Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
18#include "xfs_dir2.h"
19#include "xfs_dir2_priv.h"
20#include "xfs_ioctl.h"
21#include "xfs_trace.h"
22#include "xfs_log.h"
23#include "xfs_icache.h"
24#include "xfs_pnfs.h"
25#include "xfs_iomap.h"
26#include "xfs_reflink.h"
27
28#include <linux/dax.h>
29#include <linux/falloc.h>
30#include <linux/backing-dev.h>
31#include <linux/mman.h>
32#include <linux/fadvise.h>
33#include <linux/mount.h>
34
35static const struct vm_operations_struct xfs_file_vm_ops;
36
37/*
38 * Decide if the given file range is aligned to the size of the fundamental
39 * allocation unit for the file.
40 */
41static bool
42xfs_is_falloc_aligned(
43 struct xfs_inode *ip,
44 loff_t pos,
45 long long int len)
46{
47 struct xfs_mount *mp = ip->i_mount;
48 uint64_t mask;
49
50 if (XFS_IS_REALTIME_INODE(ip)) {
51 if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
52 u64 rextbytes;
53 u32 mod;
54
55 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
56 div_u64_rem(pos, rextbytes, &mod);
57 if (mod)
58 return false;
59 div_u64_rem(len, rextbytes, &mod);
60 return mod == 0;
61 }
62 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
63 } else {
64 mask = mp->m_sb.sb_blocksize - 1;
65 }
66
67 return !((pos | len) & mask);
68}
69
70/*
71 * Fsync operations on directories are much simpler than on regular files,
72 * as there is no file data to flush, and thus also no need for explicit
73 * cache flush operations, and there are no non-transaction metadata updates
74 * on directories either.
75 */
76STATIC int
77xfs_dir_fsync(
78 struct file *file,
79 loff_t start,
80 loff_t end,
81 int datasync)
82{
83 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
84
85 trace_xfs_dir_fsync(ip);
86 return xfs_log_force_inode(ip);
87}
88
89static xfs_csn_t
90xfs_fsync_seq(
91 struct xfs_inode *ip,
92 bool datasync)
93{
94 if (!xfs_ipincount(ip))
95 return 0;
96 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
97 return 0;
98 return ip->i_itemp->ili_commit_seq;
99}
100
101/*
102 * All metadata updates are logged, which means that we just have to flush the
103 * log up to the latest LSN that touched the inode.
104 *
105 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
106 * the log force before we clear the ili_fsync_fields field. This ensures that
107 * we don't get a racing sync operation that does not wait for the metadata to
108 * hit the journal before returning. If we race with clearing ili_fsync_fields,
109 * then all that will happen is the log force will do nothing as the lsn will
110 * already be on disk. We can't race with setting ili_fsync_fields because that
111 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
112 * shared until after the ili_fsync_fields is cleared.
113 */
114static int
115xfs_fsync_flush_log(
116 struct xfs_inode *ip,
117 bool datasync,
118 int *log_flushed)
119{
120 int error = 0;
121 xfs_csn_t seq;
122
123 xfs_ilock(ip, XFS_ILOCK_SHARED);
124 seq = xfs_fsync_seq(ip, datasync);
125 if (seq) {
126 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
127 log_flushed);
128
129 spin_lock(&ip->i_itemp->ili_lock);
130 ip->i_itemp->ili_fsync_fields = 0;
131 spin_unlock(&ip->i_itemp->ili_lock);
132 }
133 xfs_iunlock(ip, XFS_ILOCK_SHARED);
134 return error;
135}
136
137STATIC int
138xfs_file_fsync(
139 struct file *file,
140 loff_t start,
141 loff_t end,
142 int datasync)
143{
144 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
145 struct xfs_mount *mp = ip->i_mount;
146 int error, err2;
147 int log_flushed = 0;
148
149 trace_xfs_file_fsync(ip);
150
151 error = file_write_and_wait_range(file, start, end);
152 if (error)
153 return error;
154
155 if (xfs_is_shutdown(mp))
156 return -EIO;
157
158 xfs_iflags_clear(ip, XFS_ITRUNCATED);
159
160 /*
161 * If we have an RT and/or log subvolume we need to make sure to flush
162 * the write cache the device used for file data first. This is to
163 * ensure newly written file data make it to disk before logging the new
164 * inode size in case of an extending write.
165 */
166 if (XFS_IS_REALTIME_INODE(ip))
167 error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
168 else if (mp->m_logdev_targp != mp->m_ddev_targp)
169 error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
170
171 /*
172 * Any inode that has dirty modifications in the log is pinned. The
173 * racy check here for a pinned inode will not catch modifications
174 * that happen concurrently to the fsync call, but fsync semantics
175 * only require to sync previously completed I/O.
176 */
177 if (xfs_ipincount(ip)) {
178 err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
179 if (err2 && !error)
180 error = err2;
181 }
182
183 /*
184 * If we only have a single device, and the log force about was
185 * a no-op we might have to flush the data device cache here.
186 * This can only happen for fdatasync/O_DSYNC if we were overwriting
187 * an already allocated file and thus do not have any metadata to
188 * commit.
189 */
190 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
191 mp->m_logdev_targp == mp->m_ddev_targp) {
192 err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
193 if (err2 && !error)
194 error = err2;
195 }
196
197 return error;
198}
199
200static int
201xfs_ilock_iocb(
202 struct kiocb *iocb,
203 unsigned int lock_mode)
204{
205 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
206
207 if (iocb->ki_flags & IOCB_NOWAIT) {
208 if (!xfs_ilock_nowait(ip, lock_mode))
209 return -EAGAIN;
210 } else {
211 xfs_ilock(ip, lock_mode);
212 }
213
214 return 0;
215}
216
217STATIC ssize_t
218xfs_file_dio_read(
219 struct kiocb *iocb,
220 struct iov_iter *to)
221{
222 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
223 ssize_t ret;
224
225 trace_xfs_file_direct_read(iocb, to);
226
227 if (!iov_iter_count(to))
228 return 0; /* skip atime */
229
230 file_accessed(iocb->ki_filp);
231
232 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
233 if (ret)
234 return ret;
235 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
236 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
237
238 return ret;
239}
240
241static noinline ssize_t
242xfs_file_dax_read(
243 struct kiocb *iocb,
244 struct iov_iter *to)
245{
246 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
247 ssize_t ret = 0;
248
249 trace_xfs_file_dax_read(iocb, to);
250
251 if (!iov_iter_count(to))
252 return 0; /* skip atime */
253
254 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
255 if (ret)
256 return ret;
257 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
258 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
259
260 file_accessed(iocb->ki_filp);
261 return ret;
262}
263
264STATIC ssize_t
265xfs_file_buffered_read(
266 struct kiocb *iocb,
267 struct iov_iter *to)
268{
269 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
270 ssize_t ret;
271
272 trace_xfs_file_buffered_read(iocb, to);
273
274 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
275 if (ret)
276 return ret;
277 ret = generic_file_read_iter(iocb, to);
278 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
279
280 return ret;
281}
282
283STATIC ssize_t
284xfs_file_read_iter(
285 struct kiocb *iocb,
286 struct iov_iter *to)
287{
288 struct inode *inode = file_inode(iocb->ki_filp);
289 struct xfs_mount *mp = XFS_I(inode)->i_mount;
290 ssize_t ret = 0;
291
292 XFS_STATS_INC(mp, xs_read_calls);
293
294 if (xfs_is_shutdown(mp))
295 return -EIO;
296
297 if (IS_DAX(inode))
298 ret = xfs_file_dax_read(iocb, to);
299 else if (iocb->ki_flags & IOCB_DIRECT)
300 ret = xfs_file_dio_read(iocb, to);
301 else
302 ret = xfs_file_buffered_read(iocb, to);
303
304 if (ret > 0)
305 XFS_STATS_ADD(mp, xs_read_bytes, ret);
306 return ret;
307}
308
309/*
310 * Common pre-write limit and setup checks.
311 *
312 * Called with the iolocked held either shared and exclusive according to
313 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
314 * if called for a direct write beyond i_size.
315 */
316STATIC ssize_t
317xfs_file_write_checks(
318 struct kiocb *iocb,
319 struct iov_iter *from,
320 unsigned int *iolock)
321{
322 struct file *file = iocb->ki_filp;
323 struct inode *inode = file->f_mapping->host;
324 struct xfs_inode *ip = XFS_I(inode);
325 ssize_t error = 0;
326 size_t count = iov_iter_count(from);
327 bool drained_dio = false;
328 loff_t isize;
329
330restart:
331 error = generic_write_checks(iocb, from);
332 if (error <= 0)
333 return error;
334
335 if (iocb->ki_flags & IOCB_NOWAIT) {
336 error = break_layout(inode, false);
337 if (error == -EWOULDBLOCK)
338 error = -EAGAIN;
339 } else {
340 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
341 }
342
343 if (error)
344 return error;
345
346 /*
347 * For changing security info in file_remove_privs() we need i_rwsem
348 * exclusively.
349 */
350 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
351 xfs_iunlock(ip, *iolock);
352 *iolock = XFS_IOLOCK_EXCL;
353 error = xfs_ilock_iocb(iocb, *iolock);
354 if (error) {
355 *iolock = 0;
356 return error;
357 }
358 goto restart;
359 }
360
361 /*
362 * If the offset is beyond the size of the file, we need to zero any
363 * blocks that fall between the existing EOF and the start of this
364 * write. If zeroing is needed and we are currently holding the iolock
365 * shared, we need to update it to exclusive which implies having to
366 * redo all checks before.
367 *
368 * We need to serialise against EOF updates that occur in IO completions
369 * here. We want to make sure that nobody is changing the size while we
370 * do this check until we have placed an IO barrier (i.e. hold the
371 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
372 * spinlock effectively forms a memory barrier once we have the
373 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
374 * hence be able to correctly determine if we need to run zeroing.
375 *
376 * We can do an unlocked check here safely as IO completion can only
377 * extend EOF. Truncate is locked out at this point, so the EOF can
378 * not move backwards, only forwards. Hence we only need to take the
379 * slow path and spin locks when we are at or beyond the current EOF.
