Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    https://www.ecma.ch/
  15 *    https://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
 
  51#include <linux/vfs.h>
  52#include <linux/vmalloc.h>
  53#include <linux/errno.h>
  54#include <linux/mount.h>
  55#include <linux/seq_file.h>
  56#include <linux/bitmap.h>
  57#include <linux/crc-itu-t.h>
  58#include <linux/log2.h>
  59#include <asm/byteorder.h>
  60#include <linux/iversion.h>
  61
  62#include "udf_sb.h"
  63#include "udf_i.h"
  64
  65#include <linux/init.h>
  66#include <linux/uaccess.h>
  67
  68enum {
  69	VDS_POS_PRIMARY_VOL_DESC,
  70	VDS_POS_UNALLOC_SPACE_DESC,
  71	VDS_POS_LOGICAL_VOL_DESC,
  72	VDS_POS_IMP_USE_VOL_DESC,
  73	VDS_POS_LENGTH
  74};
  75
  76#define VSD_FIRST_SECTOR_OFFSET		32768
  77#define VSD_MAX_SECTOR_OFFSET		0x800000
  78
  79/*
  80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
  81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
  82 * hopefully don't limit any real use of rewritten inode on write-once media
  83 * but avoid looping for too long on corrupted media.
  84 */
  85#define UDF_MAX_TD_NESTING 64
  86#define UDF_MAX_LVID_NESTING 1000
  87
  88enum { UDF_MAX_LINKS = 0xffff };
  89
  90/* These are the "meat" - everything else is stuffing */
  91static int udf_fill_super(struct super_block *, void *, int);
  92static void udf_put_super(struct super_block *);
  93static int udf_sync_fs(struct super_block *, int);
  94static int udf_remount_fs(struct super_block *, int *, char *);
  95static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
 
 
 
 
  96static void udf_open_lvid(struct super_block *);
  97static void udf_close_lvid(struct super_block *);
  98static unsigned int udf_count_free(struct super_block *);
  99static int udf_statfs(struct dentry *, struct kstatfs *);
 100static int udf_show_options(struct seq_file *, struct dentry *);
 101
 102struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
 103{
 104	struct logicalVolIntegrityDesc *lvid;
 105	unsigned int partnum;
 106	unsigned int offset;
 107
 108	if (!UDF_SB(sb)->s_lvid_bh)
 109		return NULL;
 110	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
 111	partnum = le32_to_cpu(lvid->numOfPartitions);
 112	/* The offset is to skip freeSpaceTable and sizeTable arrays */
 113	offset = partnum * 2 * sizeof(uint32_t);
 114	return (struct logicalVolIntegrityDescImpUse *)
 115					(((uint8_t *)(lvid + 1)) + offset);
 116}
 117
 118/* UDF filesystem type */
 119static struct dentry *udf_mount(struct file_system_type *fs_type,
 120		      int flags, const char *dev_name, void *data)
 121{
 122	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 123}
 124
 125static struct file_system_type udf_fstype = {
 126	.owner		= THIS_MODULE,
 127	.name		= "udf",
 128	.mount		= udf_mount,
 129	.kill_sb	= kill_block_super,
 130	.fs_flags	= FS_REQUIRES_DEV,
 131};
 132MODULE_ALIAS_FS("udf");
 133
 134static struct kmem_cache *udf_inode_cachep;
 135
 136static struct inode *udf_alloc_inode(struct super_block *sb)
 137{
 138	struct udf_inode_info *ei;
 139	ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
 140	if (!ei)
 141		return NULL;
 142
 143	ei->i_unique = 0;
 144	ei->i_lenExtents = 0;
 145	ei->i_lenStreams = 0;
 146	ei->i_next_alloc_block = 0;
 147	ei->i_next_alloc_goal = 0;
 148	ei->i_strat4096 = 0;
 149	ei->i_streamdir = 0;
 150	init_rwsem(&ei->i_data_sem);
 151	ei->cached_extent.lstart = -1;
 152	spin_lock_init(&ei->i_extent_cache_lock);
 153	inode_set_iversion(&ei->vfs_inode, 1);
 154
 155	return &ei->vfs_inode;
 156}
 157
 158static void udf_free_in_core_inode(struct inode *inode)
 159{
 
 
 160	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 161}
 162
 
 
 
 
 
