Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    https://www.ecma.ch/
  15 *    https://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
  51#include <linux/vfs.h>
  52#include <linux/vmalloc.h>
  53#include <linux/errno.h>
  54#include <linux/mount.h>
  55#include <linux/seq_file.h>
  56#include <linux/bitmap.h>
  57#include <linux/crc-itu-t.h>
  58#include <linux/log2.h>
  59#include <asm/byteorder.h>
  60#include <linux/iversion.h>
  61
  62#include "udf_sb.h"
  63#include "udf_i.h"
  64
  65#include <linux/init.h>
  66#include <linux/uaccess.h>
  67
  68enum {
  69	VDS_POS_PRIMARY_VOL_DESC,
  70	VDS_POS_UNALLOC_SPACE_DESC,
  71	VDS_POS_LOGICAL_VOL_DESC,
  72	VDS_POS_IMP_USE_VOL_DESC,
  73	VDS_POS_LENGTH
  74};
  75
  76#define VSD_FIRST_SECTOR_OFFSET		32768
  77#define VSD_MAX_SECTOR_OFFSET		0x800000
  78
  79/*
  80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
  81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
  82 * hopefully don't limit any real use of rewritten inode on write-once media
  83 * but avoid looping for too long on corrupted media.
  84 */
  85#define UDF_MAX_TD_NESTING 64
  86#define UDF_MAX_LVID_NESTING 1000
  87
  88enum { UDF_MAX_LINKS = 0xffff };
  89
  90/* These are the "meat" - everything else is stuffing */
  91static int udf_fill_super(struct super_block *, void *, int);
  92static void udf_put_super(struct super_block *);
  93static int udf_sync_fs(struct super_block *, int);
  94static int udf_remount_fs(struct super_block *, int *, char *);
  95static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
  96static void udf_open_lvid(struct super_block *);
  97static void udf_close_lvid(struct super_block *);
  98static unsigned int udf_count_free(struct super_block *);
  99static int udf_statfs(struct dentry *, struct kstatfs *);
 100static int udf_show_options(struct seq_file *, struct dentry *);
 101
 102struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
 103{
 104	struct logicalVolIntegrityDesc *lvid;
 105	unsigned int partnum;
 106	unsigned int offset;
 107
 108	if (!UDF_SB(sb)->s_lvid_bh)
 109		return NULL;
 110	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
 111	partnum = le32_to_cpu(lvid->numOfPartitions);
 
 
 
 
 
 
 
 112	/* The offset is to skip freeSpaceTable and sizeTable arrays */
 113	offset = partnum * 2 * sizeof(uint32_t);
 114	return (struct logicalVolIntegrityDescImpUse *)
 115					(((uint8_t *)(lvid + 1)) + offset);
 116}
 117
 118/* UDF filesystem type */
 119static struct dentry *udf_mount(struct file_system_type *fs_type,
 120		      int flags, const char *dev_name, void *data)
 121{
 122	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 123}
 124
 125static struct file_system_type udf_fstype = {
 126	.owner		= THIS_MODULE,
 127	.name		= "udf",
 128	.mount		= udf_mount,
 129	.kill_sb	= kill_block_super,
 130	.fs_flags	= FS_REQUIRES_DEV,
 131};
 132MODULE_ALIAS_FS("udf");
 133
 134static struct kmem_cache *udf_inode_cachep;
 135
 136static struct inode *udf_alloc_inode(struct super_block *sb)
 137{
 138	struct udf_inode_info *ei;
 139	ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
 140	if (!ei)
 141		return NULL;
 142
 143	ei->i_unique = 0;
 144	ei->i_lenExtents = 0;
 145	ei->i_lenStreams = 0;
 146	ei->i_next_alloc_block = 0;
 147	ei->i_next_alloc_goal = 0;
 148	ei->i_strat4096 = 0;
 149	ei->i_streamdir = 0;
 150	init_rwsem(&ei->i_data_sem);
 151	ei->cached_extent.lstart = -1;
 152	spin_lock_init(&ei->i_extent_cache_lock);
 153	inode_set_iversion(&ei->vfs_inode, 1);
 154
 155	return &ei->vfs_inode;
 156}
 157
 158static void udf_free_in_core_inode(struct inode *inode)
 159{
 160	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 161}
 162
 163static void init_once(void *foo)
 164{
 165	struct udf_inode_info *ei = foo;
 166
 167	ei->i_data = NULL;
 168	inode_init_once(&ei->vfs_inode);
 169}
 170
 171static int __init init_inodecache(void)
 172{
 173	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 174					     sizeof(struct udf_inode_info),
 175					     0, (SLAB_RECLAIM_ACCOUNT |
 176						 SLAB_MEM_SPREAD |
 177						 SLAB_ACCOUNT),
 178					     init_once);
 179	if (!udf_inode_cachep)
 180		return -ENOMEM;
 181	return 0;
 182}
 183
 184static void destroy_inodecache(void)
 185{
 186	/*
 187	 * Make sure all delayed rcu free inodes are flushed before we
 188	 * destroy cache.
 189	 */
 190	rcu_barrier();
 191	kmem_cache_destroy(udf_inode_cachep);
 192}
 193
 194/* Superblock operations */
 195static const struct super_operations udf_sb_ops = {
 196	.alloc_inode	= udf_alloc_inode,
 197	.free_inode	= udf_free_in_core_inode,
 198	.write_inode	= udf_write_inode,
 199	.evict_inode	= udf_evict_inode,
 200	.put_super	= udf_put_super,
 201	.sync_fs	= udf_sync_fs,
 202	.statfs		= udf_statfs,
 203	.remount_fs	= udf_remount_fs,
 204	.show_options	= udf_show_options,
 205};
 206
 207struct udf_options {
 208	unsigned char novrs;
 209	unsigned int blocksize;
 210	unsigned int session;
 211	unsigned int lastblock;
 212	unsigned int anchor;
 213	unsigned int flags;
 214	umode_t umask;
 215	kgid_t gid;
 216	kuid_t uid;
 217	umode_t fmode;
 218	umode_t dmode;
 219	struct nls_table *nls_map;
 220};
 221
 222static int __init init_udf_fs(void)
 223{
 224	int err;
 225
 226	err = init_inodecache();
 227	if (err)
 228		goto out1;
 229	err = register_filesystem(&udf_fstype);
 230	if (err)
 231		goto out;
 232
 233	return 0;
 234
 235out:
 236	destroy_inodecache();
 237
 238out1:
 239	return err;
 240}
 241
 242static void __exit exit_udf_fs(void)
 243{
 244	unregister_filesystem(&udf_fstype);
 245	destroy_inodecache();
 246}
 247
 248static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 249{
 250	struct udf_sb_info *sbi = UDF_SB(sb);
 251
 252	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
 253	if (!sbi->s_partmaps) {
 254		sbi->s_partitions = 0;
 255		return -ENOMEM;
 256	}
 257
 258	sbi->s_partitions = count;
 259	return 0;
 260}
 261
 262static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
 263{
 264	int i;
 265	int nr_groups = bitmap->s_nr_groups;
 266
 267	for (i = 0; i < nr_groups; i++)
 268		brelse(bitmap->s_block_bitmap[i]);
 269
 270	kvfree(bitmap);
 271}
 272
 273static void udf_free_partition(struct udf_part_map *map)
 274{
 275	int i;
 276	struct udf_meta_data *mdata;
 277
 278	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 279		iput(map->s_uspace.s_table);
 280	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 281		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
 282	if (map->s_partition_type == UDF_SPARABLE_MAP15)
 283		for (i = 0; i < 4; i++)
 284			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
 285	else if (map->s_partition_type == UDF_METADATA_MAP25) {
 286		mdata = &map->s_type_specific.s_metadata;
 287		iput(mdata->s_metadata_fe);
 288		mdata->s_metadata_fe = NULL;
 289
 290		iput(mdata->s_mirror_fe);
 291		mdata->s_mirror_fe = NULL;
 292
 293		iput(mdata->s_bitmap_fe);
 294		mdata->s_bitmap_fe = NULL;
 295	}
 296}
 297
 298static void udf_sb_free_partitions(struct super_block *sb)
 299{
 300	struct udf_sb_info *sbi = UDF_SB(sb);
 301	int i;
 302
 303	if (!sbi->s_partmaps)
 304		return;
 305	for (i = 0; i < sbi->s_partitions; i++)
 306		udf_free_partition(&sbi->s_partmaps[i]);
 307	kfree(sbi->s_partmaps);
 308	sbi->s_partmaps = NULL;
 309}
 310
 311static int udf_show_options(struct seq_file *seq, struct dentry *root)
 312{
 313	struct super_block *sb = root->d_sb;
 314	struct udf_sb_info *sbi = UDF_SB(sb);
 315
 316	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 317		seq_puts(seq, ",nostrict");
 318	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 319		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 320	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 321		seq_puts(seq, ",unhide");
 322	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 323		seq_puts(seq, ",undelete");
 324	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 325		seq_puts(seq, ",noadinicb");
 326	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 327		seq_puts(seq, ",shortad");
 328	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 329		seq_puts(seq, ",uid=forget");
 330	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 331		seq_puts(seq, ",gid=forget");
 332	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 333		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
 334	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 335		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
 336	if (sbi->s_umask != 0)
 337		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 338	if (sbi->s_fmode != UDF_INVALID_MODE)
 339		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 340	if (sbi->s_dmode != UDF_INVALID_MODE)
 341		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 342	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 343		seq_printf(seq, ",session=%d", sbi->s_session);
 344	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 345		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 346	if (sbi->s_anchor != 0)
 347		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 348	if (sbi->s_nls_map)
 
 
 349		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 350	else
 351		seq_puts(seq, ",iocharset=utf8");
 352
 353	return 0;
 354}
 355
 356/*
 357 * udf_parse_options
 358 *
 359 * PURPOSE
 360 *	Parse mount options.
 361 *
 362 * DESCRIPTION
 363 *	The following mount options are supported:
 364 *
 365 *	gid=		Set the default group.
 366 *	umask=		Set the default umask.
 367 *	mode=		Set the default file permissions.
 368 *	dmode=		Set the default directory permissions.
 369 *	uid=		Set the default user.
 370 *	bs=		Set the block size.
 371 *	unhide		Show otherwise hidden files.
 372 *	undelete	Show deleted files in lists.
 373 *	adinicb		Embed data in the inode (default)
 374 *	noadinicb	Don't embed data in the inode
 375 *	shortad		Use short ad's
 376 *	longad		Use long ad's (default)
 377 *	nostrict	Unset strict conformance
 378 *	iocharset=	Set the NLS character set
 379 *
 380 *	The remaining are for debugging and disaster recovery:
 381 *
 382 *	novrs		Skip volume sequence recognition
 383 *
 384 *	The following expect a offset from 0.
 385 *
 386 *	session=	Set the CDROM session (default= last session)
 387 *	anchor=		Override standard anchor location. (default= 256)
 388 *	volume=		Override the VolumeDesc location. (unused)
 389 *	partition=	Override the PartitionDesc location. (unused)
 390 *	lastblock=	Set the last block of the filesystem/
 391 *
 392 *	The following expect a offset from the partition root.
 393 *
 394 *	fileset=	Override the fileset block location. (unused)
 395 *	rootdir=	Override the root directory location. (unused)
 396 *		WARNING: overriding the rootdir to a non-directory may
 397 *		yield highly unpredictable results.
 398 *
 399 * PRE-CONDITIONS
 400 *	options		Pointer to mount options string.
 401 *	uopts		Pointer to mount options variable.
 402 *
 403 * POST-CONDITIONS
 404 *	<return>	1	Mount options parsed okay.
 405 *	<return>	0	Error parsing mount options.
 406 *
 407 * HISTORY
 408 *	July 1, 1997 - Andrew E. Mileski
 409 *	Written, tested, and released.
 410 */
 411
 412enum {
 413	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 414	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 415	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 416	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 417	Opt_rootdir, Opt_utf8, Opt_iocharset,
 418	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 419	Opt_fmode, Opt_dmode
 420};
 421
 422static const match_table_t tokens = {
 423	{Opt_novrs,	"novrs"},
 424	{Opt_nostrict,	"nostrict"},
 425	{Opt_bs,	"bs=%u"},
 426	{Opt_unhide,	"unhide"},
 427	{Opt_undelete,	"undelete"},
 428	{Opt_noadinicb,	"noadinicb"},
 429	{Opt_adinicb,	"adinicb"},
 430	{Opt_shortad,	"shortad"},
 431	{Opt_longad,	"longad"},
 432	{Opt_uforget,	"uid=forget"},
 433	{Opt_uignore,	"uid=ignore"},
 434	{Opt_gforget,	"gid=forget"},
 435	{Opt_gignore,	"gid=ignore"},
 436	{Opt_gid,	"gid=%u"},
 437	{Opt_uid,	"uid=%u"},
 438	{Opt_umask,	"umask=%o"},
 439	{Opt_session,	"session=%u"},
 440	{Opt_lastblock,	"lastblock=%u"},
 441	{Opt_anchor,	"anchor=%u"},
 442	{Opt_volume,	"volume=%u"},
 443	{Opt_partition,	"partition=%u"},
 444	{Opt_fileset,	"fileset=%u"},
 445	{Opt_rootdir,	"rootdir=%u"},
 446	{Opt_utf8,	"utf8"},
 447	{Opt_iocharset,	"iocharset=%s"},
 448	{Opt_fmode,     "mode=%o"},
 449	{Opt_dmode,     "dmode=%o"},
 450	{Opt_err,	NULL}
 451};
 452
 453static int udf_parse_options(char *options, struct udf_options *uopt,
 454			     bool remount)
 455{
 456	char *p;
 457	int option;
 458	unsigned int uv;
 459
 460	uopt->novrs = 0;
 461	uopt->session = 0xFFFFFFFF;
 462	uopt->lastblock = 0;
 463	uopt->anchor = 0;
 464
 465	if (!options)
 466		return 1;
 467
 468	while ((p = strsep(&options, ",")) != NULL) {
 469		substring_t args[MAX_OPT_ARGS];
 470		int token;
 471		unsigned n;
 472		if (!*p)
 473			continue;
 474
 475		token = match_token(p, tokens, args);
 476		switch (token) {
 477		case Opt_novrs:
 478			uopt->novrs = 1;
 479			break;
 480		case Opt_bs:
 481			if (match_int(&args[0], &option))
 482				return 0;
 483			n = option;
 484			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
 485				return 0;
 486			uopt->blocksize = n;
 487			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 488			break;
 489		case Opt_unhide:
 490			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 491			break;
 492		case Opt_undelete:
 493			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 494			break;
 495		case Opt_noadinicb:
 496			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 497			break;
 498		case Opt_adinicb:
 499			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 500			break;
 501		case Opt_shortad:
 502			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 503			break;
 504		case Opt_longad:
 505			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 506			break;
 507		case Opt_gid:
 508			if (match_uint(args, &uv))
 509				return 0;
 510			uopt->gid = make_kgid(current_user_ns(), uv);
 511			if (!gid_valid(uopt->gid))
 512				return 0;
 513			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 514			break;
 515		case Opt_uid:
 516			if (match_uint(args, &uv))
 517				return 0;
 518			uopt->uid = make_kuid(current_user_ns(), uv);
 519			if (!uid_valid(uopt->uid))
 520				return 0;
 521			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 522			break;
 523		case Opt_umask:
 524			if (match_octal(args, &option))
 525				return 0;
 526			uopt->umask = option;
 527			break;
 528		case Opt_nostrict:
 529			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 530			break;
 531		case Opt_session:
 532			if (match_int(args, &option))
 533				return 0;
 534			uopt->session = option;
 535			if (!remount)
 536				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 537			break;
 538		case Opt_lastblock:
 539			if (match_int(args, &option))
 540				return 0;
 541			uopt->lastblock = option;
 542			if (!remount)
 543				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 544			break;
 545		case Opt_anchor:
 546			if (match_int(args, &option))
 547				return 0;
 548			uopt->anchor = option;
 549			break;
 550		case Opt_volume:
 551		case Opt_partition:
 552		case Opt_fileset:
 553		case Opt_rootdir:
 554			/* Ignored (never implemented properly) */
 555			break;
 556		case Opt_utf8:
 557			if (!remount) {
 558				unload_nls(uopt->nls_map);
 559				uopt->nls_map = NULL;
 560			}
 561			break;
 562		case Opt_iocharset:
 563			if (!remount) {
 564				unload_nls(uopt->nls_map);
 565				uopt->nls_map = NULL;
 566			}
 567			/* When nls_map is not loaded then UTF-8 is used */
 568			if (!remount && strcmp(args[0].from, "utf8") != 0) {
 
