Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
  28#include <linux/dax.h>
  29#include <linux/falloc.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mman.h>
  32#include <linux/fadvise.h>
  33#include <linux/mount.h>
  34
  35static const struct vm_operations_struct xfs_file_vm_ops;
  36
  37/*
  38 * Decide if the given file range is aligned to the size of the fundamental
  39 * allocation unit for the file.
  40 */
  41static bool
  42xfs_is_falloc_aligned(
  43	struct xfs_inode	*ip,
  44	loff_t			pos,
  45	long long int		len)
  46{
  47	struct xfs_mount	*mp = ip->i_mount;
  48	uint64_t		mask;
  49
  50	if (XFS_IS_REALTIME_INODE(ip)) {
  51		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
  52			u64	rextbytes;
  53			u32	mod;
  54
  55			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
  56			div_u64_rem(pos, rextbytes, &mod);
  57			if (mod)
  58				return false;
  59			div_u64_rem(len, rextbytes, &mod);
  60			return mod == 0;
  61		}
  62		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
  63	} else {
  64		mask = mp->m_sb.sb_blocksize - 1;
  65	}
  66
  67	return !((pos | len) & mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68}
  69
  70/*
  71 * Fsync operations on directories are much simpler than on regular files,
  72 * as there is no file data to flush, and thus also no need for explicit
  73 * cache flush operations, and there are no non-transaction metadata updates
  74 * on directories either.
  75 */
  76STATIC int
  77xfs_dir_fsync(
  78	struct file		*file,
  79	loff_t			start,
  80	loff_t			end,
  81	int			datasync)
  82{
  83	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
  84
  85	trace_xfs_dir_fsync(ip);
  86	return xfs_log_force_inode(ip);
  87}
  88
  89static xfs_csn_t
  90xfs_fsync_seq(
  91	struct xfs_inode	*ip,
  92	bool			datasync)
  93{
  94	if (!xfs_ipincount(ip))
  95		return 0;
  96	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
  97		return 0;
  98	return ip->i_itemp->ili_commit_seq;
  99}
 100
 101/*
 102 * All metadata updates are logged, which means that we just have to flush the
 103 * log up to the latest LSN that touched the inode.
 104 *
 105 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
 106 * the log force before we clear the ili_fsync_fields field. This ensures that
 107 * we don't get a racing sync operation that does not wait for the metadata to
 108 * hit the journal before returning.  If we race with clearing ili_fsync_fields,
 109 * then all that will happen is the log force will do nothing as the lsn will
 110 * already be on disk.  We can't race with setting ili_fsync_fields because that
 111 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
 112 * shared until after the ili_fsync_fields is cleared.
 113 */
 114static  int
 115xfs_fsync_flush_log(
 116	struct xfs_inode	*ip,
 117	bool			datasync,
 118	int			*log_flushed)
 119{
 120	int			error = 0;
 121	xfs_csn_t		seq;
 122
 123	xfs_ilock(ip, XFS_ILOCK_SHARED);
 124	seq = xfs_fsync_seq(ip, datasync);
 125	if (seq) {
 126		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
 127					  log_flushed);
 128
 129		spin_lock(&ip->i_itemp->ili_lock);
 130		ip->i_itemp->ili_fsync_fields = 0;
 131		spin_unlock(&ip->i_itemp->ili_lock);
 132	}
 133	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 134	return error;
 135}
 136
 137STATIC int
 138xfs_file_fsync(
 139	struct file		*file,
 140	loff_t			start,
 141	loff_t			end,
 142	int			datasync)
 143{
 144	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 
 145	struct xfs_mount	*mp = ip->i_mount;
 146	int			error, err2;
 147	int			log_flushed = 0;
 
 148
 149	trace_xfs_file_fsync(ip);
 150
 151	error = file_write_and_wait_range(file, start, end);
 152	if (error)
 153		return error;
 154
 155	if (xfs_is_shutdown(mp))
 156		return -EIO;
 157
 158	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 159
 160	/*
 161	 * If we have an RT and/or log subvolume we need to make sure to flush
 162	 * the write cache the device used for file data first.  This is to
 163	 * ensure newly written file data make it to disk before logging the new
 164	 * inode size in case of an extending write.
 165	 */
 166	if (XFS_IS_REALTIME_INODE(ip))
 167		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
 168	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 169		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 170
 171	/*
 172	 * Any inode that has dirty modifications in the log is pinned.  The
 173	 * racy check here for a pinned inode will not catch modifications
 174	 * that happen concurrently to the fsync call, but fsync semantics
 175	 * only require to sync previously completed I/O.
 
 
 
 
 
 
 
 176	 */
 
 177	if (xfs_ipincount(ip)) {
 178		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
 179		if (err2 && !error)
 180			error = err2;
 
 
 
 
 
 
 
 181	}
 
 182
 183	/*
 184	 * If we only have a single device, and the log force about was
 185	 * a no-op we might have to flush the data device cache here.
 186	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 187	 * an already allocated file and thus do not have any metadata to
 188	 * commit.
 189	 */
 190	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 191	    mp->m_logdev_targp == mp->m_ddev_targp) {
 192		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 193		if (err2 && !error)
 194			error = err2;
 195	}
 196
 197	return error;
 198}
 199
 200static int
 201xfs_ilock_iocb(
 202	struct kiocb		*iocb,
 203	unsigned int		lock_mode)
 204{
 205	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 206
 207	if (iocb->ki_flags & IOCB_NOWAIT) {
 208		if (!xfs_ilock_nowait(ip, lock_mode))
 209			return -EAGAIN;
 210	} else {
 211		xfs_ilock(ip, lock_mode);
 212	}
 213
 214	return 0;
 215}
 216
 217STATIC ssize_t
 218xfs_file_dio_read(
 219	struct kiocb		*iocb,
 220	struct iov_iter		*to)
 221{
 222	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 223	ssize_t			ret;
 224
 225	trace_xfs_file_direct_read(iocb, to);
 226
 227	if (!iov_iter_count(to))
 228		return 0; /* skip atime */
 229
 230	file_accessed(iocb->ki_filp);
 231
 232	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 233	if (ret)
 234		return ret;
 235	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
 
 
 
 
 236	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 237
 238	return ret;
 239}
 240
 241static noinline ssize_t
 242xfs_file_dax_read(
 243	struct kiocb		*iocb,
 244	struct iov_iter		*to)
 245{
 246	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 
 247	ssize_t			ret = 0;
 248
 249	trace_xfs_file_dax_read(iocb, to);
 250
 251	if (!iov_iter_count(to))
 252		return 0; /* skip atime */
 253
 254	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 255	if (ret)
 256		return ret;
 
 
 
 
 257	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 258	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 259
 260	file_accessed(iocb->ki_filp);
 261	return ret;
 262}
 263
 264STATIC ssize_t
 265xfs_file_buffered_read(
 266	struct kiocb		*iocb,
 267	struct iov_iter		*to)
 268{
 269	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 270	ssize_t			ret;
 271
 272	trace_xfs_file_buffered_read(iocb, to);
 273
 274	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 275	if (ret)
 276		return ret;
 
 
 
 277	ret = generic_file_read_iter(iocb, to);
 278	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 279
 280	return ret;
 281}
 282
 283STATIC ssize_t
 284xfs_file_read_iter(
 285	struct kiocb		*iocb,
 286	struct iov_iter		*to)
 287{
 288	struct inode		*inode = file_inode(iocb->ki_filp);
 289	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 290	ssize_t			ret = 0;
 291
 292	XFS_STATS_INC(mp, xs_read_calls);
 293
 294	if (xfs_is_shutdown(mp))
 295		return -EIO;
 296
 297	if (IS_DAX(inode))
 298		ret = xfs_file_dax_read(iocb, to);
 299	else if (iocb->ki_flags & IOCB_DIRECT)
 300		ret = xfs_file_dio_read(iocb, to);
 301	else
 302		ret = xfs_file_buffered_read(iocb, to);
 303
 304	if (ret > 0)
 305		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 306	return ret;
 307}
 308
 309/*
 310 * Common pre-write limit and setup checks.
 311 *
 312 * Called with the iolocked held either shared and exclusive according to
 313 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 314 * if called for a direct write beyond i_size.
 315 */
 316STATIC ssize_t
 317xfs_file_write_checks(
 318	struct kiocb		*iocb,
 319	struct iov_iter		*from,
 320	unsigned int		*iolock)
 321{
 322	struct file		*file = iocb->ki_filp;
 323	struct inode		*inode = file->f_mapping->host;
 324	struct xfs_inode	*ip = XFS_I(inode);
 325	ssize_t			error = 0;
 326	size_t			count = iov_iter_count(from);
 327	bool			drained_dio = false;
 328	loff_t			isize;
 329
 330restart:
 331	error = generic_write_checks(iocb, from);
 332	if (error <= 0)
 333		return error;
 334
 335	if (iocb->ki_flags & IOCB_NOWAIT) {
 336		error = break_layout(inode, false);
 337		if (error == -EWOULDBLOCK)
 338			error = -EAGAIN;
 339	} else {
 340		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 341	}
 342
 343	if (error)
 344		return error;
 345
 346	/*
 347	 * For changing security info in file_remove_privs() we need i_rwsem
 348	 * exclusively.
 349	 */
 350	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 351		xfs_iunlock(ip, *iolock);
 352		*iolock = XFS_IOLOCK_EXCL;
 353		error = xfs_ilock_iocb(iocb, *iolock);
 354		if (error) {
 355			*iolock = 0;
 356			return error;
 357		}
 358		goto restart;
 359	}
 360
 361	/*
 362	 * If the offset is beyond the size of the file, we need to zero any
 363	 * blocks that fall between the existing EOF and the start of this
 364	 * write.  If zeroing is needed and we are currently holding the iolock
 365	 * shared, we need to update it to exclusive which implies having to
 366	 * redo all checks before.
 367	 *
 368	 * We need to serialise against EOF updates that occur in IO completions
 369	 * here. We want to make sure that nobody is changing the size while we
 370	 * do this check until we have placed an IO barrier (i.e.  hold the
 371	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
 372	 * spinlock effectively forms a memory barrier once we have the
 373	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
 374	 * hence be able to correctly determine if we need to run zeroing.
 375	 *
 376	 * We can do an unlocked check here safely as IO completion can only
 377	 * extend EOF. Truncate is locked out at this point, so the EOF can
 378	 * not move backwards, only forwards. Hence we only need to take the
 379	 * slow path and spin locks when we are at or beyond the current EOF.
 
