Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    https://www.ecma.ch/
  15 *    https://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
 
  51#include <linux/vfs.h>
  52#include <linux/vmalloc.h>
  53#include <linux/errno.h>
  54#include <linux/mount.h>
  55#include <linux/seq_file.h>
  56#include <linux/bitmap.h>
  57#include <linux/crc-itu-t.h>
  58#include <linux/log2.h>
  59#include <asm/byteorder.h>
  60#include <linux/iversion.h>
  61
  62#include "udf_sb.h"
  63#include "udf_i.h"
  64
  65#include <linux/init.h>
  66#include <linux/uaccess.h>
  67
  68enum {
  69	VDS_POS_PRIMARY_VOL_DESC,
  70	VDS_POS_UNALLOC_SPACE_DESC,
  71	VDS_POS_LOGICAL_VOL_DESC,
  72	VDS_POS_IMP_USE_VOL_DESC,
  73	VDS_POS_LENGTH
  74};
 
 
 
  75
  76#define VSD_FIRST_SECTOR_OFFSET		32768
  77#define VSD_MAX_SECTOR_OFFSET		0x800000
  78
  79/*
  80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
  81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
  82 * hopefully don't limit any real use of rewritten inode on write-once media
  83 * but avoid looping for too long on corrupted media.
  84 */
  85#define UDF_MAX_TD_NESTING 64
  86#define UDF_MAX_LVID_NESTING 1000
  87
  88enum { UDF_MAX_LINKS = 0xffff };
  89
  90/* These are the "meat" - everything else is stuffing */
  91static int udf_fill_super(struct super_block *, void *, int);
  92static void udf_put_super(struct super_block *);
  93static int udf_sync_fs(struct super_block *, int);
  94static int udf_remount_fs(struct super_block *, int *, char *);
  95static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
 
 
 
 
  96static void udf_open_lvid(struct super_block *);
  97static void udf_close_lvid(struct super_block *);
  98static unsigned int udf_count_free(struct super_block *);
  99static int udf_statfs(struct dentry *, struct kstatfs *);
 100static int udf_show_options(struct seq_file *, struct dentry *);
 101
 102struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
 103{
 104	struct logicalVolIntegrityDesc *lvid;
 105	unsigned int partnum;
 106	unsigned int offset;
 107
 108	if (!UDF_SB(sb)->s_lvid_bh)
 109		return NULL;
 110	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
 111	partnum = le32_to_cpu(lvid->numOfPartitions);
 
 
 
 
 
 
 
 112	/* The offset is to skip freeSpaceTable and sizeTable arrays */
 113	offset = partnum * 2 * sizeof(uint32_t);
 114	return (struct logicalVolIntegrityDescImpUse *)
 115					(((uint8_t *)(lvid + 1)) + offset);
 116}
 117
 118/* UDF filesystem type */
 119static struct dentry *udf_mount(struct file_system_type *fs_type,
 120		      int flags, const char *dev_name, void *data)
 121{
 122	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 123}
 124
 125static struct file_system_type udf_fstype = {
 126	.owner		= THIS_MODULE,
 127	.name		= "udf",
 128	.mount		= udf_mount,
 129	.kill_sb	= kill_block_super,
 130	.fs_flags	= FS_REQUIRES_DEV,
 131};
 132MODULE_ALIAS_FS("udf");
 133
 134static struct kmem_cache *udf_inode_cachep;
 135
 136static struct inode *udf_alloc_inode(struct super_block *sb)
 137{
 138	struct udf_inode_info *ei;
 139	ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
 140	if (!ei)
 141		return NULL;
 142
 143	ei->i_unique = 0;
 144	ei->i_lenExtents = 0;
 145	ei->i_lenStreams = 0;
 146	ei->i_next_alloc_block = 0;
 147	ei->i_next_alloc_goal = 0;
 148	ei->i_strat4096 = 0;
 149	ei->i_streamdir = 0;
 150	init_rwsem(&ei->i_data_sem);
 151	ei->cached_extent.lstart = -1;
 152	spin_lock_init(&ei->i_extent_cache_lock);
 153	inode_set_iversion(&ei->vfs_inode, 1);
 154
 155	return &ei->vfs_inode;
 156}
 157
 158static void udf_free_in_core_inode(struct inode *inode)
 159{
 
 160	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 161}
 162
 
 
 
 
 
 163static void init_once(void *foo)
 164{
 165	struct udf_inode_info *ei = foo;
 166
 167	ei->i_data = NULL;
 168	inode_init_once(&ei->vfs_inode);
 169}
 170
 171static int __init init_inodecache(void)
 172{
 173	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 174					     sizeof(struct udf_inode_info),
 175					     0, (SLAB_RECLAIM_ACCOUNT |
 176						 SLAB_MEM_SPREAD |
 177						 SLAB_ACCOUNT),
 178					     init_once);
 179	if (!udf_inode_cachep)
 180		return -ENOMEM;
 181	return 0;
 182}
 183
 184static void destroy_inodecache(void)
 185{
 186	/*
 187	 * Make sure all delayed rcu free inodes are flushed before we
 188	 * destroy cache.
 189	 */
 190	rcu_barrier();
 191	kmem_cache_destroy(udf_inode_cachep);
 192}
 193
 194/* Superblock operations */
 195static const struct super_operations udf_sb_ops = {
 196	.alloc_inode	= udf_alloc_inode,
 197	.free_inode	= udf_free_in_core_inode,
 198	.write_inode	= udf_write_inode,
 199	.evict_inode	= udf_evict_inode,
 200	.put_super	= udf_put_super,
 201	.sync_fs	= udf_sync_fs,
 202	.statfs		= udf_statfs,
 203	.remount_fs	= udf_remount_fs,
 204	.show_options	= udf_show_options,
 205};
 206
 207struct udf_options {
 208	unsigned char novrs;
 209	unsigned int blocksize;
 210	unsigned int session;
 211	unsigned int lastblock;
 212	unsigned int anchor;
 
 
 
 
 213	unsigned int flags;
 214	umode_t umask;
 215	kgid_t gid;
 216	kuid_t uid;
 217	umode_t fmode;
 218	umode_t dmode;
 219	struct nls_table *nls_map;
 220};
 221
 222static int __init init_udf_fs(void)
 223{
 224	int err;
 225
 226	err = init_inodecache();
 227	if (err)
 228		goto out1;
 229	err = register_filesystem(&udf_fstype);
 230	if (err)
 231		goto out;
 232
 233	return 0;
 234
 235out:
 236	destroy_inodecache();
 237
 238out1:
 239	return err;
 240}
 241
 242static void __exit exit_udf_fs(void)
 243{
 244	unregister_filesystem(&udf_fstype);
 245	destroy_inodecache();
 246}
 247
 
 
 
 248static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 249{
 250	struct udf_sb_info *sbi = UDF_SB(sb);
 251
 252	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
 
 253	if (!sbi->s_partmaps) {
 
 
 254		sbi->s_partitions = 0;
 255		return -ENOMEM;
 256	}
 257
 258	sbi->s_partitions = count;
 259	return 0;
 260}
 261
 262static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
 263{
 264	int i;
 265	int nr_groups = bitmap->s_nr_groups;
 
 
 266
 267	for (i = 0; i < nr_groups; i++)
 268		brelse(bitmap->s_block_bitmap[i]);
 
 269
 270	kvfree(bitmap);
 
 
 
 271}
 272
 273static void udf_free_partition(struct udf_part_map *map)
 274{
 275	int i;
 276	struct udf_meta_data *mdata;
 277
 278	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 279		iput(map->s_uspace.s_table);
 
 
 280	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 281		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
 
 
 282	if (map->s_partition_type == UDF_SPARABLE_MAP15)
 283		for (i = 0; i < 4; i++)
 284			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
 285	else if (map->s_partition_type == UDF_METADATA_MAP25) {
 286		mdata = &map->s_type_specific.s_metadata;
 287		iput(mdata->s_metadata_fe);
 288		mdata->s_metadata_fe = NULL;
 289
 290		iput(mdata->s_mirror_fe);
 291		mdata->s_mirror_fe = NULL;
 292
 293		iput(mdata->s_bitmap_fe);
 294		mdata->s_bitmap_fe = NULL;
 295	}
 296}
 297
 298static void udf_sb_free_partitions(struct super_block *sb)
 299{
 300	struct udf_sb_info *sbi = UDF_SB(sb);
 301	int i;
 302
 303	if (!sbi->s_partmaps)
 304		return;
 305	for (i = 0; i < sbi->s_partitions; i++)
 306		udf_free_partition(&sbi->s_partmaps[i]);
 307	kfree(sbi->s_partmaps);
 308	sbi->s_partmaps = NULL;
 309}
 310
 311static int udf_show_options(struct seq_file *seq, struct dentry *root)
 312{
 313	struct super_block *sb = root->d_sb;
 314	struct udf_sb_info *sbi = UDF_SB(sb);
 315
 316	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 317		seq_puts(seq, ",nostrict");
 318	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 319		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 320	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 321		seq_puts(seq, ",unhide");
 322	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 323		seq_puts(seq, ",undelete");
 324	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 325		seq_puts(seq, ",noadinicb");
 326	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 327		seq_puts(seq, ",shortad");
 328	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 329		seq_puts(seq, ",uid=forget");
 
 
 330	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 331		seq_puts(seq, ",gid=forget");
 
 
 332	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 333		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
 334	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 335		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
 336	if (sbi->s_umask != 0)
 337		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 338	if (sbi->s_fmode != UDF_INVALID_MODE)
 339		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 340	if (sbi->s_dmode != UDF_INVALID_MODE)
 341		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 342	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 343		seq_printf(seq, ",session=%d", sbi->s_session);
 344	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 345		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 346	if (sbi->s_anchor != 0)
 347		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 348	if (sbi->s_nls_map)
 
 
 
 
 
 
 349		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 350	else
 351		seq_puts(seq, ",iocharset=utf8");
 352
 353	return 0;
 354}
 355
 356/*
 357 * udf_parse_options
 358 *
 359 * PURPOSE
 360 *	Parse mount options.
 361 *
 362 * DESCRIPTION
 363 *	The following mount options are supported:
 364 *
 365 *	gid=		Set the default group.
 366 *	umask=		Set the default umask.
 367 *	mode=		Set the default file permissions.
 368 *	dmode=		Set the default directory permissions.
 369 *	uid=		Set the default user.
 370 *	bs=		Set the block size.
 371 *	unhide		Show otherwise hidden files.
 372 *	undelete	Show deleted files in lists.
 373 *	adinicb		Embed data in the inode (default)
 374 *	noadinicb	Don't embed data in the inode
 375 *	shortad		Use short ad's
 376 *	longad		Use long ad's (default)
 377 *	nostrict	Unset strict conformance
 378 *	iocharset=	Set the NLS character set
 379 *
 380 *	The remaining are for debugging and disaster recovery:
 381 *
 382 *	novrs		Skip volume sequence recognition
 383 *
 384 *	The following expect a offset from 0.
 385 *
 386 *	session=	Set the CDROM session (default= last session)
 387 *	anchor=		Override standard anchor location. (default= 256)
 388 *	volume=		Override the VolumeDesc location. (unused)
 389 *	partition=	Override the PartitionDesc location. (unused)
 390 *	lastblock=	Set the last block of the filesystem/
 391 *
 392 *	The following expect a offset from the partition root.
 393 *
 394 *	fileset=	Override the fileset block location. (unused)
 395 *	rootdir=	Override the root directory location. (unused)
 396 *		WARNING: overriding the rootdir to a non-directory may
 397 *		yield highly unpredictable results.
 398 *
 399 * PRE-CONDITIONS
 400 *	options		Pointer to mount options string.
 401 *	uopts		Pointer to mount options variable.
 402 *
 403 * POST-CONDITIONS
 404 *	<return>	1	Mount options parsed okay.
 405 *	<return>	0	Error parsing mount options.
 406 *
 407 * HISTORY
 408 *	July 1, 1997 - Andrew E. Mileski
 409 *	Written, tested, and released.
 410 */
 411
 412enum {
 413	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 414	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 415	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 416	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 417	Opt_rootdir, Opt_utf8, Opt_iocharset,
 418	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 419	Opt_fmode, Opt_dmode
 420};
 421
 422static const match_table_t tokens = {
 423	{Opt_novrs,	"novrs"},
 424	{Opt_nostrict,	"nostrict"},
 425	{Opt_bs,	"bs=%u"},
 426	{Opt_unhide,	"unhide"},
 427	{Opt_undelete,	"undelete"},
 428	{Opt_noadinicb,	"noadinicb"},
 429	{Opt_adinicb,	"adinicb"},
 430	{Opt_shortad,	"shortad"},
 431	{Opt_longad,	"longad"},
 432	{Opt_uforget,	"uid=forget"},
 433	{Opt_uignore,	"uid=ignore"},
 434	{Opt_gforget,	"gid=forget"},
 435	{Opt_gignore,	"gid=ignore"},
 436	{Opt_gid,	"gid=%u"},
 437	{Opt_uid,	"uid=%u"},
 438	{Opt_umask,	"umask=%o"},
 439	{Opt_session,	"session=%u"},
 440	{Opt_lastblock,	"lastblock=%u"},
 441	{Opt_anchor,	"anchor=%u"},
 442	{Opt_volume,	"volume=%u"},
 443	{Opt_partition,	"partition=%u"},
 444	{Opt_fileset,	"fileset=%u"},
 445	{Opt_rootdir,	"rootdir=%u"},
 446	{Opt_utf8,	"utf8"},
 447	{Opt_iocharset,	"iocharset=%s"},
 448	{Opt_fmode,     "mode=%o"},
 449	{Opt_dmode,     "dmode=%o"},
 450	{Opt_err,	NULL}
 451};
 452
 453static int udf_parse_options(char *options, struct udf_options *uopt,
 454			     bool remount)
 455{
 456	char *p;
 457	int option;
 458	unsigned int uv;
 459
 460	uopt->novrs = 0;
 
 461	uopt->session = 0xFFFFFFFF;
 462	uopt->lastblock = 0;
 463	uopt->anchor = 0;
 
 
 
 
 464
 465	if (!options)
 466		return 1;
 467
 468	while ((p = strsep(&options, ",")) != NULL) {
 469		substring_t args[MAX_OPT_ARGS];
 470		int token;
 471		unsigned n;
 472		if (!*p)
 473			continue;
 474
 475		token = match_token(p, tokens, args);
 476		switch (token) {
 477		case Opt_novrs:
 478			uopt->novrs = 1;
 479			break;
 480		case Opt_bs:
 481			if (match_int(&args[0], &option))
 482				return 0;
 483			n = option;
 484			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
 485				return 0;
 486			uopt->blocksize = n;
 487			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 488			break;
 489		case Opt_unhide:
 490			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 491			break;
 492		case Opt_undelete:
 493			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 494			break;
 495		case Opt_noadinicb:
 496			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 497			break;
 498		case Opt_adinicb:
 499			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 500			break;
 501		case Opt_shortad:
 502			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 503			break;
 504		case Opt_longad:
 505			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 506			break;
 507		case Opt_gid:
 508			if (match_uint(args, &uv))
 509				return 0;
 510			uopt->gid = make_kgid(current_user_ns(), uv);
 511			if (!gid_valid(uopt->gid))
 512				return 0;
 513			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 514			break;
 515		case Opt_uid:
 516			if (match_uint(args, &uv))
 517				return 0;
 518			uopt->uid = make_kuid(current_user_ns(), uv);
 519			if (!uid_valid(uopt->uid))
 520				return 0;
 521			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 522			break;
 523		case Opt_umask:
 524			if (match_octal(args, &option))
 525				return 0;
 526			uopt->umask = option;
 527			break;
 528		case Opt_nostrict:
 529			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 530			break;
 531		case Opt_session:
 532			if (match_int(args, &option))
 533				return 0;
 534			uopt->session = option;
 535			if (!remount)
 536				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 537			break;
 538		case Opt_lastblock:
 539			if (match_int(args, &option))
 540				return 0;
 541			uopt->lastblock = option;
 542			if (!remount)
 543				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 544			break;
 545		case Opt_anchor:
 546			if (match_int(args, &option))
 547				return 0;
 548			uopt->anchor = option;
 549			break;
 550		case Opt_volume:
 
 
 
 
 551		case Opt_partition:
 
 
 
 
 552		case Opt_fileset:
 
 
 
 
 553		case Opt_rootdir:
 554			/* Ignored (never implemented properly) */
 
 
 555			break;
 556		case Opt_utf8:
 557			if (!remount) {
 558				unload_nls(uopt->nls_map);
 559				uopt->nls_map = NULL;
 560			}
 561			break;
 
 562		case Opt_iocharset:
 563			if (!remount) {
 564				unload_nls(uopt->nls_map);
 565				uopt->nls_map = NULL;
 566			}
 567			/* When nls_map is not loaded then UTF-8 is used */
 568			if (!remount && strcmp(args[0].from, "utf8") != 0) {
 569				uopt->nls_map = load_nls(args[0].from);
 570				if (!uopt->nls_map) {
 571					pr_err("iocharset %s not found\n",
 572						args[0].from);
 573					return 0;
 574				}
 575			}
 576			break;
 577		case Opt_uforget:
 578			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 579			break;
 580		case Opt_uignore:
 581		case Opt_gignore:
 582			/* These options are superseeded by uid=<number> */
 583			break;
 584		case Opt_gforget:
 585			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 586			break;
 587		case Opt_fmode:
 588			if (match_octal(args, &option))
 589				return 0;
 590			uopt->fmode = option & 0777;
 591			break;
 592		case Opt_dmode:
 593			if (match_octal(args, &option))
 594				return 0;
 595			uopt->dmode = option & 0777;
 596			break;
 597		default:
 598			pr_err("bad mount option \"%s\" or missing value\n", p);
 599			return 0;
 600		}
 601	}
 602	return 1;
 603}
 604
 605static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 606{
 607	struct udf_options uopt;
 608	struct udf_sb_info *sbi = UDF_SB(sb);
 609	int error = 0;
 610
 611	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
 612		return -EACCES;
 613
 614	sync_filesystem(sb);
 
 
 
 
 