 163static void init_once(void *foo)
 164{
 165	struct udf_inode_info *ei = foo;
 166
 167	ei->i_data = NULL;
 168	inode_init_once(&ei->vfs_inode);
 169}
 170
 171static int __init init_inodecache(void)
 172{
 173	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 174					     sizeof(struct udf_inode_info),
 175					     0, (SLAB_RECLAIM_ACCOUNT |
 176						 SLAB_MEM_SPREAD |
 177						 SLAB_ACCOUNT),
 178					     init_once);
 179	if (!udf_inode_cachep)
 180		return -ENOMEM;
 181	return 0;
 182}
 183
 184static void destroy_inodecache(void)
 185{
 186	/*
 187	 * Make sure all delayed rcu free inodes are flushed before we
 188	 * destroy cache.
 189	 */
 190	rcu_barrier();
 191	kmem_cache_destroy(udf_inode_cachep);
 192}
 193
 194/* Superblock operations */
 195static const struct super_operations udf_sb_ops = {
 196	.alloc_inode	= udf_alloc_inode,
 197	.free_inode	= udf_free_in_core_inode,
 198	.write_inode	= udf_write_inode,
 199	.evict_inode	= udf_evict_inode,
 200	.put_super	= udf_put_super,
 201	.sync_fs	= udf_sync_fs,
 202	.statfs		= udf_statfs,
 203	.remount_fs	= udf_remount_fs,
 204	.show_options	= udf_show_options,
 205};
 206
 207struct udf_options {
 208	unsigned char novrs;
 209	unsigned int blocksize;
 210	unsigned int session;
 211	unsigned int lastblock;
 212	unsigned int anchor;
 
 
 
 
 213	unsigned int flags;
 214	umode_t umask;
 215	kgid_t gid;
 216	kuid_t uid;
 217	umode_t fmode;
 218	umode_t dmode;
 219	struct nls_table *nls_map;
 220};
 221
 222static int __init init_udf_fs(void)
 223{
 224	int err;
 225
 226	err = init_inodecache();
 227	if (err)
 228		goto out1;
 229	err = register_filesystem(&udf_fstype);
 230	if (err)
 231		goto out;
 232
 233	return 0;
 234
 235out:
 236	destroy_inodecache();
 237
 238out1:
 239	return err;
 240}
 241
 242static void __exit exit_udf_fs(void)
 243{
 244	unregister_filesystem(&udf_fstype);
 245	destroy_inodecache();
 246}
 247
 
 
 
 248static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 249{
 250	struct udf_sb_info *sbi = UDF_SB(sb);
 251
 252	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
 
 253	if (!sbi->s_partmaps) {
 
 
 
 254		sbi->s_partitions = 0;
 255		return -ENOMEM;
 256	}
 257
 258	sbi->s_partitions = count;
 259	return 0;
 260}
 261
 262static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
 263{
 264	int i;
 265	int nr_groups = bitmap->s_nr_groups;
 266
 267	for (i = 0; i < nr_groups; i++)
 268		brelse(bitmap->s_block_bitmap[i]);
 269
 270	kvfree(bitmap);
 271}
 272
 273static void udf_free_partition(struct udf_part_map *map)
 274{
 275	int i;
 276	struct udf_meta_data *mdata;
 277
 278	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 279		iput(map->s_uspace.s_table);
 280	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 281		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
 282	if (map->s_partition_type == UDF_SPARABLE_MAP15)
 283		for (i = 0; i < 4; i++)
 284			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
 285	else if (map->s_partition_type == UDF_METADATA_MAP25) {
 286		mdata = &map->s_type_specific.s_metadata;
 287		iput(mdata->s_metadata_fe);
 288		mdata->s_metadata_fe = NULL;
 289
 290		iput(mdata->s_mirror_fe);
 291		mdata->s_mirror_fe = NULL;
 292
 293		iput(mdata->s_bitmap_fe);
 294		mdata->s_bitmap_fe = NULL;
 295	}
 296}
 297
 298static void udf_sb_free_partitions(struct super_block *sb)
 299{
 300	struct udf_sb_info *sbi = UDF_SB(sb);
 301	int i;
 302
 303	if (!sbi->s_partmaps)
 304		return;
 305	for (i = 0; i < sbi->s_partitions; i++)
 306		udf_free_partition(&sbi->s_partmaps[i]);
 307	kfree(sbi->s_partmaps);
 308	sbi->s_partmaps = NULL;
 309}
 310
 311static int udf_show_options(struct seq_file *seq, struct dentry *root)
 312{
 313	struct super_block *sb = root->d_sb;
 314	struct udf_sb_info *sbi = UDF_SB(sb);
 315
 316	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 317		seq_puts(seq, ",nostrict");
 318	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 319		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 320	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 321		seq_puts(seq, ",unhide");
 322	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 323		seq_puts(seq, ",undelete");
 324	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 325		seq_puts(seq, ",noadinicb");
 326	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 327		seq_puts(seq, ",shortad");
 328	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 329		seq_puts(seq, ",uid=forget");
 
