960	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 961
 962	pgd = pgd_offset_k(PKMAP_BASE);
 963	p4d = p4d_offset(pgd, PKMAP_BASE);
 964	pud = pud_offset(p4d, PKMAP_BASE);
 965	pmd = pmd_offset(pud, PKMAP_BASE);
 966	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 967	pkmap_page_table = pte;
 968
 969	flush_cache_all();
 970	flush_tlb_all();
 971
 972	sparc_context_init(num_contexts);
 973
 974	kmap_init();
 975
 976	{
 977		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
 978
 979		max_zone_pfn[ZONE_DMA] = max_low_pfn;
 980		max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
 981		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
 982
 983		free_area_init(max_zone_pfn);
 984	}
 985}
 986
 987void mmu_info(struct seq_file *m)
 988{
 989	seq_printf(m,
 990		   "MMU type\t: %s\n"
 991		   "contexts\t: %d\n"
 992		   "nocache total\t: %ld\n"
 993		   "nocache used\t: %d\n",
 994		   srmmu_name,
 995		   num_contexts,
 996		   srmmu_nocache_size,
 997		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 998}
 999
1000int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1001{
1002	mm->context = NO_CONTEXT;
1003	return 0;
1004}
1005
1006void destroy_context(struct mm_struct *mm)
1007{
1008	unsigned long flags;
1009
1010	if (mm->context != NO_CONTEXT) {
1011		flush_cache_mm(mm);
1012		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1013		flush_tlb_mm(mm);
1014		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1015		free_context(mm->context);
1016		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1017		mm->context = NO_CONTEXT;
1018	}
1019}
1020
1021/* Init various srmmu chip types. */
1022static void __init srmmu_is_bad(void)
1023{
1024	prom_printf("Could not determine SRMMU chip type.\n");
1025	prom_halt();
1026}
1027
1028static void __init init_vac_layout(void)
1029{
1030	phandle nd;
1031	int cache_lines;
1032	char node_str[128];
1033#ifdef CONFIG_SMP
1034	int cpu = 0;
1035	unsigned long max_size = 0;
1036	unsigned long min_line_size = 0x10000000;
1037#endif
1038
1039	nd = prom_getchild(prom_root_node);
1040	while ((nd = prom_getsibling(nd)) != 0) {
1041		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1042		if (!strcmp(node_str, "cpu")) {
1043			vac_line_size = prom_getint(nd, "cache-line-size");
1044			if (vac_line_size == -1) {
1045				prom_printf("can't determine cache-line-size, halting.\n");
1046				prom_halt();
1047			}
1048			cache_lines = prom_getint(nd, "cache-nlines");
1049			if (cache_lines == -1) {
1050				prom_printf("can't determine cache-nlines, halting.\n");
1051				prom_halt();
1052			}
1053
1054			vac_cache_size = cache_lines * vac_line_size;
1055#ifdef CONFIG_SMP
1056			if (vac_cache_size > max_size)
1057				max_size = vac_cache_size;
1058			if (vac_line_size < min_line_size)
1059				min_line_size = vac_line_size;
1060			//FIXME: cpus not contiguous!!
