Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
 
  12#include "xfs_mount.h"
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
 
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
  28#include <linux/dax.h>
 
  29#include <linux/falloc.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mman.h>
  32#include <linux/fadvise.h>
  33#include <linux/mount.h>
  34
  35static const struct vm_operations_struct xfs_file_vm_ops;
  36
  37/*
  38 * Decide if the given file range is aligned to the size of the fundamental
  39 * allocation unit for the file.
  40 */
  41static bool
  42xfs_is_falloc_aligned(
  43	struct xfs_inode	*ip,
  44	loff_t			pos,
  45	long long int		len)
  46{
  47	struct xfs_mount	*mp = ip->i_mount;
  48	uint64_t		mask;
 
 
  49
  50	if (XFS_IS_REALTIME_INODE(ip)) {
  51		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
  52			u64	rextbytes;
  53			u32	mod;
  54
  55			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
  56			div_u64_rem(pos, rextbytes, &mod);
  57			if (mod)
  58				return false;
  59			div_u64_rem(len, rextbytes, &mod);
  60			return mod == 0;
  61		}
  62		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
  63	} else {
  64		mask = mp->m_sb.sb_blocksize - 1;
  65	}
  66
  67	return !((pos | len) & mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68}
  69
  70/*
  71 * Fsync operations on directories are much simpler than on regular files,
  72 * as there is no file data to flush, and thus also no need for explicit
  73 * cache flush operations, and there are no non-transaction metadata updates
  74 * on directories either.
  75 */
  76STATIC int
  77xfs_dir_fsync(
  78	struct file		*file,
  79	loff_t			start,
  80	loff_t			end,
  81	int			datasync)
  82{
  83	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 
  84
  85	trace_xfs_dir_fsync(ip);
  86	return xfs_log_force_inode(ip);
  87}
  88
  89static xfs_csn_t
  90xfs_fsync_seq(
  91	struct xfs_inode	*ip,
  92	bool			datasync)
  93{
  94	if (!xfs_ipincount(ip))
  95		return 0;
  96	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
  97		return 0;
  98	return ip->i_itemp->ili_commit_seq;
  99}
 100
 101/*
 102 * All metadata updates are logged, which means that we just have to flush the
 103 * log up to the latest LSN that touched the inode.
 104 *
 105 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
 106 * the log force before we clear the ili_fsync_fields field. This ensures that
 107 * we don't get a racing sync operation that does not wait for the metadata to
 108 * hit the journal before returning.  If we race with clearing ili_fsync_fields,
 109 * then all that will happen is the log force will do nothing as the lsn will
 110 * already be on disk.  We can't race with setting ili_fsync_fields because that
 111 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
 112 * shared until after the ili_fsync_fields is cleared.
 113 */
 114static  int
 115xfs_fsync_flush_log(
 116	struct xfs_inode	*ip,
 117	bool			datasync,
 118	int			*log_flushed)
 119{
 120	int			error = 0;
 121	xfs_csn_t		seq;
 122
 123	xfs_ilock(ip, XFS_ILOCK_SHARED);
 124	seq = xfs_fsync_seq(ip, datasync);
 125	if (seq) {
 126		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
 127					  log_flushed);
 128
 129		spin_lock(&ip->i_itemp->ili_lock);
 130		ip->i_itemp->ili_fsync_fields = 0;
 131		spin_unlock(&ip->i_itemp->ili_lock);
 132	}
 133	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 134	return error;
 
 
 
 135}
 136
 137STATIC int
 138xfs_file_fsync(
 139	struct file		*file,
 140	loff_t			start,
 141	loff_t			end,
 142	int			datasync)
 143{
 144	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 145	struct xfs_mount	*mp = ip->i_mount;
 146	int			error, err2;
 147	int			log_flushed = 0;
 
 148
 149	trace_xfs_file_fsync(ip);
 150
 151	error = file_write_and_wait_range(file, start, end);
 152	if (error)
 153		return error;
 154
 155	if (xfs_is_shutdown(mp))
 156		return -EIO;
 157
 158	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 159
 160	/*
 161	 * If we have an RT and/or log subvolume we need to make sure to flush
 162	 * the write cache the device used for file data first.  This is to
 163	 * ensure newly written file data make it to disk before logging the new
 164	 * inode size in case of an extending write.
 165	 */
 166	if (XFS_IS_REALTIME_INODE(ip))
 167		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
 168	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 169		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 
 
 
 170
 171	/*
 172	 * Any inode that has dirty modifications in the log is pinned.  The
 173	 * racy check here for a pinned inode will not catch modifications
 174	 * that happen concurrently to the fsync call, but fsync semantics
 175	 * only require to sync previously completed I/O.
 176	 */
 
 177	if (xfs_ipincount(ip)) {
 178		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
 179		if (err2 && !error)
 180			error = err2;
 181	}
 
 
 
 
 182
 183	/*
 184	 * If we only have a single device, and the log force about was
 185	 * a no-op we might have to flush the data device cache here.
 186	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 187	 * an already allocated file and thus do not have any metadata to
 188	 * commit.
 189	 */
 190	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 191	    mp->m_logdev_targp == mp->m_ddev_targp) {
 192		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 193		if (err2 && !error)
 194			error = err2;
 195	}
 196
 197	return error;
 198}
 199
 200static int
 201xfs_ilock_iocb(
 202	struct kiocb		*iocb,
 203	unsigned int		lock_mode)
 204{
 205	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 206
 207	if (iocb->ki_flags & IOCB_NOWAIT) {
 208		if (!xfs_ilock_nowait(ip, lock_mode))
 209			return -EAGAIN;
 210	} else {
 211		xfs_ilock(ip, lock_mode);
 212	}
 213
 214	return 0;
 215}
 216
 217STATIC ssize_t
 218xfs_file_dio_read(
 219	struct kiocb		*iocb,
 220	struct iov_iter		*to)
 
 
 221{
 222	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 223	ssize_t			ret;
 
 
 
 
 
 
 224
 225	trace_xfs_file_direct_read(iocb, to);
 226
 227	if (!iov_iter_count(to))
 228		return 0; /* skip atime */
 229
 230	file_accessed(iocb->ki_filp);
 
 
 
 231
 232	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 233	if (ret)
 234		return ret;
 235	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
 236	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 237
 238	return ret;
 239}
 
 
 
 
 
 
 
 
 
 240
 241static noinline ssize_t
 242xfs_file_dax_read(
 243	struct kiocb		*iocb,
 244	struct iov_iter		*to)
 245{
 246	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 247	ssize_t			ret = 0;
 248
 249	trace_xfs_file_dax_read(iocb, to);
 
 250
 251	if (!iov_iter_count(to))
 252		return 0; /* skip atime */
 253
 254	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 255	if (ret)
 256		return ret;
 257	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 258	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259
 260	file_accessed(iocb->ki_filp);
 
 
 
 
 261	return ret;
 262}
 263
 264STATIC ssize_t
 265xfs_file_buffered_read(
 266	struct kiocb		*iocb,
 267	struct iov_iter		*to)
 
 
 
 268{
 269	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 270	ssize_t			ret;
 271
 272	trace_xfs_file_buffered_read(iocb, to);
 273
 274	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 275	if (ret)
 276		return ret;
 277	ret = generic_file_read_iter(iocb, to);
 278	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 279
 
 
 
 
 
 
 
 
 
 
 
 
 280	return ret;
 281}
 282
 
 
 
 
 
 
 
 
 283STATIC ssize_t
 284xfs_file_read_iter(
 285	struct kiocb		*iocb,
 286	struct iov_iter		*to)
 
 
 
 287{
 288	struct inode		*inode = file_inode(iocb->ki_filp);
 289	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 290	ssize_t			ret = 0;
 
 
 
 291
 292	XFS_STATS_INC(mp, xs_read_calls);
 
 293
 294	if (xfs_is_shutdown(mp))
 295		return -EIO;
 296
 297	if (IS_DAX(inode))
 298		ret = xfs_file_dax_read(iocb, to);
 299	else if (iocb->ki_flags & IOCB_DIRECT)
 300		ret = xfs_file_dio_read(iocb, to);
 301	else
 302		ret = xfs_file_buffered_read(iocb, to);
 303
 
 304	if (ret > 0)
 305		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 
 
 306	return ret;
 307}
 308
 309/*
 310 * Common pre-write limit and setup checks.
 311 *
 312 * Called with the iolocked held either shared and exclusive according to
 313 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 314 * if called for a direct write beyond i_size.
 315 */
 316STATIC ssize_t
 317xfs_file_write_checks(
 318	struct kiocb		*iocb,
 319	struct iov_iter		*from,
 320	unsigned int		*iolock)
 321{
 322	struct file		*file = iocb->ki_filp;
 323	struct inode		*inode = file->f_mapping->host;
 324	struct xfs_inode	*ip = XFS_I(inode);
 325	ssize_t			error = 0;
 326	size_t			count = iov_iter_count(from);
 327	bool			drained_dio = false;
 328	loff_t			isize;
 329
 330restart:
 331	error = generic_write_checks(iocb, from);
 332	if (error <= 0)
 
 333		return error;
 334
 335	if (iocb->ki_flags & IOCB_NOWAIT) {
 336		error = break_layout(inode, false);
 337		if (error == -EWOULDBLOCK)
 338			error = -EAGAIN;
 339	} else {
 340		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 341	}
 342
 343	if (error)
 344		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345
 346	/*
 347	 * For changing security info in file_remove_privs() we need i_rwsem
 348	 * exclusively.
 
 349	 */
 350	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 351		xfs_iunlock(ip, *iolock);
 352		*iolock = XFS_IOLOCK_EXCL;
 353		error = xfs_ilock_iocb(iocb, *iolock);
 354		if (error) {
 355			*iolock = 0;
 356			return error;
 357		}
 358		goto restart;
 359	}
 360
 361	/*
 362	 * If the offset is beyond the size of the file, we need to zero any
 363	 * blocks that fall between the existing EOF and the start of this
 364	 * write.  If zeroing is needed and we are currently holding the iolock
 365	 * shared, we need to update it to exclusive which implies having to
 366	 * redo all checks before.
 367	 *
 368	 * We need to serialise against EOF updates that occur in IO completions
 369	 * here. We want to make sure that nobody is changing the size while we
 370	 * do this check until we have placed an IO barrier (i.e.  hold the
 371	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
 372	 * spinlock effectively forms a memory barrier once we have the
 373	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
 374	 * hence be able to correctly determine if we need to run zeroing.
 375	 *
 376	 * We can do an unlocked check here safely as IO completion can only
 377	 * extend EOF. Truncate is locked out at this point, so the EOF can
 378	 * not move backwards, only forwards. Hence we only need to take the
 379	 * slow path and spin locks when we are at or beyond the current EOF.
 380	 */
 381	if (iocb->ki_pos <= i_size_read(inode))
 382		goto out;
 
 383
 384	spin_lock(&ip->i_flags_lock);
 385	isize = i_size_read(inode);
 386	if (iocb->ki_pos > isize) {
 387		spin_unlock(&ip->i_flags_lock);
 
 
 
 
 
 
 
 388
 389		if (iocb->ki_flags & IOCB_NOWAIT)
 390			return -EAGAIN;
 391
 392		if (!drained_dio) {
 393			if (*iolock == XFS_IOLOCK_SHARED) {
 394				xfs_iunlock(ip, *iolock);
 395				*iolock = XFS_IOLOCK_EXCL;
 396				xfs_ilock(ip, *iolock);
 397				iov_iter_reexpand(from, count);
 398			}
 399			/*
 400			 * We now have an IO submission barrier in place, but
 401			 * AIO can do EOF updates during IO completion and hence
 402			 * we now need to wait for all of them to drain. Non-AIO
 403			 * DIO will have drained before we are given the
 404			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 405			 * no-op.
 406			 */
 407			inode_dio_wait(inode);
 408			drained_dio = true;
 409			goto restart;
 410		}
 411
 412		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 413		error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
 
