Loading...
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60#include <linux/iversion.h>
61
62#include "udf_sb.h"
63#include "udf_i.h"
64
65#include <linux/init.h>
66#include <linux/uaccess.h>
67
68enum {
69 VDS_POS_PRIMARY_VOL_DESC,
70 VDS_POS_UNALLOC_SPACE_DESC,
71 VDS_POS_LOGICAL_VOL_DESC,
72 VDS_POS_IMP_USE_VOL_DESC,
73 VDS_POS_LENGTH
74};
75
76#define VSD_FIRST_SECTOR_OFFSET 32768
77#define VSD_MAX_SECTOR_OFFSET 0x800000
78
79/*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85#define UDF_MAX_TD_NESTING 64
86#define UDF_MAX_LVID_NESTING 1000
87
88enum { UDF_MAX_LINKS = 0xffff };
89
90/* These are the "meat" - everything else is stuffing */
91static int udf_fill_super(struct super_block *, void *, int);
92static void udf_put_super(struct super_block *);
93static int udf_sync_fs(struct super_block *, int);
94static int udf_remount_fs(struct super_block *, int *, char *);
95static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96static void udf_open_lvid(struct super_block *);
97static void udf_close_lvid(struct super_block *);
98static unsigned int udf_count_free(struct super_block *);
99static int udf_statfs(struct dentry *, struct kstatfs *);
100static int udf_show_options(struct seq_file *, struct dentry *);
101
102struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
103{
104 struct logicalVolIntegrityDesc *lvid;
105 unsigned int partnum;
106 unsigned int offset;
107
108 if (!UDF_SB(sb)->s_lvid_bh)
109 return NULL;
110 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111 partnum = le32_to_cpu(lvid->numOfPartitions);
112 /* The offset is to skip freeSpaceTable and sizeTable arrays */
113 offset = partnum * 2 * sizeof(uint32_t);
114 return (struct logicalVolIntegrityDescImpUse *)
115 (((uint8_t *)(lvid + 1)) + offset);
116}
117
118/* UDF filesystem type */
119static struct dentry *udf_mount(struct file_system_type *fs_type,
120 int flags, const char *dev_name, void *data)
121{
122 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
123}
124
125static struct file_system_type udf_fstype = {
126 .owner = THIS_MODULE,
127 .name = "udf",
128 .mount = udf_mount,
129 .kill_sb = kill_block_super,
130 .fs_flags = FS_REQUIRES_DEV,
131};
132MODULE_ALIAS_FS("udf");
133
134static struct kmem_cache *udf_inode_cachep;
135
136static struct inode *udf_alloc_inode(struct super_block *sb)
137{
138 struct udf_inode_info *ei;
139 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
140 if (!ei)
141 return NULL;
142
143 ei->i_unique = 0;
144 ei->i_lenExtents = 0;
145 ei->i_lenStreams = 0;
146 ei->i_next_alloc_block = 0;
147 ei->i_next_alloc_goal = 0;
148 ei->i_strat4096 = 0;
149 ei->i_streamdir = 0;
150 init_rwsem(&ei->i_data_sem);
151 ei->cached_extent.lstart = -1;
152 spin_lock_init(&ei->i_extent_cache_lock);
153 inode_set_iversion(&ei->vfs_inode, 1);
154
155 return &ei->vfs_inode;
156}
157
158static void udf_free_in_core_inode(struct inode *inode)
159{
160 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
161}
162
163static void init_once(void *foo)
164{
165 struct udf_inode_info *ei = foo;
166
167 ei->i_data = NULL;
168 inode_init_once(&ei->vfs_inode);
169}
170
171static int __init init_inodecache(void)
172{
173 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
174 sizeof(struct udf_inode_info),
175 0, (SLAB_RECLAIM_ACCOUNT |
176 SLAB_MEM_SPREAD |
177 SLAB_ACCOUNT),
178 init_once);
179 if (!udf_inode_cachep)
180 return -ENOMEM;
181 return 0;
182}
183
184static void destroy_inodecache(void)
185{
186 /*
187 * Make sure all delayed rcu free inodes are flushed before we
188 * destroy cache.
189 */
190 rcu_barrier();
191 kmem_cache_destroy(udf_inode_cachep);
192}
193
194/* Superblock operations */
195static const struct super_operations udf_sb_ops = {
196 .alloc_inode = udf_alloc_inode,
197 .free_inode = udf_free_in_core_inode,
198 .write_inode = udf_write_inode,
199 .evict_inode = udf_evict_inode,
200 .put_super = udf_put_super,
201 .sync_fs = udf_sync_fs,
202 .statfs = udf_statfs,
203 .remount_fs = udf_remount_fs,
204 .show_options = udf_show_options,
205};
206
207struct udf_options {
208 unsigned char novrs;
209 unsigned int blocksize;
210 unsigned int session;
211 unsigned int lastblock;
212 unsigned int anchor;
213 unsigned int flags;
214 umode_t umask;
215 kgid_t gid;
216 kuid_t uid;
217 umode_t fmode;
218 umode_t dmode;
219 struct nls_table *nls_map;
220};
221
222static int __init init_udf_fs(void)
223{
224 int err;
225
226 err = init_inodecache();
227 if (err)
228 goto out1;
229 err = register_filesystem(&udf_fstype);
230 if (err)
231 goto out;
232
233 return 0;
234
235out:
236 destroy_inodecache();
237
238out1:
239 return err;
240}
241
242static void __exit exit_udf_fs(void)
243{
244 unregister_filesystem(&udf_fstype);
245 destroy_inodecache();
246}
247
248static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
249{
250 struct udf_sb_info *sbi = UDF_SB(sb);
251
252 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
253 if (!sbi->s_partmaps) {
254 sbi->s_partitions = 0;
255 return -ENOMEM;
256 }
257
258 sbi->s_partitions = count;
259 return 0;
260}
261
262static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
263{
264 int i;
265 int nr_groups = bitmap->s_nr_groups;
266
267 for (i = 0; i < nr_groups; i++)
268 brelse(bitmap->s_block_bitmap[i]);
269
270 kvfree(bitmap);
271}
272
273static void udf_free_partition(struct udf_part_map *map)
274{
275 int i;
276 struct udf_meta_data *mdata;
277
278 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
279 iput(map->s_uspace.s_table);
280 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
281 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
282 if (map->s_partition_type == UDF_SPARABLE_MAP15)
283 for (i = 0; i < 4; i++)
284 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
285 else if (map->s_partition_type == UDF_METADATA_MAP25) {
286 mdata = &map->s_type_specific.s_metadata;
287 iput(mdata->s_metadata_fe);
288 mdata->s_metadata_fe = NULL;
289
290 iput(mdata->s_mirror_fe);
291 mdata->s_mirror_fe = NULL;
292
293 iput(mdata->s_bitmap_fe);
294 mdata->s_bitmap_fe = NULL;
295 }
296}
297
298static void udf_sb_free_partitions(struct super_block *sb)
299{
300 struct udf_sb_info *sbi = UDF_SB(sb);
301 int i;
302
303 if (!sbi->s_partmaps)
304 return;
305 for (i = 0; i < sbi->s_partitions; i++)
306 udf_free_partition(&sbi->s_partmaps[i]);
307 kfree(sbi->s_partmaps);
308 sbi->s_partmaps = NULL;
309}
310
311static int udf_show_options(struct seq_file *seq, struct dentry *root)
312{
313 struct super_block *sb = root->d_sb;
314 struct udf_sb_info *sbi = UDF_SB(sb);
315
316 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
317 seq_puts(seq, ",nostrict");
318 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
319 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
320 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
321 seq_puts(seq, ",unhide");
322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
323 seq_puts(seq, ",undelete");
324 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
325 seq_puts(seq, ",noadinicb");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
327 seq_puts(seq, ",shortad");
328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
329 seq_puts(seq, ",uid=forget");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
331 seq_puts(seq, ",gid=forget");
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
333 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
335 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
336 if (sbi->s_umask != 0)
337 seq_printf(seq, ",umask=%ho", sbi->s_umask);
338 if (sbi->s_fmode != UDF_INVALID_MODE)
339 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
340 if (sbi->s_dmode != UDF_INVALID_MODE)
341 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
343 seq_printf(seq, ",session=%d", sbi->s_session);
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
345 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
346 if (sbi->s_anchor != 0)
347 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
348 if (sbi->s_nls_map)
349 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
350 else
351 seq_puts(seq, ",iocharset=utf8");
352
353 return 0;
354}
355
356/*
357 * udf_parse_options
358 *
359 * PURPOSE
360 * Parse mount options.
361 *
362 * DESCRIPTION
363 * The following mount options are supported:
364 *
365 * gid= Set the default group.
366 * umask= Set the default umask.
367 * mode= Set the default file permissions.
368 * dmode= Set the default directory permissions.
369 * uid= Set the default user.
370 * bs= Set the block size.
371 * unhide Show otherwise hidden files.
372 * undelete Show deleted files in lists.
373 * adinicb Embed data in the inode (default)
374 * noadinicb Don't embed data in the inode
375 * shortad Use short ad's
376 * longad Use long ad's (default)
377 * nostrict Unset strict conformance
378 * iocharset= Set the NLS character set
379 *
380 * The remaining are for debugging and disaster recovery:
381 *
382 * novrs Skip volume sequence recognition
383 *
384 * The following expect a offset from 0.
385 *
386 * session= Set the CDROM session (default= last session)
387 * anchor= Override standard anchor location. (default= 256)
388 * volume= Override the VolumeDesc location. (unused)
389 * partition= Override the PartitionDesc location. (unused)
390 * lastblock= Set the last block of the filesystem/
391 *
392 * The following expect a offset from the partition root.
393 *
394 * fileset= Override the fileset block location. (unused)
395 * rootdir= Override the root directory location. (unused)
396 * WARNING: overriding the rootdir to a non-directory may
397 * yield highly unpredictable results.
398 *
399 * PRE-CONDITIONS
400 * options Pointer to mount options string.
401 * uopts Pointer to mount options variable.
402 *
403 * POST-CONDITIONS
404 * <return> 1 Mount options parsed okay.
405 * <return> 0 Error parsing mount options.
406 *
407 * HISTORY
408 * July 1, 1997 - Andrew E. Mileski
409 * Written, tested, and released.
410 */
411
412enum {
413 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
414 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
415 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
416 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
417 Opt_rootdir, Opt_utf8, Opt_iocharset,
418 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
419 Opt_fmode, Opt_dmode
420};
421
422static const match_table_t tokens = {
423 {Opt_novrs, "novrs"},
424 {Opt_nostrict, "nostrict"},
425 {Opt_bs, "bs=%u"},
426 {Opt_unhide, "unhide"},
427 {Opt_undelete, "undelete"},
428 {Opt_noadinicb, "noadinicb"},
429 {Opt_adinicb, "adinicb"},
430 {Opt_shortad, "shortad"},
431 {Opt_longad, "longad"},
432 {Opt_uforget, "uid=forget"},
433 {Opt_uignore, "uid=ignore"},
434 {Opt_gforget, "gid=forget"},
435 {Opt_gignore, "gid=ignore"},
436 {Opt_gid, "gid=%u"},
437 {Opt_uid, "uid=%u"},
438 {Opt_umask, "umask=%o"},
439 {Opt_session, "session=%u"},
440 {Opt_lastblock, "lastblock=%u"},
441 {Opt_anchor, "anchor=%u"},
442 {Opt_volume, "volume=%u"},
443 {Opt_partition, "partition=%u"},
444 {Opt_fileset, "fileset=%u"},
445 {Opt_rootdir, "rootdir=%u"},
446 {Opt_utf8, "utf8"},
447 {Opt_iocharset, "iocharset=%s"},
448 {Opt_fmode, "mode=%o"},
449 {Opt_dmode, "dmode=%o"},
450 {Opt_err, NULL}
451};
452
453static int udf_parse_options(char *options, struct udf_options *uopt,
454 bool remount)
455{
456 char *p;
457 int option;
458 unsigned int uv;
459
460 uopt->novrs = 0;
461 uopt->session = 0xFFFFFFFF;
462 uopt->lastblock = 0;
463 uopt->anchor = 0;
464
465 if (!options)
466 return 1;
467
468 while ((p = strsep(&options, ",")) != NULL) {
469 substring_t args[MAX_OPT_ARGS];
470 int token;
471 unsigned n;
472 if (!*p)
473 continue;
474
475 token = match_token(p, tokens, args);
476 switch (token) {
477 case Opt_novrs:
478 uopt->novrs = 1;
479 break;
480 case Opt_bs:
481 if (match_int(&args[0], &option))
482 return 0;
483 n = option;
484 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
485 return 0;
486 uopt->blocksize = n;
487 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
488 break;
489 case Opt_unhide:
490 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
491 break;
492 case Opt_undelete:
493 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
494 break;
495 case Opt_noadinicb:
496 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
497 break;
498 case Opt_adinicb:
499 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
500 break;
501 case Opt_shortad:
502 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
503 break;
504 case Opt_longad:
505 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
506 break;
507 case Opt_gid:
508 if (match_uint(args, &uv))
509 return 0;
510 uopt->gid = make_kgid(current_user_ns(), uv);
511 if (!gid_valid(uopt->gid))
512 return 0;
513 uopt->flags |= (1 << UDF_FLAG_GID_SET);
514 break;
515 case Opt_uid:
516 if (match_uint(args, &uv))
517 return 0;
518 uopt->uid = make_kuid(current_user_ns(), uv);
519 if (!uid_valid(uopt->uid))
520 return 0;
521 uopt->flags |= (1 << UDF_FLAG_UID_SET);
522 break;
523 case Opt_umask:
524 if (match_octal(args, &option))
525 return 0;
526 uopt->umask = option;
527 break;
528 case Opt_nostrict:
529 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
530 break;
531 case Opt_session:
532 if (match_int(args, &option))
533 return 0;
534 uopt->session = option;
535 if (!remount)
536 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
537 break;
538 case Opt_lastblock:
539 if (match_int(args, &option))
540 return 0;
541 uopt->lastblock = option;
542 if (!remount)
543 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
544 break;
545 case Opt_anchor:
546 if (match_int(args, &option))
547 return 0;
548 uopt->anchor = option;
549 break;
550 case Opt_volume:
551 case Opt_partition:
552 case Opt_fileset:
553 case Opt_rootdir:
554 /* Ignored (never implemented properly) */
555 break;
556 case Opt_utf8:
557 if (!remount) {
558 unload_nls(uopt->nls_map);
559 uopt->nls_map = NULL;
560 }
561 break;
562 case Opt_iocharset:
563 if (!remount) {
564 unload_nls(uopt->nls_map);
565 uopt->nls_map = NULL;
566 }
567 /* When nls_map is not loaded then UTF-8 is used */
568 if (!remount && strcmp(args[0].from, "utf8") != 0) {
569 uopt->nls_map = load_nls(args[0].from);
570 if (!uopt->nls_map) {
571 pr_err("iocharset %s not found\n",
572 args[0].from);
573 return 0;
574 }
575 }
576 break;
577 case Opt_uforget:
578 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
579 break;
580 case Opt_uignore:
581 case Opt_gignore:
582 /* These options are superseeded by uid=<number> */
583 break;
584 case Opt_gforget:
585 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
586 break;
587 case Opt_fmode:
588 if (match_octal(args, &option))
589 return 0;
590 uopt->fmode = option & 0777;
591 break;
592 case Opt_dmode:
593 if (match_octal(args, &option))
594 return 0;
595 uopt->dmode = option & 0777;
596 break;
597 default:
598 pr_err("bad mount option \"%s\" or missing value\n", p);
599 return 0;
600 }
601 }
602 return 1;
603}
604
605static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
606{
607 struct udf_options uopt;
608 struct udf_sb_info *sbi = UDF_SB(sb);
609 int error = 0;
610
611 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
612 return -EACCES;
613
614 sync_filesystem(sb);
615
616 uopt.flags = sbi->s_flags;
617 uopt.uid = sbi->s_uid;
618 uopt.gid = sbi->s_gid;
619 uopt.umask = sbi->s_umask;
620 uopt.fmode = sbi->s_fmode;
621 uopt.dmode = sbi->s_dmode;
622 uopt.nls_map = NULL;
623
624 if (!udf_parse_options(options, &uopt, true))
625 return -EINVAL;
626
627 write_lock(&sbi->s_cred_lock);
628 sbi->s_flags = uopt.flags;
629 sbi->s_uid = uopt.uid;
630 sbi->s_gid = uopt.gid;
631 sbi->s_umask = uopt.umask;
632 sbi->s_fmode = uopt.fmode;
633 sbi->s_dmode = uopt.dmode;
634 write_unlock(&sbi->s_cred_lock);
635
636 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
637 goto out_unlock;
638
639 if (*flags & SB_RDONLY)
640 udf_close_lvid(sb);
641 else
642 udf_open_lvid(sb);
643
644out_unlock:
645 return error;
646}
647
648/*
649 * Check VSD descriptor. Returns -1 in case we are at the end of volume
650 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
651 * we found one of NSR descriptors we are looking for.
652 */
653static int identify_vsd(const struct volStructDesc *vsd)
654{
655 int ret = 0;
656
657 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
658 switch (vsd->structType) {
659 case 0:
660 udf_debug("ISO9660 Boot Record found\n");
661 break;
662 case 1:
663 udf_debug("ISO9660 Primary Volume Descriptor found\n");
664 break;
665 case 2:
666 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
667 break;
668 case 3:
669 udf_debug("ISO9660 Volume Partition Descriptor found\n");
670 break;
671 case 255:
672 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
673 break;
674 default:
675 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
676 break;
677 }
678 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
679 ; /* ret = 0 */
680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
681 ret = 1;
682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
683 ret = 1;
684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
685 ; /* ret = 0 */
686 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
687 ; /* ret = 0 */
688 else {
689 /* TEA01 or invalid id : end of volume recognition area */
690 ret = -1;
691 }
692
693 return ret;
694}
695
696/*
697 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
698 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
699 * @return 1 if NSR02 or NSR03 found,
700 * -1 if first sector read error, 0 otherwise
701 */
702static int udf_check_vsd(struct super_block *sb)
703{
704 struct volStructDesc *vsd = NULL;
705 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
706 int sectorsize;
707 struct buffer_head *bh = NULL;
708 int nsr = 0;
709 struct udf_sb_info *sbi;
710 loff_t session_offset;
711
712 sbi = UDF_SB(sb);
713 if (sb->s_blocksize < sizeof(struct volStructDesc))
714 sectorsize = sizeof(struct volStructDesc);
715 else
716 sectorsize = sb->s_blocksize;
717
718 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
719 sector += session_offset;
720
721 udf_debug("Starting at sector %u (%lu byte sectors)\n",
722 (unsigned int)(sector >> sb->s_blocksize_bits),
723 sb->s_blocksize);
724 /* Process the sequence (if applicable). The hard limit on the sector
725 * offset is arbitrary, hopefully large enough so that all valid UDF
726 * filesystems will be recognised. There is no mention of an upper
727 * bound to the size of the volume recognition area in the standard.
