Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/memblock.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
 
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END	}
  77#endif
  78
  79int flush_page_for_dma_global = 1;
  80
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 104static struct bit_map srmmu_nocache_map;
 105
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111{
 112	pte_t pte;
 113
 114	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115	set_pte((pte_t *)ctxp, pte);
 116}
 117
 118/*
 119 * Locations of MSI Registers.
 120 */
 121#define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
 122
 123/*
 124 * Useful bits in the MSI Registers.
 125 */
 126#define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
 
 
 127
 128static void msi_set_sync(void)
 129{
 130	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131			      "andn %%g3, %2, %%g3\n\t"
 132			      "sta %%g3, [%0] %1\n\t" : :
 133			      "r" (MSI_MBUS_ARBEN),
 134			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 
 
 
 135}
 136
 137void pmd_set(pmd_t *pmdp, pte_t *ptep)
 
 138{
 139	unsigned long ptp = __nocache_pa(ptep) >> 4;
 140	set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
 
 
 
 141}
 142
 143/*
 144 * size: bytes to allocate in the nocache area.
 145 * align: bytes, number to align at.
 146 * Returns the virtual address of the allocated area.
 147 */
 148static void *__srmmu_get_nocache(int size, int align)
 149{
 150	int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
 151	unsigned long addr;
 152
 153	if (size < minsz) {
 154		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 155		       size);
 156		size = minsz;
 157	}
 158	if (size & (minsz - 1)) {
 159		printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
 160		       size);
 161		size += minsz - 1;
 162	}
 163	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 164
 165	offset = bit_map_string_get(&srmmu_nocache_map,
 166				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 167				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 168	if (offset == -1) {
 169		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 170		       size, (int) srmmu_nocache_size,
 171		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 172		return NULL;
 173	}
 174
 175	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 176	return (void *)addr;
 177}
 178
 179void *srmmu_get_nocache(int size, int align)
 180{
 181	void *tmp;
 182
 183	tmp = __srmmu_get_nocache(size, align);
 184
 185	if (tmp)
 186		memset(tmp, 0, size);
 187
 188	return tmp;
 189}
 190
 191void srmmu_free_nocache(void *addr, int size)
 192{
 193	unsigned long vaddr;
 194	int offset;
 195
 196	vaddr = (unsigned long)addr;
 197	if (vaddr < SRMMU_NOCACHE_VADDR) {
 198		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 199		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 200		BUG();
 201	}
 202	if (vaddr + size > srmmu_nocache_end) {
 203		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 204		    vaddr, srmmu_nocache_end);
 205		BUG();
 206	}
 207	if (!is_power_of_2(size)) {
 208		printk("Size 0x%x is not a power of 2\n", size);
 209		BUG();
 210	}
 211	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 212		printk("Size 0x%x is too small\n", size);
 213		BUG();
 214	}
 215	if (vaddr & (size - 1)) {
 216		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 217		BUG();
 218	}
 219
 220	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 221	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 222
 223	bit_map_clear(&srmmu_nocache_map, offset, size);
 224}
 225
 226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 227						 unsigned long end);
 228
 229/* Return how much physical memory we have.  */
 230static unsigned long __init probe_memory(void)
 231{
 232	unsigned long total = 0;
 233	int i;
 234
 235	for (i = 0; sp_banks[i].num_bytes; i++)
 236		total += sp_banks[i].num_bytes;
 237
 238	return total;
 239}
 240
 241/*
 242 * Reserve nocache dynamically proportionally to the amount of
 243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 244 */
 245static void __init srmmu_nocache_calcsize(void)
 246{
 247	unsigned long sysmemavail = probe_memory() / 1024;
 248	int srmmu_nocache_npages;
 249
 250	srmmu_nocache_npages =
 251		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 252
 253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 254	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 255	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 256		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 257
 258	/* anything above 1280 blows up */
 259	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 260		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 261
 262	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 263	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 264}
 265
 266static void __init srmmu_nocache_init(void)
 267{
 268	void *srmmu_nocache_bitmap;
 269	unsigned int bitmap_bits;
 270	pgd_t *pgd;
 271	p4d_t *p4d;
 272	pud_t *pud;
 273	pmd_t *pmd;
 274	pte_t *pte;
 275	unsigned long paddr, vaddr;
 276	unsigned long pteval;
 277
 278	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 279
 280	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 281					    SRMMU_NOCACHE_ALIGN_MAX);
 282	if (!srmmu_nocache_pool)
 283		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 284		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 285	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 286
 287	srmmu_nocache_bitmap =
 288		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 289			       SMP_CACHE_BYTES);
 290	if (!srmmu_nocache_bitmap)
 291		panic("%s: Failed to allocate %zu bytes\n", __func__,
 292		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 293	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 294
 295	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 296	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 297	init_mm.pgd = srmmu_swapper_pg_dir;
 298
 299	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 300
 301	paddr = __pa((unsigned long)srmmu_nocache_pool);
 302	vaddr = SRMMU_NOCACHE_VADDR;
 303
 304	while (vaddr < srmmu_nocache_end) {
 305		pgd = pgd_offset_k(vaddr);
 306		p4d = p4d_offset(pgd, vaddr);
 307		pud = pud_offset(p4d, vaddr);
 308		pmd = pmd_offset(__nocache_fix(pud), vaddr);
 309		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 310
 311		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 312
 313		if (srmmu_cache_pagetables)
 314			pteval |= SRMMU_CACHE;
 315
 316		set_pte(__nocache_fix(pte), __pte(pteval));
 317
 318		vaddr += PAGE_SIZE;
 319		paddr += PAGE_SIZE;
 320	}
 321
 322	flush_cache_all();
 323	flush_tlb_all();
 324}
 325
 326pgd_t *get_pgd_fast(void)
 327{
 328	pgd_t *pgd = NULL;
 329
 330	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 331	if (pgd) {
 332		pgd_t *init = pgd_offset_k(0);
 333		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 334		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 335						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 336	}
 337
 338	return pgd;
 339}
 340
 341/*
 342 * Hardware needs alignment to 256 only, but we align to whole page size
 343 * to reduce fragmentation problems due to the buddy principle.
 344 * XXX Provide actual fragmentation statistics in /proc.
 345 *
 346 * Alignments up to the page size are the same for physical and virtual
 347 * addresses of the nocache area.
 348 */
 349pgtable_t pte_alloc_one(struct mm_struct *mm)
 350{
 351	pte_t *ptep;
 352	struct page *page;
 353
 354	if (!(ptep = pte_alloc_one_kernel(mm)))
 
 
 
 
 355		return NULL;
 356	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 357	spin_lock(&mm->page_table_lock);
 358	if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
 359		page_ref_dec(page);
 360		ptep = NULL;
 361	}
 362	spin_unlock(&mm->page_table_lock);
 363
 364	return ptep;
 365}
 366
 367void pte_free(struct mm_struct *mm, pgtable_t ptep)
 368{
 369	struct page *page;
 370
 371	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 372	spin_lock(&mm->page_table_lock);
 373	if (page_ref_dec_return(page) == 1)
 374		pgtable_pte_page_dtor(page);
 375	spin_unlock(&mm->page_table_lock);
 376
 377	srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
 