 
 
 
 
 
 
 
 414		if (error)
 415			return error;
 416	} else
 417		spin_unlock(&ip->i_flags_lock);
 418
 419out:
 420	return kiocb_modified(iocb);
 
 
 
 421}
 422
 423static int
 424xfs_dio_write_end_io(
 425	struct kiocb		*iocb,
 426	ssize_t			size,
 427	int			error,
 428	unsigned		flags)
 
 
 
 
 
 
 
 429{
 430	struct inode		*inode = file_inode(iocb->ki_filp);
 431	struct xfs_inode	*ip = XFS_I(inode);
 432	loff_t			offset = iocb->ki_pos;
 433	unsigned int		nofs_flag;
 434
 435	trace_xfs_end_io_direct_write(ip, offset, size);
 436
 437	if (xfs_is_shutdown(ip->i_mount))
 438		return -EIO;
 439
 
 
 440	if (error)
 441		return error;
 442	if (!size)
 443		return 0;
 444
 445	/*
 446	 * Capture amount written on completion as we can't reliably account
 447	 * for it on submission.
 448	 */
 449	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 450
 451	/*
 452	 * We can allocate memory here while doing writeback on behalf of
 453	 * memory reclaim.  To avoid memory allocation deadlocks set the
 454	 * task-wide nofs context for the following operations.
 455	 */
 456	nofs_flag = memalloc_nofs_save();
 457
 458	if (flags & IOMAP_DIO_COW) {
 459		error = xfs_reflink_end_cow(ip, offset, size);
 
 
 
 
 
 
 460		if (error)
 461			goto out;
 462	}
 463
 464	/*
 465	 * Unwritten conversion updates the in-core isize after extent
 466	 * conversion but before updating the on-disk size. Updating isize any
 467	 * earlier allows a racing dio read to find unwritten extents before
 468	 * they are converted.
 469	 */
 470	if (flags & IOMAP_DIO_UNWRITTEN) {
 471		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 472		goto out;
 473	}
 474
 475	/*
 476	 * We need to update the in-core inode size here so that we don't end up
 477	 * with the on-disk inode size being outside the in-core inode size. We
 478	 * have no other method of updating EOF for AIO, so always do it here
 479	 * if necessary.
 480	 *
 481	 * We need to lock the test/set EOF update as we can be racing with
 482	 * other IO completions here to update the EOF. Failing to serialise
 483	 * here can result in EOF moving backwards and Bad Things Happen when
 484	 * that occurs.
 485	 *
 486	 * As IO completion only ever extends EOF, we can do an unlocked check
 487	 * here to avoid taking the spinlock. If we land within the current EOF,
 488	 * then we do not need to do an extending update at all, and we don't
 489	 * need to take the lock to check this. If we race with an update moving
 490	 * EOF, then we'll either still be beyond EOF and need to take the lock,
 491	 * or we'll be within EOF and we don't need to take it at all.
 492	 */
 493	if (offset + size <= i_size_read(inode))
 494		goto out;
 495
 496	spin_lock(&ip->i_flags_lock);
 497	if (offset + size > i_size_read(inode)) {
 498		i_size_write(inode, offset + size);
 499		spin_unlock(&ip->i_flags_lock);
 500		error = xfs_setfilesize(ip, offset, size);
 501	} else {
 502		spin_unlock(&ip->i_flags_lock);
 503	}
 504
 505out:
 506	memalloc_nofs_restore(nofs_flag);
 507	return error;
 508}
 509
 510static const struct iomap_dio_ops xfs_dio_write_ops = {
 511	.end_io		= xfs_dio_write_end_io,
 512};
 513
 514/*
 515 * Handle block aligned direct I/O writes
 516 */
 517static noinline ssize_t
 518xfs_file_dio_write_aligned(
 519	struct xfs_inode	*ip,
 520	struct kiocb		*iocb,
 521	struct iov_iter		*from)
 522{
 523	unsigned int		iolock = XFS_IOLOCK_SHARED;
 524	ssize_t			ret;
 525
 526	ret = xfs_ilock_iocb(iocb, iolock);
 527	if (ret)
 528		return ret;
 529	ret = xfs_file_write_checks(iocb, from, &iolock);
 530	if (ret)
 531		goto out_unlock;
 532
 533	/*
 534	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
 535	 * the iolock back to shared if we had to take the exclusive lock in
 536	 * xfs_file_write_checks() for other reasons.
 537	 */
 538	if (iolock == XFS_IOLOCK_EXCL) {
 539		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 540		iolock = XFS_IOLOCK_SHARED;
 541	}
 542	trace_xfs_file_direct_write(iocb, from);
 543	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 544			   &xfs_dio_write_ops, 0, NULL, 0);
 545out_unlock:
 546	if (iolock)
 547		xfs_iunlock(ip, iolock);
 548	return ret;
 549}
 550
 551/*
 552 * Handle block unaligned direct I/O writes
 
 
 
 
 553 *
 554 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
 555 * them to be done in parallel with reads and other direct I/O writes.  However,
 556 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
 557 * to do sub-block zeroing and that requires serialisation against other direct
 558 * I/O to the same block.  In this case we need to serialise the submission of
 559 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
 560 * In the case where sub-block zeroing is not required, we can do concurrent
 561 * sub-block dios to the same block successfully.
 562 *
 563 * Optimistically submit the I/O using the shared lock first, but use the
 564 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
 565 * if block allocation or partial block zeroing would be required.  In that case
 566 * we try again with the exclusive lock.
 
 
 
 
 
 
 
 
 
 567 */
 568static noinline ssize_t
 569xfs_file_dio_write_unaligned(
 570	struct xfs_inode	*ip,
 571	struct kiocb		*iocb,
 572	struct iov_iter		*from)
 
 
 
 573{
 574	size_t			isize = i_size_read(VFS_I(ip));
 575	size_t			count = iov_iter_count(from);
 576	unsigned int		iolock = XFS_IOLOCK_SHARED;
 577	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
 578	ssize_t			ret;
 579
 580	/*
 581	 * Extending writes need exclusivity because of the sub-block zeroing
 582	 * that the DIO code always does for partial tail blocks beyond EOF, so
 583	 * don't even bother trying the fast path in this case.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584	 */
 585	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
 586		if (iocb->ki_flags & IOCB_NOWAIT)
 587			return -EAGAIN;
 588retry_exclusive:
 589		iolock = XFS_IOLOCK_EXCL;
 590		flags = IOMAP_DIO_FORCE_WAIT;
 591	}
 592
 593	ret = xfs_ilock_iocb(iocb, iolock);
 594	if (ret)
 595		return ret;
 596
 597	/*
 598	 * We can't properly handle unaligned direct I/O to reflink files yet,
 599	 * as we can't unshare a partial block.
 
 600	 */
 601	if (xfs_is_cow_inode(ip)) {
 602		trace_xfs_reflink_bounce_dio_write(iocb, from);
 603		ret = -ENOTBLK;
 604		goto out_unlock;
 605	}
 606
 607	ret = xfs_file_write_checks(iocb, from, &iolock);
 608	if (ret)
 609		goto out_unlock;
 610
 611	/*
 612	 * If we are doing exclusive unaligned I/O, this must be the only I/O
 613	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
 614	 * conversions from the AIO end_io handler.  Wait for all other I/O to
 615	 * drain first.
 616	 */
 617	if (flags & IOMAP_DIO_FORCE_WAIT)
 618		inode_dio_wait(VFS_I(ip));
 619
 620	trace_xfs_file_direct_write(iocb, from);
 621	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 622			   &xfs_dio_write_ops, flags, NULL, 0);
 
 
 
 
 623
 624	/*
 625	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
 626	 * layer rejected it for mapping or locking reasons. If we are doing
 627	 * nonblocking user I/O, propagate the error.
 628	 */
 629	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
 630		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
 631		xfs_iunlock(ip, iolock);
 632		goto retry_exclusive;
 
 633	}
 634
 635out_unlock:
 636	if (iolock)
 637		xfs_iunlock(ip, iolock);
 638	return ret;
 639}
 640
 641static ssize_t
 642xfs_file_dio_write(
 643	struct kiocb		*iocb,
 644	struct iov_iter		*from)
 645{
 646	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 647	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 648	size_t			count = iov_iter_count(from);
 649
 650	/* direct I/O must be aligned to device logical sector size */
 651	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 652		return -EINVAL;
 653	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
 654		return xfs_file_dio_write_unaligned(ip, iocb, from);
 655	return xfs_file_dio_write_aligned(ip, iocb, from);
 656}
 657
 658static noinline ssize_t
 659xfs_file_dax_write(
 660	struct kiocb		*iocb,
 661	struct iov_iter		*from)
 662{
 663	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 664	struct xfs_inode	*ip = XFS_I(inode);
 665	unsigned int		iolock = XFS_IOLOCK_EXCL;
 666	ssize_t			ret, error = 0;
 667	loff_t			pos;
 668
 669	ret = xfs_ilock_iocb(iocb, iolock);
 670	if (ret)
 671		return ret;
 672	ret = xfs_file_write_checks(iocb, from, &iolock);
 673	if (ret)
 674		goto out;
 675
 676	pos = iocb->ki_pos;
 677
 678	trace_xfs_file_dax_write(iocb, from);
 679	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
 680	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 681		i_size_write(inode, iocb->ki_pos);
 682		error = xfs_setfilesize(ip, pos, ret);
 683	}
 684out:
 685	if (iolock)
 686		xfs_iunlock(ip, iolock);
 687	if (error)
 688		return error;
 689
 690	if (ret > 0) {
 691		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 692
 693		/* Handle various SYNC-type writes */
 694		ret = generic_write_sync(iocb, ret);
 695	}
 696	return ret;
 697}
 698
 699STATIC ssize_t
 700xfs_file_buffered_write(
 701	struct kiocb		*iocb,
 702	struct iov_iter		*from)
 
 
 
 703{
 704	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 
 
 705	struct xfs_inode	*ip = XFS_I(inode);
 706	ssize_t			ret;
 707	bool			cleared_space = false;
 708	unsigned int		iolock;
 
 709
 710write_retry:
 711	iolock = XFS_IOLOCK_EXCL;
 712	ret = xfs_ilock_iocb(iocb, iolock);
 713	if (ret)
 714		return ret;
 715
 716	ret = xfs_file_write_checks(iocb, from, &iolock);
 717	if (ret)
 718		goto out;
 719
 