 615
 616	uopt.flags = sbi->s_flags;
 617	uopt.uid   = sbi->s_uid;
 618	uopt.gid   = sbi->s_gid;
 619	uopt.umask = sbi->s_umask;
 620	uopt.fmode = sbi->s_fmode;
 621	uopt.dmode = sbi->s_dmode;
 622	uopt.nls_map = NULL;
 623
 624	if (!udf_parse_options(options, &uopt, true))
 625		return -EINVAL;
 626
 627	write_lock(&sbi->s_cred_lock);
 628	sbi->s_flags = uopt.flags;
 629	sbi->s_uid   = uopt.uid;
 630	sbi->s_gid   = uopt.gid;
 631	sbi->s_umask = uopt.umask;
 632	sbi->s_fmode = uopt.fmode;
 633	sbi->s_dmode = uopt.dmode;
 634	write_unlock(&sbi->s_cred_lock);
 635
 636	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
 637		goto out_unlock;
 638
 639	if (*flags & SB_RDONLY)
 640		udf_close_lvid(sb);
 641	else
 642		udf_open_lvid(sb);
 643
 644out_unlock:
 645	return error;
 646}
 647
 648/*
 649 * Check VSD descriptor. Returns -1 in case we are at the end of volume
 650 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
 651 * we found one of NSR descriptors we are looking for.
 652 */
 653static int identify_vsd(const struct volStructDesc *vsd)
 654{
 655	int ret = 0;
 656
 657	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
 658		switch (vsd->structType) {
 659		case 0:
 660			udf_debug("ISO9660 Boot Record found\n");
 661			break;
 662		case 1:
 663			udf_debug("ISO9660 Primary Volume Descriptor found\n");
 664			break;
 665		case 2:
 666			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 667			break;
 668		case 3:
 669			udf_debug("ISO9660 Volume Partition Descriptor found\n");
 670			break;
 671		case 255:
 672			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 673			break;
 674		default:
 675			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
 676			break;
 677		}
 678	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
 679		; /* ret = 0 */
 680	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
 681		ret = 1;
 682	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
 683		ret = 1;
 684	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
 685		; /* ret = 0 */
 686	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
 687		; /* ret = 0 */
 688	else {
 689		/* TEA01 or invalid id : end of volume recognition area */
 690		ret = -1;
 691	}
 692
 693	return ret;
 694}
 695
 696/*
 697 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
 698 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
 699 * @return   1 if NSR02 or NSR03 found,
 700 *	    -1 if first sector read error, 0 otherwise
 701 */
 702static int udf_check_vsd(struct super_block *sb)
 703{
 704	struct volStructDesc *vsd = NULL;
 705	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
 706	int sectorsize;
 707	struct buffer_head *bh = NULL;
 708	int nsr = 0;
 
 709	struct udf_sb_info *sbi;
 710	loff_t session_offset;
 711
 712	sbi = UDF_SB(sb);
 713	if (sb->s_blocksize < sizeof(struct volStructDesc))
 714		sectorsize = sizeof(struct volStructDesc);
 715	else
 716		sectorsize = sb->s_blocksize;
 717
 718	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
 719	sector += session_offset;
 720
 721	udf_debug("Starting at sector %u (%lu byte sectors)\n",
 722		  (unsigned int)(sector >> sb->s_blocksize_bits),
 723		  sb->s_blocksize);
 724	/* Process the sequence (if applicable). The hard limit on the sector
 725	 * offset is arbitrary, hopefully large enough so that all valid UDF
 726	 * filesystems will be recognised. There is no mention of an upper
 727	 * bound to the size of the volume recognition area in the standard.
 728	 *  The limit will prevent the code to read all the sectors of a
 729	 * specially crafted image (like a bluray disc full of CD001 sectors),
 730	 * potentially causing minutes or even hours of uninterruptible I/O
 731	 * activity. This actually happened with uninitialised SSD partitions
 732	 * (all 0xFF) before the check for the limit and all valid IDs were
 733	 * added */
 734	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
 
 735		/* Read a block */
 736		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 737		if (!bh)
 738			break;
 739
 
 740		vsd = (struct volStructDesc *)(bh->b_data +
 741					      (sector & (sb->s_blocksize - 1)));
 742		nsr = identify_vsd(vsd);
 743		/* Found NSR or end? */
 744		if (nsr) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745			brelse(bh);
 746			break;
 747		}
 748		/*
 749		 * Special handling for improperly formatted VRS (e.g., Win10)
 750		 * where components are separated by 2048 bytes even though
 751		 * sectors are 4K
 752		 */
 753		if (sb->s_blocksize == 4096) {
 754			nsr = identify_vsd(vsd + 1);
 755			/* Ignore unknown IDs... */
 756			if (nsr < 0)
 757				nsr = 0;
 758		}
 759		brelse(bh);
 760	}
 761
 762	if (nsr > 0)
 763		return 1;
 764	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
 
 
 
 765		return -1;
 766	else
 767		return 0;
 768}
 769
 770static int udf_verify_domain_identifier(struct super_block *sb,
 771					struct regid *ident, char *dname)
 
 772{
 773	struct domainIdentSuffix *suffix;
 
 
 
 774
 775	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
 776		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
 777		goto force_ro;
 778	}
 779	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
 780		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
 781			 dname);
 782		goto force_ro;
 783	}
 784	suffix = (struct domainIdentSuffix *)ident->identSuffix;
 785	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
 786	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
 787		if (!sb_rdonly(sb)) {
 788			udf_warn(sb, "Descriptor for %s marked write protected."
 789				 " Forcing read only mount.\n", dname);
 790		}
 791		goto force_ro;
 792	}
 793	return 0;
 794
 795force_ro:
 796	if (!sb_rdonly(sb))
 797		return -EACCES;
 798	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
 799	return 0;
 800}
 801
 802static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
 803			    struct kernel_lb_addr *root)
 804{
 805	int ret;
 806
 807	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
 808	if (ret < 0)
 809		return ret;
 
 810
 811	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
 812	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
 813
 814	udf_debug("Rootdir at block=%u, partition=%u\n",
 815		  root->logicalBlockNum, root->partitionReferenceNum);
 816	return 0;
 817}
 
 
 
 
 
 
 
 
 
 
 
 
 
 818
 819static int udf_find_fileset(struct super_block *sb,
 820			    struct kernel_lb_addr *fileset,
 821			    struct kernel_lb_addr *root)
 822{
 823	struct buffer_head *bh;
 824	uint16_t ident;
 825	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826
 827	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
 828	    fileset->partitionReferenceNum == 0xFFFF)
 829		return -EINVAL;
 
 
 830
 831	bh = udf_read_ptagged(sb, fileset, 0, &ident);
 832	if (!bh)
 833		return -EIO;
 834	if (ident != TAG_IDENT_FSD) {
 835		brelse(bh);
 836		return -EINVAL;
 837	}
 838
 839	udf_debug("Fileset at block=%u, partition=%u\n",
 840		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
 841
 842	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
 843	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
 844	brelse(bh);
 845	return ret;
 846}
 847
 848/*
 849 * Load primary Volume Descriptor Sequence
 850 *
 851 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
 852 * should be tried.
 853 */
 854static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 855{
 856	struct primaryVolDesc *pvoldesc;
 857	uint8_t *outstr;
 858	struct buffer_head *bh;
 859	uint16_t ident;
 860	int ret;
 861	struct timestamp *ts;
 862
 863	outstr = kmalloc(128, GFP_NOFS);
 864	if (!outstr)
 865		return -ENOMEM;
 866
 
 
 
 
 867	bh = udf_read_tagged(sb, block, block, &ident);
 868	if (!bh) {
 869		ret = -EAGAIN;
 870		goto out2;
 871	}
 872
 873	if (ident != TAG_IDENT_PVD) {
 874		ret = -EIO;
 875		goto out_bh;
 876	}
 877
 878	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 879
 880	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 881			      pvoldesc->recordingDateAndTime);
 882	ts = &pvoldesc->recordingDateAndTime;
 883	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 884		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 885		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 886
 887	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
 888	if (ret < 0) {
 889		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
 890		pr_warn("incorrect volume identification, setting to "
 891			"'InvalidName'\n");
 892	} else {
 893		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
 894	}
 895	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
 896
 897	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
 898	if (ret < 0) {
 899		ret = 0;
 900		goto out_bh;
 901	}
 902	outstr[ret] = 0;
 903	udf_debug("volSetIdent[] = '%s'\n", outstr);
 904
 905	ret = 0;
 906out_bh:
 907	brelse(bh);
 908out2:
 909	kfree(outstr);
 
 
 910	return ret;
 911}
 912
 913struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 914					u32 meta_file_loc, u32 partition_ref)
 915{
 916	struct kernel_lb_addr addr;
 917	struct inode *metadata_fe;
 918
 919	addr.logicalBlockNum = meta_file_loc;
 920	addr.partitionReferenceNum = partition_ref;
 921
 922	metadata_fe = udf_iget_special(sb, &addr);
 923
 924	if (IS_ERR(metadata_fe)) {
 925		udf_warn(sb, "metadata inode efe not found\n");
 926		return metadata_fe;
 927	}
 928	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 929		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 930		iput(metadata_fe);
 931		return ERR_PTR(-EIO);
 932	}
 933
 934	return metadata_fe;
 935}
 936
 937static int udf_load_metadata_files(struct super_block *sb, int partition,
 938				   int type1_index)
 939{
 940	struct udf_sb_info *sbi = UDF_SB(sb);
 941	struct udf_part_map *map;
 942	struct udf_meta_data *mdata;
 943	struct kernel_lb_addr addr;
 944	struct inode *fe;
 945
 946	map = &sbi->s_partmaps[partition];
 947	mdata = &map->s_type_specific.s_metadata;
 948	mdata->s_phys_partition_ref = type1_index;
 949
 950	/* metadata address */
 951	udf_debug("Metadata file location: block = %u part = %u\n",
 952		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
 
 
 
 953
 954	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
 955					 mdata->s_phys_partition_ref);
 956	if (IS_ERR(fe)) {
 957		/* mirror file entry */
 958		udf_debug("Mirror metadata file location: block = %u part = %u\n",
 959			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
 960
 961		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
 962						 mdata->s_phys_partition_ref);
 963
 964		if (IS_ERR(fe)) {
 965			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
 966			return PTR_ERR(fe);
 967		}
 968		mdata->s_mirror_fe = fe;
 969	} else
 970		mdata->s_metadata_fe = fe;
 971
 972
 973	/*
 974	 * bitmap file entry
 975	 * Note:
 976	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
 977	*/
 978	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
 979		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
 980		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
 981
 982		udf_debug("Bitmap file location: block = %u part = %u\n",
 983			  addr.logicalBlockNum, addr.partitionReferenceNum);
 984
 985		fe = udf_iget_special(sb, &addr);
 986		if (IS_ERR(fe)) {
 987			if (sb_rdonly(sb))
 988				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
 989			else {
 990				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
 991				return PTR_ERR(fe);
 992			}
 993		} else
 994			mdata->s_bitmap_fe = fe;
 995	}
 996
 997	udf_debug("udf_load_metadata_files Ok\n");
 998	return 0;
 999}
1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1002{
1003	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1004	return DIV_ROUND_UP(map->s_partition_len +
1005			    (sizeof(struct spaceBitmapDesc) << 3),
1006			    sb->s_blocksize * 8);
1007}
1008
1009static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1010{
1011	struct udf_bitmap *bitmap;
1012	int nr_groups = udf_compute_nr_groups(sb, index);
 
 
 
 
 
 
 
 
 
 
1013
1014	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1015			  GFP_KERNEL);
1016	if (!bitmap)
1017		return NULL;
1018
1019	bitmap->s_nr_groups = nr_groups;
1020	return bitmap;
1021}
1022
1023static int check_partition_desc(struct super_block *sb,
1024				struct partitionDesc *p,
1025				struct udf_part_map *map)
1026{
1027	bool umap, utable, fmap, ftable;
1028	struct partitionHeaderDesc *phd;
1029
1030	switch (le32_to_cpu(p->accessType)) {
1031	case PD_ACCESS_TYPE_READ_ONLY:
1032	case PD_ACCESS_TYPE_WRITE_ONCE:
1033	case PD_ACCESS_TYPE_NONE:
1034		goto force_ro;
1035	}
1036
1037	/* No Partition Header Descriptor? */
1038	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1039	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1040		goto force_ro;
1041
1042	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1043	utable = phd->unallocSpaceTable.extLength;
1044	umap = phd->unallocSpaceBitmap.extLength;
1045	ftable = phd->freedSpaceTable.extLength;
1046	fmap = phd->freedSpaceBitmap.extLength;
1047
1048	/* No allocation info? */
1049	if (!utable && !umap && !ftable && !fmap)
1050		goto force_ro;
1051
1052	/* We don't support blocks that require erasing before overwrite */
1053	if (ftable || fmap)
1054		goto force_ro;
1055	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1056	if (utable && umap)
1057		goto force_ro;
1058
1059	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1060	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1061	    map->s_partition_type == UDF_METADATA_MAP25)
1062		goto force_ro;
1063
1064	return 0;
1065force_ro:
1066	if (!sb_rdonly(sb))
1067		return -EACCES;
1068	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1069	return 0;
1070}
1071
1072static int udf_fill_partdesc_info(struct super_block *sb,
1073		struct partitionDesc *p, int p_index)
1074{
1075	struct udf_part_map *map;
1076	struct udf_sb_info *sbi = UDF_SB(sb);
1077	struct partitionHeaderDesc *phd;
1078	int err;
1079
1080	map = &sbi->s_partmaps[p_index];
1081
1082	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1083	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1084
1085	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1086		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1087	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1088		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1089	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1090		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1091	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1092		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1093
1094	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1095		  p_index, map->s_partition_type,
1096		  map->s_partition_root, map->s_partition_len);
1097
1098	err = check_partition_desc(sb, p, map);
1099	if (err)
1100		return err;
1101
1102	/*
1103	 * Skip loading allocation info it we cannot ever write to the fs.
1104	 * This is a correctness thing as we may have decided to force ro mount
1105	 * to avoid allocation info we don't support.
1106	 */
1107	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1108		return 0;
1109
1110	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1111	if (phd->unallocSpaceTable.extLength) {
1112		struct kernel_lb_addr loc = {
1113			.logicalBlockNum = le32_to_cpu(
1114				phd->unallocSpaceTable.extPosition),
1115			.partitionReferenceNum = p_index,
1116		};
1117		struct inode *inode;
1118
1119		inode = udf_iget_special(sb, &loc);
1120		if (IS_ERR(inode)) {
1121			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1122				  p_index);
1123			return PTR_ERR(inode);
1124		}
1125		map->s_uspace.s_table = inode;
1126		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1127		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1128			  p_index, map->s_uspace.s_table->i_ino);
1129	}
1130
1131	if (phd->unallocSpaceBitmap.extLength) {
1132		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1133		if (!bitmap)
1134			return -ENOMEM;
1135		map->s_uspace.s_bitmap = bitmap;
1136		bitmap->s_extPosition = le32_to_cpu(
1137				phd->unallocSpaceBitmap.extPosition);
1138		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1139		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1140			  p_index, bitmap->s_extPosition);
1141	}
1142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143	return 0;
1144}
1145
1146static void udf_find_vat_block(struct super_block *sb, int p_index,
1147			       int type1_index, sector_t start_block)
1148{
1149	struct udf_sb_info *sbi = UDF_SB(sb);
1150	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1151	sector_t vat_block;
1152	struct kernel_lb_addr ino;
1153	struct inode *inode;
1154
1155	/*
1156	 * VAT file entry is in the last recorded block. Some broken disks have
1157	 * it a few blocks before so try a bit harder...
1158	 */
1159	ino.partitionReferenceNum = type1_index;
1160	for (vat_block = start_block;
1161	     vat_block >= map->s_partition_root &&
1162	     vat_block >= start_block - 3; vat_block--) {
 
1163		ino.logicalBlockNum = vat_block - map->s_partition_root;
1164		inode = udf_iget_special(sb, &ino);
1165		if (!IS_ERR(inode)) {
1166			sbi->s_vat_inode = inode;
1167			break;
1168		}
1169	}
1170}
1171
1172static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1173{
1174	struct udf_sb_info *sbi = UDF_SB(sb);
1175	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1176	struct buffer_head *bh = NULL;
1177	struct udf_inode_info *vati;
1178	uint32_t pos;
1179	struct virtualAllocationTable20 *vat20;
1180	sector_t blocks = sb_bdev_nr_blocks(sb);
1181
1182	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1183	if (!sbi->s_vat_inode &&
1184	    sbi->s_last_block != blocks - 1) {
1185		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1186			  (unsigned long)sbi->s_last_block,
1187			  (unsigned long)blocks - 1);
1188		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1189	}
1190	if (!sbi->s_vat_inode)
1191		return -EIO;
1192
1193	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1194		map->s_type_specific.s_virtual.s_start_offset = 0;
1195		map->s_type_specific.s_virtual.s_num_entries =
1196			(sbi->s_vat_inode->i_size - 36) >> 2;
1197	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1198		vati = UDF_I(sbi->s_vat_inode);
1199		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1200			pos = udf_block_map(sbi->s_vat_inode, 0);
1201			bh = sb_bread(sb, pos);
1202			if (!bh)
1203				return -EIO;
1204			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1205		} else {
1206			vat20 = (struct virtualAllocationTable20 *)
1207							vati->i_data;
1208		}
1209
1210		map->s_type_specific.s_virtual.s_start_offset =
1211			le16_to_cpu(vat20->lengthHeader);
1212		map->s_type_specific.s_virtual.s_num_entries =
1213			(sbi->s_vat_inode->i_size -
1214				map->s_type_specific.s_virtual.
1215					s_start_offset) >> 2;
1216		brelse(bh);
1217	}
1218	return 0;
1219}
1220
1221/*
1222 * Load partition descriptor block
1223 *
1224 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1225 * sequence.
1226 */
1227static int udf_load_partdesc(struct super_block *sb, sector_t block)
1228{
1229	struct buffer_head *bh;
1230	struct partitionDesc *p;
1231	struct udf_part_map *map;
1232	struct udf_sb_info *sbi = UDF_SB(sb);
1233	int i, type1_idx;
1234	uint16_t partitionNumber;
1235	uint16_t ident;
1236	int ret;
1237
1238	bh = udf_read_tagged(sb, block, block, &ident);
1239	if (!bh)
1240		return -EAGAIN;
1241	if (ident != TAG_IDENT_PD) {
1242		ret = 0;
1243		goto out_bh;
1244	}
1245
1246	p = (struct partitionDesc *)bh->b_data;
1247	partitionNumber = le16_to_cpu(p->partitionNumber);
1248
1249	/* First scan for TYPE1 and SPARABLE partitions */
1250	for (i = 0; i < sbi->s_partitions; i++) {
1251		map = &sbi->s_partmaps[i];
1252		udf_debug("Searching map: (%u == %u)\n",
1253			  map->s_partition_num, partitionNumber);
1254		if (map->s_partition_num == partitionNumber &&
1255		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1256		     map->s_partition_type == UDF_SPARABLE_MAP15))
1257			break;
1258	}
1259
1260	if (i >= sbi->s_partitions) {
1261		udf_debug("Partition (%u) not found in partition map\n",
1262			  partitionNumber);
1263		ret = 0;
1264		goto out_bh;
1265	}
1266
1267	ret = udf_fill_partdesc_info(sb, p, i);
1268	if (ret < 0)
1269		goto out_bh;
1270
1271	/*
1272	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1273	 * PHYSICAL partitions are already set up
1274	 */
1275	type1_idx = i;
 