 378}
 379
 380/* context handling - a dynamically sized pool is used */
 381#define NO_CONTEXT	-1
 382
 383struct ctx_list {
 384	struct ctx_list *next;
 385	struct ctx_list *prev;
 386	unsigned int ctx_number;
 387	struct mm_struct *ctx_mm;
 388};
 389
 390static struct ctx_list *ctx_list_pool;
 391static struct ctx_list ctx_free;
 392static struct ctx_list ctx_used;
 393
 394/* At boot time we determine the number of contexts */
 395static int num_contexts;
 396
 397static inline void remove_from_ctx_list(struct ctx_list *entry)
 398{
 399	entry->next->prev = entry->prev;
 400	entry->prev->next = entry->next;
 401}
 402
 403static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 404{
 405	entry->next = head;
 406	(entry->prev = head->prev)->next = entry;
 407	head->prev = entry;
 408}
 409#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 410#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 411
 412
 413static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 414{
 415	struct ctx_list *ctxp;
 416
 417	ctxp = ctx_free.next;
 418	if (ctxp != &ctx_free) {
 419		remove_from_ctx_list(ctxp);
 420		add_to_used_ctxlist(ctxp);
 421		mm->context = ctxp->ctx_number;
 422		ctxp->ctx_mm = mm;
 423		return;
 424	}
 425	ctxp = ctx_used.next;
 426	if (ctxp->ctx_mm == old_mm)
 427		ctxp = ctxp->next;
 428	if (ctxp == &ctx_used)
 429		panic("out of mmu contexts");
 430	flush_cache_mm(ctxp->ctx_mm);
 431	flush_tlb_mm(ctxp->ctx_mm);
 432	remove_from_ctx_list(ctxp);
 433	add_to_used_ctxlist(ctxp);
 434	ctxp->ctx_mm->context = NO_CONTEXT;
 435	ctxp->ctx_mm = mm;
 436	mm->context = ctxp->ctx_number;
 437}
 438
 439static inline void free_context(int context)
 440{
 441	struct ctx_list *ctx_old;
 442
 443	ctx_old = ctx_list_pool + context;
 444	remove_from_ctx_list(ctx_old);
 445	add_to_free_ctxlist(ctx_old);
 446}
 447
 448static void __init sparc_context_init(int numctx)
 449{
 450	int ctx;
 451	unsigned long size;
 452
 453	size = numctx * sizeof(struct ctx_list);
 454	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 455	if (!ctx_list_pool)
 456		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 457
 458	for (ctx = 0; ctx < numctx; ctx++) {
 459		struct ctx_list *clist;
 460
 461		clist = (ctx_list_pool + ctx);
 462		clist->ctx_number = ctx;
 463		clist->ctx_mm = NULL;
 464	}
 465	ctx_free.next = ctx_free.prev = &ctx_free;
 466	ctx_used.next = ctx_used.prev = &ctx_used;
 467	for (ctx = 0; ctx < numctx; ctx++)
 468		add_to_free_ctxlist(ctx_list_pool + ctx);
 469}
 470
 471void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 472	       struct task_struct *tsk)
 473{
 474	unsigned long flags;
 475
 476	if (mm->context == NO_CONTEXT) {
 477		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 478		alloc_context(old_mm, mm);
 479		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 480		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 481	}
 482
 483	if (sparc_cpu_model == sparc_leon)
 484		leon_switch_mm();
 485
 486	if (is_hypersparc)
 487		hyper_flush_whole_icache();
 488
 489	srmmu_set_context(mm->context);
 490}
 491
 492/* Low level IO area allocation on the SRMMU. */
 493static inline void srmmu_mapioaddr(unsigned long physaddr,
 494				   unsigned long virt_addr, int bus_type)
 495{
 496	pgd_t *pgdp;
 497	p4d_t *p4dp;
 498	pud_t *pudp;
 499	pmd_t *pmdp;
 500	pte_t *ptep;
 501	unsigned long tmp;
 502
 503	physaddr &= PAGE_MASK;
 504	pgdp = pgd_offset_k(virt_addr);
 505	p4dp = p4d_offset(pgdp, virt_addr);
 506	pudp = pud_offset(p4dp, virt_addr);
 507	pmdp = pmd_offset(pudp, virt_addr);
 508	ptep = pte_offset_kernel(pmdp, virt_addr);
 509	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 510
 511	/* I need to test whether this is consistent over all
 512	 * sun4m's.  The bus_type represents the upper 4 bits of
 513	 * 36-bit physical address on the I/O space lines...
 514	 */
 515	tmp |= (bus_type << 28);
 516	tmp |= SRMMU_PRIV;
 517	__flush_page_to_ram(virt_addr);
 518	set_pte(ptep, __pte(tmp));
 519}
 520
 521void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 522		      unsigned long xva, unsigned int len)
 523{
 524	while (len != 0) {
 525		len -= PAGE_SIZE;
 526		srmmu_mapioaddr(xpa, xva, bus);
 527		xva += PAGE_SIZE;
 528		xpa += PAGE_SIZE;
 529	}
 530	flush_tlb_all();
 531}
 532
 533static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 534{
 535	pgd_t *pgdp;
 536	p4d_t *p4dp;
 537	pud_t *pudp;
 538	pmd_t *pmdp;
 539	pte_t *ptep;
 540
 541
 542	pgdp = pgd_offset_k(virt_addr);
 543	p4dp = p4d_offset(pgdp, virt_addr);
 544	pudp = pud_offset(p4dp, virt_addr);
 545	pmdp = pmd_offset(pudp, virt_addr);
 546	ptep = pte_offset_kernel(pmdp, virt_addr);
 547
 548	/* No need to flush uncacheable page. */
 549	__pte_clear(ptep);
 550}
 551
 552void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 553{
 554	while (len != 0) {
 555		len -= PAGE_SIZE;
 556		srmmu_unmapioaddr(virt_addr);
 557		virt_addr += PAGE_SIZE;
 558	}
 559	flush_tlb_all();
 560}
 561
 562/* tsunami.S */
 563extern void tsunami_flush_cache_all(void);
 564extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 565extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 566extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 567extern void tsunami_flush_page_to_ram(unsigned long page);
 568extern void tsunami_flush_page_for_dma(unsigned long page);
 569extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 570extern void tsunami_flush_tlb_all(void);
 571extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 572extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 573extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 574extern void tsunami_setup_blockops(void);
 575
 576/* swift.S */
 577extern void swift_flush_cache_all(void);
 578extern void swift_flush_cache_mm(struct mm_struct *mm);
 579extern void swift_flush_cache_range(struct vm_area_struct *vma,
 580				    unsigned long start, unsigned long end);
 581extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 582extern void swift_flush_page_to_ram(unsigned long page);
 583extern void swift_flush_page_for_dma(unsigned long page);
 584extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 585extern void swift_flush_tlb_all(void);
 586extern void swift_flush_tlb_mm(struct mm_struct *mm);
 587extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 588				  unsigned long start, unsigned long end);
 589extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 590
 591#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 592void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 593{
 594	int cctx, ctx1;
 595
 596	page &= PAGE_MASK;
 597	if ((ctx1 = vma->vm_mm->context) != -1) {
 598		cctx = srmmu_get_context();
 599/* Is context # ever different from current context? P3 */
 600		if (cctx != ctx1) {
 601			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 602			srmmu_set_context(ctx1);
 603			swift_flush_page(page);
 604			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 605					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 606			srmmu_set_context(cctx);
 607		} else {
 608			 /* Rm. prot. bits from virt. c. */
 609			/* swift_flush_cache_all(); */
 610			/* swift_flush_cache_page(vma, page); */
 611			swift_flush_page(page);
 612
 613			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 614				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 615			/* same as above: srmmu_flush_tlb_page() */
 616		}
 617	}
 618}
 619#endif
 620
 621/*
 622 * The following are all MBUS based SRMMU modules, and therefore could
 623 * be found in a multiprocessor configuration.  On the whole, these
 624 * chips seems to be much more touchy about DVMA and page tables
 625 * with respect to cache coherency.
 626 */
 627
 628/* viking.S */
 629extern void viking_flush_cache_all(void);
 630extern void viking_flush_cache_mm(struct mm_struct *mm);
 631extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 632				     unsigned long end);
 633extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 634extern void viking_flush_page_to_ram(unsigned long page);
 635extern void viking_flush_page_for_dma(unsigned long page);
 636extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 637extern void viking_flush_page(unsigned long page);
 638extern void viking_mxcc_flush_page(unsigned long page);
 639extern void viking_flush_tlb_all(void);
 640extern void viking_flush_tlb_mm(struct mm_struct *mm);
 641extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 642				   unsigned long end);
 643extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 644				  unsigned long page);
 645extern void sun4dsmp_flush_tlb_all(void);
 646extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 647extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 648				   unsigned long end);
 649extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 650				  unsigned long page);
 651
 652/* hypersparc.S */
 653extern void hypersparc_flush_cache_all(void);
 654extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 655extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 656extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 657extern void hypersparc_flush_page_to_ram(unsigned long page);
 658extern void hypersparc_flush_page_for_dma(unsigned long page);
 659extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 660extern void hypersparc_flush_tlb_all(void);
 661extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 662extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 663extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 664extern void hypersparc_setup_blockops(void);
 665
 666/*
 667 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 668 *       kernel mappings are done with one single contiguous chunk of
 669 *       ram.  On small ram machines (classics mainly) we only get
 670 *       around 8mb mapped for us.
 671 */
 672
 673static void __init early_pgtable_allocfail(char *type)
 674{
 675	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 676	prom_halt();
 677}
 678
 679static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 680							unsigned long end)
 681{
 682	pgd_t *pgdp;
 683	p4d_t *p4dp;
 684	pud_t *pudp;
 685	pmd_t *pmdp;
 686	pte_t *ptep;
 687
 688	while (start < end) {
 689		pgdp = pgd_offset_k(start);
 690		p4dp = p4d_offset(pgdp, start);
 691		pudp = pud_offset(p4dp, start);
 692		if (pud_none(*__nocache_fix(pudp))) {
 693			pmdp = __srmmu_get_nocache(
 694			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 695			if (pmdp == NULL)
 696				early_pgtable_allocfail("pmd");
 697			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 698			pud_set(__nocache_fix(pudp), pmdp);
 699		}
 700		pmdp = pmd_offset(__nocache_fix(pudp), start);
 701		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 702			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 703			if (ptep == NULL)
 704				early_pgtable_allocfail("pte");
 705			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 706			pmd_set(__nocache_fix(pmdp), ptep);
 707		}
 708		if (start > (0xffffffffUL - PMD_SIZE))
 709			break;
 710		start = (start + PMD_SIZE) & PMD_MASK;
 711	}
 712}
 713
 714static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 715						  unsigned long end)
 716{
 717	pgd_t *pgdp;
 718	p4d_t *p4dp;
 719	pud_t *pudp;
 720	pmd_t *pmdp;
 721	pte_t *ptep;
 722
 723	while (start < end) {
 724		pgdp = pgd_offset_k(start);
 725		p4dp = p4d_offset(pgdp, start);
 726		pudp = pud_offset(p4dp, start);
 727		if (pud_none(*pudp)) {
 728			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 729			if (pmdp == NULL)
 730				early_pgtable_allocfail("pmd");
 731			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 732			pud_set((pud_t *)pgdp, pmdp);
 733		}
 734		pmdp = pmd_offset(pudp, start);
 735		if (srmmu_pmd_none(*pmdp)) {
 736			ptep = __srmmu_get_nocache(PTE_SIZE,
 737							     PTE_SIZE);
 738			if (ptep == NULL)
 739				early_pgtable_allocfail("pte");
 740			memset(ptep, 0, PTE_SIZE);
 741			pmd_set(pmdp, ptep);
 742		}
 743		if (start > (0xffffffffUL - PMD_SIZE))
 744			break;
 745		start = (start + PMD_SIZE) & PMD_MASK;
 746	}
 747}
 748
 749/* These flush types are not available on all chips... */
 750static inline unsigned long srmmu_probe(unsigned long vaddr)
 751{
 752	unsigned long retval;
 753
 754	if (sparc_cpu_model != sparc_leon) {
 755
 756		vaddr &= PAGE_MASK;
 757		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 758				     "=r" (retval) :
 759				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 760	} else {
 761		retval = leon_swprobe(vaddr, NULL);
 762	}
 763	return retval;
 764}
 765
 766/*
 767 * This is much cleaner than poking around physical address space
 768 * looking at the prom's page table directly which is what most
 769 * other OS's do.  Yuck... this is much better.
 770 */
 771static void __init srmmu_inherit_prom_mappings(unsigned long start,
 772					       unsigned long end)
 773{
 774	unsigned long probed;
 775	unsigned long addr;
 776	pgd_t *pgdp;
 777	p4d_t *p4dp;
 778	pud_t *pudp;
 779	pmd_t *pmdp;
 780	pte_t *ptep;
 781	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 782
 783	while (start <= end) {
 784		if (start == 0)
 785			break; /* probably wrap around */
 786		if (start == 0xfef00000)
 787			start = KADB_DEBUGGER_BEGVM;
 788		probed = srmmu_probe(start);
 789		if (!probed) {
 790			/* continue probing until we find an entry */
 791			start += PAGE_SIZE;
 792			continue;
 793		}
 794
 795		/* A red snapper, see what it really is. */
 796		what = 0;
 797		addr = start - PAGE_SIZE;
 798
 799		if (!(start & ~(PMD_MASK))) {
 800			if (srmmu_probe(addr + PMD_SIZE) == probed)
 801				what = 1;
 802		}
 803
 804		if (!(start & ~(PGDIR_MASK))) {
 805			if (srmmu_probe(addr + PGDIR_SIZE) == probed)
 806				what = 2;
 807		}
 808
 809		pgdp = pgd_offset_k(start);
 810		p4dp = p4d_offset(pgdp, start);
 811		pudp = pud_offset(p4dp, start);
 812		if (what == 2) {
 813			*__nocache_fix(pgdp) = __pgd(probed);
 814			start += PGDIR_SIZE;
 815			continue;
 816		}
 817		if (pud_none(*__nocache_fix(pudp))) {
 818			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 819						   SRMMU_PMD_TABLE_SIZE);
 820			if (pmdp == NULL)
 821				early_pgtable_allocfail("pmd");
 822			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 823			pud_set(__nocache_fix(pudp), pmdp);
 824		}
 825		pmdp = pmd_offset(__nocache_fix(pudp), start);
 826		if (what == 1) {
 827			*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
 828			start += PMD_SIZE;
 829			continue;
 830		}
 831		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 
 832			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 833			if (ptep == NULL)
 834				early_pgtable_allocfail("pte");
 835			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 836			pmd_set(__nocache_fix(pmdp), ptep);
 837		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 838		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 839		*__nocache_fix(ptep) = __pte(probed);
 840		start += PAGE_SIZE;
 841	}
 842}
 843
 844#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 845
 846/* Create a third-level SRMMU 16MB page mapping. */
 847static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 848{
 849	pgd_t *pgdp = pgd_offset_k(vaddr);
 850	unsigned long big_pte;
 851
 852	big_pte = KERNEL_PTE(phys_base >> 4);
 853	*__nocache_fix(pgdp) = __pgd(big_pte);
 854}
 855
 856/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 857static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 858{
 859	unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
 860	unsigned long vstart = (vbase & PGDIR_MASK);
 861	unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 862	/* Map "low" memory only */
 863	const unsigned long min_vaddr = PAGE_OFFSET;
 864	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 865
 866	if (vstart < min_vaddr || vstart >= max_vaddr)
 867		return vstart;
 868
 869	if (vend > max_vaddr || vend < min_vaddr)
 870		vend = max_vaddr;
 871
 872	while (vstart < vend) {
 873		do_large_mapping(vstart, pstart);
 874		vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
 875	}
 876	return vstart;
 877}
 878
 879static void __init map_kernel(void)
 880{
 881	int i;
 882
 883	if (phys_base > 0) {
 884		do_large_mapping(PAGE_OFFSET, phys_base);
 885	}
 886
 887	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 888		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 889	}
 890}
 891
 892void (*poke_srmmu)(void) = NULL;
 893
 894void __init srmmu_paging_init(void)
 895{
 896	int i;
 897	phandle cpunode;
 898	char node_str[128];
 899	pgd_t *pgd;
 900	p4d_t *p4d;
 901	pud_t *pud;
 902	pmd_t *pmd;
 903	pte_t *pte;
 904	unsigned long pages_avail;
 905
 906	init_mm.context = (unsigned long) NO_CONTEXT;
 907	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 908
 909	if (sparc_cpu_model == sun4d)
 910		num_contexts = 65536; /* We know it is Viking */
 911	else {
 912		/* Find the number of contexts on the srmmu. */
 913		cpunode = prom_getchild(prom_root_node);
 914		num_contexts = 0;
 915		while (cpunode != 0) {
 916			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 917			if (!strcmp(node_str, "cpu")) {
 918				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 919				break;
 920			}
 921			cpunode = prom_getsibling(cpunode);
 922		}
 923	}
 924
 925	if (!num_contexts) {
 926		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 927		prom_halt();
 928	}
 929
 930	pages_avail = 0;
 931	last_valid_pfn = bootmem_init(&pages_avail);
 932
 933	srmmu_nocache_calcsize();
 934	srmmu_nocache_init();
 935	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 936	map_kernel();
 937
 938	/* ctx table has to be physically aligned to its size */
 939	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 940	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 941
 942	for (i = 0; i < num_contexts; i++)
 943		srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 944
 945	flush_cache_all();
 946	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 947#ifdef CONFIG_SMP
 948	/* Stop from hanging here... */
 949	local_ops->tlb_all();
 950#else
 951	flush_tlb_all();
 952#endif
 953	poke_srmmu();
 954
 955	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 956	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 957
 958	srmmu_allocate_ptable_skeleton(
 959		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 960	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 961
 962	pgd = pgd_offset_k(PKMAP_BASE);
 963	p4d = p4d_offset(pgd, PKMAP_BASE);
 964	pud = pud_offset(p4d, PKMAP_BASE);
 965	pmd = pmd_offset(pud, PKMAP_BASE);
 966	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 967	pkmap_page_table = pte;
 968
 969	flush_cache_all();
 970	flush_tlb_all();
 971
 972	sparc_context_init(num_contexts);
 973
 
 
 974	{
 975		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
 
 
 
 976
 977		max_zone_pfn[ZONE_DMA] = max_low_pfn;
 978		max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
 979		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
 980
 981		free_area_init(max_zone_pfn);
 
 
 
 
 
 
 
 
 