 720	/* We can write back this queue in page reclaim */
 721	current->backing_dev_info = inode_to_bdi(inode);
 722
 723	trace_xfs_file_buffered_write(iocb, from);
 724	ret = iomap_file_buffered_write(iocb, from,
 725			&xfs_buffered_write_iomap_ops);
 726	if (likely(ret >= 0))
 727		iocb->ki_pos += ret;
 728
 729	/*
 730	 * If we hit a space limit, try to free up some lingering preallocated
 731	 * space before returning an error. In the case of ENOSPC, first try to
 732	 * write back all dirty inodes to free up some of the excess reserved
 733	 * metadata space. This reduces the chances that the eofblocks scan
 734	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 735	 * also behaves as a filter to prevent too many eofblocks scans from
 736	 * running at the same time.  Use a synchronous scan to increase the
 737	 * effectiveness of the scan.
 738	 */
 739	if (ret == -EDQUOT && !cleared_space) {
 740		xfs_iunlock(ip, iolock);
 741		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
 742		cleared_space = true;
 743		goto write_retry;
 744	} else if (ret == -ENOSPC && !cleared_space) {
 745		struct xfs_icwalk	icw = {0};
 746
 747		cleared_space = true;
 748		xfs_flush_inodes(ip->i_mount);
 749
 750		xfs_iunlock(ip, iolock);
 751		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
 752		xfs_blockgc_free_space(ip->i_mount, &icw);
 753		goto write_retry;
 754	}
 755
 756	current->backing_dev_info = NULL;
 757out:
 758	if (iolock)
 759		xfs_iunlock(ip, iolock);
 760
 761	if (ret > 0) {
 762		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 763		/* Handle various SYNC-type writes */
 764		ret = generic_write_sync(iocb, ret);
 765	}
 766	return ret;
 767}
 768
 769STATIC ssize_t
 770xfs_file_write_iter(
 771	struct kiocb		*iocb,
 772	struct iov_iter		*from)
 
 
 773{
 774	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 
 
 775	struct xfs_inode	*ip = XFS_I(inode);
 776	ssize_t			ret;
 777	size_t			ocount = iov_iter_count(from);
 778
 779	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 780
 781	if (ocount == 0)
 782		return 0;
 783
 784	if (xfs_is_shutdown(ip->i_mount))
 785		return -EIO;
 786
 787	if (IS_DAX(inode))
 788		return xfs_file_dax_write(iocb, from);
 789
 790	if (iocb->ki_flags & IOCB_DIRECT) {
 791		/*
 792		 * Allow a directio write to fall back to a buffered
 793		 * write *only* in the case that we're doing a reflink
 794		 * CoW.  In all other directio scenarios we do not
 795		 * allow an operation to fall back to buffered mode.
 796		 */
 797		ret = xfs_file_dio_write(iocb, from);
 798		if (ret != -ENOTBLK)
 799			return ret;
 800	}
 801
 802	return xfs_file_buffered_write(iocb, from);
 803}
 804
 805static void
 806xfs_wait_dax_page(
 807	struct inode		*inode)
 808{
 809	struct xfs_inode        *ip = XFS_I(inode);
 810
 811	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 812	schedule();
 813	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 814}
 815
 816int
 817xfs_break_dax_layouts(
 818	struct inode		*inode,
 819	bool			*retry)
 820{
 821	struct page		*page;
 822
 823	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 
 
 824
 825	page = dax_layout_busy_page(inode->i_mapping);
 826	if (!page)
 827		return 0;
 828
 829	*retry = true;
 830	return ___wait_var_event(&page->_refcount,
 831			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 832			0, 0, xfs_wait_dax_page(inode));
 833}
 834
 835int
 836xfs_break_layouts(
 837	struct inode		*inode,
 838	uint			*iolock,
 839	enum layout_break_reason reason)
 840{
 841	bool			retry;
 842	int			error;
 843
 844	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 845
 846	do {
 847		retry = false;
 848		switch (reason) {
 849		case BREAK_UNMAP:
 850			error = xfs_break_dax_layouts(inode, &retry);
 851			if (error || retry)
 852				break;
 853			fallthrough;
 854		case BREAK_WRITE:
 855			error = xfs_break_leased_layouts(inode, iolock, &retry);
 856			break;
 857		default:
 858			WARN_ON_ONCE(1);
 859			error = -EINVAL;
 860		}
 861	} while (error == 0 && retry);
 862
 863	return error;
 864}
 865
 866/* Does this file, inode, or mount want synchronous writes? */
 867static inline bool xfs_file_sync_writes(struct file *filp)
 868{
 869	struct xfs_inode	*ip = XFS_I(file_inode(filp));
 870
 871	if (xfs_has_wsync(ip->i_mount))
 872		return true;
 873	if (filp->f_flags & (__O_SYNC | O_DSYNC))
 874		return true;
 875	if (IS_SYNC(file_inode(filp)))
 876		return true;
 877
 878	return false;
 
 879}
 880
 881#define	XFS_FALLOC_FL_SUPPORTED						\
 882		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 883		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 884		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 885
 886STATIC long
 887xfs_file_fallocate(
 888	struct file		*file,
 889	int			mode,
 890	loff_t			offset,
 891	loff_t			len)
 892{
 893	struct inode		*inode = file_inode(file);
 894	struct xfs_inode	*ip = XFS_I(inode);
 
 895	long			error;
 896	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 897	loff_t			new_size = 0;
 898	bool			do_file_insert = false;
 899
 900	if (!S_ISREG(inode->i_mode))
 901		return -EINVAL;
 902	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 
 903		return -EOPNOTSUPP;
 904
 905	xfs_ilock(ip, iolock);
 906	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 907	if (error)
 908		goto out_unlock;
 909
 910	/*
 911	 * Must wait for all AIO to complete before we continue as AIO can
 912	 * change the file size on completion without holding any locks we
 913	 * currently hold. We must do this first because AIO can update both
 914	 * the on disk and in memory inode sizes, and the operations that follow
 915	 * require the in-memory size to be fully up-to-date.
 916	 */
 917	inode_dio_wait(inode);
 918
 919	/*
 920	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
 921	 * the cached range over the first operation we are about to run.
 922	 *
 923	 * We care about zero and collapse here because they both run a hole
 924	 * punch over the range first. Because that can zero data, and the range
 925	 * of invalidation for the shift operations is much larger, we still do
 926	 * the required flush for collapse in xfs_prepare_shift().
 927	 *
 928	 * Insert has the same range requirements as collapse, and we extend the
 929	 * file first which can zero data. Hence insert has the same
 930	 * flush/invalidate requirements as collapse and so they are both
 931	 * handled at the right time by xfs_prepare_shift().
 932	 */
 933	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 934		    FALLOC_FL_COLLAPSE_RANGE)) {
 935		error = xfs_flush_unmap_range(ip, offset, len);
 936		if (error)
 937			goto out_unlock;
 938	}
 939
 940	error = file_modified(file);
 941	if (error)
 942		goto out_unlock;
 943
 944	if (mode & FALLOC_FL_PUNCH_HOLE) {
 945		error = xfs_free_file_space(ip, offset, len);
 946		if (error)
 947			goto out_unlock;
 948	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 949		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 950			error = -EINVAL;
 
 
 951			goto out_unlock;
 952		}
 953
 954		/*
 955		 * There is no need to overlap collapse range with EOF,
 956		 * in which case it is effectively a truncate operation
 957		 */
 958		if (offset + len >= i_size_read(inode)) {
 959			error = -EINVAL;
 960			goto out_unlock;
 961		}
 962
 963		new_size = i_size_read(inode) - len;
 964
 965		error = xfs_collapse_file_space(ip, offset, len);
 966		if (error)
 967			goto out_unlock;
 968	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 969		loff_t		isize = i_size_read(inode);
 970
 971		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 972			error = -EINVAL;
 973			goto out_unlock;
 974		}
 975
 976		/*
 977		 * New inode size must not exceed ->s_maxbytes, accounting for
 978		 * possible signed overflow.
 979		 */
 980		if (inode->i_sb->s_maxbytes - isize < len) {
 981			error = -EFBIG;
 982			goto out_unlock;
 983		}
 984		new_size = isize + len;
 985
 986		/* Offset should be less than i_size */
 987		if (offset >= isize) {
 988			error = -EINVAL;
 989			goto out_unlock;
 990		}
 991		do_file_insert = true;
 992	} else {
 993		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 994		    offset + len > i_size_read(inode)) {
 995			new_size = offset + len;
 996			error = inode_newsize_ok(inode, new_size);
 997			if (error)
 998				goto out_unlock;
 999		}
1000
1001		if (mode & FALLOC_FL_ZERO_RANGE) {
1002			/*
1003			 * Punch a hole and prealloc the range.  We use a hole
1004			 * punch rather than unwritten extent conversion for two
1005			 * reasons:
1006			 *
1007			 *   1.) Hole punch handles partial block zeroing for us.
1008			 *   2.) If prealloc returns ENOSPC, the file range is
1009			 *       still zero-valued by virtue of the hole punch.
1010			 */
1011			unsigned int blksize = i_blocksize(inode);
1012
1013			trace_xfs_zero_file_space(ip);
1014
1015			error = xfs_free_file_space(ip, offset, len);
1016			if (error)
1017				goto out_unlock;
1018
1019			len = round_up(offset + len, blksize) -
1020			      round_down(offset, blksize);
1021			offset = round_down(offset, blksize);
1022		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1023			error = xfs_reflink_unshare(ip, offset, len);
1024			if (error)
1025				goto out_unlock;
1026		} else {
1027			/*
1028			 * If always_cow mode we can't use preallocations and
1029			 * thus should not create them.
1030			 */
1031			if (xfs_is_always_cow_inode(ip)) {
1032				error = -EOPNOTSUPP;
1033				goto out_unlock;
1034			}
1035		}
1036
1037		if (!xfs_is_always_cow_inode(ip)) {
1038			error = xfs_alloc_file_space(ip, offset, len);
1039			if (error)
1040				goto out_unlock;
1041		}
1042	}
1043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044	/* Change file size if needed */
1045	if (new_size) {
1046		struct iattr iattr;
1047
1048		iattr.ia_valid = ATTR_SIZE;
1049		iattr.ia_size = new_size;
1050		error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1051					    file_dentry(file), &iattr);
1052		if (error)
1053			goto out_unlock;
1054	}
1055
1056	/*
1057	 * Perform hole insertion now that the file size has been
1058	 * updated so that if we crash during the operation we don't
1059	 * leave shifted extents past EOF and hence losing access to
1060	 * the data that is contained within them.
1061	 */
1062	if (do_file_insert) {
1063		error = xfs_insert_file_space(ip, offset, len);
1064		if (error)
1065			goto out_unlock;
1066	}
1067
1068	if (xfs_file_sync_writes(file))
1069		error = xfs_log_force_inode(ip);
1070
1071out_unlock:
1072	xfs_iunlock(ip, iolock);
1073	return error;
1074}
1075
1076STATIC int
1077xfs_file_fadvise(
1078	struct file	*file,
1079	loff_t		start,
1080	loff_t		end,
1081	int		advice)
1082{
1083	struct xfs_inode *ip = XFS_I(file_inode(file));
1084	int ret;
1085	int lockflags = 0;
1086
1087	/*
1088	 * Operations creating pages in page cache need protection from hole
1089	 * punching and similar ops
1090	 */
1091	if (advice == POSIX_FADV_WILLNEED) {
1092		lockflags = XFS_IOLOCK_SHARED;
1093		xfs_ilock(ip, lockflags);
1094	}
1095	ret = generic_fadvise(file, start, end, advice);
1096	if (lockflags)
1097		xfs_iunlock(ip, lockflags);
1098	return ret;
1099}
1100
1101STATIC loff_t
1102xfs_file_remap_range(
1103	struct file		*file_in,
1104	loff_t			pos_in,
1105	struct file		*file_out,
1106	loff_t			pos_out,
1107	loff_t			len,
1108	unsigned int		remap_flags)
1109{
1110	struct inode		*inode_in = file_inode(file_in);
1111	struct xfs_inode	*src = XFS_I(inode_in);
1112	struct inode		*inode_out = file_inode(file_out);
1113	struct xfs_inode	*dest = XFS_I(inode_out);
1114	struct xfs_mount	*mp = src->i_mount;
1115	loff_t			remapped = 0;
1116	xfs_extlen_t		cowextsize;
1117	int			ret;
1118
1119	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1120		return -EINVAL;
1121
1122	if (!xfs_has_reflink(mp))
1123		return -EOPNOTSUPP;
1124
1125	if (xfs_is_shutdown(mp))
1126		return -EIO;
1127
1128	/* Prepare and then clone file data. */
1129	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1130			&len, remap_flags);
1131	if (ret || len == 0)
1132		return ret;
1133
1134	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1135
1136	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1137			&remapped);
1138	if (ret)
1139		goto out_unlock;
1140
1141	/*
1142	 * Carry the cowextsize hint from src to dest if we're sharing the
1143	 * entire source file to the entire destination file, the source file
1144	 * has a cowextsize hint, and the destination file does not.
1145	 */
1146	cowextsize = 0;
1147	if (pos_in == 0 && len == i_size_read(inode_in) &&
1148	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1149	    pos_out == 0 && len >= i_size_read(inode_out) &&
1150	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1151		cowextsize = src->i_cowextsize;
1152
1153	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1154			remap_flags);
1155	if (ret)
1156		goto out_unlock;
1157
1158	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1159		xfs_log_force_inode(dest);
1160out_unlock:
1161	xfs_iunlock2_io_mmap(src, dest);
1162	if (ret)
1163		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1164	return remapped > 0 ? remapped : ret;
1165}
1166
1167STATIC int
1168xfs_file_open(
1169	struct inode	*inode,
1170	struct file	*file)
1171{
1172	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
 