1276	map = NULL; /* supress 'maybe used uninitialized' warning */
 
1277	for (i = 0; i < sbi->s_partitions; i++) {
1278		map = &sbi->s_partmaps[i];
1279
1280		if (map->s_partition_num == partitionNumber &&
1281		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1282		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1283		     map->s_partition_type == UDF_METADATA_MAP25))
1284			break;
1285	}
1286
1287	if (i >= sbi->s_partitions) {
1288		ret = 0;
1289		goto out_bh;
1290	}
1291
1292	ret = udf_fill_partdesc_info(sb, p, i);
1293	if (ret < 0)
1294		goto out_bh;
1295
1296	if (map->s_partition_type == UDF_METADATA_MAP25) {
1297		ret = udf_load_metadata_files(sb, i, type1_idx);
1298		if (ret < 0) {
1299			udf_err(sb, "error loading MetaData partition map %d\n",
1300				i);
1301			goto out_bh;
1302		}
1303	} else {
1304		/*
1305		 * If we have a partition with virtual map, we don't handle
1306		 * writing to it (we overwrite blocks instead of relocating
1307		 * them).
1308		 */
1309		if (!sb_rdonly(sb)) {
1310			ret = -EACCES;
1311			goto out_bh;
1312		}
1313		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1314		ret = udf_load_vat(sb, i, type1_idx);
1315		if (ret < 0)
1316			goto out_bh;
1317	}
1318	ret = 0;
1319out_bh:
1320	/* In case loading failed, we handle cleanup in udf_fill_super */
1321	brelse(bh);
1322	return ret;
1323}
1324
1325static int udf_load_sparable_map(struct super_block *sb,
1326				 struct udf_part_map *map,
1327				 struct sparablePartitionMap *spm)
1328{
1329	uint32_t loc;
1330	uint16_t ident;
1331	struct sparingTable *st;
1332	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1333	int i;
1334	struct buffer_head *bh;
1335
1336	map->s_partition_type = UDF_SPARABLE_MAP15;
1337	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1338	if (!is_power_of_2(sdata->s_packet_len)) {
1339		udf_err(sb, "error loading logical volume descriptor: "
1340			"Invalid packet length %u\n",
1341			(unsigned)sdata->s_packet_len);
1342		return -EIO;
1343	}
1344	if (spm->numSparingTables > 4) {
1345		udf_err(sb, "error loading logical volume descriptor: "
1346			"Too many sparing tables (%d)\n",
1347			(int)spm->numSparingTables);
1348		return -EIO;
1349	}
1350	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1351		udf_err(sb, "error loading logical volume descriptor: "
1352			"Too big sparing table size (%u)\n",
1353			le32_to_cpu(spm->sizeSparingTable));
1354		return -EIO;
1355	}
1356
1357	for (i = 0; i < spm->numSparingTables; i++) {
1358		loc = le32_to_cpu(spm->locSparingTable[i]);
1359		bh = udf_read_tagged(sb, loc, loc, &ident);
1360		if (!bh)
1361			continue;
1362
1363		st = (struct sparingTable *)bh->b_data;
1364		if (ident != 0 ||
1365		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366			    strlen(UDF_ID_SPARING)) ||
1367		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368							sb->s_blocksize) {
1369			brelse(bh);
1370			continue;
1371		}
1372
1373		sdata->s_spar_map[i] = bh;
1374	}
1375	map->s_partition_func = udf_get_pblock_spar15;
1376	return 0;
1377}
1378
1379static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380			       struct kernel_lb_addr *fileset)
1381{
1382	struct logicalVolDesc *lvd;
1383	int i, offset;
1384	uint8_t type;
1385	struct udf_sb_info *sbi = UDF_SB(sb);
1386	struct genericPartitionMap *gpm;
1387	uint16_t ident;
1388	struct buffer_head *bh;
1389	unsigned int table_len;
1390	int ret;
1391
1392	bh = udf_read_tagged(sb, block, block, &ident);
1393	if (!bh)
1394		return -EAGAIN;
1395	BUG_ON(ident != TAG_IDENT_LVD);
1396	lvd = (struct logicalVolDesc *)bh->b_data;
1397	table_len = le32_to_cpu(lvd->mapTableLength);
1398	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399		udf_err(sb, "error loading logical volume descriptor: "
1400			"Partition table too long (%u > %lu)\n", table_len,
1401			sb->s_blocksize - sizeof(*lvd));
1402		ret = -EIO;
1403		goto out_bh;
1404	}
1405
1406	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407					   "logical volume");
1408	if (ret)
1409		goto out_bh;
1410	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411	if (ret)
1412		goto out_bh;
1413
1414	for (i = 0, offset = 0;
1415	     i < sbi->s_partitions && offset < table_len;
1416	     i++, offset += gpm->partitionMapLength) {
1417		struct udf_part_map *map = &sbi->s_partmaps[i];
1418		gpm = (struct genericPartitionMap *)
1419				&(lvd->partitionMaps[offset]);
1420		type = gpm->partitionMapType;
1421		if (type == 1) {
1422			struct genericPartitionMap1 *gpm1 =
1423				(struct genericPartitionMap1 *)gpm;
1424			map->s_partition_type = UDF_TYPE1_MAP15;
1425			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427			map->s_partition_func = NULL;
1428		} else if (type == 2) {
1429			struct udfPartitionMap2 *upm2 =
1430						(struct udfPartitionMap2 *)gpm;
1431			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432						strlen(UDF_ID_VIRTUAL))) {
1433				u16 suf =
1434					le16_to_cpu(((__le16 *)upm2->partIdent.
1435							identSuffix)[0]);
1436				if (suf < 0x0200) {
1437					map->s_partition_type =
1438							UDF_VIRTUAL_MAP15;
1439					map->s_partition_func =
1440							udf_get_pblock_virt15;
1441				} else {
1442					map->s_partition_type =
1443							UDF_VIRTUAL_MAP20;
1444					map->s_partition_func =
1445							udf_get_pblock_virt20;
1446				}
1447			} else if (!strncmp(upm2->partIdent.ident,
1448						UDF_ID_SPARABLE,
1449						strlen(UDF_ID_SPARABLE))) {
1450				ret = udf_load_sparable_map(sb, map,
1451					(struct sparablePartitionMap *)gpm);
1452				if (ret < 0)
1453					goto out_bh;
1454			} else if (!strncmp(upm2->partIdent.ident,
1455						UDF_ID_METADATA,
1456						strlen(UDF_ID_METADATA))) {
1457				struct udf_meta_data *mdata =
1458					&map->s_type_specific.s_metadata;
1459				struct metadataPartitionMap *mdm =
1460						(struct metadataPartitionMap *)
1461						&(lvd->partitionMaps[offset]);
1462				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463					  i, type, UDF_ID_METADATA);
1464
1465				map->s_partition_type = UDF_METADATA_MAP25;
1466				map->s_partition_func = udf_get_pblock_meta25;
1467
1468				mdata->s_meta_file_loc   =
1469					le32_to_cpu(mdm->metadataFileLoc);
1470				mdata->s_mirror_file_loc =
1471					le32_to_cpu(mdm->metadataMirrorFileLoc);
1472				mdata->s_bitmap_file_loc =
1473					le32_to_cpu(mdm->metadataBitmapFileLoc);
1474				mdata->s_alloc_unit_size =
1475					le32_to_cpu(mdm->allocUnitSize);
1476				mdata->s_align_unit_size =
1477					le16_to_cpu(mdm->alignUnitSize);
1478				if (mdm->flags & 0x01)
1479					mdata->s_flags |= MF_DUPLICATE_MD;
1480
1481				udf_debug("Metadata Ident suffix=0x%x\n",
1482					  le16_to_cpu(*(__le16 *)
1483						      mdm->partIdent.identSuffix));
1484				udf_debug("Metadata part num=%u\n",
1485					  le16_to_cpu(mdm->partitionNum));
1486				udf_debug("Metadata part alloc unit size=%u\n",
1487					  le32_to_cpu(mdm->allocUnitSize));
1488				udf_debug("Metadata file loc=%u\n",
1489					  le32_to_cpu(mdm->metadataFileLoc));
1490				udf_debug("Mirror file loc=%u\n",
1491					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1492				udf_debug("Bitmap file loc=%u\n",
1493					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1494				udf_debug("Flags: %d %u\n",
1495					  mdata->s_flags, mdm->flags);
1496			} else {
1497				udf_debug("Unknown ident: %s\n",
1498					  upm2->partIdent.ident);
1499				continue;
1500			}
1501			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503		}
1504		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505			  i, map->s_partition_num, type, map->s_volumeseqnum);
1506	}
1507
1508	if (fileset) {
1509		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510
1511		*fileset = lelb_to_cpu(la->extLocation);
1512		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513			  fileset->logicalBlockNum,
1514			  fileset->partitionReferenceNum);
1515	}
1516	if (lvd->integritySeqExt.extLength)
1517		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518	ret = 0;
1519
1520	if (!sbi->s_lvid_bh) {
1521		/* We can't generate unique IDs without a valid LVID */
1522		if (sb_rdonly(sb)) {
1523			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524		} else {
1525			udf_warn(sb, "Damaged or missing LVID, forcing "
1526				     "readonly mount\n");
1527			ret = -EACCES;
1528		}
1529	}
1530out_bh:
1531	brelse(bh);
1532	return ret;
1533}
1534
1535/*
1536 * Find the prevailing Logical Volume Integrity Descriptor.
 
1537 */
1538static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539{
1540	struct buffer_head *bh, *final_bh;
1541	uint16_t ident;
1542	struct udf_sb_info *sbi = UDF_SB(sb);
1543	struct logicalVolIntegrityDesc *lvid;
1544	int indirections = 0;
1545	u32 parts, impuselen;
1546
1547	while (++indirections <= UDF_MAX_LVID_NESTING) {
1548		final_bh = NULL;
1549		while (loc.extLength > 0 &&
1550			(bh = udf_read_tagged(sb, loc.extLocation,
1551					loc.extLocation, &ident))) {
1552			if (ident != TAG_IDENT_LVID) {
1553				brelse(bh);
1554				break;
1555			}
1556
1557			brelse(final_bh);
1558			final_bh = bh;
1559
1560			loc.extLength -= sb->s_blocksize;
1561			loc.extLocation++;
1562		}
1563
1564		if (!final_bh)
1565			return;
1566
1567		brelse(sbi->s_lvid_bh);
1568		sbi->s_lvid_bh = final_bh;
1569
1570		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1571		if (lvid->nextIntegrityExt.extLength == 0)
1572			goto check;
1573
1574		loc = leea_to_cpu(lvid->nextIntegrityExt);
1575	}
1576
1577	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1578		UDF_MAX_LVID_NESTING);
1579out_err:
1580	brelse(sbi->s_lvid_bh);
1581	sbi->s_lvid_bh = NULL;
1582	return;
1583check:
1584	parts = le32_to_cpu(lvid->numOfPartitions);
1585	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1586	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1587	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1588	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1589		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1590			 "ignoring.\n", parts, impuselen);
1591		goto out_err;
1592	}
1593}
1594
1595/*
1596 * Step for reallocation of table of partition descriptor sequence numbers.
1597 * Must be power of 2.
1598 */
1599#define PART_DESC_ALLOC_STEP 32
1600
1601struct part_desc_seq_scan_data {
1602	struct udf_vds_record rec;
1603	u32 partnum;
1604};
1605
1606struct desc_seq_scan_data {
1607	struct udf_vds_record vds[VDS_POS_LENGTH];
1608	unsigned int size_part_descs;
1609	unsigned int num_part_descs;
1610	struct part_desc_seq_scan_data *part_descs_loc;
1611};
1612
1613static struct udf_vds_record *handle_partition_descriptor(
1614				struct buffer_head *bh,
1615				struct desc_seq_scan_data *data)
1616{
1617	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1618	int partnum;
1619	int i;
1620
1621	partnum = le16_to_cpu(desc->partitionNumber);
1622	for (i = 0; i < data->num_part_descs; i++)
1623		if (partnum == data->part_descs_loc[i].partnum)
1624			return &(data->part_descs_loc[i].rec);
1625	if (data->num_part_descs >= data->size_part_descs) {
1626		struct part_desc_seq_scan_data *new_loc;
1627		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1628
1629		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1630		if (!new_loc)
1631			return ERR_PTR(-ENOMEM);
1632		memcpy(new_loc, data->part_descs_loc,
1633		       data->size_part_descs * sizeof(*new_loc));
1634		kfree(data->part_descs_loc);
1635		data->part_descs_loc = new_loc;
1636		data->size_part_descs = new_size;
1637	}
1638	return &(data->part_descs_loc[data->num_part_descs++].rec);
1639}
1640
 
 
 
1641
1642static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1643		struct buffer_head *bh, struct desc_seq_scan_data *data)
1644{
1645	switch (ident) {
1646	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1648	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1649		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1650	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1651		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1652	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1653		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1654	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1655		return handle_partition_descriptor(bh, data);
1656	}
1657	return NULL;
 
1658}
1659
1660/*
1661 * Process a main/reserve volume descriptor sequence.
1662 *   @block		First block of first extent of the sequence.
1663 *   @lastblock		Lastblock of first extent of the sequence.
1664 *   @fileset		There we store extent containing root fileset
1665 *
1666 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1667 * sequence
1668 */
1669static noinline int udf_process_sequence(
1670		struct super_block *sb,
1671		sector_t block, sector_t lastblock,
1672		struct kernel_lb_addr *fileset)
1673{
1674	struct buffer_head *bh = NULL;
 
1675	struct udf_vds_record *curr;
1676	struct generic_desc *gd;
1677	struct volDescPtr *vdp;
1678	bool done = false;
1679	uint32_t vdsn;
1680	uint16_t ident;
 
1681	int ret;
1682	unsigned int indirections = 0;
1683	struct desc_seq_scan_data data;
1684	unsigned int i;
1685
1686	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1687	data.size_part_descs = PART_DESC_ALLOC_STEP;
1688	data.num_part_descs = 0;
1689	data.part_descs_loc = kcalloc(data.size_part_descs,
1690				      sizeof(*data.part_descs_loc),
1691				      GFP_KERNEL);
1692	if (!data.part_descs_loc)
1693		return -ENOMEM;
1694
1695	/*
1696	 * Read the main descriptor sequence and find which descriptors
1697	 * are in it.
1698	 */
1699	for (; (!done && block <= lastblock); block++) {
 
1700		bh = udf_read_tagged(sb, block, block, &ident);
1701		if (!bh)
1702			break;
 
 
 
 
1703
1704		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1705		gd = (struct generic_desc *)bh->b_data;
1706		vdsn = le32_to_cpu(gd->volDescSeqNum);
1707		switch (ident) {
1708		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1709			if (++indirections > UDF_MAX_TD_NESTING) {
1710				udf_err(sb, "too many Volume Descriptor "
1711					"Pointers (max %u supported)\n",
1712					UDF_MAX_TD_NESTING);
1713				brelse(bh);
1714				ret = -EIO;
1715				goto out;
1716			}
 
 
 
 
 
 
1717
1718			vdp = (struct volDescPtr *)bh->b_data;
1719			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1720			lastblock = le32_to_cpu(
1721				vdp->nextVolDescSeqExt.extLength) >>
1722				sb->s_blocksize_bits;
1723			lastblock += block - 1;
1724			/* For loop is going to increment 'block' again */
1725			block--;
1726			break;
1727		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1728		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1729		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1730		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
 
 
 
 
1731		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1732			curr = get_volume_descriptor_record(ident, bh, &data);
1733			if (IS_ERR(curr)) {
1734				brelse(bh);
1735				ret = PTR_ERR(curr);
1736				goto out;
 
 
 
 
1737			}
1738			/* Descriptor we don't care about? */
1739			if (!curr)
1740				break;
1741			if (vdsn >= curr->volDescSeqNum) {
1742				curr->volDescSeqNum = vdsn;
1743				curr->block = block;
1744			}
1745			break;
1746		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1747			done = true;
 
 
 
 
 
 
1748			break;
1749		}
1750		brelse(bh);
1751	}
1752	/*
1753	 * Now read interesting descriptors again and process them
1754	 * in a suitable order
1755	 */
1756	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1757		udf_err(sb, "Primary Volume Descriptor not found!\n");
1758		ret = -EAGAIN;
1759		goto out;
1760	}
1761	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1762	if (ret < 0)
1763		goto out;
1764
1765	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1766		ret = udf_load_logicalvol(sb,
1767				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1768				fileset);
1769		if (ret < 0)
1770			goto out;
1771	}
1772
1773	/* Now handle prevailing Partition Descriptors */
1774	for (i = 0; i < data.num_part_descs; i++) {
1775		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1776		if (ret < 0)
1777			goto out;
 
 
 
 
 
 
 
1778	}
1779	ret = 0;
1780out:
1781	kfree(data.part_descs_loc);
1782	return ret;
1783}
1784
1785/*
1786 * Load Volume Descriptor Sequence described by anchor in bh
1787 *
1788 * Returns <0 on error, 0 on success
1789 */
1790static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1791			     struct kernel_lb_addr *fileset)
1792{
1793	struct anchorVolDescPtr *anchor;
1794	sector_t main_s, main_e, reserve_s, reserve_e;
1795	int ret;
1796
1797	anchor = (struct anchorVolDescPtr *)bh->b_data;
1798
1799	/* Locate the main sequence */
1800	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1801	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1802	main_e = main_e >> sb->s_blocksize_bits;
1803	main_e += main_s - 1;
1804
1805	/* Locate the reserve sequence */
1806	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1807	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1808	reserve_e = reserve_e >> sb->s_blocksize_bits;
1809	reserve_e += reserve_s - 1;
1810
1811	/* Process the main & reserve sequences */
1812	/* responsible for finding the PartitionDesc(s) */
1813	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1814	if (ret != -EAGAIN)
1815		return ret;
1816	udf_sb_free_partitions(sb);
1817	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1818	if (ret < 0) {
1819		udf_sb_free_partitions(sb);
1820		/* No sequence was OK, return -EIO */
1821		if (ret == -EAGAIN)
1822			ret = -EIO;
1823	}
1824	return ret;
1825}
1826
1827/*
1828 * Check whether there is an anchor block in the given block and
1829 * load Volume Descriptor Sequence if so.
1830 *
1831 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1832 * block
1833 */
1834static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1835				  struct kernel_lb_addr *fileset)
1836{
1837	struct buffer_head *bh;
1838	uint16_t ident;
1839	int ret;
1840
1841	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1842	    udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
 
1843		return -EAGAIN;
1844
1845	bh = udf_read_tagged(sb, block, block, &ident);
1846	if (!bh)
1847		return -EAGAIN;
1848	if (ident != TAG_IDENT_AVDP) {
1849		brelse(bh);
1850		return -EAGAIN;
1851	}
1852	ret = udf_load_sequence(sb, bh, fileset);
1853	brelse(bh);
1854	return ret;
1855}
1856
1857/*
1858 * Search for an anchor volume descriptor pointer.
1859 *
1860 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861 * of anchors.
1862 */
1863static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864			    struct kernel_lb_addr *fileset)
1865{
1866	sector_t last[6];
1867	int i;
1868	struct udf_sb_info *sbi = UDF_SB(sb);
1869	int last_count = 0;
1870	int ret;
1871
1872	/* First try user provided anchor */
1873	if (sbi->s_anchor) {
1874		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875		if (ret != -EAGAIN)
1876			return ret;
1877	}
1878	/*
1879	 * according to spec, anchor is in either:
1880	 *     block 256
1881	 *     lastblock-256
1882	 *     lastblock
1883	 *  however, if the disc isn't closed, it could be 512.
1884	 */
1885	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886	if (ret != -EAGAIN)
1887		return ret;
1888	/*
1889	 * The trouble is which block is the last one. Drives often misreport
1890	 * this so we try various possibilities.
1891	 */
1892	last[last_count++] = *lastblock;
1893	if (*lastblock >= 1)
1894		last[last_count++] = *lastblock - 1;
1895	last[last_count++] = *lastblock + 1;
1896	if (*lastblock >= 2)
1897		last[last_count++] = *lastblock - 2;
1898	if (*lastblock >= 150)
1899		last[last_count++] = *lastblock - 150;
1900	if (*lastblock >= 152)
1901		last[last_count++] = *lastblock - 152;
1902
1903	for (i = 0; i < last_count; i++) {
1904		if (last[i] >= sb_bdev_nr_blocks(sb))
 