 982	}
 983}
 984
 985void mmu_info(struct seq_file *m)
 986{
 987	seq_printf(m,
 988		   "MMU type\t: %s\n"
 989		   "contexts\t: %d\n"
 990		   "nocache total\t: %ld\n"
 991		   "nocache used\t: %d\n",
 992		   srmmu_name,
 993		   num_contexts,
 994		   srmmu_nocache_size,
 995		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 996}
 997
 998int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 999{
1000	mm->context = NO_CONTEXT;
1001	return 0;
1002}
1003
1004void destroy_context(struct mm_struct *mm)
1005{
1006	unsigned long flags;
1007
1008	if (mm->context != NO_CONTEXT) {
1009		flush_cache_mm(mm);
1010		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1011		flush_tlb_mm(mm);
1012		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1013		free_context(mm->context);
1014		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1015		mm->context = NO_CONTEXT;
1016	}
1017}
1018
1019/* Init various srmmu chip types. */
1020static void __init srmmu_is_bad(void)
1021{
1022	prom_printf("Could not determine SRMMU chip type.\n");
1023	prom_halt();
1024}
1025
1026static void __init init_vac_layout(void)
1027{
1028	phandle nd;
1029	int cache_lines;
1030	char node_str[128];
1031#ifdef CONFIG_SMP
1032	int cpu = 0;
1033	unsigned long max_size = 0;
1034	unsigned long min_line_size = 0x10000000;
1035#endif
1036
1037	nd = prom_getchild(prom_root_node);
1038	while ((nd = prom_getsibling(nd)) != 0) {
1039		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1040		if (!strcmp(node_str, "cpu")) {
1041			vac_line_size = prom_getint(nd, "cache-line-size");
1042			if (vac_line_size == -1) {
1043				prom_printf("can't determine cache-line-size, halting.\n");
1044				prom_halt();
1045			}
1046			cache_lines = prom_getint(nd, "cache-nlines");
1047			if (cache_lines == -1) {
1048				prom_printf("can't determine cache-nlines, halting.\n");
1049				prom_halt();
1050			}
1051
1052			vac_cache_size = cache_lines * vac_line_size;
1053#ifdef CONFIG_SMP
1054			if (vac_cache_size > max_size)
1055				max_size = vac_cache_size;
1056			if (vac_line_size < min_line_size)
1057				min_line_size = vac_line_size;
1058			//FIXME: cpus not contiguous!!
1059			cpu++;
1060			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1061				break;
1062#else
1063			break;
1064#endif
1065		}
1066	}
1067	if (nd == 0) {
1068		prom_printf("No CPU nodes found, halting.\n");
1069		prom_halt();
1070	}
1071#ifdef CONFIG_SMP
1072	vac_cache_size = max_size;
1073	vac_line_size = min_line_size;
1074#endif
1075	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1076	       (int)vac_cache_size, (int)vac_line_size);
1077}
1078
1079static void poke_hypersparc(void)
1080{
1081	volatile unsigned long clear;
1082	unsigned long mreg = srmmu_get_mmureg();
1083
1084	hyper_flush_unconditional_combined();
1085
1086	mreg &= ~(HYPERSPARC_CWENABLE);
1087	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1088	mreg |= (HYPERSPARC_CMODE);
1089
1090	srmmu_set_mmureg(mreg);
1091
1092#if 0 /* XXX I think this is bad news... -DaveM */
1093	hyper_clear_all_tags();
1094#endif
1095
1096	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1097	hyper_flush_whole_icache();
1098	clear = srmmu_get_faddr();
1099	clear = srmmu_get_fstatus();
1100}
1101
1102static const struct sparc32_cachetlb_ops hypersparc_ops = {
1103	.cache_all	= hypersparc_flush_cache_all,
1104	.cache_mm	= hypersparc_flush_cache_mm,
1105	.cache_page	= hypersparc_flush_cache_page,
1106	.cache_range	= hypersparc_flush_cache_range,
1107	.tlb_all	= hypersparc_flush_tlb_all,
1108	.tlb_mm		= hypersparc_flush_tlb_mm,
1109	.tlb_page	= hypersparc_flush_tlb_page,
1110	.tlb_range	= hypersparc_flush_tlb_range,
1111	.page_to_ram	= hypersparc_flush_page_to_ram,
1112	.sig_insns	= hypersparc_flush_sig_insns,
1113	.page_for_dma	= hypersparc_flush_page_for_dma,
1114};
1115
1116static void __init init_hypersparc(void)
1117{
1118	srmmu_name = "ROSS HyperSparc";
1119	srmmu_modtype = HyperSparc;
1120
1121	init_vac_layout();
1122
1123	is_hypersparc = 1;
1124	sparc32_cachetlb_ops = &hypersparc_ops;
1125
1126	poke_srmmu = poke_hypersparc;
1127
1128	hypersparc_setup_blockops();
1129}
1130
1131static void poke_swift(void)
1132{
1133	unsigned long mreg;
1134
1135	/* Clear any crap from the cache or else... */
1136	swift_flush_cache_all();
1137
1138	/* Enable I & D caches */
1139	mreg = srmmu_get_mmureg();
1140	mreg |= (SWIFT_IE | SWIFT_DE);
1141	/*
1142	 * The Swift branch folding logic is completely broken.  At
1143	 * trap time, if things are just right, if can mistakenly
1144	 * think that a trap is coming from kernel mode when in fact
1145	 * it is coming from user mode (it mis-executes the branch in
1146	 * the trap code).  So you see things like crashme completely
1147	 * hosing your machine which is completely unacceptable.  Turn
1148	 * this shit off... nice job Fujitsu.
1149	 */
1150	mreg &= ~(SWIFT_BF);
1151	srmmu_set_mmureg(mreg);
1152}
1153
1154static const struct sparc32_cachetlb_ops swift_ops = {
1155	.cache_all	= swift_flush_cache_all,
1156	.cache_mm	= swift_flush_cache_mm,
1157	.cache_page	= swift_flush_cache_page,
1158	.cache_range	= swift_flush_cache_range,
1159	.tlb_all	= swift_flush_tlb_all,
1160	.tlb_mm		= swift_flush_tlb_mm,
1161	.tlb_page	= swift_flush_tlb_page,
1162	.tlb_range	= swift_flush_tlb_range,
1163	.page_to_ram	= swift_flush_page_to_ram,
1164	.sig_insns	= swift_flush_sig_insns,
1165	.page_for_dma	= swift_flush_page_for_dma,
1166};
1167
1168#define SWIFT_MASKID_ADDR  0x10003018
1169static void __init init_swift(void)
1170{
1171	unsigned long swift_rev;
1172
1173	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1174			     "srl %0, 0x18, %0\n\t" :
1175			     "=r" (swift_rev) :
1176			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1177	srmmu_name = "Fujitsu Swift";
1178	switch (swift_rev) {
1179	case 0x11:
1180	case 0x20:
1181	case 0x23:
1182	case 0x30:
1183		srmmu_modtype = Swift_lots_o_bugs;
1184		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1185		/*
1186		 * Gee george, I wonder why Sun is so hush hush about
1187		 * this hardware bug... really braindamage stuff going
1188		 * on here.  However I think we can find a way to avoid
1189		 * all of the workaround overhead under Linux.  Basically,
1190		 * any page fault can cause kernel pages to become user
1191		 * accessible (the mmu gets confused and clears some of
1192		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1193		 * horrible eh?  But wait, after extensive testing it appears
1194		 * that if you use pgd_t level large kernel pte's (like the
1195		 * 4MB pages on the Pentium) the bug does not get tripped
1196		 * at all.  This avoids almost all of the major overhead.
1197		 * Welcome to a world where your vendor tells you to,
1198		 * "apply this kernel patch" instead of "sorry for the
1199		 * broken hardware, send it back and we'll give you
1200		 * properly functioning parts"
1201		 */
1202		break;
1203	case 0x25:
1204	case 0x31:
1205		srmmu_modtype = Swift_bad_c;
1206		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1207		/*
1208		 * You see Sun allude to this hardware bug but never
1209		 * admit things directly, they'll say things like,
1210		 * "the Swift chip cache problems" or similar.
1211		 */
1212		break;
1213	default:
1214		srmmu_modtype = Swift_ok;
1215		break;
1216	}
1217
1218	sparc32_cachetlb_ops = &swift_ops;
1219	flush_page_for_dma_global = 0;
1220
1221	/*
1222	 * Are you now convinced that the Swift is one of the
1223	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1224	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1225	 * you examined the microcode of the Swift you'd find
1226	 * XXX's all over the place.
1227	 */
1228	poke_srmmu = poke_swift;
1229}
1230
1231static void turbosparc_flush_cache_all(void)
1232{
1233	flush_user_windows();
1234	turbosparc_idflash_clear();
1235}
1236
1237static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1238{
1239	FLUSH_BEGIN(mm)
1240	flush_user_windows();
1241	turbosparc_idflash_clear();
1242	FLUSH_END
1243}
1244
1245static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1246{
1247	FLUSH_BEGIN(vma->vm_mm)
1248	flush_user_windows();
1249	turbosparc_idflash_clear();
1250	FLUSH_END
1251}
1252
1253static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1254{
1255	FLUSH_BEGIN(vma->vm_mm)
1256	flush_user_windows();
1257	if (vma->vm_flags & VM_EXEC)
1258		turbosparc_flush_icache();
1259	turbosparc_flush_dcache();
1260	FLUSH_END
1261}
1262
1263/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1264static void turbosparc_flush_page_to_ram(unsigned long page)
1265{
1266#ifdef TURBOSPARC_WRITEBACK
1267	volatile unsigned long clear;
1268
1269	if (srmmu_probe(page))
1270		turbosparc_flush_page_cache(page);
1271	clear = srmmu_get_fstatus();
1272#endif
1273}
1274
1275static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1276{
1277}
1278
1279static void turbosparc_flush_page_for_dma(unsigned long page)
1280{
1281	turbosparc_flush_dcache();
1282}
1283
1284static void turbosparc_flush_tlb_all(void)
1285{
1286	srmmu_flush_whole_tlb();
1287}
1288
1289static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1290{
1291	FLUSH_BEGIN(mm)
1292	srmmu_flush_whole_tlb();
1293	FLUSH_END
1294}
1295
1296static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1297{
1298	FLUSH_BEGIN(vma->vm_mm)
1299	srmmu_flush_whole_tlb();
1300	FLUSH_END
1301}
1302
1303static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1304{
1305	FLUSH_BEGIN(vma->vm_mm)
1306	srmmu_flush_whole_tlb();
1307	FLUSH_END
1308}
1309
1310
1311static void poke_turbosparc(void)
1312{
1313	unsigned long mreg = srmmu_get_mmureg();
1314	unsigned long ccreg;
1315
1316	/* Clear any crap from the cache or else... */
1317	turbosparc_flush_cache_all();
1318	/* Temporarily disable I & D caches */
1319	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1320	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1321	srmmu_set_mmureg(mreg);
1322
1323	ccreg = turbosparc_get_ccreg();
1324
1325#ifdef TURBOSPARC_WRITEBACK
1326	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1327	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1328			/* Write-back D-cache, emulate VLSI
1329			 * abortion number three, not number one */
1330#else
1331	/* For now let's play safe, optimize later */
1332	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1333			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1334	ccreg &= ~(TURBOSPARC_uS2);
1335			/* Emulate VLSI abortion number three, not number one */
1336#endif
1337
1338	switch (ccreg & 7) {
1339	case 0: /* No SE cache */
1340	case 7: /* Test mode */
1341		break;
1342	default:
1343		ccreg |= (TURBOSPARC_SCENABLE);
1344	}
1345	turbosparc_set_ccreg(ccreg);
1346
1347	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1348	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1349	srmmu_set_mmureg(mreg);
1350}
1351
1352static const struct sparc32_cachetlb_ops turbosparc_ops = {
1353	.cache_all	= turbosparc_flush_cache_all,
1354	.cache_mm	= turbosparc_flush_cache_mm,
1355	.cache_page	= turbosparc_flush_cache_page,
1356	.cache_range	= turbosparc_flush_cache_range,
1357	.tlb_all	= turbosparc_flush_tlb_all,
1358	.tlb_mm		= turbosparc_flush_tlb_mm,
1359	.tlb_page	= turbosparc_flush_tlb_page,
1360	.tlb_range	= turbosparc_flush_tlb_range,
1361	.page_to_ram	= turbosparc_flush_page_to_ram,
1362	.sig_insns	= turbosparc_flush_sig_insns,
1363	.page_for_dma	= turbosparc_flush_page_for_dma,
1364};
1365
1366static void __init init_turbosparc(void)
1367{
1368	srmmu_name = "Fujitsu TurboSparc";
1369	srmmu_modtype = TurboSparc;
1370	sparc32_cachetlb_ops = &turbosparc_ops;
1371	poke_srmmu = poke_turbosparc;
1372}
1373
1374static void poke_tsunami(void)
1375{
1376	unsigned long mreg = srmmu_get_mmureg();
1377
1378	tsunami_flush_icache();
1379	tsunami_flush_dcache();
1380	mreg &= ~TSUNAMI_ITD;
1381	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1382	srmmu_set_mmureg(mreg);
1383}
1384
1385static const struct sparc32_cachetlb_ops tsunami_ops = {
1386	.cache_all	= tsunami_flush_cache_all,
1387	.cache_mm	= tsunami_flush_cache_mm,
1388	.cache_page	= tsunami_flush_cache_page,
1389	.cache_range	= tsunami_flush_cache_range,
1390	.tlb_all	= tsunami_flush_tlb_all,
1391	.tlb_mm		= tsunami_flush_tlb_mm,
1392	.tlb_page	= tsunami_flush_tlb_page,
1393	.tlb_range	= tsunami_flush_tlb_range,
1394	.page_to_ram	= tsunami_flush_page_to_ram,
1395	.sig_insns	= tsunami_flush_sig_insns,
1396	.page_for_dma	= tsunami_flush_page_for_dma,
1397};
1398
1399static void __init init_tsunami(void)
1400{
1401	/*
1402	 * Tsunami's pretty sane, Sun and TI actually got it
1403	 * somewhat right this time.  Fujitsu should have
1404	 * taken some lessons from them.
1405	 */
1406
1407	srmmu_name = "TI Tsunami";
1408	srmmu_modtype = Tsunami;
1409	sparc32_cachetlb_ops = &tsunami_ops;
1410	poke_srmmu = poke_tsunami;
1411
1412	tsunami_setup_blockops();
1413}
1414
1415static void poke_viking(void)
1416{
1417	unsigned long mreg = srmmu_get_mmureg();
1418	static int smp_catch;
1419
1420	if (viking_mxcc_present) {
1421		unsigned long mxcc_control = mxcc_get_creg();
1422
1423		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1424		mxcc_control &= ~(MXCC_CTL_RRC);
1425		mxcc_set_creg(mxcc_control);
1426
1427		/*
1428		 * We don't need memory parity checks.
1429		 * XXX This is a mess, have to dig out later. ecd.
1430		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1431		 */
1432
1433		/* We do cache ptables on MXCC. */
1434		mreg |= VIKING_TCENABLE;
1435	} else {
1436		unsigned long bpreg;
1437
1438		mreg &= ~(VIKING_TCENABLE);
1439		if (smp_catch++) {
1440			/* Must disable mixed-cmd mode here for other cpu's. */
1441			bpreg = viking_get_bpreg();
1442			bpreg &= ~(VIKING_ACTION_MIX);
1443			viking_set_bpreg(bpreg);
1444
1445			/* Just in case PROM does something funny. */
1446			msi_set_sync();
1447		}
1448	}
1449
1450	mreg |= VIKING_SPENABLE;
1451	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1452	mreg |= VIKING_SBENABLE;
1453	mreg &= ~(VIKING_ACENABLE);
1454	srmmu_set_mmureg(mreg);
1455}
1456
1457static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1458	.cache_all	= viking_flush_cache_all,
1459	.cache_mm	= viking_flush_cache_mm,
1460	.cache_page	= viking_flush_cache_page,
1461	.cache_range	= viking_flush_cache_range,
1462	.tlb_all	= viking_flush_tlb_all,
1463	.tlb_mm		= viking_flush_tlb_mm,
1464	.tlb_page	= viking_flush_tlb_page,
1465	.tlb_range	= viking_flush_tlb_range,
1466	.page_to_ram	= viking_flush_page_to_ram,
1467	.sig_insns	= viking_flush_sig_insns,
1468	.page_for_dma	= viking_flush_page_for_dma,
1469};
1470
1471#ifdef CONFIG_SMP
1472/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1473 * perform the local TLB flush and all the other cpus will see it.
1474 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1475 * that requires that we add some synchronization to these flushes.
1476 *
1477 * The bug is that the fifo which keeps track of all the pending TLB
1478 * broadcasts in the system is an entry or two too small, so if we
1479 * have too many going at once we'll overflow that fifo and lose a TLB
1480 * flush resulting in corruption.
1481 *
1482 * Our workaround is to take a global spinlock around the TLB flushes,
1483 * which guarentees we won't ever have too many pending.  It's a big
1484 * hammer, but a semaphore like system to make sure we only have N TLB
1485 * flushes going at once will require SMP locking anyways so there's
1486 * no real value in trying any harder than this.
1487 */
1488static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1489	.cache_all	= viking_flush_cache_all,
1490	.cache_mm	= viking_flush_cache_mm,
1491	.cache_page	= viking_flush_cache_page,
1492	.cache_range	= viking_flush_cache_range,
1493	.tlb_all	= sun4dsmp_flush_tlb_all,
1494	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1495	.tlb_page	= sun4dsmp_flush_tlb_page,
1496	.tlb_range	= sun4dsmp_flush_tlb_range,
1497	.page_to_ram	= viking_flush_page_to_ram,
1498	.sig_insns	= viking_flush_sig_insns,
1499	.page_for_dma	= viking_flush_page_for_dma,
1500};
1501#endif
1502
1503static void __init init_viking(void)
1504{
1505	unsigned long mreg = srmmu_get_mmureg();
1506
1507	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1508	if (mreg & VIKING_MMODE) {
1509		srmmu_name = "TI Viking";
1510		viking_mxcc_present = 0;
1511		msi_set_sync();
1512
1513		/*
1514		 * We need this to make sure old viking takes no hits
1515		 * on it's cache for dma snoops to workaround the
1516		 * "load from non-cacheable memory" interrupt bug.
1517		 * This is only necessary because of the new way in
1518		 * which we use the IOMMU.
1519		 */
1520		viking_ops.page_for_dma = viking_flush_page;
1521#ifdef CONFIG_SMP
1522		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1523#endif
1524		flush_page_for_dma_global = 0;
1525	} else {
1526		srmmu_name = "TI Viking/MXCC";
1527		viking_mxcc_present = 1;
1528		srmmu_cache_pagetables = 1;
1529	}
1530
1531	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1532		&viking_ops;
1533#ifdef CONFIG_SMP
1534	if (sparc_cpu_model == sun4d)
1535		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1536			&viking_sun4d_smp_ops;
1537#endif
1538
1539	poke_srmmu = poke_viking;
1540}
1541
1542/* Probe for the srmmu chip version. */
1543static void __init get_srmmu_type(void)
1544{
1545	unsigned long mreg, psr;
1546	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1547
1548	srmmu_modtype = SRMMU_INVAL_MOD;
1549	hwbug_bitmask = 0;
1550
1551	mreg = srmmu_get_mmureg(); psr = get_psr();
1552	mod_typ = (mreg & 0xf0000000) >> 28;
1553	mod_rev = (mreg & 0x0f000000) >> 24;
1554	psr_typ = (psr >> 28) & 0xf;
1555	psr_vers = (psr >> 24) & 0xf;
1556
1557	/* First, check for sparc-leon. */
1558	if (sparc_cpu_model == sparc_leon) {
1559		init_leon();
1560		return;
1561	}
1562
1563	/* Second, check for HyperSparc or Cypress. */
1564	if (mod_typ == 1) {
1565		switch (mod_rev) {
1566		case 7:
1567			/* UP or MP Hypersparc */
1568			init_hypersparc();
1569			break;
1570		case 0:
1571		case 2:
1572		case 10:
1573		case 11:
1574		case 12:
1575		case 13:
1576		case 14:
1577		case 15:
1578		default:
1579			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1580			prom_halt();
1581			break;
1582		}
1583		return;
1584	}
1585
1586	/* Now Fujitsu TurboSparc. It might happen that it is
1587	 * in Swift emulation mode, so we will check later...
1588	 */
1589	if (psr_typ == 0 && psr_vers == 5) {
1590		init_turbosparc();
1591		return;
1592	}
1593
1594	/* Next check for Fujitsu Swift. */
1595	if (psr_typ == 0 && psr_vers == 4) {
1596		phandle cpunode;
1597		char node_str[128];
1598
1599		/* Look if it is not a TurboSparc emulating Swift... */
1600		cpunode = prom_getchild(prom_root_node);
1601		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1602			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1603			if (!strcmp(node_str, "cpu")) {
1604				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1605				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1606					init_turbosparc();
1607					return;
1608				}
1609				break;
1610			}
1611		}
1612
1613		init_swift();
1614		return;
1615	}
1616
1617	/* Now the Viking family of srmmu. */
1618	if (psr_typ == 4 &&
1619	   ((psr_vers == 0) ||
1620	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1621		init_viking();
1622		return;
1623	}
1624
1625	/* Finally the Tsunami. */
1626	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1627		init_tsunami();
1628		return;
1629	}
1630
1631	/* Oh well */
1632	srmmu_is_bad();
1633}
1634
1635#ifdef CONFIG_SMP
1636/* Local cross-calls. */
1637static void smp_flush_page_for_dma(unsigned long page)
1638{
1639	xc1(local_ops->page_for_dma, page);
1640	local_ops->page_for_dma(page);
1641}
1642
1643static void smp_flush_cache_all(void)
1644{
1645	xc0(local_ops->cache_all);
1646	local_ops->cache_all();
1647}
1648
1649static void smp_flush_tlb_all(void)
1650{
1651	xc0(local_ops->tlb_all);
1652	local_ops->tlb_all();
1653}
1654
1655static void smp_flush_cache_mm(struct mm_struct *mm)
1656{
1657	if (mm->context != NO_CONTEXT) {
1658		cpumask_t cpu_mask;
1659		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1660		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1661		if (!cpumask_empty(&cpu_mask))
1662			xc1(local_ops->cache_mm, (unsigned long)mm);
1663		local_ops->cache_mm(mm);
1664	}
1665}
1666
1667static void smp_flush_tlb_mm(struct mm_struct *mm)
1668{
1669	if (mm->context != NO_CONTEXT) {
1670		cpumask_t cpu_mask;
1671		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673		if (!cpumask_empty(&cpu_mask)) {
1674			xc1(local_ops->tlb_mm, (unsigned long)mm);
1675			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1676				cpumask_copy(mm_cpumask(mm),
1677					     cpumask_of(smp_processor_id()));
1678		}
1679		local_ops->tlb_mm(mm);
1680	}
1681}
1682
1683static void smp_flush_cache_range(struct vm_area_struct *vma,
1684				  unsigned long start,
1685				  unsigned long end)
1686{
1687	struct mm_struct *mm = vma->vm_mm;
1688
1689	if (mm->context != NO_CONTEXT) {
1690		cpumask_t cpu_mask;
1691		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1692		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1693		if (!cpumask_empty(&cpu_mask))
1694			xc3(local_ops->cache_range, (unsigned long)vma, start,
1695			    end);
1696		local_ops->cache_range(vma, start, end);
1697	}
1698}
1699
1700static void smp_flush_tlb_range(struct vm_area_struct *vma,
1701				unsigned long start,
1702				unsigned long end)
1703{
1704	struct mm_struct *mm = vma->vm_mm;
1705
1706	if (mm->context != NO_CONTEXT) {
1707		cpumask_t cpu_mask;
1708		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710		if (!cpumask_empty(&cpu_mask))
1711			xc3(local_ops->tlb_range, (unsigned long)vma, start,
1712			    end);
1713		local_ops->tlb_range(vma, start, end);
1714	}
1715}
1716
1717static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1718{
1719	struct mm_struct *mm = vma->vm_mm;
1720
1721	if (mm->context != NO_CONTEXT) {
1722		cpumask_t cpu_mask;
1723		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725		if (!cpumask_empty(&cpu_mask))
1726			xc2(local_ops->cache_page, (unsigned long)vma, page);
 