 
1173		return -EIO;
1174	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
1175	return generic_file_open(inode, file);
1176}
1177
1178STATIC int
1179xfs_dir_open(
1180	struct inode	*inode,
1181	struct file	*file)
1182{
1183	struct xfs_inode *ip = XFS_I(inode);
1184	unsigned int	mode;
1185	int		error;
1186
1187	error = xfs_file_open(inode, file);
1188	if (error)
1189		return error;
1190
1191	/*
1192	 * If there are any blocks, read-ahead block 0 as we're almost
1193	 * certain to have the next operation be a read there.
1194	 */
1195	mode = xfs_ilock_data_map_shared(ip);
1196	if (ip->i_df.if_nextents > 0)
1197		error = xfs_dir3_data_readahead(ip, 0, 0);
1198	xfs_iunlock(ip, mode);
1199	return error;
1200}
1201
1202STATIC int
1203xfs_file_release(
1204	struct inode	*inode,
1205	struct file	*filp)
1206{
1207	return xfs_release(XFS_I(inode));
1208}
1209
1210STATIC int
1211xfs_file_readdir(
1212	struct file	*file,
1213	struct dir_context *ctx)
1214{
1215	struct inode	*inode = file_inode(file);
1216	xfs_inode_t	*ip = XFS_I(inode);
 
1217	size_t		bufsize;
1218
1219	/*
1220	 * The Linux API doesn't pass down the total size of the buffer
1221	 * we read into down to the filesystem.  With the filldir concept
1222	 * it's not needed for correct information, but the XFS dir2 leaf
1223	 * code wants an estimate of the buffer size to calculate it's
1224	 * readahead window and size the buffers used for mapping to
1225	 * physical blocks.
1226	 *
1227	 * Try to give it an estimate that's good enough, maybe at some
1228	 * point we can change the ->readdir prototype to include the
1229	 * buffer size.  For now we use the current glibc buffer size.
1230	 */
1231	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1232
1233	return xfs_readdir(NULL, ip, ctx, bufsize);
 
 
 
1234}
1235
1236STATIC loff_t
1237xfs_file_llseek(
1238	struct file	*file,
1239	loff_t		offset,
1240	int		whence)
1241{
1242	struct inode		*inode = file->f_mapping->host;
1243
1244	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1245		return -EIO;
1246
1247	switch (whence) {
1248	default:
1249		return generic_file_llseek(file, offset, whence);
1250	case SEEK_HOLE:
1251		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1252		break;
1253	case SEEK_DATA:
1254		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1255		break;
1256	}
1257
1258	if (offset < 0)
1259		return offset;
1260	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1261}
1262
1263#ifdef CONFIG_FS_DAX
1264static inline vm_fault_t
1265xfs_dax_fault(
1266	struct vm_fault		*vmf,
1267	enum page_entry_size	pe_size,
1268	bool			write_fault,
1269	pfn_t			*pfn)
1270{
1271	return dax_iomap_fault(vmf, pe_size, pfn, NULL,
1272			(write_fault && !vmf->cow_page) ?
1273				&xfs_dax_write_iomap_ops :
1274				&xfs_read_iomap_ops);
1275}
1276#else
1277static inline vm_fault_t
1278xfs_dax_fault(
1279	struct vm_fault		*vmf,
1280	enum page_entry_size	pe_size,
1281	bool			write_fault,
1282	pfn_t			*pfn)
1283{
1284	ASSERT(0);
1285	return VM_FAULT_SIGBUS;
1286}
1287#endif
1288
1289/*
1290 * Locking for serialisation of IO during page faults. This results in a lock
1291 * ordering of:
 
 
 
 
 
 
 
 
1292 *
1293 * mmap_lock (MM)
1294 *   sb_start_pagefault(vfs, freeze)
1295 *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1296 *       page_lock (MM)
1297 *         i_lock (XFS - extent map serialisation)
1298 */
1299static vm_fault_t
1300__xfs_filemap_fault(
1301	struct vm_fault		*vmf,
1302	enum page_entry_size	pe_size,
1303	bool			write_fault)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304{
1305	struct inode		*inode = file_inode(vmf->vma->vm_file);
1306	struct xfs_inode	*ip = XFS_I(inode);
1307	vm_fault_t		ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308
1309	trace_xfs_filemap_fault(ip, pe_size, write_fault);
 
 
 
 
 
 
1310
1311	if (write_fault) {
1312		sb_start_pagefault(inode->i_sb);
1313		file_update_time(vmf->vma->vm_file);
1314	}
 
 
 
 
 
 
1315
1316	if (IS_DAX(inode)) {
1317		pfn_t pfn;
 
1318
1319		xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1320		ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn);
1321		if (ret & VM_FAULT_NEEDDSYNC)
1322			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1323		xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1324	} else {
1325		if (write_fault) {
1326			xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1327			ret = iomap_page_mkwrite(vmf,
1328					&xfs_page_mkwrite_iomap_ops);
1329			xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1330		} else {
1331			ret = filemap_fault(vmf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1332		}
1333	}
1334
1335	if (write_fault)
1336		sb_end_pagefault(inode->i_sb);
1337	return ret;
1338}
 
 
 
 
 
 
 
 
1339
1340static inline bool
1341xfs_is_write_fault(
1342	struct vm_fault		*vmf)
1343{
1344	return (vmf->flags & FAULT_FLAG_WRITE) &&
1345	       (vmf->vma->vm_flags & VM_SHARED);
1346}
1347
1348static vm_fault_t
1349xfs_filemap_fault(
1350	struct vm_fault		*vmf)
1351{
1352	/* DAX can shortcut the normal fault path on write faults! */
1353	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1354			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1355			xfs_is_write_fault(vmf));
1356}
1357
1358static vm_fault_t
1359xfs_filemap_huge_fault(
1360	struct vm_fault		*vmf,
1361	enum page_entry_size	pe_size)
1362{
1363	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1364		return VM_FAULT_FALLBACK;
 
 
 
 
 
 
 
1365
1366	/* DAX can shortcut the normal fault path on write faults! */
1367	return __xfs_filemap_fault(vmf, pe_size,
1368			xfs_is_write_fault(vmf));
1369}
1370
1371static vm_fault_t
1372xfs_filemap_page_mkwrite(
1373	struct vm_fault		*vmf)
1374{
1375	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1376}
1377
1378/*
1379 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1380 * on write faults. In reality, it needs to serialise against truncate and
1381 * prepare memory for writing so handle is as standard write fault.
1382 */
1383static vm_fault_t
1384xfs_filemap_pfn_mkwrite(
1385	struct vm_fault		*vmf)
1386{
 
1387
1388	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1389}
 
 
1390
1391static vm_fault_t
1392xfs_filemap_map_pages(
1393	struct vm_fault		*vmf,
1394	pgoff_t			start_pgoff,
1395	pgoff_t			end_pgoff)
1396{
1397	struct inode		*inode = file_inode(vmf->vma->vm_file);
1398	vm_fault_t ret;
1399
1400	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1401	ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1402	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1403	return ret;
1404}
 
 
 
 
1405
1406static const struct vm_operations_struct xfs_file_vm_ops = {
1407	.fault		= xfs_filemap_fault,
1408	.huge_fault	= xfs_filemap_huge_fault,
1409	.map_pages	= xfs_filemap_map_pages,
1410	.page_mkwrite	= xfs_filemap_page_mkwrite,
1411	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1412};
 
 
 
1413
1414STATIC int
1415xfs_file_mmap(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1416	struct file		*file,
1417	struct vm_area_struct	*vma)
1418{
1419	struct inode		*inode = file_inode(file);
1420	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422	/*
1423	 * We don't support synchronous mappings for non-DAX files and
1424	 * for DAX files if underneath dax_device is not synchronous.
 
 
1425	 */
1426	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1427		return -EOPNOTSUPP;
1428
1429	file_accessed(file);
1430	vma->vm_ops = &xfs_file_vm_ops;
1431	if (IS_DAX(inode))
1432		vma->vm_flags |= VM_HUGEPAGE;
1433	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434}
1435
1436const struct file_operations xfs_file_operations = {
1437	.llseek		= xfs_file_llseek,
1438	.read_iter	= xfs_file_read_iter,
1439	.write_iter	= xfs_file_write_iter,
1440	.splice_read	= generic_file_splice_read,
1441	.splice_write	= iter_file_splice_write,
1442	.iopoll		= iocb_bio_iopoll,
 
1443	.unlocked_ioctl	= xfs_file_ioctl,
1444#ifdef CONFIG_COMPAT
1445	.compat_ioctl	= xfs_file_compat_ioctl,
1446#endif
1447	.mmap		= xfs_file_mmap,
1448	.mmap_supported_flags = MAP_SYNC,
1449	.open		= xfs_file_open,
1450	.release	= xfs_file_release,
1451	.fsync		= xfs_file_fsync,
1452	.get_unmapped_area = thp_get_unmapped_area,
1453	.fallocate	= xfs_file_fallocate,
1454	.fadvise	= xfs_file_fadvise,
1455	.remap_file_range = xfs_file_remap_range,
1456};
1457
1458const struct file_operations xfs_dir_file_operations = {
1459	.open		= xfs_dir_open,
1460	.read		= generic_read_dir,
1461	.iterate_shared	= xfs_file_readdir,
1462	.llseek		= generic_file_llseek,
1463	.unlocked_ioctl	= xfs_file_ioctl,
1464#ifdef CONFIG_COMPAT
1465	.compat_ioctl	= xfs_file_compat_ioctl,
1466#endif
1467	.fsync		= xfs_dir_fsync,
 
 
 
 
 
 
 
1468};
v3.15
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_sb.h"
  25#include "xfs_ag.h"
  26#include "xfs_mount.h"
  27#include "xfs_da_format.h"
  28#include "xfs_da_btree.h"
  29#include "xfs_inode.h"
  30#include "xfs_trans.h"
  31#include "xfs_inode_item.h"
  32#include "xfs_bmap.h"
  33#include "xfs_bmap_util.h"
  34#include "xfs_error.h"
  35#include "xfs_dir2.h"
  36#include "xfs_dir2_priv.h"
  37#include "xfs_ioctl.h"
  38#include "xfs_trace.h"
  39#include "xfs_log.h"
  40#include "xfs_dinode.h"
 