1905			continue;
1906		ret = udf_check_anchor_block(sb, last[i], fileset);
1907		if (ret != -EAGAIN) {
1908			if (!ret)
1909				*lastblock = last[i];
1910			return ret;
1911		}
1912		if (last[i] < 256)
1913			continue;
1914		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1915		if (ret != -EAGAIN) {
1916			if (!ret)
1917				*lastblock = last[i];
1918			return ret;
1919		}
1920	}
1921
1922	/* Finally try block 512 in case media is open */
1923	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1924}
1925
1926/*
1927 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1928 * area specified by it. The function expects sbi->s_lastblock to be the last
1929 * block on the media.
1930 *
1931 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1932 * was not found.
1933 */
1934static int udf_find_anchor(struct super_block *sb,
1935			   struct kernel_lb_addr *fileset)
1936{
1937	struct udf_sb_info *sbi = UDF_SB(sb);
1938	sector_t lastblock = sbi->s_last_block;
1939	int ret;
1940
1941	ret = udf_scan_anchors(sb, &lastblock, fileset);
1942	if (ret != -EAGAIN)
1943		goto out;
1944
1945	/* No anchor found? Try VARCONV conversion of block numbers */
1946	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1947	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1948	/* Firstly, we try to not convert number of the last block */
1949	ret = udf_scan_anchors(sb, &lastblock, fileset);
1950	if (ret != -EAGAIN)
1951		goto out;
1952
1953	lastblock = sbi->s_last_block;
1954	/* Secondly, we try with converted number of the last block */
1955	ret = udf_scan_anchors(sb, &lastblock, fileset);
1956	if (ret < 0) {
1957		/* VARCONV didn't help. Clear it. */
1958		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1959	}
1960out:
1961	if (ret == 0)
1962		sbi->s_last_block = lastblock;
1963	return ret;
1964}
1965
1966/*
1967 * Check Volume Structure Descriptor, find Anchor block and load Volume
1968 * Descriptor Sequence.
1969 *
1970 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1971 * block was not found.
1972 */
1973static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1974			int silent, struct kernel_lb_addr *fileset)
1975{
1976	struct udf_sb_info *sbi = UDF_SB(sb);
1977	int nsr = 0;
1978	int ret;
1979
1980	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1981		if (!silent)
1982			udf_warn(sb, "Bad block size\n");
1983		return -EINVAL;
1984	}
1985	sbi->s_last_block = uopt->lastblock;
1986	if (!uopt->novrs) {
1987		/* Check that it is NSR02 compliant */
1988		nsr = udf_check_vsd(sb);
1989		if (!nsr) {
1990			if (!silent)
1991				udf_warn(sb, "No VRS found\n");
1992			return -EINVAL;
1993		}
1994		if (nsr == -1)
1995			udf_debug("Failed to read sector at offset %d. "
1996				  "Assuming open disc. Skipping validity "
1997				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1998		if (!sbi->s_last_block)
1999			sbi->s_last_block = udf_get_last_block(sb);
2000	} else {
2001		udf_debug("Validity check skipped because of novrs option\n");
2002	}
2003
2004	/* Look for anchor block and load Volume Descriptor Sequence */
2005	sbi->s_anchor = uopt->anchor;
2006	ret = udf_find_anchor(sb, fileset);
2007	if (ret < 0) {
2008		if (!silent && ret == -EAGAIN)
2009			udf_warn(sb, "No anchor found\n");
2010		return ret;
2011	}
2012	return 0;
2013}
2014
2015static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2016{
2017	struct timespec64 ts;
2018
2019	ktime_get_real_ts64(&ts);
2020	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2021	lvid->descTag.descCRC = cpu_to_le16(
2022		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023			le16_to_cpu(lvid->descTag.descCRCLength)));
2024	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2025}
2026
2027static void udf_open_lvid(struct super_block *sb)
2028{
2029	struct udf_sb_info *sbi = UDF_SB(sb);
2030	struct buffer_head *bh = sbi->s_lvid_bh;
2031	struct logicalVolIntegrityDesc *lvid;
2032	struct logicalVolIntegrityDescImpUse *lvidiu;
2033
2034	if (!bh)
2035		return;
2036	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2037	lvidiu = udf_sb_lvidiu(sb);
2038	if (!lvidiu)
2039		return;
2040
2041	mutex_lock(&sbi->s_alloc_mutex);
2042	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2043	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2044	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2045		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2046	else
2047		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2048
2049	udf_finalize_lvid(lvid);
 
 
 
 
2050	mark_buffer_dirty(bh);
2051	sbi->s_lvid_dirty = 0;
2052	mutex_unlock(&sbi->s_alloc_mutex);
2053	/* Make opening of filesystem visible on the media immediately */
2054	sync_dirty_buffer(bh);
2055}
2056
2057static void udf_close_lvid(struct super_block *sb)
2058{
2059	struct udf_sb_info *sbi = UDF_SB(sb);
2060	struct buffer_head *bh = sbi->s_lvid_bh;
2061	struct logicalVolIntegrityDesc *lvid;
2062	struct logicalVolIntegrityDescImpUse *lvidiu;
2063
2064	if (!bh)
2065		return;
2066	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2067	lvidiu = udf_sb_lvidiu(sb);
2068	if (!lvidiu)
2069		return;
2070
2071	mutex_lock(&sbi->s_alloc_mutex);
2072	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2073	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
 
2074	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2075		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2076	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2077		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2078	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2079		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2080	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2081		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2082
 
 
 
 
 
2083	/*
2084	 * We set buffer uptodate unconditionally here to avoid spurious
2085	 * warnings from mark_buffer_dirty() when previous EIO has marked
2086	 * the buffer as !uptodate
2087	 */
2088	set_buffer_uptodate(bh);
2089	udf_finalize_lvid(lvid);
2090	mark_buffer_dirty(bh);
2091	sbi->s_lvid_dirty = 0;
2092	mutex_unlock(&sbi->s_alloc_mutex);
2093	/* Make closing of filesystem visible on the media immediately */
2094	sync_dirty_buffer(bh);
2095}
2096
2097u64 lvid_get_unique_id(struct super_block *sb)
2098{
2099	struct buffer_head *bh;
2100	struct udf_sb_info *sbi = UDF_SB(sb);
2101	struct logicalVolIntegrityDesc *lvid;
2102	struct logicalVolHeaderDesc *lvhd;
2103	u64 uniqueID;
2104	u64 ret;
2105
2106	bh = sbi->s_lvid_bh;
2107	if (!bh)
2108		return 0;
2109
2110	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2111	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2112
2113	mutex_lock(&sbi->s_alloc_mutex);
2114	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2115	if (!(++uniqueID & 0xFFFFFFFF))
2116		uniqueID += 16;
2117	lvhd->uniqueID = cpu_to_le64(uniqueID);
2118	udf_updated_lvid(sb);
2119	mutex_unlock(&sbi->s_alloc_mutex);
 
2120
2121	return ret;
2122}
2123
2124static int udf_fill_super(struct super_block *sb, void *options, int silent)
2125{
2126	int ret = -EINVAL;
2127	struct inode *inode = NULL;
2128	struct udf_options uopt;
2129	struct kernel_lb_addr rootdir, fileset;
2130	struct udf_sb_info *sbi;
2131	bool lvid_open = false;
2132
2133	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2134	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2135	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2136	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2137	uopt.umask = 0;
2138	uopt.fmode = UDF_INVALID_MODE;
2139	uopt.dmode = UDF_INVALID_MODE;
2140	uopt.nls_map = NULL;
2141
2142	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2143	if (!sbi)
2144		return -ENOMEM;
2145
2146	sb->s_fs_info = sbi;
2147
2148	mutex_init(&sbi->s_alloc_mutex);
2149
2150	if (!udf_parse_options((char *)options, &uopt, false))
2151		goto parse_options_failure;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2152
2153	fileset.logicalBlockNum = 0xFFFFFFFF;
2154	fileset.partitionReferenceNum = 0xFFFF;
2155
2156	sbi->s_flags = uopt.flags;
2157	sbi->s_uid = uopt.uid;
2158	sbi->s_gid = uopt.gid;
2159	sbi->s_umask = uopt.umask;
2160	sbi->s_fmode = uopt.fmode;
2161	sbi->s_dmode = uopt.dmode;
2162	sbi->s_nls_map = uopt.nls_map;
2163	rwlock_init(&sbi->s_cred_lock);
2164
2165	if (uopt.session == 0xFFFFFFFF)
2166		sbi->s_session = udf_get_last_session(sb);
2167	else
2168		sbi->s_session = uopt.session;
2169
2170	udf_debug("Multi-session=%d\n", sbi->s_session);
2171
2172	/* Fill in the rest of the superblock */
2173	sb->s_op = &udf_sb_ops;
2174	sb->s_export_op = &udf_export_ops;
2175
2176	sb->s_magic = UDF_SUPER_MAGIC;
2177	sb->s_time_gran = 1000;
2178
2179	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2180		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2181	} else {
2182		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2183		while (uopt.blocksize <= 4096) {
 
 
 
 
 
 
 
2184			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185			if (ret < 0) {
2186				if (!silent && ret != -EACCES) {
2187					pr_notice("Scanning with blocksize %u failed\n",
2188						  uopt.blocksize);
2189				}
2190				brelse(sbi->s_lvid_bh);
2191				sbi->s_lvid_bh = NULL;
2192				/*
2193				 * EACCES is special - we want to propagate to
2194				 * upper layers that we cannot handle RW mount.
2195				 */
2196				if (ret == -EACCES)
2197					break;
2198			} else
2199				break;
2200
2201			uopt.blocksize <<= 1;
2202		}
2203	}
2204	if (ret < 0) {
2205		if (ret == -EAGAIN) {
2206			udf_warn(sb, "No partition found (1)\n");
2207			ret = -EINVAL;
2208		}
2209		goto error_out;
2210	}
2211
2212	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2213
2214	if (sbi->s_lvid_bh) {
2215		struct logicalVolIntegrityDescImpUse *lvidiu =
2216							udf_sb_lvidiu(sb);
2217		uint16_t minUDFReadRev;
2218		uint16_t minUDFWriteRev;
2219
2220		if (!lvidiu) {
2221			ret = -EINVAL;
2222			goto error_out;
2223		}
2224		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2225		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2226		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2227			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2228				minUDFReadRev,
2229				UDF_MAX_READ_VERSION);
2230			ret = -EINVAL;
2231			goto error_out;
2232		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2233			if (!sb_rdonly(sb)) {
2234				ret = -EACCES;
2235				goto error_out;
2236			}
2237			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2238		}
2239
2240		sbi->s_udfrev = minUDFWriteRev;
2241
2242		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2243			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2244		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2245			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2246	}
2247
2248	if (!sbi->s_partitions) {
2249		udf_warn(sb, "No partition found (2)\n");
2250		ret = -EINVAL;
2251		goto error_out;
2252	}
2253
2254	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2255			UDF_PART_FLAG_READ_ONLY) {
2256		if (!sb_rdonly(sb)) {
2257			ret = -EACCES;
2258			goto error_out;
2259		}
2260		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2261	}
2262
2263	ret = udf_find_fileset(sb, &fileset, &rootdir);
2264	if (ret < 0) {
2265		udf_warn(sb, "No fileset found\n");
 
2266		goto error_out;
2267	}
2268
2269	if (!silent) {
2270		struct timestamp ts;
2271		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2272		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2273			 sbi->s_volume_ident,
2274			 le16_to_cpu(ts.year), ts.month, ts.day,
2275			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2276	}
2277	if (!sb_rdonly(sb)) {
2278		udf_open_lvid(sb);
2279		lvid_open = true;
2280	}
2281
2282	/* Assign the root inode */
2283	/* assign inodes by physical block number */
2284	/* perhaps it's not extensible enough, but for now ... */
2285	inode = udf_iget(sb, &rootdir);
2286	if (IS_ERR(inode)) {
2287		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2288		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2289		ret = PTR_ERR(inode);
2290		goto error_out;
2291	}
2292
2293	/* Allocate a dentry for the root inode */
2294	sb->s_root = d_make_root(inode);
2295	if (!sb->s_root) {
2296		udf_err(sb, "Couldn't allocate root dentry\n");
2297		ret = -ENOMEM;
2298		goto error_out;
2299	}
2300	sb->s_maxbytes = MAX_LFS_FILESIZE;
2301	sb->s_max_links = UDF_MAX_LINKS;
2302	return 0;
2303
2304error_out:
2305	iput(sbi->s_vat_inode);
2306parse_options_failure:
2307	unload_nls(uopt.nls_map);
2308	if (lvid_open)
 
 
 
2309		udf_close_lvid(sb);
2310	brelse(sbi->s_lvid_bh);
2311	udf_sb_free_partitions(sb);
2312	kfree(sbi);
2313	sb->s_fs_info = NULL;
2314
2315	return ret;
2316}
2317
2318void _udf_err(struct super_block *sb, const char *function,
2319	      const char *fmt, ...)
2320{
2321	struct va_format vaf;
2322	va_list args;
2323
2324	va_start(args, fmt);
2325
2326	vaf.fmt = fmt;
2327	vaf.va = &args;
2328
2329	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330
2331	va_end(args);
2332}
2333
2334void _udf_warn(struct super_block *sb, const char *function,
2335	       const char *fmt, ...)
2336{
2337	struct va_format vaf;
2338	va_list args;
2339
2340	va_start(args, fmt);
2341
2342	vaf.fmt = fmt;
2343	vaf.va = &args;
2344
2345	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346
2347	va_end(args);
2348}
2349
2350static void udf_put_super(struct super_block *sb)
2351{
2352	struct udf_sb_info *sbi;
2353
2354	sbi = UDF_SB(sb);
2355
2356	iput(sbi->s_vat_inode);
2357	unload_nls(sbi->s_nls_map);
2358	if (!sb_rdonly(sb))
 
 
 
 
2359		udf_close_lvid(sb);
2360	brelse(sbi->s_lvid_bh);
2361	udf_sb_free_partitions(sb);
2362	mutex_destroy(&sbi->s_alloc_mutex);
2363	kfree(sb->s_fs_info);
2364	sb->s_fs_info = NULL;
2365}
2366
2367static int udf_sync_fs(struct super_block *sb, int wait)
2368{
2369	struct udf_sb_info *sbi = UDF_SB(sb);
2370
2371	mutex_lock(&sbi->s_alloc_mutex);
2372	if (sbi->s_lvid_dirty) {
2373		struct buffer_head *bh = sbi->s_lvid_bh;
2374		struct logicalVolIntegrityDesc *lvid;
2375
2376		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2377		udf_finalize_lvid(lvid);
2378
2379		/*
2380		 * Blockdevice will be synced later so we don't have to submit
2381		 * the buffer for IO
2382		 */
2383		mark_buffer_dirty(bh);
2384		sbi->s_lvid_dirty = 0;
2385	}
2386	mutex_unlock(&sbi->s_alloc_mutex);
2387
2388	return 0;
2389}
2390
2391static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2392{
2393	struct super_block *sb = dentry->d_sb;
2394	struct udf_sb_info *sbi = UDF_SB(sb);
2395	struct logicalVolIntegrityDescImpUse *lvidiu;
2396	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2397
2398	lvidiu = udf_sb_lvidiu(sb);
2399	buf->f_type = UDF_SUPER_MAGIC;
2400	buf->f_bsize = sb->s_blocksize;
2401	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2402	buf->f_bfree = udf_count_free(sb);
2403	buf->f_bavail = buf->f_bfree;
2404	/*
2405	 * Let's pretend each free block is also a free 'inode' since UDF does
2406	 * not have separate preallocated table of inodes.
2407	 */
2408	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2409					  le32_to_cpu(lvidiu->numDirs)) : 0)
2410			+ buf->f_bfree;
2411	buf->f_ffree = buf->f_bfree;
2412	buf->f_namelen = UDF_NAME_LEN;
2413	buf->f_fsid = u64_to_fsid(id);
 
2414
2415	return 0;
2416}
2417
2418static unsigned int udf_count_free_bitmap(struct super_block *sb,
2419					  struct udf_bitmap *bitmap)
2420{
2421	struct buffer_head *bh = NULL;
2422	unsigned int accum = 0;
2423	int index;
2424	udf_pblk_t block = 0, newblock;
2425	struct kernel_lb_addr loc;
2426	uint32_t bytes;
2427	uint8_t *ptr;
2428	uint16_t ident;
2429	struct spaceBitmapDesc *bm;
2430
2431	loc.logicalBlockNum = bitmap->s_extPosition;
2432	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2433	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2434
2435	if (!bh) {
2436		udf_err(sb, "udf_count_free failed\n");
2437		goto out;
2438	} else if (ident != TAG_IDENT_SBD) {
2439		brelse(bh);
2440		udf_err(sb, "udf_count_free failed\n");
2441		goto out;
2442	}
2443
2444	bm = (struct spaceBitmapDesc *)bh->b_data;
2445	bytes = le32_to_cpu(bm->numOfBytes);
2446	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2447	ptr = (uint8_t *)bh->b_data;
2448
2449	while (bytes > 0) {
2450		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2451		accum += bitmap_weight((const unsigned long *)(ptr + index),
2452					cur_bytes * 8);
2453		bytes -= cur_bytes;
2454		if (bytes) {
2455			brelse(bh);
2456			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2457			bh = udf_tread(sb, newblock);
2458			if (!bh) {
2459				udf_debug("read failed\n");
2460				goto out;
2461			}
2462			index = 0;
2463			ptr = (uint8_t *)bh->b_data;
2464		}
2465	}
2466	brelse(bh);
2467out:
2468	return accum;
2469}
2470
2471static unsigned int udf_count_free_table(struct super_block *sb,
2472					 struct inode *table)
2473{
2474	unsigned int accum = 0;
2475	uint32_t elen;
2476	struct kernel_lb_addr eloc;
 
2477	struct extent_position epos;
2478
2479	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2480	epos.block = UDF_I(table)->i_location;
2481	epos.offset = sizeof(struct unallocSpaceEntry);
2482	epos.bh = NULL;
2483
2484	while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2485		accum += (elen >> table->i_sb->s_blocksize_bits);
2486
2487	brelse(epos.bh);
2488	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2489
2490	return accum;
2491}
2492
2493static unsigned int udf_count_free(struct super_block *sb)
2494{
2495	unsigned int accum = 0;
2496	struct udf_sb_info *sbi = UDF_SB(sb);
2497	struct udf_part_map *map;
2498	unsigned int part = sbi->s_partition;
2499	int ptype = sbi->s_partmaps[part].s_partition_type;
2500
2501	if (ptype == UDF_METADATA_MAP25) {
2502		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2503							s_phys_partition_ref;
2504	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2505		/*
2506		 * Filesystems with VAT are append-only and we cannot write to
2507 		 * them. Let's just report 0 here.
2508		 */
2509		return 0;
2510	}
2511
 
2512	if (sbi->s_lvid_bh) {
2513		struct logicalVolIntegrityDesc *lvid =
2514			(struct logicalVolIntegrityDesc *)
2515			sbi->s_lvid_bh->b_data;
2516		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2517			accum = le32_to_cpu(
2518					lvid->freeSpaceTable[part]);
2519			if (accum == 0xFFFFFFFF)
2520				accum = 0;
2521		}
2522	}
2523
2524	if (accum)
2525		return accum;
2526
2527	map = &sbi->s_partmaps[part];
2528	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2529		accum += udf_count_free_bitmap(sb,
2530					       map->s_uspace.s_bitmap);
2531	}
 