 
 
 380	 */
 381	if (iocb->ki_pos <= i_size_read(inode))
 382		goto out;
 383
 384	spin_lock(&ip->i_flags_lock);
 385	isize = i_size_read(inode);
 386	if (iocb->ki_pos > isize) {
 387		spin_unlock(&ip->i_flags_lock);
 388
 389		if (iocb->ki_flags & IOCB_NOWAIT)
 390			return -EAGAIN;
 391
 392		if (!drained_dio) {
 393			if (*iolock == XFS_IOLOCK_SHARED) {
 394				xfs_iunlock(ip, *iolock);
 395				*iolock = XFS_IOLOCK_EXCL;
 396				xfs_ilock(ip, *iolock);
 397				iov_iter_reexpand(from, count);
 398			}
 399			/*
 400			 * We now have an IO submission barrier in place, but
 401			 * AIO can do EOF updates during IO completion and hence
 402			 * we now need to wait for all of them to drain. Non-AIO
 403			 * DIO will have drained before we are given the
 404			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 405			 * no-op.
 406			 */
 407			inode_dio_wait(inode);
 408			drained_dio = true;
 409			goto restart;
 410		}
 411
 412		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 413		error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
 
 414		if (error)
 415			return error;
 416	} else
 417		spin_unlock(&ip->i_flags_lock);
 418
 419out:
 420	return kiocb_modified(iocb);
 
 
 
 
 
 421}
 422
 423static int
 424xfs_dio_write_end_io(
 425	struct kiocb		*iocb,
 426	ssize_t			size,
 427	int			error,
 428	unsigned		flags)
 429{
 430	struct inode		*inode = file_inode(iocb->ki_filp);
 431	struct xfs_inode	*ip = XFS_I(inode);
 432	loff_t			offset = iocb->ki_pos;
 433	unsigned int		nofs_flag;
 434
 435	trace_xfs_end_io_direct_write(ip, offset, size);
 436
 437	if (xfs_is_shutdown(ip->i_mount))
 438		return -EIO;
 439
 440	if (error)
 441		return error;
 442	if (!size)
 443		return 0;
 444
 445	/*
 446	 * Capture amount written on completion as we can't reliably account
 447	 * for it on submission.
 448	 */
 449	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 450
 451	/*
 452	 * We can allocate memory here while doing writeback on behalf of
 453	 * memory reclaim.  To avoid memory allocation deadlocks set the
 454	 * task-wide nofs context for the following operations.
 455	 */
 456	nofs_flag = memalloc_nofs_save();
 457
 458	if (flags & IOMAP_DIO_COW) {
 459		error = xfs_reflink_end_cow(ip, offset, size);
 460		if (error)
 461			goto out;
 462	}
 463
 464	/*
 465	 * Unwritten conversion updates the in-core isize after extent
 466	 * conversion but before updating the on-disk size. Updating isize any
 467	 * earlier allows a racing dio read to find unwritten extents before
 468	 * they are converted.
 469	 */
 470	if (flags & IOMAP_DIO_UNWRITTEN) {
 471		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 472		goto out;
 473	}
 474
 475	/*
 476	 * We need to update the in-core inode size here so that we don't end up
 477	 * with the on-disk inode size being outside the in-core inode size. We
 478	 * have no other method of updating EOF for AIO, so always do it here
 479	 * if necessary.
 480	 *
 481	 * We need to lock the test/set EOF update as we can be racing with
 482	 * other IO completions here to update the EOF. Failing to serialise
 483	 * here can result in EOF moving backwards and Bad Things Happen when
 484	 * that occurs.
 485	 *
 486	 * As IO completion only ever extends EOF, we can do an unlocked check
 487	 * here to avoid taking the spinlock. If we land within the current EOF,
 488	 * then we do not need to do an extending update at all, and we don't
 489	 * need to take the lock to check this. If we race with an update moving
 490	 * EOF, then we'll either still be beyond EOF and need to take the lock,
 491	 * or we'll be within EOF and we don't need to take it at all.
 492	 */
 493	if (offset + size <= i_size_read(inode))
 494		goto out;
 495
 496	spin_lock(&ip->i_flags_lock);
 497	if (offset + size > i_size_read(inode)) {
 498		i_size_write(inode, offset + size);
 499		spin_unlock(&ip->i_flags_lock);
 500		error = xfs_setfilesize(ip, offset, size);
 501	} else {
 502		spin_unlock(&ip->i_flags_lock);
 503	}
 504
 505out:
 506	memalloc_nofs_restore(nofs_flag);
 507	return error;
 508}
 509
 510static const struct iomap_dio_ops xfs_dio_write_ops = {
 511	.end_io		= xfs_dio_write_end_io,
 512};
 513
 514/*
 515 * Handle block aligned direct I/O writes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516 */
 517static noinline ssize_t
 518xfs_file_dio_write_aligned(
 519	struct xfs_inode	*ip,
 520	struct kiocb		*iocb,
 521	struct iov_iter		*from)
 522{
 523	unsigned int		iolock = XFS_IOLOCK_SHARED;
 524	ssize_t			ret;
 
 
 
 
 
 
 
 
 525
 526	ret = xfs_ilock_iocb(iocb, iolock);
 527	if (ret)
 528		return ret;
 529	ret = xfs_file_write_checks(iocb, from, &iolock);
 530	if (ret)
 531		goto out_unlock;
 532
 533	/*
 534	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
 535	 * the iolock back to shared if we had to take the exclusive lock in
 536	 * xfs_file_write_checks() for other reasons.
 537	 */
 538	if (iolock == XFS_IOLOCK_EXCL) {
 539		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540		iolock = XFS_IOLOCK_SHARED;
 541	}
 542	trace_xfs_file_direct_write(iocb, from);
 543	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 544			   &xfs_dio_write_ops, 0, NULL, 0);
 545out_unlock:
 546	if (iolock)
 547		xfs_iunlock(ip, iolock);
 548	return ret;
 549}
 550
 551/*
 552 * Handle block unaligned direct I/O writes
 553 *
 554 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
 555 * them to be done in parallel with reads and other direct I/O writes.  However,
 556 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
 557 * to do sub-block zeroing and that requires serialisation against other direct
 558 * I/O to the same block.  In this case we need to serialise the submission of
 559 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
 560 * In the case where sub-block zeroing is not required, we can do concurrent
 561 * sub-block dios to the same block successfully.
 562 *
 563 * Optimistically submit the I/O using the shared lock first, but use the
 564 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
 565 * if block allocation or partial block zeroing would be required.  In that case
 566 * we try again with the exclusive lock.
 567 */
 568static noinline ssize_t
 569xfs_file_dio_write_unaligned(
 570	struct xfs_inode	*ip,
 571	struct kiocb		*iocb,
 572	struct iov_iter		*from)
 573{
 574	size_t			isize = i_size_read(VFS_I(ip));
 575	size_t			count = iov_iter_count(from);
 576	unsigned int		iolock = XFS_IOLOCK_SHARED;
 577	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
 578	ssize_t			ret;
 579
 580	/*
 581	 * Extending writes need exclusivity because of the sub-block zeroing
 582	 * that the DIO code always does for partial tail blocks beyond EOF, so
 583	 * don't even bother trying the fast path in this case.
 584	 */
 585	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
 586		if (iocb->ki_flags & IOCB_NOWAIT)
 587			return -EAGAIN;
 588retry_exclusive:
 589		iolock = XFS_IOLOCK_EXCL;
 590		flags = IOMAP_DIO_FORCE_WAIT;
 
 591	}
 592
 593	ret = xfs_ilock_iocb(iocb, iolock);
 594	if (ret)
 595		return ret;
 
 596
 597	/*
 598	 * We can't properly handle unaligned direct I/O to reflink files yet,
 599	 * as we can't unshare a partial block.
 600	 */
 601	if (xfs_is_cow_inode(ip)) {
 602		trace_xfs_reflink_bounce_dio_write(iocb, from);
 603		ret = -ENOTBLK;
 604		goto out_unlock;
 
 
 
 
 605	}
 606
 607	ret = xfs_file_write_checks(iocb, from, &iolock);
 608	if (ret)
 609		goto out_unlock;
 610
 611	/*
 612	 * If we are doing exclusive unaligned I/O, this must be the only I/O
 613	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
 614	 * conversions from the AIO end_io handler.  Wait for all other I/O to
 615	 * drain first.
 616	 */
 617	if (flags & IOMAP_DIO_FORCE_WAIT)
 618		inode_dio_wait(VFS_I(ip));
 619
 620	trace_xfs_file_direct_write(iocb, from);
 621	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 622			   &xfs_dio_write_ops, flags, NULL, 0);
 
 
 
 623
 624	/*
 625	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
 626	 * layer rejected it for mapping or locking reasons. If we are doing
 627	 * nonblocking user I/O, propagate the error.
 628	 */
 629	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
 630		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
 631		xfs_iunlock(ip, iolock);
 632		goto retry_exclusive;
 633	}
 634
 635out_unlock:
 636	if (iolock)
 637		xfs_iunlock(ip, iolock);
 638	return ret;
 639}
 640
 641static ssize_t
 642xfs_file_dio_write(
 643	struct kiocb		*iocb,
 644	struct iov_iter		*from)
 645{
 646	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 647	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 648	size_t			count = iov_iter_count(from);
 649
 650	/* direct I/O must be aligned to device logical sector size */
 651	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 652		return -EINVAL;
 653	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
 654		return xfs_file_dio_write_unaligned(ip, iocb, from);
 655	return xfs_file_dio_write_aligned(ip, iocb, from);
 656}
 657
 658static noinline ssize_t
 659xfs_file_dax_write(
 660	struct kiocb		*iocb,
 661	struct iov_iter		*from)
 662{
 663	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 664	struct xfs_inode	*ip = XFS_I(inode);
 665	unsigned int		iolock = XFS_IOLOCK_EXCL;
 666	ssize_t			ret, error = 0;
 
 667	loff_t			pos;
 668
 669	ret = xfs_ilock_iocb(iocb, iolock);
 670	if (ret)
 671		return ret;
 672	ret = xfs_file_write_checks(iocb, from, &iolock);
 
 
 
 
 673	if (ret)
 674		goto out;
 675
 676	pos = iocb->ki_pos;
 
 677
 678	trace_xfs_file_dax_write(iocb, from);
 679	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
 680	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 681		i_size_write(inode, iocb->ki_pos);
 682		error = xfs_setfilesize(ip, pos, ret);
 683	}
 684out:
 685	if (iolock)
 686		xfs_iunlock(ip, iolock);
 687	if (error)
 688		return error;
 689
 690	if (ret > 0) {
 691		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 692
 693		/* Handle various SYNC-type writes */
 694		ret = generic_write_sync(iocb, ret);
 695	}
 696	return ret;
 697}
 698
 699STATIC ssize_t
 700xfs_file_buffered_write(
 701	struct kiocb		*iocb,
 702	struct iov_iter		*from)
 703{
 704	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 
 
 705	struct xfs_inode	*ip = XFS_I(inode);
 706	ssize_t			ret;
 707	bool			cleared_space = false;
 708	unsigned int		iolock;
 
 
 