 
 569				uopt->nls_map = load_nls(args[0].from);
 570				if (!uopt->nls_map) {
 571					pr_err("iocharset %s not found\n",
 572						args[0].from);
 573					return 0;
 574				}
 575			}
 576			break;
 577		case Opt_uforget:
 578			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 579			break;
 580		case Opt_uignore:
 581		case Opt_gignore:
 582			/* These options are superseeded by uid=<number> */
 583			break;
 584		case Opt_gforget:
 585			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 586			break;
 587		case Opt_fmode:
 588			if (match_octal(args, &option))
 589				return 0;
 590			uopt->fmode = option & 0777;
 591			break;
 592		case Opt_dmode:
 593			if (match_octal(args, &option))
 594				return 0;
 595			uopt->dmode = option & 0777;
 596			break;
 597		default:
 598			pr_err("bad mount option \"%s\" or missing value\n", p);
 599			return 0;
 600		}
 601	}
 602	return 1;
 603}
 604
 605static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 606{
 607	struct udf_options uopt;
 608	struct udf_sb_info *sbi = UDF_SB(sb);
 609	int error = 0;
 610
 611	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
 612		return -EACCES;
 613
 614	sync_filesystem(sb);
 615
 616	uopt.flags = sbi->s_flags;
 617	uopt.uid   = sbi->s_uid;
 618	uopt.gid   = sbi->s_gid;
 619	uopt.umask = sbi->s_umask;
 620	uopt.fmode = sbi->s_fmode;
 621	uopt.dmode = sbi->s_dmode;
 622	uopt.nls_map = NULL;
 623
 624	if (!udf_parse_options(options, &uopt, true))
 625		return -EINVAL;
 626
 627	write_lock(&sbi->s_cred_lock);
 628	sbi->s_flags = uopt.flags;
 629	sbi->s_uid   = uopt.uid;
 630	sbi->s_gid   = uopt.gid;
 631	sbi->s_umask = uopt.umask;
 632	sbi->s_fmode = uopt.fmode;
 633	sbi->s_dmode = uopt.dmode;
 634	write_unlock(&sbi->s_cred_lock);
 635
 636	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
 637		goto out_unlock;
 638
 639	if (*flags & SB_RDONLY)
 640		udf_close_lvid(sb);
 641	else
 642		udf_open_lvid(sb);
 643
 644out_unlock:
 645	return error;
 646}
 647
 648/*
 649 * Check VSD descriptor. Returns -1 in case we are at the end of volume
 650 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
 651 * we found one of NSR descriptors we are looking for.
 652 */
 653static int identify_vsd(const struct volStructDesc *vsd)
 654{
 655	int ret = 0;
 656
 657	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
 658		switch (vsd->structType) {
 659		case 0:
 660			udf_debug("ISO9660 Boot Record found\n");
 661			break;
 662		case 1:
 663			udf_debug("ISO9660 Primary Volume Descriptor found\n");
 664			break;
 665		case 2:
 666			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 667			break;
 668		case 3:
 669			udf_debug("ISO9660 Volume Partition Descriptor found\n");
 670			break;
 671		case 255:
 672			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 673			break;
 674		default:
 675			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
 676			break;
 677		}
 678	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
 679		; /* ret = 0 */
 680	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
 681		ret = 1;
 682	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
 683		ret = 1;
 684	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
 685		; /* ret = 0 */
 686	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
 687		; /* ret = 0 */
 688	else {
 689		/* TEA01 or invalid id : end of volume recognition area */
 690		ret = -1;
 691	}
 692
 693	return ret;
 694}
 695
 696/*
 697 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
 698 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
 699 * @return   1 if NSR02 or NSR03 found,
 700 *	    -1 if first sector read error, 0 otherwise
 701 */
 702static int udf_check_vsd(struct super_block *sb)
 703{
 704	struct volStructDesc *vsd = NULL;
 705	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
 706	int sectorsize;
 707	struct buffer_head *bh = NULL;
 708	int nsr = 0;
 709	struct udf_sb_info *sbi;
 710	loff_t session_offset;
 711
 712	sbi = UDF_SB(sb);
 713	if (sb->s_blocksize < sizeof(struct volStructDesc))
 714		sectorsize = sizeof(struct volStructDesc);
 715	else
 716		sectorsize = sb->s_blocksize;
 717
 718	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
 719	sector += session_offset;
 720
 721	udf_debug("Starting at sector %u (%lu byte sectors)\n",
 722		  (unsigned int)(sector >> sb->s_blocksize_bits),
 723		  sb->s_blocksize);
 724	/* Process the sequence (if applicable). The hard limit on the sector
 725	 * offset is arbitrary, hopefully large enough so that all valid UDF
 726	 * filesystems will be recognised. There is no mention of an upper
 727	 * bound to the size of the volume recognition area in the standard.
 728	 *  The limit will prevent the code to read all the sectors of a
 729	 * specially crafted image (like a bluray disc full of CD001 sectors),
 730	 * potentially causing minutes or even hours of uninterruptible I/O
 731	 * activity. This actually happened with uninitialised SSD partitions
 732	 * (all 0xFF) before the check for the limit and all valid IDs were
 733	 * added */
 734	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
 735		/* Read a block */
 736		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 737		if (!bh)
 738			break;
 739
 740		vsd = (struct volStructDesc *)(bh->b_data +
 741					      (sector & (sb->s_blocksize - 1)));
 742		nsr = identify_vsd(vsd);
 743		/* Found NSR or end? */
 744		if (nsr) {
 745			brelse(bh);
 746			break;
 747		}
 748		/*
 749		 * Special handling for improperly formatted VRS (e.g., Win10)
 750		 * where components are separated by 2048 bytes even though
 751		 * sectors are 4K
 752		 */
 753		if (sb->s_blocksize == 4096) {
 754			nsr = identify_vsd(vsd + 1);
 755			/* Ignore unknown IDs... */
 756			if (nsr < 0)
 757				nsr = 0;
 758		}
 759		brelse(bh);
 760	}
 761
 762	if (nsr > 0)
 763		return 1;
 764	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
 
 765		return -1;
 766	else
 767		return 0;
 768}
 769
 770static int udf_verify_domain_identifier(struct super_block *sb,
 771					struct regid *ident, char *dname)
 772{
 773	struct domainIdentSuffix *suffix;
 774
 775	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
 776		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
 777		goto force_ro;
 778	}
 779	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
 780		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
 781			 dname);
 782		goto force_ro;
 783	}
 784	suffix = (struct domainIdentSuffix *)ident->identSuffix;
 785	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
 786	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
 787		if (!sb_rdonly(sb)) {
 788			udf_warn(sb, "Descriptor for %s marked write protected."
 789				 " Forcing read only mount.\n", dname);
 790		}
 791		goto force_ro;
 792	}
 793	return 0;
 794
 795force_ro:
 796	if (!sb_rdonly(sb))
 797		return -EACCES;
 798	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
 799	return 0;
 800}
 801
 802static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
 803			    struct kernel_lb_addr *root)
 804{
 805	int ret;
 806
 807	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
 808	if (ret < 0)
 809		return ret;
 810
 811	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
 812	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
 813
 814	udf_debug("Rootdir at block=%u, partition=%u\n",
 815		  root->logicalBlockNum, root->partitionReferenceNum);
 816	return 0;
 817}
 818
 819static int udf_find_fileset(struct super_block *sb,
 820			    struct kernel_lb_addr *fileset,
 821			    struct kernel_lb_addr *root)
 822{
 823	struct buffer_head *bh;
 824	uint16_t ident;
 825	int ret;
 826
 827	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
 828	    fileset->partitionReferenceNum == 0xFFFF)
 829		return -EINVAL;
 830
 831	bh = udf_read_ptagged(sb, fileset, 0, &ident);
 832	if (!bh)
 833		return -EIO;
 834	if (ident != TAG_IDENT_FSD) {
 835		brelse(bh);
 836		return -EINVAL;
 837	}
 838
 839	udf_debug("Fileset at block=%u, partition=%u\n",
 840		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
 841
 842	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
 843	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
 844	brelse(bh);
 845	return ret;
 846}
 847
 848/*
 849 * Load primary Volume Descriptor Sequence
 850 *
 851 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
 852 * should be tried.
 853 */
 854static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 855{
 856	struct primaryVolDesc *pvoldesc;
 857	uint8_t *outstr;
 858	struct buffer_head *bh;
 859	uint16_t ident;
 860	int ret;
 861	struct timestamp *ts;
 862
 863	outstr = kmalloc(128, GFP_NOFS);
 864	if (!outstr)
 865		return -ENOMEM;
 866
 867	bh = udf_read_tagged(sb, block, block, &ident);
 868	if (!bh) {
 869		ret = -EAGAIN;
 870		goto out2;
 871	}
 872
 873	if (ident != TAG_IDENT_PVD) {
 874		ret = -EIO;
 875		goto out_bh;
 876	}
 877
 878	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 879
 880	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 881			      pvoldesc->recordingDateAndTime);
 882	ts = &pvoldesc->recordingDateAndTime;
 883	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 884		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 885		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 886
 887	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
 888	if (ret < 0) {
 889		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
 890		pr_warn("incorrect volume identification, setting to "
 891			"'InvalidName'\n");
 892	} else {
 893		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
 894	}
 895	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
 896
 897	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
 898	if (ret < 0) {
 899		ret = 0;
 900		goto out_bh;
 901	}
 902	outstr[ret] = 0;
 903	udf_debug("volSetIdent[] = '%s'\n", outstr);
 904
 905	ret = 0;
 906out_bh:
 907	brelse(bh);
 908out2:
 909	kfree(outstr);
 910	return ret;
 911}
 912
 913struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 914					u32 meta_file_loc, u32 partition_ref)
 915{
 916	struct kernel_lb_addr addr;
 917	struct inode *metadata_fe;
 918
 919	addr.logicalBlockNum = meta_file_loc;
 920	addr.partitionReferenceNum = partition_ref;
 921
 922	metadata_fe = udf_iget_special(sb, &addr);
 923
 924	if (IS_ERR(metadata_fe)) {
 925		udf_warn(sb, "metadata inode efe not found\n");
 926		return metadata_fe;
 927	}
 928	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 929		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 930		iput(metadata_fe);
 931		return ERR_PTR(-EIO);
 932	}
 933
 934	return metadata_fe;
 935}
 936
 937static int udf_load_metadata_files(struct super_block *sb, int partition,
 938				   int type1_index)
 939{
 940	struct udf_sb_info *sbi = UDF_SB(sb);
 941	struct udf_part_map *map;
 942	struct udf_meta_data *mdata;
 943	struct kernel_lb_addr addr;
 944	struct inode *fe;
 945
 946	map = &sbi->s_partmaps[partition];
 947	mdata = &map->s_type_specific.s_metadata;
 948	mdata->s_phys_partition_ref = type1_index;
 949
 950	/* metadata address */
 951	udf_debug("Metadata file location: block = %u part = %u\n",
 952		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
 953
 954	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
 955					 mdata->s_phys_partition_ref);
 956	if (IS_ERR(fe)) {
 957		/* mirror file entry */
 958		udf_debug("Mirror metadata file location: block = %u part = %u\n",
 959			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
 960
 961		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
 962						 mdata->s_phys_partition_ref);
 963
 964		if (IS_ERR(fe)) {
 965			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
 966			return PTR_ERR(fe);
 967		}
 968		mdata->s_mirror_fe = fe;
 969	} else
 970		mdata->s_metadata_fe = fe;
 971
 972
 973	/*
 974	 * bitmap file entry
 975	 * Note:
 976	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
 977	*/
 978	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
 979		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
 980		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
 981
 982		udf_debug("Bitmap file location: block = %u part = %u\n",
 983			  addr.logicalBlockNum, addr.partitionReferenceNum);
 984
 985		fe = udf_iget_special(sb, &addr);
 986		if (IS_ERR(fe)) {
 987			if (sb_rdonly(sb))
 988				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
 989			else {
 990				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
 991				return PTR_ERR(fe);
 992			}
 993		} else
 994			mdata->s_bitmap_fe = fe;
 995	}
 996
 997	udf_debug("udf_load_metadata_files Ok\n");
 998	return 0;
 999}
1000
1001int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1002{
1003	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1004	return DIV_ROUND_UP(map->s_partition_len +
1005			    (sizeof(struct spaceBitmapDesc) << 3),
1006			    sb->s_blocksize * 8);
1007}
1008
1009static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1010{
1011	struct udf_bitmap *bitmap;
1012	int nr_groups = udf_compute_nr_groups(sb, index);
 
 
 
 
 
 
 
 
 
 
1013
1014	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1015			  GFP_KERNEL);
1016	if (!bitmap)
1017		return NULL;
1018
1019	bitmap->s_nr_groups = nr_groups;
1020	return bitmap;
1021}
1022
1023static int check_partition_desc(struct super_block *sb,
1024				struct partitionDesc *p,
1025				struct udf_part_map *map)
1026{
1027	bool umap, utable, fmap, ftable;
1028	struct partitionHeaderDesc *phd;
1029
1030	switch (le32_to_cpu(p->accessType)) {
1031	case PD_ACCESS_TYPE_READ_ONLY:
1032	case PD_ACCESS_TYPE_WRITE_ONCE:
1033	case PD_ACCESS_TYPE_NONE:
1034		goto force_ro;
1035	}
1036
1037	/* No Partition Header Descriptor? */
1038	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1039	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1040		goto force_ro;
1041
1042	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1043	utable = phd->unallocSpaceTable.extLength;
1044	umap = phd->unallocSpaceBitmap.extLength;
1045	ftable = phd->freedSpaceTable.extLength;
1046	fmap = phd->freedSpaceBitmap.extLength;
1047
1048	/* No allocation info? */
1049	if (!utable && !umap && !ftable && !fmap)
1050		goto force_ro;
1051
1052	/* We don't support blocks that require erasing before overwrite */
1053	if (ftable || fmap)
1054		goto force_ro;
1055	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1056	if (utable && umap)
1057		goto force_ro;
1058
1059	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1060	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1061	    map->s_partition_type == UDF_METADATA_MAP25)
1062		goto force_ro;
1063
1064	return 0;
1065force_ro:
1066	if (!sb_rdonly(sb))
1067		return -EACCES;
1068	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1069	return 0;
1070}
1071
1072static int udf_fill_partdesc_info(struct super_block *sb,
1073		struct partitionDesc *p, int p_index)
1074{
1075	struct udf_part_map *map;
1076	struct udf_sb_info *sbi = UDF_SB(sb);
1077	struct partitionHeaderDesc *phd;
1078	int err;
1079
1080	map = &sbi->s_partmaps[p_index];
1081
1082	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1083	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1084
1085	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1086		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1087	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1088		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1089	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1090		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1091	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1092		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1093
1094	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1095		  p_index, map->s_partition_type,
1096		  map->s_partition_root, map->s_partition_len);
1097
1098	err = check_partition_desc(sb, p, map);
1099	if (err)
1100		return err;
1101
1102	/*
1103	 * Skip loading allocation info it we cannot ever write to the fs.
1104	 * This is a correctness thing as we may have decided to force ro mount
1105	 * to avoid allocation info we don't support.
1106	 */
1107	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1108		return 0;
1109
1110	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1111	if (phd->unallocSpaceTable.extLength) {
1112		struct kernel_lb_addr loc = {
1113			.logicalBlockNum = le32_to_cpu(
1114				phd->unallocSpaceTable.extPosition),
1115			.partitionReferenceNum = p_index,
1116		};
1117		struct inode *inode;
1118
1119		inode = udf_iget_special(sb, &loc);
1120		if (IS_ERR(inode)) {
1121			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1122				  p_index);
1123			return PTR_ERR(inode);
1124		}
1125		map->s_uspace.s_table = inode;
1126		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1127		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1128			  p_index, map->s_uspace.s_table->i_ino);
1129	}
1130
1131	if (phd->unallocSpaceBitmap.extLength) {
1132		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1133		if (!bitmap)
1134			return -ENOMEM;
1135		map->s_uspace.s_bitmap = bitmap;
1136		bitmap->s_extPosition = le32_to_cpu(
1137				phd->unallocSpaceBitmap.extPosition);
1138		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1139		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1140			  p_index, bitmap->s_extPosition);
1141	}
1142
1143	return 0;
1144}
1145
1146static void udf_find_vat_block(struct super_block *sb, int p_index,
1147			       int type1_index, sector_t start_block)
1148{
1149	struct udf_sb_info *sbi = UDF_SB(sb);
1150	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1151	sector_t vat_block;
1152	struct kernel_lb_addr ino;
1153	struct inode *inode;
1154
1155	/*
1156	 * VAT file entry is in the last recorded block. Some broken disks have
1157	 * it a few blocks before so try a bit harder...
1158	 */
1159	ino.partitionReferenceNum = type1_index;
1160	for (vat_block = start_block;
1161	     vat_block >= map->s_partition_root &&
1162	     vat_block >= start_block - 3; vat_block--) {
1163		ino.logicalBlockNum = vat_block - map->s_partition_root;
1164		inode = udf_iget_special(sb, &ino);
1165		if (!IS_ERR(inode)) {
1166			sbi->s_vat_inode = inode;
1167			break;
1168		}
1169	}
1170}
1171
1172static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1173{
1174	struct udf_sb_info *sbi = UDF_SB(sb);
1175	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1176	struct buffer_head *bh = NULL;
1177	struct udf_inode_info *vati;
1178	uint32_t pos;
1179	struct virtualAllocationTable20 *vat20;
1180	sector_t blocks = sb_bdev_nr_blocks(sb);
 