 
 330	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 331		seq_puts(seq, ",gid=forget");
 
 
 332	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 333		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
 334	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 335		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
 336	if (sbi->s_umask != 0)
 337		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 338	if (sbi->s_fmode != UDF_INVALID_MODE)
 339		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 340	if (sbi->s_dmode != UDF_INVALID_MODE)
 341		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 342	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 343		seq_printf(seq, ",session=%d", sbi->s_session);
 344	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 345		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 346	if (sbi->s_anchor != 0)
 347		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 348	if (sbi->s_nls_map)
 
 
 
 
 
 
 349		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 350	else
 351		seq_puts(seq, ",iocharset=utf8");
 352
 353	return 0;
 354}
 355
 356/*
 357 * udf_parse_options
 358 *
 359 * PURPOSE
 360 *	Parse mount options.
 361 *
 362 * DESCRIPTION
 363 *	The following mount options are supported:
 364 *
 365 *	gid=		Set the default group.
 366 *	umask=		Set the default umask.
 367 *	mode=		Set the default file permissions.
 368 *	dmode=		Set the default directory permissions.
 369 *	uid=		Set the default user.
 370 *	bs=		Set the block size.
 371 *	unhide		Show otherwise hidden files.
 372 *	undelete	Show deleted files in lists.
 373 *	adinicb		Embed data in the inode (default)
 374 *	noadinicb	Don't embed data in the inode
 375 *	shortad		Use short ad's
 376 *	longad		Use long ad's (default)
 377 *	nostrict	Unset strict conformance
 378 *	iocharset=	Set the NLS character set
 379 *
 380 *	The remaining are for debugging and disaster recovery:
 381 *
 382 *	novrs		Skip volume sequence recognition
 383 *
 384 *	The following expect a offset from 0.
 385 *
 386 *	session=	Set the CDROM session (default= last session)
 387 *	anchor=		Override standard anchor location. (default= 256)
 388 *	volume=		Override the VolumeDesc location. (unused)
 389 *	partition=	Override the PartitionDesc location. (unused)
 390 *	lastblock=	Set the last block of the filesystem/
 391 *
 392 *	The following expect a offset from the partition root.
 393 *
 394 *	fileset=	Override the fileset block location. (unused)
 395 *	rootdir=	Override the root directory location. (unused)
 396 *		WARNING: overriding the rootdir to a non-directory may
 397 *		yield highly unpredictable results.
 398 *
 399 * PRE-CONDITIONS
 400 *	options		Pointer to mount options string.
 401 *	uopts		Pointer to mount options variable.
 402 *
 403 * POST-CONDITIONS
 404 *	<return>	1	Mount options parsed okay.
 405 *	<return>	0	Error parsing mount options.
 406 *
 407 * HISTORY
 408 *	July 1, 1997 - Andrew E. Mileski
 409 *	Written, tested, and released.
 410 */
 411
 412enum {
 413	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 414	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 415	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 416	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 417	Opt_rootdir, Opt_utf8, Opt_iocharset,
 418	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 419	Opt_fmode, Opt_dmode
 420};
 421
 422static const match_table_t tokens = {
 423	{Opt_novrs,	"novrs"},
 424	{Opt_nostrict,	"nostrict"},
 425	{Opt_bs,	"bs=%u"},
 426	{Opt_unhide,	"unhide"},
 427	{Opt_undelete,	"undelete"},
 428	{Opt_noadinicb,	"noadinicb"},
 429	{Opt_adinicb,	"adinicb"},
 430	{Opt_shortad,	"shortad"},
 431	{Opt_longad,	"longad"},
 432	{Opt_uforget,	"uid=forget"},
 433	{Opt_uignore,	"uid=ignore"},
 434	{Opt_gforget,	"gid=forget"},
 435	{Opt_gignore,	"gid=ignore"},
 436	{Opt_gid,	"gid=%u"},
 437	{Opt_uid,	"uid=%u"},
 438	{Opt_umask,	"umask=%o"},
 439	{Opt_session,	"session=%u"},
 440	{Opt_lastblock,	"lastblock=%u"},
 441	{Opt_anchor,	"anchor=%u"},
 442	{Opt_volume,	"volume=%u"},
 443	{Opt_partition,	"partition=%u"},
 444	{Opt_fileset,	"fileset=%u"},
 445	{Opt_rootdir,	"rootdir=%u"},
 446	{Opt_utf8,	"utf8"},
 447	{Opt_iocharset,	"iocharset=%s"},
 448	{Opt_fmode,     "mode=%o"},
 449	{Opt_dmode,     "dmode=%o"},
 450	{Opt_err,	NULL}
 451};
 452
 453static int udf_parse_options(char *options, struct udf_options *uopt,
 454			     bool remount)
 455{
 456	char *p;
 457	int option;
 458	unsigned int uv;
 459
 460	uopt->novrs = 0;
 