 709
 710write_retry:
 711	iolock = XFS_IOLOCK_EXCL;
 712	ret = xfs_ilock_iocb(iocb, iolock);
 713	if (ret)
 714		return ret;
 715
 716	ret = xfs_file_write_checks(iocb, from, &iolock);
 717	if (ret)
 718		goto out;
 719
 720	/* We can write back this queue in page reclaim */
 721	current->backing_dev_info = inode_to_bdi(inode);
 722
 723	trace_xfs_file_buffered_write(iocb, from);
 724	ret = iomap_file_buffered_write(iocb, from,
 725			&xfs_buffered_write_iomap_ops);
 726	if (likely(ret >= 0))
 727		iocb->ki_pos += ret;
 728
 729	/*
 730	 * If we hit a space limit, try to free up some lingering preallocated
 731	 * space before returning an error. In the case of ENOSPC, first try to
 732	 * write back all dirty inodes to free up some of the excess reserved
 733	 * metadata space. This reduces the chances that the eofblocks scan
 734	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 735	 * also behaves as a filter to prevent too many eofblocks scans from
 736	 * running at the same time.  Use a synchronous scan to increase the
 737	 * effectiveness of the scan.
 738	 */
 739	if (ret == -EDQUOT && !cleared_space) {
 740		xfs_iunlock(ip, iolock);
 741		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
 742		cleared_space = true;
 743		goto write_retry;
 744	} else if (ret == -ENOSPC && !cleared_space) {
 745		struct xfs_icwalk	icw = {0};
 
 
 
 
 746
 747		cleared_space = true;
 748		xfs_flush_inodes(ip->i_mount);
 749
 750		xfs_iunlock(ip, iolock);
 751		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
 752		xfs_blockgc_free_space(ip->i_mount, &icw);
 
 753		goto write_retry;
 754	}
 755
 756	current->backing_dev_info = NULL;
 757out:
 758	if (iolock)
 759		xfs_iunlock(ip, iolock);
 760
 761	if (ret > 0) {
 762		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 763		/* Handle various SYNC-type writes */
 764		ret = generic_write_sync(iocb, ret);
 765	}
 766	return ret;
 767}
 768
 769STATIC ssize_t
 770xfs_file_write_iter(
 771	struct kiocb		*iocb,
 772	struct iov_iter		*from)
 773{
 774	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 
 
 775	struct xfs_inode	*ip = XFS_I(inode);
 776	ssize_t			ret;
 777	size_t			ocount = iov_iter_count(from);
 778
 779	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 780
 781	if (ocount == 0)
 782		return 0;
 783
 784	if (xfs_is_shutdown(ip->i_mount))
 785		return -EIO;
 786
 787	if (IS_DAX(inode))
 788		return xfs_file_dax_write(iocb, from);
 789
 790	if (iocb->ki_flags & IOCB_DIRECT) {
 791		/*
 792		 * Allow a directio write to fall back to a buffered
 793		 * write *only* in the case that we're doing a reflink
 794		 * CoW.  In all other directio scenarios we do not
 795		 * allow an operation to fall back to buffered mode.
 796		 */
 797		ret = xfs_file_dio_write(iocb, from);
 798		if (ret != -ENOTBLK)
 799			return ret;
 800	}
 801
 802	return xfs_file_buffered_write(iocb, from);
 803}
 804
 805static void
 806xfs_wait_dax_page(
 807	struct inode		*inode)
 808{
 809	struct xfs_inode        *ip = XFS_I(inode);
 810
 811	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 812	schedule();
 813	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 814}
 815
 816int
 817xfs_break_dax_layouts(
 818	struct inode		*inode,
 819	bool			*retry)
 820{
 821	struct page		*page;
 822
 823	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 824
 825	page = dax_layout_busy_page(inode->i_mapping);
 826	if (!page)
 827		return 0;
 828
 829	*retry = true;
 830	return ___wait_var_event(&page->_refcount,
 831			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 832			0, 0, xfs_wait_dax_page(inode));
 833}
 834
 835int
 836xfs_break_layouts(
 837	struct inode		*inode,
 838	uint			*iolock,
 839	enum layout_break_reason reason)
 840{
 841	bool			retry;
 842	int			error;
 843
 844	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 845
 846	do {
 847		retry = false;
 848		switch (reason) {
 849		case BREAK_UNMAP:
 850			error = xfs_break_dax_layouts(inode, &retry);
 851			if (error || retry)
 852				break;
 853			fallthrough;
 854		case BREAK_WRITE:
 855			error = xfs_break_leased_layouts(inode, iolock, &retry);
 856			break;
 857		default:
 858			WARN_ON_ONCE(1);
 859			error = -EINVAL;
 860		}
 861	} while (error == 0 && retry);
 862
 863	return error;
 864}
 865
 866/* Does this file, inode, or mount want synchronous writes? */
 867static inline bool xfs_file_sync_writes(struct file *filp)
 868{
 869	struct xfs_inode	*ip = XFS_I(file_inode(filp));
 870
 871	if (xfs_has_wsync(ip->i_mount))
 872		return true;
 873	if (filp->f_flags & (__O_SYNC | O_DSYNC))
 874		return true;
 875	if (IS_SYNC(file_inode(filp)))
 876		return true;
 877
 878	return false;
 879}
 880
 881#define	XFS_FALLOC_FL_SUPPORTED						\
 882		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 883		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 884		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 885
 886STATIC long
 887xfs_file_fallocate(
 888	struct file		*file,
 889	int			mode,
 890	loff_t			offset,
 891	loff_t			len)
 892{
 893	struct inode		*inode = file_inode(file);
 894	struct xfs_inode	*ip = XFS_I(inode);
 895	long			error;
 
 896	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 897	loff_t			new_size = 0;
 898	bool			do_file_insert = false;
 899
 900	if (!S_ISREG(inode->i_mode))
 901		return -EINVAL;
 902	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 903		return -EOPNOTSUPP;
 904
 905	xfs_ilock(ip, iolock);
 906	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 907	if (error)
 908		goto out_unlock;
 909
 910	/*
 911	 * Must wait for all AIO to complete before we continue as AIO can
 912	 * change the file size on completion without holding any locks we
 913	 * currently hold. We must do this first because AIO can update both
 914	 * the on disk and in memory inode sizes, and the operations that follow
 915	 * require the in-memory size to be fully up-to-date.
 916	 */
 917	inode_dio_wait(inode);
 918
 919	/*
 920	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
 921	 * the cached range over the first operation we are about to run.
 922	 *
 923	 * We care about zero and collapse here because they both run a hole
 924	 * punch over the range first. Because that can zero data, and the range
 925	 * of invalidation for the shift operations is much larger, we still do
 926	 * the required flush for collapse in xfs_prepare_shift().
 927	 *
 928	 * Insert has the same range requirements as collapse, and we extend the
 929	 * file first which can zero data. Hence insert has the same
 930	 * flush/invalidate requirements as collapse and so they are both
 931	 * handled at the right time by xfs_prepare_shift().
 932	 */
 933	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 934		    FALLOC_FL_COLLAPSE_RANGE)) {
 935		error = xfs_flush_unmap_range(ip, offset, len);
 936		if (error)
 937			goto out_unlock;
 938	}
 939
 940	error = file_modified(file);
 941	if (error)
 942		goto out_unlock;
 943
 944	if (mode & FALLOC_FL_PUNCH_HOLE) {
 945		error = xfs_free_file_space(ip, offset, len);
 946		if (error)
 947			goto out_unlock;
 948	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 949		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 
 
 950			error = -EINVAL;
 951			goto out_unlock;
 952		}
 953
 954		/*
 955		 * There is no need to overlap collapse range with EOF,
 956		 * in which case it is effectively a truncate operation
 957		 */
 958		if (offset + len >= i_size_read(inode)) {
 959			error = -EINVAL;
 960			goto out_unlock;
 961		}
 962
 963		new_size = i_size_read(inode) - len;
 964
 965		error = xfs_collapse_file_space(ip, offset, len);
 966		if (error)
 967			goto out_unlock;
 968	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 
 969		loff_t		isize = i_size_read(inode);
 970
 971		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 972			error = -EINVAL;
 973			goto out_unlock;
 974		}
 975
 976		/*
 977		 * New inode size must not exceed ->s_maxbytes, accounting for
 978		 * possible signed overflow.
 979		 */
 980		if (inode->i_sb->s_maxbytes - isize < len) {
 981			error = -EFBIG;
 982			goto out_unlock;
 983		}
 984		new_size = isize + len;
 985
 986		/* Offset should be less than i_size */
 987		if (offset >= isize) {
 988			error = -EINVAL;
 989			goto out_unlock;
 990		}
 991		do_file_insert = true;
 992	} else {
 
 
 993		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 994		    offset + len > i_size_read(inode)) {
 995			new_size = offset + len;
 996			error = inode_newsize_ok(inode, new_size);
 997			if (error)
 998				goto out_unlock;
 999		}
1000
1001		if (mode & FALLOC_FL_ZERO_RANGE) {
1002			/*
1003			 * Punch a hole and prealloc the range.  We use a hole
1004			 * punch rather than unwritten extent conversion for two
1005			 * reasons:
1006			 *
1007			 *   1.) Hole punch handles partial block zeroing for us.
1008			 *   2.) If prealloc returns ENOSPC, the file range is
1009			 *       still zero-valued by virtue of the hole punch.
1010			 */
1011			unsigned int blksize = i_blocksize(inode);
1012
1013			trace_xfs_zero_file_space(ip);
1014
1015			error = xfs_free_file_space(ip, offset, len);
1016			if (error)
1017				goto out_unlock;
1018
1019			len = round_up(offset + len, blksize) -
1020			      round_down(offset, blksize);
1021			offset = round_down(offset, blksize);
1022		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1023			error = xfs_reflink_unshare(ip, offset, len);
1024			if (error)
1025				goto out_unlock;
1026		} else {
1027			/*
1028			 * If always_cow mode we can't use preallocations and
1029			 * thus should not create them.
1030			 */
1031			if (xfs_is_always_cow_inode(ip)) {
1032				error = -EOPNOTSUPP;
1033				goto out_unlock;
1034			}
1035		}
1036
1037		if (!xfs_is_always_cow_inode(ip)) {
1038			error = xfs_alloc_file_space(ip, offset, len);
 
1039			if (error)
1040				goto out_unlock;
1041		}
1042	}
1043
 
 
 
 
 
 
 