1181
1182	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1183	if (!sbi->s_vat_inode &&
1184	    sbi->s_last_block != blocks - 1) {
1185		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1186			  (unsigned long)sbi->s_last_block,
1187			  (unsigned long)blocks - 1);
1188		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1189	}
1190	if (!sbi->s_vat_inode)
1191		return -EIO;
1192
1193	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1194		map->s_type_specific.s_virtual.s_start_offset = 0;
1195		map->s_type_specific.s_virtual.s_num_entries =
1196			(sbi->s_vat_inode->i_size - 36) >> 2;
1197	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1198		vati = UDF_I(sbi->s_vat_inode);
1199		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1200			pos = udf_block_map(sbi->s_vat_inode, 0);
1201			bh = sb_bread(sb, pos);
1202			if (!bh)
1203				return -EIO;
1204			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1205		} else {
1206			vat20 = (struct virtualAllocationTable20 *)
1207							vati->i_data;
1208		}
1209
1210		map->s_type_specific.s_virtual.s_start_offset =
1211			le16_to_cpu(vat20->lengthHeader);
1212		map->s_type_specific.s_virtual.s_num_entries =
1213			(sbi->s_vat_inode->i_size -
1214				map->s_type_specific.s_virtual.
1215					s_start_offset) >> 2;
1216		brelse(bh);
1217	}
1218	return 0;
1219}
1220
1221/*
1222 * Load partition descriptor block
1223 *
1224 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1225 * sequence.
1226 */
1227static int udf_load_partdesc(struct super_block *sb, sector_t block)
1228{
1229	struct buffer_head *bh;
1230	struct partitionDesc *p;
1231	struct udf_part_map *map;
1232	struct udf_sb_info *sbi = UDF_SB(sb);
1233	int i, type1_idx;
1234	uint16_t partitionNumber;
1235	uint16_t ident;
1236	int ret;
1237
1238	bh = udf_read_tagged(sb, block, block, &ident);
1239	if (!bh)
1240		return -EAGAIN;
1241	if (ident != TAG_IDENT_PD) {
1242		ret = 0;
1243		goto out_bh;
1244	}
1245
1246	p = (struct partitionDesc *)bh->b_data;
1247	partitionNumber = le16_to_cpu(p->partitionNumber);
1248
1249	/* First scan for TYPE1 and SPARABLE partitions */
1250	for (i = 0; i < sbi->s_partitions; i++) {
1251		map = &sbi->s_partmaps[i];
1252		udf_debug("Searching map: (%u == %u)\n",
1253			  map->s_partition_num, partitionNumber);
1254		if (map->s_partition_num == partitionNumber &&
1255		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1256		     map->s_partition_type == UDF_SPARABLE_MAP15))
1257			break;
1258	}
1259
1260	if (i >= sbi->s_partitions) {
1261		udf_debug("Partition (%u) not found in partition map\n",
1262			  partitionNumber);
1263		ret = 0;
1264		goto out_bh;
1265	}
1266
1267	ret = udf_fill_partdesc_info(sb, p, i);
1268	if (ret < 0)
1269		goto out_bh;
1270
1271	/*
1272	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1273	 * PHYSICAL partitions are already set up
1274	 */
1275	type1_idx = i;
1276	map = NULL; /* supress 'maybe used uninitialized' warning */
1277	for (i = 0; i < sbi->s_partitions; i++) {
1278		map = &sbi->s_partmaps[i];
1279
1280		if (map->s_partition_num == partitionNumber &&
1281		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1282		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1283		     map->s_partition_type == UDF_METADATA_MAP25))
1284			break;
1285	}
1286
1287	if (i >= sbi->s_partitions) {
1288		ret = 0;
1289		goto out_bh;
1290	}
1291
1292	ret = udf_fill_partdesc_info(sb, p, i);
1293	if (ret < 0)
1294		goto out_bh;
1295
1296	if (map->s_partition_type == UDF_METADATA_MAP25) {
1297		ret = udf_load_metadata_files(sb, i, type1_idx);
1298		if (ret < 0) {
1299			udf_err(sb, "error loading MetaData partition map %d\n",
1300				i);
1301			goto out_bh;
1302		}
1303	} else {
1304		/*
1305		 * If we have a partition with virtual map, we don't handle
1306		 * writing to it (we overwrite blocks instead of relocating
1307		 * them).
1308		 */
1309		if (!sb_rdonly(sb)) {
1310			ret = -EACCES;
1311			goto out_bh;
1312		}
1313		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1314		ret = udf_load_vat(sb, i, type1_idx);
1315		if (ret < 0)
1316			goto out_bh;
1317	}
1318	ret = 0;
1319out_bh:
1320	/* In case loading failed, we handle cleanup in udf_fill_super */
1321	brelse(bh);
1322	return ret;
1323}
1324
1325static int udf_load_sparable_map(struct super_block *sb,
1326				 struct udf_part_map *map,
1327				 struct sparablePartitionMap *spm)
1328{
1329	uint32_t loc;
1330	uint16_t ident;
1331	struct sparingTable *st;
1332	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1333	int i;
1334	struct buffer_head *bh;
1335
1336	map->s_partition_type = UDF_SPARABLE_MAP15;
1337	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1338	if (!is_power_of_2(sdata->s_packet_len)) {
1339		udf_err(sb, "error loading logical volume descriptor: "
1340			"Invalid packet length %u\n",
1341			(unsigned)sdata->s_packet_len);
1342		return -EIO;
1343	}
1344	if (spm->numSparingTables > 4) {
1345		udf_err(sb, "error loading logical volume descriptor: "
1346			"Too many sparing tables (%d)\n",
1347			(int)spm->numSparingTables);
1348		return -EIO;
1349	}
1350	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1351		udf_err(sb, "error loading logical volume descriptor: "
1352			"Too big sparing table size (%u)\n",
1353			le32_to_cpu(spm->sizeSparingTable));
1354		return -EIO;
1355	}
1356
1357	for (i = 0; i < spm->numSparingTables; i++) {
1358		loc = le32_to_cpu(spm->locSparingTable[i]);
1359		bh = udf_read_tagged(sb, loc, loc, &ident);
1360		if (!bh)
1361			continue;
1362
1363		st = (struct sparingTable *)bh->b_data;
1364		if (ident != 0 ||
1365		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366			    strlen(UDF_ID_SPARING)) ||
1367		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368							sb->s_blocksize) {
1369			brelse(bh);
1370			continue;
1371		}
1372
1373		sdata->s_spar_map[i] = bh;
1374	}
1375	map->s_partition_func = udf_get_pblock_spar15;
1376	return 0;
1377}
1378
1379static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380			       struct kernel_lb_addr *fileset)
1381{
1382	struct logicalVolDesc *lvd;
1383	int i, offset;
1384	uint8_t type;
1385	struct udf_sb_info *sbi = UDF_SB(sb);
1386	struct genericPartitionMap *gpm;
1387	uint16_t ident;
1388	struct buffer_head *bh;
1389	unsigned int table_len;
1390	int ret;
1391
1392	bh = udf_read_tagged(sb, block, block, &ident);
1393	if (!bh)
1394		return -EAGAIN;
1395	BUG_ON(ident != TAG_IDENT_LVD);
1396	lvd = (struct logicalVolDesc *)bh->b_data;
1397	table_len = le32_to_cpu(lvd->mapTableLength);
1398	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399		udf_err(sb, "error loading logical volume descriptor: "
1400			"Partition table too long (%u > %lu)\n", table_len,
1401			sb->s_blocksize - sizeof(*lvd));
1402		ret = -EIO;
1403		goto out_bh;
1404	}
1405
1406	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407					   "logical volume");
1408	if (ret)
1409		goto out_bh;
1410	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411	if (ret)
1412		goto out_bh;
1413
1414	for (i = 0, offset = 0;
1415	     i < sbi->s_partitions && offset < table_len;
1416	     i++, offset += gpm->partitionMapLength) {
1417		struct udf_part_map *map = &sbi->s_partmaps[i];
1418		gpm = (struct genericPartitionMap *)
1419				&(lvd->partitionMaps[offset]);
1420		type = gpm->partitionMapType;
1421		if (type == 1) {
1422			struct genericPartitionMap1 *gpm1 =
1423				(struct genericPartitionMap1 *)gpm;
1424			map->s_partition_type = UDF_TYPE1_MAP15;
1425			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427			map->s_partition_func = NULL;
1428		} else if (type == 2) {
1429			struct udfPartitionMap2 *upm2 =
1430						(struct udfPartitionMap2 *)gpm;
1431			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432						strlen(UDF_ID_VIRTUAL))) {
1433				u16 suf =
1434					le16_to_cpu(((__le16 *)upm2->partIdent.
1435							identSuffix)[0]);
1436				if (suf < 0x0200) {
1437					map->s_partition_type =
1438							UDF_VIRTUAL_MAP15;
1439					map->s_partition_func =
1440							udf_get_pblock_virt15;
1441				} else {
1442					map->s_partition_type =
1443							UDF_VIRTUAL_MAP20;
1444					map->s_partition_func =
1445							udf_get_pblock_virt20;
1446				}
1447			} else if (!strncmp(upm2->partIdent.ident,
1448						UDF_ID_SPARABLE,
1449						strlen(UDF_ID_SPARABLE))) {
1450				ret = udf_load_sparable_map(sb, map,
1451					(struct sparablePartitionMap *)gpm);
1452				if (ret < 0)
1453					goto out_bh;
1454			} else if (!strncmp(upm2->partIdent.ident,
1455						UDF_ID_METADATA,
1456						strlen(UDF_ID_METADATA))) {
1457				struct udf_meta_data *mdata =
1458					&map->s_type_specific.s_metadata;
1459				struct metadataPartitionMap *mdm =
1460						(struct metadataPartitionMap *)
1461						&(lvd->partitionMaps[offset]);
1462				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463					  i, type, UDF_ID_METADATA);
1464
1465				map->s_partition_type = UDF_METADATA_MAP25;
1466				map->s_partition_func = udf_get_pblock_meta25;
1467
1468				mdata->s_meta_file_loc   =
1469					le32_to_cpu(mdm->metadataFileLoc);
1470				mdata->s_mirror_file_loc =
1471					le32_to_cpu(mdm->metadataMirrorFileLoc);
1472				mdata->s_bitmap_file_loc =
1473					le32_to_cpu(mdm->metadataBitmapFileLoc);
1474				mdata->s_alloc_unit_size =
1475					le32_to_cpu(mdm->allocUnitSize);
1476				mdata->s_align_unit_size =
1477					le16_to_cpu(mdm->alignUnitSize);
1478				if (mdm->flags & 0x01)
1479					mdata->s_flags |= MF_DUPLICATE_MD;
1480
1481				udf_debug("Metadata Ident suffix=0x%x\n",
1482					  le16_to_cpu(*(__le16 *)
1483						      mdm->partIdent.identSuffix));
1484				udf_debug("Metadata part num=%u\n",
1485					  le16_to_cpu(mdm->partitionNum));
1486				udf_debug("Metadata part alloc unit size=%u\n",
1487					  le32_to_cpu(mdm->allocUnitSize));
1488				udf_debug("Metadata file loc=%u\n",
1489					  le32_to_cpu(mdm->metadataFileLoc));
1490				udf_debug("Mirror file loc=%u\n",
1491					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1492				udf_debug("Bitmap file loc=%u\n",
1493					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1494				udf_debug("Flags: %d %u\n",
1495					  mdata->s_flags, mdm->flags);
1496			} else {
1497				udf_debug("Unknown ident: %s\n",
1498					  upm2->partIdent.ident);
1499				continue;
1500			}
1501			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503		}
1504		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505			  i, map->s_partition_num, type, map->s_volumeseqnum);
1506	}
1507
1508	if (fileset) {
1509		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510
1511		*fileset = lelb_to_cpu(la->extLocation);
1512		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513			  fileset->logicalBlockNum,
1514			  fileset->partitionReferenceNum);
1515	}
1516	if (lvd->integritySeqExt.extLength)
1517		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518	ret = 0;
1519
1520	if (!sbi->s_lvid_bh) {
1521		/* We can't generate unique IDs without a valid LVID */
1522		if (sb_rdonly(sb)) {
1523			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524		} else {
1525			udf_warn(sb, "Damaged or missing LVID, forcing "
1526				     "readonly mount\n");
1527			ret = -EACCES;
1528		}
1529	}
1530out_bh:
1531	brelse(bh);
1532	return ret;
1533}
1534
1535/*
1536 * Find the prevailing Logical Volume Integrity Descriptor.
1537 */
1538static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539{
1540	struct buffer_head *bh, *final_bh;
1541	uint16_t ident;
1542	struct udf_sb_info *sbi = UDF_SB(sb);
1543	struct logicalVolIntegrityDesc *lvid;
1544	int indirections = 0;
1545	u32 parts, impuselen;
1546
1547	while (++indirections <= UDF_MAX_LVID_NESTING) {
1548		final_bh = NULL;
1549		while (loc.extLength > 0 &&
1550			(bh = udf_read_tagged(sb, loc.extLocation,
1551					loc.extLocation, &ident))) {
1552			if (ident != TAG_IDENT_LVID) {
1553				brelse(bh);
1554				break;
1555			}
1556
1557			brelse(final_bh);
1558			final_bh = bh;
1559
1560			loc.extLength -= sb->s_blocksize;
1561			loc.extLocation++;
1562		}
1563
1564		if (!final_bh)
1565			return;
1566
1567		brelse(sbi->s_lvid_bh);
1568		sbi->s_lvid_bh = final_bh;
1569
1570		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1571		if (lvid->nextIntegrityExt.extLength == 0)
1572			goto check;
1573
1574		loc = leea_to_cpu(lvid->nextIntegrityExt);
1575	}
1576
1577	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1578		UDF_MAX_LVID_NESTING);
1579out_err:
1580	brelse(sbi->s_lvid_bh);
1581	sbi->s_lvid_bh = NULL;
1582	return;
1583check:
1584	parts = le32_to_cpu(lvid->numOfPartitions);
1585	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1586	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1587	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1588	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1589		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1590			 "ignoring.\n", parts, impuselen);
1591		goto out_err;
1592	}
1593}
1594
1595/*
1596 * Step for reallocation of table of partition descriptor sequence numbers.
1597 * Must be power of 2.
1598 */
1599#define PART_DESC_ALLOC_STEP 32
1600
1601struct part_desc_seq_scan_data {
1602	struct udf_vds_record rec;
1603	u32 partnum;
1604};
1605
1606struct desc_seq_scan_data {
1607	struct udf_vds_record vds[VDS_POS_LENGTH];
1608	unsigned int size_part_descs;
1609	unsigned int num_part_descs;
1610	struct part_desc_seq_scan_data *part_descs_loc;
1611};
1612
1613static struct udf_vds_record *handle_partition_descriptor(
1614				struct buffer_head *bh,
1615				struct desc_seq_scan_data *data)
1616{
1617	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1618	int partnum;
1619	int i;
1620
1621	partnum = le16_to_cpu(desc->partitionNumber);
1622	for (i = 0; i < data->num_part_descs; i++)
1623		if (partnum == data->part_descs_loc[i].partnum)
1624			return &(data->part_descs_loc[i].rec);
1625	if (data->num_part_descs >= data->size_part_descs) {
1626		struct part_desc_seq_scan_data *new_loc;
1627		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1628
1629		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1630		if (!new_loc)
1631			return ERR_PTR(-ENOMEM);
1632		memcpy(new_loc, data->part_descs_loc,
1633		       data->size_part_descs * sizeof(*new_loc));
1634		kfree(data->part_descs_loc);
1635		data->part_descs_loc = new_loc;
1636		data->size_part_descs = new_size;
1637	}
1638	return &(data->part_descs_loc[data->num_part_descs++].rec);
1639}
1640
1641
1642static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1643		struct buffer_head *bh, struct desc_seq_scan_data *data)
1644{
1645	switch (ident) {
1646	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1648	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1649		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1650	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1651		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1652	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1653		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1654	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1655		return handle_partition_descriptor(bh, data);
1656	}
1657	return NULL;
1658}
1659
1660/*
1661 * Process a main/reserve volume descriptor sequence.
1662 *   @block		First block of first extent of the sequence.
1663 *   @lastblock		Lastblock of first extent of the sequence.
1664 *   @fileset		There we store extent containing root fileset
1665 *
1666 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1667 * sequence
1668 */
1669static noinline int udf_process_sequence(
1670		struct super_block *sb,
1671		sector_t block, sector_t lastblock,
1672		struct kernel_lb_addr *fileset)
1673{
1674	struct buffer_head *bh = NULL;
1675	struct udf_vds_record *curr;
1676	struct generic_desc *gd;
1677	struct volDescPtr *vdp;
1678	bool done = false;
1679	uint32_t vdsn;
1680	uint16_t ident;
1681	int ret;
1682	unsigned int indirections = 0;
1683	struct desc_seq_scan_data data;
1684	unsigned int i;
1685
1686	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1687	data.size_part_descs = PART_DESC_ALLOC_STEP;
1688	data.num_part_descs = 0;
1689	data.part_descs_loc = kcalloc(data.size_part_descs,
1690				      sizeof(*data.part_descs_loc),
1691				      GFP_KERNEL);
1692	if (!data.part_descs_loc)
1693		return -ENOMEM;
1694
1695	/*
1696	 * Read the main descriptor sequence and find which descriptors
1697	 * are in it.
1698	 */
1699	for (; (!done && block <= lastblock); block++) {
1700		bh = udf_read_tagged(sb, block, block, &ident);
1701		if (!bh)
1702			break;
1703
1704		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1705		gd = (struct generic_desc *)bh->b_data;
1706		vdsn = le32_to_cpu(gd->volDescSeqNum);
1707		switch (ident) {
1708		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1709			if (++indirections > UDF_MAX_TD_NESTING) {
1710				udf_err(sb, "too many Volume Descriptor "
1711					"Pointers (max %u supported)\n",
1712					UDF_MAX_TD_NESTING);
1713				brelse(bh);
1714				ret = -EIO;
1715				goto out;
1716			}
1717
1718			vdp = (struct volDescPtr *)bh->b_data;
1719			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1720			lastblock = le32_to_cpu(
1721				vdp->nextVolDescSeqExt.extLength) >>
1722				sb->s_blocksize_bits;
1723			lastblock += block - 1;
1724			/* For loop is going to increment 'block' again */
1725			block--;
1726			break;
1727		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1728		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1729		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1730		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1731		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1732			curr = get_volume_descriptor_record(ident, bh, &data);
1733			if (IS_ERR(curr)) {
1734				brelse(bh);
1735				ret = PTR_ERR(curr);
1736				goto out;
1737			}
1738			/* Descriptor we don't care about? */
1739			if (!curr)
1740				break;
1741			if (vdsn >= curr->volDescSeqNum) {
1742				curr->volDescSeqNum = vdsn;
1743				curr->block = block;
1744			}
1745			break;
1746		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1747			done = true;
1748			break;
1749		}
1750		brelse(bh);
1751	}
1752	/*
1753	 * Now read interesting descriptors again and process them
1754	 * in a suitable order
1755	 */
1756	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1757		udf_err(sb, "Primary Volume Descriptor not found!\n");
1758		ret = -EAGAIN;
1759		goto out;
1760	}
1761	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1762	if (ret < 0)
1763		goto out;
1764
1765	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1766		ret = udf_load_logicalvol(sb,
1767				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1768				fileset);
1769		if (ret < 0)
1770			goto out;
1771	}
1772
1773	/* Now handle prevailing Partition Descriptors */
1774	for (i = 0; i < data.num_part_descs; i++) {
1775		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1776		if (ret < 0)
1777			goto out;
1778	}
1779	ret = 0;
1780out:
1781	kfree(data.part_descs_loc);
1782	return ret;
1783}
1784
1785/*
1786 * Load Volume Descriptor Sequence described by anchor in bh
1787 *
1788 * Returns <0 on error, 0 on success
1789 */
1790static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1791			     struct kernel_lb_addr *fileset)
1792{
1793	struct anchorVolDescPtr *anchor;
1794	sector_t main_s, main_e, reserve_s, reserve_e;
1795	int ret;
1796
1797	anchor = (struct anchorVolDescPtr *)bh->b_data;
1798
1799	/* Locate the main sequence */
1800	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1801	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1802	main_e = main_e >> sb->s_blocksize_bits;
1803	main_e += main_s - 1;
1804
1805	/* Locate the reserve sequence */
1806	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1807	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1808	reserve_e = reserve_e >> sb->s_blocksize_bits;
1809	reserve_e += reserve_s - 1;
1810
1811	/* Process the main & reserve sequences */
1812	/* responsible for finding the PartitionDesc(s) */
1813	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1814	if (ret != -EAGAIN)
1815		return ret;
1816	udf_sb_free_partitions(sb);
1817	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1818	if (ret < 0) {
1819		udf_sb_free_partitions(sb);
1820		/* No sequence was OK, return -EIO */
1821		if (ret == -EAGAIN)
1822			ret = -EIO;
1823	}
1824	return ret;
1825}
1826
1827/*
1828 * Check whether there is an anchor block in the given block and
1829 * load Volume Descriptor Sequence if so.
1830 *
1831 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1832 * block
1833 */
1834static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1835				  struct kernel_lb_addr *fileset)
1836{
1837	struct buffer_head *bh;
1838	uint16_t ident;
1839	int ret;
1840
1841	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1842	    udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
 
1843		return -EAGAIN;
1844
1845	bh = udf_read_tagged(sb, block, block, &ident);
1846	if (!bh)
1847		return -EAGAIN;
1848	if (ident != TAG_IDENT_AVDP) {
1849		brelse(bh);
1850		return -EAGAIN;
1851	}
1852	ret = udf_load_sequence(sb, bh, fileset);
1853	brelse(bh);
1854	return ret;
1855}
1856
1857/*
1858 * Search for an anchor volume descriptor pointer.
1859 *
1860 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861 * of anchors.
1862 */
1863static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864			    struct kernel_lb_addr *fileset)
1865{
1866	sector_t last[6];
1867	int i;
1868	struct udf_sb_info *sbi = UDF_SB(sb);
1869	int last_count = 0;
1870	int ret;
1871
1872	/* First try user provided anchor */
1873	if (sbi->s_anchor) {
1874		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875		if (ret != -EAGAIN)
1876			return ret;
1877	}
1878	/*
1879	 * according to spec, anchor is in either:
1880	 *     block 256
1881	 *     lastblock-256
1882	 *     lastblock
1883	 *  however, if the disc isn't closed, it could be 512.
1884	 */
1885	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886	if (ret != -EAGAIN)
1887		return ret;
1888	/*
1889	 * The trouble is which block is the last one. Drives often misreport
1890	 * this so we try various possibilities.
1891	 */
1892	last[last_count++] = *lastblock;
1893	if (*lastblock >= 1)
1894		last[last_count++] = *lastblock - 1;
1895	last[last_count++] = *lastblock + 1;
1896	if (*lastblock >= 2)
1897		last[last_count++] = *lastblock - 2;
1898	if (*lastblock >= 150)
1899		last[last_count++] = *lastblock - 150;
1900	if (*lastblock >= 152)
1901		last[last_count++] = *lastblock - 152;
1902
1903	for (i = 0; i < last_count; i++) {
1904		if (last[i] >= sb_bdev_nr_blocks(sb))
 