 
 
  41
  42#include <linux/aio.h>
  43#include <linux/dcache.h>
  44#include <linux/falloc.h>
  45#include <linux/pagevec.h>
 
 
 
  46
  47static const struct vm_operations_struct xfs_file_vm_ops;
  48
  49/*
  50 * Locking primitives for read and write IO paths to ensure we consistently use
  51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  52 */
  53static inline void
  54xfs_rw_ilock(
  55	struct xfs_inode	*ip,
  56	int			type)
 
  57{
  58	if (type & XFS_IOLOCK_EXCL)
  59		mutex_lock(&VFS_I(ip)->i_mutex);
  60	xfs_ilock(ip, type);
  61}
  62
  63static inline void
  64xfs_rw_iunlock(
  65	struct xfs_inode	*ip,
  66	int			type)
  67{
  68	xfs_iunlock(ip, type);
  69	if (type & XFS_IOLOCK_EXCL)
  70		mutex_unlock(&VFS_I(ip)->i_mutex);
  71}
 
 
 
 
 
 
 
  72
  73static inline void
  74xfs_rw_ilock_demote(
  75	struct xfs_inode	*ip,
  76	int			type)
  77{
  78	xfs_ilock_demote(ip, type);
  79	if (type & XFS_IOLOCK_EXCL)
  80		mutex_unlock(&VFS_I(ip)->i_mutex);
  81}
  82
  83/*
  84 *	xfs_iozero
  85 *
  86 *	xfs_iozero clears the specified range of buffer supplied,
  87 *	and marks all the affected blocks as valid and modified.  If
  88 *	an affected block is not allocated, it will be allocated.  If
  89 *	an affected block is not completely overwritten, and is not
  90 *	valid before the operation, it will be read from disk before
  91 *	being partially zeroed.
  92 */
  93int
  94xfs_iozero(
  95	struct xfs_inode	*ip,	/* inode			*/
  96	loff_t			pos,	/* offset in file		*/
  97	size_t			count)	/* size of data to zero		*/
  98{
  99	struct page		*page;
 100	struct address_space	*mapping;
 101	int			status;
 102
 103	mapping = VFS_I(ip)->i_mapping;
 104	do {
 105		unsigned offset, bytes;
 106		void *fsdata;
 107
 108		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 109		bytes = PAGE_CACHE_SIZE - offset;
 110		if (bytes > count)
 111			bytes = count;
 112
 113		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 114					AOP_FLAG_UNINTERRUPTIBLE,
 115					&page, &fsdata);
 116		if (status)
 117			break;
 118
 119		zero_user(page, offset, bytes);
 120
 121		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 122					page, fsdata);
 123		WARN_ON(status <= 0); /* can't return less than zero! */
 124		pos += bytes;
 125		count -= bytes;
 126		status = 0;
 127	} while (count);
 128
 129	return (-status);
 130}
 131
 132/*
 133 * Fsync operations on directories are much simpler than on regular files,
 134 * as there is no file data to flush, and thus also no need for explicit
 135 * cache flush operations, and there are no non-transaction metadata updates
 136 * on directories either.
 137 */
 138STATIC int
 139xfs_dir_fsync(
 140	struct file		*file,
 141	loff_t			start,
 142	loff_t			end,
 143	int			datasync)
 144{
 145	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 146	struct xfs_mount	*mp = ip->i_mount;
 147	xfs_lsn_t		lsn = 0;
 148
 149	trace_xfs_dir_fsync(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150
 151	xfs_ilock(ip, XFS_ILOCK_SHARED);
 152	if (xfs_ipincount(ip))
 153		lsn = ip->i_itemp->ili_last_lsn;
 
 
 
 
 
 
 
 154	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 155
 156	if (!lsn)
 157		return 0;
 158	return -_xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 159}
 160
 161STATIC int
 162xfs_file_fsync(
 163	struct file		*file,
 164	loff_t			start,
 165	loff_t			end,
 166	int			datasync)
 167{
 168	struct inode		*inode = file->f_mapping->host;
 169	struct xfs_inode	*ip = XFS_I(inode);
 170	struct xfs_mount	*mp = ip->i_mount;
 171	int			error = 0;
 172	int			log_flushed = 0;
 173	xfs_lsn_t		lsn = 0;
 174
 175	trace_xfs_file_fsync(ip);
 176
 177	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 178	if (error)
 179		return error;
 180
 181	if (XFS_FORCED_SHUTDOWN(mp))
 182		return -XFS_ERROR(EIO);
 183
 184	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 185
 186	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 187		/*
 188		 * If we have an RT and/or log subvolume we need to make sure
 189		 * to flush the write cache the device used for file data
 190		 * first.  This is to ensure newly written file data make
 191		 * it to disk before logging the new inode size in case of
 192		 * an extending write.
 193		 */
 194		if (XFS_IS_REALTIME_INODE(ip))
 195			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 196		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 197			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 198	}
 199
 200	/*
 201	 * All metadata updates are logged, which means that we just have
 202	 * to flush the log up to the latest LSN that touched the inode.
 
 
 203	 */
 204	xfs_ilock(ip, XFS_ILOCK_SHARED);
 205	if (xfs_ipincount(ip)) {
 206		if (!datasync ||
 207		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
 208			lsn = ip->i_itemp->ili_last_lsn;
 209	}
 210	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 211
 212	if (lsn)
 213		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 214
 215	/*
 216	 * If we only have a single device, and the log force about was
 217	 * a no-op we might have to flush the data device cache here.
 218	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 219	 * an already allocated file and thus do not have any metadata to
 220	 * commit.
 221	 */
 222	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 223	    mp->m_logdev_targp == mp->m_ddev_targp &&
 224	    !XFS_IS_REALTIME_INODE(ip) &&
 225	    !log_flushed)
 226		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 
 227
 228	return -error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229}
 230
 231STATIC ssize_t
 232xfs_file_aio_read(
 233	struct kiocb		*iocb,
 234	const struct iovec	*iovp,
 235	unsigned long		nr_segs,
 236	loff_t			pos)
 237{
 238	struct file		*file = iocb->ki_filp;
 239	struct inode		*inode = file->f_mapping->host;
 240	struct xfs_inode	*ip = XFS_I(inode);
 241	struct xfs_mount	*mp = ip->i_mount;
 242	size_t			size = 0;
 243	ssize_t			ret = 0;
 244	int			ioflags = 0;
 245	xfs_fsize_t		n;
 246
 247	XFS_STATS_INC(xs_read_calls);
 248
 249	BUG_ON(iocb->ki_pos != pos);
 
 250
 251	if (unlikely(file->f_flags & O_DIRECT))
 252		ioflags |= IO_ISDIRECT;
 253	if (file->f_mode & FMODE_NOCMTIME)
 254		ioflags |= IO_INVIS;
 255
 256	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
 257	if (ret < 0)
 258		return ret;
 
 
 259
 260	if (unlikely(ioflags & IO_ISDIRECT)) {
 261		xfs_buftarg_t	*target =
 262			XFS_IS_REALTIME_INODE(ip) ?
 263				mp->m_rtdev_targp : mp->m_ddev_targp;
 264		/* DIO must be aligned to device logical sector size */
 265		if ((pos | size) & target->bt_logical_sectormask) {
 266			if (pos == i_size_read(inode))
 267				return 0;
 268			return -XFS_ERROR(EINVAL);
 269		}
 270	}
 271
 272	n = mp->m_super->s_maxbytes - pos;
 273	if (n <= 0 || size == 0)
 274		return 0;
 
 
 
 
 275
 276	if (n < size)
 277		size = n;
 278
 279	if (XFS_FORCED_SHUTDOWN(mp))
 280		return -EIO;
 281
 282	/*
 283	 * Locking is a bit tricky here. If we take an exclusive lock
 284	 * for direct IO, we effectively serialise all new concurrent
 285	 * read IO to this file and block it behind IO that is currently in
 286	 * progress because IO in progress holds the IO lock shared. We only
 287	 * need to hold the lock exclusive to blow away the page cache, so
 288	 * only take lock exclusively if the page cache needs invalidation.
 289	 * This allows the normal direct IO case of no page cache pages to
 290	 * proceeed concurrently without serialisation.
 291	 */
 292	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 293	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
 294		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 295		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 296
 297		if (inode->i_mapping->nrpages) {
 298			ret = filemap_write_and_wait_range(
 299							VFS_I(ip)->i_mapping,
 300							pos, -1);
 301			if (ret) {
 302				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 303				return ret;
 304			}
 305			truncate_pagecache_range(VFS_I(ip), pos, -1);
 306		}
 307		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 308	}
 309
 310	trace_xfs_file_read(ip, size, pos, ioflags);
 311
 312	ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
 313	if (ret > 0)
 314		XFS_STATS_ADD(xs_read_bytes, ret);
 315
 316	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 317	return ret;
 318}
 319
 320STATIC ssize_t
 321xfs_file_splice_read(
 322	struct file		*infilp,
 323	loff_t			*ppos,
 324	struct pipe_inode_info	*pipe,
 325	size_t			count,
 326	unsigned int		flags)
 327{
 328	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 329	int			ioflags = 0;
 330	ssize_t			ret;
 331
 332	XFS_STATS_INC(xs_read_calls);
 333
 334	if (infilp->f_mode & FMODE_NOCMTIME)
 335		ioflags |= IO_INVIS;
 
 
 
 336
 337	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 338		return -EIO;
 339
 340	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 341
 342	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 343
 344	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 345	if (ret > 0)
 346		XFS_STATS_ADD(xs_read_bytes, ret);
 347
 348	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 349	return ret;
 350}
 351
 352/*
 353 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 354 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 355 * couuld cause lock inversions between the aio_write path and the splice path
 356 * if someone is doing concurrent splice(2) based writes and write(2) based
 357 * writes to the same inode. The only real way to fix this is to re-implement
 358 * the generic code here with correct locking orders.
 359 */
 360STATIC ssize_t
 361xfs_file_splice_write(
 362	struct pipe_inode_info	*pipe,
 363	struct file		*outfilp,
 364	loff_t			*ppos,
 365	size_t			count,
 366	unsigned int		flags)
 367{
 368	struct inode		*inode = outfilp->f_mapping->host;
 369	struct xfs_inode	*ip = XFS_I(inode);
 370	int			ioflags = 0;
 371	ssize_t			ret;
 372
 373	XFS_STATS_INC(xs_write_calls);
 374
 375	if (outfilp->f_mode & FMODE_NOCMTIME)
 376		ioflags |= IO_INVIS;
 377
 378	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 379		return -EIO;
 380
 381	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 382
 383	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 
 
 
 384
 385	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 386	if (ret > 0)
 387		XFS_STATS_ADD(xs_write_bytes, ret);
 388
 389	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 390	return ret;
 391}
 392
 393/*
 394 * This routine is called to handle zeroing any space in the last block of the
 395 * file that is beyond the EOF.  We do this since the size is being increased
 396 * without writing anything to that block and we don't want to read the
 397 * garbage on the disk.
 