1044	/* Change file size if needed */
1045	if (new_size) {
1046		struct iattr iattr;
1047
1048		iattr.ia_valid = ATTR_SIZE;
1049		iattr.ia_size = new_size;
1050		error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1051					    file_dentry(file), &iattr);
1052		if (error)
1053			goto out_unlock;
1054	}
1055
1056	/*
1057	 * Perform hole insertion now that the file size has been
1058	 * updated so that if we crash during the operation we don't
1059	 * leave shifted extents past EOF and hence losing access to
1060	 * the data that is contained within them.
1061	 */
1062	if (do_file_insert) {
1063		error = xfs_insert_file_space(ip, offset, len);
1064		if (error)
1065			goto out_unlock;
1066	}
1067
1068	if (xfs_file_sync_writes(file))
1069		error = xfs_log_force_inode(ip);
1070
1071out_unlock:
1072	xfs_iunlock(ip, iolock);
1073	return error;
1074}
1075
1076STATIC int
1077xfs_file_fadvise(
1078	struct file	*file,
1079	loff_t		start,
1080	loff_t		end,
1081	int		advice)
1082{
1083	struct xfs_inode *ip = XFS_I(file_inode(file));
1084	int ret;
1085	int lockflags = 0;
1086
1087	/*
1088	 * Operations creating pages in page cache need protection from hole
1089	 * punching and similar ops
1090	 */
1091	if (advice == POSIX_FADV_WILLNEED) {
1092		lockflags = XFS_IOLOCK_SHARED;
1093		xfs_ilock(ip, lockflags);
1094	}
1095	ret = generic_fadvise(file, start, end, advice);
1096	if (lockflags)
1097		xfs_iunlock(ip, lockflags);
1098	return ret;
1099}
1100
1101STATIC loff_t
1102xfs_file_remap_range(
1103	struct file		*file_in,
1104	loff_t			pos_in,
1105	struct file		*file_out,
1106	loff_t			pos_out,
1107	loff_t			len,
1108	unsigned int		remap_flags)
1109{
1110	struct inode		*inode_in = file_inode(file_in);
1111	struct xfs_inode	*src = XFS_I(inode_in);
1112	struct inode		*inode_out = file_inode(file_out);
1113	struct xfs_inode	*dest = XFS_I(inode_out);
1114	struct xfs_mount	*mp = src->i_mount;
1115	loff_t			remapped = 0;
1116	xfs_extlen_t		cowextsize;
1117	int			ret;
1118
1119	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1120		return -EINVAL;
1121
1122	if (!xfs_has_reflink(mp))
1123		return -EOPNOTSUPP;
1124
1125	if (xfs_is_shutdown(mp))
1126		return -EIO;
1127
1128	/* Prepare and then clone file data. */
1129	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1130			&len, remap_flags);
1131	if (ret || len == 0)
1132		return ret;
1133
1134	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1135
1136	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1137			&remapped);
1138	if (ret)
1139		goto out_unlock;
1140
1141	/*
1142	 * Carry the cowextsize hint from src to dest if we're sharing the
1143	 * entire source file to the entire destination file, the source file
1144	 * has a cowextsize hint, and the destination file does not.
1145	 */
1146	cowextsize = 0;
1147	if (pos_in == 0 && len == i_size_read(inode_in) &&
1148	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1149	    pos_out == 0 && len >= i_size_read(inode_out) &&
1150	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1151		cowextsize = src->i_cowextsize;
1152
1153	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1154			remap_flags);
1155	if (ret)
1156		goto out_unlock;
1157
1158	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1159		xfs_log_force_inode(dest);
1160out_unlock:
1161	xfs_iunlock2_io_mmap(src, dest);
1162	if (ret)
1163		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1164	return remapped > 0 ? remapped : ret;
1165}
1166
1167STATIC int
1168xfs_file_open(
1169	struct inode	*inode,
1170	struct file	*file)
1171{
1172	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
 
 
1173		return -EIO;
1174	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
1175	return generic_file_open(inode, file);
1176}
1177
1178STATIC int
1179xfs_dir_open(
1180	struct inode	*inode,
1181	struct file	*file)
1182{
1183	struct xfs_inode *ip = XFS_I(inode);
1184	unsigned int	mode;
1185	int		error;
1186
1187	error = xfs_file_open(inode, file);
1188	if (error)
1189		return error;
1190
1191	/*
1192	 * If there are any blocks, read-ahead block 0 as we're almost
1193	 * certain to have the next operation be a read there.
1194	 */
1195	mode = xfs_ilock_data_map_shared(ip);
1196	if (ip->i_df.if_nextents > 0)
1197		error = xfs_dir3_data_readahead(ip, 0, 0);
1198	xfs_iunlock(ip, mode);
1199	return error;
1200}
1201
1202STATIC int
1203xfs_file_release(
1204	struct inode	*inode,
1205	struct file	*filp)
1206{
1207	return xfs_release(XFS_I(inode));
1208}
1209
1210STATIC int
1211xfs_file_readdir(
1212	struct file	*file,
1213	struct dir_context *ctx)
1214{
1215	struct inode	*inode = file_inode(file);
1216	xfs_inode_t	*ip = XFS_I(inode);
1217	size_t		bufsize;
1218
1219	/*
1220	 * The Linux API doesn't pass down the total size of the buffer
1221	 * we read into down to the filesystem.  With the filldir concept
1222	 * it's not needed for correct information, but the XFS dir2 leaf
1223	 * code wants an estimate of the buffer size to calculate it's
1224	 * readahead window and size the buffers used for mapping to
1225	 * physical blocks.
1226	 *
1227	 * Try to give it an estimate that's good enough, maybe at some
1228	 * point we can change the ->readdir prototype to include the
1229	 * buffer size.  For now we use the current glibc buffer size.
1230	 */
1231	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1232
1233	return xfs_readdir(NULL, ip, ctx, bufsize);
1234}
1235
1236STATIC loff_t
1237xfs_file_llseek(
1238	struct file	*file,
1239	loff_t		offset,
1240	int		whence)
1241{
1242	struct inode		*inode = file->f_mapping->host;
1243
1244	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1245		return -EIO;
1246
1247	switch (whence) {
1248	default:
1249		return generic_file_llseek(file, offset, whence);
1250	case SEEK_HOLE:
1251		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1252		break;
1253	case SEEK_DATA:
1254		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1255		break;
1256	}
1257
1258	if (offset < 0)
1259		return offset;
1260	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1261}
1262
1263#ifdef CONFIG_FS_DAX
1264static inline vm_fault_t
1265xfs_dax_fault(
1266	struct vm_fault		*vmf,
1267	enum page_entry_size	pe_size,
1268	bool			write_fault,
1269	pfn_t			*pfn)
1270{
1271	return dax_iomap_fault(vmf, pe_size, pfn, NULL,
1272			(write_fault && !vmf->cow_page) ?
1273				&xfs_dax_write_iomap_ops :
1274				&xfs_read_iomap_ops);
1275}
1276#else
1277static inline vm_fault_t
1278xfs_dax_fault(
1279	struct vm_fault		*vmf,
1280	enum page_entry_size	pe_size,
1281	bool			write_fault,
1282	pfn_t			*pfn)
1283{
1284	ASSERT(0);
1285	return VM_FAULT_SIGBUS;
1286}
1287#endif
1288
1289/*
1290 * Locking for serialisation of IO during page faults. This results in a lock
1291 * ordering of:
1292 *
1293 * mmap_lock (MM)
1294 *   sb_start_pagefault(vfs, freeze)
1295 *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1296 *       page_lock (MM)
1297 *         i_lock (XFS - extent map serialisation)
1298 */
1299static vm_fault_t
1300__xfs_filemap_fault(
1301	struct vm_fault		*vmf,
1302	enum page_entry_size	pe_size,
1303	bool			write_fault)
1304{
1305	struct inode		*inode = file_inode(vmf->vma->vm_file);
1306	struct xfs_inode	*ip = XFS_I(inode);
1307	vm_fault_t		ret;
1308
1309	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1310
1311	if (write_fault) {
1312		sb_start_pagefault(inode->i_sb);
1313		file_update_time(vmf->vma->vm_file);
1314	}
1315
 
1316	if (IS_DAX(inode)) {
1317		pfn_t pfn;
1318
1319		xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1320		ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn);
 
 
1321		if (ret & VM_FAULT_NEEDDSYNC)
1322			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1323		xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1324	} else {
1325		if (write_fault) {
1326			xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1327			ret = iomap_page_mkwrite(vmf,
1328					&xfs_page_mkwrite_iomap_ops);
1329			xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1330		} else {
1331			ret = filemap_fault(vmf);
1332		}
1333	}
 
1334
1335	if (write_fault)
1336		sb_end_pagefault(inode->i_sb);
1337	return ret;
1338}
1339
1340static inline bool
1341xfs_is_write_fault(
1342	struct vm_fault		*vmf)
1343{
1344	return (vmf->flags & FAULT_FLAG_WRITE) &&
1345	       (vmf->vma->vm_flags & VM_SHARED);
1346}
1347
1348static vm_fault_t
1349xfs_filemap_fault(
1350	struct vm_fault		*vmf)
1351{
1352	/* DAX can shortcut the normal fault path on write faults! */
1353	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1354			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1355			xfs_is_write_fault(vmf));
1356}
1357
1358static vm_fault_t
1359xfs_filemap_huge_fault(
1360	struct vm_fault		*vmf,
1361	enum page_entry_size	pe_size)
1362{
1363	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1364		return VM_FAULT_FALLBACK;
1365
1366	/* DAX can shortcut the normal fault path on write faults! */
1367	return __xfs_filemap_fault(vmf, pe_size,
1368			xfs_is_write_fault(vmf));
1369}
1370
1371static vm_fault_t
1372xfs_filemap_page_mkwrite(
1373	struct vm_fault		*vmf)
1374{
1375	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1376}
1377
1378/*
1379 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1380 * on write faults. In reality, it needs to serialise against truncate and
1381 * prepare memory for writing so handle is as standard write fault.
1382 */
1383static vm_fault_t
1384xfs_filemap_pfn_mkwrite(
1385	struct vm_fault		*vmf)
1386{
1387
1388	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1389}
1390
1391static vm_fault_t
1392xfs_filemap_map_pages(
1393	struct vm_fault		*vmf,
1394	pgoff_t			start_pgoff,
1395	pgoff_t			end_pgoff)
1396{
1397	struct inode		*inode = file_inode(vmf->vma->vm_file);
1398	vm_fault_t ret;
1399
1400	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1401	ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1402	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1403	return ret;
1404}
1405
1406static const struct vm_operations_struct xfs_file_vm_ops = {
1407	.fault		= xfs_filemap_fault,
1408	.huge_fault	= xfs_filemap_huge_fault,
1409	.map_pages	= xfs_filemap_map_pages,
1410	.page_mkwrite	= xfs_filemap_page_mkwrite,
1411	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1412};
1413
1414STATIC int
1415xfs_file_mmap(
1416	struct file		*file,
1417	struct vm_area_struct	*vma)
1418{
1419	struct inode		*inode = file_inode(file);
1420	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1421
1422	/*
1423	 * We don't support synchronous mappings for non-DAX files and
1424	 * for DAX files if underneath dax_device is not synchronous.
1425	 */
1426	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1427		return -EOPNOTSUPP;
1428
1429	file_accessed(file);
1430	vma->vm_ops = &xfs_file_vm_ops;
1431	if (IS_DAX(inode))
1432		vma->vm_flags |= VM_HUGEPAGE;
1433	return 0;
1434}
1435
1436const struct file_operations xfs_file_operations = {
1437	.llseek		= xfs_file_llseek,
1438	.read_iter	= xfs_file_read_iter,
1439	.write_iter	= xfs_file_write_iter,
1440	.splice_read	= generic_file_splice_read,
1441	.splice_write	= iter_file_splice_write,
1442	.iopoll		= iocb_bio_iopoll,
1443	.unlocked_ioctl	= xfs_file_ioctl,
1444#ifdef CONFIG_COMPAT
1445	.compat_ioctl	= xfs_file_compat_ioctl,
1446#endif
1447	.mmap		= xfs_file_mmap,
1448	.mmap_supported_flags = MAP_SYNC,
1449	.open		= xfs_file_open,
1450	.release	= xfs_file_release,
1451	.fsync		= xfs_file_fsync,
1452	.get_unmapped_area = thp_get_unmapped_area,
1453	.fallocate	= xfs_file_fallocate,
1454	.fadvise	= xfs_file_fadvise,
1455	.remap_file_range = xfs_file_remap_range,
1456};
1457
1458const struct file_operations xfs_dir_file_operations = {
1459	.open		= xfs_dir_open,
1460	.read		= generic_read_dir,
1461	.iterate_shared	= xfs_file_readdir,
1462	.llseek		= generic_file_llseek,
1463	.unlocked_ioctl	= xfs_file_ioctl,
1464#ifdef CONFIG_COMPAT
1465	.compat_ioctl	= xfs_file_compat_ioctl,
1466#endif
1467	.fsync		= xfs_dir_fsync,
1468};
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
 