 461	uopt->session = 0xFFFFFFFF;
 462	uopt->lastblock = 0;
 463	uopt->anchor = 0;
 
 
 
 
 464
 465	if (!options)
 466		return 1;
 467
 468	while ((p = strsep(&options, ",")) != NULL) {
 469		substring_t args[MAX_OPT_ARGS];
 470		int token;
 471		unsigned n;
 472		if (!*p)
 473			continue;
 474
 475		token = match_token(p, tokens, args);
 476		switch (token) {
 477		case Opt_novrs:
 478			uopt->novrs = 1;
 479			break;
 480		case Opt_bs:
 481			if (match_int(&args[0], &option))
 482				return 0;
 483			n = option;
 484			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
 485				return 0;
 486			uopt->blocksize = n;
 487			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 488			break;
 489		case Opt_unhide:
 490			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 491			break;
 492		case Opt_undelete:
 493			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 494			break;
 495		case Opt_noadinicb:
 496			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 497			break;
 498		case Opt_adinicb:
 499			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 500			break;
 501		case Opt_shortad:
 502			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 503			break;
 504		case Opt_longad:
 505			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 506			break;
 507		case Opt_gid:
 508			if (match_uint(args, &uv))
 509				return 0;
 510			uopt->gid = make_kgid(current_user_ns(), uv);
 511			if (!gid_valid(uopt->gid))
 512				return 0;
 
 513			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 514			break;
 515		case Opt_uid:
 516			if (match_uint(args, &uv))
 517				return 0;
 518			uopt->uid = make_kuid(current_user_ns(), uv);
 519			if (!uid_valid(uopt->uid))
 520				return 0;
 
 521			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 522			break;
 523		case Opt_umask:
 524			if (match_octal(args, &option))
 525				return 0;
 526			uopt->umask = option;
 527			break;
 528		case Opt_nostrict:
 529			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 530			break;
 531		case Opt_session:
 532			if (match_int(args, &option))
 533				return 0;
 534			uopt->session = option;
 535			if (!remount)
 536				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 537			break;
 538		case Opt_lastblock:
 539			if (match_int(args, &option))
 540				return 0;
 541			uopt->lastblock = option;
 542			if (!remount)
 543				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 544			break;
 545		case Opt_anchor:
 546			if (match_int(args, &option))
 547				return 0;
 548			uopt->anchor = option;
 549			break;
 550		case Opt_volume:
 
 
 
 
 551		case Opt_partition:
 
 
 
 
 552		case Opt_fileset:
 
 
 
 
 553		case Opt_rootdir:
 554			/* Ignored (never implemented properly) */
 
 
 555			break;
 556		case Opt_utf8:
 557			if (!remount) {
 558				unload_nls(uopt->nls_map);
 559				uopt->nls_map = NULL;
 560			}
 561			break;
 
 562		case Opt_iocharset:
 563			if (!remount) {
 564				unload_nls(uopt->nls_map);
 565				uopt->nls_map = NULL;
 566			}
 567			/* When nls_map is not loaded then UTF-8 is used */
 568			if (!remount && strcmp(args[0].from, "utf8") != 0) {
 569				uopt->nls_map = load_nls(args[0].from);
 570				if (!uopt->nls_map) {
 571					pr_err("iocharset %s not found\n",
 572						args[0].from);
 573					return 0;
 574				}
 575			}
 576			break;
 577		case Opt_uforget:
 578			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 579			break;
 580		case Opt_uignore:
 581		case Opt_gignore:
 582			/* These options are superseeded by uid=<number> */
 583			break;
 584		case Opt_gforget:
 585			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 586			break;
 587		case Opt_fmode:
 588			if (match_octal(args, &option))
 589				return 0;
 590			uopt->fmode = option & 0777;
 591			break;
 592		case Opt_dmode:
 593			if (match_octal(args, &option))
 594				return 0;
 595			uopt->dmode = option & 0777;
 596			break;
 597		default:
 598			pr_err("bad mount option \"%s\" or missing value\n", p);
 