1905			continue;
1906		ret = udf_check_anchor_block(sb, last[i], fileset);
1907		if (ret != -EAGAIN) {
1908			if (!ret)
1909				*lastblock = last[i];
1910			return ret;
1911		}
1912		if (last[i] < 256)
1913			continue;
1914		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1915		if (ret != -EAGAIN) {
1916			if (!ret)
1917				*lastblock = last[i];
1918			return ret;
1919		}
1920	}
1921
1922	/* Finally try block 512 in case media is open */
1923	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1924}
1925
1926/*
1927 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1928 * area specified by it. The function expects sbi->s_lastblock to be the last
1929 * block on the media.
1930 *
1931 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1932 * was not found.
1933 */
1934static int udf_find_anchor(struct super_block *sb,
1935			   struct kernel_lb_addr *fileset)
1936{
1937	struct udf_sb_info *sbi = UDF_SB(sb);
1938	sector_t lastblock = sbi->s_last_block;
1939	int ret;
1940
1941	ret = udf_scan_anchors(sb, &lastblock, fileset);
1942	if (ret != -EAGAIN)
1943		goto out;
1944
1945	/* No anchor found? Try VARCONV conversion of block numbers */
1946	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1947	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1948	/* Firstly, we try to not convert number of the last block */
1949	ret = udf_scan_anchors(sb, &lastblock, fileset);
1950	if (ret != -EAGAIN)
1951		goto out;
1952
1953	lastblock = sbi->s_last_block;
1954	/* Secondly, we try with converted number of the last block */
1955	ret = udf_scan_anchors(sb, &lastblock, fileset);
1956	if (ret < 0) {
1957		/* VARCONV didn't help. Clear it. */
1958		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1959	}
1960out:
1961	if (ret == 0)
1962		sbi->s_last_block = lastblock;
1963	return ret;
1964}
1965
1966/*
1967 * Check Volume Structure Descriptor, find Anchor block and load Volume
1968 * Descriptor Sequence.
1969 *
1970 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1971 * block was not found.
1972 */
1973static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1974			int silent, struct kernel_lb_addr *fileset)
1975{
1976	struct udf_sb_info *sbi = UDF_SB(sb);
1977	int nsr = 0;
1978	int ret;
1979
1980	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1981		if (!silent)
1982			udf_warn(sb, "Bad block size\n");
1983		return -EINVAL;
1984	}
1985	sbi->s_last_block = uopt->lastblock;
1986	if (!uopt->novrs) {
1987		/* Check that it is NSR02 compliant */
1988		nsr = udf_check_vsd(sb);
1989		if (!nsr) {
1990			if (!silent)
1991				udf_warn(sb, "No VRS found\n");
1992			return -EINVAL;
1993		}
1994		if (nsr == -1)
1995			udf_debug("Failed to read sector at offset %d. "
1996				  "Assuming open disc. Skipping validity "
1997				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1998		if (!sbi->s_last_block)
1999			sbi->s_last_block = udf_get_last_block(sb);
2000	} else {
2001		udf_debug("Validity check skipped because of novrs option\n");
2002	}
2003
2004	/* Look for anchor block and load Volume Descriptor Sequence */
2005	sbi->s_anchor = uopt->anchor;
2006	ret = udf_find_anchor(sb, fileset);
2007	if (ret < 0) {
2008		if (!silent && ret == -EAGAIN)
2009			udf_warn(sb, "No anchor found\n");
2010		return ret;
2011	}
2012	return 0;
2013}
2014
2015static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2016{
2017	struct timespec64 ts;
2018
2019	ktime_get_real_ts64(&ts);
2020	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2021	lvid->descTag.descCRC = cpu_to_le16(
2022		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023			le16_to_cpu(lvid->descTag.descCRCLength)));
2024	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2025}
2026
2027static void udf_open_lvid(struct super_block *sb)
2028{
2029	struct udf_sb_info *sbi = UDF_SB(sb);
2030	struct buffer_head *bh = sbi->s_lvid_bh;
2031	struct logicalVolIntegrityDesc *lvid;
2032	struct logicalVolIntegrityDescImpUse *lvidiu;
2033
2034	if (!bh)
2035		return;
2036	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2037	lvidiu = udf_sb_lvidiu(sb);
2038	if (!lvidiu)
2039		return;
2040
2041	mutex_lock(&sbi->s_alloc_mutex);
2042	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2043	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2044	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2045		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2046	else
2047		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2048
2049	udf_finalize_lvid(lvid);
2050	mark_buffer_dirty(bh);
2051	sbi->s_lvid_dirty = 0;
2052	mutex_unlock(&sbi->s_alloc_mutex);
2053	/* Make opening of filesystem visible on the media immediately */
2054	sync_dirty_buffer(bh);
2055}
2056
2057static void udf_close_lvid(struct super_block *sb)
2058{
2059	struct udf_sb_info *sbi = UDF_SB(sb);
2060	struct buffer_head *bh = sbi->s_lvid_bh;
2061	struct logicalVolIntegrityDesc *lvid;
2062	struct logicalVolIntegrityDescImpUse *lvidiu;
2063
2064	if (!bh)
2065		return;
2066	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2067	lvidiu = udf_sb_lvidiu(sb);
2068	if (!lvidiu)
2069		return;
2070
2071	mutex_lock(&sbi->s_alloc_mutex);
2072	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2073	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2074	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2075		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2076	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2077		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2078	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2079		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2080	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2081		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2082
2083	/*
2084	 * We set buffer uptodate unconditionally here to avoid spurious
2085	 * warnings from mark_buffer_dirty() when previous EIO has marked
2086	 * the buffer as !uptodate
2087	 */
2088	set_buffer_uptodate(bh);
2089	udf_finalize_lvid(lvid);
2090	mark_buffer_dirty(bh);
2091	sbi->s_lvid_dirty = 0;
2092	mutex_unlock(&sbi->s_alloc_mutex);
2093	/* Make closing of filesystem visible on the media immediately */
2094	sync_dirty_buffer(bh);
2095}
2096
2097u64 lvid_get_unique_id(struct super_block *sb)
2098{
2099	struct buffer_head *bh;
2100	struct udf_sb_info *sbi = UDF_SB(sb);
2101	struct logicalVolIntegrityDesc *lvid;
2102	struct logicalVolHeaderDesc *lvhd;
2103	u64 uniqueID;
2104	u64 ret;
2105
2106	bh = sbi->s_lvid_bh;
2107	if (!bh)
2108		return 0;
2109
2110	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2111	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2112
2113	mutex_lock(&sbi->s_alloc_mutex);
2114	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2115	if (!(++uniqueID & 0xFFFFFFFF))
2116		uniqueID += 16;
2117	lvhd->uniqueID = cpu_to_le64(uniqueID);
2118	udf_updated_lvid(sb);
2119	mutex_unlock(&sbi->s_alloc_mutex);
2120
2121	return ret;
2122}
2123
2124static int udf_fill_super(struct super_block *sb, void *options, int silent)
2125{
2126	int ret = -EINVAL;
2127	struct inode *inode = NULL;
2128	struct udf_options uopt;
2129	struct kernel_lb_addr rootdir, fileset;
2130	struct udf_sb_info *sbi;
2131	bool lvid_open = false;
2132
2133	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2134	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2135	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2136	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2137	uopt.umask = 0;
2138	uopt.fmode = UDF_INVALID_MODE;
2139	uopt.dmode = UDF_INVALID_MODE;
2140	uopt.nls_map = NULL;
2141
2142	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2143	if (!sbi)
2144		return -ENOMEM;
2145
2146	sb->s_fs_info = sbi;
2147
2148	mutex_init(&sbi->s_alloc_mutex);
2149
2150	if (!udf_parse_options((char *)options, &uopt, false))
2151		goto parse_options_failure;
2152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153	fileset.logicalBlockNum = 0xFFFFFFFF;
2154	fileset.partitionReferenceNum = 0xFFFF;
2155
2156	sbi->s_flags = uopt.flags;
2157	sbi->s_uid = uopt.uid;
2158	sbi->s_gid = uopt.gid;
2159	sbi->s_umask = uopt.umask;
2160	sbi->s_fmode = uopt.fmode;
2161	sbi->s_dmode = uopt.dmode;
2162	sbi->s_nls_map = uopt.nls_map;
2163	rwlock_init(&sbi->s_cred_lock);
2164
2165	if (uopt.session == 0xFFFFFFFF)
2166		sbi->s_session = udf_get_last_session(sb);
2167	else
2168		sbi->s_session = uopt.session;
2169
2170	udf_debug("Multi-session=%d\n", sbi->s_session);
2171
2172	/* Fill in the rest of the superblock */
2173	sb->s_op = &udf_sb_ops;
2174	sb->s_export_op = &udf_export_ops;
2175
2176	sb->s_magic = UDF_SUPER_MAGIC;
2177	sb->s_time_gran = 1000;
2178
2179	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2180		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2181	} else {
2182		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2183		while (uopt.blocksize <= 4096) {
2184			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185			if (ret < 0) {
2186				if (!silent && ret != -EACCES) {
2187					pr_notice("Scanning with blocksize %u failed\n",
2188						  uopt.blocksize);
2189				}
2190				brelse(sbi->s_lvid_bh);
2191				sbi->s_lvid_bh = NULL;
2192				/*
2193				 * EACCES is special - we want to propagate to
2194				 * upper layers that we cannot handle RW mount.
2195				 */
2196				if (ret == -EACCES)
2197					break;
2198			} else
2199				break;
2200
2201			uopt.blocksize <<= 1;
2202		}
2203	}
2204	if (ret < 0) {
2205		if (ret == -EAGAIN) {
2206			udf_warn(sb, "No partition found (1)\n");
2207			ret = -EINVAL;
2208		}
2209		goto error_out;
2210	}
2211
2212	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2213
2214	if (sbi->s_lvid_bh) {
2215		struct logicalVolIntegrityDescImpUse *lvidiu =
2216							udf_sb_lvidiu(sb);
2217		uint16_t minUDFReadRev;
2218		uint16_t minUDFWriteRev;
2219
2220		if (!lvidiu) {
2221			ret = -EINVAL;
2222			goto error_out;
2223		}
2224		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2225		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2226		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2227			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2228				minUDFReadRev,
2229				UDF_MAX_READ_VERSION);
2230			ret = -EINVAL;
2231			goto error_out;
2232		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2233			if (!sb_rdonly(sb)) {
2234				ret = -EACCES;
2235				goto error_out;
2236			}
2237			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2238		}
2239
2240		sbi->s_udfrev = minUDFWriteRev;
2241
2242		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2243			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2244		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2245			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2246	}
2247
2248	if (!sbi->s_partitions) {
2249		udf_warn(sb, "No partition found (2)\n");
2250		ret = -EINVAL;
2251		goto error_out;
2252	}
2253
2254	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2255			UDF_PART_FLAG_READ_ONLY) {
2256		if (!sb_rdonly(sb)) {
2257			ret = -EACCES;
2258			goto error_out;
2259		}
2260		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2261	}
2262
2263	ret = udf_find_fileset(sb, &fileset, &rootdir);
2264	if (ret < 0) {
2265		udf_warn(sb, "No fileset found\n");
2266		goto error_out;
2267	}
2268
2269	if (!silent) {
2270		struct timestamp ts;
2271		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2272		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2273			 sbi->s_volume_ident,
2274			 le16_to_cpu(ts.year), ts.month, ts.day,
2275			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2276	}
2277	if (!sb_rdonly(sb)) {
2278		udf_open_lvid(sb);
2279		lvid_open = true;
2280	}
2281
2282	/* Assign the root inode */
2283	/* assign inodes by physical block number */
2284	/* perhaps it's not extensible enough, but for now ... */
2285	inode = udf_iget(sb, &rootdir);
2286	if (IS_ERR(inode)) {
2287		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2288		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2289		ret = PTR_ERR(inode);
2290		goto error_out;
2291	}
2292
2293	/* Allocate a dentry for the root inode */
2294	sb->s_root = d_make_root(inode);
2295	if (!sb->s_root) {
2296		udf_err(sb, "Couldn't allocate root dentry\n");
2297		ret = -ENOMEM;
2298		goto error_out;
2299	}
2300	sb->s_maxbytes = MAX_LFS_FILESIZE;
2301	sb->s_max_links = UDF_MAX_LINKS;
2302	return 0;
2303
2304error_out:
2305	iput(sbi->s_vat_inode);
2306parse_options_failure:
2307	unload_nls(uopt.nls_map);
 
2308	if (lvid_open)
2309		udf_close_lvid(sb);
2310	brelse(sbi->s_lvid_bh);
2311	udf_sb_free_partitions(sb);
2312	kfree(sbi);
2313	sb->s_fs_info = NULL;
2314
2315	return ret;
2316}
2317
2318void _udf_err(struct super_block *sb, const char *function,
2319	      const char *fmt, ...)
2320{
2321	struct va_format vaf;
2322	va_list args;
2323
2324	va_start(args, fmt);
2325
2326	vaf.fmt = fmt;
2327	vaf.va = &args;
2328
2329	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330
2331	va_end(args);
2332}
2333
2334void _udf_warn(struct super_block *sb, const char *function,
2335	       const char *fmt, ...)
2336{
2337	struct va_format vaf;
2338	va_list args;
2339
2340	va_start(args, fmt);
2341
2342	vaf.fmt = fmt;
2343	vaf.va = &args;
2344
2345	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346
2347	va_end(args);
2348}
2349
2350static void udf_put_super(struct super_block *sb)
2351{
2352	struct udf_sb_info *sbi;
2353
2354	sbi = UDF_SB(sb);
2355
2356	iput(sbi->s_vat_inode);
2357	unload_nls(sbi->s_nls_map);
 
2358	if (!sb_rdonly(sb))
2359		udf_close_lvid(sb);
2360	brelse(sbi->s_lvid_bh);
2361	udf_sb_free_partitions(sb);
2362	mutex_destroy(&sbi->s_alloc_mutex);
2363	kfree(sb->s_fs_info);
2364	sb->s_fs_info = NULL;
2365}
2366
2367static int udf_sync_fs(struct super_block *sb, int wait)
2368{
2369	struct udf_sb_info *sbi = UDF_SB(sb);
2370
2371	mutex_lock(&sbi->s_alloc_mutex);
2372	if (sbi->s_lvid_dirty) {
2373		struct buffer_head *bh = sbi->s_lvid_bh;
2374		struct logicalVolIntegrityDesc *lvid;
2375
2376		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2377		udf_finalize_lvid(lvid);
2378
2379		/*
2380		 * Blockdevice will be synced later so we don't have to submit
2381		 * the buffer for IO
2382		 */
2383		mark_buffer_dirty(bh);
2384		sbi->s_lvid_dirty = 0;
2385	}
2386	mutex_unlock(&sbi->s_alloc_mutex);
2387
2388	return 0;
2389}
2390
2391static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2392{
2393	struct super_block *sb = dentry->d_sb;
2394	struct udf_sb_info *sbi = UDF_SB(sb);
2395	struct logicalVolIntegrityDescImpUse *lvidiu;
2396	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2397
2398	lvidiu = udf_sb_lvidiu(sb);
2399	buf->f_type = UDF_SUPER_MAGIC;
2400	buf->f_bsize = sb->s_blocksize;
2401	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2402	buf->f_bfree = udf_count_free(sb);
2403	buf->f_bavail = buf->f_bfree;
2404	/*
2405	 * Let's pretend each free block is also a free 'inode' since UDF does
2406	 * not have separate preallocated table of inodes.
2407	 */
2408	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2409					  le32_to_cpu(lvidiu->numDirs)) : 0)
2410			+ buf->f_bfree;
2411	buf->f_ffree = buf->f_bfree;
2412	buf->f_namelen = UDF_NAME_LEN;
2413	buf->f_fsid = u64_to_fsid(id);
 
2414
2415	return 0;
2416}
2417
2418static unsigned int udf_count_free_bitmap(struct super_block *sb,
2419					  struct udf_bitmap *bitmap)
2420{
2421	struct buffer_head *bh = NULL;
2422	unsigned int accum = 0;
2423	int index;
2424	udf_pblk_t block = 0, newblock;
2425	struct kernel_lb_addr loc;
2426	uint32_t bytes;
2427	uint8_t *ptr;
2428	uint16_t ident;
2429	struct spaceBitmapDesc *bm;
2430
2431	loc.logicalBlockNum = bitmap->s_extPosition;
2432	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2433	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2434
2435	if (!bh) {
2436		udf_err(sb, "udf_count_free failed\n");
2437		goto out;
2438	} else if (ident != TAG_IDENT_SBD) {
2439		brelse(bh);
2440		udf_err(sb, "udf_count_free failed\n");
2441		goto out;
2442	}
2443
2444	bm = (struct spaceBitmapDesc *)bh->b_data;
2445	bytes = le32_to_cpu(bm->numOfBytes);
2446	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2447	ptr = (uint8_t *)bh->b_data;
2448
2449	while (bytes > 0) {
2450		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2451		accum += bitmap_weight((const unsigned long *)(ptr + index),
2452					cur_bytes * 8);
2453		bytes -= cur_bytes;
2454		if (bytes) {
2455			brelse(bh);
2456			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2457			bh = udf_tread(sb, newblock);
2458			if (!bh) {
2459				udf_debug("read failed\n");
2460				goto out;
2461			}
2462			index = 0;
2463			ptr = (uint8_t *)bh->b_data;
2464		}
2465	}
2466	brelse(bh);
2467out:
2468	return accum;
2469}
2470
2471static unsigned int udf_count_free_table(struct super_block *sb,
2472					 struct inode *table)
2473{
2474	unsigned int accum = 0;
2475	uint32_t elen;
2476	struct kernel_lb_addr eloc;
 
2477	struct extent_position epos;
2478
2479	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2480	epos.block = UDF_I(table)->i_location;
2481	epos.offset = sizeof(struct unallocSpaceEntry);
2482	epos.bh = NULL;
2483
2484	while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2485		accum += (elen >> table->i_sb->s_blocksize_bits);
2486
2487	brelse(epos.bh);
2488	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2489
2490	return accum;
2491}
2492
2493static unsigned int udf_count_free(struct super_block *sb)
2494{
2495	unsigned int accum = 0;
2496	struct udf_sb_info *sbi = UDF_SB(sb);
2497	struct udf_part_map *map;
2498	unsigned int part = sbi->s_partition;
2499	int ptype = sbi->s_partmaps[part].s_partition_type;
2500
2501	if (ptype == UDF_METADATA_MAP25) {
2502		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2503							s_phys_partition_ref;
2504	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2505		/*
2506		 * Filesystems with VAT are append-only and we cannot write to
2507 		 * them. Let's just report 0 here.
2508		 */
2509		return 0;
2510	}
2511
2512	if (sbi->s_lvid_bh) {
2513		struct logicalVolIntegrityDesc *lvid =
2514			(struct logicalVolIntegrityDesc *)
2515			sbi->s_lvid_bh->b_data;
2516		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2517			accum = le32_to_cpu(
2518					lvid->freeSpaceTable[part]);
2519			if (accum == 0xFFFFFFFF)
2520				accum = 0;
2521		}
2522	}
2523
2524	if (accum)
2525		return accum;
2526
2527	map = &sbi->s_partmaps[part];
2528	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2529		accum += udf_count_free_bitmap(sb,
2530					       map->s_uspace.s_bitmap);
2531	}
2532	if (accum)
2533		return accum;
2534
2535	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2536		accum += udf_count_free_table(sb,
2537					      map->s_uspace.s_table);
2538	}
2539	return accum;
2540}
2541
2542MODULE_AUTHOR("Ben Fennema");
2543MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2544MODULE_LICENSE("GPL");
2545module_init(init_udf_fs)
2546module_exit(exit_udf_fs)
v5.9
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    https://www.ecma.ch/
  15 *    https://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
  51#include <linux/vfs.h>
  52#include <linux/vmalloc.h>
  53#include <linux/errno.h>
  54#include <linux/mount.h>
  55#include <linux/seq_file.h>
  56#include <linux/bitmap.h>
  57#include <linux/crc-itu-t.h>
  58#include <linux/log2.h>
  59#include <asm/byteorder.h>
 