  28#include <linux/falloc.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mman.h>
  31#include <linux/fadvise.h>
 
  32
  33static const struct vm_operations_struct xfs_file_vm_ops;
  34
  35int
  36xfs_update_prealloc_flags(
 
 
 
 
  37	struct xfs_inode	*ip,
  38	enum xfs_prealloc_flags	flags)
 
  39{
  40	struct xfs_trans	*tp;
  41	int			error;
  42
  43	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  44			0, 0, 0, &tp);
  45	if (error)
  46		return error;
 
 
 
 
 
 
 
 
 
 
 
 
  47
  48	xfs_ilock(ip, XFS_ILOCK_EXCL);
  49	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  50
  51	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  52		VFS_I(ip)->i_mode &= ~S_ISUID;
  53		if (VFS_I(ip)->i_mode & S_IXGRP)
  54			VFS_I(ip)->i_mode &= ~S_ISGID;
  55		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  56	}
  57
  58	if (flags & XFS_PREALLOC_SET)
  59		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  60	if (flags & XFS_PREALLOC_CLEAR)
  61		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  62
  63	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  64	if (flags & XFS_PREALLOC_SYNC)
  65		xfs_trans_set_sync(tp);
  66	return xfs_trans_commit(tp);
  67}
  68
  69/*
  70 * Fsync operations on directories are much simpler than on regular files,
  71 * as there is no file data to flush, and thus also no need for explicit
  72 * cache flush operations, and there are no non-transaction metadata updates
  73 * on directories either.
  74 */
  75STATIC int
  76xfs_dir_fsync(
  77	struct file		*file,
  78	loff_t			start,
  79	loff_t			end,
  80	int			datasync)
  81{
  82	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
  83
  84	trace_xfs_dir_fsync(ip);
  85	return xfs_log_force_inode(ip);
  86}
  87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88STATIC int
  89xfs_file_fsync(
  90	struct file		*file,
  91	loff_t			start,
  92	loff_t			end,
  93	int			datasync)
  94{
  95	struct inode		*inode = file->f_mapping->host;
  96	struct xfs_inode	*ip = XFS_I(inode);
  97	struct xfs_inode_log_item *iip = ip->i_itemp;
  98	struct xfs_mount	*mp = ip->i_mount;
  99	int			error = 0;
 100	int			log_flushed = 0;
 101	xfs_lsn_t		lsn = 0;
 102
 103	trace_xfs_file_fsync(ip);
 104
 105	error = file_write_and_wait_range(file, start, end);
 106	if (error)
 107		return error;
 108
 109	if (XFS_FORCED_SHUTDOWN(mp))
 110		return -EIO;
 111
 112	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 113
 114	/*
 115	 * If we have an RT and/or log subvolume we need to make sure to flush
 116	 * the write cache the device used for file data first.  This is to
 117	 * ensure newly written file data make it to disk before logging the new
 118	 * inode size in case of an extending write.
 119	 */
 120	if (XFS_IS_REALTIME_INODE(ip))
 121		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 122	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 123		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 124
 125	/*
 126	 * All metadata updates are logged, which means that we just have to
 127	 * flush the log up to the latest LSN that touched the inode. If we have
 128	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 129	 * log force before we clear the ili_fsync_fields field. This ensures
 130	 * that we don't get a racing sync operation that does not wait for the
 131	 * metadata to hit the journal before returning. If we race with
 132	 * clearing the ili_fsync_fields, then all that will happen is the log
 133	 * force will do nothing as the lsn will already be on disk. We can't
 134	 * race with setting ili_fsync_fields because that is done under
 135	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 136	 * until after the ili_fsync_fields is cleared.
 137	 */
 138	xfs_ilock(ip, XFS_ILOCK_SHARED);
 139	if (xfs_ipincount(ip)) {
 140		if (!datasync ||
 141		    (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 142			lsn = iip->ili_last_lsn;
 143	}
 144
 145	if (lsn) {
 146		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 147		spin_lock(&iip->ili_lock);
 148		iip->ili_fsync_fields = 0;
 149		spin_unlock(&iip->ili_lock);
 150	}
 151	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 152
 153	/*
 154	 * If we only have a single device, and the log force about was
 155	 * a no-op we might have to flush the data device cache here.
 156	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 157	 * an already allocated file and thus do not have any metadata to
 158	 * commit.
 159	 */
 160	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 161	    mp->m_logdev_targp == mp->m_ddev_targp)
 162		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 
 
 
 163
 164	return error;
 165}
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167STATIC ssize_t
 168xfs_file_dio_aio_read(
 169	struct kiocb		*iocb,
 170	struct iov_iter		*to)
 171{
 172	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 173	size_t			count = iov_iter_count(to);
 174	ssize_t			ret;
 175
 176	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 177
 178	if (!count)
 179		return 0; /* skip atime */
 180
 181	file_accessed(iocb->ki_filp);
 182
 183	if (iocb->ki_flags & IOCB_NOWAIT) {
 184		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 185			return -EAGAIN;
 186	} else {
 187		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 188	}
 189	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
 190			is_sync_kiocb(iocb));
 191	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 192
 193	return ret;
 194}
 195
 196static noinline ssize_t
 197xfs_file_dax_read(
 198	struct kiocb		*iocb,
 199	struct iov_iter		*to)
 200{
 201	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 202	size_t			count = iov_iter_count(to);
 203	ssize_t			ret = 0;
 204
 205	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 206
 207	if (!count)
 208		return 0; /* skip atime */
 209
 210	if (iocb->ki_flags & IOCB_NOWAIT) {
 211		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 212			return -EAGAIN;
 213	} else {
 214		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 215	}
 216
 217	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 218	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 219
 220	file_accessed(iocb->ki_filp);
 221	return ret;
 222}
 223
 224STATIC ssize_t
 225xfs_file_buffered_aio_read(
 226	struct kiocb		*iocb,
 227	struct iov_iter		*to)
 228{
 229	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 230	ssize_t			ret;
 231
 232	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 233
 234	if (iocb->ki_flags & IOCB_NOWAIT) {
 235		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 236			return -EAGAIN;
 237	} else {
 238		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 239	}
 240	ret = generic_file_read_iter(iocb, to);
 241	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 242
 243	return ret;
 244}
 245
 246STATIC ssize_t
 247xfs_file_read_iter(
 248	struct kiocb		*iocb,
 249	struct iov_iter		*to)
 250{
 251	struct inode		*inode = file_inode(iocb->ki_filp);
 252	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 253	ssize_t			ret = 0;
 254
 255	XFS_STATS_INC(mp, xs_read_calls);
 256
 257	if (XFS_FORCED_SHUTDOWN(mp))
 258		return -EIO;
 259
 260	if (IS_DAX(inode))
 261		ret = xfs_file_dax_read(iocb, to);
 262	else if (iocb->ki_flags & IOCB_DIRECT)
 263		ret = xfs_file_dio_aio_read(iocb, to);
 264	else
 265		ret = xfs_file_buffered_aio_read(iocb, to);
 266
 267	if (ret > 0)
 268		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 269	return ret;
 270}
 271
 272/*
 273 * Common pre-write limit and setup checks.
 274 *
 275 * Called with the iolocked held either shared and exclusive according to
 276 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 277 * if called for a direct write beyond i_size.
 278 */
 279STATIC ssize_t
 280xfs_file_aio_write_checks(
 281	struct kiocb		*iocb,
 282	struct iov_iter		*from,
 283	int			*iolock)
 284{
 285	struct file		*file = iocb->ki_filp;
 286	struct inode		*inode = file->f_mapping->host;
 287	struct xfs_inode	*ip = XFS_I(inode);
 288	ssize_t			error = 0;
 289	size_t			count = iov_iter_count(from);
 290	bool			drained_dio = false;
 291	loff_t			isize;
 292
 293restart:
 294	error = generic_write_checks(iocb, from);
 295	if (error <= 0)
 296		return error;
 297
 298	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 
 
 
 
 
 
 
 299	if (error)
 300		return error;
 301
 302	/*
 303	 * For changing security info in file_remove_privs() we need i_rwsem
 304	 * exclusively.
 305	 */
 306	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 307		xfs_iunlock(ip, *iolock);
 308		*iolock = XFS_IOLOCK_EXCL;
 309		xfs_ilock(ip, *iolock);
 
 
 
 
 310		goto restart;
 311	}
 
 312	/*
 313	 * If the offset is beyond the size of the file, we need to zero any
 314	 * blocks that fall between the existing EOF and the start of this
 315	 * write.  If zeroing is needed and we are currently holding the
 316	 * iolock shared, we need to update it to exclusive which implies
 317	 * having to redo all checks before.
 