380 */
381 if (iocb->ki_pos <= i_size_read(inode))
382 goto out;
383
384 spin_lock(&ip->i_flags_lock);
385 isize = i_size_read(inode);
386 if (iocb->ki_pos > isize) {
387 spin_unlock(&ip->i_flags_lock);
388
389 if (iocb->ki_flags & IOCB_NOWAIT)
390 return -EAGAIN;
391
392 if (!drained_dio) {
393 if (*iolock == XFS_IOLOCK_SHARED) {
394 xfs_iunlock(ip, *iolock);
395 *iolock = XFS_IOLOCK_EXCL;
396 xfs_ilock(ip, *iolock);
397 iov_iter_reexpand(from, count);
398 }
399 /*
400 * We now have an IO submission barrier in place, but
401 * AIO can do EOF updates during IO completion and hence
402 * we now need to wait for all of them to drain. Non-AIO
403 * DIO will have drained before we are given the
404 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
405 * no-op.
406 */
407 inode_dio_wait(inode);
408 drained_dio = true;
409 goto restart;
410 }
411
412 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
413 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
414 if (error)
415 return error;
416 } else
417 spin_unlock(&ip->i_flags_lock);
418
419out:
420 return kiocb_modified(iocb);
421}
422
423static int
424xfs_dio_write_end_io(
425 struct kiocb *iocb,
426 ssize_t size,
427 int error,
428 unsigned flags)
429{
430 struct inode *inode = file_inode(iocb->ki_filp);
431 struct xfs_inode *ip = XFS_I(inode);
432 loff_t offset = iocb->ki_pos;
433 unsigned int nofs_flag;
434
435 trace_xfs_end_io_direct_write(ip, offset, size);
436
437 if (xfs_is_shutdown(ip->i_mount))
438 return -EIO;
439
440 if (error)
441 return error;
442 if (!size)
443 return 0;
444
445 /*
446 * Capture amount written on completion as we can't reliably account
447 * for it on submission.
448 */
449 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
450
451 /*
452 * We can allocate memory here while doing writeback on behalf of
453 * memory reclaim. To avoid memory allocation deadlocks set the
454 * task-wide nofs context for the following operations.
455 */
456 nofs_flag = memalloc_nofs_save();
457
458 if (flags & IOMAP_DIO_COW) {
459 error = xfs_reflink_end_cow(ip, offset, size);
460 if (error)
461 goto out;
462 }
463
464 /*
465 * Unwritten conversion updates the in-core isize after extent
466 * conversion but before updating the on-disk size. Updating isize any
467 * earlier allows a racing dio read to find unwritten extents before
468 * they are converted.
469 */
470 if (flags & IOMAP_DIO_UNWRITTEN) {
471 error = xfs_iomap_write_unwritten(ip, offset, size, true);
472 goto out;
473 }
474
475 /*
476 * We need to update the in-core inode size here so that we don't end up
477 * with the on-disk inode size being outside the in-core inode size. We
478 * have no other method of updating EOF for AIO, so always do it here
479 * if necessary.
480 *
481 * We need to lock the test/set EOF update as we can be racing with
482 * other IO completions here to update the EOF. Failing to serialise
483 * here can result in EOF moving backwards and Bad Things Happen when
484 * that occurs.
485 *
486 * As IO completion only ever extends EOF, we can do an unlocked check
487 * here to avoid taking the spinlock. If we land within the current EOF,
488 * then we do not need to do an extending update at all, and we don't
489 * need to take the lock to check this. If we race with an update moving
490 * EOF, then we'll either still be beyond EOF and need to take the lock,
491 * or we'll be within EOF and we don't need to take it at all.
492 */
493 if (offset + size <= i_size_read(inode))
494 goto out;
495
496 spin_lock(&ip->i_flags_lock);
497 if (offset + size > i_size_read(inode)) {
498 i_size_write(inode, offset + size);
499 spin_unlock(&ip->i_flags_lock);
500 error = xfs_setfilesize(ip, offset, size);
501 } else {
502 spin_unlock(&ip->i_flags_lock);
503 }
504
505out:
506 memalloc_nofs_restore(nofs_flag);
507 return error;
508}
509
510static const struct iomap_dio_ops xfs_dio_write_ops = {
511 .end_io = xfs_dio_write_end_io,
512};
513
514/*
515 * Handle block aligned direct I/O writes
516 */
517static noinline ssize_t
518xfs_file_dio_write_aligned(
519 struct xfs_inode *ip,
520 struct kiocb *iocb,
521 struct iov_iter *from)
522{
523 unsigned int iolock = XFS_IOLOCK_SHARED;
524 ssize_t ret;
525
526 ret = xfs_ilock_iocb(iocb, iolock);
527 if (ret)
528 return ret;
529 ret = xfs_file_write_checks(iocb, from, &iolock);
530 if (ret)
531 goto out_unlock;
532
533 /*
534 * We don't need to hold the IOLOCK exclusively across the IO, so demote
535 * the iolock back to shared if we had to take the exclusive lock in
536 * xfs_file_write_checks() for other reasons.
537 */
538 if (iolock == XFS_IOLOCK_EXCL) {
539 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
540 iolock = XFS_IOLOCK_SHARED;
541 }
542 trace_xfs_file_direct_write(iocb, from);
543 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
544 &xfs_dio_write_ops, 0, NULL, 0);
545out_unlock:
546 if (iolock)
547 xfs_iunlock(ip, iolock);
548 return ret;
549}
550
551/*
552 * Handle block unaligned direct I/O writes
553 *
554 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
555 * them to be done in parallel with reads and other direct I/O writes. However,
556 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
557 * to do sub-block zeroing and that requires serialisation against other direct
558 * I/O to the same block. In this case we need to serialise the submission of
559 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
560 * In the case where sub-block zeroing is not required, we can do concurrent
561 * sub-block dios to the same block successfully.
562 *
563 * Optimistically submit the I/O using the shared lock first, but use the
564 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
565 * if block allocation or partial block zeroing would be required. In that case
566 * we try again with the exclusive lock.
567 */
568static noinline ssize_t
569xfs_file_dio_write_unaligned(
570 struct xfs_inode *ip,
571 struct kiocb *iocb,
572 struct iov_iter *from)
573{
574 size_t isize = i_size_read(VFS_I(ip));
575 size_t count = iov_iter_count(from);
576 unsigned int iolock = XFS_IOLOCK_SHARED;
577 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
578 ssize_t ret;
579
580 /*
581 * Extending writes need exclusivity because of the sub-block zeroing
582 * that the DIO code always does for partial tail blocks beyond EOF, so
583 * don't even bother trying the fast path in this case.
584 */
585 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
586 if (iocb->ki_flags & IOCB_NOWAIT)
587 return -EAGAIN;
588retry_exclusive:
589 iolock = XFS_IOLOCK_EXCL;
590 flags = IOMAP_DIO_FORCE_WAIT;
591 }
592
593 ret = xfs_ilock_iocb(iocb, iolock);
594 if (ret)
595 return ret;
596
597 /*
598 * We can't properly handle unaligned direct I/O to reflink files yet,
599 * as we can't unshare a partial block.
600 */
601 if (xfs_is_cow_inode(ip)) {
602 trace_xfs_reflink_bounce_dio_write(iocb, from);
603 ret = -ENOTBLK;
604 goto out_unlock;
605 }
606
607 ret = xfs_file_write_checks(iocb, from, &iolock);
608 if (ret)
609 goto out_unlock;
610
611 /*
612 * If we are doing exclusive unaligned I/O, this must be the only I/O
613 * in-flight. Otherwise we risk data corruption due to unwritten extent
614 * conversions from the AIO end_io handler. Wait for all other I/O to
615 * drain first.
616 */
617 if (flags & IOMAP_DIO_FORCE_WAIT)
618 inode_dio_wait(VFS_I(ip));
619
620 trace_xfs_file_direct_write(iocb, from);
621 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
622 &xfs_dio_write_ops, flags, NULL, 0);
623
624 /*
625 * Retry unaligned I/O with exclusive blocking semantics if the DIO
626 * layer rejected it for mapping or locking reasons. If we are doing
627 * nonblocking user I/O, propagate the error.
628 */
629 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
630 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
631 xfs_iunlock(ip, iolock);
632 goto retry_exclusive;
633 }
634
635out_unlock:
636 if (iolock)
637 xfs_iunlock(ip, iolock);
638 return ret;
639}
640
641static ssize_t
642xfs_file_dio_write(
643 struct kiocb *iocb,
644 struct iov_iter *from)
645{
646 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
647 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
648 size_t count = iov_iter_count(from);
649
650 /* direct I/O must be aligned to device logical sector size */
651 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
652 return -EINVAL;
653 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
654 return xfs_file_dio_write_unaligned(ip, iocb, from);
655 return xfs_file_dio_write_aligned(ip, iocb, from);
656}
657
658static noinline ssize_t
659xfs_file_dax_write(
660 struct kiocb *iocb,
661 struct iov_iter *from)
662{
663 struct inode *inode = iocb->ki_filp->f_mapping->host;
664 struct xfs_inode *ip = XFS_I(inode);
665 unsigned int iolock = XFS_IOLOCK_EXCL;
666 ssize_t ret, error = 0;
667 loff_t pos;
668
669 ret = xfs_ilock_iocb(iocb, iolock);
670 if (ret)
671 return ret;
672 ret = xfs_file_write_checks(iocb, from, &iolock);
673 if (ret)
674 goto out;
675
676 pos = iocb->ki_pos;
677
678 trace_xfs_file_dax_write(iocb, from);
679 ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
680 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
681 i_size_write(inode, iocb->ki_pos);
682 error = xfs_setfilesize(ip, pos, ret);
683 }
684out:
685 if (iolock)
686 xfs_iunlock(ip, iolock);
687 if (error)
688 return error;
689
690 if (ret > 0) {
691 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
692
693 /* Handle various SYNC-type writes */
694 ret = generic_write_sync(iocb, ret);
695 }
696 return ret;
697}
698
699STATIC ssize_t
700xfs_file_buffered_write(
701 struct kiocb *iocb,
702 struct iov_iter *from)
703{
704 struct inode *inode = iocb->ki_filp->f_mapping->host;
705 struct xfs_inode *ip = XFS_I(inode);
706 ssize_t ret;
707 bool cleared_space = false;
708 unsigned int iolock;
709
710write_retry:
711 iolock = XFS_IOLOCK_EXCL;
712 ret = xfs_ilock_iocb(iocb, iolock);
713 if (ret)
714 return ret;
715
716 ret = xfs_file_write_checks(iocb, from, &iolock);
717 if (ret)
718 goto out;
719
720 /* We can write back this queue in page reclaim */
721 current->backing_dev_info = inode_to_bdi(inode);
722
723 trace_xfs_file_buffered_write(iocb, from);
724 ret = iomap_file_buffered_write(iocb, from,
725 &xfs_buffered_write_iomap_ops);
726 if (likely(ret >= 0))
727 iocb->ki_pos += ret;
728
729 /*
730 * If we hit a space limit, try to free up some lingering preallocated
731 * space before returning an error. In the case of ENOSPC, first try to
732 * write back all dirty inodes to free up some of the excess reserved
733 * metadata space. This reduces the chances that the eofblocks scan
734 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
735 * also behaves as a filter to prevent too many eofblocks scans from
736 * running at the same time. Use a synchronous scan to increase the
737 * effectiveness of the scan.