 
 
 
2532	if (accum)
2533		return accum;
2534
2535	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2536		accum += udf_count_free_table(sb,
2537					      map->s_uspace.s_table);
2538	}
 
 
 
 
 
2539	return accum;
2540}
2541
2542MODULE_AUTHOR("Ben Fennema");
2543MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2544MODULE_LICENSE("GPL");
2545module_init(init_udf_fs)
2546module_exit(exit_udf_fs)
v3.15
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    http://www.ecma.ch/
  15 *    http://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
  51#include <linux/buffer_head.h>
  52#include <linux/vfs.h>
  53#include <linux/vmalloc.h>
  54#include <linux/errno.h>
  55#include <linux/mount.h>
  56#include <linux/seq_file.h>
  57#include <linux/bitmap.h>
  58#include <linux/crc-itu-t.h>
  59#include <linux/log2.h>
  60#include <asm/byteorder.h>
 
  61
  62#include "udf_sb.h"
  63#include "udf_i.h"
  64
  65#include <linux/init.h>
  66#include <asm/uaccess.h>
  67
  68#define VDS_POS_PRIMARY_VOL_DESC	0
  69#define VDS_POS_UNALLOC_SPACE_DESC	1
  70#define VDS_POS_LOGICAL_VOL_DESC	2
  71#define VDS_POS_PARTITION_DESC		3
  72#define VDS_POS_IMP_USE_VOL_DESC	4
  73#define VDS_POS_VOL_DESC_PTR		5
  74#define VDS_POS_TERMINATING_DESC	6
  75#define VDS_POS_LENGTH			7
  76
  77#define UDF_DEFAULT_BLOCKSIZE 2048
  78
  79#define VSD_FIRST_SECTOR_OFFSET		32768
  80#define VSD_MAX_SECTOR_OFFSET		0x800000
  81
 
 
 
 
 
 
 
 
 
  82enum { UDF_MAX_LINKS = 0xffff };
  83
  84/* These are the "meat" - everything else is stuffing */
  85static int udf_fill_super(struct super_block *, void *, int);
  86static void udf_put_super(struct super_block *);
  87static int udf_sync_fs(struct super_block *, int);
  88static int udf_remount_fs(struct super_block *, int *, char *);
  89static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
  90static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
  91			    struct kernel_lb_addr *);
  92static void udf_load_fileset(struct super_block *, struct buffer_head *,
  93			     struct kernel_lb_addr *);
  94static void udf_open_lvid(struct super_block *);
  95static void udf_close_lvid(struct super_block *);
  96static unsigned int udf_count_free(struct super_block *);
  97static int udf_statfs(struct dentry *, struct kstatfs *);
  98static int udf_show_options(struct seq_file *, struct dentry *);
  99
 100struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
 101{
 102	struct logicalVolIntegrityDesc *lvid;
 103	unsigned int partnum;
 104	unsigned int offset;
 105
 106	if (!UDF_SB(sb)->s_lvid_bh)
 107		return NULL;
 108	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
 109	partnum = le32_to_cpu(lvid->numOfPartitions);
 110	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
 111	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
 112	     (2 * sizeof(uint32_t)) < partnum) {
 113		udf_err(sb, "Logical volume integrity descriptor corrupted "
 114			"(numOfPartitions = %u)!\n", partnum);
 115		return NULL;
 116	}
 117	/* The offset is to skip freeSpaceTable and sizeTable arrays */
 118	offset = partnum * 2 * sizeof(uint32_t);
 119	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
 
 120}
 121
 122/* UDF filesystem type */
 123static struct dentry *udf_mount(struct file_system_type *fs_type,
 124		      int flags, const char *dev_name, void *data)
 125{
 126	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 127}
 128
 129static struct file_system_type udf_fstype = {
 130	.owner		= THIS_MODULE,
 131	.name		= "udf",
 132	.mount		= udf_mount,
 133	.kill_sb	= kill_block_super,
 134	.fs_flags	= FS_REQUIRES_DEV,
 135};
 136MODULE_ALIAS_FS("udf");
 137
 138static struct kmem_cache *udf_inode_cachep;
 139
 140static struct inode *udf_alloc_inode(struct super_block *sb)
 141{
 142	struct udf_inode_info *ei;
 143	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
 144	if (!ei)
 145		return NULL;
 146
 147	ei->i_unique = 0;
 148	ei->i_lenExtents = 0;
 
 149	ei->i_next_alloc_block = 0;
 150	ei->i_next_alloc_goal = 0;
 151	ei->i_strat4096 = 0;
 
 152	init_rwsem(&ei->i_data_sem);
 153	ei->cached_extent.lstart = -1;
 154	spin_lock_init(&ei->i_extent_cache_lock);
 
 155
 156	return &ei->vfs_inode;
 157}
 158
 159static void udf_i_callback(struct rcu_head *head)
 160{
 161	struct inode *inode = container_of(head, struct inode, i_rcu);
 162	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 163}
 164
 165static void udf_destroy_inode(struct inode *inode)
 166{
 167	call_rcu(&inode->i_rcu, udf_i_callback);
 168}
 169
 170static void init_once(void *foo)
 171{
 172	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
 173
 174	ei->i_ext.i_data = NULL;
 175	inode_init_once(&ei->vfs_inode);
 176}
 177
 178static int __init init_inodecache(void)
 179{
 180	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 181					     sizeof(struct udf_inode_info),
 182					     0, (SLAB_RECLAIM_ACCOUNT |
 183						 SLAB_MEM_SPREAD),
 
 184					     init_once);
 185	if (!udf_inode_cachep)
 186		return -ENOMEM;
 187	return 0;
 188}
 189
 190static void destroy_inodecache(void)
 191{
 192	/*
 193	 * Make sure all delayed rcu free inodes are flushed before we
 194	 * destroy cache.
 195	 */
 196	rcu_barrier();
 197	kmem_cache_destroy(udf_inode_cachep);
 198}
 199
 200/* Superblock operations */
 201static const struct super_operations udf_sb_ops = {
 202	.alloc_inode	= udf_alloc_inode,
 203	.destroy_inode	= udf_destroy_inode,
 204	.write_inode	= udf_write_inode,
 205	.evict_inode	= udf_evict_inode,
 206	.put_super	= udf_put_super,
 207	.sync_fs	= udf_sync_fs,
 208	.statfs		= udf_statfs,
 209	.remount_fs	= udf_remount_fs,
 210	.show_options	= udf_show_options,
 211};
 212
 213struct udf_options {
 214	unsigned char novrs;
 215	unsigned int blocksize;
 216	unsigned int session;
 217	unsigned int lastblock;
 218	unsigned int anchor;
 219	unsigned int volume;
 220	unsigned short partition;
 221	unsigned int fileset;
 222	unsigned int rootdir;
 223	unsigned int flags;
 224	umode_t umask;
 225	kgid_t gid;
 226	kuid_t uid;
 227	umode_t fmode;
 228	umode_t dmode;
 229	struct nls_table *nls_map;
 230};
 231
 232static int __init init_udf_fs(void)
 233{
 234	int err;
 235
 236	err = init_inodecache();
 237	if (err)
 238		goto out1;
 239	err = register_filesystem(&udf_fstype);
 240	if (err)
 241		goto out;
 242
 243	return 0;
 244
 245out:
 246	destroy_inodecache();
 247
 248out1:
 249	return err;
 250}
 251
 252static void __exit exit_udf_fs(void)
 253{
 254	unregister_filesystem(&udf_fstype);
 255	destroy_inodecache();
 256}
 257
 258module_init(init_udf_fs)
 259module_exit(exit_udf_fs)
 260
 261static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 262{
 263	struct udf_sb_info *sbi = UDF_SB(sb);
 264
 265	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
 266				  GFP_KERNEL);
 267	if (!sbi->s_partmaps) {
 268		udf_err(sb, "Unable to allocate space for %d partition maps\n",
 269			count);
 270		sbi->s_partitions = 0;
 271		return -ENOMEM;
 272	}
 273
 274	sbi->s_partitions = count;
 275	return 0;
 276}
 277
 278static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
 279{
 280	int i;
 281	int nr_groups = bitmap->s_nr_groups;
 282	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
 283						nr_groups);
 284
 285	for (i = 0; i < nr_groups; i++)
 286		if (bitmap->s_block_bitmap[i])
 287			brelse(bitmap->s_block_bitmap[i]);
 288
 289	if (size <= PAGE_SIZE)
 290		kfree(bitmap);
 291	else
 292		vfree(bitmap);
 293}
 294
 295static void udf_free_partition(struct udf_part_map *map)
 296{
 297	int i;
 298	struct udf_meta_data *mdata;
 299
 300	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 301		iput(map->s_uspace.s_table);
 302	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
 303		iput(map->s_fspace.s_table);
 304	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 305		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
 306	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
 307		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
 308	if (map->s_partition_type == UDF_SPARABLE_MAP15)
 309		for (i = 0; i < 4; i++)
 310			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
 311	else if (map->s_partition_type == UDF_METADATA_MAP25) {
 312		mdata = &map->s_type_specific.s_metadata;
 313		iput(mdata->s_metadata_fe);
 314		mdata->s_metadata_fe = NULL;
 315
 316		iput(mdata->s_mirror_fe);
 317		mdata->s_mirror_fe = NULL;
 318
 319		iput(mdata->s_bitmap_fe);
 320		mdata->s_bitmap_fe = NULL;
 321	}
 322}
 323
 324static void udf_sb_free_partitions(struct super_block *sb)
 325{
 326	struct udf_sb_info *sbi = UDF_SB(sb);
 327	int i;
 328	if (sbi->s_partmaps == NULL)
 
 329		return;
 330	for (i = 0; i < sbi->s_partitions; i++)
 331		udf_free_partition(&sbi->s_partmaps[i]);
 332	kfree(sbi->s_partmaps);
 333	sbi->s_partmaps = NULL;
 334}
 335
 336static int udf_show_options(struct seq_file *seq, struct dentry *root)
 337{
 338	struct super_block *sb = root->d_sb;
 339	struct udf_sb_info *sbi = UDF_SB(sb);
 340
 341	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 342		seq_puts(seq, ",nostrict");
 343	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 344		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 345	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 346		seq_puts(seq, ",unhide");
 347	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 348		seq_puts(seq, ",undelete");
 349	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 350		seq_puts(seq, ",noadinicb");
 351	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 352		seq_puts(seq, ",shortad");
 353	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 354		seq_puts(seq, ",uid=forget");
 355	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
 356		seq_puts(seq, ",uid=ignore");
 357	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 358		seq_puts(seq, ",gid=forget");
 359	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
 360		seq_puts(seq, ",gid=ignore");
 361	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 362		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
 363	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 364		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
 365	if (sbi->s_umask != 0)
 366		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 367	if (sbi->s_fmode != UDF_INVALID_MODE)
 368		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 369	if (sbi->s_dmode != UDF_INVALID_MODE)
 370		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 371	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 372		seq_printf(seq, ",session=%u", sbi->s_session);
 373	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 374		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 375	if (sbi->s_anchor != 0)
 376		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 377	/*
 378	 * volume, partition, fileset and rootdir seem to be ignored
 379	 * currently
 380	 */
 381	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
 382		seq_puts(seq, ",utf8");
 383	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
 384		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 
 
 385
 386	return 0;
 387}
 388
 389/*
 390 * udf_parse_options
 391 *
 392 * PURPOSE
 393 *	Parse mount options.
 394 *
 395 * DESCRIPTION
 396 *	The following mount options are supported:
 397 *
 398 *	gid=		Set the default group.
 399 *	umask=		Set the default umask.
 400 *	mode=		Set the default file permissions.
 401 *	dmode=		Set the default directory permissions.
 402 *	uid=		Set the default user.
 403 *	bs=		Set the block size.
 404 *	unhide		Show otherwise hidden files.
 405 *	undelete	Show deleted files in lists.
 406 *	adinicb		Embed data in the inode (default)
 407 *	noadinicb	Don't embed data in the inode
 408 *	shortad		Use short ad's
 409 *	longad		Use long ad's (default)
 410 *	nostrict	Unset strict conformance
 411 *	iocharset=	Set the NLS character set
 412 *
 413 *	The remaining are for debugging and disaster recovery:
 414 *
 415 *	novrs		Skip volume sequence recognition
 416 *
 417 *	The following expect a offset from 0.
 418 *
 419 *	session=	Set the CDROM session (default= last session)
 420 *	anchor=		Override standard anchor location. (default= 256)
 421 *	volume=		Override the VolumeDesc location. (unused)
 422 *	partition=	Override the PartitionDesc location. (unused)
 423 *	lastblock=	Set the last block of the filesystem/
 424 *
 425 *	The following expect a offset from the partition root.
 426 *
 427 *	fileset=	Override the fileset block location. (unused)
 428 *	rootdir=	Override the root directory location. (unused)
 429 *		WARNING: overriding the rootdir to a non-directory may
 430 *		yield highly unpredictable results.
 431 *
 432 * PRE-CONDITIONS
 433 *	options		Pointer to mount options string.
 434 *	uopts		Pointer to mount options variable.
 435 *
 436 * POST-CONDITIONS
 437 *	<return>	1	Mount options parsed okay.
 438 *	<return>	0	Error parsing mount options.
 439 *
 440 * HISTORY
 441 *	July 1, 1997 - Andrew E. Mileski
 442 *	Written, tested, and released.
 443 */
 444
 445enum {
 446	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 447	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 448	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 449	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 450	Opt_rootdir, Opt_utf8, Opt_iocharset,
 451	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 452	Opt_fmode, Opt_dmode
 453};
 454
 455static const match_table_t tokens = {
 456	{Opt_novrs,	"novrs"},
 457	{Opt_nostrict,	"nostrict"},
 458	{Opt_bs,	"bs=%u"},
 459	{Opt_unhide,	"unhide"},
 460	{Opt_undelete,	"undelete"},
 461	{Opt_noadinicb,	"noadinicb"},
 462	{Opt_adinicb,	"adinicb"},
 463	{Opt_shortad,	"shortad"},
 464	{Opt_longad,	"longad"},
 465	{Opt_uforget,	"uid=forget"},
 466	{Opt_uignore,	"uid=ignore"},
 467	{Opt_gforget,	"gid=forget"},
 468	{Opt_gignore,	"gid=ignore"},
 469	{Opt_gid,	"gid=%u"},
 470	{Opt_uid,	"uid=%u"},
 471	{Opt_umask,	"umask=%o"},
 472	{Opt_session,	"session=%u"},
 473	{Opt_lastblock,	"lastblock=%u"},
 474	{Opt_anchor,	"anchor=%u"},
 475	{Opt_volume,	"volume=%u"},
 476	{Opt_partition,	"partition=%u"},
 477	{Opt_fileset,	"fileset=%u"},
 478	{Opt_rootdir,	"rootdir=%u"},
 479	{Opt_utf8,	"utf8"},
 480	{Opt_iocharset,	"iocharset=%s"},
 481	{Opt_fmode,     "mode=%o"},
 482	{Opt_dmode,     "dmode=%o"},
 483	{Opt_err,	NULL}
 484};
 485
 486static int udf_parse_options(char *options, struct udf_options *uopt,
 487			     bool remount)
 488{
 489	char *p;
 490	int option;
 
 491
 492	uopt->novrs = 0;
 493	uopt->partition = 0xFFFF;
 494	uopt->session = 0xFFFFFFFF;
 495	uopt->lastblock = 0;
 496	uopt->anchor = 0;
 497	uopt->volume = 0xFFFFFFFF;
 498	uopt->rootdir = 0xFFFFFFFF;
 499	uopt->fileset = 0xFFFFFFFF;
 500	uopt->nls_map = NULL;
 501
 502	if (!options)
 503		return 1;
 504
 505	while ((p = strsep(&options, ",")) != NULL) {
 506		substring_t args[MAX_OPT_ARGS];
 507		int token;
 508		unsigned n;
 509		if (!*p)
 510			continue;
 511
 512		token = match_token(p, tokens, args);
 513		switch (token) {
 514		case Opt_novrs:
 515			uopt->novrs = 1;
 516			break;
 517		case Opt_bs:
 518			if (match_int(&args[0], &option))
 519				return 0;
 520			n = option;
 521			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
 522				return 0;
 523			uopt->blocksize = n;
 524			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 525			break;
 526		case Opt_unhide:
 527			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 528			break;
 529		case Opt_undelete:
 530			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 531			break;
 532		case Opt_noadinicb:
 533			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 534			break;
 535		case Opt_adinicb:
 536			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 537			break;
 538		case Opt_shortad:
 539			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 540			break;
 541		case Opt_longad:
 542			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 543			break;
 544		case Opt_gid:
 545			if (match_int(args, &option))
 546				return 0;
 547			uopt->gid = make_kgid(current_user_ns(), option);
 548			if (!gid_valid(uopt->gid))
 549				return 0;
 550			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 551			break;
 552		case Opt_uid:
 553			if (match_int(args, &option))
 554				return 0;
 555			uopt->uid = make_kuid(current_user_ns(), option);
 556			if (!uid_valid(uopt->uid))
 557				return 0;
 558			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 559			break;
 560		case Opt_umask:
 561			if (match_octal(args, &option))
 562				return 0;
 563			uopt->umask = option;
 564			break;
 565		case Opt_nostrict:
 566			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 567			break;
 568		case Opt_session:
 569			if (match_int(args, &option))
 570				return 0;
 571			uopt->session = option;
 572			if (!remount)
 573				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 574			break;
 575		case Opt_lastblock:
 576			if (match_int(args, &option))
 577				return 0;
 578			uopt->lastblock = option;
 579			if (!remount)
 580				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 581			break;
 582		case Opt_anchor:
 583			if (match_int(args, &option))
 584				return 0;
 585			uopt->anchor = option;
 586			break;
 587		case Opt_volume:
 588			if (match_int(args, &option))
 589				return 0;
 590			uopt->volume = option;
 591			break;
 592		case Opt_partition:
 593			if (match_int(args, &option))
 594				return 0;
 595			uopt->partition = option;
 596			break;
 597		case Opt_fileset:
 598			if (match_int(args, &option))
 599				return 0;
 600			uopt->fileset = option;
 601			break;
 602		case Opt_rootdir:
 603			if (match_int(args, &option))
 604				return 0;
 605			uopt->rootdir = option;
 606			break;
 607		case Opt_utf8:
 608			uopt->flags |= (1 << UDF_FLAG_UTF8);
 
 
 
 609			break;
 610#ifdef CONFIG_UDF_NLS
 611		case Opt_iocharset:
 612			uopt->nls_map = load_nls(args[0].from);
 613			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
 614			break;
 615#endif
 616		case Opt_uignore:
 617			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
 
 
 
 
 
 
 
 618			break;
 619		case Opt_uforget:
 620			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 621			break;
 