 
 
 
 
 
 
 
 318	 *
 319	 * We need to serialise against EOF updates that occur in IO
 320	 * completions here. We want to make sure that nobody is changing the
 321	 * size while we do this check until we have placed an IO barrier (i.e.
 322	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 323	 * The spinlock effectively forms a memory barrier once we have the
 324	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 325	 * and hence be able to correctly determine if we need to run zeroing.
 326	 */
 
 
 
 327	spin_lock(&ip->i_flags_lock);
 328	isize = i_size_read(inode);
 329	if (iocb->ki_pos > isize) {
 330		spin_unlock(&ip->i_flags_lock);
 
 
 
 
 331		if (!drained_dio) {
 332			if (*iolock == XFS_IOLOCK_SHARED) {
 333				xfs_iunlock(ip, *iolock);
 334				*iolock = XFS_IOLOCK_EXCL;
 335				xfs_ilock(ip, *iolock);
 336				iov_iter_reexpand(from, count);
 337			}
 338			/*
 339			 * We now have an IO submission barrier in place, but
 340			 * AIO can do EOF updates during IO completion and hence
 341			 * we now need to wait for all of them to drain. Non-AIO
 342			 * DIO will have drained before we are given the
 343			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 344			 * no-op.
 345			 */
 346			inode_dio_wait(inode);
 347			drained_dio = true;
 348			goto restart;
 349		}
 350	
 351		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 352		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 353				NULL, &xfs_buffered_write_iomap_ops);
 354		if (error)
 355			return error;
 356	} else
 357		spin_unlock(&ip->i_flags_lock);
 358
 359	/*
 360	 * Updating the timestamps will grab the ilock again from
 361	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 362	 * lock above.  Eventually we should look into a way to avoid
 363	 * the pointless lock roundtrip.
 364	 */
 365	return file_modified(file);
 366}
 367
 368static int
 369xfs_dio_write_end_io(
 370	struct kiocb		*iocb,
 371	ssize_t			size,
 372	int			error,
 373	unsigned		flags)
 374{
 375	struct inode		*inode = file_inode(iocb->ki_filp);
 376	struct xfs_inode	*ip = XFS_I(inode);
 377	loff_t			offset = iocb->ki_pos;
 378	unsigned int		nofs_flag;
 379
 380	trace_xfs_end_io_direct_write(ip, offset, size);
 381
 382	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 383		return -EIO;
 384
 385	if (error)
 386		return error;
 387	if (!size)
 388		return 0;
 389
 390	/*
 391	 * Capture amount written on completion as we can't reliably account
 392	 * for it on submission.
 393	 */
 394	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 395
 396	/*
 397	 * We can allocate memory here while doing writeback on behalf of
 398	 * memory reclaim.  To avoid memory allocation deadlocks set the
 399	 * task-wide nofs context for the following operations.
 400	 */
 401	nofs_flag = memalloc_nofs_save();
 402
 403	if (flags & IOMAP_DIO_COW) {
 404		error = xfs_reflink_end_cow(ip, offset, size);
 405		if (error)
 406			goto out;
 407	}
 408
 409	/*
 410	 * Unwritten conversion updates the in-core isize after extent
 411	 * conversion but before updating the on-disk size. Updating isize any
 412	 * earlier allows a racing dio read to find unwritten extents before
 413	 * they are converted.
 414	 */
 415	if (flags & IOMAP_DIO_UNWRITTEN) {
 416		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 417		goto out;
 418	}
 419
 420	/*
 421	 * We need to update the in-core inode size here so that we don't end up
 422	 * with the on-disk inode size being outside the in-core inode size. We
 423	 * have no other method of updating EOF for AIO, so always do it here
 424	 * if necessary.
 425	 *
 426	 * We need to lock the test/set EOF update as we can be racing with
 427	 * other IO completions here to update the EOF. Failing to serialise
 428	 * here can result in EOF moving backwards and Bad Things Happen when
 429	 * that occurs.
 
 
 
 
 
 
 
 430	 */
 
 
 
 431	spin_lock(&ip->i_flags_lock);
 432	if (offset + size > i_size_read(inode)) {
 433		i_size_write(inode, offset + size);
 434		spin_unlock(&ip->i_flags_lock);
 435		error = xfs_setfilesize(ip, offset, size);
 436	} else {
 437		spin_unlock(&ip->i_flags_lock);
 438	}
 439
 440out:
 441	memalloc_nofs_restore(nofs_flag);
 442	return error;
 443}
 444
 445static const struct iomap_dio_ops xfs_dio_write_ops = {
 446	.end_io		= xfs_dio_write_end_io,
 447};
 448
 449/*
 450 * xfs_file_dio_aio_write - handle direct IO writes
 451 *
 452 * Lock the inode appropriately to prepare for and issue a direct IO write.
 453 * By separating it from the buffered write path we remove all the tricky to
 454 * follow locking changes and looping.
 455 *
 456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 458 * pages are flushed out.
 459 *
 460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 461 * allowing them to be done in parallel with reads and other direct IO writes.
 462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 463 * needs to do sub-block zeroing and that requires serialisation against other
 464 * direct IOs to the same block. In this case we need to serialise the
 465 * submission of the unaligned IOs so that we don't get racing block zeroing in
 466 * the dio layer.  To avoid the problem with aio, we also need to wait for
 467 * outstanding IOs to complete so that unwritten extent conversion is completed
 468 * before we try to map the overlapping block. This is currently implemented by
 469 * hitting it with a big hammer (i.e. inode_dio_wait()).
 470 *
 471 * Returns with locks held indicated by @iolock and errors indicated by
 472 * negative return values.
 473 */
 474STATIC ssize_t
 475xfs_file_dio_aio_write(
 
 476	struct kiocb		*iocb,
 477	struct iov_iter		*from)
 478{
 479	struct file		*file = iocb->ki_filp;
 480	struct address_space	*mapping = file->f_mapping;
 481	struct inode		*inode = mapping->host;
 482	struct xfs_inode	*ip = XFS_I(inode);
 483	struct xfs_mount	*mp = ip->i_mount;
 484	ssize_t			ret = 0;
 485	int			unaligned_io = 0;
 486	int			iolock;
 487	size_t			count = iov_iter_count(from);
 488	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 489
 490	/* DIO must be aligned to device logical sector size */
 491	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 492		return -EINVAL;
 
 
 
 493
 494	/*
 495	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 496	 * the file system block size.  We don't need to consider the EOF
 497	 * extension case here because xfs_file_aio_write_checks() will relock
 498	 * the inode as necessary for EOF zeroing cases and fill out the new
 499	 * inode size as appropriate.
 500	 */
 501	if ((iocb->ki_pos & mp->m_blockmask) ||
 502	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 503		unaligned_io = 1;
 504
 505		/*
 506		 * We can't properly handle unaligned direct I/O to reflink
 507		 * files yet, as we can't unshare a partial block.
 508		 */
 509		if (xfs_is_cow_inode(ip)) {
 510			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 511			return -ENOTBLK;
 512		}
 513		iolock = XFS_IOLOCK_EXCL;
 514	} else {
 515		iolock = XFS_IOLOCK_SHARED;
 516	}
 
 
 
 
 
 
 
 
 517
 518	if (iocb->ki_flags & IOCB_NOWAIT) {
 519		/* unaligned dio always waits, bail */
 520		if (unaligned_io)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521			return -EAGAIN;
 522		if (!xfs_ilock_nowait(ip, iolock))
 523			return -EAGAIN;
 524	} else {
 525		xfs_ilock(ip, iolock);
 526	}
 527
 528	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 529	if (ret)
 530		goto out;
 531	count = iov_iter_count(from);
 532
 533	/*
 534	 * If we are doing unaligned IO, we can't allow any other overlapping IO
 535	 * in-flight at the same time or we risk data corruption. Wait for all
 536	 * other IO to drain before we submit. If the IO is aligned, demote the
 537	 * iolock if we had to take the exclusive lock in
 538	 * xfs_file_aio_write_checks() for other reasons.
 539	 */
 540	if (unaligned_io) {
 541		inode_dio_wait(inode);
 542	} else if (iolock == XFS_IOLOCK_EXCL) {
 543		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 544		iolock = XFS_IOLOCK_SHARED;
 545	}
 546
 547	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 
 
 
 548	/*
 549	 * If unaligned, this is the only IO in-flight. Wait on it before we
 550	 * release the iolock to prevent subsequent overlapping IO.
 
 
 551	 */
 
 
 
 
 552	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 553			   &xfs_dio_write_ops,
 554			   is_sync_kiocb(iocb) || unaligned_io);
 555out:
 556	xfs_iunlock(ip, iolock);
 557
 558	/*
 559	 * No fallback to buffered IO after short writes for XFS, direct I/O
 560	 * will either complete fully or return an error.
 
 561	 */
 562	ASSERT(ret < 0 || ret == count);
 
 
 
 
 
 
 
 
 563	return ret;
 564}
 565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566static noinline ssize_t
 567xfs_file_dax_write(
 568	struct kiocb		*iocb,
 569	struct iov_iter		*from)
 570{
 571	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 572	struct xfs_inode	*ip = XFS_I(inode);
 573	int			iolock = XFS_IOLOCK_EXCL;
 574	ssize_t			ret, error = 0;
 575	size_t			count;
 576	loff_t			pos;
 577
 578	if (iocb->ki_flags & IOCB_NOWAIT) {
 579		if (!xfs_ilock_nowait(ip, iolock))
 580			return -EAGAIN;
 581	} else {
 582		xfs_ilock(ip, iolock);
 583	}
 584
 585	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 586	if (ret)
 587		goto out;
 588
 589	pos = iocb->ki_pos;
 590	count = iov_iter_count(from);
 591
 592	trace_xfs_file_dax_write(ip, count, pos);
 593	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
 594	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 595		i_size_write(inode, iocb->ki_pos);
 596		error = xfs_setfilesize(ip, pos, ret);
 597	}
 598out:
 599	xfs_iunlock(ip, iolock);
 
 600	if (error)
 601		return error;
 602
 603	if (ret > 0) {
 604		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 605
 606		/* Handle various SYNC-type writes */
 607		ret = generic_write_sync(iocb, ret);
 608	}
 609	return ret;
 610}
 611
 612STATIC ssize_t
 613xfs_file_buffered_aio_write(
 614	struct kiocb		*iocb,
 615	struct iov_iter		*from)
 616{
 617	struct file		*file = iocb->ki_filp;
 618	struct address_space	*mapping = file->f_mapping;
 619	struct inode		*inode = mapping->host;
 620	struct xfs_inode	*ip = XFS_I(inode);
 621	ssize_t			ret;
 622	int			enospc = 0;
 623	int			iolock;
 624
 625	if (iocb->ki_flags & IOCB_NOWAIT)
 626		return -EOPNOTSUPP;
 627
 628write_retry:
 629	iolock = XFS_IOLOCK_EXCL;
 630	xfs_ilock(ip, iolock);
 
 
 631
 632	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 633	if (ret)
 634		goto out;
 635
 636	/* We can write back this queue in page reclaim */
 637	current->backing_dev_info = inode_to_bdi(inode);
 638
 639	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 640	ret = iomap_file_buffered_write(iocb, from,
 641			&xfs_buffered_write_iomap_ops);
 642	if (likely(ret >= 0))
 643		iocb->ki_pos += ret;
 644
 645	/*
 646	 * If we hit a space limit, try to free up some lingering preallocated
 647	 * space before returning an error. In the case of ENOSPC, first try to
 648	 * write back all dirty inodes to free up some of the excess reserved
 649	 * metadata space. This reduces the chances that the eofblocks scan
 650	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 651	 * also behaves as a filter to prevent too many eofblocks scans from
 652	 * running at the same time.
 