738 */
739 if (ret == -EDQUOT && !cleared_space) {
740 xfs_iunlock(ip, iolock);
741 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
742 cleared_space = true;
743 goto write_retry;
744 } else if (ret == -ENOSPC && !cleared_space) {
745 struct xfs_icwalk icw = {0};
746
747 cleared_space = true;
748 xfs_flush_inodes(ip->i_mount);
749
750 xfs_iunlock(ip, iolock);
751 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
752 xfs_blockgc_free_space(ip->i_mount, &icw);
753 goto write_retry;
754 }
755
756 current->backing_dev_info = NULL;
757out:
758 if (iolock)
759 xfs_iunlock(ip, iolock);
760
761 if (ret > 0) {
762 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
763 /* Handle various SYNC-type writes */
764 ret = generic_write_sync(iocb, ret);
765 }
766 return ret;
767}
768
769STATIC ssize_t
770xfs_file_write_iter(
771 struct kiocb *iocb,
772 struct iov_iter *from)
773{
774 struct inode *inode = iocb->ki_filp->f_mapping->host;
775 struct xfs_inode *ip = XFS_I(inode);
776 ssize_t ret;
777 size_t ocount = iov_iter_count(from);
778
779 XFS_STATS_INC(ip->i_mount, xs_write_calls);
780
781 if (ocount == 0)
782 return 0;
783
784 if (xfs_is_shutdown(ip->i_mount))
785 return -EIO;
786
787 if (IS_DAX(inode))
788 return xfs_file_dax_write(iocb, from);
789
790 if (iocb->ki_flags & IOCB_DIRECT) {
791 /*
792 * Allow a directio write to fall back to a buffered
793 * write *only* in the case that we're doing a reflink
794 * CoW. In all other directio scenarios we do not
795 * allow an operation to fall back to buffered mode.
796 */
797 ret = xfs_file_dio_write(iocb, from);
798 if (ret != -ENOTBLK)
799 return ret;
800 }
801
802 return xfs_file_buffered_write(iocb, from);
803}
804
805static void
806xfs_wait_dax_page(
807 struct inode *inode)
808{
809 struct xfs_inode *ip = XFS_I(inode);
810
811 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
812 schedule();
813 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
814}
815
816int
817xfs_break_dax_layouts(
818 struct inode *inode,
819 bool *retry)
820{
821 struct page *page;
822
823 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
824
825 page = dax_layout_busy_page(inode->i_mapping);
826 if (!page)
827 return 0;
828
829 *retry = true;
830 return ___wait_var_event(&page->_refcount,
831 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
832 0, 0, xfs_wait_dax_page(inode));
833}
834
835int
836xfs_break_layouts(
837 struct inode *inode,
838 uint *iolock,
839 enum layout_break_reason reason)
840{
841 bool retry;
842 int error;
843
844 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
845
846 do {
847 retry = false;
848 switch (reason) {
849 case BREAK_UNMAP:
850 error = xfs_break_dax_layouts(inode, &retry);
851 if (error || retry)
852 break;
853 fallthrough;
854 case BREAK_WRITE:
855 error = xfs_break_leased_layouts(inode, iolock, &retry);
856 break;
857 default:
858 WARN_ON_ONCE(1);
859 error = -EINVAL;
860 }
861 } while (error == 0 && retry);
862
863 return error;
864}
865
866/* Does this file, inode, or mount want synchronous writes? */
867static inline bool xfs_file_sync_writes(struct file *filp)
868{
869 struct xfs_inode *ip = XFS_I(file_inode(filp));
870
871 if (xfs_has_wsync(ip->i_mount))
872 return true;
873 if (filp->f_flags & (__O_SYNC | O_DSYNC))
874 return true;
875 if (IS_SYNC(file_inode(filp)))
876 return true;
877
878 return false;
879}
880
881#define XFS_FALLOC_FL_SUPPORTED \
882 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
883 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
884 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
885
886STATIC long
887xfs_file_fallocate(
888 struct file *file,
889 int mode,
890 loff_t offset,
891 loff_t len)
892{
893 struct inode *inode = file_inode(file);
894 struct xfs_inode *ip = XFS_I(inode);
895 long error;
896 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
897 loff_t new_size = 0;
898 bool do_file_insert = false;
899
900 if (!S_ISREG(inode->i_mode))
901 return -EINVAL;
902 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
903 return -EOPNOTSUPP;
904
905 xfs_ilock(ip, iolock);
906 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
907 if (error)
908 goto out_unlock;
909
910 /*
911 * Must wait for all AIO to complete before we continue as AIO can
912 * change the file size on completion without holding any locks we
913 * currently hold. We must do this first because AIO can update both
914 * the on disk and in memory inode sizes, and the operations that follow
915 * require the in-memory size to be fully up-to-date.
916 */
917 inode_dio_wait(inode);
918
919 /*
920 * Now AIO and DIO has drained we flush and (if necessary) invalidate
921 * the cached range over the first operation we are about to run.
922 *
923 * We care about zero and collapse here because they both run a hole
924 * punch over the range first. Because that can zero data, and the range
925 * of invalidation for the shift operations is much larger, we still do
926 * the required flush for collapse in xfs_prepare_shift().
927 *
928 * Insert has the same range requirements as collapse, and we extend the
929 * file first which can zero data. Hence insert has the same
930 * flush/invalidate requirements as collapse and so they are both
931 * handled at the right time by xfs_prepare_shift().
932 */
933 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
934 FALLOC_FL_COLLAPSE_RANGE)) {
935 error = xfs_flush_unmap_range(ip, offset, len);
936 if (error)
937 goto out_unlock;
938 }
939
940 error = file_modified(file);
941 if (error)
942 goto out_unlock;
943
944 if (mode & FALLOC_FL_PUNCH_HOLE) {
945 error = xfs_free_file_space(ip, offset, len);
946 if (error)
947 goto out_unlock;
948 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
949 if (!xfs_is_falloc_aligned(ip, offset, len)) {
950 error = -EINVAL;
951 goto out_unlock;
952 }
953
954 /*
955 * There is no need to overlap collapse range with EOF,
956 * in which case it is effectively a truncate operation
957 */
958 if (offset + len >= i_size_read(inode)) {
959 error = -EINVAL;
960 goto out_unlock;
961 }
962
963 new_size = i_size_read(inode) - len;
964
965 error = xfs_collapse_file_space(ip, offset, len);
966 if (error)
967 goto out_unlock;
968 } else if (mode & FALLOC_FL_INSERT_RANGE) {
969 loff_t isize = i_size_read(inode);
970
971 if (!xfs_is_falloc_aligned(ip, offset, len)) {
972 error = -EINVAL;
973 goto out_unlock;
974 }
975
976 /*
977 * New inode size must not exceed ->s_maxbytes, accounting for
978 * possible signed overflow.
979 */
980 if (inode->i_sb->s_maxbytes - isize < len) {
981 error = -EFBIG;
982 goto out_unlock;
983 }
984 new_size = isize + len;
985
986 /* Offset should be less than i_size */
987 if (offset >= isize) {
988 error = -EINVAL;
989 goto out_unlock;
990 }
991 do_file_insert = true;
992 } else {
993 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
994 offset + len > i_size_read(inode)) {
995 new_size = offset + len;
996 error = inode_newsize_ok(inode, new_size);
997 if (error)
998 goto out_unlock;
999 }
1000
1001 if (mode & FALLOC_FL_ZERO_RANGE) {
1002 /*
1003 * Punch a hole and prealloc the range. We use a hole
1004 * punch rather than unwritten extent conversion for two
1005 * reasons:
1006 *
1007 * 1.) Hole punch handles partial block zeroing for us.
1008 * 2.) If prealloc returns ENOSPC, the file range is
1009 * still zero-valued by virtue of the hole punch.
1010 */
1011 unsigned int blksize = i_blocksize(inode);
1012
1013 trace_xfs_zero_file_space(ip);
1014
1015 error = xfs_free_file_space(ip, offset, len);
1016 if (error)
1017 goto out_unlock;
1018
1019 len = round_up(offset + len, blksize) -
1020 round_down(offset, blksize);
1021 offset = round_down(offset, blksize);
1022 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1023 error = xfs_reflink_unshare(ip, offset, len);
1024 if (error)
1025 goto out_unlock;
1026 } else {
1027 /*
1028 * If always_cow mode we can't use preallocations and
1029 * thus should not create them.