728 * The limit will prevent the code to read all the sectors of a
729 * specially crafted image (like a bluray disc full of CD001 sectors),
730 * potentially causing minutes or even hours of uninterruptible I/O
731 * activity. This actually happened with uninitialised SSD partitions
732 * (all 0xFF) before the check for the limit and all valid IDs were
733 * added */
734 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
735 /* Read a block */
736 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
737 if (!bh)
738 break;
739
740 vsd = (struct volStructDesc *)(bh->b_data +
741 (sector & (sb->s_blocksize - 1)));
742 nsr = identify_vsd(vsd);
743 /* Found NSR or end? */
744 if (nsr) {
745 brelse(bh);
746 break;
747 }
748 /*
749 * Special handling for improperly formatted VRS (e.g., Win10)
750 * where components are separated by 2048 bytes even though
751 * sectors are 4K
752 */
753 if (sb->s_blocksize == 4096) {
754 nsr = identify_vsd(vsd + 1);
755 /* Ignore unknown IDs... */
756 if (nsr < 0)
757 nsr = 0;
758 }
759 brelse(bh);
760 }
761
762 if (nsr > 0)
763 return 1;
764 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
765 return -1;
766 else
767 return 0;
768}
769
770static int udf_verify_domain_identifier(struct super_block *sb,
771 struct regid *ident, char *dname)
772{
773 struct domainIdentSuffix *suffix;
774
775 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
776 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
777 goto force_ro;
778 }
779 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
780 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
781 dname);
782 goto force_ro;
783 }
784 suffix = (struct domainIdentSuffix *)ident->identSuffix;
785 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
786 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
787 if (!sb_rdonly(sb)) {
788 udf_warn(sb, "Descriptor for %s marked write protected."
789 " Forcing read only mount.\n", dname);
790 }
791 goto force_ro;
792 }
793 return 0;
794
795force_ro:
796 if (!sb_rdonly(sb))
797 return -EACCES;
798 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
799 return 0;
800}
801
802static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
803 struct kernel_lb_addr *root)
804{
805 int ret;
806
807 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
808 if (ret < 0)
809 return ret;
810
811 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
812 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
813
814 udf_debug("Rootdir at block=%u, partition=%u\n",
815 root->logicalBlockNum, root->partitionReferenceNum);
816 return 0;
817}
818
819static int udf_find_fileset(struct super_block *sb,
820 struct kernel_lb_addr *fileset,
821 struct kernel_lb_addr *root)
822{
823 struct buffer_head *bh;
824 uint16_t ident;
825 int ret;
826
827 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
828 fileset->partitionReferenceNum == 0xFFFF)
829 return -EINVAL;
830
831 bh = udf_read_ptagged(sb, fileset, 0, &ident);
832 if (!bh)
833 return -EIO;
834 if (ident != TAG_IDENT_FSD) {
835 brelse(bh);
836 return -EINVAL;
837 }
838
839 udf_debug("Fileset at block=%u, partition=%u\n",
840 fileset->logicalBlockNum, fileset->partitionReferenceNum);
841
842 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
843 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
844 brelse(bh);
845 return ret;
846}
847
848/*
849 * Load primary Volume Descriptor Sequence
850 *
851 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
852 * should be tried.
853 */
854static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
855{
856 struct primaryVolDesc *pvoldesc;
857 uint8_t *outstr;
858 struct buffer_head *bh;
859 uint16_t ident;
860 int ret;
861 struct timestamp *ts;
862
863 outstr = kmalloc(128, GFP_NOFS);
864 if (!outstr)
865 return -ENOMEM;
866
867 bh = udf_read_tagged(sb, block, block, &ident);
868 if (!bh) {
869 ret = -EAGAIN;
870 goto out2;
871 }
872
873 if (ident != TAG_IDENT_PVD) {
874 ret = -EIO;
875 goto out_bh;
876 }
877
878 pvoldesc = (struct primaryVolDesc *)bh->b_data;
879
880 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
881 pvoldesc->recordingDateAndTime);
882 ts = &pvoldesc->recordingDateAndTime;
883 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
884 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
885 ts->minute, le16_to_cpu(ts->typeAndTimezone));
886
887 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
888 if (ret < 0) {
889 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
890 pr_warn("incorrect volume identification, setting to "
891 "'InvalidName'\n");
892 } else {
893 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
894 }
895 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
896
897 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
898 if (ret < 0) {
899 ret = 0;
900 goto out_bh;
901 }
902 outstr[ret] = 0;
903 udf_debug("volSetIdent[] = '%s'\n", outstr);
904
905 ret = 0;
906out_bh:
907 brelse(bh);
908out2:
909 kfree(outstr);
910 return ret;
911}
912
913struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
914 u32 meta_file_loc, u32 partition_ref)
915{
916 struct kernel_lb_addr addr;
917 struct inode *metadata_fe;
918
919 addr.logicalBlockNum = meta_file_loc;
920 addr.partitionReferenceNum = partition_ref;
921
922 metadata_fe = udf_iget_special(sb, &addr);
923
924 if (IS_ERR(metadata_fe)) {
925 udf_warn(sb, "metadata inode efe not found\n");
926 return metadata_fe;
927 }
928 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
929 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
930 iput(metadata_fe);
931 return ERR_PTR(-EIO);
932 }
933
934 return metadata_fe;
935}
936
937static int udf_load_metadata_files(struct super_block *sb, int partition,
938 int type1_index)
939{
940 struct udf_sb_info *sbi = UDF_SB(sb);
941 struct udf_part_map *map;
942 struct udf_meta_data *mdata;
943 struct kernel_lb_addr addr;
944 struct inode *fe;
945
946 map = &sbi->s_partmaps[partition];
947 mdata = &map->s_type_specific.s_metadata;
948 mdata->s_phys_partition_ref = type1_index;
949
950 /* metadata address */
951 udf_debug("Metadata file location: block = %u part = %u\n",
952 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
953
954 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
955 mdata->s_phys_partition_ref);
956 if (IS_ERR(fe)) {
957 /* mirror file entry */
958 udf_debug("Mirror metadata file location: block = %u part = %u\n",
959 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
960
961 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
962 mdata->s_phys_partition_ref);
963
964 if (IS_ERR(fe)) {
965 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
966 return PTR_ERR(fe);
967 }
968 mdata->s_mirror_fe = fe;
969 } else
970 mdata->s_metadata_fe = fe;
971
972
973 /*
974 * bitmap file entry
975 * Note:
976 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
977 */
978 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
979 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
980 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
981
982 udf_debug("Bitmap file location: block = %u part = %u\n",
983 addr.logicalBlockNum, addr.partitionReferenceNum);
984
985 fe = udf_iget_special(sb, &addr);
986 if (IS_ERR(fe)) {
987 if (sb_rdonly(sb))
988 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
989 else {
990 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
991 return PTR_ERR(fe);
992 }
993 } else
994 mdata->s_bitmap_fe = fe;
995 }
996
997 udf_debug("udf_load_metadata_files Ok\n");
998 return 0;
999}
1000
1001int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1002{
1003 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1004 return DIV_ROUND_UP(map->s_partition_len +
1005 (sizeof(struct spaceBitmapDesc) << 3),
1006 sb->s_blocksize * 8);
1007}
1008
1009static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1010{
1011 struct udf_bitmap *bitmap;
1012 int nr_groups = udf_compute_nr_groups(sb, index);
1013
1014 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1015 GFP_KERNEL);
1016 if (!bitmap)
1017 return NULL;
1018
1019 bitmap->s_nr_groups = nr_groups;
1020 return bitmap;
1021}
1022
1023static int check_partition_desc(struct super_block *sb,
1024 struct partitionDesc *p,
1025 struct udf_part_map *map)
1026{
1027 bool umap, utable, fmap, ftable;
1028 struct partitionHeaderDesc *phd;
1029
1030 switch (le32_to_cpu(p->accessType)) {
1031 case PD_ACCESS_TYPE_READ_ONLY:
1032 case PD_ACCESS_TYPE_WRITE_ONCE:
1033 case PD_ACCESS_TYPE_NONE:
1034 goto force_ro;
1035 }
1036
1037 /* No Partition Header Descriptor? */
1038 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1039 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1040 goto force_ro;
1041
1042 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1043 utable = phd->unallocSpaceTable.extLength;
1044 umap = phd->unallocSpaceBitmap.extLength;
1045 ftable = phd->freedSpaceTable.extLength;
1046 fmap = phd->freedSpaceBitmap.extLength;
1047
1048 /* No allocation info? */
1049 if (!utable && !umap && !ftable && !fmap)
1050 goto force_ro;
1051
1052 /* We don't support blocks that require erasing before overwrite */
1053 if (ftable || fmap)
1054 goto force_ro;
1055 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1056 if (utable && umap)
1057 goto force_ro;
1058
1059 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1060 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1061 map->s_partition_type == UDF_METADATA_MAP25)
1062 goto force_ro;
1063
1064 return 0;
1065force_ro:
1066 if (!sb_rdonly(sb))
1067 return -EACCES;
1068 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1069 return 0;
1070}
1071
1072static int udf_fill_partdesc_info(struct super_block *sb,
1073 struct partitionDesc *p, int p_index)
1074{
1075 struct udf_part_map *map;
1076 struct udf_sb_info *sbi = UDF_SB(sb);
1077 struct partitionHeaderDesc *phd;
1078 int err;
1079
1080 map = &sbi->s_partmaps[p_index];
1081
1082 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1083 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1084
1085 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1086 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1088 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1090 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1092 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1093
1094 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1095 p_index, map->s_partition_type,
1096 map->s_partition_root, map->s_partition_len);
1097
1098 err = check_partition_desc(sb, p, map);
1099 if (err)
1100 return err;
1101
1102 /*
1103 * Skip loading allocation info it we cannot ever write to the fs.
1104 * This is a correctness thing as we may have decided to force ro mount
1105 * to avoid allocation info we don't support.
1106 */
1107 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1108 return 0;
1109
1110 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1111 if (phd->unallocSpaceTable.extLength) {
1112 struct kernel_lb_addr loc = {
1113 .logicalBlockNum = le32_to_cpu(
1114 phd->unallocSpaceTable.extPosition),
1115 .partitionReferenceNum = p_index,
1116 };
1117 struct inode *inode;
1118
1119 inode = udf_iget_special(sb, &loc);
1120 if (IS_ERR(inode)) {
1121 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1122 p_index);
1123 return PTR_ERR(inode);
1124 }
1125 map->s_uspace.s_table = inode;
1126 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1127 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1128 p_index, map->s_uspace.s_table->i_ino);
1129 }
1130
1131 if (phd->unallocSpaceBitmap.extLength) {
1132 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1133 if (!bitmap)
1134 return -ENOMEM;
1135 map->s_uspace.s_bitmap = bitmap;
1136 bitmap->s_extPosition = le32_to_cpu(
1137 phd->unallocSpaceBitmap.extPosition);
1138 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1139 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1140 p_index, bitmap->s_extPosition);
1141 }
1142
1143 return 0;
1144}
1145
1146static void udf_find_vat_block(struct super_block *sb, int p_index,
1147 int type1_index, sector_t start_block)
1148{
1149 struct udf_sb_info *sbi = UDF_SB(sb);
1150 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1151 sector_t vat_block;
1152 struct kernel_lb_addr ino;
1153 struct inode *inode;
1154
1155 /*
1156 * VAT file entry is in the last recorded block. Some broken disks have
1157 * it a few blocks before so try a bit harder...
1158 */
1159 ino.partitionReferenceNum = type1_index;
1160 for (vat_block = start_block;
1161 vat_block >= map->s_partition_root &&
1162 vat_block >= start_block - 3; vat_block--) {
1163 ino.logicalBlockNum = vat_block - map->s_partition_root;
1164 inode = udf_iget_special(sb, &ino);
1165 if (!IS_ERR(inode)) {
1166 sbi->s_vat_inode = inode;
1167 break;
1168 }
1169 }
1170}
1171
1172static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1173{
1174 struct udf_sb_info *sbi = UDF_SB(sb);
1175 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1176 struct buffer_head *bh = NULL;
1177 struct udf_inode_info *vati;
1178 uint32_t pos;
1179 struct virtualAllocationTable20 *vat20;
1180 sector_t blocks = sb_bdev_nr_blocks(sb);
1181
1182 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1183 if (!sbi->s_vat_inode &&
1184 sbi->s_last_block != blocks - 1) {
1185 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1186 (unsigned long)sbi->s_last_block,
1187 (unsigned long)blocks - 1);
1188 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1189 }
1190 if (!sbi->s_vat_inode)
1191 return -EIO;
1192
1193 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1194 map->s_type_specific.s_virtual.s_start_offset = 0;
1195 map->s_type_specific.s_virtual.s_num_entries =
1196 (sbi->s_vat_inode->i_size - 36) >> 2;
1197 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1198 vati = UDF_I(sbi->s_vat_inode);
1199 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1200 pos = udf_block_map(sbi->s_vat_inode, 0);
1201 bh = sb_bread(sb, pos);
1202 if (!bh)
1203 return -EIO;
1204 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1205 } else {
1206 vat20 = (struct virtualAllocationTable20 *)
1207 vati->i_data;
1208 }
1209
1210 map->s_type_specific.s_virtual.s_start_offset =
1211 le16_to_cpu(vat20->lengthHeader);
1212 map->s_type_specific.s_virtual.s_num_entries =
1213 (sbi->s_vat_inode->i_size -
1214 map->s_type_specific.s_virtual.
1215 s_start_offset) >> 2;
1216 brelse(bh);
1217 }
1218 return 0;
1219}
1220
1221/*
1222 * Load partition descriptor block
1223 *
1224 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1225 * sequence.
1226 */
1227static int udf_load_partdesc(struct super_block *sb, sector_t block)
1228{
1229 struct buffer_head *bh;
1230 struct partitionDesc *p;
1231 struct udf_part_map *map;
1232 struct udf_sb_info *sbi = UDF_SB(sb);
1233 int i, type1_idx;
1234 uint16_t partitionNumber;
1235 uint16_t ident;
1236 int ret;
1237
1238 bh = udf_read_tagged(sb, block, block, &ident);
1239 if (!bh)
1240 return -EAGAIN;
1241 if (ident != TAG_IDENT_PD) {
1242 ret = 0;
1243 goto out_bh;
1244 }
1245
1246 p = (struct partitionDesc *)bh->b_data;
1247 partitionNumber = le16_to_cpu(p->partitionNumber);
1248
1249 /* First scan for TYPE1 and SPARABLE partitions */
1250 for (i = 0; i < sbi->s_partitions; i++) {
1251 map = &sbi->s_partmaps[i];
1252 udf_debug("Searching map: (%u == %u)\n",
1253 map->s_partition_num, partitionNumber);
1254 if (map->s_partition_num == partitionNumber &&
1255 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1256 map->s_partition_type == UDF_SPARABLE_MAP15))
1257 break;
1258 }
1259
1260 if (i >= sbi->s_partitions) {
1261 udf_debug("Partition (%u) not found in partition map\n",
1262 partitionNumber);
1263 ret = 0;
1264 goto out_bh;
1265 }
1266
1267 ret = udf_fill_partdesc_info(sb, p, i);
1268 if (ret < 0)
1269 goto out_bh;
1270
1271 /*
1272 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1273 * PHYSICAL partitions are already set up
1274 */
1275 type1_idx = i;
1276 map = NULL; /* supress 'maybe used uninitialized' warning */
1277 for (i = 0; i < sbi->s_partitions; i++) {
1278 map = &sbi->s_partmaps[i];
1279
1280 if (map->s_partition_num == partitionNumber &&
1281 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1282 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1283 map->s_partition_type == UDF_METADATA_MAP25))
1284 break;
1285 }
1286
1287 if (i >= sbi->s_partitions) {
1288 ret = 0;
1289 goto out_bh;
1290 }
1291
1292 ret = udf_fill_partdesc_info(sb, p, i);
1293 if (ret < 0)
1294 goto out_bh;
1295
1296 if (map->s_partition_type == UDF_METADATA_MAP25) {
1297 ret = udf_load_metadata_files(sb, i, type1_idx);
1298 if (ret < 0) {
1299 udf_err(sb, "error loading MetaData partition map %d\n",
1300 i);
1301 goto out_bh;
1302 }
1303 } else {
1304 /*
1305 * If we have a partition with virtual map, we don't handle
1306 * writing to it (we overwrite blocks instead of relocating
1307 * them).