 653	 */
 654	if (ret == -EDQUOT && !enospc) {
 655		xfs_iunlock(ip, iolock);
 656		enospc = xfs_inode_free_quota_eofblocks(ip);
 657		if (enospc)
 658			goto write_retry;
 659		enospc = xfs_inode_free_quota_cowblocks(ip);
 660		if (enospc)
 661			goto write_retry;
 662		iolock = 0;
 663	} else if (ret == -ENOSPC && !enospc) {
 664		struct xfs_eofblocks eofb = {0};
 665
 666		enospc = 1;
 667		xfs_flush_inodes(ip->i_mount);
 668
 669		xfs_iunlock(ip, iolock);
 670		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 671		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 672		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 673		goto write_retry;
 674	}
 675
 676	current->backing_dev_info = NULL;
 677out:
 678	if (iolock)
 679		xfs_iunlock(ip, iolock);
 680
 681	if (ret > 0) {
 682		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 683		/* Handle various SYNC-type writes */
 684		ret = generic_write_sync(iocb, ret);
 685	}
 686	return ret;
 687}
 688
 689STATIC ssize_t
 690xfs_file_write_iter(
 691	struct kiocb		*iocb,
 692	struct iov_iter		*from)
 693{
 694	struct file		*file = iocb->ki_filp;
 695	struct address_space	*mapping = file->f_mapping;
 696	struct inode		*inode = mapping->host;
 697	struct xfs_inode	*ip = XFS_I(inode);
 698	ssize_t			ret;
 699	size_t			ocount = iov_iter_count(from);
 700
 701	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 702
 703	if (ocount == 0)
 704		return 0;
 705
 706	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 707		return -EIO;
 708
 709	if (IS_DAX(inode))
 710		return xfs_file_dax_write(iocb, from);
 711
 712	if (iocb->ki_flags & IOCB_DIRECT) {
 713		/*
 714		 * Allow a directio write to fall back to a buffered
 715		 * write *only* in the case that we're doing a reflink
 716		 * CoW.  In all other directio scenarios we do not
 717		 * allow an operation to fall back to buffered mode.
 718		 */
 719		ret = xfs_file_dio_aio_write(iocb, from);
 720		if (ret != -ENOTBLK)
 721			return ret;
 722	}
 723
 724	return xfs_file_buffered_aio_write(iocb, from);
 725}
 726
 727static void
 728xfs_wait_dax_page(
 729	struct inode		*inode)
 730{
 731	struct xfs_inode        *ip = XFS_I(inode);
 732
 733	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 734	schedule();
 735	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 736}
 737
 738static int
 739xfs_break_dax_layouts(
 740	struct inode		*inode,
 741	bool			*retry)
 742{
 743	struct page		*page;
 744
 745	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 746
 747	page = dax_layout_busy_page(inode->i_mapping);
 748	if (!page)
 749		return 0;
 750
 751	*retry = true;
 752	return ___wait_var_event(&page->_refcount,
 753			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 754			0, 0, xfs_wait_dax_page(inode));
 755}
 756
 757int
 758xfs_break_layouts(
 759	struct inode		*inode,
 760	uint			*iolock,
 761	enum layout_break_reason reason)
 762{
 763	bool			retry;
 764	int			error;
 765
 766	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 767
 768	do {
 769		retry = false;
 770		switch (reason) {
 771		case BREAK_UNMAP:
 772			error = xfs_break_dax_layouts(inode, &retry);
 773			if (error || retry)
 774				break;
 775			/* fall through */
 776		case BREAK_WRITE:
 777			error = xfs_break_leased_layouts(inode, iolock, &retry);
 778			break;
 779		default:
 780			WARN_ON_ONCE(1);
 781			error = -EINVAL;
 782		}
 783	} while (error == 0 && retry);
 784
 785	return error;
 786}
 787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788#define	XFS_FALLOC_FL_SUPPORTED						\
 789		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 790		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 791		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 792
 793STATIC long
 794xfs_file_fallocate(
 795	struct file		*file,
 796	int			mode,
 797	loff_t			offset,
 798	loff_t			len)
 799{
 800	struct inode		*inode = file_inode(file);
 801	struct xfs_inode	*ip = XFS_I(inode);
 802	long			error;
 803	enum xfs_prealloc_flags	flags = 0;
 804	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 805	loff_t			new_size = 0;
 806	bool			do_file_insert = false;
 807
 808	if (!S_ISREG(inode->i_mode))
 809		return -EINVAL;
 810	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 811		return -EOPNOTSUPP;
 812
 813	xfs_ilock(ip, iolock);
 814	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 815	if (error)
 816		goto out_unlock;
 817
 818	/*
 819	 * Must wait for all AIO to complete before we continue as AIO can
 820	 * change the file size on completion without holding any locks we
 821	 * currently hold. We must do this first because AIO can update both
 822	 * the on disk and in memory inode sizes, and the operations that follow
 823	 * require the in-memory size to be fully up-to-date.
 824	 */
 825	inode_dio_wait(inode);
 826
 827	/*
 828	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
 829	 * the cached range over the first operation we are about to run.
 830	 *
 831	 * We care about zero and collapse here because they both run a hole
 832	 * punch over the range first. Because that can zero data, and the range
 833	 * of invalidation for the shift operations is much larger, we still do
 834	 * the required flush for collapse in xfs_prepare_shift().
 835	 *
 836	 * Insert has the same range requirements as collapse, and we extend the
 837	 * file first which can zero data. Hence insert has the same
 838	 * flush/invalidate requirements as collapse and so they are both
 839	 * handled at the right time by xfs_prepare_shift().
 840	 */
 841	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 842		    FALLOC_FL_COLLAPSE_RANGE)) {
 843		error = xfs_flush_unmap_range(ip, offset, len);
 844		if (error)
 845			goto out_unlock;
 846	}
 847
 
 
 
 
 848	if (mode & FALLOC_FL_PUNCH_HOLE) {
 849		error = xfs_free_file_space(ip, offset, len);
 850		if (error)
 851			goto out_unlock;
 852	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 853		unsigned int blksize_mask = i_blocksize(inode) - 1;
 854
 855		if (offset & blksize_mask || len & blksize_mask) {
 856			error = -EINVAL;
 857			goto out_unlock;
 858		}
 859
 860		/*
 861		 * There is no need to overlap collapse range with EOF,
 862		 * in which case it is effectively a truncate operation
 863		 */
 864		if (offset + len >= i_size_read(inode)) {
 865			error = -EINVAL;
 866			goto out_unlock;
 867		}
 868
 869		new_size = i_size_read(inode) - len;
 870
 871		error = xfs_collapse_file_space(ip, offset, len);
 872		if (error)
 873			goto out_unlock;
 874	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 875		unsigned int	blksize_mask = i_blocksize(inode) - 1;
 876		loff_t		isize = i_size_read(inode);
 877
 878		if (offset & blksize_mask || len & blksize_mask) {
 879			error = -EINVAL;
 880			goto out_unlock;
 881		}
 882
 883		/*
 884		 * New inode size must not exceed ->s_maxbytes, accounting for
 885		 * possible signed overflow.
 886		 */
 887		if (inode->i_sb->s_maxbytes - isize < len) {
 888			error = -EFBIG;
 889			goto out_unlock;
 890		}
 891		new_size = isize + len;
 892
 893		/* Offset should be less than i_size */
 894		if (offset >= isize) {
 895			error = -EINVAL;
 896			goto out_unlock;
 897		}
 898		do_file_insert = true;
 899	} else {
 900		flags |= XFS_PREALLOC_SET;
 901
 902		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 903		    offset + len > i_size_read(inode)) {
 904			new_size = offset + len;
 905			error = inode_newsize_ok(inode, new_size);
 906			if (error)
 907				goto out_unlock;
 908		}
 909
 910		if (mode & FALLOC_FL_ZERO_RANGE) {
 911			/*
 912			 * Punch a hole and prealloc the range.  We use a hole
 913			 * punch rather than unwritten extent conversion for two
 914			 * reasons:
 915			 *
 916			 *   1.) Hole punch handles partial block zeroing for us.
 917			 *   2.) If prealloc returns ENOSPC, the file range is
 918			 *       still zero-valued by virtue of the hole punch.
 919			 */
 920			unsigned int blksize = i_blocksize(inode);
 921
 922			trace_xfs_zero_file_space(ip);
 923
 924			error = xfs_free_file_space(ip, offset, len);
 925			if (error)
 926				goto out_unlock;
 927
 928			len = round_up(offset + len, blksize) -
 929			      round_down(offset, blksize);
 930			offset = round_down(offset, blksize);
 931		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
 932			error = xfs_reflink_unshare(ip, offset, len);
 933			if (error)
 934				goto out_unlock;
 935		} else {
 936			/*
 937			 * If always_cow mode we can't use preallocations and
 938			 * thus should not create them.
 939			 */
 940			if (xfs_is_always_cow_inode(ip)) {
 941				error = -EOPNOTSUPP;
 942				goto out_unlock;
 943			}
 944		}
 945
 946		if (!xfs_is_always_cow_inode(ip)) {
 947			error = xfs_alloc_file_space(ip, offset, len,
 948						     XFS_BMAPI_PREALLOC);
 949			if (error)
 950				goto out_unlock;
 951		}
 952	}
 953
 954	if (file->f_flags & O_DSYNC)
 955		flags |= XFS_PREALLOC_SYNC;
 956
 957	error = xfs_update_prealloc_flags(ip, flags);
 958	if (error)
 959		goto out_unlock;
 960
 961	/* Change file size if needed */
 962	if (new_size) {
 963		struct iattr iattr;
 964
 965		iattr.ia_valid = ATTR_SIZE;
 966		iattr.ia_size = new_size;
 967		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 
 968		if (error)
 969			goto out_unlock;
 970	}
 971
 972	/*
 973	 * Perform hole insertion now that the file size has been
 974	 * updated so that if we crash during the operation we don't
 975	 * leave shifted extents past EOF and hence losing access to
 976	 * the data that is contained within them.
 977	 */
 978	if (do_file_insert)
 979		error = xfs_insert_file_space(ip, offset, len);
 
 
 
 
 