1061			cpu++;
1062			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1063				break;
1064#else
1065			break;
1066#endif
1067		}
1068	}
1069	if (nd == 0) {
1070		prom_printf("No CPU nodes found, halting.\n");
1071		prom_halt();
1072	}
1073#ifdef CONFIG_SMP
1074	vac_cache_size = max_size;
1075	vac_line_size = min_line_size;
1076#endif
1077	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1078	       (int)vac_cache_size, (int)vac_line_size);
1079}
1080
1081static void poke_hypersparc(void)
1082{
1083	volatile unsigned long clear;
1084	unsigned long mreg = srmmu_get_mmureg();
1085
1086	hyper_flush_unconditional_combined();
1087
1088	mreg &= ~(HYPERSPARC_CWENABLE);
1089	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1090	mreg |= (HYPERSPARC_CMODE);
1091
1092	srmmu_set_mmureg(mreg);
1093
1094#if 0 /* XXX I think this is bad news... -DaveM */
1095	hyper_clear_all_tags();
1096#endif
1097
1098	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1099	hyper_flush_whole_icache();
1100	clear = srmmu_get_faddr();
1101	clear = srmmu_get_fstatus();
1102}
1103
1104static const struct sparc32_cachetlb_ops hypersparc_ops = {
1105	.cache_all	= hypersparc_flush_cache_all,
1106	.cache_mm	= hypersparc_flush_cache_mm,
1107	.cache_page	= hypersparc_flush_cache_page,
1108	.cache_range	= hypersparc_flush_cache_range,
1109	.tlb_all	= hypersparc_flush_tlb_all,
1110	.tlb_mm		= hypersparc_flush_tlb_mm,
1111	.tlb_page	= hypersparc_flush_tlb_page,
1112	.tlb_range	= hypersparc_flush_tlb_range,
1113	.page_to_ram	= hypersparc_flush_page_to_ram,
1114	.sig_insns	= hypersparc_flush_sig_insns,
1115	.page_for_dma	= hypersparc_flush_page_for_dma,
1116};
1117
1118static void __init init_hypersparc(void)
1119{
1120	srmmu_name = "ROSS HyperSparc";
1121	srmmu_modtype = HyperSparc;
1122
1123	init_vac_layout();
1124
1125	is_hypersparc = 1;
1126	sparc32_cachetlb_ops = &hypersparc_ops;
1127
1128	poke_srmmu = poke_hypersparc;
1129
1130	hypersparc_setup_blockops();
1131}
1132
1133static void poke_swift(void)
1134{
1135	unsigned long mreg;
1136
1137	/* Clear any crap from the cache or else... */
1138	swift_flush_cache_all();
1139
1140	/* Enable I & D caches */
1141	mreg = srmmu_get_mmureg();
1142	mreg |= (SWIFT_IE | SWIFT_DE);
1143	/*
1144	 * The Swift branch folding logic is completely broken.  At
1145	 * trap time, if things are just right, if can mistakenly
1146	 * think that a trap is coming from kernel mode when in fact
1147	 * it is coming from user mode (it mis-executes the branch in
1148	 * the trap code).  So you see things like crashme completely
1149	 * hosing your machine which is completely unacceptable.  Turn
1150	 * this shit off... nice job Fujitsu.
1151	 */
1152	mreg &= ~(SWIFT_BF);
1153	srmmu_set_mmureg(mreg);
1154}
1155
1156static const struct sparc32_cachetlb_ops swift_ops = {
1157	.cache_all	= swift_flush_cache_all,
1158	.cache_mm	= swift_flush_cache_mm,
1159	.cache_page	= swift_flush_cache_page,
1160	.cache_range	= swift_flush_cache_range,
1161	.tlb_all	= swift_flush_tlb_all,
1162	.tlb_mm		= swift_flush_tlb_mm,
1163	.tlb_page	= swift_flush_tlb_page,
1164	.tlb_range	= swift_flush_tlb_range,
1165	.page_to_ram	= swift_flush_page_to_ram,
1166	.sig_insns	= swift_flush_sig_insns,
1167	.page_for_dma	= swift_flush_page_for_dma,
1168};
1169
1170#define SWIFT_MASKID_ADDR  0x10003018
1171static void __init init_swift(void)
1172{
1173	unsigned long swift_rev;
1174
1175	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1176			     "srl %0, 0x18, %0\n\t" :
1177			     "=r" (swift_rev) :
1178			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1179	srmmu_name = "Fujitsu Swift";
1180	switch (swift_rev) {
1181	case 0x11:
1182	case 0x20:
1183	case 0x23:
1184	case 0x30:
1185		srmmu_modtype = Swift_lots_o_bugs;
1186		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1187		/*
1188		 * Gee george, I wonder why Sun is so hush hush about
1189		 * this hardware bug... really braindamage stuff going
1190		 * on here.  However I think we can find a way to avoid
1191		 * all of the workaround overhead under Linux.  Basically,
1192		 * any page fault can cause kernel pages to become user
1193		 * accessible (the mmu gets confused and clears some of
1194		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1195		 * horrible eh?  But wait, after extensive testing it appears
1196		 * that if you use pgd_t level large kernel pte's (like the
1197		 * 4MB pages on the Pentium) the bug does not get tripped
1198		 * at all.  This avoids almost all of the major overhead.