 622		case Opt_gignore:
 623			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
 624			break;
 625		case Opt_gforget:
 626			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 627			break;
 628		case Opt_fmode:
 629			if (match_octal(args, &option))
 630				return 0;
 631			uopt->fmode = option & 0777;
 632			break;
 633		case Opt_dmode:
 634			if (match_octal(args, &option))
 635				return 0;
 636			uopt->dmode = option & 0777;
 637			break;
 638		default:
 639			pr_err("bad mount option \"%s\" or missing value\n", p);
 640			return 0;
 641		}
 642	}
 643	return 1;
 644}
 645
 646static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 647{
 648	struct udf_options uopt;
 649	struct udf_sb_info *sbi = UDF_SB(sb);
 650	int error = 0;
 651	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
 
 
 652
 653	sync_filesystem(sb);
 654	if (lvidiu) {
 655		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
 656		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
 657			return -EACCES;
 658	}
 659
 660	uopt.flags = sbi->s_flags;
 661	uopt.uid   = sbi->s_uid;
 662	uopt.gid   = sbi->s_gid;
 663	uopt.umask = sbi->s_umask;
 664	uopt.fmode = sbi->s_fmode;
 665	uopt.dmode = sbi->s_dmode;
 
 666
 667	if (!udf_parse_options(options, &uopt, true))
 668		return -EINVAL;
 669
 670	write_lock(&sbi->s_cred_lock);
 671	sbi->s_flags = uopt.flags;
 672	sbi->s_uid   = uopt.uid;
 673	sbi->s_gid   = uopt.gid;
 674	sbi->s_umask = uopt.umask;
 675	sbi->s_fmode = uopt.fmode;
 676	sbi->s_dmode = uopt.dmode;
 677	write_unlock(&sbi->s_cred_lock);
 678
 679	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 680		goto out_unlock;
 681
 682	if (*flags & MS_RDONLY)
 683		udf_close_lvid(sb);
 684	else
 685		udf_open_lvid(sb);
 686
 687out_unlock:
 688	return error;
 689}
 690
 691/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
 692/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
 693static loff_t udf_check_vsd(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694{
 695	struct volStructDesc *vsd = NULL;
 696	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
 697	int sectorsize;
 698	struct buffer_head *bh = NULL;
 699	int nsr02 = 0;
 700	int nsr03 = 0;
 701	struct udf_sb_info *sbi;
 
 702
 703	sbi = UDF_SB(sb);
 704	if (sb->s_blocksize < sizeof(struct volStructDesc))
 705		sectorsize = sizeof(struct volStructDesc);
 706	else
 707		sectorsize = sb->s_blocksize;
 708
 709	sector += (sbi->s_session << sb->s_blocksize_bits);
 
 710
 711	udf_debug("Starting at sector %u (%ld byte sectors)\n",
 712		  (unsigned int)(sector >> sb->s_blocksize_bits),
 713		  sb->s_blocksize);
 714	/* Process the sequence (if applicable). The hard limit on the sector
 715	 * offset is arbitrary, hopefully large enough so that all valid UDF
 716	 * filesystems will be recognised. There is no mention of an upper
 717	 * bound to the size of the volume recognition area in the standard.
 718	 *  The limit will prevent the code to read all the sectors of a
 719	 * specially crafted image (like a bluray disc full of CD001 sectors),
 720	 * potentially causing minutes or even hours of uninterruptible I/O
 721	 * activity. This actually happened with uninitialised SSD partitions
 722	 * (all 0xFF) before the check for the limit and all valid IDs were
 723	 * added */
 724	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
 725	     sector += sectorsize) {
 726		/* Read a block */
 727		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 728		if (!bh)
 729			break;
 730
 731		/* Look for ISO  descriptors */
 732		vsd = (struct volStructDesc *)(bh->b_data +
 733					      (sector & (sb->s_blocksize - 1)));
 734
 735		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
 736				    VSD_STD_ID_LEN)) {
 737			switch (vsd->structType) {
 738			case 0:
 739				udf_debug("ISO9660 Boot Record found\n");
 740				break;
 741			case 1:
 742				udf_debug("ISO9660 Primary Volume Descriptor found\n");
 743				break;
 744			case 2:
 745				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 746				break;
 747			case 3:
 748				udf_debug("ISO9660 Volume Partition Descriptor found\n");
 749				break;
 750			case 255:
 751				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 752				break;
 753			default:
 754				udf_debug("ISO9660 VRS (%u) found\n",
 755					  vsd->structType);
 756				break;
 757			}
 758		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
 759				    VSD_STD_ID_LEN))
 760			; /* nothing */
 761		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
 762				    VSD_STD_ID_LEN)) {
 763			brelse(bh);
 764			break;
 765		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
 766				    VSD_STD_ID_LEN))
 767			nsr02 = sector;
 768		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
 769				    VSD_STD_ID_LEN))
 770			nsr03 = sector;
 771		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
 772				    VSD_STD_ID_LEN))
 773			; /* nothing */
 774		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
 775				    VSD_STD_ID_LEN))
 776			; /* nothing */
 777		else {
 778			/* invalid id : end of volume recognition area */
 779			brelse(bh);
 780			break;
 
 
 
 
 
 
 
 
 
 
 
 781		}
 782		brelse(bh);
 783	}
 784
 785	if (nsr03)
 786		return nsr03;
 787	else if (nsr02)
 788		return nsr02;
 789	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
 790			VSD_FIRST_SECTOR_OFFSET)
 791		return -1;
 792	else
 793		return 0;
 794}
 795
 796static int udf_find_fileset(struct super_block *sb,
 797			    struct kernel_lb_addr *fileset,
 798			    struct kernel_lb_addr *root)
 799{
 800	struct buffer_head *bh = NULL;
 801	long lastblock;
 802	uint16_t ident;
 803	struct udf_sb_info *sbi;
 804
 805	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
 806	    fileset->partitionReferenceNum != 0xFFFF) {
 807		bh = udf_read_ptagged(sb, fileset, 0, &ident);
 808
 809		if (!bh) {
 810			return 1;
 811		} else if (ident != TAG_IDENT_FSD) {
 812			brelse(bh);
 813			return 1;
 
 
 
 
 
 
 814		}
 
 
 
 815
 816	}
 
 
 
 
 
 
 
 
 
 
 817
 818	sbi = UDF_SB(sb);
 819	if (!bh) {
 820		/* Search backwards through the partitions */
 821		struct kernel_lb_addr newfileset;
 822
 823/* --> cvg: FIXME - is it reasonable? */
 824		return 1;
 825
 826		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
 827		     (newfileset.partitionReferenceNum != 0xFFFF &&
 828		      fileset->logicalBlockNum == 0xFFFFFFFF &&
 829		      fileset->partitionReferenceNum == 0xFFFF);
 830		     newfileset.partitionReferenceNum--) {
 831			lastblock = sbi->s_partmaps
 832					[newfileset.partitionReferenceNum]
 833						.s_partition_len;
 834			newfileset.logicalBlockNum = 0;
 835
 836			do {
 837				bh = udf_read_ptagged(sb, &newfileset, 0,
 838						      &ident);
 839				if (!bh) {
 840					newfileset.logicalBlockNum++;
 841					continue;
 842				}
 843
 844				switch (ident) {
 845				case TAG_IDENT_SBD:
 846				{
 847					struct spaceBitmapDesc *sp;
 848					sp = (struct spaceBitmapDesc *)
 849								bh->b_data;
 850					newfileset.logicalBlockNum += 1 +
 851						((le32_to_cpu(sp->numOfBytes) +
 852						  sizeof(struct spaceBitmapDesc)
 853						  - 1) >> sb->s_blocksize_bits);
 854					brelse(bh);
 855					break;
 856				}
 857				case TAG_IDENT_FSD:
 858					*fileset = newfileset;
 859					break;
 860				default:
 861					newfileset.logicalBlockNum++;
 862					brelse(bh);
 863					bh = NULL;
 864					break;
 865				}
 866			} while (newfileset.logicalBlockNum < lastblock &&
 867				 fileset->logicalBlockNum == 0xFFFFFFFF &&
 868				 fileset->partitionReferenceNum == 0xFFFF);
 869		}
 870	}
 871
 872	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
 873	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
 874		udf_debug("Fileset at block=%d, partition=%d\n",
 875			  fileset->logicalBlockNum,
 876			  fileset->partitionReferenceNum);
 877
 878		sbi->s_partition = fileset->partitionReferenceNum;
 879		udf_load_fileset(sb, bh, root);
 
 
 880		brelse(bh);
 881		return 0;
 882	}
 883	return 1;
 
 
 
 
 
 
 
 884}
 885
 886/*
 887 * Load primary Volume Descriptor Sequence
 888 *
 889 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
 890 * should be tried.
 891 */
 892static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 893{
 894	struct primaryVolDesc *pvoldesc;
 895	struct ustr *instr, *outstr;
 896	struct buffer_head *bh;
 897	uint16_t ident;
 898	int ret = -ENOMEM;
 
 899
 900	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
 901	if (!instr)
 902		return -ENOMEM;
 903
 904	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
 905	if (!outstr)
 906		goto out1;
 907
 908	bh = udf_read_tagged(sb, block, block, &ident);
 909	if (!bh) {
 910		ret = -EAGAIN;
 911		goto out2;
 912	}
 913
 914	if (ident != TAG_IDENT_PVD) {
 915		ret = -EIO;
 916		goto out_bh;
 917	}
 918
 919	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 920
 921	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 922			      pvoldesc->recordingDateAndTime)) {
 923#ifdef UDFFS_DEBUG
 924		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
 925		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 926			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 927			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 928#endif
 929	}
 930
 931	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
 932		if (udf_CS0toUTF8(outstr, instr)) {
 933			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
 934				outstr->u_len > 31 ? 31 : outstr->u_len);
 935			udf_debug("volIdent[] = '%s'\n",
 936				  UDF_SB(sb)->s_volume_ident);
 937		}
 938
 939	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
 940		if (udf_CS0toUTF8(outstr, instr))
 941			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
 
 
 
 942
 943	ret = 0;
 944out_bh:
 945	brelse(bh);
 946out2:
 947	kfree(outstr);
 948out1:
 949	kfree(instr);
 950	return ret;
 951}
 952
 953struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 954					u32 meta_file_loc, u32 partition_num)
 955{
 956	struct kernel_lb_addr addr;
 957	struct inode *metadata_fe;
 958
 959	addr.logicalBlockNum = meta_file_loc;
 960	addr.partitionReferenceNum = partition_num;
 961
 962	metadata_fe = udf_iget(sb, &addr);
 963
 964	if (metadata_fe == NULL)
 965		udf_warn(sb, "metadata inode efe not found\n");
 966	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 
 
 967		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 968		iput(metadata_fe);
 969		metadata_fe = NULL;
 970	}
 971
 972	return metadata_fe;
 973}
 974
 975static int udf_load_metadata_files(struct super_block *sb, int partition)
 
 976{
 977	struct udf_sb_info *sbi = UDF_SB(sb);
 978	struct udf_part_map *map;
 979	struct udf_meta_data *mdata;
 980	struct kernel_lb_addr addr;
 
 981
 982	map = &sbi->s_partmaps[partition];
 983	mdata = &map->s_type_specific.s_metadata;
 
 984
 985	/* metadata address */
 986	udf_debug("Metadata file location: block = %d part = %d\n",
 987		  mdata->s_meta_file_loc, map->s_partition_num);
 988
 989	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
 990		mdata->s_meta_file_loc, map->s_partition_num);
 991
 992	if (mdata->s_metadata_fe == NULL) {
 
 
 993		/* mirror file entry */
 994		udf_debug("Mirror metadata file location: block = %d part = %d\n",
 995			  mdata->s_mirror_file_loc, map->s_partition_num);
 996
 997		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
 998			mdata->s_mirror_file_loc, map->s_partition_num);
 999
1000		if (mdata->s_mirror_fe == NULL) {
1001			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1002			return -EIO;
1003		}
1004	}
 
 
 
1005
1006	/*
1007	 * bitmap file entry
1008	 * Note:
1009	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1010	*/
1011	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1012		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1013		addr.partitionReferenceNum = map->s_partition_num;
1014
1015		udf_debug("Bitmap file location: block = %d part = %d\n",
1016			  addr.logicalBlockNum, addr.partitionReferenceNum);
1017
1018		mdata->s_bitmap_fe = udf_iget(sb, &addr);
1019		if (mdata->s_bitmap_fe == NULL) {
1020			if (sb->s_flags & MS_RDONLY)
1021				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1022			else {
1023				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1024				return -EIO;
1025			}
1026		}
 
1027	}
1028
1029	udf_debug("udf_load_metadata_files Ok\n");
1030	return 0;
1031}
1032
1033static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1034			     struct kernel_lb_addr *root)
1035{
1036	struct fileSetDesc *fset;
1037
1038	fset = (struct fileSetDesc *)bh->b_data;
1039
1040	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1041
1042	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1043
1044	udf_debug("Rootdir at block=%d, partition=%d\n",
1045		  root->logicalBlockNum, root->partitionReferenceNum);
1046}
1047
1048int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1049{
1050	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1051	return DIV_ROUND_UP(map->s_partition_len +
1052			    (sizeof(struct spaceBitmapDesc) << 3),
1053			    sb->s_blocksize * 8);
1054}
1055
1056static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1057{
1058	struct udf_bitmap *bitmap;
1059	int nr_groups;
1060	int size;
1061
1062	nr_groups = udf_compute_nr_groups(sb, index);
1063	size = sizeof(struct udf_bitmap) +
1064		(sizeof(struct buffer_head *) * nr_groups);
1065
1066	if (size <= PAGE_SIZE)
1067		bitmap = kzalloc(size, GFP_KERNEL);
1068	else
1069		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1070
1071	if (bitmap == NULL)
 
 
1072		return NULL;
1073
1074	bitmap->s_nr_groups = nr_groups;
1075	return bitmap;
1076}
1077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078static int udf_fill_partdesc_info(struct super_block *sb,
1079		struct partitionDesc *p, int p_index)
1080{
1081	struct udf_part_map *map;
1082	struct udf_sb_info *sbi = UDF_SB(sb);
1083	struct partitionHeaderDesc *phd;
 
1084
1085	map = &sbi->s_partmaps[p_index];
1086
1087	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1088	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1089
1090	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1091		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1092	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1093		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1094	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1095		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1096	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1097		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1098
1099	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1100		  p_index, map->s_partition_type,
1101		  map->s_partition_root, map->s_partition_len);
1102
1103	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1104	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
 
 
 
 
 
 
 
 
1105		return 0;
1106
1107	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1108	if (phd->unallocSpaceTable.extLength) {
1109		struct kernel_lb_addr loc = {
1110			.logicalBlockNum = le32_to_cpu(
1111				phd->unallocSpaceTable.extPosition),
1112			.partitionReferenceNum = p_index,
1113		};
 
1114
1115		map->s_uspace.s_table = udf_iget(sb, &loc);
1116		if (!map->s_uspace.s_table) {
1117			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1118				  p_index);
1119			return -EIO;
1120		}
 
1121		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1122		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1123			  p_index, map->s_uspace.s_table->i_ino);
1124	}
1125
1126	if (phd->unallocSpaceBitmap.extLength) {
1127		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1128		if (!bitmap)
1129			return -ENOMEM;
1130		map->s_uspace.s_bitmap = bitmap;
1131		bitmap->s_extPosition = le32_to_cpu(
1132				phd->unallocSpaceBitmap.extPosition);
1133		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1134		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1135			  p_index, bitmap->s_extPosition);
1136	}
1137
1138	if (phd->partitionIntegrityTable.extLength)
1139		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1140
1141	if (phd->freedSpaceTable.extLength) {
1142		struct kernel_lb_addr loc = {
1143			.logicalBlockNum = le32_to_cpu(
1144				phd->freedSpaceTable.extPosition),
1145			.partitionReferenceNum = p_index,
1146		};
1147
1148		map->s_fspace.s_table = udf_iget(sb, &loc);
1149		if (!map->s_fspace.s_table) {
1150			udf_debug("cannot load freedSpaceTable (part %d)\n",
1151				  p_index);
1152			return -EIO;
1153		}
1154
1155		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1156		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1157			  p_index, map->s_fspace.s_table->i_ino);
1158	}
1159
1160	if (phd->freedSpaceBitmap.extLength) {
1161		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1162		if (!bitmap)
1163			return -ENOMEM;
1164		map->s_fspace.s_bitmap = bitmap;
1165		bitmap->s_extPosition = le32_to_cpu(
1166				phd->freedSpaceBitmap.extPosition);
1167		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1168		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1169			  p_index, bitmap->s_extPosition);
1170	}
1171	return 0;
1172}
1173
1174static void udf_find_vat_block(struct super_block *sb, int p_index,
1175			       int type1_index, sector_t start_block)
1176{
1177	struct udf_sb_info *sbi = UDF_SB(sb);
1178	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179	sector_t vat_block;
1180	struct kernel_lb_addr ino;
 
1181
1182	/*
1183	 * VAT file entry is in the last recorded block. Some broken disks have
1184	 * it a few blocks before so try a bit harder...
1185	 */
1186	ino.partitionReferenceNum = type1_index;
1187	for (vat_block = start_block;
1188	     vat_block >= map->s_partition_root &&
1189	     vat_block >= start_block - 3 &&
1190	     !sbi->s_vat_inode; vat_block--) {
1191		ino.logicalBlockNum = vat_block - map->s_partition_root;
1192		sbi->s_vat_inode = udf_iget(sb, &ino);
 
 
 