1030 */
1031 if (xfs_is_always_cow_inode(ip)) {
1032 error = -EOPNOTSUPP;
1033 goto out_unlock;
1034 }
1035 }
1036
1037 if (!xfs_is_always_cow_inode(ip)) {
1038 error = xfs_alloc_file_space(ip, offset, len);
1039 if (error)
1040 goto out_unlock;
1041 }
1042 }
1043
1044 /* Change file size if needed */
1045 if (new_size) {
1046 struct iattr iattr;
1047
1048 iattr.ia_valid = ATTR_SIZE;
1049 iattr.ia_size = new_size;
1050 error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1051 file_dentry(file), &iattr);
1052 if (error)
1053 goto out_unlock;
1054 }
1055
1056 /*
1057 * Perform hole insertion now that the file size has been
1058 * updated so that if we crash during the operation we don't
1059 * leave shifted extents past EOF and hence losing access to
1060 * the data that is contained within them.
1061 */
1062 if (do_file_insert) {
1063 error = xfs_insert_file_space(ip, offset, len);
1064 if (error)
1065 goto out_unlock;
1066 }
1067
1068 if (xfs_file_sync_writes(file))
1069 error = xfs_log_force_inode(ip);
1070
1071out_unlock:
1072 xfs_iunlock(ip, iolock);
1073 return error;
1074}
1075
1076STATIC int
1077xfs_file_fadvise(
1078 struct file *file,
1079 loff_t start,
1080 loff_t end,
1081 int advice)
1082{
1083 struct xfs_inode *ip = XFS_I(file_inode(file));
1084 int ret;
1085 int lockflags = 0;
1086
1087 /*
1088 * Operations creating pages in page cache need protection from hole
1089 * punching and similar ops
1090 */
1091 if (advice == POSIX_FADV_WILLNEED) {
1092 lockflags = XFS_IOLOCK_SHARED;
1093 xfs_ilock(ip, lockflags);
1094 }
1095 ret = generic_fadvise(file, start, end, advice);
1096 if (lockflags)
1097 xfs_iunlock(ip, lockflags);
1098 return ret;
1099}
1100
1101STATIC loff_t
1102xfs_file_remap_range(
1103 struct file *file_in,
1104 loff_t pos_in,
1105 struct file *file_out,
1106 loff_t pos_out,
1107 loff_t len,
1108 unsigned int remap_flags)
1109{
1110 struct inode *inode_in = file_inode(file_in);
1111 struct xfs_inode *src = XFS_I(inode_in);
1112 struct inode *inode_out = file_inode(file_out);
1113 struct xfs_inode *dest = XFS_I(inode_out);
1114 struct xfs_mount *mp = src->i_mount;
1115 loff_t remapped = 0;
1116 xfs_extlen_t cowextsize;
1117 int ret;
1118
1119 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1120 return -EINVAL;
1121
1122 if (!xfs_has_reflink(mp))
1123 return -EOPNOTSUPP;
1124
1125 if (xfs_is_shutdown(mp))
1126 return -EIO;
1127
1128 /* Prepare and then clone file data. */
1129 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1130 &len, remap_flags);
1131 if (ret || len == 0)
1132 return ret;
1133
1134 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1135
1136 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1137 &remapped);
1138 if (ret)
1139 goto out_unlock;
1140
1141 /*
1142 * Carry the cowextsize hint from src to dest if we're sharing the
1143 * entire source file to the entire destination file, the source file
1144 * has a cowextsize hint, and the destination file does not.
1145 */
1146 cowextsize = 0;
1147 if (pos_in == 0 && len == i_size_read(inode_in) &&
1148 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1149 pos_out == 0 && len >= i_size_read(inode_out) &&
1150 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1151 cowextsize = src->i_cowextsize;
1152
1153 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1154 remap_flags);
1155 if (ret)
1156 goto out_unlock;
1157
1158 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1159 xfs_log_force_inode(dest);
1160out_unlock:
1161 xfs_iunlock2_io_mmap(src, dest);
1162 if (ret)
1163 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1164 return remapped > 0 ? remapped : ret;
1165}
1166
1167STATIC int
1168xfs_file_open(
1169 struct inode *inode,
1170 struct file *file)
1171{
1172 if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1173 return -EIO;
1174 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
1175 return generic_file_open(inode, file);
1176}
1177
1178STATIC int
1179xfs_dir_open(
1180 struct inode *inode,
1181 struct file *file)
1182{
1183 struct xfs_inode *ip = XFS_I(inode);
1184 unsigned int mode;
1185 int error;
1186
1187 error = xfs_file_open(inode, file);
1188 if (error)
1189 return error;
1190
1191 /*
1192 * If there are any blocks, read-ahead block 0 as we're almost
1193 * certain to have the next operation be a read there.
1194 */
1195 mode = xfs_ilock_data_map_shared(ip);
1196 if (ip->i_df.if_nextents > 0)
1197 error = xfs_dir3_data_readahead(ip, 0, 0);
1198 xfs_iunlock(ip, mode);
1199 return error;
1200}
1201
1202STATIC int
1203xfs_file_release(
1204 struct inode *inode,
1205 struct file *filp)
1206{
1207 return xfs_release(XFS_I(inode));
1208}
1209
1210STATIC int
1211xfs_file_readdir(
1212 struct file *file,
1213 struct dir_context *ctx)
1214{
1215 struct inode *inode = file_inode(file);
1216 xfs_inode_t *ip = XFS_I(inode);
1217 size_t bufsize;
1218
1219 /*
1220 * The Linux API doesn't pass down the total size of the buffer
1221 * we read into down to the filesystem. With the filldir concept
1222 * it's not needed for correct information, but the XFS dir2 leaf
1223 * code wants an estimate of the buffer size to calculate it's
1224 * readahead window and size the buffers used for mapping to
1225 * physical blocks.
1226 *
1227 * Try to give it an estimate that's good enough, maybe at some
1228 * point we can change the ->readdir prototype to include the
1229 * buffer size. For now we use the current glibc buffer size.
1230 */
1231 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1232
1233 return xfs_readdir(NULL, ip, ctx, bufsize);
1234}
1235
1236STATIC loff_t
1237xfs_file_llseek(
1238 struct file *file,
1239 loff_t offset,
1240 int whence)
1241{
1242 struct inode *inode = file->f_mapping->host;
1243
1244 if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1245 return -EIO;
1246
1247 switch (whence) {
1248 default:
1249 return generic_file_llseek(file, offset, whence);
1250 case SEEK_HOLE:
1251 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1252 break;
1253 case SEEK_DATA:
1254 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1255 break;
1256 }
1257
1258 if (offset < 0)
1259 return offset;
1260 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1261}
1262
1263#ifdef CONFIG_FS_DAX
1264static inline vm_fault_t
1265xfs_dax_fault(
1266 struct vm_fault *vmf,
1267 enum page_entry_size pe_size,
1268 bool write_fault,
1269 pfn_t *pfn)
1270{
1271 return dax_iomap_fault(vmf, pe_size, pfn, NULL,
1272 (write_fault && !vmf->cow_page) ?
1273 &xfs_dax_write_iomap_ops :
1274 &xfs_read_iomap_ops);
1275}
1276#else
1277static inline vm_fault_t
1278xfs_dax_fault(
1279 struct vm_fault *vmf,
1280 enum page_entry_size pe_size,
1281 bool write_fault,
1282 pfn_t *pfn)
1283{
1284 ASSERT(0);
1285 return VM_FAULT_SIGBUS;
1286}
1287#endif
1288
1289/*
1290 * Locking for serialisation of IO during page faults. This results in a lock
1291 * ordering of:
1292 *
1293 * mmap_lock (MM)
1294 * sb_start_pagefault(vfs, freeze)
1295 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1296 * page_lock (MM)
1297 * i_lock (XFS - extent map serialisation)
1298 */
1299static vm_fault_t
1300__xfs_filemap_fault(
1301 struct vm_fault *vmf,
1302 enum page_entry_size pe_size,
1303 bool write_fault)
1304{
1305 struct inode *inode = file_inode(vmf->vma->vm_file);
1306 struct xfs_inode *ip = XFS_I(inode);
1307 vm_fault_t ret;
1308
1309 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1310
1311 if (write_fault) {
1312 sb_start_pagefault(inode->i_sb);
1313 file_update_time(vmf->vma->vm_file);
1314 }
1315
1316 if (IS_DAX(inode)) {
1317 pfn_t pfn;
1318
1319 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1320 ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn);
1321 if (ret & VM_FAULT_NEEDDSYNC)
1322 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1323 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1324 } else {
1325 if (write_fault) {
1326 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1327 ret = iomap_page_mkwrite(vmf,
1328 &xfs_page_mkwrite_iomap_ops);
1329 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1330 } else {
1331 ret = filemap_fault(vmf);
1332 }
1333 }
1334
1335 if (write_fault)
1336 sb_end_pagefault(inode->i_sb);
1337 return ret;
1338}
1339
1340static inline bool
1341xfs_is_write_fault(
1342 struct vm_fault *vmf)
1343{
1344 return (vmf->flags & FAULT_FLAG_WRITE) &&
1345 (vmf->vma->vm_flags & VM_SHARED);
1346}
1347
1348static vm_fault_t
1349xfs_filemap_fault(
1350 struct vm_fault *vmf)
1351{
1352 /* DAX can shortcut the normal fault path on write faults! */
1353 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1354 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1355 xfs_is_write_fault(vmf));
1356}
1357
1358static vm_fault_t
1359xfs_filemap_huge_fault(
1360 struct vm_fault *vmf,
1361 enum page_entry_size pe_size)
1362{
1363 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1364 return VM_FAULT_FALLBACK;
1365
1366 /* DAX can shortcut the normal fault path on write faults! */
1367 return __xfs_filemap_fault(vmf, pe_size,
1368 xfs_is_write_fault(vmf));
1369}
1370
1371static vm_fault_t
1372xfs_filemap_page_mkwrite(
1373 struct vm_fault *vmf)
1374{
1375 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1376}
1377
1378/*
1379 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1380 * on write faults. In reality, it needs to serialise against truncate and
1381 * prepare memory for writing so handle is as standard write fault.