 599			return 0;
 600		}
 601	}
 602	return 1;
 603}
 604
 605static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 606{
 607	struct udf_options uopt;
 608	struct udf_sb_info *sbi = UDF_SB(sb);
 609	int error = 0;
 610
 611	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
 612		return -EACCES;
 613
 614	sync_filesystem(sb);
 615
 616	uopt.flags = sbi->s_flags;
 617	uopt.uid   = sbi->s_uid;
 618	uopt.gid   = sbi->s_gid;
 619	uopt.umask = sbi->s_umask;
 620	uopt.fmode = sbi->s_fmode;
 621	uopt.dmode = sbi->s_dmode;
 622	uopt.nls_map = NULL;
 623
 624	if (!udf_parse_options(options, &uopt, true))
 625		return -EINVAL;
 626
 627	write_lock(&sbi->s_cred_lock);
 628	sbi->s_flags = uopt.flags;
 629	sbi->s_uid   = uopt.uid;
 630	sbi->s_gid   = uopt.gid;
 631	sbi->s_umask = uopt.umask;
 632	sbi->s_fmode = uopt.fmode;
 633	sbi->s_dmode = uopt.dmode;
 634	write_unlock(&sbi->s_cred_lock);
 635
 636	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
 
 
 
 
 
 
 637		goto out_unlock;
 638
 639	if (*flags & SB_RDONLY)
 640		udf_close_lvid(sb);
 641	else
 642		udf_open_lvid(sb);
 643
 644out_unlock:
 645	return error;
 646}
 647
 648/*
 649 * Check VSD descriptor. Returns -1 in case we are at the end of volume
 650 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
 651 * we found one of NSR descriptors we are looking for.
 652 */
 653static int identify_vsd(const struct volStructDesc *vsd)
 654{
 655	int ret = 0;
 656
 657	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
 658		switch (vsd->structType) {
 659		case 0:
 660			udf_debug("ISO9660 Boot Record found\n");
 661			break;
 662		case 1:
 663			udf_debug("ISO9660 Primary Volume Descriptor found\n");
 664			break;
 665		case 2:
 666			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 667			break;
 668		case 3:
 669			udf_debug("ISO9660 Volume Partition Descriptor found\n");
 670			break;
 671		case 255:
 672			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 673			break;
 674		default:
 675			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
 676			break;
 677		}
 678	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
 679		; /* ret = 0 */
 680	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
 681		ret = 1;
 682	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
 683		ret = 1;
 684	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
 685		; /* ret = 0 */
 686	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
 687		; /* ret = 0 */
 688	else {
 689		/* TEA01 or invalid id : end of volume recognition area */
 690		ret = -1;
 691	}
 692
 693	return ret;
 694}
 695
 696/*
 697 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
 698 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
 699 * @return   1 if NSR02 or NSR03 found,
 700 *	    -1 if first sector read error, 0 otherwise
 701 */
 702static int udf_check_vsd(struct super_block *sb)
 703{
 704	struct volStructDesc *vsd = NULL;
 705	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
 706	int sectorsize;
 707	struct buffer_head *bh = NULL;
 708	int nsr = 0;
 
 709	struct udf_sb_info *sbi;
 710	loff_t session_offset;
 711
 712	sbi = UDF_SB(sb);
 713	if (sb->s_blocksize < sizeof(struct volStructDesc))
 714		sectorsize = sizeof(struct volStructDesc);
 715	else
 716		sectorsize = sb->s_blocksize;
 717
 718	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
 719	sector += session_offset;
 720
 721	udf_debug("Starting at sector %u (%lu byte sectors)\n",
 722		  (unsigned int)(sector >> sb->s_blocksize_bits),
 723		  sb->s_blocksize);
 724	/* Process the sequence (if applicable). The hard limit on the sector
 725	 * offset is arbitrary, hopefully large enough so that all valid UDF
 726	 * filesystems will be recognised. There is no mention of an upper
 727	 * bound to the size of the volume recognition area in the standard.
 728	 *  The limit will prevent the code to read all the sectors of a
 729	 * specially crafted image (like a bluray disc full of CD001 sectors),
 730	 * potentially causing minutes or even hours of uninterruptible I/O
 731	 * activity. This actually happened with uninitialised SSD partitions
 732	 * (all 0xFF) before the check for the limit and all valid IDs were
 733	 * added */
 734	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
 735		/* Read a block */
 736		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 737		if (!bh)
 738			break;
 739
 