1727		local_ops->cache_page(vma, page);
1728	}
1729}
1730
1731static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1732{
1733	struct mm_struct *mm = vma->vm_mm;
1734
1735	if (mm->context != NO_CONTEXT) {
1736		cpumask_t cpu_mask;
1737		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1738		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1739		if (!cpumask_empty(&cpu_mask))
1740			xc2(local_ops->tlb_page, (unsigned long)vma, page);
 
1741		local_ops->tlb_page(vma, page);
1742	}
1743}
1744
1745static void smp_flush_page_to_ram(unsigned long page)
1746{
1747	/* Current theory is that those who call this are the one's
1748	 * who have just dirtied their cache with the pages contents
1749	 * in kernel space, therefore we only run this on local cpu.
1750	 *
1751	 * XXX This experiment failed, research further... -DaveM
1752	 */
1753#if 1
1754	xc1(local_ops->page_to_ram, page);
1755#endif
1756	local_ops->page_to_ram(page);
1757}
1758
1759static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1760{
1761	cpumask_t cpu_mask;
1762	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1763	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1764	if (!cpumask_empty(&cpu_mask))
1765		xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
 
1766	local_ops->sig_insns(mm, insn_addr);
1767}
1768
1769static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1770	.cache_all	= smp_flush_cache_all,
1771	.cache_mm	= smp_flush_cache_mm,
1772	.cache_page	= smp_flush_cache_page,
1773	.cache_range	= smp_flush_cache_range,
1774	.tlb_all	= smp_flush_tlb_all,
1775	.tlb_mm		= smp_flush_tlb_mm,
1776	.tlb_page	= smp_flush_tlb_page,
1777	.tlb_range	= smp_flush_tlb_range,
1778	.page_to_ram	= smp_flush_page_to_ram,
1779	.sig_insns	= smp_flush_sig_insns,
1780	.page_for_dma	= smp_flush_page_for_dma,
1781};
1782#endif
1783
1784/* Load up routines and constants for sun4m and sun4d mmu */
1785void __init load_mmu(void)
1786{
1787	/* Functions */
1788	get_srmmu_type();
1789
1790#ifdef CONFIG_SMP
1791	/* El switcheroo... */
1792	local_ops = sparc32_cachetlb_ops;
1793
1794	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1795		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1796		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1797		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1798		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1799	}
1800
1801	if (poke_srmmu == poke_viking) {
1802		/* Avoid unnecessary cross calls. */
1803		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1804		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1805		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1806		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1807
1808		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1809		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1810		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1811	}
1812
1813	/* It really is const after this point. */
1814	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1815		&smp_cachetlb_ops;
1816#endif
1817
1818	if (sparc_cpu_model != sun4d)
 
 
1819		ld_mmu_iommu();
1820#ifdef CONFIG_SMP
1821	if (sparc_cpu_model == sun4d)
1822		sun4d_init_smp();
1823	else if (sparc_cpu_model == sparc_leon)
1824		leon_init_smp();
1825	else
1826		sun4m_init_smp();
1827#endif
1828}
v4.10.11
 
   1/*
   2 * srmmu.c:  SRMMU specific routines for memory management.
   3 *
   4 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   6 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
   9 */
  10
  11#include <linux/seq_file.h>
  12#include <linux/spinlock.h>
  13#include <linux/bootmem.h>
  14#include <linux/pagemap.h>
  15#include <linux/vmalloc.h>
  16#include <linux/kdebug.h>
  17#include <linux/export.h>
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/log2.h>
  21#include <linux/gfp.h>
  22#include <linux/fs.h>
  23#include <linux/mm.h>
  24
  25#include <asm/mmu_context.h>
  26#include <asm/cacheflush.h>
  27#include <asm/tlbflush.h>
  28#include <asm/io-unit.h>
  29#include <asm/pgalloc.h>
  30#include <asm/pgtable.h>
  31#include <asm/bitext.h>
  32#include <asm/vaddrs.h>
  33#include <asm/cache.h>
  34#include <asm/traps.h>
  35#include <asm/oplib.h>
  36#include <asm/mbus.h>
  37#include <asm/page.h>
  38#include <asm/asi.h>
  39#include <asm/msi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
 