1382 */
1383static vm_fault_t
1384xfs_filemap_pfn_mkwrite(
1385 struct vm_fault *vmf)
1386{
1387
1388 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1389}
1390
1391static vm_fault_t
1392xfs_filemap_map_pages(
1393 struct vm_fault *vmf,
1394 pgoff_t start_pgoff,
1395 pgoff_t end_pgoff)
1396{
1397 struct inode *inode = file_inode(vmf->vma->vm_file);
1398 vm_fault_t ret;
1399
1400 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1401 ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1402 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1403 return ret;
1404}
1405
1406static const struct vm_operations_struct xfs_file_vm_ops = {
1407 .fault = xfs_filemap_fault,
1408 .huge_fault = xfs_filemap_huge_fault,
1409 .map_pages = xfs_filemap_map_pages,
1410 .page_mkwrite = xfs_filemap_page_mkwrite,
1411 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1412};
1413
1414STATIC int
1415xfs_file_mmap(
1416 struct file *file,
1417 struct vm_area_struct *vma)
1418{
1419 struct inode *inode = file_inode(file);
1420 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1421
1422 /*
1423 * We don't support synchronous mappings for non-DAX files and
1424 * for DAX files if underneath dax_device is not synchronous.
1425 */
1426 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1427 return -EOPNOTSUPP;
1428
1429 file_accessed(file);
1430 vma->vm_ops = &xfs_file_vm_ops;
1431 if (IS_DAX(inode))
1432 vma->vm_flags |= VM_HUGEPAGE;
1433 return 0;
1434}
1435
1436const struct file_operations xfs_file_operations = {
1437 .llseek = xfs_file_llseek,
1438 .read_iter = xfs_file_read_iter,
1439 .write_iter = xfs_file_write_iter,
1440 .splice_read = generic_file_splice_read,
1441 .splice_write = iter_file_splice_write,
1442 .iopoll = iocb_bio_iopoll,
1443 .unlocked_ioctl = xfs_file_ioctl,
1444#ifdef CONFIG_COMPAT
1445 .compat_ioctl = xfs_file_compat_ioctl,
1446#endif
1447 .mmap = xfs_file_mmap,
1448 .mmap_supported_flags = MAP_SYNC,
1449 .open = xfs_file_open,
1450 .release = xfs_file_release,
1451 .fsync = xfs_file_fsync,
1452 .get_unmapped_area = thp_get_unmapped_area,
1453 .fallocate = xfs_file_fallocate,
1454 .fadvise = xfs_file_fadvise,
1455 .remap_file_range = xfs_file_remap_range,
1456};
1457
1458const struct file_operations xfs_dir_file_operations = {
1459 .open = xfs_dir_open,
1460 .read = generic_read_dir,
1461 .iterate_shared = xfs_file_readdir,
1462 .llseek = generic_file_llseek,
1463 .unlocked_ioctl = xfs_file_ioctl,
1464#ifdef CONFIG_COMPAT
1465 .compat_ioctl = xfs_file_compat_ioctl,
1466#endif
1467 .fsync = xfs_dir_fsync,
1468};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
18#include "xfs_dir2.h"
19#include "xfs_dir2_priv.h"
20#include "xfs_ioctl.h"
21#include "xfs_trace.h"
22#include "xfs_log.h"
23#include "xfs_icache.h"
24#include "xfs_pnfs.h"
25#include "xfs_iomap.h"
26#include "xfs_reflink.h"
27
28#include <linux/falloc.h>
29#include <linux/backing-dev.h>
30#include <linux/mman.h>
31#include <linux/fadvise.h>
32
33static const struct vm_operations_struct xfs_file_vm_ops;
34
35int
36xfs_update_prealloc_flags(
37 struct xfs_inode *ip,
38 enum xfs_prealloc_flags flags)
39{
40 struct xfs_trans *tp;
41 int error;
42
43 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
44 0, 0, 0, &tp);
45 if (error)
46 return error;
47
48 xfs_ilock(ip, XFS_ILOCK_EXCL);
49 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
50
51 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
52 VFS_I(ip)->i_mode &= ~S_ISUID;
53 if (VFS_I(ip)->i_mode & S_IXGRP)
54 VFS_I(ip)->i_mode &= ~S_ISGID;
55 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
56 }
57
58 if (flags & XFS_PREALLOC_SET)
59 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
60 if (flags & XFS_PREALLOC_CLEAR)
61 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
62
63 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
64 if (flags & XFS_PREALLOC_SYNC)
65 xfs_trans_set_sync(tp);
66 return xfs_trans_commit(tp);
67}
68
69/*
70 * Fsync operations on directories are much simpler than on regular files,
71 * as there is no file data to flush, and thus also no need for explicit
72 * cache flush operations, and there are no non-transaction metadata updates
73 * on directories either.
74 */
75STATIC int
76xfs_dir_fsync(
77 struct file *file,
78 loff_t start,
79 loff_t end,
80 int datasync)
81{
82 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
83 struct xfs_mount *mp = ip->i_mount;
84 xfs_lsn_t lsn = 0;
85
86 trace_xfs_dir_fsync(ip);
87
88 xfs_ilock(ip, XFS_ILOCK_SHARED);
89 if (xfs_ipincount(ip))
90 lsn = ip->i_itemp->ili_last_lsn;
91 xfs_iunlock(ip, XFS_ILOCK_SHARED);
92
93 if (!lsn)
94 return 0;
95 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
96}
97
98STATIC int
99xfs_file_fsync(
100 struct file *file,
101 loff_t start,
102 loff_t end,
103 int datasync)
104{
105 struct inode *inode = file->f_mapping->host;
106 struct xfs_inode *ip = XFS_I(inode);
107 struct xfs_mount *mp = ip->i_mount;
108 int error = 0;
109 int log_flushed = 0;
110 xfs_lsn_t lsn = 0;
111
112 trace_xfs_file_fsync(ip);
113
114 error = file_write_and_wait_range(file, start, end);
115 if (error)
116 return error;
117
118 if (XFS_FORCED_SHUTDOWN(mp))
119 return -EIO;
120
121 xfs_iflags_clear(ip, XFS_ITRUNCATED);
122
123 /*
124 * If we have an RT and/or log subvolume we need to make sure to flush
125 * the write cache the device used for file data first. This is to
126 * ensure newly written file data make it to disk before logging the new
127 * inode size in case of an extending write.
128 */
129 if (XFS_IS_REALTIME_INODE(ip))
130 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
131 else if (mp->m_logdev_targp != mp->m_ddev_targp)
132 xfs_blkdev_issue_flush(mp->m_ddev_targp);
133
134 /*
135 * All metadata updates are logged, which means that we just have to
136 * flush the log up to the latest LSN that touched the inode. If we have
137 * concurrent fsync/fdatasync() calls, we need them to all block on the
138 * log force before we clear the ili_fsync_fields field. This ensures
139 * that we don't get a racing sync operation that does not wait for the
140 * metadata to hit the journal before returning. If we race with
141 * clearing the ili_fsync_fields, then all that will happen is the log
142 * force will do nothing as the lsn will already be on disk. We can't
143 * race with setting ili_fsync_fields because that is done under
144 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
145 * until after the ili_fsync_fields is cleared.
146 */
147 xfs_ilock(ip, XFS_ILOCK_SHARED);
148 if (xfs_ipincount(ip)) {
149 if (!datasync ||
150 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
151 lsn = ip->i_itemp->ili_last_lsn;
152 }
153
154 if (lsn) {
155 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
156 ip->i_itemp->ili_fsync_fields = 0;
157 }
158 xfs_iunlock(ip, XFS_ILOCK_SHARED);
159
160 /*
161 * If we only have a single device, and the log force about was
162 * a no-op we might have to flush the data device cache here.
163 * This can only happen for fdatasync/O_DSYNC if we were overwriting
164 * an already allocated file and thus do not have any metadata to
165 * commit.
166 */
167 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
168 mp->m_logdev_targp == mp->m_ddev_targp)
169 xfs_blkdev_issue_flush(mp->m_ddev_targp);
170
171 return error;
172}
173
174STATIC ssize_t
175xfs_file_dio_aio_read(
176 struct kiocb *iocb,
177 struct iov_iter *to)
178{
179 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
180 size_t count = iov_iter_count(to);
181 ssize_t ret;
182
183 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
184
185 if (!count)
186 return 0; /* skip atime */
187
188 file_accessed(iocb->ki_filp);
189
190 xfs_ilock(ip, XFS_IOLOCK_SHARED);
191 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
192 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
193
194 return ret;
195}
196
197static noinline ssize_t
198xfs_file_dax_read(
199 struct kiocb *iocb,
200 struct iov_iter *to)
201{
202 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
203 size_t count = iov_iter_count(to);
204 ssize_t ret = 0;
205
206 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
207
208 if (!count)
209 return 0; /* skip atime */
210
211 if (iocb->ki_flags & IOCB_NOWAIT) {
212 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
213 return -EAGAIN;
214 } else {
215 xfs_ilock(ip, XFS_IOLOCK_SHARED);
216 }
217
218 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
219 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
220
221 file_accessed(iocb->ki_filp);
222 return ret;
223}
224
225STATIC ssize_t
226xfs_file_buffered_aio_read(
227 struct kiocb *iocb,
228 struct iov_iter *to)
229{
230 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
231 ssize_t ret;
232
233 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
234
235 if (iocb->ki_flags & IOCB_NOWAIT) {
236 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
237 return -EAGAIN;
238 } else {
239 xfs_ilock(ip, XFS_IOLOCK_SHARED);
240 }
241 ret = generic_file_read_iter(iocb, to);
242 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
243
244 return ret;
245}
246
247STATIC ssize_t
248xfs_file_read_iter(
249 struct kiocb *iocb,
250 struct iov_iter *to)
251{
252 struct inode *inode = file_inode(iocb->ki_filp);
253 struct xfs_mount *mp = XFS_I(inode)->i_mount;
254 ssize_t ret = 0;
255
256 XFS_STATS_INC(mp, xs_read_calls);
257
258 if (XFS_FORCED_SHUTDOWN(mp))
259 return -EIO;
260
261 if (IS_DAX(inode))
262 ret = xfs_file_dax_read(iocb, to);
263 else if (iocb->ki_flags & IOCB_DIRECT)
264 ret = xfs_file_dio_aio_read(iocb, to);
265 else
266 ret = xfs_file_buffered_aio_read(iocb, to);
267
268 if (ret > 0)
269 XFS_STATS_ADD(mp, xs_read_bytes, ret);
270 return ret;
271}
272
273/*
274 * Common pre-write limit and setup checks.