 398 */
 399STATIC int				/* error (positive) */
 400xfs_zero_last_block(
 401	struct xfs_inode	*ip,
 402	xfs_fsize_t		offset,
 403	xfs_fsize_t		isize)
 404{
 405	struct xfs_mount	*mp = ip->i_mount;
 406	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
 407	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 408	int			zero_len;
 409	int			nimaps = 1;
 410	int			error = 0;
 411	struct xfs_bmbt_irec	imap;
 412
 413	xfs_ilock(ip, XFS_ILOCK_EXCL);
 414	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
 415	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 416	if (error)
 417		return error;
 418
 419	ASSERT(nimaps > 0);
 
 
 
 
 
 
 420
 421	/*
 422	 * If the block underlying isize is just a hole, then there
 423	 * is nothing to zero.
 424	 */
 425	if (imap.br_startblock == HOLESTARTBLOCK)
 426		return 0;
 427
 428	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 429	if (isize + zero_len > offset)
 430		zero_len = offset - isize;
 431	return xfs_iozero(ip, isize, zero_len);
 432}
 433
 434/*
 435 * Zero any on disk space between the current EOF and the new, larger EOF.
 436 *
 437 * This handles the normal case of zeroing the remainder of the last block in
 438 * the file and the unusual case of zeroing blocks out beyond the size of the
 439 * file.  This second case only happens with fixed size extents and when the
 440 * system crashes before the inode size was updated but after blocks were
 441 * allocated.
 442 *
 443 * Expects the iolock to be held exclusive, and will take the ilock internally.
 444 */
 445int					/* error (positive) */
 446xfs_zero_eof(
 447	struct xfs_inode	*ip,
 448	xfs_off_t		offset,		/* starting I/O offset */
 449	xfs_fsize_t		isize)		/* current inode size */
 450{
 451	struct xfs_mount	*mp = ip->i_mount;
 452	xfs_fileoff_t		start_zero_fsb;
 453	xfs_fileoff_t		end_zero_fsb;
 454	xfs_fileoff_t		zero_count_fsb;
 455	xfs_fileoff_t		last_fsb;
 456	xfs_fileoff_t		zero_off;
 457	xfs_fsize_t		zero_len;
 458	int			nimaps;
 459	int			error = 0;
 460	struct xfs_bmbt_irec	imap;
 461
 462	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 463	ASSERT(offset > isize);
 464
 465	/*
 466	 * First handle zeroing the block on which isize resides.
 467	 *
 468	 * We only zero a part of that block so it is handled specially.
 469	 */
 470	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
 471		error = xfs_zero_last_block(ip, offset, isize);
 472		if (error)
 
 
 
 473			return error;
 
 
 474	}
 475
 476	/*
 477	 * Calculate the range between the new size and the old where blocks
 478	 * needing to be zeroed may exist.
 
 
 
 479	 *
 480	 * To get the block where the last byte in the file currently resides,
 481	 * we need to subtract one from the size and truncate back to a block
 482	 * boundary.  We subtract 1 in case the size is exactly on a block
 483	 * boundary.
 484	 */
 485	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 486	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 487	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 488	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 489	if (last_fsb == end_zero_fsb) {
 490		/*
 491		 * The size was only incremented on its last block.
 492		 * We took care of that above, so just return.
 493		 */
 494		return 0;
 495	}
 496
 497	ASSERT(start_zero_fsb <= end_zero_fsb);
 498	while (start_zero_fsb <= end_zero_fsb) {
 499		nimaps = 1;
 500		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 501
 502		xfs_ilock(ip, XFS_ILOCK_EXCL);
 503		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
 504					  &imap, &nimaps, 0);
 505		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 506		if (error)
 507			return error;
 508
 509		ASSERT(nimaps > 0);
 
 510
 511		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 512		    imap.br_startblock == HOLESTARTBLOCK) {
 513			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 514			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 515			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 516		}
 517
 518		/*
 519		 * There are blocks we need to zero.
 520		 */
 521		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 522		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 523
 524		if ((zero_off + zero_len) > offset)
 525			zero_len = offset - zero_off;
 526
 527		error = xfs_iozero(ip, zero_off, zero_len);
 528		if (error)
 529			return error;
 
 
 530
 531		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 532		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 533	}
 534
 535	return 0;
 536}
 537
 538/*
 539 * Common pre-write limit and setup checks.
 540 *
 541 * Called with the iolocked held either shared and exclusive according to
 542 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 543 * if called for a direct write beyond i_size.
 544 */
 545STATIC ssize_t
 546xfs_file_aio_write_checks(
 547	struct file		*file,
 548	loff_t			*pos,
 549	size_t			*count,
 550	int			*iolock)
 551{
 552	struct inode		*inode = file->f_mapping->host;
 553	struct xfs_inode	*ip = XFS_I(inode);
 554	int			error = 0;
 
 
 
 
 
 
 555
 556restart:
 557	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 558	if (error)
 559		return error;
 
 
 
 
 
 
 
 
 560
 561	/*
 562	 * If the offset is beyond the size of the file, we need to zero any
 563	 * blocks that fall between the existing EOF and the start of this
 564	 * write.  If zeroing is needed and we are currently holding the
 565	 * iolock shared, we need to update it to exclusive which implies
 566	 * having to redo all checks before.
 567	 */
 568	if (*pos > i_size_read(inode)) {
 569		if (*iolock == XFS_IOLOCK_SHARED) {
 570			xfs_rw_iunlock(ip, *iolock);
 571			*iolock = XFS_IOLOCK_EXCL;
 572			xfs_rw_ilock(ip, *iolock);
 573			goto restart;
 574		}
 575		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
 576		if (error)
 577			return error;
 
 
 
 
 
 
 
 
 
 
 
 578	}
 579
 580	/*
 581	 * Updating the timestamps will grab the ilock again from
 582	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 583	 * lock above.  Eventually we should look into a way to avoid
 584	 * the pointless lock roundtrip.
 
 
 
 
 
 
 
 
 
 
 
 
 585	 */
 586	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 587		error = file_update_time(file);
 588		if (error)
 589			return error;
 
 
 
 
 
 
 590	}
 591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592	/*
 593	 * If we're writing the file then make sure to clear the setuid and
 594	 * setgid bits if the process is not being run by root.  This keeps
 595	 * people from modifying setuid and setgid binaries.
 596	 */
 597	return file_remove_suid(file);
 
 
 
 
 
 
 
 
 
 
 598}
 599
 600/*
 601 * xfs_file_dio_aio_write - handle direct IO writes
 602 *
 603 * Lock the inode appropriately to prepare for and issue a direct IO write.
 604 * By separating it from the buffered write path we remove all the tricky to
 605 * follow locking changes and looping.
 606 *
 607 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 608 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 609 * pages are flushed out.
 
 
 
 
 
 610 *
 611 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 612 * allowing them to be done in parallel with reads and other direct IO writes.
 613 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 614 * needs to do sub-block zeroing and that requires serialisation against other
 615 * direct IOs to the same block. In this case we need to serialise the
 616 * submission of the unaligned IOs so that we don't get racing block zeroing in
 617 * the dio layer.  To avoid the problem with aio, we also need to wait for
 618 * outstanding IOs to complete so that unwritten extent conversion is completed
 619 * before we try to map the overlapping block. This is currently implemented by
 620 * hitting it with a big hammer (i.e. inode_dio_wait()).
 621 *
 622 * Returns with locks held indicated by @iolock and errors indicated by
 623 * negative return values.
 624 */
 625STATIC ssize_t
 626xfs_file_dio_aio_write(
 
 627	struct kiocb		*iocb,
 628	const struct iovec	*iovp,
 629	unsigned long		nr_segs,
 630	loff_t			pos,
 631	size_t			ocount)
 632{
 633	struct file		*file = iocb->ki_filp;
 634	struct address_space	*mapping = file->f_mapping;
 635	struct inode		*inode = mapping->host;
 636	struct xfs_inode	*ip = XFS_I(inode);
 637	struct xfs_mount	*mp = ip->i_mount;
 638	ssize_t			ret = 0;
 639	size_t			count = ocount;
 640	int			unaligned_io = 0;
 641	int			iolock;
 642	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 643					mp->m_rtdev_targp : mp->m_ddev_targp;
 644
 645	/* DIO must be aligned to device logical sector size */
 646	if ((pos | count) & target->bt_logical_sectormask)
 647		return -XFS_ERROR(EINVAL);
 648
 649	/* "unaligned" here means not aligned to a filesystem block */
 650	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 651		unaligned_io = 1;
 652
 653	/*
 654	 * We don't need to take an exclusive lock unless there page cache needs
 655	 * to be invalidated or unaligned IO is being executed. We don't need to
 656	 * consider the EOF extension case here because
 657	 * xfs_file_aio_write_checks() will relock the inode as necessary for
 658	 * EOF zeroing cases and fill out the new inode size as appropriate.
 659	 */
 660	if (unaligned_io || mapping->nrpages)
 
 
 
 661		iolock = XFS_IOLOCK_EXCL;
 662	else
 663		iolock = XFS_IOLOCK_SHARED;
 664	xfs_rw_ilock(ip, iolock);
 
 
 
 665
 666	/*
 667	 * Recheck if there are cached pages that need invalidate after we got
 668	 * the iolock to protect against other threads adding new pages while
 669	 * we were waiting for the iolock.
 670	 */
 671	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
 672		xfs_rw_iunlock(ip, iolock);
 673		iolock = XFS_IOLOCK_EXCL;
 674		xfs_rw_ilock(ip, iolock);
 675	}
 676
 677	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 678	if (ret)
 679		goto out;
 
 
 
 
 
 
 
 
 
 680
 681	if (mapping->nrpages) {
 682		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
 683						    pos, -1);
 684		if (ret)
 685			goto out;
 686		truncate_pagecache_range(VFS_I(ip), pos, -1);
 687	}
 688
 689	/*
 690	 * If we are doing unaligned IO, wait for all other IO to drain,
 691	 * otherwise demote the lock if we had to flush cached pages
 
 692	 */
 693	if (unaligned_io)
 694		inode_dio_wait(inode);
 695	else if (iolock == XFS_IOLOCK_EXCL) {
 696		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 697		iolock = XFS_IOLOCK_SHARED;
 698	}
 699
 700	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 701	ret = generic_file_direct_write(iocb, iovp,
 702			&nr_segs, pos, count, ocount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703
 
 
 
 
 
 
 704out:
 705	xfs_rw_iunlock(ip, iolock);
 
 
 
 
 
 
 706
 707	/* No fallback to buffered IO on errors for XFS. */
 708	ASSERT(ret < 0 || ret == count);
 
 709	return ret;
 710}
 711
 712STATIC ssize_t
 713xfs_file_buffered_aio_write(
 714	struct kiocb		*iocb,
 715	const struct iovec	*iovp,
 716	unsigned long		nr_segs,
 717	loff_t			pos,
 718	size_t			count)
 719{
 720	struct file		*file = iocb->ki_filp;
 721	struct address_space	*mapping = file->f_mapping;
 722	struct inode		*inode = mapping->host;
 723	struct xfs_inode	*ip = XFS_I(inode);
 724	ssize_t			ret;
 725	int			enospc = 0;
 726	int			iolock = XFS_IOLOCK_EXCL;
 727	struct iov_iter		from;
 728
 729	xfs_rw_ilock(ip, iolock);
 
 
 
 
 730
 731	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 732	if (ret)
 733		goto out;
 734
 735	iov_iter_init(&from, iovp, nr_segs, count, 0);
 736	/* We can write back this queue in page reclaim */
 737	current->backing_dev_info = mapping->backing_dev_info;
 738
 739write_retry:
 740	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 741	ret = generic_perform_write(file, &from, pos);
 742	if (likely(ret >= 0))
 743		iocb->ki_pos = pos + ret;
 
 744	/*
 745	 * If we just got an ENOSPC, try to write back all dirty inodes to
 746	 * convert delalloc space to free up some of the excess reserved
 747	 * metadata space.
 