  57int vac_line_size;
  58
  59extern struct resource sparc_iomap;
  60
  61extern unsigned long last_valid_pfn;
  62
  63static pgd_t *srmmu_swapper_pg_dir;
  64
  65const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  66EXPORT_SYMBOL(sparc32_cachetlb_ops);
  67
  68#ifdef CONFIG_SMP
  69const struct sparc32_cachetlb_ops *local_ops;
  70
  71#define FLUSH_BEGIN(mm)
  72#define FLUSH_END
  73#else
  74#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  75#define FLUSH_END	}
  76#endif
  77
  78int flush_page_for_dma_global = 1;
  79
  80char *srmmu_name;
  81
  82ctxd_t *srmmu_ctx_table_phys;
  83static ctxd_t *srmmu_context_table;
  84
  85int viking_mxcc_present;
  86static DEFINE_SPINLOCK(srmmu_context_spinlock);
  87
  88static int is_hypersparc;
  89
  90static int srmmu_cache_pagetables;
  91
  92/* these will be initialized in srmmu_nocache_calcsize() */
  93static unsigned long srmmu_nocache_size;
  94static unsigned long srmmu_nocache_end;
  95
  96/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  97#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  98
  99/* The context table is a nocache user with the biggest alignment needs. */
 100#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 101
 102void *srmmu_nocache_pool;
 103static struct bit_map srmmu_nocache_map;
 104
 105static inline int srmmu_pmd_none(pmd_t pmd)
 106{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 107
 108/* XXX should we hyper_flush_whole_icache here - Anton */
 109static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 110{
 111	pte_t pte;
 112
 113	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 114	set_pte((pte_t *)ctxp, pte);
 115}
 116
 117void pmd_set(pmd_t *pmdp, pte_t *ptep)
 118{
 119	unsigned long ptp;	/* Physical address, shifted right by 4 */
 120	int i;
 121
 122	ptp = __nocache_pa(ptep) >> 4;
 123	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 124		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 125		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 126	}
 127}
 128
 129void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
 130{
 131	unsigned long ptp;	/* Physical address, shifted right by 4 */
 132	int i;
 133
 134	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
 135	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 136		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 137		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 138	}
 139}
 140
 141/* Find an entry in the third-level page table.. */
 142pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
 143{
 144	void *pte;
 145
 146	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 147	return (pte_t *) pte +
 148	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 149}
 150
 151/*
 152 * size: bytes to allocate in the nocache area.
 153 * align: bytes, number to align at.
 154 * Returns the virtual address of the allocated area.
 155 */
 156static void *__srmmu_get_nocache(int size, int align)
 157{
 158	int offset;
 159	unsigned long addr;
 160
 161	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 162		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 163		       size);
 164		size = SRMMU_NOCACHE_BITMAP_SHIFT;
 165	}
 166	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
 167		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
 168		       size);
 169		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
 170	}
 171	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 172
 173	offset = bit_map_string_get(&srmmu_nocache_map,
 174				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 175				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 176	if (offset == -1) {
 177		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 178		       size, (int) srmmu_nocache_size,
 179		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 180		return NULL;
 181	}
 182
 183	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 184	return (void *)addr;
 185}
 186
 187void *srmmu_get_nocache(int size, int align)
 188{
 189	void *tmp;
 190
 191	tmp = __srmmu_get_nocache(size, align);
 192
 193	if (tmp)
 194		memset(tmp, 0, size);
 195
 196	return tmp;
 197}
 198
 199void srmmu_free_nocache(void *addr, int size)
 200{
 201	unsigned long vaddr;
 202	int offset;
 203
 204	vaddr = (unsigned long)addr;
 205	if (vaddr < SRMMU_NOCACHE_VADDR) {
 206		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 207		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 208		BUG();
 209	}
 210	if (vaddr + size > srmmu_nocache_end) {
 211		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 212		    vaddr, srmmu_nocache_end);
 213		BUG();
 214	}
 215	if (!is_power_of_2(size)) {
 216		printk("Size 0x%x is not a power of 2\n", size);
 217		BUG();
 218	}
 219	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 220		printk("Size 0x%x is too small\n", size);
 221		BUG();
 222	}
 223	if (vaddr & (size - 1)) {
 224		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 225		BUG();
 226	}
 227
 228	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 229	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 230
 231	bit_map_clear(&srmmu_nocache_map, offset, size);
 232}
 233
 234static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 235						 unsigned long end);
 236
 237/* Return how much physical memory we have.  */
 238static unsigned long __init probe_memory(void)
 239{
 240	unsigned long total = 0;
 241	int i;
 242
 243	for (i = 0; sp_banks[i].num_bytes; i++)
 244		total += sp_banks[i].num_bytes;
 245
 246	return total;
 247}
 248
 249/*
 250 * Reserve nocache dynamically proportionally to the amount of
 251 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 252 */
 253static void __init srmmu_nocache_calcsize(void)
 254{
 255	unsigned long sysmemavail = probe_memory() / 1024;
 256	int srmmu_nocache_npages;
 257
 258	srmmu_nocache_npages =
 259		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 260
 261 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 262	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 263	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 264		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 265
 266	/* anything above 1280 blows up */
 267	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 268		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 269
 270	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 271	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 272}
 273
 274static void __init srmmu_nocache_init(void)
 275{
 276	void *srmmu_nocache_bitmap;
 277	unsigned int bitmap_bits;
 278	pgd_t *pgd;
 
 
 279	pmd_t *pmd;
 280	pte_t *pte;
 281	unsigned long paddr, vaddr;
 282	unsigned long pteval;
 283
 284	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 285
 286	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
 287		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
 
 
 
 288	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 289
 290	srmmu_nocache_bitmap =
 291		__alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 292				SMP_CACHE_BYTES, 0UL);
 
 
 
 293	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 294
 295	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 296	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 297	init_mm.pgd = srmmu_swapper_pg_dir;
 298
 299	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 300
 301	paddr = __pa((unsigned long)srmmu_nocache_pool);
 302	vaddr = SRMMU_NOCACHE_VADDR;
 303
 304	while (vaddr < srmmu_nocache_end) {
 305		pgd = pgd_offset_k(vaddr);
 306		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
 
 
 307		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 308
 309		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 310
 311		if (srmmu_cache_pagetables)
 312			pteval |= SRMMU_CACHE;
 313
 314		set_pte(__nocache_fix(pte), __pte(pteval));
 315
 316		vaddr += PAGE_SIZE;
 317		paddr += PAGE_SIZE;
 318	}
 319
 320	flush_cache_all();
 321	flush_tlb_all();
 322}
 323
 324pgd_t *get_pgd_fast(void)
 325{
 326	pgd_t *pgd = NULL;
 327
 328	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 329	if (pgd) {
 330		pgd_t *init = pgd_offset_k(0);
 331		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 332		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 333						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 334	}
 335
 336	return pgd;
 337}
 338
 339/*
 340 * Hardware needs alignment to 256 only, but we align to whole page size
 341 * to reduce fragmentation problems due to the buddy principle.
 342 * XXX Provide actual fragmentation statistics in /proc.
 343 *
 344 * Alignments up to the page size are the same for physical and virtual
 345 * addresses of the nocache area.
 346 */
 347pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 348{
 349	unsigned long pte;
 350	struct page *page;
 351
 352	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
 353		return NULL;
 354	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
 355	if (!pgtable_page_ctor(page)) {
 356		__free_page(page);
 357		return NULL;
 
 
 
 
 
 358	}
 359	return page;
 
 
 360}
 361
 362void pte_free(struct mm_struct *mm, pgtable_t pte)
 363{
 364	unsigned long p;
 365
 366	pgtable_page_dtor(pte);
 367	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
 368	if (p == 0)
 369		BUG();
 370	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
 371
 372	/* free non cached virtual address*/
 373	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
 374}
 375
 376/* context handling - a dynamically sized pool is used */
 377#define NO_CONTEXT	-1
 378
 379struct ctx_list {
 380	struct ctx_list *next;
 381	struct ctx_list *prev;
 382	unsigned int ctx_number;
 383	struct mm_struct *ctx_mm;
 384};
 385
 386static struct ctx_list *ctx_list_pool;
 387static struct ctx_list ctx_free;
 388static struct ctx_list ctx_used;
 389
 390/* At boot time we determine the number of contexts */
 391static int num_contexts;
 392
 393static inline void remove_from_ctx_list(struct ctx_list *entry)
 394{
 395	entry->next->prev = entry->prev;
 396	entry->prev->next = entry->next;
 397}
 398
 399static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 400{
 401	entry->next = head;
 402	(entry->prev = head->prev)->next = entry;
 403	head->prev = entry;
 404}
 405#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 406#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 407
 408
 409static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 410{
 411	struct ctx_list *ctxp;
 412
 413	ctxp = ctx_free.next;
 414	if (ctxp != &ctx_free) {
 415		remove_from_ctx_list(ctxp);
 416		add_to_used_ctxlist(ctxp);
 417		mm->context = ctxp->ctx_number;
 418		ctxp->ctx_mm = mm;
 419		return;
 420	}
 421	ctxp = ctx_used.next;
 422	if (ctxp->ctx_mm == old_mm)
 423		ctxp = ctxp->next;
 424	if (ctxp == &ctx_used)
 425		panic("out of mmu contexts");
 426	flush_cache_mm(ctxp->ctx_mm);
 427	flush_tlb_mm(ctxp->ctx_mm);
 428	remove_from_ctx_list(ctxp);
 429	add_to_used_ctxlist(ctxp);
 430	ctxp->ctx_mm->context = NO_CONTEXT;
 431	ctxp->ctx_mm = mm;
 432	mm->context = ctxp->ctx_number;
 433}
 434
 435static inline void free_context(int context)
 436{
 437	struct ctx_list *ctx_old;
 438
 439	ctx_old = ctx_list_pool + context;
 440	remove_from_ctx_list(ctx_old);
 441	add_to_free_ctxlist(ctx_old);
 442}
 443
 444static void __init sparc_context_init(int numctx)
 445{
 446	int ctx;
 447	unsigned long size;
 448
 449	size = numctx * sizeof(struct ctx_list);
 450	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
 
 
 451
 452	for (ctx = 0; ctx < numctx; ctx++) {
 453		struct ctx_list *clist;
 454
 455		clist = (ctx_list_pool + ctx);
 456		clist->ctx_number = ctx;
 457		clist->ctx_mm = NULL;
 458	}
 459	ctx_free.next = ctx_free.prev = &ctx_free;
 460	ctx_used.next = ctx_used.prev = &ctx_used;
 461	for (ctx = 0; ctx < numctx; ctx++)
 462		add_to_free_ctxlist(ctx_list_pool + ctx);
 463}
 464
 465void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 466	       struct task_struct *tsk)
 467{
 468	unsigned long flags;
 469
 470	if (mm->context == NO_CONTEXT) {
 471		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 472		alloc_context(old_mm, mm);
 473		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 474		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 475	}
 476
 477	if (sparc_cpu_model == sparc_leon)
 478		leon_switch_mm();
 479
 480	if (is_hypersparc)
 481		hyper_flush_whole_icache();
 482
 483	srmmu_set_context(mm->context);
 484}
 485
 486/* Low level IO area allocation on the SRMMU. */
 487static inline void srmmu_mapioaddr(unsigned long physaddr,
 488				   unsigned long virt_addr, int bus_type)
 489{
 490	pgd_t *pgdp;
 
 
 491	pmd_t *pmdp;
 492	pte_t *ptep;
 493	unsigned long tmp;
 494
 495	physaddr &= PAGE_MASK;
 496	pgdp = pgd_offset_k(virt_addr);
 497	pmdp = pmd_offset(pgdp, virt_addr);
 
 
 498	ptep = pte_offset_kernel(pmdp, virt_addr);
 499	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 500
 501	/* I need to test whether this is consistent over all
 502	 * sun4m's.  The bus_type represents the upper 4 bits of
 503	 * 36-bit physical address on the I/O space lines...
 504	 */
 505	tmp |= (bus_type << 28);
 506	tmp |= SRMMU_PRIV;
 507	__flush_page_to_ram(virt_addr);
 508	set_pte(ptep, __pte(tmp));
 509}
 510
 511void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 512		      unsigned long xva, unsigned int len)
 513{
 514	while (len != 0) {
 515		len -= PAGE_SIZE;
 516		srmmu_mapioaddr(xpa, xva, bus);
 517		xva += PAGE_SIZE;
 518		xpa += PAGE_SIZE;
 519	}
 520	flush_tlb_all();
 521}
 522
 523static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 524{
 525	pgd_t *pgdp;
 
 
 526	pmd_t *pmdp;
 527	pte_t *ptep;
 528
 
 529	pgdp = pgd_offset_k(virt_addr);
 530	pmdp = pmd_offset(pgdp, virt_addr);
 