1308 */
1309 if (!sb_rdonly(sb)) {
1310 ret = -EACCES;
1311 goto out_bh;
1312 }
1313 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1314 ret = udf_load_vat(sb, i, type1_idx);
1315 if (ret < 0)
1316 goto out_bh;
1317 }
1318 ret = 0;
1319out_bh:
1320 /* In case loading failed, we handle cleanup in udf_fill_super */
1321 brelse(bh);
1322 return ret;
1323}
1324
1325static int udf_load_sparable_map(struct super_block *sb,
1326 struct udf_part_map *map,
1327 struct sparablePartitionMap *spm)
1328{
1329 uint32_t loc;
1330 uint16_t ident;
1331 struct sparingTable *st;
1332 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1333 int i;
1334 struct buffer_head *bh;
1335
1336 map->s_partition_type = UDF_SPARABLE_MAP15;
1337 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1338 if (!is_power_of_2(sdata->s_packet_len)) {
1339 udf_err(sb, "error loading logical volume descriptor: "
1340 "Invalid packet length %u\n",
1341 (unsigned)sdata->s_packet_len);
1342 return -EIO;
1343 }
1344 if (spm->numSparingTables > 4) {
1345 udf_err(sb, "error loading logical volume descriptor: "
1346 "Too many sparing tables (%d)\n",
1347 (int)spm->numSparingTables);
1348 return -EIO;
1349 }
1350 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1351 udf_err(sb, "error loading logical volume descriptor: "
1352 "Too big sparing table size (%u)\n",
1353 le32_to_cpu(spm->sizeSparingTable));
1354 return -EIO;
1355 }
1356
1357 for (i = 0; i < spm->numSparingTables; i++) {
1358 loc = le32_to_cpu(spm->locSparingTable[i]);
1359 bh = udf_read_tagged(sb, loc, loc, &ident);
1360 if (!bh)
1361 continue;
1362
1363 st = (struct sparingTable *)bh->b_data;
1364 if (ident != 0 ||
1365 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366 strlen(UDF_ID_SPARING)) ||
1367 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368 sb->s_blocksize) {
1369 brelse(bh);
1370 continue;
1371 }
1372
1373 sdata->s_spar_map[i] = bh;
1374 }
1375 map->s_partition_func = udf_get_pblock_spar15;
1376 return 0;
1377}
1378
1379static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380 struct kernel_lb_addr *fileset)
1381{
1382 struct logicalVolDesc *lvd;
1383 int i, offset;
1384 uint8_t type;
1385 struct udf_sb_info *sbi = UDF_SB(sb);
1386 struct genericPartitionMap *gpm;
1387 uint16_t ident;
1388 struct buffer_head *bh;
1389 unsigned int table_len;
1390 int ret;
1391
1392 bh = udf_read_tagged(sb, block, block, &ident);
1393 if (!bh)
1394 return -EAGAIN;
1395 BUG_ON(ident != TAG_IDENT_LVD);
1396 lvd = (struct logicalVolDesc *)bh->b_data;
1397 table_len = le32_to_cpu(lvd->mapTableLength);
1398 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399 udf_err(sb, "error loading logical volume descriptor: "
1400 "Partition table too long (%u > %lu)\n", table_len,
1401 sb->s_blocksize - sizeof(*lvd));
1402 ret = -EIO;
1403 goto out_bh;
1404 }
1405
1406 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407 "logical volume");
1408 if (ret)
1409 goto out_bh;
1410 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411 if (ret)
1412 goto out_bh;
1413
1414 for (i = 0, offset = 0;
1415 i < sbi->s_partitions && offset < table_len;
1416 i++, offset += gpm->partitionMapLength) {
1417 struct udf_part_map *map = &sbi->s_partmaps[i];
1418 gpm = (struct genericPartitionMap *)
1419 &(lvd->partitionMaps[offset]);
1420 type = gpm->partitionMapType;
1421 if (type == 1) {
1422 struct genericPartitionMap1 *gpm1 =
1423 (struct genericPartitionMap1 *)gpm;
1424 map->s_partition_type = UDF_TYPE1_MAP15;
1425 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427 map->s_partition_func = NULL;
1428 } else if (type == 2) {
1429 struct udfPartitionMap2 *upm2 =
1430 (struct udfPartitionMap2 *)gpm;
1431 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432 strlen(UDF_ID_VIRTUAL))) {
1433 u16 suf =
1434 le16_to_cpu(((__le16 *)upm2->partIdent.
1435 identSuffix)[0]);
1436 if (suf < 0x0200) {
1437 map->s_partition_type =
1438 UDF_VIRTUAL_MAP15;
1439 map->s_partition_func =
1440 udf_get_pblock_virt15;
1441 } else {
1442 map->s_partition_type =
1443 UDF_VIRTUAL_MAP20;
1444 map->s_partition_func =
1445 udf_get_pblock_virt20;
1446 }
1447 } else if (!strncmp(upm2->partIdent.ident,
1448 UDF_ID_SPARABLE,
1449 strlen(UDF_ID_SPARABLE))) {
1450 ret = udf_load_sparable_map(sb, map,
1451 (struct sparablePartitionMap *)gpm);
1452 if (ret < 0)
1453 goto out_bh;
1454 } else if (!strncmp(upm2->partIdent.ident,
1455 UDF_ID_METADATA,
1456 strlen(UDF_ID_METADATA))) {
1457 struct udf_meta_data *mdata =
1458 &map->s_type_specific.s_metadata;
1459 struct metadataPartitionMap *mdm =
1460 (struct metadataPartitionMap *)
1461 &(lvd->partitionMaps[offset]);
1462 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1463 i, type, UDF_ID_METADATA);
1464
1465 map->s_partition_type = UDF_METADATA_MAP25;
1466 map->s_partition_func = udf_get_pblock_meta25;
1467
1468 mdata->s_meta_file_loc =
1469 le32_to_cpu(mdm->metadataFileLoc);
1470 mdata->s_mirror_file_loc =
1471 le32_to_cpu(mdm->metadataMirrorFileLoc);
1472 mdata->s_bitmap_file_loc =
1473 le32_to_cpu(mdm->metadataBitmapFileLoc);
1474 mdata->s_alloc_unit_size =
1475 le32_to_cpu(mdm->allocUnitSize);
1476 mdata->s_align_unit_size =
1477 le16_to_cpu(mdm->alignUnitSize);
1478 if (mdm->flags & 0x01)
1479 mdata->s_flags |= MF_DUPLICATE_MD;
1480
1481 udf_debug("Metadata Ident suffix=0x%x\n",
1482 le16_to_cpu(*(__le16 *)
1483 mdm->partIdent.identSuffix));
1484 udf_debug("Metadata part num=%u\n",
1485 le16_to_cpu(mdm->partitionNum));
1486 udf_debug("Metadata part alloc unit size=%u\n",
1487 le32_to_cpu(mdm->allocUnitSize));
1488 udf_debug("Metadata file loc=%u\n",
1489 le32_to_cpu(mdm->metadataFileLoc));
1490 udf_debug("Mirror file loc=%u\n",
1491 le32_to_cpu(mdm->metadataMirrorFileLoc));
1492 udf_debug("Bitmap file loc=%u\n",
1493 le32_to_cpu(mdm->metadataBitmapFileLoc));
1494 udf_debug("Flags: %d %u\n",
1495 mdata->s_flags, mdm->flags);
1496 } else {
1497 udf_debug("Unknown ident: %s\n",
1498 upm2->partIdent.ident);
1499 continue;
1500 }
1501 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503 }
1504 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505 i, map->s_partition_num, type, map->s_volumeseqnum);
1506 }
1507
1508 if (fileset) {
1509 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510
1511 *fileset = lelb_to_cpu(la->extLocation);
1512 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513 fileset->logicalBlockNum,
1514 fileset->partitionReferenceNum);
1515 }
1516 if (lvd->integritySeqExt.extLength)
1517 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518 ret = 0;
1519
1520 if (!sbi->s_lvid_bh) {
1521 /* We can't generate unique IDs without a valid LVID */
1522 if (sb_rdonly(sb)) {
1523 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524 } else {
1525 udf_warn(sb, "Damaged or missing LVID, forcing "
1526 "readonly mount\n");
1527 ret = -EACCES;
1528 }
1529 }
1530out_bh:
1531 brelse(bh);
1532 return ret;
1533}
1534
1535/*
1536 * Find the prevailing Logical Volume Integrity Descriptor.
1537 */
1538static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539{
1540 struct buffer_head *bh, *final_bh;
1541 uint16_t ident;
1542 struct udf_sb_info *sbi = UDF_SB(sb);
1543 struct logicalVolIntegrityDesc *lvid;
1544 int indirections = 0;
1545 u32 parts, impuselen;
1546
1547 while (++indirections <= UDF_MAX_LVID_NESTING) {
1548 final_bh = NULL;
1549 while (loc.extLength > 0 &&
1550 (bh = udf_read_tagged(sb, loc.extLocation,
1551 loc.extLocation, &ident))) {
1552 if (ident != TAG_IDENT_LVID) {
1553 brelse(bh);
1554 break;
1555 }
1556
1557 brelse(final_bh);
1558 final_bh = bh;
1559
1560 loc.extLength -= sb->s_blocksize;
1561 loc.extLocation++;
1562 }
1563
1564 if (!final_bh)
1565 return;
1566
1567 brelse(sbi->s_lvid_bh);
1568 sbi->s_lvid_bh = final_bh;
1569
1570 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1571 if (lvid->nextIntegrityExt.extLength == 0)
1572 goto check;
1573
1574 loc = leea_to_cpu(lvid->nextIntegrityExt);
1575 }
1576
1577 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1578 UDF_MAX_LVID_NESTING);
1579out_err:
1580 brelse(sbi->s_lvid_bh);
1581 sbi->s_lvid_bh = NULL;
1582 return;
1583check:
1584 parts = le32_to_cpu(lvid->numOfPartitions);
1585 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1586 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1587 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1588 2 * parts * sizeof(u32) > sb->s_blocksize) {
1589 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1590 "ignoring.\n", parts, impuselen);
1591 goto out_err;
1592 }
1593}
1594
1595/*
1596 * Step for reallocation of table of partition descriptor sequence numbers.
1597 * Must be power of 2.
1598 */
1599#define PART_DESC_ALLOC_STEP 32
1600
1601struct part_desc_seq_scan_data {
1602 struct udf_vds_record rec;
1603 u32 partnum;
1604};
1605
1606struct desc_seq_scan_data {
1607 struct udf_vds_record vds[VDS_POS_LENGTH];
1608 unsigned int size_part_descs;
1609 unsigned int num_part_descs;
1610 struct part_desc_seq_scan_data *part_descs_loc;
1611};
1612
1613static struct udf_vds_record *handle_partition_descriptor(
1614 struct buffer_head *bh,
1615 struct desc_seq_scan_data *data)
1616{
1617 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1618 int partnum;
1619 int i;
1620
1621 partnum = le16_to_cpu(desc->partitionNumber);
1622 for (i = 0; i < data->num_part_descs; i++)
1623 if (partnum == data->part_descs_loc[i].partnum)
1624 return &(data->part_descs_loc[i].rec);
1625 if (data->num_part_descs >= data->size_part_descs) {
1626 struct part_desc_seq_scan_data *new_loc;
1627 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1628
1629 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1630 if (!new_loc)
1631 return ERR_PTR(-ENOMEM);
1632 memcpy(new_loc, data->part_descs_loc,
1633 data->size_part_descs * sizeof(*new_loc));
1634 kfree(data->part_descs_loc);
1635 data->part_descs_loc = new_loc;
1636 data->size_part_descs = new_size;
1637 }
1638 return &(data->part_descs_loc[data->num_part_descs++].rec);
1639}
1640
1641
1642static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1643 struct buffer_head *bh, struct desc_seq_scan_data *data)
1644{
1645 switch (ident) {
1646 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1648 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1649 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1650 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1651 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1652 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1653 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1654 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1655 return handle_partition_descriptor(bh, data);
1656 }
1657 return NULL;
1658}
1659
1660/*
1661 * Process a main/reserve volume descriptor sequence.
1662 * @block First block of first extent of the sequence.
1663 * @lastblock Lastblock of first extent of the sequence.
1664 * @fileset There we store extent containing root fileset
1665 *
1666 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1667 * sequence
1668 */
1669static noinline int udf_process_sequence(
1670 struct super_block *sb,
1671 sector_t block, sector_t lastblock,
1672 struct kernel_lb_addr *fileset)
1673{
1674 struct buffer_head *bh = NULL;
1675 struct udf_vds_record *curr;
1676 struct generic_desc *gd;
1677 struct volDescPtr *vdp;
1678 bool done = false;
1679 uint32_t vdsn;
1680 uint16_t ident;
1681 int ret;
1682 unsigned int indirections = 0;
1683 struct desc_seq_scan_data data;
1684 unsigned int i;
1685
1686 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1687 data.size_part_descs = PART_DESC_ALLOC_STEP;
1688 data.num_part_descs = 0;
1689 data.part_descs_loc = kcalloc(data.size_part_descs,
1690 sizeof(*data.part_descs_loc),
1691 GFP_KERNEL);
1692 if (!data.part_descs_loc)
1693 return -ENOMEM;
1694
1695 /*
1696 * Read the main descriptor sequence and find which descriptors
1697 * are in it.
1698 */
1699 for (; (!done && block <= lastblock); block++) {
1700 bh = udf_read_tagged(sb, block, block, &ident);
1701 if (!bh)
1702 break;
1703
1704 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1705 gd = (struct generic_desc *)bh->b_data;
1706 vdsn = le32_to_cpu(gd->volDescSeqNum);
1707 switch (ident) {
1708 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1709 if (++indirections > UDF_MAX_TD_NESTING) {
1710 udf_err(sb, "too many Volume Descriptor "
1711 "Pointers (max %u supported)\n",
1712 UDF_MAX_TD_NESTING);
1713 brelse(bh);
1714 ret = -EIO;
1715 goto out;
1716 }
1717
1718 vdp = (struct volDescPtr *)bh->b_data;
1719 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1720 lastblock = le32_to_cpu(
1721 vdp->nextVolDescSeqExt.extLength) >>
1722 sb->s_blocksize_bits;
1723 lastblock += block - 1;
1724 /* For loop is going to increment 'block' again */
1725 block--;
1726 break;
1727 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1728 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1729 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1730 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1731 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1732 curr = get_volume_descriptor_record(ident, bh, &data);
1733 if (IS_ERR(curr)) {
1734 brelse(bh);
1735 ret = PTR_ERR(curr);
1736 goto out;
1737 }
1738 /* Descriptor we don't care about? */
1739 if (!curr)
1740 break;
1741 if (vdsn >= curr->volDescSeqNum) {
1742 curr->volDescSeqNum = vdsn;
1743 curr->block = block;
1744 }
1745 break;
1746 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1747 done = true;
1748 break;
1749 }
1750 brelse(bh);
1751 }
1752 /*
1753 * Now read interesting descriptors again and process them
1754 * in a suitable order
1755 */
1756 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1757 udf_err(sb, "Primary Volume Descriptor not found!\n");
1758 ret = -EAGAIN;
1759 goto out;
1760 }
1761 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1762 if (ret < 0)
1763 goto out;
1764
1765 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1766 ret = udf_load_logicalvol(sb,
1767 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1768 fileset);
1769 if (ret < 0)
1770 goto out;
1771 }
1772
1773 /* Now handle prevailing Partition Descriptors */
1774 for (i = 0; i < data.num_part_descs; i++) {
1775 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1776 if (ret < 0)
1777 goto out;
1778 }
1779 ret = 0;
1780out:
1781 kfree(data.part_descs_loc);
1782 return ret;
1783}
1784
1785/*
1786 * Load Volume Descriptor Sequence described by anchor in bh
1787 *
1788 * Returns <0 on error, 0 on success
1789 */
1790static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1791 struct kernel_lb_addr *fileset)
1792{
1793 struct anchorVolDescPtr *anchor;
1794 sector_t main_s, main_e, reserve_s, reserve_e;
1795 int ret;
1796
1797 anchor = (struct anchorVolDescPtr *)bh->b_data;
1798
1799 /* Locate the main sequence */
1800 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1801 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1802 main_e = main_e >> sb->s_blocksize_bits;
1803 main_e += main_s - 1;
1804
1805 /* Locate the reserve sequence */
1806 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1807 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1808 reserve_e = reserve_e >> sb->s_blocksize_bits;
1809 reserve_e += reserve_s - 1;
1810
1811 /* Process the main & reserve sequences */
1812 /* responsible for finding the PartitionDesc(s) */
1813 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1814 if (ret != -EAGAIN)
1815 return ret;
1816 udf_sb_free_partitions(sb);
1817 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1818 if (ret < 0) {
1819 udf_sb_free_partitions(sb);
1820 /* No sequence was OK, return -EIO */
1821 if (ret == -EAGAIN)
1822 ret = -EIO;
1823 }
1824 return ret;
1825}
1826
1827/*
1828 * Check whether there is an anchor block in the given block and
1829 * load Volume Descriptor Sequence if so.
1830 *
1831 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1832 * block
1833 */
1834static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1835 struct kernel_lb_addr *fileset)
1836{
1837 struct buffer_head *bh;
1838 uint16_t ident;
1839 int ret;
1840
1841 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1842 udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
1843 return -EAGAIN;
1844
1845 bh = udf_read_tagged(sb, block, block, &ident);
1846 if (!bh)
1847 return -EAGAIN;
1848 if (ident != TAG_IDENT_AVDP) {
1849 brelse(bh);
1850 return -EAGAIN;
1851 }
1852 ret = udf_load_sequence(sb, bh, fileset);
1853 brelse(bh);
1854 return ret;
1855}
1856
1857/*
1858 * Search for an anchor volume descriptor pointer.
1859 *
1860 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861 * of anchors.
1862 */
1863static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864 struct kernel_lb_addr *fileset)
1865{
1866 sector_t last[6];
1867 int i;
1868 struct udf_sb_info *sbi = UDF_SB(sb);
1869 int last_count = 0;
1870 int ret;
1871
1872 /* First try user provided anchor */
1873 if (sbi->s_anchor) {
1874 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875 if (ret != -EAGAIN)
1876 return ret;
1877 }
1878 /*
1879 * according to spec, anchor is in either:
1880 * block 256
1881 * lastblock-256
1882 * lastblock
1883 * however, if the disc isn't closed, it could be 512.
1884 */
1885 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886 if (ret != -EAGAIN)
1887 return ret;
1888 /*
1889 * The trouble is which block is the last one. Drives often misreport
1890 * this so we try various possibilities.
1891 */
1892 last[last_count++] = *lastblock;
1893 if (*lastblock >= 1)
1894 last[last_count++] = *lastblock - 1;
1895 last[last_count++] = *lastblock + 1;
1896 if (*lastblock >= 2)
1897 last[last_count++] = *lastblock - 2;
1898 if (*lastblock >= 150)
1899 last[last_count++] = *lastblock - 150;
1900 if (*lastblock >= 152)
1901 last[last_count++] = *lastblock - 152;
1902
1903 for (i = 0; i < last_count; i++) {
1904 if (last[i] >= sb_bdev_nr_blocks(sb))
1905 continue;
1906 ret = udf_check_anchor_block(sb, last[i], fileset);
1907 if (ret != -EAGAIN) {
1908 if (!ret)
1909 *lastblock = last[i];
1910 return ret;
1911 }
1912 if (last[i] < 256)
1913 continue;
1914 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1915 if (ret != -EAGAIN) {
1916 if (!ret)
1917 *lastblock = last[i];
1918 return ret;
1919 }
1920 }
1921
1922 /* Finally try block 512 in case media is open */
1923 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1924}
1925
1926/*
1927 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1928 * area specified by it. The function expects sbi->s_lastblock to be the last
1929 * block on the media.