 740		vsd = (struct volStructDesc *)(bh->b_data +
 741					      (sector & (sb->s_blocksize - 1)));
 742		nsr = identify_vsd(vsd);
 743		/* Found NSR or end? */
 744		if (nsr) {
 745			brelse(bh);
 746			break;
 747		}
 748		/*
 749		 * Special handling for improperly formatted VRS (e.g., Win10)
 750		 * where components are separated by 2048 bytes even though
 751		 * sectors are 4K
 752		 */
 753		if (sb->s_blocksize == 4096) {
 754			nsr = identify_vsd(vsd + 1);
 755			/* Ignore unknown IDs... */
 756			if (nsr < 0)
 757				nsr = 0;
 758		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759		brelse(bh);
 760	}
 761
 762	if (nsr > 0)
 763		return 1;
 764	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
 
 
 765		return -1;
 766	else
 767		return 0;
 768}
 769
 770static int udf_verify_domain_identifier(struct super_block *sb,
 771					struct regid *ident, char *dname)
 
 772{
 773	struct domainIdentSuffix *suffix;
 
 
 
 774
 775	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
 776		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
 777		goto force_ro;
 778	}
 779	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
 780		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
 781			 dname);
 782		goto force_ro;
 783	}
 784	suffix = (struct domainIdentSuffix *)ident->identSuffix;
 785	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
 786	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
 787		if (!sb_rdonly(sb)) {
 788			udf_warn(sb, "Descriptor for %s marked write protected."
 789				 " Forcing read only mount.\n", dname);
 790		}
 791		goto force_ro;
 792	}
 793	return 0;
 794
 795force_ro:
 796	if (!sb_rdonly(sb))
 797		return -EACCES;
 798	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
 799	return 0;
 800}
 801
 802static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
 803			    struct kernel_lb_addr *root)
 804{
 805	int ret;
 806
 807	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
 808	if (ret < 0)
 809		return ret;
 
 810
 811	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
 812	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
 813
 814	udf_debug("Rootdir at block=%u, partition=%u\n",
 815		  root->logicalBlockNum, root->partitionReferenceNum);
 816	return 0;
 817}
 
 
 
 
 
 
 
 
 
 
 
 
 
 818
 819static int udf_find_fileset(struct super_block *sb,
 820			    struct kernel_lb_addr *fileset,
 821			    struct kernel_lb_addr *root)
 822{
 823	struct buffer_head *bh;
 824	uint16_t ident;
 825	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826
 827	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
 828	    fileset->partitionReferenceNum == 0xFFFF)
 829		return -EINVAL;
 
 
 830
 831	bh = udf_read_ptagged(sb, fileset, 0, &ident);
 832	if (!bh)
 833		return -EIO;
 834	if (ident != TAG_IDENT_FSD) {
 835		brelse(bh);
 836		return -EINVAL;
 837	}
 838
 839	udf_debug("Fileset at block=%u, partition=%u\n",
 840		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
 841
 842	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
 843	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
 844	brelse(bh);
 845	return ret;
 846}
 847
 848/*
 849 * Load primary Volume Descriptor Sequence
 850 *
 851 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
 852 * should be tried.
 853 */
 854static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 855{
 856	struct primaryVolDesc *pvoldesc;
 857	uint8_t *outstr;
 858	struct buffer_head *bh;
 859	uint16_t ident;
 860	int ret;
 861	struct timestamp *ts;
 
 
 
 862
 863	outstr = kmalloc(128, GFP_NOFS);
 864	if (!outstr)
 865		return -ENOMEM;
 866
 867	bh = udf_read_tagged(sb, block, block, &ident);
 868	if (!bh) {
 869		ret = -EAGAIN;
 870		goto out2;
 871	}
 872
 873	if (ident != TAG_IDENT_PVD) {
 874		ret = -EIO;
 875		goto out_bh;
 876	}
 877
 878	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 879
 880	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 881			      pvoldesc->recordingDateAndTime);
 882	ts = &pvoldesc->recordingDateAndTime;
 883	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 884		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 885		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 886
 887	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
 888	if (ret < 0) {
 889		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
 890		pr_warn("incorrect volume identification, setting to "
 891			"'InvalidName'\n");
 892	} else {
 893		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
 894	}
 895	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
 896
 897	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
 898	if (ret < 0) {
 899		ret = 0;
 900		goto out_bh;
 901	}
 902	outstr[ret] = 0;
 903	udf_debug("volSetIdent[] = '%s'\n", outstr);
 904
 905	ret = 0;
 906out_bh:
 907	brelse(bh);
 