275 *
276 * Called with the iolocked held either shared and exclusive according to
277 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
278 * if called for a direct write beyond i_size.
279 */
280STATIC ssize_t
281xfs_file_aio_write_checks(
282 struct kiocb *iocb,
283 struct iov_iter *from,
284 int *iolock)
285{
286 struct file *file = iocb->ki_filp;
287 struct inode *inode = file->f_mapping->host;
288 struct xfs_inode *ip = XFS_I(inode);
289 ssize_t error = 0;
290 size_t count = iov_iter_count(from);
291 bool drained_dio = false;
292 loff_t isize;
293
294restart:
295 error = generic_write_checks(iocb, from);
296 if (error <= 0)
297 return error;
298
299 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
300 if (error)
301 return error;
302
303 /*
304 * For changing security info in file_remove_privs() we need i_rwsem
305 * exclusively.
306 */
307 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
308 xfs_iunlock(ip, *iolock);
309 *iolock = XFS_IOLOCK_EXCL;
310 xfs_ilock(ip, *iolock);
311 goto restart;
312 }
313 /*
314 * If the offset is beyond the size of the file, we need to zero any
315 * blocks that fall between the existing EOF and the start of this
316 * write. If zeroing is needed and we are currently holding the
317 * iolock shared, we need to update it to exclusive which implies
318 * having to redo all checks before.
319 *
320 * We need to serialise against EOF updates that occur in IO
321 * completions here. We want to make sure that nobody is changing the
322 * size while we do this check until we have placed an IO barrier (i.e.
323 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
324 * The spinlock effectively forms a memory barrier once we have the
325 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
326 * and hence be able to correctly determine if we need to run zeroing.
327 */
328 spin_lock(&ip->i_flags_lock);
329 isize = i_size_read(inode);
330 if (iocb->ki_pos > isize) {
331 spin_unlock(&ip->i_flags_lock);
332 if (!drained_dio) {
333 if (*iolock == XFS_IOLOCK_SHARED) {
334 xfs_iunlock(ip, *iolock);
335 *iolock = XFS_IOLOCK_EXCL;
336 xfs_ilock(ip, *iolock);
337 iov_iter_reexpand(from, count);
338 }
339 /*
340 * We now have an IO submission barrier in place, but
341 * AIO can do EOF updates during IO completion and hence
342 * we now need to wait for all of them to drain. Non-AIO
343 * DIO will have drained before we are given the
344 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
345 * no-op.
346 */
347 inode_dio_wait(inode);
348 drained_dio = true;
349 goto restart;
350 }
351
352 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
353 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
354 NULL, &xfs_iomap_ops);
355 if (error)
356 return error;
357 } else
358 spin_unlock(&ip->i_flags_lock);
359
360 /*
361 * Updating the timestamps will grab the ilock again from
362 * xfs_fs_dirty_inode, so we have to call it after dropping the
363 * lock above. Eventually we should look into a way to avoid
364 * the pointless lock roundtrip.
365 */
366 return file_modified(file);
367}
368
369static int
370xfs_dio_write_end_io(
371 struct kiocb *iocb,
372 ssize_t size,
373 int error,
374 unsigned flags)
375{
376 struct inode *inode = file_inode(iocb->ki_filp);
377 struct xfs_inode *ip = XFS_I(inode);
378 loff_t offset = iocb->ki_pos;
379 unsigned int nofs_flag;
380
381 trace_xfs_end_io_direct_write(ip, offset, size);
382
383 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
384 return -EIO;
385
386 if (error)
387 return error;
388 if (!size)
389 return 0;
390
391 /*
392 * Capture amount written on completion as we can't reliably account
393 * for it on submission.
394 */
395 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
396
397 /*
398 * We can allocate memory here while doing writeback on behalf of
399 * memory reclaim. To avoid memory allocation deadlocks set the
400 * task-wide nofs context for the following operations.
401 */
402 nofs_flag = memalloc_nofs_save();
403
404 if (flags & IOMAP_DIO_COW) {
405 error = xfs_reflink_end_cow(ip, offset, size);
406 if (error)
407 goto out;
408 }
409
410 /*
411 * Unwritten conversion updates the in-core isize after extent
412 * conversion but before updating the on-disk size. Updating isize any
413 * earlier allows a racing dio read to find unwritten extents before
414 * they are converted.
415 */
416 if (flags & IOMAP_DIO_UNWRITTEN) {
417 error = xfs_iomap_write_unwritten(ip, offset, size, true);
418 goto out;
419 }
420
421 /*
422 * We need to update the in-core inode size here so that we don't end up
423 * with the on-disk inode size being outside the in-core inode size. We
424 * have no other method of updating EOF for AIO, so always do it here
425 * if necessary.
426 *
427 * We need to lock the test/set EOF update as we can be racing with
428 * other IO completions here to update the EOF. Failing to serialise
429 * here can result in EOF moving backwards and Bad Things Happen when
430 * that occurs.
431 */
432 spin_lock(&ip->i_flags_lock);
433 if (offset + size > i_size_read(inode)) {
434 i_size_write(inode, offset + size);
435 spin_unlock(&ip->i_flags_lock);
436 error = xfs_setfilesize(ip, offset, size);
437 } else {
438 spin_unlock(&ip->i_flags_lock);
439 }
440
441out:
442 memalloc_nofs_restore(nofs_flag);
443 return error;
444}
445
446static const struct iomap_dio_ops xfs_dio_write_ops = {
447 .end_io = xfs_dio_write_end_io,
448};
449
450/*
451 * xfs_file_dio_aio_write - handle direct IO writes
452 *
453 * Lock the inode appropriately to prepare for and issue a direct IO write.
454 * By separating it from the buffered write path we remove all the tricky to
455 * follow locking changes and looping.
456 *
457 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
458 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
459 * pages are flushed out.
460 *
461 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
462 * allowing them to be done in parallel with reads and other direct IO writes.
463 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
464 * needs to do sub-block zeroing and that requires serialisation against other
465 * direct IOs to the same block. In this case we need to serialise the
466 * submission of the unaligned IOs so that we don't get racing block zeroing in
467 * the dio layer. To avoid the problem with aio, we also need to wait for
468 * outstanding IOs to complete so that unwritten extent conversion is completed
469 * before we try to map the overlapping block. This is currently implemented by
470 * hitting it with a big hammer (i.e. inode_dio_wait()).
471 *
472 * Returns with locks held indicated by @iolock and errors indicated by
473 * negative return values.
474 */
475STATIC ssize_t
476xfs_file_dio_aio_write(
477 struct kiocb *iocb,
478 struct iov_iter *from)
479{
480 struct file *file = iocb->ki_filp;
481 struct address_space *mapping = file->f_mapping;
482 struct inode *inode = mapping->host;
483 struct xfs_inode *ip = XFS_I(inode);
484 struct xfs_mount *mp = ip->i_mount;
485 ssize_t ret = 0;
486 int unaligned_io = 0;
487 int iolock;
488 size_t count = iov_iter_count(from);
489 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
490 mp->m_rtdev_targp : mp->m_ddev_targp;
491
492 /* DIO must be aligned to device logical sector size */
493 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
494 return -EINVAL;
495
496 /*
497 * Don't take the exclusive iolock here unless the I/O is unaligned to
498 * the file system block size. We don't need to consider the EOF
499 * extension case here because xfs_file_aio_write_checks() will relock
500 * the inode as necessary for EOF zeroing cases and fill out the new
501 * inode size as appropriate.
502 */
503 if ((iocb->ki_pos & mp->m_blockmask) ||
504 ((iocb->ki_pos + count) & mp->m_blockmask)) {
505 unaligned_io = 1;
506
507 /*
508 * We can't properly handle unaligned direct I/O to reflink
509 * files yet, as we can't unshare a partial block.
510 */
511 if (xfs_is_cow_inode(ip)) {
512 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
513 return -EREMCHG;
514 }
515 iolock = XFS_IOLOCK_EXCL;
516 } else {
517 iolock = XFS_IOLOCK_SHARED;
518 }
519
520 if (iocb->ki_flags & IOCB_NOWAIT) {
521 /* unaligned dio always waits, bail */
522 if (unaligned_io)
523 return -EAGAIN;
524 if (!xfs_ilock_nowait(ip, iolock))
525 return -EAGAIN;
526 } else {
527 xfs_ilock(ip, iolock);
528 }
529
530 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
531 if (ret)
532 goto out;
533 count = iov_iter_count(from);
534
535 /*
536 * If we are doing unaligned IO, we can't allow any other overlapping IO
537 * in-flight at the same time or we risk data corruption. Wait for all
538 * other IO to drain before we submit. If the IO is aligned, demote the
539 * iolock if we had to take the exclusive lock in
540 * xfs_file_aio_write_checks() for other reasons.
541 */
542 if (unaligned_io) {
543 inode_dio_wait(inode);
544 } else if (iolock == XFS_IOLOCK_EXCL) {
545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
546 iolock = XFS_IOLOCK_SHARED;
547 }
548
549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
550 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops);
551
552 /*
553 * If unaligned, this is the only IO in-flight. If it has not yet
554 * completed, wait on it before we release the iolock to prevent
555 * subsequent overlapping IO.
556 */
557 if (ret == -EIOCBQUEUED && unaligned_io)
558 inode_dio_wait(inode);
559out:
560 xfs_iunlock(ip, iolock);
561
562 /*
563 * No fallback to buffered IO on errors for XFS, direct IO will either
564 * complete fully or fail.