1930 *
1931 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1932 * was not found.
1933 */
1934static int udf_find_anchor(struct super_block *sb,
1935 struct kernel_lb_addr *fileset)
1936{
1937 struct udf_sb_info *sbi = UDF_SB(sb);
1938 sector_t lastblock = sbi->s_last_block;
1939 int ret;
1940
1941 ret = udf_scan_anchors(sb, &lastblock, fileset);
1942 if (ret != -EAGAIN)
1943 goto out;
1944
1945 /* No anchor found? Try VARCONV conversion of block numbers */
1946 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1947 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1948 /* Firstly, we try to not convert number of the last block */
1949 ret = udf_scan_anchors(sb, &lastblock, fileset);
1950 if (ret != -EAGAIN)
1951 goto out;
1952
1953 lastblock = sbi->s_last_block;
1954 /* Secondly, we try with converted number of the last block */
1955 ret = udf_scan_anchors(sb, &lastblock, fileset);
1956 if (ret < 0) {
1957 /* VARCONV didn't help. Clear it. */
1958 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1959 }
1960out:
1961 if (ret == 0)
1962 sbi->s_last_block = lastblock;
1963 return ret;
1964}
1965
1966/*
1967 * Check Volume Structure Descriptor, find Anchor block and load Volume
1968 * Descriptor Sequence.
1969 *
1970 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1971 * block was not found.
1972 */
1973static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1974 int silent, struct kernel_lb_addr *fileset)
1975{
1976 struct udf_sb_info *sbi = UDF_SB(sb);
1977 int nsr = 0;
1978 int ret;
1979
1980 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1981 if (!silent)
1982 udf_warn(sb, "Bad block size\n");
1983 return -EINVAL;
1984 }
1985 sbi->s_last_block = uopt->lastblock;
1986 if (!uopt->novrs) {
1987 /* Check that it is NSR02 compliant */
1988 nsr = udf_check_vsd(sb);
1989 if (!nsr) {
1990 if (!silent)
1991 udf_warn(sb, "No VRS found\n");
1992 return -EINVAL;
1993 }
1994 if (nsr == -1)
1995 udf_debug("Failed to read sector at offset %d. "
1996 "Assuming open disc. Skipping validity "
1997 "check\n", VSD_FIRST_SECTOR_OFFSET);
1998 if (!sbi->s_last_block)
1999 sbi->s_last_block = udf_get_last_block(sb);
2000 } else {
2001 udf_debug("Validity check skipped because of novrs option\n");
2002 }
2003
2004 /* Look for anchor block and load Volume Descriptor Sequence */
2005 sbi->s_anchor = uopt->anchor;
2006 ret = udf_find_anchor(sb, fileset);
2007 if (ret < 0) {
2008 if (!silent && ret == -EAGAIN)
2009 udf_warn(sb, "No anchor found\n");
2010 return ret;
2011 }
2012 return 0;
2013}
2014
2015static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2016{
2017 struct timespec64 ts;
2018
2019 ktime_get_real_ts64(&ts);
2020 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2021 lvid->descTag.descCRC = cpu_to_le16(
2022 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023 le16_to_cpu(lvid->descTag.descCRCLength)));
2024 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2025}
2026
2027static void udf_open_lvid(struct super_block *sb)
2028{
2029 struct udf_sb_info *sbi = UDF_SB(sb);
2030 struct buffer_head *bh = sbi->s_lvid_bh;
2031 struct logicalVolIntegrityDesc *lvid;
2032 struct logicalVolIntegrityDescImpUse *lvidiu;
2033
2034 if (!bh)
2035 return;
2036 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2037 lvidiu = udf_sb_lvidiu(sb);
2038 if (!lvidiu)
2039 return;
2040
2041 mutex_lock(&sbi->s_alloc_mutex);
2042 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2043 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2044 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2045 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2046 else
2047 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2048
2049 udf_finalize_lvid(lvid);
2050 mark_buffer_dirty(bh);
2051 sbi->s_lvid_dirty = 0;
2052 mutex_unlock(&sbi->s_alloc_mutex);
2053 /* Make opening of filesystem visible on the media immediately */
2054 sync_dirty_buffer(bh);
2055}
2056
2057static void udf_close_lvid(struct super_block *sb)
2058{
2059 struct udf_sb_info *sbi = UDF_SB(sb);
2060 struct buffer_head *bh = sbi->s_lvid_bh;
2061 struct logicalVolIntegrityDesc *lvid;
2062 struct logicalVolIntegrityDescImpUse *lvidiu;
2063
2064 if (!bh)
2065 return;
2066 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2067 lvidiu = udf_sb_lvidiu(sb);
2068 if (!lvidiu)
2069 return;
2070
2071 mutex_lock(&sbi->s_alloc_mutex);
2072 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2073 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2074 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2075 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2076 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2077 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2078 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2079 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2080 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2081 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2082
2083 /*
2084 * We set buffer uptodate unconditionally here to avoid spurious
2085 * warnings from mark_buffer_dirty() when previous EIO has marked
2086 * the buffer as !uptodate
2087 */
2088 set_buffer_uptodate(bh);
2089 udf_finalize_lvid(lvid);
2090 mark_buffer_dirty(bh);
2091 sbi->s_lvid_dirty = 0;
2092 mutex_unlock(&sbi->s_alloc_mutex);
2093 /* Make closing of filesystem visible on the media immediately */
2094 sync_dirty_buffer(bh);
2095}
2096
2097u64 lvid_get_unique_id(struct super_block *sb)
2098{
2099 struct buffer_head *bh;
2100 struct udf_sb_info *sbi = UDF_SB(sb);
2101 struct logicalVolIntegrityDesc *lvid;
2102 struct logicalVolHeaderDesc *lvhd;
2103 u64 uniqueID;
2104 u64 ret;
2105
2106 bh = sbi->s_lvid_bh;
2107 if (!bh)
2108 return 0;
2109
2110 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2111 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2112
2113 mutex_lock(&sbi->s_alloc_mutex);
2114 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2115 if (!(++uniqueID & 0xFFFFFFFF))
2116 uniqueID += 16;
2117 lvhd->uniqueID = cpu_to_le64(uniqueID);
2118 udf_updated_lvid(sb);
2119 mutex_unlock(&sbi->s_alloc_mutex);
2120
2121 return ret;
2122}
2123
2124static int udf_fill_super(struct super_block *sb, void *options, int silent)
2125{
2126 int ret = -EINVAL;
2127 struct inode *inode = NULL;
2128 struct udf_options uopt;
2129 struct kernel_lb_addr rootdir, fileset;
2130 struct udf_sb_info *sbi;
2131 bool lvid_open = false;
2132
2133 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2134 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2135 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2136 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2137 uopt.umask = 0;
2138 uopt.fmode = UDF_INVALID_MODE;
2139 uopt.dmode = UDF_INVALID_MODE;
2140 uopt.nls_map = NULL;
2141
2142 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2143 if (!sbi)
2144 return -ENOMEM;
2145
2146 sb->s_fs_info = sbi;
2147
2148 mutex_init(&sbi->s_alloc_mutex);
2149
2150 if (!udf_parse_options((char *)options, &uopt, false))
2151 goto parse_options_failure;
2152
2153 fileset.logicalBlockNum = 0xFFFFFFFF;
2154 fileset.partitionReferenceNum = 0xFFFF;
2155
2156 sbi->s_flags = uopt.flags;
2157 sbi->s_uid = uopt.uid;
2158 sbi->s_gid = uopt.gid;
2159 sbi->s_umask = uopt.umask;
2160 sbi->s_fmode = uopt.fmode;
2161 sbi->s_dmode = uopt.dmode;
2162 sbi->s_nls_map = uopt.nls_map;
2163 rwlock_init(&sbi->s_cred_lock);
2164
2165 if (uopt.session == 0xFFFFFFFF)
2166 sbi->s_session = udf_get_last_session(sb);
2167 else
2168 sbi->s_session = uopt.session;
2169
2170 udf_debug("Multi-session=%d\n", sbi->s_session);
2171
2172 /* Fill in the rest of the superblock */
2173 sb->s_op = &udf_sb_ops;
2174 sb->s_export_op = &udf_export_ops;
2175
2176 sb->s_magic = UDF_SUPER_MAGIC;
2177 sb->s_time_gran = 1000;
2178
2179 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2180 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2181 } else {
2182 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2183 while (uopt.blocksize <= 4096) {
2184 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185 if (ret < 0) {
2186 if (!silent && ret != -EACCES) {
2187 pr_notice("Scanning with blocksize %u failed\n",
2188 uopt.blocksize);
2189 }
2190 brelse(sbi->s_lvid_bh);
2191 sbi->s_lvid_bh = NULL;
2192 /*
2193 * EACCES is special - we want to propagate to
2194 * upper layers that we cannot handle RW mount.
2195 */
2196 if (ret == -EACCES)
2197 break;
2198 } else
2199 break;
2200
2201 uopt.blocksize <<= 1;
2202 }
2203 }
2204 if (ret < 0) {
2205 if (ret == -EAGAIN) {
2206 udf_warn(sb, "No partition found (1)\n");
2207 ret = -EINVAL;
2208 }
2209 goto error_out;
2210 }
2211
2212 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2213
2214 if (sbi->s_lvid_bh) {
2215 struct logicalVolIntegrityDescImpUse *lvidiu =
2216 udf_sb_lvidiu(sb);
2217 uint16_t minUDFReadRev;
2218 uint16_t minUDFWriteRev;
2219
2220 if (!lvidiu) {
2221 ret = -EINVAL;
2222 goto error_out;
2223 }
2224 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2225 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2226 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2227 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2228 minUDFReadRev,
2229 UDF_MAX_READ_VERSION);
2230 ret = -EINVAL;
2231 goto error_out;
2232 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2233 if (!sb_rdonly(sb)) {
2234 ret = -EACCES;
2235 goto error_out;
2236 }
2237 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2238 }
2239
2240 sbi->s_udfrev = minUDFWriteRev;
2241
2242 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2243 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2244 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2245 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2246 }
2247
2248 if (!sbi->s_partitions) {
2249 udf_warn(sb, "No partition found (2)\n");
2250 ret = -EINVAL;
2251 goto error_out;
2252 }
2253
2254 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2255 UDF_PART_FLAG_READ_ONLY) {
2256 if (!sb_rdonly(sb)) {
2257 ret = -EACCES;
2258 goto error_out;
2259 }
2260 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2261 }
2262
2263 ret = udf_find_fileset(sb, &fileset, &rootdir);
2264 if (ret < 0) {
2265 udf_warn(sb, "No fileset found\n");
2266 goto error_out;
2267 }
2268
2269 if (!silent) {
2270 struct timestamp ts;
2271 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2272 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2273 sbi->s_volume_ident,
2274 le16_to_cpu(ts.year), ts.month, ts.day,
2275 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2276 }
2277 if (!sb_rdonly(sb)) {
2278 udf_open_lvid(sb);
2279 lvid_open = true;
2280 }
2281
2282 /* Assign the root inode */
2283 /* assign inodes by physical block number */
2284 /* perhaps it's not extensible enough, but for now ... */
2285 inode = udf_iget(sb, &rootdir);
2286 if (IS_ERR(inode)) {
2287 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2288 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2289 ret = PTR_ERR(inode);
2290 goto error_out;
2291 }
2292
2293 /* Allocate a dentry for the root inode */
2294 sb->s_root = d_make_root(inode);
2295 if (!sb->s_root) {
2296 udf_err(sb, "Couldn't allocate root dentry\n");
2297 ret = -ENOMEM;
2298 goto error_out;
2299 }
2300 sb->s_maxbytes = MAX_LFS_FILESIZE;
2301 sb->s_max_links = UDF_MAX_LINKS;
2302 return 0;
2303
2304error_out:
2305 iput(sbi->s_vat_inode);
2306parse_options_failure:
2307 unload_nls(uopt.nls_map);
2308 if (lvid_open)
2309 udf_close_lvid(sb);
2310 brelse(sbi->s_lvid_bh);
2311 udf_sb_free_partitions(sb);
2312 kfree(sbi);
2313 sb->s_fs_info = NULL;
2314
2315 return ret;
2316}
2317
2318void _udf_err(struct super_block *sb, const char *function,
2319 const char *fmt, ...)
2320{
2321 struct va_format vaf;
2322 va_list args;
2323
2324 va_start(args, fmt);
2325
2326 vaf.fmt = fmt;
2327 vaf.va = &args;
2328
2329 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330
2331 va_end(args);
2332}
2333
2334void _udf_warn(struct super_block *sb, const char *function,
2335 const char *fmt, ...)
2336{
2337 struct va_format vaf;
2338 va_list args;
2339
2340 va_start(args, fmt);
2341
2342 vaf.fmt = fmt;
2343 vaf.va = &args;
2344
2345 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346
2347 va_end(args);
2348}
2349
2350static void udf_put_super(struct super_block *sb)
2351{
2352 struct udf_sb_info *sbi;
2353
2354 sbi = UDF_SB(sb);
2355
2356 iput(sbi->s_vat_inode);
2357 unload_nls(sbi->s_nls_map);
2358 if (!sb_rdonly(sb))
2359 udf_close_lvid(sb);
2360 brelse(sbi->s_lvid_bh);
2361 udf_sb_free_partitions(sb);
2362 mutex_destroy(&sbi->s_alloc_mutex);
2363 kfree(sb->s_fs_info);
2364 sb->s_fs_info = NULL;
2365}
2366
2367static int udf_sync_fs(struct super_block *sb, int wait)
2368{
2369 struct udf_sb_info *sbi = UDF_SB(sb);
2370
2371 mutex_lock(&sbi->s_alloc_mutex);
2372 if (sbi->s_lvid_dirty) {
2373 struct buffer_head *bh = sbi->s_lvid_bh;
2374 struct logicalVolIntegrityDesc *lvid;
2375
2376 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2377 udf_finalize_lvid(lvid);
2378
2379 /*
2380 * Blockdevice will be synced later so we don't have to submit
2381 * the buffer for IO
2382 */
2383 mark_buffer_dirty(bh);
2384 sbi->s_lvid_dirty = 0;
2385 }
2386 mutex_unlock(&sbi->s_alloc_mutex);
2387
2388 return 0;
2389}
2390
2391static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2392{
2393 struct super_block *sb = dentry->d_sb;
2394 struct udf_sb_info *sbi = UDF_SB(sb);
2395 struct logicalVolIntegrityDescImpUse *lvidiu;
2396 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2397
2398 lvidiu = udf_sb_lvidiu(sb);
2399 buf->f_type = UDF_SUPER_MAGIC;
2400 buf->f_bsize = sb->s_blocksize;
2401 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2402 buf->f_bfree = udf_count_free(sb);
2403 buf->f_bavail = buf->f_bfree;
2404 /*
2405 * Let's pretend each free block is also a free 'inode' since UDF does
2406 * not have separate preallocated table of inodes.
2407 */
2408 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2409 le32_to_cpu(lvidiu->numDirs)) : 0)
2410 + buf->f_bfree;
2411 buf->f_ffree = buf->f_bfree;
2412 buf->f_namelen = UDF_NAME_LEN;
2413 buf->f_fsid = u64_to_fsid(id);
2414
2415 return 0;
2416}
2417
2418static unsigned int udf_count_free_bitmap(struct super_block *sb,
2419 struct udf_bitmap *bitmap)
2420{
2421 struct buffer_head *bh = NULL;
2422 unsigned int accum = 0;
2423 int index;
2424 udf_pblk_t block = 0, newblock;
2425 struct kernel_lb_addr loc;
2426 uint32_t bytes;
2427 uint8_t *ptr;
2428 uint16_t ident;
2429 struct spaceBitmapDesc *bm;
2430
2431 loc.logicalBlockNum = bitmap->s_extPosition;
2432 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2433 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2434
2435 if (!bh) {
2436 udf_err(sb, "udf_count_free failed\n");
2437 goto out;
2438 } else if (ident != TAG_IDENT_SBD) {
2439 brelse(bh);
2440 udf_err(sb, "udf_count_free failed\n");
2441 goto out;
2442 }
2443
2444 bm = (struct spaceBitmapDesc *)bh->b_data;
2445 bytes = le32_to_cpu(bm->numOfBytes);
2446 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2447 ptr = (uint8_t *)bh->b_data;
2448
2449 while (bytes > 0) {
2450 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2451 accum += bitmap_weight((const unsigned long *)(ptr + index),
2452 cur_bytes * 8);
2453 bytes -= cur_bytes;
2454 if (bytes) {
2455 brelse(bh);
2456 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2457 bh = udf_tread(sb, newblock);
2458 if (!bh) {
2459 udf_debug("read failed\n");
2460 goto out;
2461 }
2462 index = 0;
2463 ptr = (uint8_t *)bh->b_data;
2464 }
2465 }
2466 brelse(bh);
2467out:
2468 return accum;
2469}
2470
2471static unsigned int udf_count_free_table(struct super_block *sb,
2472 struct inode *table)
2473{
2474 unsigned int accum = 0;
2475 uint32_t elen;
2476 struct kernel_lb_addr eloc;
2477 struct extent_position epos;
2478
2479 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2480 epos.block = UDF_I(table)->i_location;
2481 epos.offset = sizeof(struct unallocSpaceEntry);
2482 epos.bh = NULL;
2483
2484 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2485 accum += (elen >> table->i_sb->s_blocksize_bits);
2486
2487 brelse(epos.bh);
2488 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2489
2490 return accum;
2491}
2492
2493static unsigned int udf_count_free(struct super_block *sb)
2494{
2495 unsigned int accum = 0;
2496 struct udf_sb_info *sbi = UDF_SB(sb);
2497 struct udf_part_map *map;
2498 unsigned int part = sbi->s_partition;
2499 int ptype = sbi->s_partmaps[part].s_partition_type;
2500
2501 if (ptype == UDF_METADATA_MAP25) {
2502 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2503 s_phys_partition_ref;
2504 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2505 /*
2506 * Filesystems with VAT are append-only and we cannot write to
2507 * them. Let's just report 0 here.