  60
  61#include "udf_sb.h"
  62#include "udf_i.h"
  63
  64#include <linux/init.h>
  65#include <linux/uaccess.h>
  66
  67enum {
  68	VDS_POS_PRIMARY_VOL_DESC,
  69	VDS_POS_UNALLOC_SPACE_DESC,
  70	VDS_POS_LOGICAL_VOL_DESC,
  71	VDS_POS_IMP_USE_VOL_DESC,
  72	VDS_POS_LENGTH
  73};
  74
  75#define VSD_FIRST_SECTOR_OFFSET		32768
  76#define VSD_MAX_SECTOR_OFFSET		0x800000
  77
  78/*
  79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
  80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
  81 * hopefully don't limit any real use of rewritten inode on write-once media
  82 * but avoid looping for too long on corrupted media.
  83 */
  84#define UDF_MAX_TD_NESTING 64
  85#define UDF_MAX_LVID_NESTING 1000
  86
  87enum { UDF_MAX_LINKS = 0xffff };
  88
  89/* These are the "meat" - everything else is stuffing */
  90static int udf_fill_super(struct super_block *, void *, int);
  91static void udf_put_super(struct super_block *);
  92static int udf_sync_fs(struct super_block *, int);
  93static int udf_remount_fs(struct super_block *, int *, char *);
  94static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
  95static void udf_open_lvid(struct super_block *);
  96static void udf_close_lvid(struct super_block *);
  97static unsigned int udf_count_free(struct super_block *);
  98static int udf_statfs(struct dentry *, struct kstatfs *);
  99static int udf_show_options(struct seq_file *, struct dentry *);
 100
 101struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
 102{
 103	struct logicalVolIntegrityDesc *lvid;
 104	unsigned int partnum;
 105	unsigned int offset;
 106
 107	if (!UDF_SB(sb)->s_lvid_bh)
 108		return NULL;
 109	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
 110	partnum = le32_to_cpu(lvid->numOfPartitions);
 111	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
 112	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
 113	     (2 * sizeof(uint32_t)) < partnum) {
 114		udf_err(sb, "Logical volume integrity descriptor corrupted "
 115			"(numOfPartitions = %u)!\n", partnum);
 116		return NULL;
 117	}
 118	/* The offset is to skip freeSpaceTable and sizeTable arrays */
 119	offset = partnum * 2 * sizeof(uint32_t);
 120	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
 
 121}
 122
 123/* UDF filesystem type */
 124static struct dentry *udf_mount(struct file_system_type *fs_type,
 125		      int flags, const char *dev_name, void *data)
 126{
 127	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 128}
 129
 130static struct file_system_type udf_fstype = {
 131	.owner		= THIS_MODULE,
 132	.name		= "udf",
 133	.mount		= udf_mount,
 134	.kill_sb	= kill_block_super,
 135	.fs_flags	= FS_REQUIRES_DEV,
 136};
 137MODULE_ALIAS_FS("udf");
 138
 139static struct kmem_cache *udf_inode_cachep;
 140
 141static struct inode *udf_alloc_inode(struct super_block *sb)
 142{
 143	struct udf_inode_info *ei;
 144	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
 145	if (!ei)
 146		return NULL;
 147
 148	ei->i_unique = 0;
 149	ei->i_lenExtents = 0;
 150	ei->i_lenStreams = 0;
 151	ei->i_next_alloc_block = 0;
 152	ei->i_next_alloc_goal = 0;
 153	ei->i_strat4096 = 0;
 154	ei->i_streamdir = 0;
 155	init_rwsem(&ei->i_data_sem);
 156	ei->cached_extent.lstart = -1;
 157	spin_lock_init(&ei->i_extent_cache_lock);
 
 158
 159	return &ei->vfs_inode;
 160}
 161
 162static void udf_free_in_core_inode(struct inode *inode)
 163{
 164	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 165}
 166
 167static void init_once(void *foo)
 168{
 169	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
 170
 171	ei->i_ext.i_data = NULL;
 172	inode_init_once(&ei->vfs_inode);
 173}
 174
 175static int __init init_inodecache(void)
 176{
 177	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 178					     sizeof(struct udf_inode_info),
 179					     0, (SLAB_RECLAIM_ACCOUNT |
 180						 SLAB_MEM_SPREAD |
 181						 SLAB_ACCOUNT),
 182					     init_once);
 183	if (!udf_inode_cachep)
 184		return -ENOMEM;
 185	return 0;
 186}
 187
 188static void destroy_inodecache(void)
 189{
 190	/*
 191	 * Make sure all delayed rcu free inodes are flushed before we
 192	 * destroy cache.
 193	 */
 194	rcu_barrier();
 195	kmem_cache_destroy(udf_inode_cachep);
 196}
 197
 198/* Superblock operations */
 199static const struct super_operations udf_sb_ops = {
 200	.alloc_inode	= udf_alloc_inode,
 201	.free_inode	= udf_free_in_core_inode,
 202	.write_inode	= udf_write_inode,
 203	.evict_inode	= udf_evict_inode,
 204	.put_super	= udf_put_super,
 205	.sync_fs	= udf_sync_fs,
 206	.statfs		= udf_statfs,
 207	.remount_fs	= udf_remount_fs,
 208	.show_options	= udf_show_options,
 209};
 210
 211struct udf_options {
 212	unsigned char novrs;
 213	unsigned int blocksize;
 214	unsigned int session;
 215	unsigned int lastblock;
 216	unsigned int anchor;
 217	unsigned int flags;
 218	umode_t umask;
 219	kgid_t gid;
 220	kuid_t uid;
 221	umode_t fmode;
 222	umode_t dmode;
 223	struct nls_table *nls_map;
 224};
 225
 226static int __init init_udf_fs(void)
 227{
 228	int err;
 229
 230	err = init_inodecache();
 231	if (err)
 232		goto out1;
 233	err = register_filesystem(&udf_fstype);
 234	if (err)
 235		goto out;
 236
 237	return 0;
 238
 239out:
 240	destroy_inodecache();
 241
 242out1:
 243	return err;
 244}
 245
 246static void __exit exit_udf_fs(void)
 247{
 248	unregister_filesystem(&udf_fstype);
 249	destroy_inodecache();
 250}
 251
 252static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 253{
 254	struct udf_sb_info *sbi = UDF_SB(sb);
 255
 256	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
 257	if (!sbi->s_partmaps) {
 258		sbi->s_partitions = 0;
 259		return -ENOMEM;
 260	}
 261
 262	sbi->s_partitions = count;
 263	return 0;
 264}
 265
 266static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
 267{
 268	int i;
 269	int nr_groups = bitmap->s_nr_groups;
 270
 271	for (i = 0; i < nr_groups; i++)
 272		brelse(bitmap->s_block_bitmap[i]);
 273
 274	kvfree(bitmap);
 275}
 276
 277static void udf_free_partition(struct udf_part_map *map)
 278{
 279	int i;
 280	struct udf_meta_data *mdata;
 281
 282	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 283		iput(map->s_uspace.s_table);
 284	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 285		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
 286	if (map->s_partition_type == UDF_SPARABLE_MAP15)
 287		for (i = 0; i < 4; i++)
 288			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
 289	else if (map->s_partition_type == UDF_METADATA_MAP25) {
 290		mdata = &map->s_type_specific.s_metadata;
 291		iput(mdata->s_metadata_fe);
 292		mdata->s_metadata_fe = NULL;
 293
 294		iput(mdata->s_mirror_fe);
 295		mdata->s_mirror_fe = NULL;
 296
 297		iput(mdata->s_bitmap_fe);
 298		mdata->s_bitmap_fe = NULL;
 299	}
 300}
 301
 302static void udf_sb_free_partitions(struct super_block *sb)
 303{
 304	struct udf_sb_info *sbi = UDF_SB(sb);
 305	int i;
 306
 307	if (!sbi->s_partmaps)
 308		return;
 309	for (i = 0; i < sbi->s_partitions; i++)
 310		udf_free_partition(&sbi->s_partmaps[i]);
 311	kfree(sbi->s_partmaps);
 312	sbi->s_partmaps = NULL;
 313}
 314
 315static int udf_show_options(struct seq_file *seq, struct dentry *root)
 316{
 317	struct super_block *sb = root->d_sb;
 318	struct udf_sb_info *sbi = UDF_SB(sb);
 319
 320	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 321		seq_puts(seq, ",nostrict");
 322	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 323		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 324	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 325		seq_puts(seq, ",unhide");
 326	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 327		seq_puts(seq, ",undelete");
 328	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 329		seq_puts(seq, ",noadinicb");
 330	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 331		seq_puts(seq, ",shortad");
 332	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 333		seq_puts(seq, ",uid=forget");
 334	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 335		seq_puts(seq, ",gid=forget");
 336	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 337		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
 338	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 339		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
 340	if (sbi->s_umask != 0)
 341		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 342	if (sbi->s_fmode != UDF_INVALID_MODE)
 343		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 344	if (sbi->s_dmode != UDF_INVALID_MODE)
 345		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 346	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 347		seq_printf(seq, ",session=%d", sbi->s_session);
 348	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 349		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 350	if (sbi->s_anchor != 0)
 351		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 352	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
 353		seq_puts(seq, ",utf8");
 354	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
 355		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 
 
 356
 357	return 0;
 358}
 359
 360/*
 361 * udf_parse_options
 362 *
 363 * PURPOSE
 364 *	Parse mount options.
 365 *
 366 * DESCRIPTION
 367 *	The following mount options are supported:
 368 *
 369 *	gid=		Set the default group.
 370 *	umask=		Set the default umask.
 371 *	mode=		Set the default file permissions.
 372 *	dmode=		Set the default directory permissions.
 373 *	uid=		Set the default user.
 374 *	bs=		Set the block size.
 375 *	unhide		Show otherwise hidden files.
 376 *	undelete	Show deleted files in lists.
 377 *	adinicb		Embed data in the inode (default)
 378 *	noadinicb	Don't embed data in the inode
 379 *	shortad		Use short ad's
 380 *	longad		Use long ad's (default)
 381 *	nostrict	Unset strict conformance
 382 *	iocharset=	Set the NLS character set
 383 *
 384 *	The remaining are for debugging and disaster recovery:
 385 *
 386 *	novrs		Skip volume sequence recognition
 387 *
 388 *	The following expect a offset from 0.
 389 *
 390 *	session=	Set the CDROM session (default= last session)
 391 *	anchor=		Override standard anchor location. (default= 256)
 392 *	volume=		Override the VolumeDesc location. (unused)
 393 *	partition=	Override the PartitionDesc location. (unused)
 394 *	lastblock=	Set the last block of the filesystem/
 395 *
 396 *	The following expect a offset from the partition root.
 397 *
 398 *	fileset=	Override the fileset block location. (unused)
 399 *	rootdir=	Override the root directory location. (unused)
 400 *		WARNING: overriding the rootdir to a non-directory may
 401 *		yield highly unpredictable results.
 402 *
 403 * PRE-CONDITIONS
 404 *	options		Pointer to mount options string.
 405 *	uopts		Pointer to mount options variable.
 406 *
 407 * POST-CONDITIONS
 408 *	<return>	1	Mount options parsed okay.
 409 *	<return>	0	Error parsing mount options.
 410 *
 411 * HISTORY
 412 *	July 1, 1997 - Andrew E. Mileski
 413 *	Written, tested, and released.
 414 */
 415
 416enum {
 417	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 418	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 419	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 420	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 421	Opt_rootdir, Opt_utf8, Opt_iocharset,
 422	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 423	Opt_fmode, Opt_dmode
 424};
 425
 426static const match_table_t tokens = {
 427	{Opt_novrs,	"novrs"},
 428	{Opt_nostrict,	"nostrict"},
 429	{Opt_bs,	"bs=%u"},
 430	{Opt_unhide,	"unhide"},
 431	{Opt_undelete,	"undelete"},
 432	{Opt_noadinicb,	"noadinicb"},
 433	{Opt_adinicb,	"adinicb"},
 434	{Opt_shortad,	"shortad"},
 435	{Opt_longad,	"longad"},
 436	{Opt_uforget,	"uid=forget"},
 437	{Opt_uignore,	"uid=ignore"},
 438	{Opt_gforget,	"gid=forget"},
 439	{Opt_gignore,	"gid=ignore"},
 440	{Opt_gid,	"gid=%u"},
 441	{Opt_uid,	"uid=%u"},
 442	{Opt_umask,	"umask=%o"},
 443	{Opt_session,	"session=%u"},
 444	{Opt_lastblock,	"lastblock=%u"},
 445	{Opt_anchor,	"anchor=%u"},
 446	{Opt_volume,	"volume=%u"},
 447	{Opt_partition,	"partition=%u"},
 448	{Opt_fileset,	"fileset=%u"},
 449	{Opt_rootdir,	"rootdir=%u"},
 450	{Opt_utf8,	"utf8"},
 451	{Opt_iocharset,	"iocharset=%s"},
 452	{Opt_fmode,     "mode=%o"},
 453	{Opt_dmode,     "dmode=%o"},
 454	{Opt_err,	NULL}
 455};
 456
 457static int udf_parse_options(char *options, struct udf_options *uopt,
 458			     bool remount)
 459{
 460	char *p;
 461	int option;
 
 462
 463	uopt->novrs = 0;
 464	uopt->session = 0xFFFFFFFF;
 465	uopt->lastblock = 0;
 466	uopt->anchor = 0;
 467
 468	if (!options)
 469		return 1;
 470
 471	while ((p = strsep(&options, ",")) != NULL) {
 472		substring_t args[MAX_OPT_ARGS];
 473		int token;
 474		unsigned n;
 475		if (!*p)
 476			continue;
 477
 478		token = match_token(p, tokens, args);
 479		switch (token) {
 480		case Opt_novrs:
 481			uopt->novrs = 1;
 482			break;
 483		case Opt_bs:
 484			if (match_int(&args[0], &option))
 485				return 0;
 486			n = option;
 487			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
 488				return 0;
 489			uopt->blocksize = n;
 490			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 491			break;
 492		case Opt_unhide:
 493			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 494			break;
 495		case Opt_undelete:
 496			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 497			break;
 498		case Opt_noadinicb:
 499			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 500			break;
 501		case Opt_adinicb:
 502			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 503			break;
 504		case Opt_shortad:
 505			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 506			break;
 507		case Opt_longad:
 508			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 509			break;
 510		case Opt_gid:
 511			if (match_int(args, &option))
 512				return 0;
 513			uopt->gid = make_kgid(current_user_ns(), option);
 514			if (!gid_valid(uopt->gid))
 515				return 0;
 516			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 517			break;
 518		case Opt_uid:
 519			if (match_int(args, &option))
 520				return 0;
 521			uopt->uid = make_kuid(current_user_ns(), option);
 522			if (!uid_valid(uopt->uid))
 523				return 0;
 524			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 525			break;
 526		case Opt_umask:
 527			if (match_octal(args, &option))
 528				return 0;
 529			uopt->umask = option;
 530			break;
 531		case Opt_nostrict:
 532			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 533			break;
 534		case Opt_session:
 535			if (match_int(args, &option))
 536				return 0;
 537			uopt->session = option;
 538			if (!remount)
 539				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 540			break;
 541		case Opt_lastblock:
 542			if (match_int(args, &option))
 543				return 0;
 544			uopt->lastblock = option;
 545			if (!remount)
 546				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 547			break;
 548		case Opt_anchor:
 549			if (match_int(args, &option))
 550				return 0;
 551			uopt->anchor = option;
 552			break;
 553		case Opt_volume:
 554		case Opt_partition:
 555		case Opt_fileset:
 556		case Opt_rootdir:
 557			/* Ignored (never implemented properly) */
 558			break;
 559		case Opt_utf8:
 560			uopt->flags |= (1 << UDF_FLAG_UTF8);
 
 
 
 561			break;
 562		case Opt_iocharset:
 563			if (!remount) {
 564				if (uopt->nls_map)
 565					unload_nls(uopt->nls_map);
 566				/*
 567				 * load_nls() failure is handled later in
 568				 * udf_fill_super() after all options are
 569				 * parsed.
 570				 */
 571				uopt->nls_map = load_nls(args[0].from);
 572				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
 
 
 
 
 573			}
 574			break;
 575		case Opt_uforget:
 576			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 577			break;
 578		case Opt_uignore:
 579		case Opt_gignore:
 580			/* These options are superseeded by uid=<number> */
 581			break;
 582		case Opt_gforget:
 583			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 584			break;
 585		case Opt_fmode:
 586			if (match_octal(args, &option))
 587				return 0;
 588			uopt->fmode = option & 0777;
 589			break;
 590		case Opt_dmode:
 591			if (match_octal(args, &option))
 592				return 0;
 593			uopt->dmode = option & 0777;
 594			break;
 595		default:
 596			pr_err("bad mount option \"%s\" or missing value\n", p);
 597			return 0;
 598		}
 599	}
 600	return 1;
 601}
 602
 603static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 604{
 605	struct udf_options uopt;
 606	struct udf_sb_info *sbi = UDF_SB(sb);
 607	int error = 0;
 608
 609	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
 610		return -EACCES;
 611
 612	sync_filesystem(sb);
 613
 614	uopt.flags = sbi->s_flags;
 615	uopt.uid   = sbi->s_uid;
 616	uopt.gid   = sbi->s_gid;
 617	uopt.umask = sbi->s_umask;
 618	uopt.fmode = sbi->s_fmode;
 619	uopt.dmode = sbi->s_dmode;
 620	uopt.nls_map = NULL;
 621
 622	if (!udf_parse_options(options, &uopt, true))
 623		return -EINVAL;
 624
 625	write_lock(&sbi->s_cred_lock);
 626	sbi->s_flags = uopt.flags;
 627	sbi->s_uid   = uopt.uid;
 628	sbi->s_gid   = uopt.gid;
 629	sbi->s_umask = uopt.umask;
 630	sbi->s_fmode = uopt.fmode;
 631	sbi->s_dmode = uopt.dmode;
 632	write_unlock(&sbi->s_cred_lock);
 633
 634	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
 635		goto out_unlock;
 636
 637	if (*flags & SB_RDONLY)
 638		udf_close_lvid(sb);
 639	else
 640		udf_open_lvid(sb);
 641
 642out_unlock:
 643	return error;
 644}
 645
 646/*
 647 * Check VSD descriptor. Returns -1 in case we are at the end of volume
 648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
 649 * we found one of NSR descriptors we are looking for.
 650 */
 651static int identify_vsd(const struct volStructDesc *vsd)
 652{
 653	int ret = 0;
 654
 655	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
 656		switch (vsd->structType) {
 657		case 0:
 658			udf_debug("ISO9660 Boot Record found\n");
 659			break;
 660		case 1:
 661			udf_debug("ISO9660 Primary Volume Descriptor found\n");
 662			break;
 663		case 2:
 664			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 665			break;
 666		case 3:
 667			udf_debug("ISO9660 Volume Partition Descriptor found\n");
 668			break;
 669		case 255:
 670			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 671			break;
 672		default:
 673			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
 674			break;
 675		}
 676	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
 677		; /* ret = 0 */
 678	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
 679		ret = 1;
 680	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
 681		ret = 1;
 682	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
 683		; /* ret = 0 */
 684	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
 685		; /* ret = 0 */
 686	else {
 687		/* TEA01 or invalid id : end of volume recognition area */
 688		ret = -1;
 689	}
 690
 691	return ret;
 692}
 693
 694/*
 695 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
 696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
 697 * @return   1 if NSR02 or NSR03 found,
 698 *	    -1 if first sector read error, 0 otherwise
 699 */
 700static int udf_check_vsd(struct super_block *sb)
 701{
 702	struct volStructDesc *vsd = NULL;
 703	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
 704	int sectorsize;
 705	struct buffer_head *bh = NULL;
 706	int nsr = 0;
 707	struct udf_sb_info *sbi;
 