1199		 * Welcome to a world where your vendor tells you to,
1200		 * "apply this kernel patch" instead of "sorry for the
1201		 * broken hardware, send it back and we'll give you
1202		 * properly functioning parts"
1203		 */
1204		break;
1205	case 0x25:
1206	case 0x31:
1207		srmmu_modtype = Swift_bad_c;
1208		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1209		/*
1210		 * You see Sun allude to this hardware bug but never
1211		 * admit things directly, they'll say things like,
1212		 * "the Swift chip cache problems" or similar.
1213		 */
1214		break;
1215	default:
1216		srmmu_modtype = Swift_ok;
1217		break;
1218	}
1219
1220	sparc32_cachetlb_ops = &swift_ops;
1221	flush_page_for_dma_global = 0;
1222
1223	/*
1224	 * Are you now convinced that the Swift is one of the
1225	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1226	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1227	 * you examined the microcode of the Swift you'd find
1228	 * XXX's all over the place.
1229	 */
1230	poke_srmmu = poke_swift;
1231}
1232
1233static void turbosparc_flush_cache_all(void)
1234{
1235	flush_user_windows();
1236	turbosparc_idflash_clear();
1237}
1238
1239static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1240{
1241	FLUSH_BEGIN(mm)
1242	flush_user_windows();
1243	turbosparc_idflash_clear();
1244	FLUSH_END
1245}
1246
1247static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1248{
1249	FLUSH_BEGIN(vma->vm_mm)
1250	flush_user_windows();
1251	turbosparc_idflash_clear();
1252	FLUSH_END
1253}
1254
1255static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1256{
1257	FLUSH_BEGIN(vma->vm_mm)
1258	flush_user_windows();
1259	if (vma->vm_flags & VM_EXEC)
1260		turbosparc_flush_icache();
1261	turbosparc_flush_dcache();
1262	FLUSH_END
1263}
1264
1265/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1266static void turbosparc_flush_page_to_ram(unsigned long page)
1267{
1268#ifdef TURBOSPARC_WRITEBACK
1269	volatile unsigned long clear;
1270
1271	if (srmmu_probe(page))
1272		turbosparc_flush_page_cache(page);
1273	clear = srmmu_get_fstatus();
1274#endif
1275}
1276
1277static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1278{
1279}
1280
1281static void turbosparc_flush_page_for_dma(unsigned long page)
1282{
1283	turbosparc_flush_dcache();
1284}
1285
1286static void turbosparc_flush_tlb_all(void)
1287{
1288	srmmu_flush_whole_tlb();
1289}
1290
1291static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1292{
1293	FLUSH_BEGIN(mm)
1294	srmmu_flush_whole_tlb();
1295	FLUSH_END
1296}
1297
1298static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1299{
1300	FLUSH_BEGIN(vma->vm_mm)
1301	srmmu_flush_whole_tlb();
1302	FLUSH_END
1303}
1304
1305static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1306{
1307	FLUSH_BEGIN(vma->vm_mm)
1308	srmmu_flush_whole_tlb();
1309	FLUSH_END
1310}
1311
1312
1313static void poke_turbosparc(void)
1314{
1315	unsigned long mreg = srmmu_get_mmureg();
1316	unsigned long ccreg;
1317
1318	/* Clear any crap from the cache or else... */
1319	turbosparc_flush_cache_all();
1320	/* Temporarily disable I & D caches */
1321	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1322	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1323	srmmu_set_mmureg(mreg);
1324
1325	ccreg = turbosparc_get_ccreg();
1326
1327#ifdef TURBOSPARC_WRITEBACK