 
 531	ptep = pte_offset_kernel(pmdp, virt_addr);
 532
 533	/* No need to flush uncacheable page. */
 534	__pte_clear(ptep);
 535}
 536
 537void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 538{
 539	while (len != 0) {
 540		len -= PAGE_SIZE;
 541		srmmu_unmapioaddr(virt_addr);
 542		virt_addr += PAGE_SIZE;
 543	}
 544	flush_tlb_all();
 545}
 546
 547/* tsunami.S */
 548extern void tsunami_flush_cache_all(void);
 549extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 550extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 551extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 552extern void tsunami_flush_page_to_ram(unsigned long page);
 553extern void tsunami_flush_page_for_dma(unsigned long page);
 554extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 555extern void tsunami_flush_tlb_all(void);
 556extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 557extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 558extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 559extern void tsunami_setup_blockops(void);
 560
 561/* swift.S */
 562extern void swift_flush_cache_all(void);
 563extern void swift_flush_cache_mm(struct mm_struct *mm);
 564extern void swift_flush_cache_range(struct vm_area_struct *vma,
 565				    unsigned long start, unsigned long end);
 566extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 567extern void swift_flush_page_to_ram(unsigned long page);
 568extern void swift_flush_page_for_dma(unsigned long page);
 569extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 570extern void swift_flush_tlb_all(void);
 571extern void swift_flush_tlb_mm(struct mm_struct *mm);
 572extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 573				  unsigned long start, unsigned long end);
 574extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 575
 576#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 577void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 578{
 579	int cctx, ctx1;
 580
 581	page &= PAGE_MASK;
 582	if ((ctx1 = vma->vm_mm->context) != -1) {
 583		cctx = srmmu_get_context();
 584/* Is context # ever different from current context? P3 */
 585		if (cctx != ctx1) {
 586			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 587			srmmu_set_context(ctx1);
 588			swift_flush_page(page);
 589			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 590					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 591			srmmu_set_context(cctx);
 592		} else {
 593			 /* Rm. prot. bits from virt. c. */
 594			/* swift_flush_cache_all(); */
 595			/* swift_flush_cache_page(vma, page); */
 596			swift_flush_page(page);
 597
 598			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 599				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 600			/* same as above: srmmu_flush_tlb_page() */
 601		}
 602	}
 603}
 604#endif
 605
 606/*
 607 * The following are all MBUS based SRMMU modules, and therefore could
 608 * be found in a multiprocessor configuration.  On the whole, these
 609 * chips seems to be much more touchy about DVMA and page tables
 610 * with respect to cache coherency.
 611 */
 612
 613/* viking.S */
 614extern void viking_flush_cache_all(void);
 615extern void viking_flush_cache_mm(struct mm_struct *mm);
 616extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 617				     unsigned long end);
 618extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 619extern void viking_flush_page_to_ram(unsigned long page);
 620extern void viking_flush_page_for_dma(unsigned long page);
 621extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 622extern void viking_flush_page(unsigned long page);
 623extern void viking_mxcc_flush_page(unsigned long page);
 624extern void viking_flush_tlb_all(void);
 625extern void viking_flush_tlb_mm(struct mm_struct *mm);
 626extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 627				   unsigned long end);
 628extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 629				  unsigned long page);
 630extern void sun4dsmp_flush_tlb_all(void);
 631extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 632extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 633				   unsigned long end);
 634extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 635				  unsigned long page);
 636
 637/* hypersparc.S */
 638extern void hypersparc_flush_cache_all(void);
 639extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 640extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 641extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 642extern void hypersparc_flush_page_to_ram(unsigned long page);
 643extern void hypersparc_flush_page_for_dma(unsigned long page);
 644extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 645extern void hypersparc_flush_tlb_all(void);
 646extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 647extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 648extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 649extern void hypersparc_setup_blockops(void);
 650
 651/*
 652 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 653 *       kernel mappings are done with one single contiguous chunk of
 654 *       ram.  On small ram machines (classics mainly) we only get
 655 *       around 8mb mapped for us.
 656 */
 657
 658static void __init early_pgtable_allocfail(char *type)
 659{
 660	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 661	prom_halt();
 662}
 663
 664static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 665							unsigned long end)
 666{
 667	pgd_t *pgdp;
 
 
 668	pmd_t *pmdp;
 669	pte_t *ptep;
 670
 671	while (start < end) {
 672		pgdp = pgd_offset_k(start);
 673		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 
 
 674			pmdp = __srmmu_get_nocache(
 675			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 676			if (pmdp == NULL)
 677				early_pgtable_allocfail("pmd");
 678			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 679			pgd_set(__nocache_fix(pgdp), pmdp);
 680		}
 681		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 682		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 683			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 684			if (ptep == NULL)
 685				early_pgtable_allocfail("pte");
 686			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 687			pmd_set(__nocache_fix(pmdp), ptep);
 688		}
 689		if (start > (0xffffffffUL - PMD_SIZE))
 690			break;
 691		start = (start + PMD_SIZE) & PMD_MASK;
 692	}
 693}
 694
 695static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 696						  unsigned long end)
 697{
 698	pgd_t *pgdp;
 
 
 699	pmd_t *pmdp;
 700	pte_t *ptep;
 701
 702	while (start < end) {
 703		pgdp = pgd_offset_k(start);
 704		if (pgd_none(*pgdp)) {
 
 
 705			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 706			if (pmdp == NULL)
 707				early_pgtable_allocfail("pmd");
 708			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 709			pgd_set(pgdp, pmdp);
 710		}
 711		pmdp = pmd_offset(pgdp, start);
 712		if (srmmu_pmd_none(*pmdp)) {
 713			ptep = __srmmu_get_nocache(PTE_SIZE,
 714							     PTE_SIZE);
 715			if (ptep == NULL)
 716				early_pgtable_allocfail("pte");
 717			memset(ptep, 0, PTE_SIZE);
 718			pmd_set(pmdp, ptep);
 719		}
 720		if (start > (0xffffffffUL - PMD_SIZE))
 721			break;
 722		start = (start + PMD_SIZE) & PMD_MASK;
 723	}
 724}
 725
 726/* These flush types are not available on all chips... */
 727static inline unsigned long srmmu_probe(unsigned long vaddr)
 728{
 729	unsigned long retval;
 730
 731	if (sparc_cpu_model != sparc_leon) {
 732
 733		vaddr &= PAGE_MASK;
 734		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 735				     "=r" (retval) :
 736				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 737	} else {
 738		retval = leon_swprobe(vaddr, NULL);
 739	}
 740	return retval;
 741}
 742
 743/*
 744 * This is much cleaner than poking around physical address space
 745 * looking at the prom's page table directly which is what most
 746 * other OS's do.  Yuck... this is much better.
 747 */
 748static void __init srmmu_inherit_prom_mappings(unsigned long start,
 749					       unsigned long end)
 750{
 751	unsigned long probed;
 752	unsigned long addr;
 753	pgd_t *pgdp;
 
 
 754	pmd_t *pmdp;
 755	pte_t *ptep;
 756	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 757
 758	while (start <= end) {
 759		if (start == 0)
 760			break; /* probably wrap around */
 761		if (start == 0xfef00000)
 762			start = KADB_DEBUGGER_BEGVM;
 763		probed = srmmu_probe(start);
 764		if (!probed) {
 765			/* continue probing until we find an entry */
 766			start += PAGE_SIZE;
 767			continue;
 768		}
 769
 770		/* A red snapper, see what it really is. */
 771		what = 0;
 772		addr = start - PAGE_SIZE;
 773
 774		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
 775			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
 776				what = 1;
 777		}
 778
 779		if (!(start & ~(SRMMU_PGDIR_MASK))) {
 780			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
 781				what = 2;
 782		}
 783
 784		pgdp = pgd_offset_k(start);
 
 
 785		if (what == 2) {
 786			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 787			start += SRMMU_PGDIR_SIZE;
 788			continue;
 789		}
 790		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 791			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 792						   SRMMU_PMD_TABLE_SIZE);
 793			if (pmdp == NULL)
 794				early_pgtable_allocfail("pmd");
 795			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 796			pgd_set(__nocache_fix(pgdp), pmdp);
 
 
 
 
 
 
 797		}
 798		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 799		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 800			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 801			if (ptep == NULL)
 802				early_pgtable_allocfail("pte");
 803			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 804			pmd_set(__nocache_fix(pmdp), ptep);
 805		}
 806		if (what == 1) {
 807			/* We bend the rule where all 16 PTPs in a pmd_t point
 808			 * inside the same PTE page, and we leak a perfectly
 809			 * good hardware PTE piece. Alternatives seem worse.
 810			 */
 811			unsigned int x;	/* Index of HW PMD in soft cluster */
 812			unsigned long *val;
 813			x = (start >> PMD_SHIFT) & 15;
 814			val = &pmdp->pmdv[x];
 815			*(unsigned long *)__nocache_fix(val) = probed;
 816			start += SRMMU_REAL_PMD_SIZE;
 817			continue;
 818		}
 819		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 820		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
 821		start += PAGE_SIZE;
 822	}
 823}
 824
 825#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 826
 827/* Create a third-level SRMMU 16MB page mapping. */
 828static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 829{
 830	pgd_t *pgdp = pgd_offset_k(vaddr);
 831	unsigned long big_pte;
 832
 833	big_pte = KERNEL_PTE(phys_base >> 4);
 834	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 835}
 836
 837/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 838static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 839{
 840	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
 841	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
 842	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 843	/* Map "low" memory only */
 844	const unsigned long min_vaddr = PAGE_OFFSET;
 845	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 846
 847	if (vstart < min_vaddr || vstart >= max_vaddr)
 848		return vstart;
 849
 850	if (vend > max_vaddr || vend < min_vaddr)
 851		vend = max_vaddr;
 852
 853	while (vstart < vend) {
 854		do_large_mapping(vstart, pstart);
 855		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
 856	}
 857	return vstart;
 858}
 859
 860static void __init map_kernel(void)
 861{
 862	int i;
 863
 864	if (phys_base > 0) {
 865		do_large_mapping(PAGE_OFFSET, phys_base);
 866	}
 867
 868	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 869		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 870	}
 871}
 872
 873void (*poke_srmmu)(void) = NULL;
 874
 875void __init srmmu_paging_init(void)
 876{
 877	int i;
 878	phandle cpunode;
 879	char node_str[128];
 880	pgd_t *pgd;
 
 
 881	pmd_t *pmd;
 882	pte_t *pte;
 883	unsigned long pages_avail;
 884
 885	init_mm.context = (unsigned long) NO_CONTEXT;
 886	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 887
 888	if (sparc_cpu_model == sun4d)
 889		num_contexts = 65536; /* We know it is Viking */
 890	else {
 891		/* Find the number of contexts on the srmmu. */
 892		cpunode = prom_getchild(prom_root_node);
 893		num_contexts = 0;
 894		while (cpunode != 0) {
 895			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 896			if (!strcmp(node_str, "cpu")) {
 897				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 898				break;
 899			}
 900			cpunode = prom_getsibling(cpunode);
 901		}
 902	}
 903
 904	if (!num_contexts) {
 905		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 906		prom_halt();
 907	}
 908
 909	pages_avail = 0;
 910	last_valid_pfn = bootmem_init(&pages_avail);
 911
 912	srmmu_nocache_calcsize();
 913	srmmu_nocache_init();
 914	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 915	map_kernel();
 916
 917	/* ctx table has to be physically aligned to its size */
 918	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 919	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 920
 921	for (i = 0; i < num_contexts; i++)
 922		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 923
 924	flush_cache_all();
 925	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 926#ifdef CONFIG_SMP
 927	/* Stop from hanging here... */
 928	local_ops->tlb_all();
 929#else
 930	flush_tlb_all();
 931#endif
 932	poke_srmmu();
 933
 934	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 935	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 936
 937	srmmu_allocate_ptable_skeleton(
 938		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 939	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 940
 941	pgd = pgd_offset_k(PKMAP_BASE);
 942	pmd = pmd_offset(pgd, PKMAP_BASE);
 
 
 943	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 944	pkmap_page_table = pte;
 945
 946	flush_cache_all();
 947	flush_tlb_all();
 948
 949	sparc_context_init(num_contexts);
 950
 951	kmap_init();
 952
 953	{
 954		unsigned long zones_size[MAX_NR_ZONES];
 955		unsigned long zholes_size[MAX_NR_ZONES];
 956		unsigned long npages;
 957		int znum;
 958
 959		for (znum = 0; znum < MAX_NR_ZONES; znum++)
 960			zones_size[znum] = zholes_size[znum] = 0;
 