2508 */
2509 return 0;
2510 }
2511
2512 if (sbi->s_lvid_bh) {
2513 struct logicalVolIntegrityDesc *lvid =
2514 (struct logicalVolIntegrityDesc *)
2515 sbi->s_lvid_bh->b_data;
2516 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2517 accum = le32_to_cpu(
2518 lvid->freeSpaceTable[part]);
2519 if (accum == 0xFFFFFFFF)
2520 accum = 0;
2521 }
2522 }
2523
2524 if (accum)
2525 return accum;
2526
2527 map = &sbi->s_partmaps[part];
2528 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2529 accum += udf_count_free_bitmap(sb,
2530 map->s_uspace.s_bitmap);
2531 }
2532 if (accum)
2533 return accum;
2534
2535 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2536 accum += udf_count_free_table(sb,
2537 map->s_uspace.s_table);
2538 }
2539 return accum;
2540}
2541
2542MODULE_AUTHOR("Ben Fennema");
2543MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2544MODULE_LICENSE("GPL");
2545module_init(init_udf_fs)
2546module_exit(exit_udf_fs)
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/buffer_head.h>
52#include <linux/vfs.h>
53#include <linux/vmalloc.h>
54#include <linux/errno.h>
55#include <linux/mount.h>
56#include <linux/seq_file.h>
57#include <linux/bitmap.h>
58#include <linux/crc-itu-t.h>
59#include <linux/log2.h>
60#include <asm/byteorder.h>
61
62#include "udf_sb.h"
63#include "udf_i.h"
64
65#include <linux/init.h>
66#include <asm/uaccess.h>
67
68#define VDS_POS_PRIMARY_VOL_DESC 0
69#define VDS_POS_UNALLOC_SPACE_DESC 1
70#define VDS_POS_LOGICAL_VOL_DESC 2
71#define VDS_POS_PARTITION_DESC 3
72#define VDS_POS_IMP_USE_VOL_DESC 4
73#define VDS_POS_VOL_DESC_PTR 5
74#define VDS_POS_TERMINATING_DESC 6
75#define VDS_POS_LENGTH 7
76
77#define UDF_DEFAULT_BLOCKSIZE 2048
78
79#define VSD_FIRST_SECTOR_OFFSET 32768
80#define VSD_MAX_SECTOR_OFFSET 0x800000
81
82enum { UDF_MAX_LINKS = 0xffff };
83
84/* These are the "meat" - everything else is stuffing */
85static int udf_fill_super(struct super_block *, void *, int);
86static void udf_put_super(struct super_block *);
87static int udf_sync_fs(struct super_block *, int);
88static int udf_remount_fs(struct super_block *, int *, char *);
89static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
90static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
91 struct kernel_lb_addr *);
92static void udf_load_fileset(struct super_block *, struct buffer_head *,
93 struct kernel_lb_addr *);
94static void udf_open_lvid(struct super_block *);
95static void udf_close_lvid(struct super_block *);
96static unsigned int udf_count_free(struct super_block *);
97static int udf_statfs(struct dentry *, struct kstatfs *);
98static int udf_show_options(struct seq_file *, struct dentry *);
99
100struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
101{
102 struct logicalVolIntegrityDesc *lvid;
103 unsigned int partnum;
104 unsigned int offset;
105
106 if (!UDF_SB(sb)->s_lvid_bh)
107 return NULL;
108 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
109 partnum = le32_to_cpu(lvid->numOfPartitions);
110 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
111 offsetof(struct logicalVolIntegrityDesc, impUse)) /
112 (2 * sizeof(uint32_t)) < partnum) {
113 udf_err(sb, "Logical volume integrity descriptor corrupted "
114 "(numOfPartitions = %u)!\n", partnum);
115 return NULL;
116 }
117 /* The offset is to skip freeSpaceTable and sizeTable arrays */
118 offset = partnum * 2 * sizeof(uint32_t);
119 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
120}
121
122/* UDF filesystem type */
123static struct dentry *udf_mount(struct file_system_type *fs_type,
124 int flags, const char *dev_name, void *data)
125{
126 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127}
128
129static struct file_system_type udf_fstype = {
130 .owner = THIS_MODULE,
131 .name = "udf",
132 .mount = udf_mount,
133 .kill_sb = kill_block_super,
134 .fs_flags = FS_REQUIRES_DEV,
135};
136MODULE_ALIAS_FS("udf");
137
138static struct kmem_cache *udf_inode_cachep;
139
140static struct inode *udf_alloc_inode(struct super_block *sb)
141{
142 struct udf_inode_info *ei;
143 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144 if (!ei)
145 return NULL;
146
147 ei->i_unique = 0;
148 ei->i_lenExtents = 0;
149 ei->i_next_alloc_block = 0;
150 ei->i_next_alloc_goal = 0;
151 ei->i_strat4096 = 0;
152 init_rwsem(&ei->i_data_sem);
153 ei->cached_extent.lstart = -1;
154 spin_lock_init(&ei->i_extent_cache_lock);
155
156 return &ei->vfs_inode;
157}
158
159static void udf_i_callback(struct rcu_head *head)
160{
161 struct inode *inode = container_of(head, struct inode, i_rcu);
162 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
163}
164
165static void udf_destroy_inode(struct inode *inode)
166{
167 call_rcu(&inode->i_rcu, udf_i_callback);
168}
169
170static void init_once(void *foo)
171{
172 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
173
174 ei->i_ext.i_data = NULL;
175 inode_init_once(&ei->vfs_inode);
176}
177
178static int __init init_inodecache(void)
179{
180 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
181 sizeof(struct udf_inode_info),
182 0, (SLAB_RECLAIM_ACCOUNT |
183 SLAB_MEM_SPREAD),
184 init_once);
185 if (!udf_inode_cachep)
186 return -ENOMEM;
187 return 0;
188}
189
190static void destroy_inodecache(void)
191{
192 /*
193 * Make sure all delayed rcu free inodes are flushed before we
194 * destroy cache.
195 */
196 rcu_barrier();
197 kmem_cache_destroy(udf_inode_cachep);
198}
199
200/* Superblock operations */
201static const struct super_operations udf_sb_ops = {
202 .alloc_inode = udf_alloc_inode,
203 .destroy_inode = udf_destroy_inode,
204 .write_inode = udf_write_inode,
205 .evict_inode = udf_evict_inode,
206 .put_super = udf_put_super,
207 .sync_fs = udf_sync_fs,
208 .statfs = udf_statfs,
209 .remount_fs = udf_remount_fs,
210 .show_options = udf_show_options,
211};
212
213struct udf_options {
214 unsigned char novrs;
215 unsigned int blocksize;
216 unsigned int session;
217 unsigned int lastblock;
218 unsigned int anchor;
219 unsigned int volume;
220 unsigned short partition;
221 unsigned int fileset;
222 unsigned int rootdir;
223 unsigned int flags;
224 umode_t umask;
225 kgid_t gid;
226 kuid_t uid;
227 umode_t fmode;
228 umode_t dmode;
229 struct nls_table *nls_map;
230};
231
232static int __init init_udf_fs(void)
233{
234 int err;
235
236 err = init_inodecache();
237 if (err)
238 goto out1;
239 err = register_filesystem(&udf_fstype);
240 if (err)
241 goto out;
242
243 return 0;
244
245out:
246 destroy_inodecache();
247
248out1:
249 return err;
250}
251
252static void __exit exit_udf_fs(void)
253{
254 unregister_filesystem(&udf_fstype);
255 destroy_inodecache();
256}
257
258module_init(init_udf_fs)
259module_exit(exit_udf_fs)
260
261static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262{
263 struct udf_sb_info *sbi = UDF_SB(sb);
264
265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266 GFP_KERNEL);
267 if (!sbi->s_partmaps) {
268 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269 count);
270 sbi->s_partitions = 0;
271 return -ENOMEM;
272 }
273
274 sbi->s_partitions = count;
275 return 0;
276}
277
278static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279{
280 int i;
281 int nr_groups = bitmap->s_nr_groups;
282 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283 nr_groups);
284
285 for (i = 0; i < nr_groups; i++)
286 if (bitmap->s_block_bitmap[i])
287 brelse(bitmap->s_block_bitmap[i]);
288
289 if (size <= PAGE_SIZE)
290 kfree(bitmap);
291 else
292 vfree(bitmap);
293}
294
295static void udf_free_partition(struct udf_part_map *map)
296{
297 int i;
298 struct udf_meta_data *mdata;
299
300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301 iput(map->s_uspace.s_table);
302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303 iput(map->s_fspace.s_table);
304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308 if (map->s_partition_type == UDF_SPARABLE_MAP15)
309 for (i = 0; i < 4; i++)
310 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311 else if (map->s_partition_type == UDF_METADATA_MAP25) {
312 mdata = &map->s_type_specific.s_metadata;
313 iput(mdata->s_metadata_fe);
314 mdata->s_metadata_fe = NULL;
315
316 iput(mdata->s_mirror_fe);
317 mdata->s_mirror_fe = NULL;
318
319 iput(mdata->s_bitmap_fe);
320 mdata->s_bitmap_fe = NULL;
321 }
322}
323
324static void udf_sb_free_partitions(struct super_block *sb)
325{
326 struct udf_sb_info *sbi = UDF_SB(sb);
327 int i;
328 if (sbi->s_partmaps == NULL)
329 return;
330 for (i = 0; i < sbi->s_partitions; i++)
331 udf_free_partition(&sbi->s_partmaps[i]);
332 kfree(sbi->s_partmaps);
333 sbi->s_partmaps = NULL;
334}
335
336static int udf_show_options(struct seq_file *seq, struct dentry *root)
337{
338 struct super_block *sb = root->d_sb;
339 struct udf_sb_info *sbi = UDF_SB(sb);
340
341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342 seq_puts(seq, ",nostrict");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346 seq_puts(seq, ",unhide");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348 seq_puts(seq, ",undelete");
349 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350 seq_puts(seq, ",noadinicb");
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352 seq_puts(seq, ",shortad");
353 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354 seq_puts(seq, ",uid=forget");
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356 seq_puts(seq, ",uid=ignore");
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358 seq_puts(seq, ",gid=forget");
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360 seq_puts(seq, ",gid=ignore");
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365 if (sbi->s_umask != 0)
366 seq_printf(seq, ",umask=%ho", sbi->s_umask);
367 if (sbi->s_fmode != UDF_INVALID_MODE)
368 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369 if (sbi->s_dmode != UDF_INVALID_MODE)
370 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372 seq_printf(seq, ",session=%u", sbi->s_session);
373 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375 if (sbi->s_anchor != 0)
376 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377 /*
378 * volume, partition, fileset and rootdir seem to be ignored
379 * currently
380 */
381 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382 seq_puts(seq, ",utf8");
383 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385
386 return 0;
387}
388
389/*
390 * udf_parse_options
391 *
392 * PURPOSE
393 * Parse mount options.
394 *
395 * DESCRIPTION
396 * The following mount options are supported:
397 *
398 * gid= Set the default group.
399 * umask= Set the default umask.
400 * mode= Set the default file permissions.
401 * dmode= Set the default directory permissions.
402 * uid= Set the default user.
403 * bs= Set the block size.
404 * unhide Show otherwise hidden files.
405 * undelete Show deleted files in lists.
406 * adinicb Embed data in the inode (default)
407 * noadinicb Don't embed data in the inode
408 * shortad Use short ad's
409 * longad Use long ad's (default)
410 * nostrict Unset strict conformance
411 * iocharset= Set the NLS character set
412 *
413 * The remaining are for debugging and disaster recovery:
414 *
415 * novrs Skip volume sequence recognition
416 *
417 * The following expect a offset from 0.
418 *
419 * session= Set the CDROM session (default= last session)
420 * anchor= Override standard anchor location. (default= 256)
421 * volume= Override the VolumeDesc location. (unused)
422 * partition= Override the PartitionDesc location. (unused)
423 * lastblock= Set the last block of the filesystem/
424 *
425 * The following expect a offset from the partition root.
426 *
427 * fileset= Override the fileset block location. (unused)
428 * rootdir= Override the root directory location. (unused)
429 * WARNING: overriding the rootdir to a non-directory may
430 * yield highly unpredictable results.
431 *
432 * PRE-CONDITIONS
433 * options Pointer to mount options string.
434 * uopts Pointer to mount options variable.
435 *
436 * POST-CONDITIONS
437 * <return> 1 Mount options parsed okay.
438 * <return> 0 Error parsing mount options.
439 *
440 * HISTORY
441 * July 1, 1997 - Andrew E. Mileski
442 * Written, tested, and released.
443 */
444
445enum {
446 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450 Opt_rootdir, Opt_utf8, Opt_iocharset,
451 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452 Opt_fmode, Opt_dmode
453};
454
455static const match_table_t tokens = {
456 {Opt_novrs, "novrs"},
457 {Opt_nostrict, "nostrict"},
458 {Opt_bs, "bs=%u"},
459 {Opt_unhide, "unhide"},
460 {Opt_undelete, "undelete"},
461 {Opt_noadinicb, "noadinicb"},
462 {Opt_adinicb, "adinicb"},
463 {Opt_shortad, "shortad"},
464 {Opt_longad, "longad"},
465 {Opt_uforget, "uid=forget"},
466 {Opt_uignore, "uid=ignore"},
467 {Opt_gforget, "gid=forget"},
468 {Opt_gignore, "gid=ignore"},
469 {Opt_gid, "gid=%u"},
470 {Opt_uid, "uid=%u"},
471 {Opt_umask, "umask=%o"},
472 {Opt_session, "session=%u"},
473 {Opt_lastblock, "lastblock=%u"},
474 {Opt_anchor, "anchor=%u"},
475 {Opt_volume, "volume=%u"},
476 {Opt_partition, "partition=%u"},
477 {Opt_fileset, "fileset=%u"},
478 {Opt_rootdir, "rootdir=%u"},
479 {Opt_utf8, "utf8"},
480 {Opt_iocharset, "iocharset=%s"},
481 {Opt_fmode, "mode=%o"},
482 {Opt_dmode, "dmode=%o"},
483 {Opt_err, NULL}
484};
485
486static int udf_parse_options(char *options, struct udf_options *uopt,
487 bool remount)
488{
489 char *p;
490 int option;
491
492 uopt->novrs = 0;
493 uopt->partition = 0xFFFF;
494 uopt->session = 0xFFFFFFFF;
495 uopt->lastblock = 0;
496 uopt->anchor = 0;
497 uopt->volume = 0xFFFFFFFF;
498 uopt->rootdir = 0xFFFFFFFF;
499 uopt->fileset = 0xFFFFFFFF;
500 uopt->nls_map = NULL;
501
502 if (!options)
503 return 1;
504
505 while ((p = strsep(&options, ",")) != NULL) {
506 substring_t args[MAX_OPT_ARGS];
507 int token;
508 unsigned n;
509 if (!*p)
510 continue;
511
512 token = match_token(p, tokens, args);
513 switch (token) {
514 case Opt_novrs:
515 uopt->novrs = 1;
516 break;
517 case Opt_bs:
518 if (match_int(&args[0], &option))
519 return 0;
520 n = option;
521 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
522 return 0;
523 uopt->blocksize = n;
524 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
525 break;
526 case Opt_unhide:
527 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
528 break;
529 case Opt_undelete:
530 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
531 break;
532 case Opt_noadinicb:
533 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
534 break;
535 case Opt_adinicb:
536 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
537 break;
538 case Opt_shortad:
539 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
540 break;
541 case Opt_longad:
542 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
543 break;
544 case Opt_gid:
545 if (match_int(args, &option))
546 return 0;
547 uopt->gid = make_kgid(current_user_ns(), option);
548 if (!gid_valid(uopt->gid))
549 return 0;
550 uopt->flags |= (1 << UDF_FLAG_GID_SET);
551 break;
552 case Opt_uid:
553 if (match_int(args, &option))
554 return 0;
555 uopt->uid = make_kuid(current_user_ns(), option);
556 if (!uid_valid(uopt->uid))
557 return 0;
558 uopt->flags |= (1 << UDF_FLAG_UID_SET);
559 break;
560 case Opt_umask:
561 if (match_octal(args, &option))
562 return 0;
563 uopt->umask = option;
564 break;
565 case Opt_nostrict:
566 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
567 break;
568 case Opt_session:
569 if (match_int(args, &option))
570 return 0;
571 uopt->session = option;
572 if (!remount)
573 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
574 break;
575 case Opt_lastblock:
576 if (match_int(args, &option))
577 return 0;
578 uopt->lastblock = option;
579 if (!remount)
580 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
581 break;
582 case Opt_anchor:
583 if (match_int(args, &option))
584 return 0;
585 uopt->anchor = option;
586 break;
587 case Opt_volume:
588 if (match_int(args, &option))
589 return 0;
590 uopt->volume = option;
591 break;
592 case Opt_partition:
593 if (match_int(args, &option))
594 return 0;
595 uopt->partition = option;
596 break;
597 case Opt_fileset:
598 if (match_int(args, &option))
599 return 0;
600 uopt->fileset = option;
601 break;
602 case Opt_rootdir:
603 if (match_int(args, &option))
604 return 0;
605 uopt->rootdir = option;
606 break;
607 case Opt_utf8:
608 uopt->flags |= (1 << UDF_FLAG_UTF8);
609 break;
610#ifdef CONFIG_UDF_NLS
611 case Opt_iocharset:
612 uopt->nls_map = load_nls(args[0].from);
613 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
614 break;
615#endif
616 case Opt_uignore:
617 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
618 break;
619 case Opt_uforget:
620 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
621 break;
622 case Opt_gignore:
623 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
624 break;
625 case Opt_gforget:
626 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
627 break;
628 case Opt_fmode:
629 if (match_octal(args, &option))
630 return 0;
631 uopt->fmode = option & 0777;
632 break;
633 case Opt_dmode:
634 if (match_octal(args, &option))
635 return 0;
636 uopt->dmode = option & 0777;
637 break;
638 default:
639 pr_err("bad mount option \"%s\" or missing value\n", p);
640 return 0;
641 }
642 }
643 return 1;
644}
645
646static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
647{
648 struct udf_options uopt;
649 struct udf_sb_info *sbi = UDF_SB(sb);
650 int error = 0;
651 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
652
653 sync_filesystem(sb);
654 if (lvidiu) {
655 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
656 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
657 return -EACCES;
658 }
659
660 uopt.flags = sbi->s_flags;
661 uopt.uid = sbi->s_uid;
662 uopt.gid = sbi->s_gid;
663 uopt.umask = sbi->s_umask;
664 uopt.fmode = sbi->s_fmode;
665 uopt.dmode = sbi->s_dmode;
666
667 if (!udf_parse_options(options, &uopt, true))
668 return -EINVAL;
669
670 write_lock(&sbi->s_cred_lock);
671 sbi->s_flags = uopt.flags;
672 sbi->s_uid = uopt.uid;
673 sbi->s_gid = uopt.gid;
674 sbi->s_umask = uopt.umask;
675 sbi->s_fmode = uopt.fmode;
676 sbi->s_dmode = uopt.dmode;
677 write_unlock(&sbi->s_cred_lock);
678
679 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
680 goto out_unlock;
681
682 if (*flags & MS_RDONLY)
683 udf_close_lvid(sb);
684 else
685 udf_open_lvid(sb);
686
687out_unlock:
688 return error;
689}
690
691/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
692/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
693static loff_t udf_check_vsd(struct super_block *sb)
694{
695 struct volStructDesc *vsd = NULL;
696 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
697 int sectorsize;
698 struct buffer_head *bh = NULL;
699 int nsr02 = 0;
700 int nsr03 = 0;
701 struct udf_sb_info *sbi;
702
703 sbi = UDF_SB(sb);
704 if (sb->s_blocksize < sizeof(struct volStructDesc))
705 sectorsize = sizeof(struct volStructDesc);
706 else
707 sectorsize = sb->s_blocksize;
708
709 sector += (sbi->s_session << sb->s_blocksize_bits);
710
711 udf_debug("Starting at sector %u (%ld byte sectors)\n",
712 (unsigned int)(sector >> sb->s_blocksize_bits),
713 sb->s_blocksize);
714 /* Process the sequence (if applicable). The hard limit on the sector
715 * offset is arbitrary, hopefully large enough so that all valid UDF
716 * filesystems will be recognised. There is no mention of an upper
717 * bound to the size of the volume recognition area in the standard.