1328	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1329	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1330			/* Write-back D-cache, emulate VLSI
1331			 * abortion number three, not number one */
1332#else
1333	/* For now let's play safe, optimize later */
1334	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1335			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1336	ccreg &= ~(TURBOSPARC_uS2);
1337			/* Emulate VLSI abortion number three, not number one */
1338#endif
1339
1340	switch (ccreg & 7) {
1341	case 0: /* No SE cache */
1342	case 7: /* Test mode */
1343		break;
1344	default:
1345		ccreg |= (TURBOSPARC_SCENABLE);
1346	}
1347	turbosparc_set_ccreg(ccreg);
1348
1349	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1350	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1351	srmmu_set_mmureg(mreg);
1352}
1353
1354static const struct sparc32_cachetlb_ops turbosparc_ops = {
1355	.cache_all	= turbosparc_flush_cache_all,
1356	.cache_mm	= turbosparc_flush_cache_mm,
1357	.cache_page	= turbosparc_flush_cache_page,
1358	.cache_range	= turbosparc_flush_cache_range,
1359	.tlb_all	= turbosparc_flush_tlb_all,
1360	.tlb_mm		= turbosparc_flush_tlb_mm,
1361	.tlb_page	= turbosparc_flush_tlb_page,
1362	.tlb_range	= turbosparc_flush_tlb_range,
1363	.page_to_ram	= turbosparc_flush_page_to_ram,
1364	.sig_insns	= turbosparc_flush_sig_insns,
1365	.page_for_dma	= turbosparc_flush_page_for_dma,
1366};
1367
1368static void __init init_turbosparc(void)
1369{
1370	srmmu_name = "Fujitsu TurboSparc";
1371	srmmu_modtype = TurboSparc;
1372	sparc32_cachetlb_ops = &turbosparc_ops;
1373	poke_srmmu = poke_turbosparc;
1374}
1375
1376static void poke_tsunami(void)
1377{
1378	unsigned long mreg = srmmu_get_mmureg();
1379
1380	tsunami_flush_icache();
1381	tsunami_flush_dcache();
1382	mreg &= ~TSUNAMI_ITD;
1383	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1384	srmmu_set_mmureg(mreg);
1385}
1386
1387static const struct sparc32_cachetlb_ops tsunami_ops = {
1388	.cache_all	= tsunami_flush_cache_all,
1389	.cache_mm	= tsunami_flush_cache_mm,
1390	.cache_page	= tsunami_flush_cache_page,
1391	.cache_range	= tsunami_flush_cache_range,
1392	.tlb_all	= tsunami_flush_tlb_all,
1393	.tlb_mm		= tsunami_flush_tlb_mm,
1394	.tlb_page	= tsunami_flush_tlb_page,
1395	.tlb_range	= tsunami_flush_tlb_range,
1396	.page_to_ram	= tsunami_flush_page_to_ram,
1397	.sig_insns	= tsunami_flush_sig_insns,
1398	.page_for_dma	= tsunami_flush_page_for_dma,
1399};
1400
1401static void __init init_tsunami(void)
1402{
1403	/*
1404	 * Tsunami's pretty sane, Sun and TI actually got it
1405	 * somewhat right this time.  Fujitsu should have
1406	 * taken some lessons from them.
1407	 */
1408
1409	srmmu_name = "TI Tsunami";
1410	srmmu_modtype = Tsunami;
1411	sparc32_cachetlb_ops = &tsunami_ops;
1412	poke_srmmu = poke_tsunami;
1413
1414	tsunami_setup_blockops();
1415}
1416
1417static void poke_viking(void)
1418{
1419	unsigned long mreg = srmmu_get_mmureg();
1420	static int smp_catch;
1421
1422	if (viking_mxcc_present) {
1423		unsigned long mxcc_control = mxcc_get_creg();
1424
1425		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1426		mxcc_control &= ~(MXCC_CTL_RRC);
1427		mxcc_set_creg(mxcc_control);
1428
1429		/*
1430		 * We don't need memory parity checks.
1431		 * XXX This is a mess, have to dig out later. ecd.