 961
 962		npages = max_low_pfn - pfn_base;
 963
 964		zones_size[ZONE_DMA] = npages;
 965		zholes_size[ZONE_DMA] = npages - pages_avail;
 966
 967		npages = highend_pfn - max_low_pfn;
 968		zones_size[ZONE_HIGHMEM] = npages;
 969		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
 970
 971		free_area_init_node(0, zones_size, pfn_base, zholes_size);
 972	}
 973}
 974
 975void mmu_info(struct seq_file *m)
 976{
 977	seq_printf(m,
 978		   "MMU type\t: %s\n"
 979		   "contexts\t: %d\n"
 980		   "nocache total\t: %ld\n"
 981		   "nocache used\t: %d\n",
 982		   srmmu_name,
 983		   num_contexts,
 984		   srmmu_nocache_size,
 985		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 986}
 987
 988int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 989{
 990	mm->context = NO_CONTEXT;
 991	return 0;
 992}
 993
 994void destroy_context(struct mm_struct *mm)
 995{
 996	unsigned long flags;
 997
 998	if (mm->context != NO_CONTEXT) {
 999		flush_cache_mm(mm);
1000		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1001		flush_tlb_mm(mm);
1002		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1003		free_context(mm->context);
1004		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1005		mm->context = NO_CONTEXT;
1006	}
1007}
1008
1009/* Init various srmmu chip types. */
1010static void __init srmmu_is_bad(void)
1011{
1012	prom_printf("Could not determine SRMMU chip type.\n");
1013	prom_halt();
1014}
1015
1016static void __init init_vac_layout(void)
1017{
1018	phandle nd;
1019	int cache_lines;
1020	char node_str[128];
1021#ifdef CONFIG_SMP
1022	int cpu = 0;
1023	unsigned long max_size = 0;
1024	unsigned long min_line_size = 0x10000000;
1025#endif
1026
1027	nd = prom_getchild(prom_root_node);
1028	while ((nd = prom_getsibling(nd)) != 0) {
1029		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1030		if (!strcmp(node_str, "cpu")) {
1031			vac_line_size = prom_getint(nd, "cache-line-size");
1032			if (vac_line_size == -1) {
1033				prom_printf("can't determine cache-line-size, halting.\n");
1034				prom_halt();
1035			}
1036			cache_lines = prom_getint(nd, "cache-nlines");
1037			if (cache_lines == -1) {
1038				prom_printf("can't determine cache-nlines, halting.\n");
1039				prom_halt();
1040			}
1041
1042			vac_cache_size = cache_lines * vac_line_size;
1043#ifdef CONFIG_SMP
1044			if (vac_cache_size > max_size)
1045				max_size = vac_cache_size;
1046			if (vac_line_size < min_line_size)
1047				min_line_size = vac_line_size;
1048			//FIXME: cpus not contiguous!!
1049			cpu++;
1050			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1051				break;
1052#else
1053			break;
1054#endif
1055		}
1056	}
1057	if (nd == 0) {
1058		prom_printf("No CPU nodes found, halting.\n");
1059		prom_halt();
1060	}
1061#ifdef CONFIG_SMP
1062	vac_cache_size = max_size;
1063	vac_line_size = min_line_size;
1064#endif
1065	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1066	       (int)vac_cache_size, (int)vac_line_size);
1067}
1068
1069static void poke_hypersparc(void)
1070{
1071	volatile unsigned long clear;
1072	unsigned long mreg = srmmu_get_mmureg();
1073
1074	hyper_flush_unconditional_combined();
1075
1076	mreg &= ~(HYPERSPARC_CWENABLE);
1077	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1078	mreg |= (HYPERSPARC_CMODE);
1079
1080	srmmu_set_mmureg(mreg);
1081
1082#if 0 /* XXX I think this is bad news... -DaveM */
1083	hyper_clear_all_tags();
1084#endif
1085
1086	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1087	hyper_flush_whole_icache();
1088	clear = srmmu_get_faddr();
1089	clear = srmmu_get_fstatus();
1090}
1091
1092static const struct sparc32_cachetlb_ops hypersparc_ops = {
1093	.cache_all	= hypersparc_flush_cache_all,
1094	.cache_mm	= hypersparc_flush_cache_mm,
1095	.cache_page	= hypersparc_flush_cache_page,
1096	.cache_range	= hypersparc_flush_cache_range,
1097	.tlb_all	= hypersparc_flush_tlb_all,
1098	.tlb_mm		= hypersparc_flush_tlb_mm,
1099	.tlb_page	= hypersparc_flush_tlb_page,
1100	.tlb_range	= hypersparc_flush_tlb_range,
1101	.page_to_ram	= hypersparc_flush_page_to_ram,
1102	.sig_insns	= hypersparc_flush_sig_insns,
1103	.page_for_dma	= hypersparc_flush_page_for_dma,
1104};
1105
1106static void __init init_hypersparc(void)
1107{
1108	srmmu_name = "ROSS HyperSparc";
1109	srmmu_modtype = HyperSparc;
1110
1111	init_vac_layout();
1112
1113	is_hypersparc = 1;
1114	sparc32_cachetlb_ops = &hypersparc_ops;
1115
1116	poke_srmmu = poke_hypersparc;
1117
1118	hypersparc_setup_blockops();
1119}
1120
1121static void poke_swift(void)
1122{
1123	unsigned long mreg;
1124
1125	/* Clear any crap from the cache or else... */
1126	swift_flush_cache_all();
1127
1128	/* Enable I & D caches */
1129	mreg = srmmu_get_mmureg();
1130	mreg |= (SWIFT_IE | SWIFT_DE);
1131	/*
1132	 * The Swift branch folding logic is completely broken.  At
1133	 * trap time, if things are just right, if can mistakenly
1134	 * think that a trap is coming from kernel mode when in fact
1135	 * it is coming from user mode (it mis-executes the branch in
1136	 * the trap code).  So you see things like crashme completely
1137	 * hosing your machine which is completely unacceptable.  Turn
1138	 * this shit off... nice job Fujitsu.
1139	 */
1140	mreg &= ~(SWIFT_BF);
1141	srmmu_set_mmureg(mreg);
1142}
1143
1144static const struct sparc32_cachetlb_ops swift_ops = {
1145	.cache_all	= swift_flush_cache_all,
1146	.cache_mm	= swift_flush_cache_mm,
1147	.cache_page	= swift_flush_cache_page,
1148	.cache_range	= swift_flush_cache_range,
1149	.tlb_all	= swift_flush_tlb_all,
1150	.tlb_mm		= swift_flush_tlb_mm,
1151	.tlb_page	= swift_flush_tlb_page,
1152	.tlb_range	= swift_flush_tlb_range,
1153	.page_to_ram	= swift_flush_page_to_ram,
1154	.sig_insns	= swift_flush_sig_insns,
1155	.page_for_dma	= swift_flush_page_for_dma,
1156};
1157
1158#define SWIFT_MASKID_ADDR  0x10003018
1159static void __init init_swift(void)
1160{
1161	unsigned long swift_rev;
1162
1163	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1164			     "srl %0, 0x18, %0\n\t" :
1165			     "=r" (swift_rev) :
1166			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1167	srmmu_name = "Fujitsu Swift";
1168	switch (swift_rev) {
1169	case 0x11:
1170	case 0x20:
1171	case 0x23:
1172	case 0x30:
1173		srmmu_modtype = Swift_lots_o_bugs;
1174		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1175		/*
1176		 * Gee george, I wonder why Sun is so hush hush about
1177		 * this hardware bug... really braindamage stuff going
1178		 * on here.  However I think we can find a way to avoid
1179		 * all of the workaround overhead under Linux.  Basically,
1180		 * any page fault can cause kernel pages to become user
1181		 * accessible (the mmu gets confused and clears some of
1182		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1183		 * horrible eh?  But wait, after extensive testing it appears
1184		 * that if you use pgd_t level large kernel pte's (like the
1185		 * 4MB pages on the Pentium) the bug does not get tripped
1186		 * at all.  This avoids almost all of the major overhead.
1187		 * Welcome to a world where your vendor tells you to,
1188		 * "apply this kernel patch" instead of "sorry for the
1189		 * broken hardware, send it back and we'll give you
1190		 * properly functioning parts"
1191		 */
1192		break;
1193	case 0x25:
1194	case 0x31:
1195		srmmu_modtype = Swift_bad_c;
1196		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1197		/*
1198		 * You see Sun allude to this hardware bug but never
1199		 * admit things directly, they'll say things like,
1200		 * "the Swift chip cache problems" or similar.
1201		 */
1202		break;
1203	default:
1204		srmmu_modtype = Swift_ok;
1205		break;
1206	}
1207
1208	sparc32_cachetlb_ops = &swift_ops;
1209	flush_page_for_dma_global = 0;
1210
1211	/*
1212	 * Are you now convinced that the Swift is one of the
1213	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1214	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1215	 * you examined the microcode of the Swift you'd find
1216	 * XXX's all over the place.
1217	 */
1218	poke_srmmu = poke_swift;
1219}
1220
1221static void turbosparc_flush_cache_all(void)
1222{
1223	flush_user_windows();
1224	turbosparc_idflash_clear();
1225}
1226
1227static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1228{
1229	FLUSH_BEGIN(mm)
1230	flush_user_windows();
1231	turbosparc_idflash_clear();
1232	FLUSH_END
1233}
1234
1235static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1236{
1237	FLUSH_BEGIN(vma->vm_mm)
1238	flush_user_windows();
1239	turbosparc_idflash_clear();
1240	FLUSH_END
1241}
1242
1243static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1244{
1245	FLUSH_BEGIN(vma->vm_mm)
1246	flush_user_windows();
1247	if (vma->vm_flags & VM_EXEC)
1248		turbosparc_flush_icache();
1249	turbosparc_flush_dcache();
1250	FLUSH_END
1251}
1252
1253/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1254static void turbosparc_flush_page_to_ram(unsigned long page)
1255{
1256#ifdef TURBOSPARC_WRITEBACK
1257	volatile unsigned long clear;
1258
1259	if (srmmu_probe(page))
1260		turbosparc_flush_page_cache(page);
1261	clear = srmmu_get_fstatus();
1262#endif
1263}
1264
1265static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1266{
1267}
1268
1269static void turbosparc_flush_page_for_dma(unsigned long page)
1270{
1271	turbosparc_flush_dcache();
1272}
1273
1274static void turbosparc_flush_tlb_all(void)
1275{
1276	srmmu_flush_whole_tlb();
1277}
1278
1279static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1280{
1281	FLUSH_BEGIN(mm)
1282	srmmu_flush_whole_tlb();
1283	FLUSH_END
1284}
1285
1286static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1287{
1288	FLUSH_BEGIN(vma->vm_mm)
1289	srmmu_flush_whole_tlb();
1290	FLUSH_END
1291}
1292
1293static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1294{
1295	FLUSH_BEGIN(vma->vm_mm)
1296	srmmu_flush_whole_tlb();
1297	FLUSH_END
1298}
1299
1300
1301static void poke_turbosparc(void)
1302{
1303	unsigned long mreg = srmmu_get_mmureg();
1304	unsigned long ccreg;
1305
1306	/* Clear any crap from the cache or else... */
1307	turbosparc_flush_cache_all();
1308	/* Temporarily disable I & D caches */
1309	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1310	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1311	srmmu_set_mmureg(mreg);
1312
1313	ccreg = turbosparc_get_ccreg();
1314
1315#ifdef TURBOSPARC_WRITEBACK
1316	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1317	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1318			/* Write-back D-cache, emulate VLSI
1319			 * abortion number three, not number one */
1320#else
1321	/* For now let's play safe, optimize later */
1322	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1323			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1324	ccreg &= ~(TURBOSPARC_uS2);
1325			/* Emulate VLSI abortion number three, not number one */
1326#endif
1327
1328	switch (ccreg & 7) {
1329	case 0: /* No SE cache */
1330	case 7: /* Test mode */
1331		break;
1332	default:
1333		ccreg |= (TURBOSPARC_SCENABLE);
1334	}
1335	turbosparc_set_ccreg(ccreg);
1336
1337	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1338	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1339	srmmu_set_mmureg(mreg);
1340}
1341
1342static const struct sparc32_cachetlb_ops turbosparc_ops = {
1343	.cache_all	= turbosparc_flush_cache_all,
1344	.cache_mm	= turbosparc_flush_cache_mm,
1345	.cache_page	= turbosparc_flush_cache_page,
1346	.cache_range	= turbosparc_flush_cache_range,
1347	.tlb_all	= turbosparc_flush_tlb_all,
1348	.tlb_mm		= turbosparc_flush_tlb_mm,
1349	.tlb_page	= turbosparc_flush_tlb_page,
1350	.tlb_range	= turbosparc_flush_tlb_range,
1351	.page_to_ram	= turbosparc_flush_page_to_ram,
1352	.sig_insns	= turbosparc_flush_sig_insns,
1353	.page_for_dma	= turbosparc_flush_page_for_dma,
1354};
1355
1356static void __init init_turbosparc(void)
1357{
1358	srmmu_name = "Fujitsu TurboSparc";
1359	srmmu_modtype = TurboSparc;
1360	sparc32_cachetlb_ops = &turbosparc_ops;
1361	poke_srmmu = poke_turbosparc;
1362}
1363
1364static void poke_tsunami(void)
1365{
1366	unsigned long mreg = srmmu_get_mmureg();
1367
1368	tsunami_flush_icache();
1369	tsunami_flush_dcache();
1370	mreg &= ~TSUNAMI_ITD;
1371	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1372	srmmu_set_mmureg(mreg);
1373}
1374
1375static const struct sparc32_cachetlb_ops tsunami_ops = {
1376	.cache_all	= tsunami_flush_cache_all,
1377	.cache_mm	= tsunami_flush_cache_mm,
1378	.cache_page	= tsunami_flush_cache_page,
1379	.cache_range	= tsunami_flush_cache_range,
1380	.tlb_all	= tsunami_flush_tlb_all,
1381	.tlb_mm		= tsunami_flush_tlb_mm,
1382	.tlb_page	= tsunami_flush_tlb_page,
1383	.tlb_range	= tsunami_flush_tlb_range,
1384	.page_to_ram	= tsunami_flush_page_to_ram,
1385	.sig_insns	= tsunami_flush_sig_insns,
1386	.page_for_dma	= tsunami_flush_page_for_dma,
1387};
1388
1389static void __init init_tsunami(void)
1390{
1391	/*
1392	 * Tsunami's pretty sane, Sun and TI actually got it
1393	 * somewhat right this time.  Fujitsu should have
1394	 * taken some lessons from them.
1395	 */
1396
1397	srmmu_name = "TI Tsunami";