 
 
 
 
 748	 */
 749	if (ret == -ENOSPC && !enospc) {
 750		enospc = 1;
 
 
 
 
 
 
 
 751		xfs_flush_inodes(ip->i_mount);
 
 
 
 
 752		goto write_retry;
 753	}
 754
 755	current->backing_dev_info = NULL;
 756out:
 757	xfs_rw_iunlock(ip, iolock);
 
 
 
 
 
 
 
 758	return ret;
 759}
 760
 761STATIC ssize_t
 762xfs_file_aio_write(
 763	struct kiocb		*iocb,
 764	const struct iovec	*iovp,
 765	unsigned long		nr_segs,
 766	loff_t			pos)
 767{
 768	struct file		*file = iocb->ki_filp;
 769	struct address_space	*mapping = file->f_mapping;
 770	struct inode		*inode = mapping->host;
 771	struct xfs_inode	*ip = XFS_I(inode);
 772	ssize_t			ret;
 773	size_t			ocount = 0;
 774
 775	XFS_STATS_INC(xs_write_calls);
 776
 777	BUG_ON(iocb->ki_pos != pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778
 779	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 780	if (ret)
 781		return ret;
 782
 783	if (ocount == 0)
 
 784		return 0;
 785
 786	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 787		ret = -EIO;
 788		goto out;
 789	}
 
 
 
 
 
 
 
 
 
 
 
 
 790
 791	if (unlikely(file->f_flags & O_DIRECT))
 792		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
 793	else
 794		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 795						  ocount);
 
 
 
 
 
 
 
 
 
 
 
 796
 797	if (ret > 0) {
 798		ssize_t err;
 799
 800		XFS_STATS_ADD(xs_write_bytes, ret);
 
 
 
 801
 802		/* Handle various SYNC-type writes */
 803		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
 804		if (err < 0)
 805			ret = err;
 806	}
 
 807
 808out:
 809	return ret;
 810}
 811
 
 
 
 
 
 812STATIC long
 813xfs_file_fallocate(
 814	struct file		*file,
 815	int			mode,
 816	loff_t			offset,
 817	loff_t			len)
 818{
 819	struct inode		*inode = file_inode(file);
 820	struct xfs_inode	*ip = XFS_I(inode);
 821	struct xfs_trans	*tp;
 822	long			error;
 
 823	loff_t			new_size = 0;
 
 824
 825	if (!S_ISREG(inode->i_mode))
 826		return -EINVAL;
 827	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
 828		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
 829		return -EOPNOTSUPP;
 830
 831	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832	if (mode & FALLOC_FL_PUNCH_HOLE) {
 833		error = xfs_free_file_space(ip, offset, len);
 834		if (error)
 835			goto out_unlock;
 836	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 837		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
 838
 839		if (offset & blksize_mask || len & blksize_mask) {
 840			error = EINVAL;
 841			goto out_unlock;
 842		}
 843
 844		/*
 845		 * There is no need to overlap collapse range with EOF,
 846		 * in which case it is effectively a truncate operation
 847		 */
 848		if (offset + len >= i_size_read(inode)) {
 849			error = EINVAL;
 850			goto out_unlock;
 851		}
 852
 853		new_size = i_size_read(inode) - len;
 854
 855		error = xfs_collapse_file_space(ip, offset, len);
 856		if (error)
 857			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858	} else {
 859		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 860		    offset + len > i_size_read(inode)) {
 861			new_size = offset + len;
 862			error = -inode_newsize_ok(inode, new_size);
 863			if (error)
 864				goto out_unlock;
 865		}
 866
 867		if (mode & FALLOC_FL_ZERO_RANGE)
 868			error = xfs_zero_file_space(ip, offset, len);
 869		else
 870			error = xfs_alloc_file_space(ip, offset, len,
 871						     XFS_BMAPI_PREALLOC);
 872		if (error)
 873			goto out_unlock;
 874	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875
 876	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
 877	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
 878	if (error) {
 879		xfs_trans_cancel(tp, 0);
 880		goto out_unlock;
 881	}
 882
 883	xfs_ilock(ip, XFS_ILOCK_EXCL);
 884	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 885	ip->i_d.di_mode &= ~S_ISUID;
 886	if (ip->i_d.di_mode & S_IXGRP)
 887		ip->i_d.di_mode &= ~S_ISGID;
 888
 889	if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
 890		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
 891
 892	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 893	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 894
 895	if (file->f_flags & O_DSYNC)
 896		xfs_trans_set_sync(tp);
 897	error = xfs_trans_commit(tp, 0);
 898	if (error)
 899		goto out_unlock;
 900
 901	/* Change file size if needed */
 902	if (new_size) {
 903		struct iattr iattr;
 904
 905		iattr.ia_valid = ATTR_SIZE;
 906		iattr.ia_size = new_size;
 907		error = xfs_setattr_size(ip, &iattr);
 
 
 
 908	}
 909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910out_unlock:
 911	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 912	return -error;
 913}
 914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915
 916STATIC int
 917xfs_file_open(
 918	struct inode	*inode,
 919	struct file	*file)
 920{
 921	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 922		return -EFBIG;
 923	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 924		return -EIO;
 925	return 0;
 
 926}
 927
 928STATIC int
 929xfs_dir_open(
 930	struct inode	*inode,
 931	struct file	*file)
 932{
 933	struct xfs_inode *ip = XFS_I(inode);
 934	int		mode;
 935	int		error;
 936
 937	error = xfs_file_open(inode, file);
 938	if (error)
 939		return error;
 940
 941	/*
 942	 * If there are any blocks, read-ahead block 0 as we're almost
 943	 * certain to have the next operation be a read there.
 944	 */
 945	mode = xfs_ilock_data_map_shared(ip);
 946	if (ip->i_d.di_nextents > 0)
 947		xfs_dir3_data_readahead(NULL, ip, 0, -1);
 948	xfs_iunlock(ip, mode);
 949	return 0;
 950}
 951
 952STATIC int
 953xfs_file_release(
 954	struct inode	*inode,
 955	struct file	*filp)
 956{
 957	return -xfs_release(XFS_I(inode));
 958}
 959
 960STATIC int
 961xfs_file_readdir(
 962	struct file	*file,
 963	struct dir_context *ctx)
 964{
 965	struct inode	*inode = file_inode(file);
 966	xfs_inode_t	*ip = XFS_I(inode);
 967	int		error;
 968	size_t		bufsize;
 969
 970	/*
 971	 * The Linux API doesn't pass down the total size of the buffer
 972	 * we read into down to the filesystem.  With the filldir concept
 973	 * it's not needed for correct information, but the XFS dir2 leaf
 974	 * code wants an estimate of the buffer size to calculate it's
 975	 * readahead window and size the buffers used for mapping to
 976	 * physical blocks.
 977	 *
 978	 * Try to give it an estimate that's good enough, maybe at some
 979	 * point we can change the ->readdir prototype to include the
 980	 * buffer size.  For now we use the current glibc buffer size.
 981	 */
 982	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
 983
 984	error = xfs_readdir(ip, ctx, bufsize);
 985	if (error)
 986		return -error;
 987	return 0;
 988}
 989
 990STATIC int
 991xfs_file_mmap(
 992	struct file	*filp,
 993	struct vm_area_struct *vma)
 
 994{
 995	vma->vm_ops = &xfs_file_vm_ops;
 
 
 
 996
 997	file_accessed(filp);
 998	return 0;
 999}
 
 
 
 
 
 
 
1000
1001/*
1002 * mmap()d file has taken write protection fault and is being made
1003 * writable. We can set the page state up correctly for a writable
1004 * page, which means we can do correct delalloc accounting (ENOSPC
1005 * checking!) and unwritten extent mapping.
1006 */
1007STATIC int
1008xfs_vm_page_mkwrite(
1009	struct vm_area_struct	*vma,
1010	struct vm_fault		*vmf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011{
1012	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
 
1013}
 
1014
1015/*
1016 * This type is designed to indicate the type of offset we would like
1017 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
1018 */
1019enum {
1020	HOLE_OFF = 0,
1021	DATA_OFF,
1022};
1023
1024/*
1025 * Lookup the desired type of offset from the given page.
1026 *
1027 * On success, return true and the offset argument will point to the
1028 * start of the region that was found.  Otherwise this function will
1029 * return false and keep the offset argument unchanged.
 
 
1030 */
1031STATIC bool
1032xfs_lookup_buffer_offset(
1033	struct page		*page,
1034	loff_t			*offset,
1035	unsigned int		type)
1036{
1037	loff_t			lastoff = page_offset(page);
1038	bool			found = false;
1039	struct buffer_head	*bh, *head;
1040
1041	bh = head = page_buffers(page);
1042	do {
1043		/*
1044		 * Unwritten extents that have data in the page
1045		 * cache covering them can be identified by the
1046		 * BH_Unwritten state flag.  Pages with multiple
1047		 * buffers might have a mix of holes, data and
1048		 * unwritten extents - any buffer with valid
1049		 * data in it should have BH_Uptodate flag set
1050		 * on it.
1051		 */
1052		if (buffer_unwritten(bh) ||
1053		    buffer_uptodate(bh)) {
1054			if (type == DATA_OFF)
1055				found = true;
1056		} else {
1057			if (type == HOLE_OFF)
1058				found = true;
1059		}
1060
1061		if (found) {
1062			*offset = lastoff;
1063			break;
1064		}
1065		lastoff += bh->b_size;
1066	} while ((bh = bh->b_this_page) != head);
1067
1068	return found;
1069}
1070
1071/*
1072 * This routine is called to find out and return a data or hole offset
1073 * from the page cache for unwritten extents according to the desired
1074 * type for xfs_seek_data() or xfs_seek_hole().
1075 *
1076 * The argument offset is used to tell where we start to search from the
1077 * page cache.  Map is used to figure out the end points of the range to
1078 * lookup pages.
1079 *
1080 * Return true if the desired type of offset was found, and the argument
1081 * offset is filled with that address.  Otherwise, return false and keep
1082 * offset unchanged.
1083 */
1084STATIC bool
1085xfs_find_get_desired_pgoff(
1086	struct inode		*inode,
1087	struct xfs_bmbt_irec	*map,
1088	unsigned int		type,
1089	loff_t			*offset)
1090{
 