 908out2:
 909	kfree(outstr);
 
 
 910	return ret;
 911}
 912
 913struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 914					u32 meta_file_loc, u32 partition_ref)
 915{
 916	struct kernel_lb_addr addr;
 917	struct inode *metadata_fe;
 918
 919	addr.logicalBlockNum = meta_file_loc;
 920	addr.partitionReferenceNum = partition_ref;
 921
 922	metadata_fe = udf_iget_special(sb, &addr);
 923
 924	if (IS_ERR(metadata_fe)) {
 925		udf_warn(sb, "metadata inode efe not found\n");
 926		return metadata_fe;
 927	}
 928	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 929		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 930		iput(metadata_fe);
 931		return ERR_PTR(-EIO);
 932	}
 933
 934	return metadata_fe;
 935}
 936
 937static int udf_load_metadata_files(struct super_block *sb, int partition,
 938				   int type1_index)
 939{
 940	struct udf_sb_info *sbi = UDF_SB(sb);
 941	struct udf_part_map *map;
 942	struct udf_meta_data *mdata;
 943	struct kernel_lb_addr addr;
 944	struct inode *fe;
 945
 946	map = &sbi->s_partmaps[partition];
 947	mdata = &map->s_type_specific.s_metadata;
 948	mdata->s_phys_partition_ref = type1_index;
 949
 950	/* metadata address */
 951	udf_debug("Metadata file location: block = %u part = %u\n",
 952		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
 953
 954	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
 955					 mdata->s_phys_partition_ref);
 956	if (IS_ERR(fe)) {
 957		/* mirror file entry */
 958		udf_debug("Mirror metadata file location: block = %u part = %u\n",
 959			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
 960
 961		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
 962						 mdata->s_phys_partition_ref);
 963
 964		if (IS_ERR(fe)) {
 965			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
 966			return PTR_ERR(fe);
 967		}
 968		mdata->s_mirror_fe = fe;
 969	} else
 970		mdata->s_metadata_fe = fe;
 971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972
 973	/*
 974	 * bitmap file entry
 975	 * Note:
 976	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
 977	*/
 978	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
 979		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
 980		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
 981
 982		udf_debug("Bitmap file location: block = %u part = %u\n",
 983			  addr.logicalBlockNum, addr.partitionReferenceNum);
 984
 985		fe = udf_iget_special(sb, &addr);
 986		if (IS_ERR(fe)) {
 987			if (sb_rdonly(sb))
 988				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
 
 
 
 989			else {
 990				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
 991				return PTR_ERR(fe);
 
 992			}
 993		} else
 994			mdata->s_bitmap_fe = fe;
 995	}
 996
 997	udf_debug("udf_load_metadata_files Ok\n");
 
 998	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999}
1000
1001int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1002{
1003	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1004	return DIV_ROUND_UP(map->s_partition_len +
1005			    (sizeof(struct spaceBitmapDesc) << 3),
1006			    sb->s_blocksize * 8);
1007}
1008
1009static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1010{
1011	struct udf_bitmap *bitmap;
1012	int nr_groups = udf_compute_nr_groups(sb, index);
 