565 */
566 ASSERT(ret < 0 || ret == count);
567 return ret;
568}
569
570static noinline ssize_t
571xfs_file_dax_write(
572 struct kiocb *iocb,
573 struct iov_iter *from)
574{
575 struct inode *inode = iocb->ki_filp->f_mapping->host;
576 struct xfs_inode *ip = XFS_I(inode);
577 int iolock = XFS_IOLOCK_EXCL;
578 ssize_t ret, error = 0;
579 size_t count;
580 loff_t pos;
581
582 if (iocb->ki_flags & IOCB_NOWAIT) {
583 if (!xfs_ilock_nowait(ip, iolock))
584 return -EAGAIN;
585 } else {
586 xfs_ilock(ip, iolock);
587 }
588
589 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
590 if (ret)
591 goto out;
592
593 pos = iocb->ki_pos;
594 count = iov_iter_count(from);
595
596 trace_xfs_file_dax_write(ip, count, pos);
597 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
598 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
599 i_size_write(inode, iocb->ki_pos);
600 error = xfs_setfilesize(ip, pos, ret);
601 }
602out:
603 xfs_iunlock(ip, iolock);
604 if (error)
605 return error;
606
607 if (ret > 0) {
608 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
609
610 /* Handle various SYNC-type writes */
611 ret = generic_write_sync(iocb, ret);
612 }
613 return ret;
614}
615
616STATIC ssize_t
617xfs_file_buffered_aio_write(
618 struct kiocb *iocb,
619 struct iov_iter *from)
620{
621 struct file *file = iocb->ki_filp;
622 struct address_space *mapping = file->f_mapping;
623 struct inode *inode = mapping->host;
624 struct xfs_inode *ip = XFS_I(inode);
625 ssize_t ret;
626 int enospc = 0;
627 int iolock;
628
629 if (iocb->ki_flags & IOCB_NOWAIT)
630 return -EOPNOTSUPP;
631
632write_retry:
633 iolock = XFS_IOLOCK_EXCL;
634 xfs_ilock(ip, iolock);
635
636 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
637 if (ret)
638 goto out;
639
640 /* We can write back this queue in page reclaim */
641 current->backing_dev_info = inode_to_bdi(inode);
642
643 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
644 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
645 if (likely(ret >= 0))
646 iocb->ki_pos += ret;
647
648 /*
649 * If we hit a space limit, try to free up some lingering preallocated
650 * space before returning an error. In the case of ENOSPC, first try to
651 * write back all dirty inodes to free up some of the excess reserved
652 * metadata space. This reduces the chances that the eofblocks scan
653 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
654 * also behaves as a filter to prevent too many eofblocks scans from
655 * running at the same time.
656 */
657 if (ret == -EDQUOT && !enospc) {
658 xfs_iunlock(ip, iolock);
659 enospc = xfs_inode_free_quota_eofblocks(ip);
660 if (enospc)
661 goto write_retry;
662 enospc = xfs_inode_free_quota_cowblocks(ip);
663 if (enospc)
664 goto write_retry;
665 iolock = 0;
666 } else if (ret == -ENOSPC && !enospc) {
667 struct xfs_eofblocks eofb = {0};
668
669 enospc = 1;
670 xfs_flush_inodes(ip->i_mount);
671
672 xfs_iunlock(ip, iolock);
673 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
674 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
675 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
676 goto write_retry;
677 }
678
679 current->backing_dev_info = NULL;
680out:
681 if (iolock)
682 xfs_iunlock(ip, iolock);
683
684 if (ret > 0) {
685 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
686 /* Handle various SYNC-type writes */
687 ret = generic_write_sync(iocb, ret);
688 }
689 return ret;
690}
691
692STATIC ssize_t
693xfs_file_write_iter(
694 struct kiocb *iocb,
695 struct iov_iter *from)
696{
697 struct file *file = iocb->ki_filp;
698 struct address_space *mapping = file->f_mapping;
699 struct inode *inode = mapping->host;
700 struct xfs_inode *ip = XFS_I(inode);
701 ssize_t ret;
702 size_t ocount = iov_iter_count(from);
703
704 XFS_STATS_INC(ip->i_mount, xs_write_calls);
705
706 if (ocount == 0)
707 return 0;
708
709 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
710 return -EIO;
711
712 if (IS_DAX(inode))
713 return xfs_file_dax_write(iocb, from);
714
715 if (iocb->ki_flags & IOCB_DIRECT) {
716 /*
717 * Allow a directio write to fall back to a buffered
718 * write *only* in the case that we're doing a reflink
719 * CoW. In all other directio scenarios we do not
720 * allow an operation to fall back to buffered mode.
721 */
722 ret = xfs_file_dio_aio_write(iocb, from);
723 if (ret != -EREMCHG)
724 return ret;
725 }
726
727 return xfs_file_buffered_aio_write(iocb, from);
728}
729
730static void
731xfs_wait_dax_page(
732 struct inode *inode)
733{
734 struct xfs_inode *ip = XFS_I(inode);
735
736 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
737 schedule();
738 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
739}
740
741static int
742xfs_break_dax_layouts(
743 struct inode *inode,
744 bool *retry)
745{
746 struct page *page;
747
748 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
749
750 page = dax_layout_busy_page(inode->i_mapping);
751 if (!page)
752 return 0;
753
754 *retry = true;
755 return ___wait_var_event(&page->_refcount,
756 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
757 0, 0, xfs_wait_dax_page(inode));
758}
759
760int
761xfs_break_layouts(
762 struct inode *inode,
763 uint *iolock,
764 enum layout_break_reason reason)
765{
766 bool retry;
767 int error;
768
769 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
770
771 do {
772 retry = false;
773 switch (reason) {
774 case BREAK_UNMAP:
775 error = xfs_break_dax_layouts(inode, &retry);
776 if (error || retry)
777 break;
778 /* fall through */
779 case BREAK_WRITE:
780 error = xfs_break_leased_layouts(inode, iolock, &retry);
781 break;
782 default:
783 WARN_ON_ONCE(1);
784 error = -EINVAL;
785 }
786 } while (error == 0 && retry);
787
788 return error;
789}
790
791#define XFS_FALLOC_FL_SUPPORTED \
792 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
793 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
794 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
795
796STATIC long
797xfs_file_fallocate(
798 struct file *file,
799 int mode,
800 loff_t offset,
801 loff_t len)
802{
803 struct inode *inode = file_inode(file);
804 struct xfs_inode *ip = XFS_I(inode);
805 long error;
806 enum xfs_prealloc_flags flags = 0;
807 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
808 loff_t new_size = 0;
809 bool do_file_insert = false;
810
811 if (!S_ISREG(inode->i_mode))
812 return -EINVAL;
813 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
814 return -EOPNOTSUPP;
815
816 xfs_ilock(ip, iolock);
817 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
818 if (error)
819 goto out_unlock;
820
821 if (mode & FALLOC_FL_PUNCH_HOLE) {
822 error = xfs_free_file_space(ip, offset, len);
823 if (error)
824 goto out_unlock;
825 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
826 unsigned int blksize_mask = i_blocksize(inode) - 1;
827
828 if (offset & blksize_mask || len & blksize_mask) {
829 error = -EINVAL;
830 goto out_unlock;
831 }
832
833 /*
834 * There is no need to overlap collapse range with EOF,
835 * in which case it is effectively a truncate operation
836 */
837 if (offset + len >= i_size_read(inode)) {
838 error = -EINVAL;
839 goto out_unlock;
840 }
841
842 new_size = i_size_read(inode) - len;
843
844 error = xfs_collapse_file_space(ip, offset, len);
845 if (error)
846 goto out_unlock;
847 } else if (mode & FALLOC_FL_INSERT_RANGE) {
848 unsigned int blksize_mask = i_blocksize(inode) - 1;
849 loff_t isize = i_size_read(inode);
850
851 if (offset & blksize_mask || len & blksize_mask) {
852 error = -EINVAL;
853 goto out_unlock;
854 }
855
856 /*
857 * New inode size must not exceed ->s_maxbytes, accounting for
858 * possible signed overflow.
859 */
860 if (inode->i_sb->s_maxbytes - isize < len) {
861 error = -EFBIG;
862 goto out_unlock;
863 }
864 new_size = isize + len;
865
866 /* Offset should be less than i_size */
867 if (offset >= isize) {
868 error = -EINVAL;
869 goto out_unlock;
870 }
871 do_file_insert = true;
872 } else {
873 flags |= XFS_PREALLOC_SET;
874
875 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
876 offset + len > i_size_read(inode)) {
877 new_size = offset + len;
878 error = inode_newsize_ok(inode, new_size);
879 if (error)
880 goto out_unlock;
881 }
882
883 if (mode & FALLOC_FL_ZERO_RANGE) {
884 error = xfs_zero_file_space(ip, offset, len);
885 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
886 error = xfs_reflink_unshare(ip, offset, len);
887 if (error)
888 goto out_unlock;
889
890 if (!xfs_is_always_cow_inode(ip)) {
891 error = xfs_alloc_file_space(ip, offset, len,
892 XFS_BMAPI_PREALLOC);
893 }
894 } else {
895 /*
896 * If always_cow mode we can't use preallocations and
897 * thus should not create them.
898 */
899 if (xfs_is_always_cow_inode(ip)) {
900 error = -EOPNOTSUPP;
901 goto out_unlock;
902 }
903
904 error = xfs_alloc_file_space(ip, offset, len,
905 XFS_BMAPI_PREALLOC);
906 }
907 if (error)
908 goto out_unlock;
909 }
910
911 if (file->f_flags & O_DSYNC)
912 flags |= XFS_PREALLOC_SYNC;
913
914 error = xfs_update_prealloc_flags(ip, flags);
915 if (error)
916 goto out_unlock;
917
918 /* Change file size if needed */
919 if (new_size) {
920 struct iattr iattr;
921
922 iattr.ia_valid = ATTR_SIZE;
923 iattr.ia_size = new_size;
924 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
925 if (error)
926 goto out_unlock;
927 }
928
929 /*
930 * Perform hole insertion now that the file size has been
931 * updated so that if we crash during the operation we don't
932 * leave shifted extents past EOF and hence losing access to
933 * the data that is contained within them.