 
 980
 981out_unlock:
 982	xfs_iunlock(ip, iolock);
 983	return error;
 984}
 985
 986STATIC int
 987xfs_file_fadvise(
 988	struct file	*file,
 989	loff_t		start,
 990	loff_t		end,
 991	int		advice)
 992{
 993	struct xfs_inode *ip = XFS_I(file_inode(file));
 994	int ret;
 995	int lockflags = 0;
 996
 997	/*
 998	 * Operations creating pages in page cache need protection from hole
 999	 * punching and similar ops
1000	 */
1001	if (advice == POSIX_FADV_WILLNEED) {
1002		lockflags = XFS_IOLOCK_SHARED;
1003		xfs_ilock(ip, lockflags);
1004	}
1005	ret = generic_fadvise(file, start, end, advice);
1006	if (lockflags)
1007		xfs_iunlock(ip, lockflags);
1008	return ret;
1009}
1010
1011STATIC loff_t
1012xfs_file_remap_range(
1013	struct file		*file_in,
1014	loff_t			pos_in,
1015	struct file		*file_out,
1016	loff_t			pos_out,
1017	loff_t			len,
1018	unsigned int		remap_flags)
1019{
1020	struct inode		*inode_in = file_inode(file_in);
1021	struct xfs_inode	*src = XFS_I(inode_in);
1022	struct inode		*inode_out = file_inode(file_out);
1023	struct xfs_inode	*dest = XFS_I(inode_out);
1024	struct xfs_mount	*mp = src->i_mount;
1025	loff_t			remapped = 0;
1026	xfs_extlen_t		cowextsize;
1027	int			ret;
1028
1029	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1030		return -EINVAL;
1031
1032	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1033		return -EOPNOTSUPP;
1034
1035	if (XFS_FORCED_SHUTDOWN(mp))
1036		return -EIO;
1037
1038	/* Prepare and then clone file data. */
1039	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1040			&len, remap_flags);
1041	if (ret || len == 0)
1042		return ret;
1043
1044	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1045
1046	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1047			&remapped);
1048	if (ret)
1049		goto out_unlock;
1050
1051	/*
1052	 * Carry the cowextsize hint from src to dest if we're sharing the
1053	 * entire source file to the entire destination file, the source file
1054	 * has a cowextsize hint, and the destination file does not.
1055	 */
1056	cowextsize = 0;
1057	if (pos_in == 0 && len == i_size_read(inode_in) &&
1058	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1059	    pos_out == 0 && len >= i_size_read(inode_out) &&
1060	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1061		cowextsize = src->i_d.di_cowextsize;
1062
1063	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1064			remap_flags);
1065	if (ret)
1066		goto out_unlock;
1067
1068	if (mp->m_flags & XFS_MOUNT_WSYNC)
1069		xfs_log_force_inode(dest);
1070out_unlock:
1071	xfs_iunlock2_io_mmap(src, dest);
1072	if (ret)
1073		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1074	return remapped > 0 ? remapped : ret;
1075}
1076
1077STATIC int
1078xfs_file_open(
1079	struct inode	*inode,
1080	struct file	*file)
1081{
1082	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1083		return -EFBIG;
1084	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1085		return -EIO;
1086	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1087	return 0;
1088}
1089
1090STATIC int
1091xfs_dir_open(
1092	struct inode	*inode,
1093	struct file	*file)
1094{
1095	struct xfs_inode *ip = XFS_I(inode);
1096	int		mode;
1097	int		error;
1098
1099	error = xfs_file_open(inode, file);
1100	if (error)
1101		return error;
1102
1103	/*
1104	 * If there are any blocks, read-ahead block 0 as we're almost
1105	 * certain to have the next operation be a read there.
1106	 */
1107	mode = xfs_ilock_data_map_shared(ip);
1108	if (ip->i_df.if_nextents > 0)
1109		error = xfs_dir3_data_readahead(ip, 0, 0);
1110	xfs_iunlock(ip, mode);
1111	return error;
1112}
1113
1114STATIC int
1115xfs_file_release(
1116	struct inode	*inode,
1117	struct file	*filp)
1118{
1119	return xfs_release(XFS_I(inode));
1120}
1121
1122STATIC int
1123xfs_file_readdir(
1124	struct file	*file,
1125	struct dir_context *ctx)
1126{
1127	struct inode	*inode = file_inode(file);
1128	xfs_inode_t	*ip = XFS_I(inode);
1129	size_t		bufsize;
1130
1131	/*
1132	 * The Linux API doesn't pass down the total size of the buffer
1133	 * we read into down to the filesystem.  With the filldir concept
1134	 * it's not needed for correct information, but the XFS dir2 leaf
1135	 * code wants an estimate of the buffer size to calculate it's
1136	 * readahead window and size the buffers used for mapping to
1137	 * physical blocks.
1138	 *
1139	 * Try to give it an estimate that's good enough, maybe at some
1140	 * point we can change the ->readdir prototype to include the
1141	 * buffer size.  For now we use the current glibc buffer size.
1142	 */
1143	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1144
1145	return xfs_readdir(NULL, ip, ctx, bufsize);
1146}
1147
1148STATIC loff_t
1149xfs_file_llseek(
1150	struct file	*file,
1151	loff_t		offset,
1152	int		whence)
1153{
1154	struct inode		*inode = file->f_mapping->host;
1155
1156	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1157		return -EIO;
1158
1159	switch (whence) {
1160	default:
1161		return generic_file_llseek(file, offset, whence);
1162	case SEEK_HOLE:
1163		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1164		break;
1165	case SEEK_DATA:
1166		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1167		break;
1168	}
1169
1170	if (offset < 0)
1171		return offset;
1172	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1173}
1174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175/*
1176 * Locking for serialisation of IO during page faults. This results in a lock
1177 * ordering of:
1178 *
1179 * mmap_lock (MM)
1180 *   sb_start_pagefault(vfs, freeze)
1181 *     i_mmaplock (XFS - truncate serialisation)
1182 *       page_lock (MM)
1183 *         i_lock (XFS - extent map serialisation)
1184 */
1185static vm_fault_t
1186__xfs_filemap_fault(
1187	struct vm_fault		*vmf,
1188	enum page_entry_size	pe_size,
1189	bool			write_fault)
1190{
1191	struct inode		*inode = file_inode(vmf->vma->vm_file);
1192	struct xfs_inode	*ip = XFS_I(inode);
1193	vm_fault_t		ret;
1194
1195	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1196
1197	if (write_fault) {
1198		sb_start_pagefault(inode->i_sb);
1199		file_update_time(vmf->vma->vm_file);
1200	}
1201
1202	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1203	if (IS_DAX(inode)) {
1204		pfn_t pfn;
1205
1206		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1207				(write_fault && !vmf->cow_page) ?
1208				 &xfs_direct_write_iomap_ops :
1209				 &xfs_read_iomap_ops);
1210		if (ret & VM_FAULT_NEEDDSYNC)
1211			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
 
1212	} else {
1213		if (write_fault)
 
1214			ret = iomap_page_mkwrite(vmf,
1215					&xfs_buffered_write_iomap_ops);
1216		else
 
1217			ret = filemap_fault(vmf);
 
1218	}
1219	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1220
1221	if (write_fault)
1222		sb_end_pagefault(inode->i_sb);
1223	return ret;
1224}
1225
1226static inline bool
1227xfs_is_write_fault(
1228	struct vm_fault		*vmf)
1229{
1230	return (vmf->flags & FAULT_FLAG_WRITE) &&
1231	       (vmf->vma->vm_flags & VM_SHARED);
1232}
1233
1234static vm_fault_t
1235xfs_filemap_fault(
1236	struct vm_fault		*vmf)
1237{
1238	/* DAX can shortcut the normal fault path on write faults! */
1239	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1240			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1241			xfs_is_write_fault(vmf));
1242}
1243
1244static vm_fault_t
1245xfs_filemap_huge_fault(
1246	struct vm_fault		*vmf,
1247	enum page_entry_size	pe_size)
1248{
1249	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1250		return VM_FAULT_FALLBACK;
1251
1252	/* DAX can shortcut the normal fault path on write faults! */
1253	return __xfs_filemap_fault(vmf, pe_size,
1254			xfs_is_write_fault(vmf));
1255}
1256
1257static vm_fault_t
1258xfs_filemap_page_mkwrite(
1259	struct vm_fault		*vmf)
1260{
1261	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1262}
1263
1264/*
1265 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1266 * on write faults. In reality, it needs to serialise against truncate and
1267 * prepare memory for writing so handle is as standard write fault.
1268 */
1269static vm_fault_t
1270xfs_filemap_pfn_mkwrite(
1271	struct vm_fault		*vmf)
1272{
1273
1274	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1275}
1276
1277static void
1278xfs_filemap_map_pages(
1279	struct vm_fault		*vmf,
1280	pgoff_t			start_pgoff,
1281	pgoff_t			end_pgoff)
1282{
1283	struct inode		*inode = file_inode(vmf->vma->vm_file);
 
1284
1285	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1286	filemap_map_pages(vmf, start_pgoff, end_pgoff);
1287	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
 
1288}
1289
1290static const struct vm_operations_struct xfs_file_vm_ops = {
1291	.fault		= xfs_filemap_fault,
1292	.huge_fault	= xfs_filemap_huge_fault,
1293	.map_pages	= xfs_filemap_map_pages,
1294	.page_mkwrite	= xfs_filemap_page_mkwrite,
1295	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1296};
1297
1298STATIC int
1299xfs_file_mmap(
1300	struct file		*file,
1301	struct vm_area_struct	*vma)
1302{
1303	struct inode		*inode = file_inode(file);
1304	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1305
1306	/*
1307	 * We don't support synchronous mappings for non-DAX files and
1308	 * for DAX files if underneath dax_device is not synchronous.
1309	 */
1310	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1311		return -EOPNOTSUPP;
1312
1313	file_accessed(file);
1314	vma->vm_ops = &xfs_file_vm_ops;
1315	if (IS_DAX(inode))
1316		vma->vm_flags |= VM_HUGEPAGE;
1317	return 0;
1318}
1319
1320const struct file_operations xfs_file_operations = {
1321	.llseek		= xfs_file_llseek,
1322	.read_iter	= xfs_file_read_iter,
1323	.write_iter	= xfs_file_write_iter,
1324	.splice_read	= generic_file_splice_read,
1325	.splice_write	= iter_file_splice_write,
1326	.iopoll		= iomap_dio_iopoll,
1327	.unlocked_ioctl	= xfs_file_ioctl,
1328#ifdef CONFIG_COMPAT
1329	.compat_ioctl	= xfs_file_compat_ioctl,
1330#endif
1331	.mmap		= xfs_file_mmap,
1332	.mmap_supported_flags = MAP_SYNC,
1333	.open		= xfs_file_open,
1334	.release	= xfs_file_release,
1335	.fsync		= xfs_file_fsync,
1336	.get_unmapped_area = thp_get_unmapped_area,
1337	.fallocate	= xfs_file_fallocate,
1338	.fadvise	= xfs_file_fadvise,
1339	.remap_file_range = xfs_file_remap_range,
1340};
1341
1342const struct file_operations xfs_dir_file_operations = {
1343	.open		= xfs_dir_open,
1344	.read		= generic_read_dir,
1345	.iterate_shared	= xfs_file_readdir,
1346	.llseek		= generic_file_llseek,
1347	.unlocked_ioctl	= xfs_file_ioctl,
1348#ifdef CONFIG_COMPAT
1349	.compat_ioctl	= xfs_file_compat_ioctl,
1350#endif
1351	.fsync		= xfs_dir_fsync,
1352};