1091	struct xfs_inode	*ip = XFS_I(inode);
1092	struct xfs_mount	*mp = ip->i_mount;
1093	struct pagevec		pvec;
1094	pgoff_t			index;
1095	pgoff_t			end;
1096	loff_t			endoff;
1097	loff_t			startoff = *offset;
1098	loff_t			lastoff = startoff;
1099	bool			found = false;
1100
1101	pagevec_init(&pvec, 0);
1102
1103	index = startoff >> PAGE_CACHE_SHIFT;
1104	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1105	end = endoff >> PAGE_CACHE_SHIFT;
1106	do {
1107		int		want;
1108		unsigned	nr_pages;
1109		unsigned int	i;
1110
1111		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1112		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1113					  want);
1114		/*
1115		 * No page mapped into given range.  If we are searching holes
1116		 * and if this is the first time we got into the loop, it means
1117		 * that the given offset is landed in a hole, return it.
1118		 *
1119		 * If we have already stepped through some block buffers to find
1120		 * holes but they all contains data.  In this case, the last
1121		 * offset is already updated and pointed to the end of the last
1122		 * mapped page, if it does not reach the endpoint to search,
1123		 * that means there should be a hole between them.
1124		 */
1125		if (nr_pages == 0) {
1126			/* Data search found nothing */
1127			if (type == DATA_OFF)
1128				break;
1129
1130			ASSERT(type == HOLE_OFF);
1131			if (lastoff == startoff || lastoff < endoff) {
1132				found = true;
1133				*offset = lastoff;
1134			}
1135			break;
1136		}
1137
1138		/*
1139		 * At lease we found one page.  If this is the first time we
1140		 * step into the loop, and if the first page index offset is
1141		 * greater than the given search offset, a hole was found.
1142		 */
1143		if (type == HOLE_OFF && lastoff == startoff &&
1144		    lastoff < page_offset(pvec.pages[0])) {
1145			found = true;
1146			break;
1147		}
1148
1149		for (i = 0; i < nr_pages; i++) {
1150			struct page	*page = pvec.pages[i];
1151			loff_t		b_offset;
1152
1153			/*
1154			 * At this point, the page may be truncated or
1155			 * invalidated (changing page->mapping to NULL),
1156			 * or even swizzled back from swapper_space to tmpfs
1157			 * file mapping. However, page->index will not change
1158			 * because we have a reference on the page.
1159			 *
1160			 * Searching done if the page index is out of range.
1161			 * If the current offset is not reaches the end of
1162			 * the specified search range, there should be a hole
1163			 * between them.
1164			 */
1165			if (page->index > end) {
1166				if (type == HOLE_OFF && lastoff < endoff) {
1167					*offset = lastoff;
1168					found = true;
1169				}
1170				goto out;
1171			}
1172
1173			lock_page(page);
1174			/*
1175			 * Page truncated or invalidated(page->mapping == NULL).
1176			 * We can freely skip it and proceed to check the next
1177			 * page.
1178			 */
1179			if (unlikely(page->mapping != inode->i_mapping)) {
1180				unlock_page(page);
1181				continue;
1182			}
1183
1184			if (!page_has_buffers(page)) {
1185				unlock_page(page);
1186				continue;
1187			}
1188
1189			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1190			if (found) {
1191				/*
1192				 * The found offset may be less than the start
1193				 * point to search if this is the first time to
1194				 * come here.
1195				 */
1196				*offset = max_t(loff_t, startoff, b_offset);
1197				unlock_page(page);
1198				goto out;
1199			}
1200
1201			/*
1202			 * We either searching data but nothing was found, or
1203			 * searching hole but found a data buffer.  In either
1204			 * case, probably the next page contains the desired
1205			 * things, update the last offset to it so.
1206			 */
1207			lastoff = page_offset(page) + PAGE_SIZE;
1208			unlock_page(page);
1209		}
 
1210
1211		/*
1212		 * The number of returned pages less than our desired, search
1213		 * done.  In this case, nothing was found for searching data,
1214		 * but we found a hole behind the last offset.
1215		 */
1216		if (nr_pages < want) {
1217			if (type == HOLE_OFF) {
1218				*offset = lastoff;
1219				found = true;
1220			}
1221			break;
1222		}
1223
1224		index = pvec.pages[i - 1]->index + 1;
1225		pagevec_release(&pvec);
1226	} while (index <= end);
 
 
 
 
1227
1228out:
1229	pagevec_release(&pvec);
1230	return found;
 
 
 
 
 
1231}
1232
1233STATIC loff_t
1234xfs_seek_data(
1235	struct file		*file,
1236	loff_t			start)
1237{
1238	struct inode		*inode = file->f_mapping->host;
1239	struct xfs_inode	*ip = XFS_I(inode);
1240	struct xfs_mount	*mp = ip->i_mount;
1241	loff_t			uninitialized_var(offset);
1242	xfs_fsize_t		isize;
1243	xfs_fileoff_t		fsbno;
1244	xfs_filblks_t		end;
1245	uint			lock;
1246	int			error;
1247
1248	lock = xfs_ilock_data_map_shared(ip);
 
 
 
1249
1250	isize = i_size_read(inode);
1251	if (start >= isize) {
1252		error = ENXIO;
1253		goto out_unlock;
1254	}
 
1255
1256	/*
1257	 * Try to read extents from the first block indicated
1258	 * by fsbno to the end block of the file.
1259	 */
1260	fsbno = XFS_B_TO_FSBT(mp, start);
1261	end = XFS_B_TO_FSB(mp, isize);
1262	for (;;) {
1263		struct xfs_bmbt_irec	map[2];
1264		int			nmap = 2;
1265		unsigned int		i;
1266
1267		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1268				       XFS_BMAPI_ENTIRE);
1269		if (error)
1270			goto out_unlock;
1271
1272		/* No extents at given offset, must be beyond EOF */
1273		if (nmap == 0) {
1274			error = ENXIO;
1275			goto out_unlock;
1276		}
 
 
 
1277
1278		for (i = 0; i < nmap; i++) {
1279			offset = max_t(loff_t, start,
1280				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1281
1282			/* Landed in a data extent */
1283			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1284			    (map[i].br_state == XFS_EXT_NORM &&
1285			     !isnullstartblock(map[i].br_startblock)))
1286				goto out;
1287
1288			/*
1289			 * Landed in an unwritten extent, try to search data
1290			 * from page cache.
1291			 */
1292			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1293				if (xfs_find_get_desired_pgoff(inode, &map[i],
1294							DATA_OFF, &offset))
1295					goto out;
1296			}
1297		}
1298
1299		/*
1300		 * map[0] is hole or its an unwritten extent but
1301		 * without data in page cache.  Probably means that
1302		 * we are reading after EOF if nothing in map[1].
1303		 */
1304		if (nmap == 1) {
1305			error = ENXIO;
1306			goto out_unlock;
1307		}
1308
1309		ASSERT(i > 1);
1310
1311		/*
1312		 * Nothing was found, proceed to the next round of search
1313		 * if reading offset not beyond or hit EOF.
1314		 */
1315		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1316		start = XFS_FSB_TO_B(mp, fsbno);
1317		if (start >= isize) {
1318			error = ENXIO;
1319			goto out_unlock;
1320		}
1321	}
1322
1323out:
1324	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1325
1326out_unlock:
1327	xfs_iunlock(ip, lock);
1328
1329	if (error)
1330		return -error;
1331	return offset;
1332}
1333
1334STATIC loff_t
1335xfs_seek_hole(
1336	struct file		*file,
1337	loff_t			start)
1338{
1339	struct inode		*inode = file->f_mapping->host;
1340	struct xfs_inode	*ip = XFS_I(inode);
1341	struct xfs_mount	*mp = ip->i_mount;
1342	loff_t			uninitialized_var(offset);
1343	xfs_fsize_t		isize;
1344	xfs_fileoff_t		fsbno;
1345	xfs_filblks_t		end;
1346	uint			lock;
1347	int			error;
1348
1349	if (XFS_FORCED_SHUTDOWN(mp))
1350		return -XFS_ERROR(EIO);
1351
1352	lock = xfs_ilock_data_map_shared(ip);
1353
1354	isize = i_size_read(inode);
1355	if (start >= isize) {
1356		error = ENXIO;
1357		goto out_unlock;
1358	}
1359
1360	fsbno = XFS_B_TO_FSBT(mp, start);
1361	end = XFS_B_TO_FSB(mp, isize);
1362
1363	for (;;) {
1364		struct xfs_bmbt_irec	map[2];
1365		int			nmap = 2;
1366		unsigned int		i;
1367
1368		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1369				       XFS_BMAPI_ENTIRE);
1370		if (error)
1371			goto out_unlock;
1372
1373		/* No extents at given offset, must be beyond EOF */
1374		if (nmap == 0) {
1375			error = ENXIO;
1376			goto out_unlock;
1377		}
1378
1379		for (i = 0; i < nmap; i++) {
1380			offset = max_t(loff_t, start,
1381				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1382
1383			/* Landed in a hole */
1384			if (map[i].br_startblock == HOLESTARTBLOCK)
1385				goto out;
1386
1387			/*
1388			 * Landed in an unwritten extent, try to search hole
1389			 * from page cache.
1390			 */
1391			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1392				if (xfs_find_get_desired_pgoff(inode, &map[i],
1393							HOLE_OFF, &offset))
1394					goto out;
1395			}
1396		}
1397
1398		/*
1399		 * map[0] contains data or its unwritten but contains
1400		 * data in page cache, probably means that we are
1401		 * reading after EOF.  We should fix offset to point
1402		 * to the end of the file(i.e., there is an implicit
1403		 * hole at the end of any file).
1404		 */
1405		if (nmap == 1) {
1406			offset = isize;
1407			break;
1408		}
1409
1410		ASSERT(i > 1);
1411
1412		/*
1413		 * Both mappings contains data, proceed to the next round of
1414		 * search if the current reading offset not beyond or hit EOF.
1415		 */
1416		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1417		start = XFS_FSB_TO_B(mp, fsbno);
1418		if (start >= isize) {
1419			offset = isize;
1420			break;
1421		}
1422	}
1423
1424out:
1425	/*
1426	 * At this point, we must have found a hole.  However, the returned
1427	 * offset may be bigger than the file size as it may be aligned to
1428	 * page boundary for unwritten extents, we need to deal with this
1429	 * situation in particular.
1430	 */
1431	offset = min_t(loff_t, offset, isize);
1432	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1433
1434out_unlock:
1435	xfs_iunlock(ip, lock);
1436
1437	if (error)
1438		return -error;
1439	return offset;
1440}
1441
1442STATIC loff_t
1443xfs_file_llseek(
1444	struct file	*file,
1445	loff_t		offset,
1446	int		origin)
1447{
1448	switch (origin) {
1449	case SEEK_END:
1450	case SEEK_CUR:
1451	case SEEK_SET:
1452		return generic_file_llseek(file, offset, origin);
1453	case SEEK_DATA:
1454		return xfs_seek_data(file, offset);
1455	case SEEK_HOLE:
1456		return xfs_seek_hole(file, offset);
1457	default:
1458		return -EINVAL;
1459	}
1460}
1461
1462const struct file_operations xfs_file_operations = {
1463	.llseek		= xfs_file_llseek,
1464	.read		= do_sync_read,
1465	.write		= do_sync_write,
1466	.aio_read	= xfs_file_aio_read,
1467	.aio_write	= xfs_file_aio_write,
1468	.splice_read	= xfs_file_splice_read,
1469	.splice_write	= xfs_file_splice_write,
1470	.unlocked_ioctl	= xfs_file_ioctl,
1471#ifdef CONFIG_COMPAT
1472	.compat_ioctl	= xfs_file_compat_ioctl,
1473#endif
1474	.mmap		= xfs_file_mmap,
 
1475	.open		= xfs_file_open,
1476	.release	= xfs_file_release,
1477	.fsync		= xfs_file_fsync,
 
1478	.fallocate	= xfs_file_fallocate,
 
 
1479};
1480
1481const struct file_operations xfs_dir_file_operations = {
1482	.open		= xfs_dir_open,
1483	.read		= generic_read_dir,
1484	.iterate	= xfs_file_readdir,
1485	.llseek		= generic_file_llseek,
1486	.unlocked_ioctl	= xfs_file_ioctl,
1487#ifdef CONFIG_COMPAT
1488	.compat_ioctl	= xfs_file_compat_ioctl,
1489#endif
1490	.fsync		= xfs_dir_fsync,
1491};
1492
1493static const struct vm_operations_struct xfs_file_vm_ops = {
1494	.fault		= filemap_fault,
1495	.map_pages	= filemap_map_pages,
1496	.page_mkwrite	= xfs_vm_page_mkwrite,
1497	.remap_pages	= generic_file_remap_pages,
1498};