 
1193	}
1194}
1195
1196static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1197{
1198	struct udf_sb_info *sbi = UDF_SB(sb);
1199	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1200	struct buffer_head *bh = NULL;
1201	struct udf_inode_info *vati;
1202	uint32_t pos;
1203	struct virtualAllocationTable20 *vat20;
1204	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1205
1206	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1207	if (!sbi->s_vat_inode &&
1208	    sbi->s_last_block != blocks - 1) {
1209		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1210			  (unsigned long)sbi->s_last_block,
1211			  (unsigned long)blocks - 1);
1212		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1213	}
1214	if (!sbi->s_vat_inode)
1215		return -EIO;
1216
1217	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1218		map->s_type_specific.s_virtual.s_start_offset = 0;
1219		map->s_type_specific.s_virtual.s_num_entries =
1220			(sbi->s_vat_inode->i_size - 36) >> 2;
1221	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1222		vati = UDF_I(sbi->s_vat_inode);
1223		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1224			pos = udf_block_map(sbi->s_vat_inode, 0);
1225			bh = sb_bread(sb, pos);
1226			if (!bh)
1227				return -EIO;
1228			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1229		} else {
1230			vat20 = (struct virtualAllocationTable20 *)
1231							vati->i_ext.i_data;
1232		}
1233
1234		map->s_type_specific.s_virtual.s_start_offset =
1235			le16_to_cpu(vat20->lengthHeader);
1236		map->s_type_specific.s_virtual.s_num_entries =
1237			(sbi->s_vat_inode->i_size -
1238				map->s_type_specific.s_virtual.
1239					s_start_offset) >> 2;
1240		brelse(bh);
1241	}
1242	return 0;
1243}
1244
1245/*
1246 * Load partition descriptor block
1247 *
1248 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1249 * sequence.
1250 */
1251static int udf_load_partdesc(struct super_block *sb, sector_t block)
1252{
1253	struct buffer_head *bh;
1254	struct partitionDesc *p;
1255	struct udf_part_map *map;
1256	struct udf_sb_info *sbi = UDF_SB(sb);
1257	int i, type1_idx;
1258	uint16_t partitionNumber;
1259	uint16_t ident;
1260	int ret;
1261
1262	bh = udf_read_tagged(sb, block, block, &ident);
1263	if (!bh)
1264		return -EAGAIN;
1265	if (ident != TAG_IDENT_PD) {
1266		ret = 0;
1267		goto out_bh;
1268	}
1269
1270	p = (struct partitionDesc *)bh->b_data;
1271	partitionNumber = le16_to_cpu(p->partitionNumber);
1272
1273	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1274	for (i = 0; i < sbi->s_partitions; i++) {
1275		map = &sbi->s_partmaps[i];
1276		udf_debug("Searching map: (%d == %d)\n",
1277			  map->s_partition_num, partitionNumber);
1278		if (map->s_partition_num == partitionNumber &&
1279		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1280		     map->s_partition_type == UDF_SPARABLE_MAP15))
1281			break;
1282	}
1283
1284	if (i >= sbi->s_partitions) {
1285		udf_debug("Partition (%d) not found in partition map\n",
1286			  partitionNumber);
1287		ret = 0;
1288		goto out_bh;
1289	}
1290
1291	ret = udf_fill_partdesc_info(sb, p, i);
1292	if (ret < 0)
1293		goto out_bh;
1294
1295	/*
1296	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1297	 * PHYSICAL partitions are already set up
1298	 */
1299	type1_idx = i;
1300#ifdef UDFFS_DEBUG
1301	map = NULL; /* supress 'maybe used uninitialized' warning */
1302#endif
1303	for (i = 0; i < sbi->s_partitions; i++) {
1304		map = &sbi->s_partmaps[i];
1305
1306		if (map->s_partition_num == partitionNumber &&
1307		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1308		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1309		     map->s_partition_type == UDF_METADATA_MAP25))
1310			break;
1311	}
1312
1313	if (i >= sbi->s_partitions) {
1314		ret = 0;
1315		goto out_bh;
1316	}
1317
1318	ret = udf_fill_partdesc_info(sb, p, i);
1319	if (ret < 0)
1320		goto out_bh;
1321
1322	if (map->s_partition_type == UDF_METADATA_MAP25) {
1323		ret = udf_load_metadata_files(sb, i);
1324		if (ret < 0) {
1325			udf_err(sb, "error loading MetaData partition map %d\n",
1326				i);
1327			goto out_bh;
1328		}
1329	} else {
1330		/*
1331		 * If we have a partition with virtual map, we don't handle
1332		 * writing to it (we overwrite blocks instead of relocating
1333		 * them).
1334		 */
1335		if (!(sb->s_flags & MS_RDONLY)) {
1336			ret = -EACCES;
1337			goto out_bh;
1338		}
 
1339		ret = udf_load_vat(sb, i, type1_idx);
1340		if (ret < 0)
1341			goto out_bh;
1342	}
1343	ret = 0;
1344out_bh:
1345	/* In case loading failed, we handle cleanup in udf_fill_super */
1346	brelse(bh);
1347	return ret;
1348}
1349
1350static int udf_load_sparable_map(struct super_block *sb,
1351				 struct udf_part_map *map,
1352				 struct sparablePartitionMap *spm)
1353{
1354	uint32_t loc;
1355	uint16_t ident;
1356	struct sparingTable *st;
1357	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1358	int i;
1359	struct buffer_head *bh;
1360
1361	map->s_partition_type = UDF_SPARABLE_MAP15;
1362	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1363	if (!is_power_of_2(sdata->s_packet_len)) {
1364		udf_err(sb, "error loading logical volume descriptor: "
1365			"Invalid packet length %u\n",
1366			(unsigned)sdata->s_packet_len);
1367		return -EIO;
1368	}
1369	if (spm->numSparingTables > 4) {
1370		udf_err(sb, "error loading logical volume descriptor: "
1371			"Too many sparing tables (%d)\n",
1372			(int)spm->numSparingTables);
1373		return -EIO;
1374	}
 
 
 
 
 
 
1375
1376	for (i = 0; i < spm->numSparingTables; i++) {
1377		loc = le32_to_cpu(spm->locSparingTable[i]);
1378		bh = udf_read_tagged(sb, loc, loc, &ident);
1379		if (!bh)
1380			continue;
1381
1382		st = (struct sparingTable *)bh->b_data;
1383		if (ident != 0 ||
1384		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1385			    strlen(UDF_ID_SPARING)) ||
1386		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1387							sb->s_blocksize) {
1388			brelse(bh);
1389			continue;
1390		}
1391
1392		sdata->s_spar_map[i] = bh;
1393	}
1394	map->s_partition_func = udf_get_pblock_spar15;
1395	return 0;
1396}
1397
1398static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1399			       struct kernel_lb_addr *fileset)
1400{
1401	struct logicalVolDesc *lvd;
1402	int i, offset;
1403	uint8_t type;
1404	struct udf_sb_info *sbi = UDF_SB(sb);
1405	struct genericPartitionMap *gpm;
1406	uint16_t ident;
1407	struct buffer_head *bh;
1408	unsigned int table_len;
1409	int ret;
1410
1411	bh = udf_read_tagged(sb, block, block, &ident);
1412	if (!bh)
1413		return -EAGAIN;
1414	BUG_ON(ident != TAG_IDENT_LVD);
1415	lvd = (struct logicalVolDesc *)bh->b_data;
1416	table_len = le32_to_cpu(lvd->mapTableLength);
1417	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1418		udf_err(sb, "error loading logical volume descriptor: "
1419			"Partition table too long (%u > %lu)\n", table_len,
1420			sb->s_blocksize - sizeof(*lvd));
1421		ret = -EIO;
1422		goto out_bh;
1423	}
1424
 
 
 
 
1425	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1426	if (ret)
1427		goto out_bh;
1428
1429	for (i = 0, offset = 0;
1430	     i < sbi->s_partitions && offset < table_len;
1431	     i++, offset += gpm->partitionMapLength) {
1432		struct udf_part_map *map = &sbi->s_partmaps[i];
1433		gpm = (struct genericPartitionMap *)
1434				&(lvd->partitionMaps[offset]);
1435		type = gpm->partitionMapType;
1436		if (type == 1) {
1437			struct genericPartitionMap1 *gpm1 =
1438				(struct genericPartitionMap1 *)gpm;
1439			map->s_partition_type = UDF_TYPE1_MAP15;
1440			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1441			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1442			map->s_partition_func = NULL;
1443		} else if (type == 2) {
1444			struct udfPartitionMap2 *upm2 =
1445						(struct udfPartitionMap2 *)gpm;
1446			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1447						strlen(UDF_ID_VIRTUAL))) {
1448				u16 suf =
1449					le16_to_cpu(((__le16 *)upm2->partIdent.
1450							identSuffix)[0]);
1451				if (suf < 0x0200) {
1452					map->s_partition_type =
1453							UDF_VIRTUAL_MAP15;
1454					map->s_partition_func =
1455							udf_get_pblock_virt15;
1456				} else {
1457					map->s_partition_type =
1458							UDF_VIRTUAL_MAP20;
1459					map->s_partition_func =
1460							udf_get_pblock_virt20;
1461				}
1462			} else if (!strncmp(upm2->partIdent.ident,
1463						UDF_ID_SPARABLE,
1464						strlen(UDF_ID_SPARABLE))) {
1465				ret = udf_load_sparable_map(sb, map,
1466					(struct sparablePartitionMap *)gpm);
1467				if (ret < 0)
1468					goto out_bh;
1469			} else if (!strncmp(upm2->partIdent.ident,
1470						UDF_ID_METADATA,
1471						strlen(UDF_ID_METADATA))) {
1472				struct udf_meta_data *mdata =
1473					&map->s_type_specific.s_metadata;
1474				struct metadataPartitionMap *mdm =
1475						(struct metadataPartitionMap *)
1476						&(lvd->partitionMaps[offset]);
1477				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1478					  i, type, UDF_ID_METADATA);
1479
1480				map->s_partition_type = UDF_METADATA_MAP25;
1481				map->s_partition_func = udf_get_pblock_meta25;
1482
1483				mdata->s_meta_file_loc   =
1484					le32_to_cpu(mdm->metadataFileLoc);
1485				mdata->s_mirror_file_loc =
1486					le32_to_cpu(mdm->metadataMirrorFileLoc);
1487				mdata->s_bitmap_file_loc =
1488					le32_to_cpu(mdm->metadataBitmapFileLoc);
1489				mdata->s_alloc_unit_size =
1490					le32_to_cpu(mdm->allocUnitSize);
1491				mdata->s_align_unit_size =
1492					le16_to_cpu(mdm->alignUnitSize);
1493				if (mdm->flags & 0x01)
1494					mdata->s_flags |= MF_DUPLICATE_MD;
1495
1496				udf_debug("Metadata Ident suffix=0x%x\n",
1497					  le16_to_cpu(*(__le16 *)
1498						      mdm->partIdent.identSuffix));
1499				udf_debug("Metadata part num=%d\n",
1500					  le16_to_cpu(mdm->partitionNum));
1501				udf_debug("Metadata part alloc unit size=%d\n",
1502					  le32_to_cpu(mdm->allocUnitSize));
1503				udf_debug("Metadata file loc=%d\n",
1504					  le32_to_cpu(mdm->metadataFileLoc));
1505				udf_debug("Mirror file loc=%d\n",
1506					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1507				udf_debug("Bitmap file loc=%d\n",
1508					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1509				udf_debug("Flags: %d %d\n",
1510					  mdata->s_flags, mdm->flags);
1511			} else {
1512				udf_debug("Unknown ident: %s\n",
1513					  upm2->partIdent.ident);
1514				continue;
1515			}
1516			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1517			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1518		}
1519		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1520			  i, map->s_partition_num, type, map->s_volumeseqnum);
1521	}
1522
1523	if (fileset) {
1524		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1525
1526		*fileset = lelb_to_cpu(la->extLocation);
1527		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1528			  fileset->logicalBlockNum,
1529			  fileset->partitionReferenceNum);
1530	}
1531	if (lvd->integritySeqExt.extLength)
1532		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1533	ret = 0;
 
 
 
 
 
 
 
 
 
 
 
1534out_bh:
1535	brelse(bh);
1536	return ret;
1537}
1538
1539/*
1540 * udf_load_logicalvolint
1541 *
1542 */
1543static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1544{
1545	struct buffer_head *bh = NULL;
1546	uint16_t ident;
1547	struct udf_sb_info *sbi = UDF_SB(sb);
1548	struct logicalVolIntegrityDesc *lvid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549
1550	while (loc.extLength > 0 &&
1551	       (bh = udf_read_tagged(sb, loc.extLocation,
1552				     loc.extLocation, &ident)) &&
1553	       ident == TAG_IDENT_LVID) {
1554		sbi->s_lvid_bh = bh;
1555		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556
1557		if (lvid->nextIntegrityExt.extLength)
1558			udf_load_logicalvolint(sb,
1559				leea_to_cpu(lvid->nextIntegrityExt));
1560
1561		if (sbi->s_lvid_bh != bh)
1562			brelse(bh);
1563		loc.extLength -= sb->s_blocksize;
1564		loc.extLocation++;
 
 
 
 
 
 
 
 
 
 
1565	}
1566	if (sbi->s_lvid_bh != bh)
1567		brelse(bh);
1568}
1569
1570/*
1571 * Process a main/reserve volume descriptor sequence.
1572 *   @block		First block of first extent of the sequence.
1573 *   @lastblock		Lastblock of first extent of the sequence.
1574 *   @fileset		There we store extent containing root fileset
1575 *
1576 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1577 * sequence
1578 */
1579static noinline int udf_process_sequence(
1580		struct super_block *sb,
1581		sector_t block, sector_t lastblock,
1582		struct kernel_lb_addr *fileset)
1583{
1584	struct buffer_head *bh = NULL;
1585	struct udf_vds_record vds[VDS_POS_LENGTH];
1586	struct udf_vds_record *curr;
1587	struct generic_desc *gd;
1588	struct volDescPtr *vdp;
1589	int done = 0;
1590	uint32_t vdsn;
1591	uint16_t ident;
1592	long next_s = 0, next_e = 0;
1593	int ret;
1594
1595	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
 
 
 
 
 
 
 
 
 
 
1596
1597	/*
1598	 * Read the main descriptor sequence and find which descriptors
1599	 * are in it.
1600	 */
1601	for (; (!done && block <= lastblock); block++) {
1602
1603		bh = udf_read_tagged(sb, block, block, &ident);
1604		if (!bh) {
1605			udf_err(sb,
1606				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1607				(unsigned long long)block);
1608			return -EAGAIN;
1609		}
1610
1611		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1612		gd = (struct generic_desc *)bh->b_data;
1613		vdsn = le32_to_cpu(gd->volDescSeqNum);
1614		switch (ident) {
1615		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1616			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1617			if (vdsn >= curr->volDescSeqNum) {
1618				curr->volDescSeqNum = vdsn;
1619				curr->block = block;
 
 
 
1620			}
1621			break;
1622		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1623			curr = &vds[VDS_POS_VOL_DESC_PTR];
1624			if (vdsn >= curr->volDescSeqNum) {
1625				curr->volDescSeqNum = vdsn;
1626				curr->block = block;
1627
1628				vdp = (struct volDescPtr *)bh->b_data;
1629				next_s = le32_to_cpu(
1630					vdp->nextVolDescSeqExt.extLocation);
1631				next_e = le32_to_cpu(
1632					vdp->nextVolDescSeqExt.extLength);
1633				next_e = next_e >> sb->s_blocksize_bits;
1634				next_e += next_s;
1635			}
1636			break;
 
1637		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1638			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1639			if (vdsn >= curr->volDescSeqNum) {
1640				curr->volDescSeqNum = vdsn;
1641				curr->block = block;
1642			}
1643			break;
1644		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1645			curr = &vds[VDS_POS_PARTITION_DESC];
1646			if (!curr->block)
1647				curr->block = block;
1648			break;
1649		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1650			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1651			if (vdsn >= curr->volDescSeqNum) {
1652				curr->volDescSeqNum = vdsn;
1653				curr->block = block;
1654			}
1655			break;
1656		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1657			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1658			if (vdsn >= curr->volDescSeqNum) {
1659				curr->volDescSeqNum = vdsn;
1660				curr->block = block;
1661			}
1662			break;
1663		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1664			vds[VDS_POS_TERMINATING_DESC].block = block;
1665			if (next_e) {
1666				block = next_s;
1667				lastblock = next_e;
1668				next_s = next_e = 0;
1669			} else
1670				done = 1;
1671			break;
1672		}
1673		brelse(bh);
1674	}
1675	/*
1676	 * Now read interesting descriptors again and process them
1677	 * in a suitable order
1678	 */
1679	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1680		udf_err(sb, "Primary Volume Descriptor not found!\n");
1681		return -EAGAIN;
 
1682	}
1683	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1684	if (ret < 0)
1685		return ret;
1686
1687	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1688		ret = udf_load_logicalvol(sb,
1689					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1690					  fileset);
1691		if (ret < 0)
1692			return ret;
1693	}
1694
1695	if (vds[VDS_POS_PARTITION_DESC].block) {
1696		/*
1697		 * We rescan the whole descriptor sequence to find
1698		 * partition descriptor blocks and process them.
1699		 */
1700		for (block = vds[VDS_POS_PARTITION_DESC].block;
1701		     block < vds[VDS_POS_TERMINATING_DESC].block;
1702		     block++) {
1703			ret = udf_load_partdesc(sb, block);
1704			if (ret < 0)
1705				return ret;
1706		}
1707	}
1708
1709	return 0;
 
 
1710}
1711
1712/*
1713 * Load Volume Descriptor Sequence described by anchor in bh
1714 *
1715 * Returns <0 on error, 0 on success
1716 */
1717static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1718			     struct kernel_lb_addr *fileset)
1719{
1720	struct anchorVolDescPtr *anchor;
1721	sector_t main_s, main_e, reserve_s, reserve_e;
1722	int ret;
1723
1724	anchor = (struct anchorVolDescPtr *)bh->b_data;
1725
1726	/* Locate the main sequence */
1727	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1728	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1729	main_e = main_e >> sb->s_blocksize_bits;
1730	main_e += main_s;
1731
1732	/* Locate the reserve sequence */
1733	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1734	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1735	reserve_e = reserve_e >> sb->s_blocksize_bits;
1736	reserve_e += reserve_s;
1737
1738	/* Process the main & reserve sequences */
1739	/* responsible for finding the PartitionDesc(s) */
1740	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1741	if (ret != -EAGAIN)
1742		return ret;
1743	udf_sb_free_partitions(sb);
1744	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1745	if (ret < 0) {
1746		udf_sb_free_partitions(sb);
1747		/* No sequence was OK, return -EIO */
1748		if (ret == -EAGAIN)
1749			ret = -EIO;
1750	}
1751	return ret;
1752}
1753
1754/*
1755 * Check whether there is an anchor block in the given block and
1756 * load Volume Descriptor Sequence if so.
1757 *
1758 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1759 * block
1760 */
1761static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1762				  struct kernel_lb_addr *fileset)
1763{
1764	struct buffer_head *bh;
1765	uint16_t ident;
1766	int ret;
1767
1768	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1769	    udf_fixed_to_variable(block) >=
1770	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1771		return -EAGAIN;
1772
1773	bh = udf_read_tagged(sb, block, block, &ident);
1774	if (!bh)
1775		return -EAGAIN;
1776	if (ident != TAG_IDENT_AVDP) {
1777		brelse(bh);
1778		return -EAGAIN;
1779	}
1780	ret = udf_load_sequence(sb, bh, fileset);
1781	brelse(bh);
1782	return ret;
1783}
1784
1785/*
1786 * Search for an anchor volume descriptor pointer.
1787 *
1788 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1789 * of anchors.
1790 */
1791static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1792			    struct kernel_lb_addr *fileset)
1793{
1794	sector_t last[6];
1795	int i;
1796	struct udf_sb_info *sbi = UDF_SB(sb);
1797	int last_count = 0;
1798	int ret;
1799
1800	/* First try user provided anchor */
1801	if (sbi->s_anchor) {
1802		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1803		if (ret != -EAGAIN)
1804			return ret;
1805	}
1806	/*
1807	 * according to spec, anchor is in either:
1808	 *     block 256
1809	 *     lastblock-256
1810	 *     lastblock
1811	 *  however, if the disc isn't closed, it could be 512.
1812	 */
1813	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1814	if (ret != -EAGAIN)
1815		return ret;
1816	/*
1817	 * The trouble is which block is the last one. Drives often misreport
1818	 * this so we try various possibilities.
1819	 */
1820	last[last_count++] = *lastblock;
1821	if (*lastblock >= 1)
1822		last[last_count++] = *lastblock - 1;
1823	last[last_count++] = *lastblock + 1;
1824	if (*lastblock >= 2)
1825		last[last_count++] = *lastblock - 2;
1826	if (*lastblock >= 150)
1827		last[last_count++] = *lastblock - 150;
1828	if (*lastblock >= 152)
1829		last[last_count++] = *lastblock - 152;
1830
1831	for (i = 0; i < last_count; i++) {
1832		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1833				sb->s_blocksize_bits)
1834			continue;
1835		ret = udf_check_anchor_block(sb, last[i], fileset);
1836		if (ret != -EAGAIN) {
1837			if (!ret)
1838				*lastblock = last[i];
1839			return ret;
1840		}
1841		if (last[i] < 256)
1842			continue;
1843		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1844		if (ret != -EAGAIN) {
1845			if (!ret)
1846				*lastblock = last[i];
1847			return ret;
1848		}
1849	}
1850
1851	/* Finally try block 512 in case media is open */
1852	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1853}
1854
1855/*
1856 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1857 * area specified by it. The function expects sbi->s_lastblock to be the last
1858 * block on the media.
1859 *
1860 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1861 * was not found.
1862 */
1863static int udf_find_anchor(struct super_block *sb,
1864			   struct kernel_lb_addr *fileset)
1865{
1866	struct udf_sb_info *sbi = UDF_SB(sb);
1867	sector_t lastblock = sbi->s_last_block;
1868	int ret;
1869
1870	ret = udf_scan_anchors(sb, &lastblock, fileset);
1871	if (ret != -EAGAIN)
1872		goto out;
1873
1874	/* No anchor found? Try VARCONV conversion of block numbers */
1875	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1876	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1877	/* Firstly, we try to not convert number of the last block */
1878	ret = udf_scan_anchors(sb, &lastblock, fileset);
1879	if (ret != -EAGAIN)
1880		goto out;
1881
1882	lastblock = sbi->s_last_block;
1883	/* Secondly, we try with converted number of the last block */
1884	ret = udf_scan_anchors(sb, &lastblock, fileset);
1885	if (ret < 0) {
1886		/* VARCONV didn't help. Clear it. */
1887		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1888	}
1889out:
1890	if (ret == 0)
1891		sbi->s_last_block = lastblock;
1892	return ret;
1893}
1894
1895/*
1896 * Check Volume Structure Descriptor, find Anchor block and load Volume
1897 * Descriptor Sequence.
1898 *
1899 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1900 * block was not found.
1901 */
1902static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1903			int silent, struct kernel_lb_addr *fileset)
1904{
1905	struct udf_sb_info *sbi = UDF_SB(sb);
1906	loff_t nsr_off;
1907	int ret;
1908
1909	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1910		if (!silent)
1911			udf_warn(sb, "Bad block size\n");
1912		return -EINVAL;
1913	}
1914	sbi->s_last_block = uopt->lastblock;
1915	if (!uopt->novrs) {
1916		/* Check that it is NSR02 compliant */
1917		nsr_off = udf_check_vsd(sb);
1918		if (!nsr_off) {
1919			if (!silent)
1920				udf_warn(sb, "No VRS found\n");
1921			return 0;
1922		}
1923		if (nsr_off == -1)
1924			udf_debug("Failed to read sector at offset %d. "
1925				  "Assuming open disc. Skipping validity "
1926				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1927		if (!sbi->s_last_block)
1928			sbi->s_last_block = udf_get_last_block(sb);
1929	} else {
1930		udf_debug("Validity check skipped because of novrs option\n");
1931	}
1932
1933	/* Look for anchor block and load Volume Descriptor Sequence */
1934	sbi->s_anchor = uopt->anchor;
1935	ret = udf_find_anchor(sb, fileset);
1936	if (ret < 0) {
1937		if (!silent && ret == -EAGAIN)
1938			udf_warn(sb, "No anchor found\n");
1939		return ret;
1940	}
1941	return 0;
1942}
1943
 