718 * The limit will prevent the code to read all the sectors of a
719 * specially crafted image (like a bluray disc full of CD001 sectors),
720 * potentially causing minutes or even hours of uninterruptible I/O
721 * activity. This actually happened with uninitialised SSD partitions
722 * (all 0xFF) before the check for the limit and all valid IDs were
723 * added */
724 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
725 sector += sectorsize) {
726 /* Read a block */
727 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
728 if (!bh)
729 break;
730
731 /* Look for ISO descriptors */
732 vsd = (struct volStructDesc *)(bh->b_data +
733 (sector & (sb->s_blocksize - 1)));
734
735 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
736 VSD_STD_ID_LEN)) {
737 switch (vsd->structType) {
738 case 0:
739 udf_debug("ISO9660 Boot Record found\n");
740 break;
741 case 1:
742 udf_debug("ISO9660 Primary Volume Descriptor found\n");
743 break;
744 case 2:
745 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
746 break;
747 case 3:
748 udf_debug("ISO9660 Volume Partition Descriptor found\n");
749 break;
750 case 255:
751 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
752 break;
753 default:
754 udf_debug("ISO9660 VRS (%u) found\n",
755 vsd->structType);
756 break;
757 }
758 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
759 VSD_STD_ID_LEN))
760 ; /* nothing */
761 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
762 VSD_STD_ID_LEN)) {
763 brelse(bh);
764 break;
765 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
766 VSD_STD_ID_LEN))
767 nsr02 = sector;
768 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
769 VSD_STD_ID_LEN))
770 nsr03 = sector;
771 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
772 VSD_STD_ID_LEN))
773 ; /* nothing */
774 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
775 VSD_STD_ID_LEN))
776 ; /* nothing */
777 else {
778 /* invalid id : end of volume recognition area */
779 brelse(bh);
780 break;
781 }
782 brelse(bh);
783 }
784
785 if (nsr03)
786 return nsr03;
787 else if (nsr02)
788 return nsr02;
789 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
790 VSD_FIRST_SECTOR_OFFSET)
791 return -1;
792 else
793 return 0;
794}
795
796static int udf_find_fileset(struct super_block *sb,
797 struct kernel_lb_addr *fileset,
798 struct kernel_lb_addr *root)
799{
800 struct buffer_head *bh = NULL;
801 long lastblock;
802 uint16_t ident;
803 struct udf_sb_info *sbi;
804
805 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
806 fileset->partitionReferenceNum != 0xFFFF) {
807 bh = udf_read_ptagged(sb, fileset, 0, &ident);
808
809 if (!bh) {
810 return 1;
811 } else if (ident != TAG_IDENT_FSD) {
812 brelse(bh);
813 return 1;
814 }
815
816 }
817
818 sbi = UDF_SB(sb);
819 if (!bh) {
820 /* Search backwards through the partitions */
821 struct kernel_lb_addr newfileset;
822
823/* --> cvg: FIXME - is it reasonable? */
824 return 1;
825
826 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
827 (newfileset.partitionReferenceNum != 0xFFFF &&
828 fileset->logicalBlockNum == 0xFFFFFFFF &&
829 fileset->partitionReferenceNum == 0xFFFF);
830 newfileset.partitionReferenceNum--) {
831 lastblock = sbi->s_partmaps
832 [newfileset.partitionReferenceNum]
833 .s_partition_len;
834 newfileset.logicalBlockNum = 0;
835
836 do {
837 bh = udf_read_ptagged(sb, &newfileset, 0,
838 &ident);
839 if (!bh) {
840 newfileset.logicalBlockNum++;
841 continue;
842 }
843
844 switch (ident) {
845 case TAG_IDENT_SBD:
846 {
847 struct spaceBitmapDesc *sp;
848 sp = (struct spaceBitmapDesc *)
849 bh->b_data;
850 newfileset.logicalBlockNum += 1 +
851 ((le32_to_cpu(sp->numOfBytes) +
852 sizeof(struct spaceBitmapDesc)
853 - 1) >> sb->s_blocksize_bits);
854 brelse(bh);
855 break;
856 }
857 case TAG_IDENT_FSD:
858 *fileset = newfileset;
859 break;
860 default:
861 newfileset.logicalBlockNum++;
862 brelse(bh);
863 bh = NULL;
864 break;
865 }
866 } while (newfileset.logicalBlockNum < lastblock &&
867 fileset->logicalBlockNum == 0xFFFFFFFF &&
868 fileset->partitionReferenceNum == 0xFFFF);
869 }
870 }
871
872 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
873 fileset->partitionReferenceNum != 0xFFFF) && bh) {
874 udf_debug("Fileset at block=%d, partition=%d\n",
875 fileset->logicalBlockNum,
876 fileset->partitionReferenceNum);
877
878 sbi->s_partition = fileset->partitionReferenceNum;
879 udf_load_fileset(sb, bh, root);
880 brelse(bh);
881 return 0;
882 }
883 return 1;
884}
885
886/*
887 * Load primary Volume Descriptor Sequence
888 *
889 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
890 * should be tried.
891 */
892static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
893{
894 struct primaryVolDesc *pvoldesc;
895 struct ustr *instr, *outstr;
896 struct buffer_head *bh;
897 uint16_t ident;
898 int ret = -ENOMEM;
899
900 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
901 if (!instr)
902 return -ENOMEM;
903
904 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
905 if (!outstr)
906 goto out1;
907
908 bh = udf_read_tagged(sb, block, block, &ident);
909 if (!bh) {
910 ret = -EAGAIN;
911 goto out2;
912 }
913
914 if (ident != TAG_IDENT_PVD) {
915 ret = -EIO;
916 goto out_bh;
917 }
918
919 pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 pvoldesc->recordingDateAndTime)) {
923#ifdef UDFFS_DEBUG
924 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 ts->minute, le16_to_cpu(ts->typeAndTimezone));
928#endif
929 }
930
931 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
932 if (udf_CS0toUTF8(outstr, instr)) {
933 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
934 outstr->u_len > 31 ? 31 : outstr->u_len);
935 udf_debug("volIdent[] = '%s'\n",
936 UDF_SB(sb)->s_volume_ident);
937 }
938
939 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
940 if (udf_CS0toUTF8(outstr, instr))
941 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
942
943 ret = 0;
944out_bh:
945 brelse(bh);
946out2:
947 kfree(outstr);
948out1:
949 kfree(instr);
950 return ret;
951}
952
953struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 u32 meta_file_loc, u32 partition_num)
955{
956 struct kernel_lb_addr addr;
957 struct inode *metadata_fe;
958
959 addr.logicalBlockNum = meta_file_loc;
960 addr.partitionReferenceNum = partition_num;
961
962 metadata_fe = udf_iget(sb, &addr);
963
964 if (metadata_fe == NULL)
965 udf_warn(sb, "metadata inode efe not found\n");
966 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
967 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
968 iput(metadata_fe);
969 metadata_fe = NULL;
970 }
971
972 return metadata_fe;
973}
974
975static int udf_load_metadata_files(struct super_block *sb, int partition)
976{
977 struct udf_sb_info *sbi = UDF_SB(sb);
978 struct udf_part_map *map;
979 struct udf_meta_data *mdata;
980 struct kernel_lb_addr addr;
981
982 map = &sbi->s_partmaps[partition];
983 mdata = &map->s_type_specific.s_metadata;
984
985 /* metadata address */
986 udf_debug("Metadata file location: block = %d part = %d\n",
987 mdata->s_meta_file_loc, map->s_partition_num);
988
989 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
990 mdata->s_meta_file_loc, map->s_partition_num);
991
992 if (mdata->s_metadata_fe == NULL) {
993 /* mirror file entry */
994 udf_debug("Mirror metadata file location: block = %d part = %d\n",
995 mdata->s_mirror_file_loc, map->s_partition_num);
996
997 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
998 mdata->s_mirror_file_loc, map->s_partition_num);
999
1000 if (mdata->s_mirror_fe == NULL) {
1001 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1002 return -EIO;
1003 }
1004 }
1005
1006 /*
1007 * bitmap file entry
1008 * Note:
1009 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1010 */
1011 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1012 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1013 addr.partitionReferenceNum = map->s_partition_num;
1014
1015 udf_debug("Bitmap file location: block = %d part = %d\n",
1016 addr.logicalBlockNum, addr.partitionReferenceNum);
1017
1018 mdata->s_bitmap_fe = udf_iget(sb, &addr);
1019 if (mdata->s_bitmap_fe == NULL) {
1020 if (sb->s_flags & MS_RDONLY)
1021 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1022 else {
1023 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1024 return -EIO;
1025 }
1026 }
1027 }
1028
1029 udf_debug("udf_load_metadata_files Ok\n");
1030 return 0;
1031}
1032
1033static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1034 struct kernel_lb_addr *root)
1035{
1036 struct fileSetDesc *fset;
1037
1038 fset = (struct fileSetDesc *)bh->b_data;
1039
1040 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1041
1042 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1043
1044 udf_debug("Rootdir at block=%d, partition=%d\n",
1045 root->logicalBlockNum, root->partitionReferenceNum);
1046}
1047
1048int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1049{
1050 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1051 return DIV_ROUND_UP(map->s_partition_len +
1052 (sizeof(struct spaceBitmapDesc) << 3),
1053 sb->s_blocksize * 8);
1054}
1055
1056static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1057{
1058 struct udf_bitmap *bitmap;
1059 int nr_groups;
1060 int size;
1061
1062 nr_groups = udf_compute_nr_groups(sb, index);
1063 size = sizeof(struct udf_bitmap) +
1064 (sizeof(struct buffer_head *) * nr_groups);
1065
1066 if (size <= PAGE_SIZE)
1067 bitmap = kzalloc(size, GFP_KERNEL);
1068 else
1069 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1070
1071 if (bitmap == NULL)
1072 return NULL;
1073
1074 bitmap->s_nr_groups = nr_groups;
1075 return bitmap;
1076}
1077
1078static int udf_fill_partdesc_info(struct super_block *sb,
1079 struct partitionDesc *p, int p_index)
1080{
1081 struct udf_part_map *map;
1082 struct udf_sb_info *sbi = UDF_SB(sb);
1083 struct partitionHeaderDesc *phd;
1084
1085 map = &sbi->s_partmaps[p_index];
1086
1087 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1088 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1089
1090 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1091 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1093 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1094 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1095 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1097 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1098
1099 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1100 p_index, map->s_partition_type,
1101 map->s_partition_root, map->s_partition_len);
1102
1103 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1104 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1105 return 0;
1106
1107 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1108 if (phd->unallocSpaceTable.extLength) {
1109 struct kernel_lb_addr loc = {
1110 .logicalBlockNum = le32_to_cpu(
1111 phd->unallocSpaceTable.extPosition),
1112 .partitionReferenceNum = p_index,
1113 };
1114
1115 map->s_uspace.s_table = udf_iget(sb, &loc);
1116 if (!map->s_uspace.s_table) {
1117 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1118 p_index);
1119 return -EIO;
1120 }
1121 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1122 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1123 p_index, map->s_uspace.s_table->i_ino);
1124 }
1125
1126 if (phd->unallocSpaceBitmap.extLength) {
1127 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1128 if (!bitmap)
1129 return -ENOMEM;
1130 map->s_uspace.s_bitmap = bitmap;
1131 bitmap->s_extPosition = le32_to_cpu(
1132 phd->unallocSpaceBitmap.extPosition);
1133 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1134 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1135 p_index, bitmap->s_extPosition);
1136 }
1137
1138 if (phd->partitionIntegrityTable.extLength)
1139 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1140
1141 if (phd->freedSpaceTable.extLength) {
1142 struct kernel_lb_addr loc = {
1143 .logicalBlockNum = le32_to_cpu(
1144 phd->freedSpaceTable.extPosition),
1145 .partitionReferenceNum = p_index,
1146 };
1147
1148 map->s_fspace.s_table = udf_iget(sb, &loc);
1149 if (!map->s_fspace.s_table) {
1150 udf_debug("cannot load freedSpaceTable (part %d)\n",
1151 p_index);
1152 return -EIO;
1153 }
1154
1155 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1156 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1157 p_index, map->s_fspace.s_table->i_ino);
1158 }
1159
1160 if (phd->freedSpaceBitmap.extLength) {
1161 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1162 if (!bitmap)
1163 return -ENOMEM;
1164 map->s_fspace.s_bitmap = bitmap;
1165 bitmap->s_extPosition = le32_to_cpu(
1166 phd->freedSpaceBitmap.extPosition);
1167 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1168 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1169 p_index, bitmap->s_extPosition);
1170 }
1171 return 0;
1172}
1173
1174static void udf_find_vat_block(struct super_block *sb, int p_index,
1175 int type1_index, sector_t start_block)
1176{
1177 struct udf_sb_info *sbi = UDF_SB(sb);
1178 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179 sector_t vat_block;
1180 struct kernel_lb_addr ino;
1181
1182 /*
1183 * VAT file entry is in the last recorded block. Some broken disks have
1184 * it a few blocks before so try a bit harder...
1185 */
1186 ino.partitionReferenceNum = type1_index;
1187 for (vat_block = start_block;
1188 vat_block >= map->s_partition_root &&
1189 vat_block >= start_block - 3 &&
1190 !sbi->s_vat_inode; vat_block--) {
1191 ino.logicalBlockNum = vat_block - map->s_partition_root;
1192 sbi->s_vat_inode = udf_iget(sb, &ino);
1193 }
1194}
1195
1196static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1197{
1198 struct udf_sb_info *sbi = UDF_SB(sb);
1199 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1200 struct buffer_head *bh = NULL;
1201 struct udf_inode_info *vati;
1202 uint32_t pos;
1203 struct virtualAllocationTable20 *vat20;
1204 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1205
1206 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1207 if (!sbi->s_vat_inode &&
1208 sbi->s_last_block != blocks - 1) {
1209 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1210 (unsigned long)sbi->s_last_block,
1211 (unsigned long)blocks - 1);
1212 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1213 }
1214 if (!sbi->s_vat_inode)
1215 return -EIO;
1216
1217 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1218 map->s_type_specific.s_virtual.s_start_offset = 0;
1219 map->s_type_specific.s_virtual.s_num_entries =
1220 (sbi->s_vat_inode->i_size - 36) >> 2;
1221 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1222 vati = UDF_I(sbi->s_vat_inode);
1223 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1224 pos = udf_block_map(sbi->s_vat_inode, 0);
1225 bh = sb_bread(sb, pos);
1226 if (!bh)
1227 return -EIO;
1228 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1229 } else {
1230 vat20 = (struct virtualAllocationTable20 *)
1231 vati->i_ext.i_data;
1232 }
1233
1234 map->s_type_specific.s_virtual.s_start_offset =
1235 le16_to_cpu(vat20->lengthHeader);
1236 map->s_type_specific.s_virtual.s_num_entries =
1237 (sbi->s_vat_inode->i_size -
1238 map->s_type_specific.s_virtual.
1239 s_start_offset) >> 2;
1240 brelse(bh);
1241 }
1242 return 0;
1243}
1244
1245/*
1246 * Load partition descriptor block
1247 *
1248 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1249 * sequence.
1250 */
1251static int udf_load_partdesc(struct super_block *sb, sector_t block)
1252{
1253 struct buffer_head *bh;
1254 struct partitionDesc *p;
1255 struct udf_part_map *map;
1256 struct udf_sb_info *sbi = UDF_SB(sb);
1257 int i, type1_idx;
1258 uint16_t partitionNumber;
1259 uint16_t ident;
1260 int ret;
1261
1262 bh = udf_read_tagged(sb, block, block, &ident);
1263 if (!bh)
1264 return -EAGAIN;
1265 if (ident != TAG_IDENT_PD) {
1266 ret = 0;
1267 goto out_bh;
1268 }
1269
1270 p = (struct partitionDesc *)bh->b_data;
1271 partitionNumber = le16_to_cpu(p->partitionNumber);
1272
1273 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1274 for (i = 0; i < sbi->s_partitions; i++) {
1275 map = &sbi->s_partmaps[i];
1276 udf_debug("Searching map: (%d == %d)\n",
1277 map->s_partition_num, partitionNumber);
1278 if (map->s_partition_num == partitionNumber &&
1279 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1280 map->s_partition_type == UDF_SPARABLE_MAP15))
1281 break;
1282 }
1283
1284 if (i >= sbi->s_partitions) {
1285 udf_debug("Partition (%d) not found in partition map\n",
1286 partitionNumber);
1287 ret = 0;
1288 goto out_bh;
1289 }
1290
1291 ret = udf_fill_partdesc_info(sb, p, i);
1292 if (ret < 0)
1293 goto out_bh;
1294
1295 /*
1296 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1297 * PHYSICAL partitions are already set up
1298 */
1299 type1_idx = i;
1300#ifdef UDFFS_DEBUG
1301 map = NULL; /* supress 'maybe used uninitialized' warning */
1302#endif
1303 for (i = 0; i < sbi->s_partitions; i++) {
1304 map = &sbi->s_partmaps[i];
1305
1306 if (map->s_partition_num == partitionNumber &&
1307 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1308 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1309 map->s_partition_type == UDF_METADATA_MAP25))
1310 break;
1311 }
1312
1313 if (i >= sbi->s_partitions) {
1314 ret = 0;
1315 goto out_bh;
1316 }
1317
1318 ret = udf_fill_partdesc_info(sb, p, i);
1319 if (ret < 0)
1320 goto out_bh;
1321
1322 if (map->s_partition_type == UDF_METADATA_MAP25) {
1323 ret = udf_load_metadata_files(sb, i);
1324 if (ret < 0) {
1325 udf_err(sb, "error loading MetaData partition map %d\n",
1326 i);
1327 goto out_bh;
1328 }
1329 } else {
1330 /*
1331 * If we have a partition with virtual map, we don't handle
1332 * writing to it (we overwrite blocks instead of relocating
1333 * them).