 708
 709	sbi = UDF_SB(sb);
 710	if (sb->s_blocksize < sizeof(struct volStructDesc))
 711		sectorsize = sizeof(struct volStructDesc);
 712	else
 713		sectorsize = sb->s_blocksize;
 714
 715	sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
 
 716
 717	udf_debug("Starting at sector %u (%lu byte sectors)\n",
 718		  (unsigned int)(sector >> sb->s_blocksize_bits),
 719		  sb->s_blocksize);
 720	/* Process the sequence (if applicable). The hard limit on the sector
 721	 * offset is arbitrary, hopefully large enough so that all valid UDF
 722	 * filesystems will be recognised. There is no mention of an upper
 723	 * bound to the size of the volume recognition area in the standard.
 724	 *  The limit will prevent the code to read all the sectors of a
 725	 * specially crafted image (like a bluray disc full of CD001 sectors),
 726	 * potentially causing minutes or even hours of uninterruptible I/O
 727	 * activity. This actually happened with uninitialised SSD partitions
 728	 * (all 0xFF) before the check for the limit and all valid IDs were
 729	 * added */
 730	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
 731		/* Read a block */
 732		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 733		if (!bh)
 734			break;
 735
 736		vsd = (struct volStructDesc *)(bh->b_data +
 737					      (sector & (sb->s_blocksize - 1)));
 738		nsr = identify_vsd(vsd);
 739		/* Found NSR or end? */
 740		if (nsr) {
 741			brelse(bh);
 742			break;
 743		}
 744		/*
 745		 * Special handling for improperly formatted VRS (e.g., Win10)
 746		 * where components are separated by 2048 bytes even though
 747		 * sectors are 4K
 748		 */
 749		if (sb->s_blocksize == 4096) {
 750			nsr = identify_vsd(vsd + 1);
 751			/* Ignore unknown IDs... */
 752			if (nsr < 0)
 753				nsr = 0;
 754		}
 755		brelse(bh);
 756	}
 757
 758	if (nsr > 0)
 759		return 1;
 760	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
 761			VSD_FIRST_SECTOR_OFFSET)
 762		return -1;
 763	else
 764		return 0;
 765}
 766
 767static int udf_verify_domain_identifier(struct super_block *sb,
 768					struct regid *ident, char *dname)
 769{
 770	struct domainIdentSuffix *suffix;
 771
 772	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
 773		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
 774		goto force_ro;
 775	}
 776	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
 777		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
 778			 dname);
 779		goto force_ro;
 780	}
 781	suffix = (struct domainIdentSuffix *)ident->identSuffix;
 782	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
 783	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
 784		if (!sb_rdonly(sb)) {
 785			udf_warn(sb, "Descriptor for %s marked write protected."
 786				 " Forcing read only mount.\n", dname);
 787		}
 788		goto force_ro;
 789	}
 790	return 0;
 791
 792force_ro:
 793	if (!sb_rdonly(sb))
 794		return -EACCES;
 795	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
 796	return 0;
 797}
 798
 799static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
 800			    struct kernel_lb_addr *root)
 801{
 802	int ret;
 803
 804	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
 805	if (ret < 0)
 806		return ret;
 807
 808	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
 809	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
 810
 811	udf_debug("Rootdir at block=%u, partition=%u\n",
 812		  root->logicalBlockNum, root->partitionReferenceNum);
 813	return 0;
 814}
 815
 816static int udf_find_fileset(struct super_block *sb,
 817			    struct kernel_lb_addr *fileset,
 818			    struct kernel_lb_addr *root)
 819{
 820	struct buffer_head *bh = NULL;
 821	uint16_t ident;
 822	int ret;
 823
 824	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
 825	    fileset->partitionReferenceNum == 0xFFFF)
 826		return -EINVAL;
 827
 828	bh = udf_read_ptagged(sb, fileset, 0, &ident);
 829	if (!bh)
 830		return -EIO;
 831	if (ident != TAG_IDENT_FSD) {
 832		brelse(bh);
 833		return -EINVAL;
 834	}
 835
 836	udf_debug("Fileset at block=%u, partition=%u\n",
 837		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
 838
 839	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
 840	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
 841	brelse(bh);
 842	return ret;
 843}
 844
 845/*
 846 * Load primary Volume Descriptor Sequence
 847 *
 848 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
 849 * should be tried.
 850 */
 851static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 852{
 853	struct primaryVolDesc *pvoldesc;
 854	uint8_t *outstr;
 855	struct buffer_head *bh;
 856	uint16_t ident;
 857	int ret = -ENOMEM;
 858	struct timestamp *ts;
 859
 860	outstr = kmalloc(128, GFP_NOFS);
 861	if (!outstr)
 862		return -ENOMEM;
 863
 864	bh = udf_read_tagged(sb, block, block, &ident);
 865	if (!bh) {
 866		ret = -EAGAIN;
 867		goto out2;
 868	}
 869
 870	if (ident != TAG_IDENT_PVD) {
 871		ret = -EIO;
 872		goto out_bh;
 873	}
 874
 875	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 876
 877	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 878			      pvoldesc->recordingDateAndTime);
 879	ts = &pvoldesc->recordingDateAndTime;
 880	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 881		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 882		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 883
 884	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
 885	if (ret < 0) {
 886		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
 887		pr_warn("incorrect volume identification, setting to "
 888			"'InvalidName'\n");
 889	} else {
 890		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
 891	}
 892	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
 893
 894	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
 895	if (ret < 0) {
 896		ret = 0;
 897		goto out_bh;
 898	}
 899	outstr[ret] = 0;
 900	udf_debug("volSetIdent[] = '%s'\n", outstr);
 901
 902	ret = 0;
 903out_bh:
 904	brelse(bh);
 905out2:
 906	kfree(outstr);
 907	return ret;
 908}
 909
 910struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 911					u32 meta_file_loc, u32 partition_ref)
 912{
 913	struct kernel_lb_addr addr;
 914	struct inode *metadata_fe;
 915
 916	addr.logicalBlockNum = meta_file_loc;
 917	addr.partitionReferenceNum = partition_ref;
 918
 919	metadata_fe = udf_iget_special(sb, &addr);
 920
 921	if (IS_ERR(metadata_fe)) {
 922		udf_warn(sb, "metadata inode efe not found\n");
 923		return metadata_fe;
 924	}
 925	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 926		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 927		iput(metadata_fe);
 928		return ERR_PTR(-EIO);
 929	}
 930
 931	return metadata_fe;
 932}
 933
 934static int udf_load_metadata_files(struct super_block *sb, int partition,
 935				   int type1_index)
 936{
 937	struct udf_sb_info *sbi = UDF_SB(sb);
 938	struct udf_part_map *map;
 939	struct udf_meta_data *mdata;
 940	struct kernel_lb_addr addr;
 941	struct inode *fe;
 942
 943	map = &sbi->s_partmaps[partition];
 944	mdata = &map->s_type_specific.s_metadata;
 945	mdata->s_phys_partition_ref = type1_index;
 946
 947	/* metadata address */
 948	udf_debug("Metadata file location: block = %u part = %u\n",
 949		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
 950
 951	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
 952					 mdata->s_phys_partition_ref);
 953	if (IS_ERR(fe)) {
 954		/* mirror file entry */
 955		udf_debug("Mirror metadata file location: block = %u part = %u\n",
 956			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
 957
 958		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
 959						 mdata->s_phys_partition_ref);
 960
 961		if (IS_ERR(fe)) {
 962			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
 963			return PTR_ERR(fe);
 964		}
 965		mdata->s_mirror_fe = fe;
 966	} else
 967		mdata->s_metadata_fe = fe;
 968
 969
 970	/*
 971	 * bitmap file entry
 972	 * Note:
 973	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
 974	*/
 975	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
 976		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
 977		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
 978
 979		udf_debug("Bitmap file location: block = %u part = %u\n",
 980			  addr.logicalBlockNum, addr.partitionReferenceNum);
 981
 982		fe = udf_iget_special(sb, &addr);
 983		if (IS_ERR(fe)) {
 984			if (sb_rdonly(sb))
 985				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
 986			else {
 987				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
 988				return PTR_ERR(fe);
 989			}
 990		} else
 991			mdata->s_bitmap_fe = fe;
 992	}
 993
 994	udf_debug("udf_load_metadata_files Ok\n");
 995	return 0;
 996}
 997
 998int udf_compute_nr_groups(struct super_block *sb, u32 partition)
 999{
1000	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001	return DIV_ROUND_UP(map->s_partition_len +
1002			    (sizeof(struct spaceBitmapDesc) << 3),
1003			    sb->s_blocksize * 8);
1004}
1005
1006static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007{
1008	struct udf_bitmap *bitmap;
1009	int nr_groups;
1010	int size;
1011
1012	nr_groups = udf_compute_nr_groups(sb, index);
1013	size = sizeof(struct udf_bitmap) +
1014		(sizeof(struct buffer_head *) * nr_groups);
1015
1016	if (size <= PAGE_SIZE)
1017		bitmap = kzalloc(size, GFP_KERNEL);
1018	else
1019		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1020
 
 
1021	if (!bitmap)
1022		return NULL;
1023
1024	bitmap->s_nr_groups = nr_groups;
1025	return bitmap;
1026}
1027
1028static int check_partition_desc(struct super_block *sb,
1029				struct partitionDesc *p,
1030				struct udf_part_map *map)
1031{
1032	bool umap, utable, fmap, ftable;
1033	struct partitionHeaderDesc *phd;
1034
1035	switch (le32_to_cpu(p->accessType)) {
1036	case PD_ACCESS_TYPE_READ_ONLY:
1037	case PD_ACCESS_TYPE_WRITE_ONCE:
1038	case PD_ACCESS_TYPE_NONE:
1039		goto force_ro;
1040	}
1041
1042	/* No Partition Header Descriptor? */
1043	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1044	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1045		goto force_ro;
1046
1047	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1048	utable = phd->unallocSpaceTable.extLength;
1049	umap = phd->unallocSpaceBitmap.extLength;
1050	ftable = phd->freedSpaceTable.extLength;
1051	fmap = phd->freedSpaceBitmap.extLength;
1052
1053	/* No allocation info? */
1054	if (!utable && !umap && !ftable && !fmap)
1055		goto force_ro;
1056
1057	/* We don't support blocks that require erasing before overwrite */
1058	if (ftable || fmap)
1059		goto force_ro;
1060	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1061	if (utable && umap)
1062		goto force_ro;
1063
1064	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1065	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1066	    map->s_partition_type == UDF_METADATA_MAP25)
1067		goto force_ro;
1068
1069	return 0;
1070force_ro:
1071	if (!sb_rdonly(sb))
1072		return -EACCES;
1073	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1074	return 0;
1075}
1076
1077static int udf_fill_partdesc_info(struct super_block *sb,
1078		struct partitionDesc *p, int p_index)
1079{
1080	struct udf_part_map *map;
1081	struct udf_sb_info *sbi = UDF_SB(sb);
1082	struct partitionHeaderDesc *phd;
1083	int err;
1084
1085	map = &sbi->s_partmaps[p_index];
1086
1087	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1088	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1089
1090	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1091		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1092	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1093		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1094	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1095		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1096	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1097		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1098
1099	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1100		  p_index, map->s_partition_type,
1101		  map->s_partition_root, map->s_partition_len);
1102
1103	err = check_partition_desc(sb, p, map);
1104	if (err)
1105		return err;
1106
1107	/*
1108	 * Skip loading allocation info it we cannot ever write to the fs.
1109	 * This is a correctness thing as we may have decided to force ro mount
1110	 * to avoid allocation info we don't support.
1111	 */
1112	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1113		return 0;
1114
1115	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116	if (phd->unallocSpaceTable.extLength) {
1117		struct kernel_lb_addr loc = {
1118			.logicalBlockNum = le32_to_cpu(
1119				phd->unallocSpaceTable.extPosition),
1120			.partitionReferenceNum = p_index,
1121		};
1122		struct inode *inode;
1123
1124		inode = udf_iget_special(sb, &loc);
1125		if (IS_ERR(inode)) {
1126			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127				  p_index);
1128			return PTR_ERR(inode);
1129		}
1130		map->s_uspace.s_table = inode;
1131		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1133			  p_index, map->s_uspace.s_table->i_ino);
1134	}
1135
1136	if (phd->unallocSpaceBitmap.extLength) {
1137		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138		if (!bitmap)
1139			return -ENOMEM;
1140		map->s_uspace.s_bitmap = bitmap;
1141		bitmap->s_extPosition = le32_to_cpu(
1142				phd->unallocSpaceBitmap.extPosition);
1143		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1145			  p_index, bitmap->s_extPosition);
1146	}
1147
1148	return 0;
1149}
1150
1151static void udf_find_vat_block(struct super_block *sb, int p_index,
1152			       int type1_index, sector_t start_block)
1153{
1154	struct udf_sb_info *sbi = UDF_SB(sb);
1155	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1156	sector_t vat_block;
1157	struct kernel_lb_addr ino;
1158	struct inode *inode;
1159
1160	/*
1161	 * VAT file entry is in the last recorded block. Some broken disks have
1162	 * it a few blocks before so try a bit harder...
1163	 */
1164	ino.partitionReferenceNum = type1_index;
1165	for (vat_block = start_block;
1166	     vat_block >= map->s_partition_root &&
1167	     vat_block >= start_block - 3; vat_block--) {
1168		ino.logicalBlockNum = vat_block - map->s_partition_root;
1169		inode = udf_iget_special(sb, &ino);
1170		if (!IS_ERR(inode)) {
1171			sbi->s_vat_inode = inode;
1172			break;
1173		}
1174	}
1175}
1176
1177static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1178{
1179	struct udf_sb_info *sbi = UDF_SB(sb);
1180	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1181	struct buffer_head *bh = NULL;
1182	struct udf_inode_info *vati;
1183	uint32_t pos;
1184	struct virtualAllocationTable20 *vat20;
1185	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1186			  sb->s_blocksize_bits;
1187
1188	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1189	if (!sbi->s_vat_inode &&
1190	    sbi->s_last_block != blocks - 1) {
1191		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1192			  (unsigned long)sbi->s_last_block,
1193			  (unsigned long)blocks - 1);
1194		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1195	}
1196	if (!sbi->s_vat_inode)
1197		return -EIO;
1198
1199	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1200		map->s_type_specific.s_virtual.s_start_offset = 0;
1201		map->s_type_specific.s_virtual.s_num_entries =
1202			(sbi->s_vat_inode->i_size - 36) >> 2;
1203	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1204		vati = UDF_I(sbi->s_vat_inode);
1205		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1206			pos = udf_block_map(sbi->s_vat_inode, 0);
1207			bh = sb_bread(sb, pos);
1208			if (!bh)
1209				return -EIO;
1210			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1211		} else {
1212			vat20 = (struct virtualAllocationTable20 *)
1213							vati->i_ext.i_data;
1214		}
1215
1216		map->s_type_specific.s_virtual.s_start_offset =
1217			le16_to_cpu(vat20->lengthHeader);
1218		map->s_type_specific.s_virtual.s_num_entries =
1219			(sbi->s_vat_inode->i_size -
1220				map->s_type_specific.s_virtual.
1221					s_start_offset) >> 2;
1222		brelse(bh);
1223	}
1224	return 0;
1225}
1226
1227/*
1228 * Load partition descriptor block
1229 *
1230 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1231 * sequence.
1232 */
1233static int udf_load_partdesc(struct super_block *sb, sector_t block)
1234{
1235	struct buffer_head *bh;
1236	struct partitionDesc *p;
1237	struct udf_part_map *map;
1238	struct udf_sb_info *sbi = UDF_SB(sb);
1239	int i, type1_idx;
1240	uint16_t partitionNumber;
1241	uint16_t ident;
1242	int ret;
1243
1244	bh = udf_read_tagged(sb, block, block, &ident);
1245	if (!bh)
1246		return -EAGAIN;
1247	if (ident != TAG_IDENT_PD) {
1248		ret = 0;
1249		goto out_bh;
1250	}
1251
1252	p = (struct partitionDesc *)bh->b_data;
1253	partitionNumber = le16_to_cpu(p->partitionNumber);
1254
1255	/* First scan for TYPE1 and SPARABLE partitions */
1256	for (i = 0; i < sbi->s_partitions; i++) {
1257		map = &sbi->s_partmaps[i];
1258		udf_debug("Searching map: (%u == %u)\n",
1259			  map->s_partition_num, partitionNumber);
1260		if (map->s_partition_num == partitionNumber &&
1261		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1262		     map->s_partition_type == UDF_SPARABLE_MAP15))
1263			break;
1264	}
1265
1266	if (i >= sbi->s_partitions) {
1267		udf_debug("Partition (%u) not found in partition map\n",
1268			  partitionNumber);
1269		ret = 0;
1270		goto out_bh;
1271	}
1272
1273	ret = udf_fill_partdesc_info(sb, p, i);
1274	if (ret < 0)
1275		goto out_bh;
1276
1277	/*
1278	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1279	 * PHYSICAL partitions are already set up
1280	 */
1281	type1_idx = i;
1282	map = NULL; /* supress 'maybe used uninitialized' warning */
1283	for (i = 0; i < sbi->s_partitions; i++) {
1284		map = &sbi->s_partmaps[i];
1285
1286		if (map->s_partition_num == partitionNumber &&
1287		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1288		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1289		     map->s_partition_type == UDF_METADATA_MAP25))
1290			break;
1291	}
1292
1293	if (i >= sbi->s_partitions) {
1294		ret = 0;
1295		goto out_bh;
1296	}
1297
1298	ret = udf_fill_partdesc_info(sb, p, i);
1299	if (ret < 0)
1300		goto out_bh;
1301
1302	if (map->s_partition_type == UDF_METADATA_MAP25) {
1303		ret = udf_load_metadata_files(sb, i, type1_idx);
1304		if (ret < 0) {
1305			udf_err(sb, "error loading MetaData partition map %d\n",
1306				i);
1307			goto out_bh;
1308		}
1309	} else {
1310		/*
1311		 * If we have a partition with virtual map, we don't handle
1312		 * writing to it (we overwrite blocks instead of relocating
1313		 * them).
1314		 */
1315		if (!sb_rdonly(sb)) {
1316			ret = -EACCES;
1317			goto out_bh;
1318		}
1319		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1320		ret = udf_load_vat(sb, i, type1_idx);
1321		if (ret < 0)
1322			goto out_bh;
1323	}
1324	ret = 0;
1325out_bh:
1326	/* In case loading failed, we handle cleanup in udf_fill_super */
1327	brelse(bh);
1328	return ret;
1329}
1330
1331static int udf_load_sparable_map(struct super_block *sb,
1332				 struct udf_part_map *map,
1333				 struct sparablePartitionMap *spm)
1334{
1335	uint32_t loc;
1336	uint16_t ident;
1337	struct sparingTable *st;
1338	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1339	int i;
1340	struct buffer_head *bh;
1341
1342	map->s_partition_type = UDF_SPARABLE_MAP15;
1343	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1344	if (!is_power_of_2(sdata->s_packet_len)) {
1345		udf_err(sb, "error loading logical volume descriptor: "
1346			"Invalid packet length %u\n",
1347			(unsigned)sdata->s_packet_len);
1348		return -EIO;
1349	}
1350	if (spm->numSparingTables > 4) {
1351		udf_err(sb, "error loading logical volume descriptor: "
1352			"Too many sparing tables (%d)\n",
1353			(int)spm->numSparingTables);
1354		return -EIO;
1355	}
 