1398	srmmu_modtype = Tsunami;
1399	sparc32_cachetlb_ops = &tsunami_ops;
1400	poke_srmmu = poke_tsunami;
1401
1402	tsunami_setup_blockops();
1403}
1404
1405static void poke_viking(void)
1406{
1407	unsigned long mreg = srmmu_get_mmureg();
1408	static int smp_catch;
1409
1410	if (viking_mxcc_present) {
1411		unsigned long mxcc_control = mxcc_get_creg();
1412
1413		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1414		mxcc_control &= ~(MXCC_CTL_RRC);
1415		mxcc_set_creg(mxcc_control);
1416
1417		/*
1418		 * We don't need memory parity checks.
1419		 * XXX This is a mess, have to dig out later. ecd.
1420		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1421		 */
1422
1423		/* We do cache ptables on MXCC. */
1424		mreg |= VIKING_TCENABLE;
1425	} else {
1426		unsigned long bpreg;
1427
1428		mreg &= ~(VIKING_TCENABLE);
1429		if (smp_catch++) {
1430			/* Must disable mixed-cmd mode here for other cpu's. */
1431			bpreg = viking_get_bpreg();
1432			bpreg &= ~(VIKING_ACTION_MIX);
1433			viking_set_bpreg(bpreg);
1434
1435			/* Just in case PROM does something funny. */
1436			msi_set_sync();
1437		}
1438	}
1439
1440	mreg |= VIKING_SPENABLE;
1441	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1442	mreg |= VIKING_SBENABLE;
1443	mreg &= ~(VIKING_ACENABLE);
1444	srmmu_set_mmureg(mreg);
1445}
1446
1447static struct sparc32_cachetlb_ops viking_ops = {
1448	.cache_all	= viking_flush_cache_all,
1449	.cache_mm	= viking_flush_cache_mm,
1450	.cache_page	= viking_flush_cache_page,
1451	.cache_range	= viking_flush_cache_range,
1452	.tlb_all	= viking_flush_tlb_all,
1453	.tlb_mm		= viking_flush_tlb_mm,
1454	.tlb_page	= viking_flush_tlb_page,
1455	.tlb_range	= viking_flush_tlb_range,
1456	.page_to_ram	= viking_flush_page_to_ram,
1457	.sig_insns	= viking_flush_sig_insns,
1458	.page_for_dma	= viking_flush_page_for_dma,
1459};
1460
1461#ifdef CONFIG_SMP
1462/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1463 * perform the local TLB flush and all the other cpus will see it.
1464 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1465 * that requires that we add some synchronization to these flushes.
1466 *
1467 * The bug is that the fifo which keeps track of all the pending TLB
1468 * broadcasts in the system is an entry or two too small, so if we
1469 * have too many going at once we'll overflow that fifo and lose a TLB
1470 * flush resulting in corruption.
1471 *
1472 * Our workaround is to take a global spinlock around the TLB flushes,
1473 * which guarentees we won't ever have too many pending.  It's a big
1474 * hammer, but a semaphore like system to make sure we only have N TLB
1475 * flushes going at once will require SMP locking anyways so there's
1476 * no real value in trying any harder than this.
1477 */
1478static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1479	.cache_all	= viking_flush_cache_all,
1480	.cache_mm	= viking_flush_cache_mm,
1481	.cache_page	= viking_flush_cache_page,
1482	.cache_range	= viking_flush_cache_range,
1483	.tlb_all	= sun4dsmp_flush_tlb_all,
1484	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1485	.tlb_page	= sun4dsmp_flush_tlb_page,
1486	.tlb_range	= sun4dsmp_flush_tlb_range,
1487	.page_to_ram	= viking_flush_page_to_ram,
1488	.sig_insns	= viking_flush_sig_insns,
1489	.page_for_dma	= viking_flush_page_for_dma,
1490};
1491#endif
1492
1493static void __init init_viking(void)
1494{
1495	unsigned long mreg = srmmu_get_mmureg();
1496
1497	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1498	if (mreg & VIKING_MMODE) {
1499		srmmu_name = "TI Viking";
1500		viking_mxcc_present = 0;
1501		msi_set_sync();
1502
1503		/*
1504		 * We need this to make sure old viking takes no hits
1505		 * on it's cache for dma snoops to workaround the
1506		 * "load from non-cacheable memory" interrupt bug.
1507		 * This is only necessary because of the new way in
1508		 * which we use the IOMMU.
1509		 */
1510		viking_ops.page_for_dma = viking_flush_page;
1511#ifdef CONFIG_SMP
1512		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1513#endif
1514		flush_page_for_dma_global = 0;
1515	} else {
1516		srmmu_name = "TI Viking/MXCC";
1517		viking_mxcc_present = 1;
1518		srmmu_cache_pagetables = 1;
1519	}
1520
1521	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1522		&viking_ops;
1523#ifdef CONFIG_SMP
1524	if (sparc_cpu_model == sun4d)
1525		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1526			&viking_sun4d_smp_ops;
1527#endif
1528
1529	poke_srmmu = poke_viking;
1530}
1531
1532/* Probe for the srmmu chip version. */
1533static void __init get_srmmu_type(void)
1534{
1535	unsigned long mreg, psr;
1536	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1537
1538	srmmu_modtype = SRMMU_INVAL_MOD;
1539	hwbug_bitmask = 0;
1540
1541	mreg = srmmu_get_mmureg(); psr = get_psr();
1542	mod_typ = (mreg & 0xf0000000) >> 28;
1543	mod_rev = (mreg & 0x0f000000) >> 24;
1544	psr_typ = (psr >> 28) & 0xf;
1545	psr_vers = (psr >> 24) & 0xf;
1546
1547	/* First, check for sparc-leon. */
1548	if (sparc_cpu_model == sparc_leon) {
1549		init_leon();
1550		return;
1551	}
1552
1553	/* Second, check for HyperSparc or Cypress. */
1554	if (mod_typ == 1) {
1555		switch (mod_rev) {
1556		case 7:
1557			/* UP or MP Hypersparc */
1558			init_hypersparc();
1559			break;
1560		case 0:
1561		case 2:
1562		case 10:
1563		case 11:
1564		case 12:
1565		case 13:
1566		case 14:
1567		case 15:
1568		default:
1569			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1570			prom_halt();
1571			break;
1572		}
1573		return;
1574	}
1575
1576	/* Now Fujitsu TurboSparc. It might happen that it is
1577	 * in Swift emulation mode, so we will check later...
1578	 */
1579	if (psr_typ == 0 && psr_vers == 5) {
1580		init_turbosparc();
1581		return;
1582	}
1583
1584	/* Next check for Fujitsu Swift. */
1585	if (psr_typ == 0 && psr_vers == 4) {
1586		phandle cpunode;
1587		char node_str[128];
1588
1589		/* Look if it is not a TurboSparc emulating Swift... */
1590		cpunode = prom_getchild(prom_root_node);
1591		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1592			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1593			if (!strcmp(node_str, "cpu")) {
1594				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1595				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1596					init_turbosparc();
1597					return;
1598				}
1599				break;
1600			}
1601		}
1602
1603		init_swift();
1604		return;
1605	}
1606
1607	/* Now the Viking family of srmmu. */
1608	if (psr_typ == 4 &&
1609	   ((psr_vers == 0) ||
1610	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1611		init_viking();
1612		return;
1613	}
1614
1615	/* Finally the Tsunami. */
1616	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1617		init_tsunami();
1618		return;
1619	}
1620
1621	/* Oh well */
1622	srmmu_is_bad();
1623}
1624
1625#ifdef CONFIG_SMP
1626/* Local cross-calls. */
1627static void smp_flush_page_for_dma(unsigned long page)
1628{
1629	xc1((smpfunc_t) local_ops->page_for_dma, page);
1630	local_ops->page_for_dma(page);
1631}
1632
1633static void smp_flush_cache_all(void)
1634{
1635	xc0((smpfunc_t) local_ops->cache_all);
1636	local_ops->cache_all();
1637}
1638
1639static void smp_flush_tlb_all(void)
1640{
1641	xc0((smpfunc_t) local_ops->tlb_all);
1642	local_ops->tlb_all();
1643}
1644
1645static void smp_flush_cache_mm(struct mm_struct *mm)
1646{
1647	if (mm->context != NO_CONTEXT) {
1648		cpumask_t cpu_mask;
1649		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1650		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1651		if (!cpumask_empty(&cpu_mask))
1652			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1653		local_ops->cache_mm(mm);
1654	}
1655}
1656
1657static void smp_flush_tlb_mm(struct mm_struct *mm)
1658{
1659	if (mm->context != NO_CONTEXT) {
1660		cpumask_t cpu_mask;
1661		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1662		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1663		if (!cpumask_empty(&cpu_mask)) {
1664			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1665			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1666				cpumask_copy(mm_cpumask(mm),
1667					     cpumask_of(smp_processor_id()));
1668		}
1669		local_ops->tlb_mm(mm);
1670	}
1671}
1672
1673static void smp_flush_cache_range(struct vm_area_struct *vma,
1674				  unsigned long start,
1675				  unsigned long end)
1676{
1677	struct mm_struct *mm = vma->vm_mm;
1678
1679	if (mm->context != NO_CONTEXT) {
1680		cpumask_t cpu_mask;
1681		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1682		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1683		if (!cpumask_empty(&cpu_mask))
1684			xc3((smpfunc_t) local_ops->cache_range,
1685			    (unsigned long) vma, start, end);
1686		local_ops->cache_range(vma, start, end);
1687	}
1688}
1689
1690static void smp_flush_tlb_range(struct vm_area_struct *vma,
1691				unsigned long start,
1692				unsigned long end)
1693{
1694	struct mm_struct *mm = vma->vm_mm;
1695
1696	if (mm->context != NO_CONTEXT) {
1697		cpumask_t cpu_mask;
1698		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1699		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1700		if (!cpumask_empty(&cpu_mask))
1701			xc3((smpfunc_t) local_ops->tlb_range,
1702			    (unsigned long) vma, start, end);
1703		local_ops->tlb_range(vma, start, end);
1704	}
1705}
1706
1707static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1708{
1709	struct mm_struct *mm = vma->vm_mm;
1710
1711	if (mm->context != NO_CONTEXT) {
1712		cpumask_t cpu_mask;
1713		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1714		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1715		if (!cpumask_empty(&cpu_mask))
1716			xc2((smpfunc_t) local_ops->cache_page,
1717			    (unsigned long) vma, page);
1718		local_ops->cache_page(vma, page);
1719	}
1720}
1721
1722static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1723{
1724	struct mm_struct *mm = vma->vm_mm;
1725
1726	if (mm->context != NO_CONTEXT) {
1727		cpumask_t cpu_mask;
1728		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1729		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1730		if (!cpumask_empty(&cpu_mask))
1731			xc2((smpfunc_t) local_ops->tlb_page,
1732			    (unsigned long) vma, page);
1733		local_ops->tlb_page(vma, page);
1734	}
1735}
1736
1737static void smp_flush_page_to_ram(unsigned long page)
1738{
1739	/* Current theory is that those who call this are the one's
1740	 * who have just dirtied their cache with the pages contents
1741	 * in kernel space, therefore we only run this on local cpu.
1742	 *
1743	 * XXX This experiment failed, research further... -DaveM
1744	 */
1745#if 1
1746	xc1((smpfunc_t) local_ops->page_to_ram, page);
1747#endif
1748	local_ops->page_to_ram(page);
1749}
1750
1751static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1752{
1753	cpumask_t cpu_mask;
1754	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1755	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1756	if (!cpumask_empty(&cpu_mask))
1757		xc2((smpfunc_t) local_ops->sig_insns,
1758		    (unsigned long) mm, insn_addr);
1759	local_ops->sig_insns(mm, insn_addr);
1760}
1761
1762static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1763	.cache_all	= smp_flush_cache_all,
1764	.cache_mm	= smp_flush_cache_mm,
1765	.cache_page	= smp_flush_cache_page,
1766	.cache_range	= smp_flush_cache_range,
1767	.tlb_all	= smp_flush_tlb_all,
1768	.tlb_mm		= smp_flush_tlb_mm,
1769	.tlb_page	= smp_flush_tlb_page,
1770	.tlb_range	= smp_flush_tlb_range,
1771	.page_to_ram	= smp_flush_page_to_ram,
1772	.sig_insns	= smp_flush_sig_insns,
1773	.page_for_dma	= smp_flush_page_for_dma,
1774};
1775#endif
1776
1777/* Load up routines and constants for sun4m and sun4d mmu */
1778void __init load_mmu(void)
1779{
1780	/* Functions */
1781	get_srmmu_type();
1782
1783#ifdef CONFIG_SMP
1784	/* El switcheroo... */
1785	local_ops = sparc32_cachetlb_ops;
1786
1787	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1788		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1789		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1790		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1791		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1792	}
1793
1794	if (poke_srmmu == poke_viking) {
1795		/* Avoid unnecessary cross calls. */
1796		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1797		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1798		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1799		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1800
1801		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1802		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1803		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1804	}
1805
1806	/* It really is const after this point. */
1807	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1808		&smp_cachetlb_ops;
1809#endif
1810
1811	if (sparc_cpu_model == sun4d)
1812		ld_mmu_iounit();
1813	else
1814		ld_mmu_iommu();
1815#ifdef CONFIG_SMP
1816	if (sparc_cpu_model == sun4d)
1817		sun4d_init_smp();
1818	else if (sparc_cpu_model == sparc_leon)
1819		leon_init_smp();
1820	else
1821		sun4m_init_smp();
1822#endif
1823}