1334 */
1335 if (!(sb->s_flags & MS_RDONLY)) {
1336 ret = -EACCES;
1337 goto out_bh;
1338 }
1339 ret = udf_load_vat(sb, i, type1_idx);
1340 if (ret < 0)
1341 goto out_bh;
1342 }
1343 ret = 0;
1344out_bh:
1345 /* In case loading failed, we handle cleanup in udf_fill_super */
1346 brelse(bh);
1347 return ret;
1348}
1349
1350static int udf_load_sparable_map(struct super_block *sb,
1351 struct udf_part_map *map,
1352 struct sparablePartitionMap *spm)
1353{
1354 uint32_t loc;
1355 uint16_t ident;
1356 struct sparingTable *st;
1357 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1358 int i;
1359 struct buffer_head *bh;
1360
1361 map->s_partition_type = UDF_SPARABLE_MAP15;
1362 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1363 if (!is_power_of_2(sdata->s_packet_len)) {
1364 udf_err(sb, "error loading logical volume descriptor: "
1365 "Invalid packet length %u\n",
1366 (unsigned)sdata->s_packet_len);
1367 return -EIO;
1368 }
1369 if (spm->numSparingTables > 4) {
1370 udf_err(sb, "error loading logical volume descriptor: "
1371 "Too many sparing tables (%d)\n",
1372 (int)spm->numSparingTables);
1373 return -EIO;
1374 }
1375
1376 for (i = 0; i < spm->numSparingTables; i++) {
1377 loc = le32_to_cpu(spm->locSparingTable[i]);
1378 bh = udf_read_tagged(sb, loc, loc, &ident);
1379 if (!bh)
1380 continue;
1381
1382 st = (struct sparingTable *)bh->b_data;
1383 if (ident != 0 ||
1384 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1385 strlen(UDF_ID_SPARING)) ||
1386 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1387 sb->s_blocksize) {
1388 brelse(bh);
1389 continue;
1390 }
1391
1392 sdata->s_spar_map[i] = bh;
1393 }
1394 map->s_partition_func = udf_get_pblock_spar15;
1395 return 0;
1396}
1397
1398static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1399 struct kernel_lb_addr *fileset)
1400{
1401 struct logicalVolDesc *lvd;
1402 int i, offset;
1403 uint8_t type;
1404 struct udf_sb_info *sbi = UDF_SB(sb);
1405 struct genericPartitionMap *gpm;
1406 uint16_t ident;
1407 struct buffer_head *bh;
1408 unsigned int table_len;
1409 int ret;
1410
1411 bh = udf_read_tagged(sb, block, block, &ident);
1412 if (!bh)
1413 return -EAGAIN;
1414 BUG_ON(ident != TAG_IDENT_LVD);
1415 lvd = (struct logicalVolDesc *)bh->b_data;
1416 table_len = le32_to_cpu(lvd->mapTableLength);
1417 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1418 udf_err(sb, "error loading logical volume descriptor: "
1419 "Partition table too long (%u > %lu)\n", table_len,
1420 sb->s_blocksize - sizeof(*lvd));
1421 ret = -EIO;
1422 goto out_bh;
1423 }
1424
1425 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1426 if (ret)
1427 goto out_bh;
1428
1429 for (i = 0, offset = 0;
1430 i < sbi->s_partitions && offset < table_len;
1431 i++, offset += gpm->partitionMapLength) {
1432 struct udf_part_map *map = &sbi->s_partmaps[i];
1433 gpm = (struct genericPartitionMap *)
1434 &(lvd->partitionMaps[offset]);
1435 type = gpm->partitionMapType;
1436 if (type == 1) {
1437 struct genericPartitionMap1 *gpm1 =
1438 (struct genericPartitionMap1 *)gpm;
1439 map->s_partition_type = UDF_TYPE1_MAP15;
1440 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1441 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1442 map->s_partition_func = NULL;
1443 } else if (type == 2) {
1444 struct udfPartitionMap2 *upm2 =
1445 (struct udfPartitionMap2 *)gpm;
1446 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1447 strlen(UDF_ID_VIRTUAL))) {
1448 u16 suf =
1449 le16_to_cpu(((__le16 *)upm2->partIdent.
1450 identSuffix)[0]);
1451 if (suf < 0x0200) {
1452 map->s_partition_type =
1453 UDF_VIRTUAL_MAP15;
1454 map->s_partition_func =
1455 udf_get_pblock_virt15;
1456 } else {
1457 map->s_partition_type =
1458 UDF_VIRTUAL_MAP20;
1459 map->s_partition_func =
1460 udf_get_pblock_virt20;
1461 }
1462 } else if (!strncmp(upm2->partIdent.ident,
1463 UDF_ID_SPARABLE,
1464 strlen(UDF_ID_SPARABLE))) {
1465 ret = udf_load_sparable_map(sb, map,
1466 (struct sparablePartitionMap *)gpm);
1467 if (ret < 0)
1468 goto out_bh;
1469 } else if (!strncmp(upm2->partIdent.ident,
1470 UDF_ID_METADATA,
1471 strlen(UDF_ID_METADATA))) {
1472 struct udf_meta_data *mdata =
1473 &map->s_type_specific.s_metadata;
1474 struct metadataPartitionMap *mdm =
1475 (struct metadataPartitionMap *)
1476 &(lvd->partitionMaps[offset]);
1477 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1478 i, type, UDF_ID_METADATA);
1479
1480 map->s_partition_type = UDF_METADATA_MAP25;
1481 map->s_partition_func = udf_get_pblock_meta25;
1482
1483 mdata->s_meta_file_loc =
1484 le32_to_cpu(mdm->metadataFileLoc);
1485 mdata->s_mirror_file_loc =
1486 le32_to_cpu(mdm->metadataMirrorFileLoc);
1487 mdata->s_bitmap_file_loc =
1488 le32_to_cpu(mdm->metadataBitmapFileLoc);
1489 mdata->s_alloc_unit_size =
1490 le32_to_cpu(mdm->allocUnitSize);
1491 mdata->s_align_unit_size =
1492 le16_to_cpu(mdm->alignUnitSize);
1493 if (mdm->flags & 0x01)
1494 mdata->s_flags |= MF_DUPLICATE_MD;
1495
1496 udf_debug("Metadata Ident suffix=0x%x\n",
1497 le16_to_cpu(*(__le16 *)
1498 mdm->partIdent.identSuffix));
1499 udf_debug("Metadata part num=%d\n",
1500 le16_to_cpu(mdm->partitionNum));
1501 udf_debug("Metadata part alloc unit size=%d\n",
1502 le32_to_cpu(mdm->allocUnitSize));
1503 udf_debug("Metadata file loc=%d\n",
1504 le32_to_cpu(mdm->metadataFileLoc));
1505 udf_debug("Mirror file loc=%d\n",
1506 le32_to_cpu(mdm->metadataMirrorFileLoc));
1507 udf_debug("Bitmap file loc=%d\n",
1508 le32_to_cpu(mdm->metadataBitmapFileLoc));
1509 udf_debug("Flags: %d %d\n",
1510 mdata->s_flags, mdm->flags);
1511 } else {
1512 udf_debug("Unknown ident: %s\n",
1513 upm2->partIdent.ident);
1514 continue;
1515 }
1516 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1517 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1518 }
1519 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1520 i, map->s_partition_num, type, map->s_volumeseqnum);
1521 }
1522
1523 if (fileset) {
1524 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1525
1526 *fileset = lelb_to_cpu(la->extLocation);
1527 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1528 fileset->logicalBlockNum,
1529 fileset->partitionReferenceNum);
1530 }
1531 if (lvd->integritySeqExt.extLength)
1532 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1533 ret = 0;
1534out_bh:
1535 brelse(bh);
1536 return ret;
1537}
1538
1539/*
1540 * udf_load_logicalvolint
1541 *
1542 */
1543static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1544{
1545 struct buffer_head *bh = NULL;
1546 uint16_t ident;
1547 struct udf_sb_info *sbi = UDF_SB(sb);
1548 struct logicalVolIntegrityDesc *lvid;
1549
1550 while (loc.extLength > 0 &&
1551 (bh = udf_read_tagged(sb, loc.extLocation,
1552 loc.extLocation, &ident)) &&
1553 ident == TAG_IDENT_LVID) {
1554 sbi->s_lvid_bh = bh;
1555 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1556
1557 if (lvid->nextIntegrityExt.extLength)
1558 udf_load_logicalvolint(sb,
1559 leea_to_cpu(lvid->nextIntegrityExt));
1560
1561 if (sbi->s_lvid_bh != bh)
1562 brelse(bh);
1563 loc.extLength -= sb->s_blocksize;
1564 loc.extLocation++;
1565 }
1566 if (sbi->s_lvid_bh != bh)
1567 brelse(bh);
1568}
1569
1570/*
1571 * Process a main/reserve volume descriptor sequence.
1572 * @block First block of first extent of the sequence.
1573 * @lastblock Lastblock of first extent of the sequence.
1574 * @fileset There we store extent containing root fileset
1575 *
1576 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1577 * sequence
1578 */
1579static noinline int udf_process_sequence(
1580 struct super_block *sb,
1581 sector_t block, sector_t lastblock,
1582 struct kernel_lb_addr *fileset)
1583{
1584 struct buffer_head *bh = NULL;
1585 struct udf_vds_record vds[VDS_POS_LENGTH];
1586 struct udf_vds_record *curr;
1587 struct generic_desc *gd;
1588 struct volDescPtr *vdp;
1589 int done = 0;
1590 uint32_t vdsn;
1591 uint16_t ident;
1592 long next_s = 0, next_e = 0;
1593 int ret;
1594
1595 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1596
1597 /*
1598 * Read the main descriptor sequence and find which descriptors
1599 * are in it.
1600 */
1601 for (; (!done && block <= lastblock); block++) {
1602
1603 bh = udf_read_tagged(sb, block, block, &ident);
1604 if (!bh) {
1605 udf_err(sb,
1606 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1607 (unsigned long long)block);
1608 return -EAGAIN;
1609 }
1610
1611 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1612 gd = (struct generic_desc *)bh->b_data;
1613 vdsn = le32_to_cpu(gd->volDescSeqNum);
1614 switch (ident) {
1615 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1616 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1617 if (vdsn >= curr->volDescSeqNum) {
1618 curr->volDescSeqNum = vdsn;
1619 curr->block = block;
1620 }
1621 break;
1622 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1623 curr = &vds[VDS_POS_VOL_DESC_PTR];
1624 if (vdsn >= curr->volDescSeqNum) {
1625 curr->volDescSeqNum = vdsn;
1626 curr->block = block;
1627
1628 vdp = (struct volDescPtr *)bh->b_data;
1629 next_s = le32_to_cpu(
1630 vdp->nextVolDescSeqExt.extLocation);
1631 next_e = le32_to_cpu(
1632 vdp->nextVolDescSeqExt.extLength);
1633 next_e = next_e >> sb->s_blocksize_bits;
1634 next_e += next_s;
1635 }
1636 break;
1637 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1638 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1639 if (vdsn >= curr->volDescSeqNum) {
1640 curr->volDescSeqNum = vdsn;
1641 curr->block = block;
1642 }
1643 break;
1644 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1645 curr = &vds[VDS_POS_PARTITION_DESC];
1646 if (!curr->block)
1647 curr->block = block;
1648 break;
1649 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1650 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1651 if (vdsn >= curr->volDescSeqNum) {
1652 curr->volDescSeqNum = vdsn;
1653 curr->block = block;
1654 }
1655 break;
1656 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1657 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1658 if (vdsn >= curr->volDescSeqNum) {
1659 curr->volDescSeqNum = vdsn;
1660 curr->block = block;
1661 }
1662 break;
1663 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1664 vds[VDS_POS_TERMINATING_DESC].block = block;
1665 if (next_e) {
1666 block = next_s;
1667 lastblock = next_e;
1668 next_s = next_e = 0;
1669 } else
1670 done = 1;
1671 break;
1672 }
1673 brelse(bh);
1674 }
1675 /*
1676 * Now read interesting descriptors again and process them
1677 * in a suitable order
1678 */
1679 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1680 udf_err(sb, "Primary Volume Descriptor not found!\n");
1681 return -EAGAIN;
1682 }
1683 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1684 if (ret < 0)
1685 return ret;
1686
1687 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1688 ret = udf_load_logicalvol(sb,
1689 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1690 fileset);
1691 if (ret < 0)
1692 return ret;
1693 }
1694
1695 if (vds[VDS_POS_PARTITION_DESC].block) {
1696 /*
1697 * We rescan the whole descriptor sequence to find
1698 * partition descriptor blocks and process them.
1699 */
1700 for (block = vds[VDS_POS_PARTITION_DESC].block;
1701 block < vds[VDS_POS_TERMINATING_DESC].block;
1702 block++) {
1703 ret = udf_load_partdesc(sb, block);
1704 if (ret < 0)
1705 return ret;
1706 }
1707 }
1708
1709 return 0;
1710}
1711
1712/*
1713 * Load Volume Descriptor Sequence described by anchor in bh
1714 *
1715 * Returns <0 on error, 0 on success
1716 */
1717static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1718 struct kernel_lb_addr *fileset)
1719{
1720 struct anchorVolDescPtr *anchor;
1721 sector_t main_s, main_e, reserve_s, reserve_e;
1722 int ret;
1723
1724 anchor = (struct anchorVolDescPtr *)bh->b_data;
1725
1726 /* Locate the main sequence */
1727 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1728 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1729 main_e = main_e >> sb->s_blocksize_bits;
1730 main_e += main_s;
1731
1732 /* Locate the reserve sequence */
1733 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1734 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1735 reserve_e = reserve_e >> sb->s_blocksize_bits;
1736 reserve_e += reserve_s;
1737
1738 /* Process the main & reserve sequences */
1739 /* responsible for finding the PartitionDesc(s) */
1740 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1741 if (ret != -EAGAIN)
1742 return ret;
1743 udf_sb_free_partitions(sb);
1744 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1745 if (ret < 0) {
1746 udf_sb_free_partitions(sb);
1747 /* No sequence was OK, return -EIO */
1748 if (ret == -EAGAIN)
1749 ret = -EIO;
1750 }
1751 return ret;
1752}
1753
1754/*
1755 * Check whether there is an anchor block in the given block and
1756 * load Volume Descriptor Sequence if so.
1757 *
1758 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1759 * block
1760 */
1761static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1762 struct kernel_lb_addr *fileset)
1763{
1764 struct buffer_head *bh;
1765 uint16_t ident;
1766 int ret;
1767
1768 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1769 udf_fixed_to_variable(block) >=
1770 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1771 return -EAGAIN;
1772
1773 bh = udf_read_tagged(sb, block, block, &ident);
1774 if (!bh)
1775 return -EAGAIN;
1776 if (ident != TAG_IDENT_AVDP) {
1777 brelse(bh);
1778 return -EAGAIN;
1779 }
1780 ret = udf_load_sequence(sb, bh, fileset);
1781 brelse(bh);
1782 return ret;
1783}
1784
1785/*
1786 * Search for an anchor volume descriptor pointer.
1787 *
1788 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1789 * of anchors.
1790 */
1791static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1792 struct kernel_lb_addr *fileset)
1793{
1794 sector_t last[6];
1795 int i;
1796 struct udf_sb_info *sbi = UDF_SB(sb);
1797 int last_count = 0;
1798 int ret;
1799
1800 /* First try user provided anchor */
1801 if (sbi->s_anchor) {
1802 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1803 if (ret != -EAGAIN)
1804 return ret;
1805 }
1806 /*
1807 * according to spec, anchor is in either:
1808 * block 256
1809 * lastblock-256
1810 * lastblock
1811 * however, if the disc isn't closed, it could be 512.
1812 */
1813 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1814 if (ret != -EAGAIN)
1815 return ret;
1816 /*
1817 * The trouble is which block is the last one. Drives often misreport
1818 * this so we try various possibilities.
1819 */
1820 last[last_count++] = *lastblock;
1821 if (*lastblock >= 1)
1822 last[last_count++] = *lastblock - 1;
1823 last[last_count++] = *lastblock + 1;
1824 if (*lastblock >= 2)
1825 last[last_count++] = *lastblock - 2;
1826 if (*lastblock >= 150)
1827 last[last_count++] = *lastblock - 150;
1828 if (*lastblock >= 152)
1829 last[last_count++] = *lastblock - 152;
1830
1831 for (i = 0; i < last_count; i++) {
1832 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1833 sb->s_blocksize_bits)
1834 continue;
1835 ret = udf_check_anchor_block(sb, last[i], fileset);
1836 if (ret != -EAGAIN) {
1837 if (!ret)
1838 *lastblock = last[i];
1839 return ret;
1840 }
1841 if (last[i] < 256)
1842 continue;
1843 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1844 if (ret != -EAGAIN) {
1845 if (!ret)
1846 *lastblock = last[i];
1847 return ret;
1848 }
1849 }
1850
1851 /* Finally try block 512 in case media is open */
1852 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1853}
1854
1855/*
1856 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1857 * area specified by it. The function expects sbi->s_lastblock to be the last
1858 * block on the media.
1859 *
1860 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1861 * was not found.