1432		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1433		 */
1434
1435		/* We do cache ptables on MXCC. */
1436		mreg |= VIKING_TCENABLE;
1437	} else {
1438		unsigned long bpreg;
1439
1440		mreg &= ~(VIKING_TCENABLE);
1441		if (smp_catch++) {
1442			/* Must disable mixed-cmd mode here for other cpu's. */
1443			bpreg = viking_get_bpreg();
1444			bpreg &= ~(VIKING_ACTION_MIX);
1445			viking_set_bpreg(bpreg);
1446
1447			/* Just in case PROM does something funny. */
1448			msi_set_sync();
1449		}
1450	}
1451
1452	mreg |= VIKING_SPENABLE;
1453	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1454	mreg |= VIKING_SBENABLE;
1455	mreg &= ~(VIKING_ACENABLE);
1456	srmmu_set_mmureg(mreg);
1457}
1458
1459static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1460	.cache_all	= viking_flush_cache_all,
1461	.cache_mm	= viking_flush_cache_mm,
1462	.cache_page	= viking_flush_cache_page,
1463	.cache_range	= viking_flush_cache_range,
1464	.tlb_all	= viking_flush_tlb_all,
1465	.tlb_mm		= viking_flush_tlb_mm,
1466	.tlb_page	= viking_flush_tlb_page,
1467	.tlb_range	= viking_flush_tlb_range,
1468	.page_to_ram	= viking_flush_page_to_ram,
1469	.sig_insns	= viking_flush_sig_insns,
1470	.page_for_dma	= viking_flush_page_for_dma,
1471};
1472
1473#ifdef CONFIG_SMP
1474/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1475 * perform the local TLB flush and all the other cpus will see it.
1476 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1477 * that requires that we add some synchronization to these flushes.
1478 *
1479 * The bug is that the fifo which keeps track of all the pending TLB
1480 * broadcasts in the system is an entry or two too small, so if we
1481 * have too many going at once we'll overflow that fifo and lose a TLB
1482 * flush resulting in corruption.
1483 *
1484 * Our workaround is to take a global spinlock around the TLB flushes,
1485 * which guarentees we won't ever have too many pending.  It's a big
1486 * hammer, but a semaphore like system to make sure we only have N TLB
1487 * flushes going at once will require SMP locking anyways so there's
1488 * no real value in trying any harder than this.
1489 */
1490static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1491	.cache_all	= viking_flush_cache_all,
1492	.cache_mm	= viking_flush_cache_mm,
1493	.cache_page	= viking_flush_cache_page,
1494	.cache_range	= viking_flush_cache_range,
1495	.tlb_all	= sun4dsmp_flush_tlb_all,
1496	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1497	.tlb_page	= sun4dsmp_flush_tlb_page,
1498	.tlb_range	= sun4dsmp_flush_tlb_range,
1499	.page_to_ram	= viking_flush_page_to_ram,
1500	.sig_insns	= viking_flush_sig_insns,
1501	.page_for_dma	= viking_flush_page_for_dma,
1502};
1503#endif
1504
1505static void __init init_viking(void)
1506{
1507	unsigned long mreg = srmmu_get_mmureg();
1508
1509	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1510	if (mreg & VIKING_MMODE) {
1511		srmmu_name = "TI Viking";
1512		viking_mxcc_present = 0;
1513		msi_set_sync();
1514
1515		/*
1516		 * We need this to make sure old viking takes no hits
1517		 * on it's cache for dma snoops to workaround the
1518		 * "load from non-cacheable memory" interrupt bug.
1519		 * This is only necessary because of the new way in
1520		 * which we use the IOMMU.
1521		 */
1522		viking_ops.page_for_dma = viking_flush_page;
1523#ifdef CONFIG_SMP
1524		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1525#endif
1526		flush_page_for_dma_global = 0;
1527	} else {
1528		srmmu_name = "TI Viking/MXCC";
1529		viking_mxcc_present = 1;
1530		srmmu_cache_pagetables = 1;
1531	}
1532
1533	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1534		&viking_ops;
1535#ifdef CONFIG_SMP
1536	if (sparc_cpu_model == sun4d)
1537		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1538			&viking_sun4d_smp_ops;
1539#endif
1540
1541	poke_srmmu = poke_viking;
1542}
1543
1544/* Probe for the srmmu chip version. */
1545static void __init get_srmmu_type(void)
1546{
1547	unsigned long mreg, psr;
1548	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1549
1550	srmmu_modtype = SRMMU_INVAL_MOD;
1551	hwbug_bitmask = 0;
1552
1553	mreg = srmmu_get_mmureg(); psr = get_psr();
1554	mod_typ = (mreg & 0xf0000000) >> 28;
1555	mod_rev = (mreg & 0x0f000000) >> 24;
1556	psr_typ = (psr >> 28) & 0xf;
1557	psr_vers = (psr >> 24) & 0xf;
1558
1559	/* First, check for sparc-leon. */
1560	if (sparc_cpu_model == sparc_leon) {
1561		init_leon();
1562		return;
1563	}
1564
1565	/* Second, check for HyperSparc or Cypress. */
1566	if (mod_typ == 1) {
1567		switch (mod_rev) {
1568		case 7:
1569			/* UP or MP Hypersparc */
1570			init_hypersparc();
1571			break;
1572		case 0:
1573		case 2:
1574		case 10:
1575		case 11:
1576		case 12:
1577		case 13:
1578		case 14:
1579		case 15:
1580		default:
1581			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1582			prom_halt();
1583			break;
1584		}
1585		return;
1586	}
1587
1588	/* Now Fujitsu TurboSparc. It might happen that it is
1589	 * in Swift emulation mode, so we will check later...