934 */
935 if (do_file_insert)
936 error = xfs_insert_file_space(ip, offset, len);
937
938out_unlock:
939 xfs_iunlock(ip, iolock);
940 return error;
941}
942
943STATIC int
944xfs_file_fadvise(
945 struct file *file,
946 loff_t start,
947 loff_t end,
948 int advice)
949{
950 struct xfs_inode *ip = XFS_I(file_inode(file));
951 int ret;
952 int lockflags = 0;
953
954 /*
955 * Operations creating pages in page cache need protection from hole
956 * punching and similar ops
957 */
958 if (advice == POSIX_FADV_WILLNEED) {
959 lockflags = XFS_IOLOCK_SHARED;
960 xfs_ilock(ip, lockflags);
961 }
962 ret = generic_fadvise(file, start, end, advice);
963 if (lockflags)
964 xfs_iunlock(ip, lockflags);
965 return ret;
966}
967
968STATIC loff_t
969xfs_file_remap_range(
970 struct file *file_in,
971 loff_t pos_in,
972 struct file *file_out,
973 loff_t pos_out,
974 loff_t len,
975 unsigned int remap_flags)
976{
977 struct inode *inode_in = file_inode(file_in);
978 struct xfs_inode *src = XFS_I(inode_in);
979 struct inode *inode_out = file_inode(file_out);
980 struct xfs_inode *dest = XFS_I(inode_out);
981 struct xfs_mount *mp = src->i_mount;
982 loff_t remapped = 0;
983 xfs_extlen_t cowextsize;
984 int ret;
985
986 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
987 return -EINVAL;
988
989 if (!xfs_sb_version_hasreflink(&mp->m_sb))
990 return -EOPNOTSUPP;
991
992 if (XFS_FORCED_SHUTDOWN(mp))
993 return -EIO;
994
995 /* Prepare and then clone file data. */
996 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
997 &len, remap_flags);
998 if (ret < 0 || len == 0)
999 return ret;
1000
1001 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1002
1003 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1004 &remapped);
1005 if (ret)
1006 goto out_unlock;
1007
1008 /*
1009 * Carry the cowextsize hint from src to dest if we're sharing the
1010 * entire source file to the entire destination file, the source file
1011 * has a cowextsize hint, and the destination file does not.
1012 */
1013 cowextsize = 0;
1014 if (pos_in == 0 && len == i_size_read(inode_in) &&
1015 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1016 pos_out == 0 && len >= i_size_read(inode_out) &&
1017 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1018 cowextsize = src->i_d.di_cowextsize;
1019
1020 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1021 remap_flags);
1022
1023out_unlock:
1024 xfs_reflink_remap_unlock(file_in, file_out);
1025 if (ret)
1026 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1027 return remapped > 0 ? remapped : ret;
1028}
1029
1030STATIC int
1031xfs_file_open(
1032 struct inode *inode,
1033 struct file *file)
1034{
1035 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1036 return -EFBIG;
1037 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1038 return -EIO;
1039 file->f_mode |= FMODE_NOWAIT;
1040 return 0;
1041}
1042
1043STATIC int
1044xfs_dir_open(
1045 struct inode *inode,
1046 struct file *file)
1047{
1048 struct xfs_inode *ip = XFS_I(inode);
1049 int mode;
1050 int error;
1051
1052 error = xfs_file_open(inode, file);
1053 if (error)
1054 return error;
1055
1056 /*
1057 * If there are any blocks, read-ahead block 0 as we're almost
1058 * certain to have the next operation be a read there.
1059 */
1060 mode = xfs_ilock_data_map_shared(ip);
1061 if (ip->i_d.di_nextents > 0)
1062 error = xfs_dir3_data_readahead(ip, 0, -1);
1063 xfs_iunlock(ip, mode);
1064 return error;
1065}
1066
1067STATIC int
1068xfs_file_release(
1069 struct inode *inode,
1070 struct file *filp)
1071{
1072 return xfs_release(XFS_I(inode));
1073}
1074
1075STATIC int
1076xfs_file_readdir(
1077 struct file *file,
1078 struct dir_context *ctx)
1079{
1080 struct inode *inode = file_inode(file);
1081 xfs_inode_t *ip = XFS_I(inode);
1082 size_t bufsize;
1083
1084 /*
1085 * The Linux API doesn't pass down the total size of the buffer
1086 * we read into down to the filesystem. With the filldir concept
1087 * it's not needed for correct information, but the XFS dir2 leaf
1088 * code wants an estimate of the buffer size to calculate it's
1089 * readahead window and size the buffers used for mapping to
1090 * physical blocks.
1091 *
1092 * Try to give it an estimate that's good enough, maybe at some
1093 * point we can change the ->readdir prototype to include the
1094 * buffer size. For now we use the current glibc buffer size.
1095 */
1096 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1097
1098 return xfs_readdir(NULL, ip, ctx, bufsize);
1099}
1100
1101STATIC loff_t
1102xfs_file_llseek(
1103 struct file *file,
1104 loff_t offset,
1105 int whence)
1106{
1107 struct inode *inode = file->f_mapping->host;
1108
1109 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1110 return -EIO;
1111
1112 switch (whence) {
1113 default:
1114 return generic_file_llseek(file, offset, whence);
1115 case SEEK_HOLE:
1116 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1117 break;
1118 case SEEK_DATA:
1119 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1120 break;
1121 }
1122
1123 if (offset < 0)
1124 return offset;
1125 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1126}
1127
1128/*
1129 * Locking for serialisation of IO during page faults. This results in a lock
1130 * ordering of:
1131 *
1132 * mmap_sem (MM)
1133 * sb_start_pagefault(vfs, freeze)
1134 * i_mmaplock (XFS - truncate serialisation)
1135 * page_lock (MM)
1136 * i_lock (XFS - extent map serialisation)
1137 */
1138static vm_fault_t
1139__xfs_filemap_fault(
1140 struct vm_fault *vmf,
1141 enum page_entry_size pe_size,
1142 bool write_fault)
1143{
1144 struct inode *inode = file_inode(vmf->vma->vm_file);
1145 struct xfs_inode *ip = XFS_I(inode);
1146 vm_fault_t ret;
1147
1148 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1149
1150 if (write_fault) {
1151 sb_start_pagefault(inode->i_sb);
1152 file_update_time(vmf->vma->vm_file);
1153 }
1154
1155 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1156 if (IS_DAX(inode)) {
1157 pfn_t pfn;
1158
1159 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1160 if (ret & VM_FAULT_NEEDDSYNC)
1161 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1162 } else {
1163 if (write_fault)
1164 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1165 else
1166 ret = filemap_fault(vmf);
1167 }
1168 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1169
1170 if (write_fault)
1171 sb_end_pagefault(inode->i_sb);
1172 return ret;
1173}
1174
1175static vm_fault_t
1176xfs_filemap_fault(
1177 struct vm_fault *vmf)
1178{
1179 /* DAX can shortcut the normal fault path on write faults! */
1180 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1181 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1182 (vmf->flags & FAULT_FLAG_WRITE));
1183}
1184
1185static vm_fault_t
1186xfs_filemap_huge_fault(
1187 struct vm_fault *vmf,
1188 enum page_entry_size pe_size)
1189{
1190 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1191 return VM_FAULT_FALLBACK;
1192
1193 /* DAX can shortcut the normal fault path on write faults! */
1194 return __xfs_filemap_fault(vmf, pe_size,
1195 (vmf->flags & FAULT_FLAG_WRITE));
1196}
1197
1198static vm_fault_t
1199xfs_filemap_page_mkwrite(
1200 struct vm_fault *vmf)
1201{
1202 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1203}
1204
1205/*
1206 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1207 * on write faults. In reality, it needs to serialise against truncate and
1208 * prepare memory for writing so handle is as standard write fault.
1209 */
1210static vm_fault_t
1211xfs_filemap_pfn_mkwrite(
1212 struct vm_fault *vmf)
1213{
1214
1215 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1216}
1217
1218static const struct vm_operations_struct xfs_file_vm_ops = {
1219 .fault = xfs_filemap_fault,
1220 .huge_fault = xfs_filemap_huge_fault,
1221 .map_pages = filemap_map_pages,
1222 .page_mkwrite = xfs_filemap_page_mkwrite,
1223 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1224};
1225
1226STATIC int
1227xfs_file_mmap(
1228 struct file *filp,
1229 struct vm_area_struct *vma)
1230{
1231 struct dax_device *dax_dev;
1232
1233 dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
1234 /*
1235 * We don't support synchronous mappings for non-DAX files and
1236 * for DAX files if underneath dax_device is not synchronous.
1237 */
1238 if (!daxdev_mapping_supported(vma, dax_dev))
1239 return -EOPNOTSUPP;
1240
1241 file_accessed(filp);
1242 vma->vm_ops = &xfs_file_vm_ops;
1243 if (IS_DAX(file_inode(filp)))
1244 vma->vm_flags |= VM_HUGEPAGE;
1245 return 0;
1246}
1247
1248const struct file_operations xfs_file_operations = {
1249 .llseek = xfs_file_llseek,
1250 .read_iter = xfs_file_read_iter,
1251 .write_iter = xfs_file_write_iter,
1252 .splice_read = generic_file_splice_read,
1253 .splice_write = iter_file_splice_write,
1254 .iopoll = iomap_dio_iopoll,
1255 .unlocked_ioctl = xfs_file_ioctl,
1256#ifdef CONFIG_COMPAT
1257 .compat_ioctl = xfs_file_compat_ioctl,
1258#endif
1259 .mmap = xfs_file_mmap,
1260 .mmap_supported_flags = MAP_SYNC,
1261 .open = xfs_file_open,
1262 .release = xfs_file_release,
1263 .fsync = xfs_file_fsync,
1264 .get_unmapped_area = thp_get_unmapped_area,
1265 .fallocate = xfs_file_fallocate,
1266 .fadvise = xfs_file_fadvise,
1267 .remap_file_range = xfs_file_remap_range,
1268};
1269
1270const struct file_operations xfs_dir_file_operations = {
1271 .open = xfs_dir_open,
1272 .read = generic_read_dir,
1273 .iterate_shared = xfs_file_readdir,
1274 .llseek = generic_file_llseek,
1275 .unlocked_ioctl = xfs_file_ioctl,
1276#ifdef CONFIG_COMPAT
1277 .compat_ioctl = xfs_file_compat_ioctl,
1278#endif
1279 .fsync = xfs_dir_fsync,
1280};