1862 */
1863static int udf_find_anchor(struct super_block *sb,
1864 struct kernel_lb_addr *fileset)
1865{
1866 struct udf_sb_info *sbi = UDF_SB(sb);
1867 sector_t lastblock = sbi->s_last_block;
1868 int ret;
1869
1870 ret = udf_scan_anchors(sb, &lastblock, fileset);
1871 if (ret != -EAGAIN)
1872 goto out;
1873
1874 /* No anchor found? Try VARCONV conversion of block numbers */
1875 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1876 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1877 /* Firstly, we try to not convert number of the last block */
1878 ret = udf_scan_anchors(sb, &lastblock, fileset);
1879 if (ret != -EAGAIN)
1880 goto out;
1881
1882 lastblock = sbi->s_last_block;
1883 /* Secondly, we try with converted number of the last block */
1884 ret = udf_scan_anchors(sb, &lastblock, fileset);
1885 if (ret < 0) {
1886 /* VARCONV didn't help. Clear it. */
1887 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1888 }
1889out:
1890 if (ret == 0)
1891 sbi->s_last_block = lastblock;
1892 return ret;
1893}
1894
1895/*
1896 * Check Volume Structure Descriptor, find Anchor block and load Volume
1897 * Descriptor Sequence.
1898 *
1899 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1900 * block was not found.
1901 */
1902static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1903 int silent, struct kernel_lb_addr *fileset)
1904{
1905 struct udf_sb_info *sbi = UDF_SB(sb);
1906 loff_t nsr_off;
1907 int ret;
1908
1909 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1910 if (!silent)
1911 udf_warn(sb, "Bad block size\n");
1912 return -EINVAL;
1913 }
1914 sbi->s_last_block = uopt->lastblock;
1915 if (!uopt->novrs) {
1916 /* Check that it is NSR02 compliant */
1917 nsr_off = udf_check_vsd(sb);
1918 if (!nsr_off) {
1919 if (!silent)
1920 udf_warn(sb, "No VRS found\n");
1921 return 0;
1922 }
1923 if (nsr_off == -1)
1924 udf_debug("Failed to read sector at offset %d. "
1925 "Assuming open disc. Skipping validity "
1926 "check\n", VSD_FIRST_SECTOR_OFFSET);
1927 if (!sbi->s_last_block)
1928 sbi->s_last_block = udf_get_last_block(sb);
1929 } else {
1930 udf_debug("Validity check skipped because of novrs option\n");
1931 }
1932
1933 /* Look for anchor block and load Volume Descriptor Sequence */
1934 sbi->s_anchor = uopt->anchor;
1935 ret = udf_find_anchor(sb, fileset);
1936 if (ret < 0) {
1937 if (!silent && ret == -EAGAIN)
1938 udf_warn(sb, "No anchor found\n");
1939 return ret;
1940 }
1941 return 0;
1942}
1943
1944static void udf_open_lvid(struct super_block *sb)
1945{
1946 struct udf_sb_info *sbi = UDF_SB(sb);
1947 struct buffer_head *bh = sbi->s_lvid_bh;
1948 struct logicalVolIntegrityDesc *lvid;
1949 struct logicalVolIntegrityDescImpUse *lvidiu;
1950
1951 if (!bh)
1952 return;
1953 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1954 lvidiu = udf_sb_lvidiu(sb);
1955 if (!lvidiu)
1956 return;
1957
1958 mutex_lock(&sbi->s_alloc_mutex);
1959 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1960 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1961 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1962 CURRENT_TIME);
1963 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1964
1965 lvid->descTag.descCRC = cpu_to_le16(
1966 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1967 le16_to_cpu(lvid->descTag.descCRCLength)));
1968
1969 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1970 mark_buffer_dirty(bh);
1971 sbi->s_lvid_dirty = 0;
1972 mutex_unlock(&sbi->s_alloc_mutex);
1973 /* Make opening of filesystem visible on the media immediately */
1974 sync_dirty_buffer(bh);
1975}
1976
1977static void udf_close_lvid(struct super_block *sb)
1978{
1979 struct udf_sb_info *sbi = UDF_SB(sb);
1980 struct buffer_head *bh = sbi->s_lvid_bh;
1981 struct logicalVolIntegrityDesc *lvid;
1982 struct logicalVolIntegrityDescImpUse *lvidiu;
1983
1984 if (!bh)
1985 return;
1986 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1987 lvidiu = udf_sb_lvidiu(sb);
1988 if (!lvidiu)
1989 return;
1990
1991 mutex_lock(&sbi->s_alloc_mutex);
1992 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1993 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1994 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1995 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1996 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1997 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1998 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1999 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2000 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2001 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2002
2003 lvid->descTag.descCRC = cpu_to_le16(
2004 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2005 le16_to_cpu(lvid->descTag.descCRCLength)));
2006
2007 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2008 /*
2009 * We set buffer uptodate unconditionally here to avoid spurious
2010 * warnings from mark_buffer_dirty() when previous EIO has marked
2011 * the buffer as !uptodate
2012 */
2013 set_buffer_uptodate(bh);
2014 mark_buffer_dirty(bh);
2015 sbi->s_lvid_dirty = 0;
2016 mutex_unlock(&sbi->s_alloc_mutex);
2017 /* Make closing of filesystem visible on the media immediately */
2018 sync_dirty_buffer(bh);
2019}
2020
2021u64 lvid_get_unique_id(struct super_block *sb)
2022{
2023 struct buffer_head *bh;
2024 struct udf_sb_info *sbi = UDF_SB(sb);
2025 struct logicalVolIntegrityDesc *lvid;
2026 struct logicalVolHeaderDesc *lvhd;
2027 u64 uniqueID;
2028 u64 ret;
2029
2030 bh = sbi->s_lvid_bh;
2031 if (!bh)
2032 return 0;
2033
2034 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2035 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2036
2037 mutex_lock(&sbi->s_alloc_mutex);
2038 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2039 if (!(++uniqueID & 0xFFFFFFFF))
2040 uniqueID += 16;
2041 lvhd->uniqueID = cpu_to_le64(uniqueID);
2042 mutex_unlock(&sbi->s_alloc_mutex);
2043 mark_buffer_dirty(bh);
2044
2045 return ret;
2046}
2047
2048static int udf_fill_super(struct super_block *sb, void *options, int silent)
2049{
2050 int ret = -EINVAL;
2051 struct inode *inode = NULL;
2052 struct udf_options uopt;
2053 struct kernel_lb_addr rootdir, fileset;
2054 struct udf_sb_info *sbi;
2055
2056 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2057 uopt.uid = INVALID_UID;
2058 uopt.gid = INVALID_GID;
2059 uopt.umask = 0;
2060 uopt.fmode = UDF_INVALID_MODE;
2061 uopt.dmode = UDF_INVALID_MODE;
2062
2063 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2064 if (!sbi)
2065 return -ENOMEM;
2066
2067 sb->s_fs_info = sbi;
2068
2069 mutex_init(&sbi->s_alloc_mutex);
2070
2071 if (!udf_parse_options((char *)options, &uopt, false))
2072 goto error_out;
2073
2074 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2075 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2076 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2077 goto error_out;
2078 }
2079#ifdef CONFIG_UDF_NLS
2080 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2081 uopt.nls_map = load_nls_default();
2082 if (!uopt.nls_map)
2083 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2084 else
2085 udf_debug("Using default NLS map\n");
2086 }
2087#endif
2088 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2089 uopt.flags |= (1 << UDF_FLAG_UTF8);
2090
2091 fileset.logicalBlockNum = 0xFFFFFFFF;
2092 fileset.partitionReferenceNum = 0xFFFF;
2093
2094 sbi->s_flags = uopt.flags;
2095 sbi->s_uid = uopt.uid;
2096 sbi->s_gid = uopt.gid;
2097 sbi->s_umask = uopt.umask;
2098 sbi->s_fmode = uopt.fmode;
2099 sbi->s_dmode = uopt.dmode;
2100 sbi->s_nls_map = uopt.nls_map;
2101 rwlock_init(&sbi->s_cred_lock);
2102
2103 if (uopt.session == 0xFFFFFFFF)
2104 sbi->s_session = udf_get_last_session(sb);
2105 else
2106 sbi->s_session = uopt.session;
2107
2108 udf_debug("Multi-session=%d\n", sbi->s_session);
2109
2110 /* Fill in the rest of the superblock */
2111 sb->s_op = &udf_sb_ops;
2112 sb->s_export_op = &udf_export_ops;
2113
2114 sb->s_magic = UDF_SUPER_MAGIC;
2115 sb->s_time_gran = 1000;
2116
2117 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2118 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2119 } else {
2120 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2121 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2122 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2123 if (!silent)
2124 pr_notice("Rescanning with blocksize %d\n",
2125 UDF_DEFAULT_BLOCKSIZE);
2126 brelse(sbi->s_lvid_bh);
2127 sbi->s_lvid_bh = NULL;
2128 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2129 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2130 }
2131 }
2132 if (ret < 0) {
2133 if (ret == -EAGAIN) {
2134 udf_warn(sb, "No partition found (1)\n");
2135 ret = -EINVAL;
2136 }
2137 goto error_out;
2138 }
2139
2140 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2141
2142 if (sbi->s_lvid_bh) {
2143 struct logicalVolIntegrityDescImpUse *lvidiu =
2144 udf_sb_lvidiu(sb);
2145 uint16_t minUDFReadRev;
2146 uint16_t minUDFWriteRev;
2147
2148 if (!lvidiu) {
2149 ret = -EINVAL;
2150 goto error_out;
2151 }
2152 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2153 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2154 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2155 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2156 minUDFReadRev,
2157 UDF_MAX_READ_VERSION);
2158 ret = -EINVAL;
2159 goto error_out;
2160 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2161 !(sb->s_flags & MS_RDONLY)) {
2162 ret = -EACCES;
2163 goto error_out;
2164 }
2165
2166 sbi->s_udfrev = minUDFWriteRev;
2167
2168 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2169 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2170 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2171 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2172 }
2173
2174 if (!sbi->s_partitions) {
2175 udf_warn(sb, "No partition found (2)\n");
2176 ret = -EINVAL;
2177 goto error_out;
2178 }
2179
2180 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2181 UDF_PART_FLAG_READ_ONLY &&
2182 !(sb->s_flags & MS_RDONLY)) {
2183 ret = -EACCES;
2184 goto error_out;
2185 }
2186
2187 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2188 udf_warn(sb, "No fileset found\n");
2189 ret = -EINVAL;
2190 goto error_out;
2191 }
2192
2193 if (!silent) {
2194 struct timestamp ts;
2195 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2196 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2197 sbi->s_volume_ident,
2198 le16_to_cpu(ts.year), ts.month, ts.day,
2199 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2200 }
2201 if (!(sb->s_flags & MS_RDONLY))
2202 udf_open_lvid(sb);
2203
2204 /* Assign the root inode */
2205 /* assign inodes by physical block number */
2206 /* perhaps it's not extensible enough, but for now ... */
2207 inode = udf_iget(sb, &rootdir);
2208 if (!inode) {
2209 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2210 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2211 ret = -EIO;
2212 goto error_out;
2213 }
2214
2215 /* Allocate a dentry for the root inode */
2216 sb->s_root = d_make_root(inode);
2217 if (!sb->s_root) {
2218 udf_err(sb, "Couldn't allocate root dentry\n");
2219 ret = -ENOMEM;
2220 goto error_out;
2221 }
2222 sb->s_maxbytes = MAX_LFS_FILESIZE;
2223 sb->s_max_links = UDF_MAX_LINKS;
2224 return 0;
2225
2226error_out:
2227 if (sbi->s_vat_inode)
2228 iput(sbi->s_vat_inode);
2229#ifdef CONFIG_UDF_NLS
2230 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2231 unload_nls(sbi->s_nls_map);
2232#endif
2233 if (!(sb->s_flags & MS_RDONLY))
2234 udf_close_lvid(sb);
2235 brelse(sbi->s_lvid_bh);
2236 udf_sb_free_partitions(sb);
2237 kfree(sbi);
2238 sb->s_fs_info = NULL;
2239
2240 return ret;
2241}
2242
2243void _udf_err(struct super_block *sb, const char *function,
2244 const char *fmt, ...)
2245{
2246 struct va_format vaf;
2247 va_list args;
2248
2249 va_start(args, fmt);
2250
2251 vaf.fmt = fmt;
2252 vaf.va = &args;
2253
2254 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2255
2256 va_end(args);
2257}
2258
2259void _udf_warn(struct super_block *sb, const char *function,
2260 const char *fmt, ...)
2261{
2262 struct va_format vaf;
2263 va_list args;
2264
2265 va_start(args, fmt);
2266
2267 vaf.fmt = fmt;
2268 vaf.va = &args;
2269
2270 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2271
2272 va_end(args);
2273}
2274
2275static void udf_put_super(struct super_block *sb)
2276{
2277 struct udf_sb_info *sbi;
2278
2279 sbi = UDF_SB(sb);
2280
2281 if (sbi->s_vat_inode)
2282 iput(sbi->s_vat_inode);
2283#ifdef CONFIG_UDF_NLS
2284 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2285 unload_nls(sbi->s_nls_map);
2286#endif
2287 if (!(sb->s_flags & MS_RDONLY))
2288 udf_close_lvid(sb);
2289 brelse(sbi->s_lvid_bh);
2290 udf_sb_free_partitions(sb);
2291 kfree(sb->s_fs_info);
2292 sb->s_fs_info = NULL;
2293}
2294
2295static int udf_sync_fs(struct super_block *sb, int wait)
2296{
2297 struct udf_sb_info *sbi = UDF_SB(sb);
2298
2299 mutex_lock(&sbi->s_alloc_mutex);
2300 if (sbi->s_lvid_dirty) {
2301 /*
2302 * Blockdevice will be synced later so we don't have to submit
2303 * the buffer for IO
2304 */
2305 mark_buffer_dirty(sbi->s_lvid_bh);
2306 sbi->s_lvid_dirty = 0;
2307 }
2308 mutex_unlock(&sbi->s_alloc_mutex);
2309
2310 return 0;
2311}
2312
2313static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2314{
2315 struct super_block *sb = dentry->d_sb;
2316 struct udf_sb_info *sbi = UDF_SB(sb);
2317 struct logicalVolIntegrityDescImpUse *lvidiu;
2318 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2319
2320 lvidiu = udf_sb_lvidiu(sb);
2321 buf->f_type = UDF_SUPER_MAGIC;
2322 buf->f_bsize = sb->s_blocksize;
2323 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2324 buf->f_bfree = udf_count_free(sb);
2325 buf->f_bavail = buf->f_bfree;
2326 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2327 le32_to_cpu(lvidiu->numDirs)) : 0)
2328 + buf->f_bfree;
2329 buf->f_ffree = buf->f_bfree;
2330 buf->f_namelen = UDF_NAME_LEN - 2;
2331 buf->f_fsid.val[0] = (u32)id;
2332 buf->f_fsid.val[1] = (u32)(id >> 32);
2333
2334 return 0;
2335}
2336
2337static unsigned int udf_count_free_bitmap(struct super_block *sb,
2338 struct udf_bitmap *bitmap)
2339{
2340 struct buffer_head *bh = NULL;
2341 unsigned int accum = 0;
2342 int index;
2343 int block = 0, newblock;
2344 struct kernel_lb_addr loc;
2345 uint32_t bytes;
2346 uint8_t *ptr;
2347 uint16_t ident;
2348 struct spaceBitmapDesc *bm;
2349
2350 loc.logicalBlockNum = bitmap->s_extPosition;
2351 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2352 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2353
2354 if (!bh) {
2355 udf_err(sb, "udf_count_free failed\n");
2356 goto out;
2357 } else if (ident != TAG_IDENT_SBD) {
2358 brelse(bh);
2359 udf_err(sb, "udf_count_free failed\n");
2360 goto out;
2361 }
2362
2363 bm = (struct spaceBitmapDesc *)bh->b_data;
2364 bytes = le32_to_cpu(bm->numOfBytes);
2365 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2366 ptr = (uint8_t *)bh->b_data;
2367
2368 while (bytes > 0) {
2369 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2370 accum += bitmap_weight((const unsigned long *)(ptr + index),
2371 cur_bytes * 8);
2372 bytes -= cur_bytes;
2373 if (bytes) {
2374 brelse(bh);
2375 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2376 bh = udf_tread(sb, newblock);
2377 if (!bh) {
2378 udf_debug("read failed\n");
2379 goto out;
2380 }
2381 index = 0;
2382 ptr = (uint8_t *)bh->b_data;
2383 }
2384 }
2385 brelse(bh);
2386out:
2387 return accum;
2388}
2389
2390static unsigned int udf_count_free_table(struct super_block *sb,
2391 struct inode *table)
2392{
2393 unsigned int accum = 0;
2394 uint32_t elen;
2395 struct kernel_lb_addr eloc;
2396 int8_t etype;
2397 struct extent_position epos;
2398
2399 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2400 epos.block = UDF_I(table)->i_location;
2401 epos.offset = sizeof(struct unallocSpaceEntry);
2402 epos.bh = NULL;
2403
2404 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2405 accum += (elen >> table->i_sb->s_blocksize_bits);
2406
2407 brelse(epos.bh);
2408 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2409
2410 return accum;
2411}
2412
2413static unsigned int udf_count_free(struct super_block *sb)
2414{
2415 unsigned int accum = 0;
2416 struct udf_sb_info *sbi;
2417 struct udf_part_map *map;
2418
2419 sbi = UDF_SB(sb);
2420 if (sbi->s_lvid_bh) {
2421 struct logicalVolIntegrityDesc *lvid =
2422 (struct logicalVolIntegrityDesc *)
2423 sbi->s_lvid_bh->b_data;
2424 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2425 accum = le32_to_cpu(
2426 lvid->freeSpaceTable[sbi->s_partition]);
2427 if (accum == 0xFFFFFFFF)
2428 accum = 0;
2429 }
2430 }
2431
2432 if (accum)
2433 return accum;
2434
2435 map = &sbi->s_partmaps[sbi->s_partition];
2436 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2437 accum += udf_count_free_bitmap(sb,
2438 map->s_uspace.s_bitmap);
2439 }
2440 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2441 accum += udf_count_free_bitmap(sb,
2442 map->s_fspace.s_bitmap);
2443 }
2444 if (accum)
2445 return accum;
2446
2447 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2448 accum += udf_count_free_table(sb,
2449 map->s_uspace.s_table);
2450 }
2451 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2452 accum += udf_count_free_table(sb,
2453 map->s_fspace.s_table);
2454 }
2455
2456 return accum;
2457}