1590	 */
1591	if (psr_typ == 0 && psr_vers == 5) {
1592		init_turbosparc();
1593		return;
1594	}
1595
1596	/* Next check for Fujitsu Swift. */
1597	if (psr_typ == 0 && psr_vers == 4) {
1598		phandle cpunode;
1599		char node_str[128];
1600
1601		/* Look if it is not a TurboSparc emulating Swift... */
1602		cpunode = prom_getchild(prom_root_node);
1603		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1604			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1605			if (!strcmp(node_str, "cpu")) {
1606				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1607				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1608					init_turbosparc();
1609					return;
1610				}
1611				break;
1612			}
1613		}
1614
1615		init_swift();
1616		return;
1617	}
1618
1619	/* Now the Viking family of srmmu. */
1620	if (psr_typ == 4 &&
1621	   ((psr_vers == 0) ||
1622	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1623		init_viking();
1624		return;
1625	}
1626
1627	/* Finally the Tsunami. */
1628	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1629		init_tsunami();
1630		return;
1631	}
1632
1633	/* Oh well */
1634	srmmu_is_bad();
1635}
1636
1637#ifdef CONFIG_SMP
1638/* Local cross-calls. */
1639static void smp_flush_page_for_dma(unsigned long page)
1640{
1641	xc1((smpfunc_t) local_ops->page_for_dma, page);
1642	local_ops->page_for_dma(page);
1643}
1644
1645static void smp_flush_cache_all(void)
1646{
1647	xc0((smpfunc_t) local_ops->cache_all);
1648	local_ops->cache_all();
1649}
1650
1651static void smp_flush_tlb_all(void)
1652{
1653	xc0((smpfunc_t) local_ops->tlb_all);
1654	local_ops->tlb_all();
1655}
1656
1657static void smp_flush_cache_mm(struct mm_struct *mm)
1658{
1659	if (mm->context != NO_CONTEXT) {
1660		cpumask_t cpu_mask;
1661		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1662		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1663		if (!cpumask_empty(&cpu_mask))
1664			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1665		local_ops->cache_mm(mm);
1666	}
1667}
1668
1669static void smp_flush_tlb_mm(struct mm_struct *mm)
1670{
1671	if (mm->context != NO_CONTEXT) {
1672		cpumask_t cpu_mask;
1673		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1674		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1675		if (!cpumask_empty(&cpu_mask)) {
1676			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1677			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1678				cpumask_copy(mm_cpumask(mm),
1679					     cpumask_of(smp_processor_id()));
1680		}
1681		local_ops->tlb_mm(mm);
1682	}
1683}
1684
1685static void smp_flush_cache_range(struct vm_area_struct *vma,
1686				  unsigned long start,
1687				  unsigned long end)
1688{
1689	struct mm_struct *mm = vma->vm_mm;
1690
1691	if (mm->context != NO_CONTEXT) {
1692		cpumask_t cpu_mask;
1693		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1694		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1695		if (!cpumask_empty(&cpu_mask))
1696			xc3((smpfunc_t) local_ops->cache_range,
1697			    (unsigned long) vma, start, end);
1698		local_ops->cache_range(vma, start, end);
1699	}
1700}
1701
1702static void smp_flush_tlb_range(struct vm_area_struct *vma,
1703				unsigned long start,
1704				unsigned long end)
1705{
1706	struct mm_struct *mm = vma->vm_mm;
1707
1708	if (mm->context != NO_CONTEXT) {
1709		cpumask_t cpu_mask;
1710		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1711		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1712		if (!cpumask_empty(&cpu_mask))
1713			xc3((smpfunc_t) local_ops->tlb_range,
1714			    (unsigned long) vma, start, end);
1715		local_ops->tlb_range(vma, start, end);
1716	}
1717}
1718
1719static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1720{