 
 
 
 
 
1356
1357	for (i = 0; i < spm->numSparingTables; i++) {
1358		loc = le32_to_cpu(spm->locSparingTable[i]);
1359		bh = udf_read_tagged(sb, loc, loc, &ident);
1360		if (!bh)
1361			continue;
1362
1363		st = (struct sparingTable *)bh->b_data;
1364		if (ident != 0 ||
1365		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366			    strlen(UDF_ID_SPARING)) ||
1367		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368							sb->s_blocksize) {
1369			brelse(bh);
1370			continue;
1371		}
1372
1373		sdata->s_spar_map[i] = bh;
1374	}
1375	map->s_partition_func = udf_get_pblock_spar15;
1376	return 0;
1377}
1378
1379static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380			       struct kernel_lb_addr *fileset)
1381{
1382	struct logicalVolDesc *lvd;
1383	int i, offset;
1384	uint8_t type;
1385	struct udf_sb_info *sbi = UDF_SB(sb);
1386	struct genericPartitionMap *gpm;
1387	uint16_t ident;
1388	struct buffer_head *bh;
1389	unsigned int table_len;
1390	int ret;
1391
1392	bh = udf_read_tagged(sb, block, block, &ident);
1393	if (!bh)
1394		return -EAGAIN;
1395	BUG_ON(ident != TAG_IDENT_LVD);
1396	lvd = (struct logicalVolDesc *)bh->b_data;
1397	table_len = le32_to_cpu(lvd->mapTableLength);
1398	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399		udf_err(sb, "error loading logical volume descriptor: "
1400			"Partition table too long (%u > %lu)\n", table_len,
1401			sb->s_blocksize - sizeof(*lvd));
1402		ret = -EIO;
1403		goto out_bh;
1404	}
1405
1406	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407					   "logical volume");
1408	if (ret)
1409		goto out_bh;
1410	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411	if (ret)
1412		goto out_bh;
1413
1414	for (i = 0, offset = 0;
1415	     i < sbi->s_partitions && offset < table_len;
1416	     i++, offset += gpm->partitionMapLength) {
1417		struct udf_part_map *map = &sbi->s_partmaps[i];
1418		gpm = (struct genericPartitionMap *)
1419				&(lvd->partitionMaps[offset]);
1420		type = gpm->partitionMapType;
1421		if (type == 1) {
1422			struct genericPartitionMap1 *gpm1 =
1423				(struct genericPartitionMap1 *)gpm;
1424			map->s_partition_type = UDF_TYPE1_MAP15;
1425			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427			map->s_partition_func = NULL;
1428		} else if (type == 2) {
1429			struct udfPartitionMap2 *upm2 =
1430						(struct udfPartitionMap2 *)gpm;
1431			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432						strlen(UDF_ID_VIRTUAL))) {
1433				u16 suf =
1434					le16_to_cpu(((__le16 *)upm2->partIdent.
1435							identSuffix)[0]);
1436				if (suf < 0x0200) {
1437					map->s_partition_type =
1438							UDF_VIRTUAL_MAP15;
1439					map->s_partition_func =
1440							udf_get_pblock_virt15;
1441				} else {
1442					map->s_partition_type =
1443							UDF_VIRTUAL_MAP20;
1444					map->s_partition_func =
1445							udf_get_pblock_virt20;
1446				}
1447			} else if (!strncmp(upm2->partIdent.ident,
1448						UDF_ID_SPARABLE,
1449						strlen(UDF_ID_SPARABLE))) {
1450				ret = udf_load_sparable_map(sb, map,
1451					(struct sparablePartitionMap *)gpm);
1452				if (ret < 0)
1453					goto out_bh;
1454			} else if (!strncmp(upm2->partIdent.ident,
1455						UDF_ID_METADATA,
1456						strlen(UDF_ID_METADATA))) {
1457				struct udf_meta_data *mdata =
1458					&map->s_type_specific.s_metadata;
1459				struct metadataPartitionMap *mdm =
1460						(struct metadataPartitionMap *)
1461						&(lvd->partitionMaps[offset]);
1462				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463					  i, type, UDF_ID_METADATA);
1464
1465				map->s_partition_type = UDF_METADATA_MAP25;
1466				map->s_partition_func = udf_get_pblock_meta25;
1467
1468				mdata->s_meta_file_loc   =
1469					le32_to_cpu(mdm->metadataFileLoc);
1470				mdata->s_mirror_file_loc =
1471					le32_to_cpu(mdm->metadataMirrorFileLoc);
1472				mdata->s_bitmap_file_loc =
1473					le32_to_cpu(mdm->metadataBitmapFileLoc);
1474				mdata->s_alloc_unit_size =
1475					le32_to_cpu(mdm->allocUnitSize);
1476				mdata->s_align_unit_size =
1477					le16_to_cpu(mdm->alignUnitSize);
1478				if (mdm->flags & 0x01)
1479					mdata->s_flags |= MF_DUPLICATE_MD;
1480
1481				udf_debug("Metadata Ident suffix=0x%x\n",
1482					  le16_to_cpu(*(__le16 *)
1483						      mdm->partIdent.identSuffix));
1484				udf_debug("Metadata part num=%u\n",
1485					  le16_to_cpu(mdm->partitionNum));
1486				udf_debug("Metadata part alloc unit size=%u\n",
1487					  le32_to_cpu(mdm->allocUnitSize));
1488				udf_debug("Metadata file loc=%u\n",
1489					  le32_to_cpu(mdm->metadataFileLoc));
1490				udf_debug("Mirror file loc=%u\n",
1491					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1492				udf_debug("Bitmap file loc=%u\n",
1493					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1494				udf_debug("Flags: %d %u\n",
1495					  mdata->s_flags, mdm->flags);
1496			} else {
1497				udf_debug("Unknown ident: %s\n",
1498					  upm2->partIdent.ident);
1499				continue;
1500			}
1501			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503		}
1504		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505			  i, map->s_partition_num, type, map->s_volumeseqnum);
1506	}
1507
1508	if (fileset) {
1509		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510
1511		*fileset = lelb_to_cpu(la->extLocation);
1512		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513			  fileset->logicalBlockNum,
1514			  fileset->partitionReferenceNum);
1515	}
1516	if (lvd->integritySeqExt.extLength)
1517		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518	ret = 0;
1519
1520	if (!sbi->s_lvid_bh) {
1521		/* We can't generate unique IDs without a valid LVID */
1522		if (sb_rdonly(sb)) {
1523			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524		} else {
1525			udf_warn(sb, "Damaged or missing LVID, forcing "
1526				     "readonly mount\n");
1527			ret = -EACCES;
1528		}
1529	}
1530out_bh:
1531	brelse(bh);
1532	return ret;
1533}
1534
1535/*
1536 * Find the prevailing Logical Volume Integrity Descriptor.
1537 */
1538static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539{
1540	struct buffer_head *bh, *final_bh;
1541	uint16_t ident;
1542	struct udf_sb_info *sbi = UDF_SB(sb);
1543	struct logicalVolIntegrityDesc *lvid;
1544	int indirections = 0;
 
1545
1546	while (++indirections <= UDF_MAX_LVID_NESTING) {
1547		final_bh = NULL;
1548		while (loc.extLength > 0 &&
1549			(bh = udf_read_tagged(sb, loc.extLocation,
1550					loc.extLocation, &ident))) {
1551			if (ident != TAG_IDENT_LVID) {
1552				brelse(bh);
1553				break;
1554			}
1555
1556			brelse(final_bh);
1557			final_bh = bh;
1558
1559			loc.extLength -= sb->s_blocksize;
1560			loc.extLocation++;
1561		}
1562
1563		if (!final_bh)
1564			return;
1565
1566		brelse(sbi->s_lvid_bh);
1567		sbi->s_lvid_bh = final_bh;
1568
1569		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570		if (lvid->nextIntegrityExt.extLength == 0)
1571			return;
1572
1573		loc = leea_to_cpu(lvid->nextIntegrityExt);
1574	}
1575
1576	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577		UDF_MAX_LVID_NESTING);
 
1578	brelse(sbi->s_lvid_bh);
1579	sbi->s_lvid_bh = NULL;
 
 
 
 
 
 
 
 
 
 
 
1580}
1581
1582/*
1583 * Step for reallocation of table of partition descriptor sequence numbers.
1584 * Must be power of 2.
1585 */
1586#define PART_DESC_ALLOC_STEP 32
1587
1588struct part_desc_seq_scan_data {
1589	struct udf_vds_record rec;
1590	u32 partnum;
1591};
1592
1593struct desc_seq_scan_data {
1594	struct udf_vds_record vds[VDS_POS_LENGTH];
1595	unsigned int size_part_descs;
1596	unsigned int num_part_descs;
1597	struct part_desc_seq_scan_data *part_descs_loc;
1598};
1599
1600static struct udf_vds_record *handle_partition_descriptor(
1601				struct buffer_head *bh,
1602				struct desc_seq_scan_data *data)
1603{
1604	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1605	int partnum;
1606	int i;
1607
1608	partnum = le16_to_cpu(desc->partitionNumber);
1609	for (i = 0; i < data->num_part_descs; i++)
1610		if (partnum == data->part_descs_loc[i].partnum)
1611			return &(data->part_descs_loc[i].rec);
1612	if (data->num_part_descs >= data->size_part_descs) {
1613		struct part_desc_seq_scan_data *new_loc;
1614		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1615
1616		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1617		if (!new_loc)
1618			return ERR_PTR(-ENOMEM);
1619		memcpy(new_loc, data->part_descs_loc,
1620		       data->size_part_descs * sizeof(*new_loc));
1621		kfree(data->part_descs_loc);
1622		data->part_descs_loc = new_loc;
1623		data->size_part_descs = new_size;
1624	}
1625	return &(data->part_descs_loc[data->num_part_descs++].rec);
1626}
1627
1628
1629static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1630		struct buffer_head *bh, struct desc_seq_scan_data *data)
1631{
1632	switch (ident) {
1633	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1634		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1635	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1636		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1637	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1638		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1639	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1640		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1641	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1642		return handle_partition_descriptor(bh, data);
1643	}
1644	return NULL;
1645}
1646
1647/*
1648 * Process a main/reserve volume descriptor sequence.
1649 *   @block		First block of first extent of the sequence.
1650 *   @lastblock		Lastblock of first extent of the sequence.
1651 *   @fileset		There we store extent containing root fileset
1652 *
1653 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1654 * sequence
1655 */
1656static noinline int udf_process_sequence(
1657		struct super_block *sb,
1658		sector_t block, sector_t lastblock,
1659		struct kernel_lb_addr *fileset)
1660{
1661	struct buffer_head *bh = NULL;
1662	struct udf_vds_record *curr;
1663	struct generic_desc *gd;
1664	struct volDescPtr *vdp;
1665	bool done = false;
1666	uint32_t vdsn;
1667	uint16_t ident;
1668	int ret;
1669	unsigned int indirections = 0;
1670	struct desc_seq_scan_data data;
1671	unsigned int i;
1672
1673	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1674	data.size_part_descs = PART_DESC_ALLOC_STEP;
1675	data.num_part_descs = 0;
1676	data.part_descs_loc = kcalloc(data.size_part_descs,
1677				      sizeof(*data.part_descs_loc),
1678				      GFP_KERNEL);
1679	if (!data.part_descs_loc)
1680		return -ENOMEM;
1681
1682	/*
1683	 * Read the main descriptor sequence and find which descriptors
1684	 * are in it.
1685	 */
1686	for (; (!done && block <= lastblock); block++) {
1687		bh = udf_read_tagged(sb, block, block, &ident);
1688		if (!bh)
1689			break;
1690
1691		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1692		gd = (struct generic_desc *)bh->b_data;
1693		vdsn = le32_to_cpu(gd->volDescSeqNum);
1694		switch (ident) {
1695		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1696			if (++indirections > UDF_MAX_TD_NESTING) {
1697				udf_err(sb, "too many Volume Descriptor "
1698					"Pointers (max %u supported)\n",
1699					UDF_MAX_TD_NESTING);
1700				brelse(bh);
1701				return -EIO;
 
1702			}
1703
1704			vdp = (struct volDescPtr *)bh->b_data;
1705			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1706			lastblock = le32_to_cpu(
1707				vdp->nextVolDescSeqExt.extLength) >>
1708				sb->s_blocksize_bits;
1709			lastblock += block - 1;
1710			/* For loop is going to increment 'block' again */
1711			block--;
1712			break;
1713		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1714		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1715		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1716		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1717		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1718			curr = get_volume_descriptor_record(ident, bh, &data);
1719			if (IS_ERR(curr)) {
1720				brelse(bh);
1721				return PTR_ERR(curr);
 
1722			}
1723			/* Descriptor we don't care about? */
1724			if (!curr)
1725				break;
1726			if (vdsn >= curr->volDescSeqNum) {
1727				curr->volDescSeqNum = vdsn;
1728				curr->block = block;
1729			}
1730			break;
1731		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1732			done = true;
1733			break;
1734		}
1735		brelse(bh);
1736	}
1737	/*
1738	 * Now read interesting descriptors again and process them
1739	 * in a suitable order
1740	 */
1741	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1742		udf_err(sb, "Primary Volume Descriptor not found!\n");
1743		return -EAGAIN;
 
1744	}
1745	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1746	if (ret < 0)
1747		return ret;
1748
1749	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1750		ret = udf_load_logicalvol(sb,
1751				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1752				fileset);
1753		if (ret < 0)
1754			return ret;
1755	}
1756
1757	/* Now handle prevailing Partition Descriptors */
1758	for (i = 0; i < data.num_part_descs; i++) {
1759		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1760		if (ret < 0)
1761			return ret;
1762	}
1763
1764	return 0;
 