 
 
 
 
 
 
 
 
 
 
 
1944static void udf_open_lvid(struct super_block *sb)
1945{
1946	struct udf_sb_info *sbi = UDF_SB(sb);
1947	struct buffer_head *bh = sbi->s_lvid_bh;
1948	struct logicalVolIntegrityDesc *lvid;
1949	struct logicalVolIntegrityDescImpUse *lvidiu;
1950
1951	if (!bh)
1952		return;
1953	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1954	lvidiu = udf_sb_lvidiu(sb);
1955	if (!lvidiu)
1956		return;
1957
1958	mutex_lock(&sbi->s_alloc_mutex);
1959	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1960	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1961	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1962				CURRENT_TIME);
1963	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
 
1964
1965	lvid->descTag.descCRC = cpu_to_le16(
1966		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1967			le16_to_cpu(lvid->descTag.descCRCLength)));
1968
1969	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1970	mark_buffer_dirty(bh);
1971	sbi->s_lvid_dirty = 0;
1972	mutex_unlock(&sbi->s_alloc_mutex);
1973	/* Make opening of filesystem visible on the media immediately */
1974	sync_dirty_buffer(bh);
1975}
1976
1977static void udf_close_lvid(struct super_block *sb)
1978{
1979	struct udf_sb_info *sbi = UDF_SB(sb);
1980	struct buffer_head *bh = sbi->s_lvid_bh;
1981	struct logicalVolIntegrityDesc *lvid;
1982	struct logicalVolIntegrityDescImpUse *lvidiu;
1983
1984	if (!bh)
1985		return;
1986	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1987	lvidiu = udf_sb_lvidiu(sb);
1988	if (!lvidiu)
1989		return;
1990
1991	mutex_lock(&sbi->s_alloc_mutex);
1992	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1993	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1994	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1995	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1996		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1997	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1998		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1999	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2000		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2001	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
 
2002
2003	lvid->descTag.descCRC = cpu_to_le16(
2004			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2005				le16_to_cpu(lvid->descTag.descCRCLength)));
2006
2007	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2008	/*
2009	 * We set buffer uptodate unconditionally here to avoid spurious
2010	 * warnings from mark_buffer_dirty() when previous EIO has marked
2011	 * the buffer as !uptodate
2012	 */
2013	set_buffer_uptodate(bh);
 
2014	mark_buffer_dirty(bh);
2015	sbi->s_lvid_dirty = 0;
2016	mutex_unlock(&sbi->s_alloc_mutex);
2017	/* Make closing of filesystem visible on the media immediately */
2018	sync_dirty_buffer(bh);
2019}
2020
2021u64 lvid_get_unique_id(struct super_block *sb)
2022{
2023	struct buffer_head *bh;
2024	struct udf_sb_info *sbi = UDF_SB(sb);
2025	struct logicalVolIntegrityDesc *lvid;
2026	struct logicalVolHeaderDesc *lvhd;
2027	u64 uniqueID;
2028	u64 ret;
2029
2030	bh = sbi->s_lvid_bh;
2031	if (!bh)
2032		return 0;
2033
2034	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2035	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2036
2037	mutex_lock(&sbi->s_alloc_mutex);
2038	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2039	if (!(++uniqueID & 0xFFFFFFFF))
2040		uniqueID += 16;
2041	lvhd->uniqueID = cpu_to_le64(uniqueID);
 
2042	mutex_unlock(&sbi->s_alloc_mutex);
2043	mark_buffer_dirty(bh);
2044
2045	return ret;
2046}
2047
2048static int udf_fill_super(struct super_block *sb, void *options, int silent)
2049{
2050	int ret = -EINVAL;
2051	struct inode *inode = NULL;
2052	struct udf_options uopt;
2053	struct kernel_lb_addr rootdir, fileset;
2054	struct udf_sb_info *sbi;
 
2055
2056	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2057	uopt.uid = INVALID_UID;
2058	uopt.gid = INVALID_GID;
 
2059	uopt.umask = 0;
2060	uopt.fmode = UDF_INVALID_MODE;
2061	uopt.dmode = UDF_INVALID_MODE;
 
2062
2063	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2064	if (!sbi)
2065		return -ENOMEM;
2066
2067	sb->s_fs_info = sbi;
2068
2069	mutex_init(&sbi->s_alloc_mutex);
2070
2071	if (!udf_parse_options((char *)options, &uopt, false))
2072		goto error_out;
2073
2074	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2075	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2076		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2077		goto error_out;
2078	}
2079#ifdef CONFIG_UDF_NLS
2080	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2081		uopt.nls_map = load_nls_default();
2082		if (!uopt.nls_map)
2083			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2084		else
2085			udf_debug("Using default NLS map\n");
2086	}
2087#endif
2088	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2089		uopt.flags |= (1 << UDF_FLAG_UTF8);
2090
2091	fileset.logicalBlockNum = 0xFFFFFFFF;
2092	fileset.partitionReferenceNum = 0xFFFF;
2093
2094	sbi->s_flags = uopt.flags;
2095	sbi->s_uid = uopt.uid;
2096	sbi->s_gid = uopt.gid;
2097	sbi->s_umask = uopt.umask;
2098	sbi->s_fmode = uopt.fmode;
2099	sbi->s_dmode = uopt.dmode;
2100	sbi->s_nls_map = uopt.nls_map;
2101	rwlock_init(&sbi->s_cred_lock);
2102
2103	if (uopt.session == 0xFFFFFFFF)
2104		sbi->s_session = udf_get_last_session(sb);
2105	else
2106		sbi->s_session = uopt.session;
2107
2108	udf_debug("Multi-session=%d\n", sbi->s_session);
2109
2110	/* Fill in the rest of the superblock */
2111	sb->s_op = &udf_sb_ops;
2112	sb->s_export_op = &udf_export_ops;
2113
2114	sb->s_magic = UDF_SUPER_MAGIC;
2115	sb->s_time_gran = 1000;
2116
2117	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2118		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2119	} else {
2120		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2121		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2122		if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2123			if (!silent)
2124				pr_notice("Rescanning with blocksize %d\n",
2125					  UDF_DEFAULT_BLOCKSIZE);
2126			brelse(sbi->s_lvid_bh);
2127			sbi->s_lvid_bh = NULL;
2128			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2129			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2130		}
2131	}
2132	if (ret < 0) {
2133		if (ret == -EAGAIN) {
2134			udf_warn(sb, "No partition found (1)\n");
2135			ret = -EINVAL;
2136		}
2137		goto error_out;
2138	}
2139
2140	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2141
2142	if (sbi->s_lvid_bh) {
2143		struct logicalVolIntegrityDescImpUse *lvidiu =
2144							udf_sb_lvidiu(sb);
2145		uint16_t minUDFReadRev;
2146		uint16_t minUDFWriteRev;
2147
2148		if (!lvidiu) {
2149			ret = -EINVAL;
2150			goto error_out;
2151		}
2152		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2153		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2154		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2155			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2156				minUDFReadRev,
2157				UDF_MAX_READ_VERSION);
2158			ret = -EINVAL;
2159			goto error_out;
2160		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2161			   !(sb->s_flags & MS_RDONLY)) {
2162			ret = -EACCES;
2163			goto error_out;
 
 
2164		}
2165
2166		sbi->s_udfrev = minUDFWriteRev;
2167
2168		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2169			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2170		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2171			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2172	}
2173
2174	if (!sbi->s_partitions) {
2175		udf_warn(sb, "No partition found (2)\n");
2176		ret = -EINVAL;
2177		goto error_out;
2178	}
2179
2180	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2181			UDF_PART_FLAG_READ_ONLY &&
2182	    !(sb->s_flags & MS_RDONLY)) {
2183		ret = -EACCES;
2184		goto error_out;
 
 
2185	}
2186
2187	if (udf_find_fileset(sb, &fileset, &rootdir)) {
 
2188		udf_warn(sb, "No fileset found\n");
2189		ret = -EINVAL;
2190		goto error_out;
2191	}
2192
2193	if (!silent) {
2194		struct timestamp ts;
2195		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2196		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2197			 sbi->s_volume_ident,
2198			 le16_to_cpu(ts.year), ts.month, ts.day,
2199			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2200	}
2201	if (!(sb->s_flags & MS_RDONLY))
2202		udf_open_lvid(sb);
 
 
2203
2204	/* Assign the root inode */
2205	/* assign inodes by physical block number */
2206	/* perhaps it's not extensible enough, but for now ... */
2207	inode = udf_iget(sb, &rootdir);
2208	if (!inode) {
2209		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2210		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2211		ret = -EIO;
2212		goto error_out;
2213	}
2214
2215	/* Allocate a dentry for the root inode */
2216	sb->s_root = d_make_root(inode);
2217	if (!sb->s_root) {
2218		udf_err(sb, "Couldn't allocate root dentry\n");
2219		ret = -ENOMEM;
2220		goto error_out;
2221	}
2222	sb->s_maxbytes = MAX_LFS_FILESIZE;
2223	sb->s_max_links = UDF_MAX_LINKS;
2224	return 0;
2225
2226error_out:
2227	if (sbi->s_vat_inode)
2228		iput(sbi->s_vat_inode);
2229#ifdef CONFIG_UDF_NLS
2230	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2231		unload_nls(sbi->s_nls_map);
2232#endif
2233	if (!(sb->s_flags & MS_RDONLY))
2234		udf_close_lvid(sb);
2235	brelse(sbi->s_lvid_bh);
2236	udf_sb_free_partitions(sb);
2237	kfree(sbi);
2238	sb->s_fs_info = NULL;
2239
2240	return ret;
2241}
2242
2243void _udf_err(struct super_block *sb, const char *function,
2244	      const char *fmt, ...)
2245{
2246	struct va_format vaf;
2247	va_list args;
2248
2249	va_start(args, fmt);
2250
2251	vaf.fmt = fmt;
2252	vaf.va = &args;
2253
2254	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2255
2256	va_end(args);
2257}
2258
2259void _udf_warn(struct super_block *sb, const char *function,
2260	       const char *fmt, ...)
2261{
2262	struct va_format vaf;
2263	va_list args;
2264
2265	va_start(args, fmt);
2266
2267	vaf.fmt = fmt;
2268	vaf.va = &args;
2269
2270	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2271
2272	va_end(args);
2273}
2274
2275static void udf_put_super(struct super_block *sb)
2276{
2277	struct udf_sb_info *sbi;
2278
2279	sbi = UDF_SB(sb);
2280
2281	if (sbi->s_vat_inode)
2282		iput(sbi->s_vat_inode);
2283#ifdef CONFIG_UDF_NLS
2284	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2285		unload_nls(sbi->s_nls_map);
2286#endif
2287	if (!(sb->s_flags & MS_RDONLY))
2288		udf_close_lvid(sb);
2289	brelse(sbi->s_lvid_bh);
2290	udf_sb_free_partitions(sb);
 
2291	kfree(sb->s_fs_info);
2292	sb->s_fs_info = NULL;
2293}
2294
2295static int udf_sync_fs(struct super_block *sb, int wait)
2296{
2297	struct udf_sb_info *sbi = UDF_SB(sb);
2298
2299	mutex_lock(&sbi->s_alloc_mutex);
2300	if (sbi->s_lvid_dirty) {
 
 
 
 
 
 
2301		/*
2302		 * Blockdevice will be synced later so we don't have to submit
2303		 * the buffer for IO
2304		 */
2305		mark_buffer_dirty(sbi->s_lvid_bh);
2306		sbi->s_lvid_dirty = 0;
2307	}
2308	mutex_unlock(&sbi->s_alloc_mutex);
2309
2310	return 0;
2311}
2312
2313static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2314{
2315	struct super_block *sb = dentry->d_sb;
2316	struct udf_sb_info *sbi = UDF_SB(sb);
2317	struct logicalVolIntegrityDescImpUse *lvidiu;
2318	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2319
2320	lvidiu = udf_sb_lvidiu(sb);
2321	buf->f_type = UDF_SUPER_MAGIC;
2322	buf->f_bsize = sb->s_blocksize;
2323	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2324	buf->f_bfree = udf_count_free(sb);
2325	buf->f_bavail = buf->f_bfree;
 
 
 
 
2326	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2327					  le32_to_cpu(lvidiu->numDirs)) : 0)
2328			+ buf->f_bfree;
2329	buf->f_ffree = buf->f_bfree;
2330	buf->f_namelen = UDF_NAME_LEN - 2;
2331	buf->f_fsid.val[0] = (u32)id;
2332	buf->f_fsid.val[1] = (u32)(id >> 32);
2333
2334	return 0;
2335}
2336
2337static unsigned int udf_count_free_bitmap(struct super_block *sb,
2338					  struct udf_bitmap *bitmap)
2339{
2340	struct buffer_head *bh = NULL;
2341	unsigned int accum = 0;
2342	int index;
2343	int block = 0, newblock;
2344	struct kernel_lb_addr loc;
2345	uint32_t bytes;
2346	uint8_t *ptr;
2347	uint16_t ident;
2348	struct spaceBitmapDesc *bm;
2349
2350	loc.logicalBlockNum = bitmap->s_extPosition;
2351	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2352	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2353
2354	if (!bh) {
2355		udf_err(sb, "udf_count_free failed\n");
2356		goto out;
2357	} else if (ident != TAG_IDENT_SBD) {
2358		brelse(bh);
2359		udf_err(sb, "udf_count_free failed\n");
2360		goto out;
2361	}
2362
2363	bm = (struct spaceBitmapDesc *)bh->b_data;
2364	bytes = le32_to_cpu(bm->numOfBytes);
2365	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2366	ptr = (uint8_t *)bh->b_data;
2367
2368	while (bytes > 0) {
2369		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2370		accum += bitmap_weight((const unsigned long *)(ptr + index),
2371					cur_bytes * 8);
2372		bytes -= cur_bytes;
2373		if (bytes) {
2374			brelse(bh);
2375			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2376			bh = udf_tread(sb, newblock);
2377			if (!bh) {
2378				udf_debug("read failed\n");
2379				goto out;
2380			}
2381			index = 0;
2382			ptr = (uint8_t *)bh->b_data;
2383		}
2384	}
2385	brelse(bh);
2386out:
2387	return accum;
2388}
2389
2390static unsigned int udf_count_free_table(struct super_block *sb,
2391					 struct inode *table)
2392{
2393	unsigned int accum = 0;
2394	uint32_t elen;
2395	struct kernel_lb_addr eloc;
2396	int8_t etype;
2397	struct extent_position epos;
2398
2399	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2400	epos.block = UDF_I(table)->i_location;
2401	epos.offset = sizeof(struct unallocSpaceEntry);
2402	epos.bh = NULL;
2403
2404	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2405		accum += (elen >> table->i_sb->s_blocksize_bits);
2406
2407	brelse(epos.bh);
2408	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2409
2410	return accum;
2411}
2412
2413static unsigned int udf_count_free(struct super_block *sb)
2414{
2415	unsigned int accum = 0;
2416	struct udf_sb_info *sbi;
2417	struct udf_part_map *map;
 
 
 
 
 
 
 
 
 
 
 
 
 
2418
2419	sbi = UDF_SB(sb);
2420	if (sbi->s_lvid_bh) {
2421		struct logicalVolIntegrityDesc *lvid =
2422			(struct logicalVolIntegrityDesc *)
2423			sbi->s_lvid_bh->b_data;
2424		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2425			accum = le32_to_cpu(
2426					lvid->freeSpaceTable[sbi->s_partition]);
2427			if (accum == 0xFFFFFFFF)
2428				accum = 0;
2429		}
2430	}
2431
2432	if (accum)
2433		return accum;
2434
2435	map = &sbi->s_partmaps[sbi->s_partition];
2436	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2437		accum += udf_count_free_bitmap(sb,
2438					       map->s_uspace.s_bitmap);
2439	}
2440	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2441		accum += udf_count_free_bitmap(sb,
2442					       map->s_fspace.s_bitmap);
2443	}
2444	if (accum)
2445		return accum;
2446
2447	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2448		accum += udf_count_free_table(sb,
2449					      map->s_uspace.s_table);
2450	}
2451	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2452		accum += udf_count_free_table(sb,
2453					      map->s_fspace.s_table);
2454	}
2455
2456	return accum;
2457}