1721	struct mm_struct *mm = vma->vm_mm;
1722
1723	if (mm->context != NO_CONTEXT) {
1724		cpumask_t cpu_mask;
1725		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1726		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1727		if (!cpumask_empty(&cpu_mask))
1728			xc2((smpfunc_t) local_ops->cache_page,
1729			    (unsigned long) vma, page);
1730		local_ops->cache_page(vma, page);
1731	}
1732}
1733
1734static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1735{
1736	struct mm_struct *mm = vma->vm_mm;
1737
1738	if (mm->context != NO_CONTEXT) {
1739		cpumask_t cpu_mask;
1740		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1741		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1742		if (!cpumask_empty(&cpu_mask))
1743			xc2((smpfunc_t) local_ops->tlb_page,
1744			    (unsigned long) vma, page);
1745		local_ops->tlb_page(vma, page);
1746	}
1747}
1748
1749static void smp_flush_page_to_ram(unsigned long page)
1750{
1751	/* Current theory is that those who call this are the one's
1752	 * who have just dirtied their cache with the pages contents
1753	 * in kernel space, therefore we only run this on local cpu.
1754	 *
1755	 * XXX This experiment failed, research further... -DaveM
1756	 */
1757#if 1
1758	xc1((smpfunc_t) local_ops->page_to_ram, page);
1759#endif
1760	local_ops->page_to_ram(page);
1761}
1762
1763static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1764{
1765	cpumask_t cpu_mask;
1766	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1767	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1768	if (!cpumask_empty(&cpu_mask))
1769		xc2((smpfunc_t) local_ops->sig_insns,
1770		    (unsigned long) mm, insn_addr);
1771	local_ops->sig_insns(mm, insn_addr);
1772}
1773
1774static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1775	.cache_all	= smp_flush_cache_all,
1776	.cache_mm	= smp_flush_cache_mm,
1777	.cache_page	= smp_flush_cache_page,
1778	.cache_range	= smp_flush_cache_range,
1779	.tlb_all	= smp_flush_tlb_all,
1780	.tlb_mm		= smp_flush_tlb_mm,
1781	.tlb_page	= smp_flush_tlb_page,
1782	.tlb_range	= smp_flush_tlb_range,
1783	.page_to_ram	= smp_flush_page_to_ram,
1784	.sig_insns	= smp_flush_sig_insns,
1785	.page_for_dma	= smp_flush_page_for_dma,
1786};
1787#endif
1788
1789/* Load up routines and constants for sun4m and sun4d mmu */
1790void __init load_mmu(void)
1791{
1792	/* Functions */
1793	get_srmmu_type();
1794
1795#ifdef CONFIG_SMP
1796	/* El switcheroo... */
1797	local_ops = sparc32_cachetlb_ops;
1798
1799	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1800		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1801		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1802		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1803		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1804	}
1805
1806	if (poke_srmmu == poke_viking) {
1807		/* Avoid unnecessary cross calls. */
1808		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1809		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1810		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1811		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1812
1813		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1814		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1815		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1816	}
1817
1818	/* It really is const after this point. */
1819	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1820		&smp_cachetlb_ops;
1821#endif
1822
1823	if (sparc_cpu_model != sun4d)
1824		ld_mmu_iommu();
1825#ifdef CONFIG_SMP
1826	if (sparc_cpu_model == sun4d)
1827		sun4d_init_smp();
1828	else if (sparc_cpu_model == sparc_leon)
1829		leon_init_smp();
1830	else
1831		sun4m_init_smp();
1832#endif
1833}