 
1765}
1766
1767/*
1768 * Load Volume Descriptor Sequence described by anchor in bh
1769 *
1770 * Returns <0 on error, 0 on success
1771 */
1772static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1773			     struct kernel_lb_addr *fileset)
1774{
1775	struct anchorVolDescPtr *anchor;
1776	sector_t main_s, main_e, reserve_s, reserve_e;
1777	int ret;
1778
1779	anchor = (struct anchorVolDescPtr *)bh->b_data;
1780
1781	/* Locate the main sequence */
1782	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1783	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1784	main_e = main_e >> sb->s_blocksize_bits;
1785	main_e += main_s - 1;
1786
1787	/* Locate the reserve sequence */
1788	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1789	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1790	reserve_e = reserve_e >> sb->s_blocksize_bits;
1791	reserve_e += reserve_s - 1;
1792
1793	/* Process the main & reserve sequences */
1794	/* responsible for finding the PartitionDesc(s) */
1795	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1796	if (ret != -EAGAIN)
1797		return ret;
1798	udf_sb_free_partitions(sb);
1799	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1800	if (ret < 0) {
1801		udf_sb_free_partitions(sb);
1802		/* No sequence was OK, return -EIO */
1803		if (ret == -EAGAIN)
1804			ret = -EIO;
1805	}
1806	return ret;
1807}
1808
1809/*
1810 * Check whether there is an anchor block in the given block and
1811 * load Volume Descriptor Sequence if so.
1812 *
1813 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1814 * block
1815 */
1816static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1817				  struct kernel_lb_addr *fileset)
1818{
1819	struct buffer_head *bh;
1820	uint16_t ident;
1821	int ret;
1822
1823	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1824	    udf_fixed_to_variable(block) >=
1825	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1826		return -EAGAIN;
1827
1828	bh = udf_read_tagged(sb, block, block, &ident);
1829	if (!bh)
1830		return -EAGAIN;
1831	if (ident != TAG_IDENT_AVDP) {
1832		brelse(bh);
1833		return -EAGAIN;
1834	}
1835	ret = udf_load_sequence(sb, bh, fileset);
1836	brelse(bh);
1837	return ret;
1838}
1839
1840/*
1841 * Search for an anchor volume descriptor pointer.
1842 *
1843 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1844 * of anchors.
1845 */
1846static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1847			    struct kernel_lb_addr *fileset)
1848{
1849	sector_t last[6];
1850	int i;
1851	struct udf_sb_info *sbi = UDF_SB(sb);
1852	int last_count = 0;
1853	int ret;
1854
1855	/* First try user provided anchor */
1856	if (sbi->s_anchor) {
1857		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1858		if (ret != -EAGAIN)
1859			return ret;
1860	}
1861	/*
1862	 * according to spec, anchor is in either:
1863	 *     block 256
1864	 *     lastblock-256
1865	 *     lastblock
1866	 *  however, if the disc isn't closed, it could be 512.
1867	 */
1868	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1869	if (ret != -EAGAIN)
1870		return ret;
1871	/*
1872	 * The trouble is which block is the last one. Drives often misreport
1873	 * this so we try various possibilities.
1874	 */
1875	last[last_count++] = *lastblock;
1876	if (*lastblock >= 1)
1877		last[last_count++] = *lastblock - 1;
1878	last[last_count++] = *lastblock + 1;
1879	if (*lastblock >= 2)
1880		last[last_count++] = *lastblock - 2;
1881	if (*lastblock >= 150)
1882		last[last_count++] = *lastblock - 150;
1883	if (*lastblock >= 152)
1884		last[last_count++] = *lastblock - 152;
1885
1886	for (i = 0; i < last_count; i++) {
1887		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1888				sb->s_blocksize_bits)
1889			continue;
1890		ret = udf_check_anchor_block(sb, last[i], fileset);
1891		if (ret != -EAGAIN) {
1892			if (!ret)
1893				*lastblock = last[i];
1894			return ret;
1895		}
1896		if (last[i] < 256)
1897			continue;
1898		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1899		if (ret != -EAGAIN) {
1900			if (!ret)
1901				*lastblock = last[i];
1902			return ret;
1903		}
1904	}
1905
1906	/* Finally try block 512 in case media is open */
1907	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1908}
1909
1910/*
1911 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1912 * area specified by it. The function expects sbi->s_lastblock to be the last
1913 * block on the media.
1914 *
1915 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1916 * was not found.
1917 */
1918static int udf_find_anchor(struct super_block *sb,
1919			   struct kernel_lb_addr *fileset)
1920{
1921	struct udf_sb_info *sbi = UDF_SB(sb);
1922	sector_t lastblock = sbi->s_last_block;
1923	int ret;
1924
1925	ret = udf_scan_anchors(sb, &lastblock, fileset);
1926	if (ret != -EAGAIN)
1927		goto out;
1928
1929	/* No anchor found? Try VARCONV conversion of block numbers */
1930	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1931	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1932	/* Firstly, we try to not convert number of the last block */
1933	ret = udf_scan_anchors(sb, &lastblock, fileset);
1934	if (ret != -EAGAIN)
1935		goto out;
1936
1937	lastblock = sbi->s_last_block;
1938	/* Secondly, we try with converted number of the last block */
1939	ret = udf_scan_anchors(sb, &lastblock, fileset);
1940	if (ret < 0) {
1941		/* VARCONV didn't help. Clear it. */
1942		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1943	}
1944out:
1945	if (ret == 0)
1946		sbi->s_last_block = lastblock;
1947	return ret;
1948}
1949
1950/*
1951 * Check Volume Structure Descriptor, find Anchor block and load Volume
1952 * Descriptor Sequence.
1953 *
1954 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1955 * block was not found.
1956 */
1957static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1958			int silent, struct kernel_lb_addr *fileset)
1959{
1960	struct udf_sb_info *sbi = UDF_SB(sb);
1961	int nsr = 0;
1962	int ret;
1963
1964	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1965		if (!silent)
1966			udf_warn(sb, "Bad block size\n");
1967		return -EINVAL;
1968	}
1969	sbi->s_last_block = uopt->lastblock;
1970	if (!uopt->novrs) {
1971		/* Check that it is NSR02 compliant */
1972		nsr = udf_check_vsd(sb);
1973		if (!nsr) {
1974			if (!silent)
1975				udf_warn(sb, "No VRS found\n");
1976			return -EINVAL;
1977		}
1978		if (nsr == -1)
1979			udf_debug("Failed to read sector at offset %d. "
1980				  "Assuming open disc. Skipping validity "
1981				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1982		if (!sbi->s_last_block)
1983			sbi->s_last_block = udf_get_last_block(sb);
1984	} else {
1985		udf_debug("Validity check skipped because of novrs option\n");
1986	}
1987
1988	/* Look for anchor block and load Volume Descriptor Sequence */
1989	sbi->s_anchor = uopt->anchor;
1990	ret = udf_find_anchor(sb, fileset);
1991	if (ret < 0) {
1992		if (!silent && ret == -EAGAIN)
1993			udf_warn(sb, "No anchor found\n");
1994		return ret;
1995	}
1996	return 0;
1997}
1998
1999static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2000{
2001	struct timespec64 ts;
2002
2003	ktime_get_real_ts64(&ts);
2004	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2005	lvid->descTag.descCRC = cpu_to_le16(
2006		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2007			le16_to_cpu(lvid->descTag.descCRCLength)));
2008	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009}
2010
2011static void udf_open_lvid(struct super_block *sb)
2012{
2013	struct udf_sb_info *sbi = UDF_SB(sb);
2014	struct buffer_head *bh = sbi->s_lvid_bh;
2015	struct logicalVolIntegrityDesc *lvid;
2016	struct logicalVolIntegrityDescImpUse *lvidiu;
2017
2018	if (!bh)
2019		return;
2020	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2021	lvidiu = udf_sb_lvidiu(sb);
2022	if (!lvidiu)
2023		return;
2024
2025	mutex_lock(&sbi->s_alloc_mutex);
2026	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2027	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2028	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2029		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2030	else
2031		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2032
2033	udf_finalize_lvid(lvid);
2034	mark_buffer_dirty(bh);
2035	sbi->s_lvid_dirty = 0;
2036	mutex_unlock(&sbi->s_alloc_mutex);
2037	/* Make opening of filesystem visible on the media immediately */
2038	sync_dirty_buffer(bh);
2039}
2040
2041static void udf_close_lvid(struct super_block *sb)
2042{
2043	struct udf_sb_info *sbi = UDF_SB(sb);
2044	struct buffer_head *bh = sbi->s_lvid_bh;
2045	struct logicalVolIntegrityDesc *lvid;
2046	struct logicalVolIntegrityDescImpUse *lvidiu;
2047
2048	if (!bh)
2049		return;
2050	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2051	lvidiu = udf_sb_lvidiu(sb);
2052	if (!lvidiu)
2053		return;
2054
2055	mutex_lock(&sbi->s_alloc_mutex);
2056	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2057	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2058	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2059		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2060	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2061		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2062	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2063		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2064	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2065		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2066
2067	/*
2068	 * We set buffer uptodate unconditionally here to avoid spurious
2069	 * warnings from mark_buffer_dirty() when previous EIO has marked
2070	 * the buffer as !uptodate
2071	 */
2072	set_buffer_uptodate(bh);
2073	udf_finalize_lvid(lvid);
2074	mark_buffer_dirty(bh);
2075	sbi->s_lvid_dirty = 0;
2076	mutex_unlock(&sbi->s_alloc_mutex);
2077	/* Make closing of filesystem visible on the media immediately */
2078	sync_dirty_buffer(bh);
2079}
2080
2081u64 lvid_get_unique_id(struct super_block *sb)
2082{
2083	struct buffer_head *bh;
2084	struct udf_sb_info *sbi = UDF_SB(sb);
2085	struct logicalVolIntegrityDesc *lvid;
2086	struct logicalVolHeaderDesc *lvhd;
2087	u64 uniqueID;
2088	u64 ret;
2089
2090	bh = sbi->s_lvid_bh;
2091	if (!bh)
2092		return 0;
2093
2094	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2095	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2096
2097	mutex_lock(&sbi->s_alloc_mutex);
2098	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2099	if (!(++uniqueID & 0xFFFFFFFF))
2100		uniqueID += 16;
2101	lvhd->uniqueID = cpu_to_le64(uniqueID);
2102	udf_updated_lvid(sb);
2103	mutex_unlock(&sbi->s_alloc_mutex);
2104
2105	return ret;
2106}
2107
2108static int udf_fill_super(struct super_block *sb, void *options, int silent)
2109{
2110	int ret = -EINVAL;
2111	struct inode *inode = NULL;
2112	struct udf_options uopt;
2113	struct kernel_lb_addr rootdir, fileset;
2114	struct udf_sb_info *sbi;
2115	bool lvid_open = false;
2116
2117	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2118	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2119	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2120	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2121	uopt.umask = 0;
2122	uopt.fmode = UDF_INVALID_MODE;
2123	uopt.dmode = UDF_INVALID_MODE;
2124	uopt.nls_map = NULL;
2125
2126	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2127	if (!sbi)
2128		return -ENOMEM;
2129
2130	sb->s_fs_info = sbi;
2131
2132	mutex_init(&sbi->s_alloc_mutex);
2133
2134	if (!udf_parse_options((char *)options, &uopt, false))
2135		goto parse_options_failure;
2136
2137	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2138	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2139		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2140		goto parse_options_failure;
2141	}
2142	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2143		uopt.nls_map = load_nls_default();
2144		if (!uopt.nls_map)
2145			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2146		else
2147			udf_debug("Using default NLS map\n");
2148	}
2149	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2150		uopt.flags |= (1 << UDF_FLAG_UTF8);
2151
2152	fileset.logicalBlockNum = 0xFFFFFFFF;
2153	fileset.partitionReferenceNum = 0xFFFF;
2154
2155	sbi->s_flags = uopt.flags;
2156	sbi->s_uid = uopt.uid;
2157	sbi->s_gid = uopt.gid;
2158	sbi->s_umask = uopt.umask;
2159	sbi->s_fmode = uopt.fmode;
2160	sbi->s_dmode = uopt.dmode;
2161	sbi->s_nls_map = uopt.nls_map;
2162	rwlock_init(&sbi->s_cred_lock);
2163
2164	if (uopt.session == 0xFFFFFFFF)
2165		sbi->s_session = udf_get_last_session(sb);
2166	else
2167		sbi->s_session = uopt.session;
2168
2169	udf_debug("Multi-session=%d\n", sbi->s_session);
2170
2171	/* Fill in the rest of the superblock */
2172	sb->s_op = &udf_sb_ops;
2173	sb->s_export_op = &udf_export_ops;
2174
2175	sb->s_magic = UDF_SUPER_MAGIC;
2176	sb->s_time_gran = 1000;
2177
2178	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2179		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2180	} else {
2181		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2182		while (uopt.blocksize <= 4096) {
2183			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2184			if (ret < 0) {
2185				if (!silent && ret != -EACCES) {
2186					pr_notice("Scanning with blocksize %u failed\n",
2187						  uopt.blocksize);
2188				}
2189				brelse(sbi->s_lvid_bh);
2190				sbi->s_lvid_bh = NULL;
2191				/*
2192				 * EACCES is special - we want to propagate to
2193				 * upper layers that we cannot handle RW mount.
2194				 */
2195				if (ret == -EACCES)
2196					break;
2197			} else
2198				break;
2199
2200			uopt.blocksize <<= 1;
2201		}
2202	}
2203	if (ret < 0) {
2204		if (ret == -EAGAIN) {
2205			udf_warn(sb, "No partition found (1)\n");
2206			ret = -EINVAL;
2207		}
2208		goto error_out;
2209	}
2210
2211	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2212
2213	if (sbi->s_lvid_bh) {
2214		struct logicalVolIntegrityDescImpUse *lvidiu =
2215							udf_sb_lvidiu(sb);
2216		uint16_t minUDFReadRev;
2217		uint16_t minUDFWriteRev;
2218
2219		if (!lvidiu) {
2220			ret = -EINVAL;
2221			goto error_out;
2222		}
2223		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2224		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2225		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2226			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2227				minUDFReadRev,
2228				UDF_MAX_READ_VERSION);
2229			ret = -EINVAL;
2230			goto error_out;
2231		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2232			if (!sb_rdonly(sb)) {
2233				ret = -EACCES;
2234				goto error_out;
2235			}
2236			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2237		}
2238
2239		sbi->s_udfrev = minUDFWriteRev;
2240
2241		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2242			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2243		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2244			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2245	}
2246
2247	if (!sbi->s_partitions) {
2248		udf_warn(sb, "No partition found (2)\n");
2249		ret = -EINVAL;
2250		goto error_out;
2251	}
2252
2253	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2254			UDF_PART_FLAG_READ_ONLY) {
2255		if (!sb_rdonly(sb)) {
2256			ret = -EACCES;
2257			goto error_out;
2258		}
2259		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2260	}
2261
2262	ret = udf_find_fileset(sb, &fileset, &rootdir);
2263	if (ret < 0) {
2264		udf_warn(sb, "No fileset found\n");
2265		goto error_out;
2266	}
2267
2268	if (!silent) {
2269		struct timestamp ts;
2270		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2271		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2272			 sbi->s_volume_ident,
2273			 le16_to_cpu(ts.year), ts.month, ts.day,
2274			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2275	}
2276	if (!sb_rdonly(sb)) {
2277		udf_open_lvid(sb);
2278		lvid_open = true;
2279	}
2280
2281	/* Assign the root inode */
2282	/* assign inodes by physical block number */
2283	/* perhaps it's not extensible enough, but for now ... */
2284	inode = udf_iget(sb, &rootdir);
2285	if (IS_ERR(inode)) {
2286		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2287		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2288		ret = PTR_ERR(inode);
2289		goto error_out;
2290	}
2291
2292	/* Allocate a dentry for the root inode */
2293	sb->s_root = d_make_root(inode);
2294	if (!sb->s_root) {
2295		udf_err(sb, "Couldn't allocate root dentry\n");
2296		ret = -ENOMEM;
2297		goto error_out;
2298	}
2299	sb->s_maxbytes = MAX_LFS_FILESIZE;
2300	sb->s_max_links = UDF_MAX_LINKS;
2301	return 0;
2302
2303error_out:
2304	iput(sbi->s_vat_inode);
2305parse_options_failure:
2306	if (uopt.nls_map)
2307		unload_nls(uopt.nls_map);
2308	if (lvid_open)
2309		udf_close_lvid(sb);
2310	brelse(sbi->s_lvid_bh);
2311	udf_sb_free_partitions(sb);
2312	kfree(sbi);
2313	sb->s_fs_info = NULL;
2314
2315	return ret;
2316}
2317
2318void _udf_err(struct super_block *sb, const char *function,
2319	      const char *fmt, ...)
2320{
2321	struct va_format vaf;
2322	va_list args;
2323
2324	va_start(args, fmt);
2325
2326	vaf.fmt = fmt;
2327	vaf.va = &args;
2328
2329	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330
2331	va_end(args);
2332}
2333
2334void _udf_warn(struct super_block *sb, const char *function,
2335	       const char *fmt, ...)
2336{
2337	struct va_format vaf;
2338	va_list args;
2339
2340	va_start(args, fmt);
2341
2342	vaf.fmt = fmt;
2343	vaf.va = &args;
2344
2345	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346
2347	va_end(args);
2348}
2349
2350static void udf_put_super(struct super_block *sb)
2351{
2352	struct udf_sb_info *sbi;
2353
2354	sbi = UDF_SB(sb);
2355
2356	iput(sbi->s_vat_inode);
2357	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2358		unload_nls(sbi->s_nls_map);
2359	if (!sb_rdonly(sb))
2360		udf_close_lvid(sb);
2361	brelse(sbi->s_lvid_bh);
2362	udf_sb_free_partitions(sb);
2363	mutex_destroy(&sbi->s_alloc_mutex);
2364	kfree(sb->s_fs_info);
2365	sb->s_fs_info = NULL;
2366}
2367
2368static int udf_sync_fs(struct super_block *sb, int wait)
2369{
2370	struct udf_sb_info *sbi = UDF_SB(sb);
2371
2372	mutex_lock(&sbi->s_alloc_mutex);
2373	if (sbi->s_lvid_dirty) {
2374		struct buffer_head *bh = sbi->s_lvid_bh;
2375		struct logicalVolIntegrityDesc *lvid;
2376
2377		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378		udf_finalize_lvid(lvid);
2379
2380		/*
2381		 * Blockdevice will be synced later so we don't have to submit
2382		 * the buffer for IO
2383		 */
2384		mark_buffer_dirty(bh);
2385		sbi->s_lvid_dirty = 0;
2386	}
2387	mutex_unlock(&sbi->s_alloc_mutex);
2388
2389	return 0;
2390}
2391
2392static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393{
2394	struct super_block *sb = dentry->d_sb;
2395	struct udf_sb_info *sbi = UDF_SB(sb);
2396	struct logicalVolIntegrityDescImpUse *lvidiu;
2397	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398
2399	lvidiu = udf_sb_lvidiu(sb);
2400	buf->f_type = UDF_SUPER_MAGIC;
2401	buf->f_bsize = sb->s_blocksize;
2402	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403	buf->f_bfree = udf_count_free(sb);
2404	buf->f_bavail = buf->f_bfree;
2405	/*
2406	 * Let's pretend each free block is also a free 'inode' since UDF does
2407	 * not have separate preallocated table of inodes.
2408	 */
2409	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410					  le32_to_cpu(lvidiu->numDirs)) : 0)
2411			+ buf->f_bfree;
2412	buf->f_ffree = buf->f_bfree;
2413	buf->f_namelen = UDF_NAME_LEN;
2414	buf->f_fsid.val[0] = (u32)id;
2415	buf->f_fsid.val[1] = (u32)(id >> 32);
2416
2417	return 0;
2418}
2419
2420static unsigned int udf_count_free_bitmap(struct super_block *sb,
2421					  struct udf_bitmap *bitmap)
2422{
2423	struct buffer_head *bh = NULL;
2424	unsigned int accum = 0;
2425	int index;
2426	udf_pblk_t block = 0, newblock;
2427	struct kernel_lb_addr loc;
2428	uint32_t bytes;
2429	uint8_t *ptr;
2430	uint16_t ident;
2431	struct spaceBitmapDesc *bm;
2432
2433	loc.logicalBlockNum = bitmap->s_extPosition;
2434	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2435	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2436
2437	if (!bh) {
2438		udf_err(sb, "udf_count_free failed\n");
2439		goto out;
2440	} else if (ident != TAG_IDENT_SBD) {
2441		brelse(bh);
2442		udf_err(sb, "udf_count_free failed\n");
2443		goto out;
2444	}
2445
2446	bm = (struct spaceBitmapDesc *)bh->b_data;
2447	bytes = le32_to_cpu(bm->numOfBytes);
2448	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2449	ptr = (uint8_t *)bh->b_data;
2450
2451	while (bytes > 0) {
2452		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2453		accum += bitmap_weight((const unsigned long *)(ptr + index),
2454					cur_bytes * 8);
2455		bytes -= cur_bytes;
2456		if (bytes) {
2457			brelse(bh);
2458			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2459			bh = udf_tread(sb, newblock);
2460			if (!bh) {
2461				udf_debug("read failed\n");
2462				goto out;
2463			}
2464			index = 0;
2465			ptr = (uint8_t *)bh->b_data;
2466		}
2467	}
2468	brelse(bh);
2469out:
2470	return accum;
2471}
2472
2473static unsigned int udf_count_free_table(struct super_block *sb,
2474					 struct inode *table)
2475{
2476	unsigned int accum = 0;
2477	uint32_t elen;
2478	struct kernel_lb_addr eloc;
2479	int8_t etype;
2480	struct extent_position epos;
2481
2482	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2483	epos.block = UDF_I(table)->i_location;
2484	epos.offset = sizeof(struct unallocSpaceEntry);
2485	epos.bh = NULL;
2486
2487	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2488		accum += (elen >> table->i_sb->s_blocksize_bits);
2489
2490	brelse(epos.bh);
2491	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2492
2493	return accum;
2494}
2495
2496static unsigned int udf_count_free(struct super_block *sb)
2497{
2498	unsigned int accum = 0;
2499	struct udf_sb_info *sbi = UDF_SB(sb);
2500	struct udf_part_map *map;
2501	unsigned int part = sbi->s_partition;
2502	int ptype = sbi->s_partmaps[part].s_partition_type;
2503
2504	if (ptype == UDF_METADATA_MAP25) {
2505		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2506							s_phys_partition_ref;
2507	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2508		/*
2509		 * Filesystems with VAT are append-only and we cannot write to
2510 		 * them. Let's just report 0 here.
2511		 */
2512		return 0;
2513	}
2514
2515	if (sbi->s_lvid_bh) {
2516		struct logicalVolIntegrityDesc *lvid =
2517			(struct logicalVolIntegrityDesc *)
2518			sbi->s_lvid_bh->b_data;
2519		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2520			accum = le32_to_cpu(
2521					lvid->freeSpaceTable[part]);
2522			if (accum == 0xFFFFFFFF)
2523				accum = 0;
2524		}
2525	}
2526
2527	if (accum)
2528		return accum;
2529
2530	map = &sbi->s_partmaps[part];
2531	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2532		accum += udf_count_free_bitmap(sb,
2533					       map->s_uspace.s_bitmap);
2534	}
2535	if (accum)
2536		return accum;
2537
2538	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2539		accum += udf_count_free_table(sb,
2540					      map->s_uspace.s_table);
2541	}
2542	return accum;
2543}
2544
2545MODULE_AUTHOR("Ben Fennema");
2546MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2547MODULE_LICENSE("GPL");
2548module_init(init_udf_fs)
2549module_exit(exit_udf_fs)