1013
1014	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1015			  GFP_KERNEL);
1016	if (!bitmap)
1017		return NULL;
1018
1019	bitmap->s_nr_groups = nr_groups;
1020	return bitmap;
1021}
1022
1023static int check_partition_desc(struct super_block *sb,
1024				struct partitionDesc *p,
1025				struct udf_part_map *map)
1026{
1027	bool umap, utable, fmap, ftable;
1028	struct partitionHeaderDesc *phd;
1029
1030	switch (le32_to_cpu(p->accessType)) {
1031	case PD_ACCESS_TYPE_READ_ONLY:
1032	case PD_ACCESS_TYPE_WRITE_ONCE:
1033	case PD_ACCESS_TYPE_NONE:
1034		goto force_ro;
1035	}
1036
1037	/* No Partition Header Descriptor? */
1038	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1039	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1040		goto force_ro;
1041
1042	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1043	utable = phd->unallocSpaceTable.extLength;
1044	umap = phd->unallocSpaceBitmap.extLength;
1045	ftable = phd->freedSpaceTable.extLength;
1046	fmap = phd->freedSpaceBitmap.extLength;
1047
1048	/* No allocation info? */
1049	if (!utable && !umap && !ftable && !fmap)
1050		goto force_ro;
1051
1052	/* We don't support blocks that require erasing before overwrite */
1053	if (ftable || fmap)
1054		goto force_ro;
1055	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1056	if (utable && umap)
1057		goto force_ro;
1058
1059	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1060	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1061	    map->s_partition_type == UDF_METADATA_MAP25)
1062		goto force_ro;
1063
1064	return 0;
1065force_ro:
1066	if (!sb_rdonly(sb))
1067		return -EACCES;
1068	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1069	return 0;
1070}
1071
1072static int udf_fill_partdesc_info(struct super_block *sb,
1073		struct partitionDesc *p, int p_index)
1074{
1075	struct udf_part_map *map;
1076	struct udf_sb_info *sbi = UDF_SB(sb);
1077	struct partitionHeaderDesc *phd;
1078	int err;
1079
1080	map = &sbi->s_partmaps[p_index];
1081
1082	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1083	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1084
1085	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1086		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1087	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1088		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1089	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1090		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1091	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1092		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1093
1094	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1095		  p_index, map->s_partition_type,
1096		  map->s_partition_root, map->s_partition_len);
1097
1098	err = check_partition_desc(sb, p, map);
1099	if (err)
1100		return err;
1101
1102	/*
1103	 * Skip loading allocation info it we cannot ever write to the fs.
1104	 * This is a correctness thing as we may have decided to force ro mount
1105	 * to avoid allocation info we don't support.
1106	 */
1107	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1108		return 0;
1109
1110	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1111	if (phd->unallocSpaceTable.extLength) {
1112		struct kernel_lb_addr loc = {
1113			.logicalBlockNum = le32_to_cpu(
1114				phd->unallocSpaceTable.extPosition),
1115			.partitionReferenceNum = p_index,
1116		};
1117		struct inode *inode;
1118
1119		inode = udf_iget_special(sb, &loc);
1120		if (IS_ERR(inode)) {
1121			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1122				  p_index);
1123			return PTR_ERR(inode);
1124		}
1125		map->s_uspace.s_table = inode;
1126		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1127		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1128			  p_index, map->s_uspace.s_table->i_ino);
1129	}
1130
1131	if (phd->unallocSpaceBitmap.extLength) {
1132		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1133		if (!bitmap)
1134			return -ENOMEM;
1135		map->s_uspace.s_bitmap = bitmap;
 
 
1136		bitmap->s_extPosition = le32_to_cpu(
1137				phd->unallocSpaceBitmap.extPosition);
1138		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1139		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1140			  p_index, bitmap->s_extPosition);
1141	}
1142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143	return 0;
1144}
1145
1146static void udf_find_vat_block(struct super_block *sb, int p_index,
1147			       int type1_index, sector_t start_block)
1148{
1149	struct udf_sb_info *sbi = UDF_SB(sb);
1150	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1151	sector_t vat_block;
1152	struct kernel_lb_addr ino;
1153	struct inode *inode;
1154
1155	/*
1156	 * VAT file entry is in the last recorded block. Some broken disks have
1157	 * it a few blocks before so try a bit harder...
1158	 */
1159	ino.partitionReferenceNum = type1_index;
1160	for (vat_block = start_block;
1161	     vat_block >= map->s_partition_root &&
1162	     vat_block >= start_block - 3; vat_block--) {
 
1163		ino.logicalBlockNum = vat_block - map->s_partition_root;
1164		inode = udf_iget_special(sb, &ino);
1165		if (!IS_ERR(inode)) {
1166			sbi->s_vat_inode = inode;
1167			break;
1168		}
1169	}
1170}
1171
1172static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1173{
1174	struct udf_sb_info *sbi = UDF_SB(sb);
1175	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1176	struct buffer_head *bh = NULL;
1177	struct udf_inode_info *vati;
1178	uint32_t pos;
1179	struct virtualAllocationTable20 *vat20;
1180	sector_t blocks = sb_bdev_nr_blocks(sb);
1181
1182	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1183	if (!sbi->s_vat_inode &&
1184	    sbi->s_last_block != blocks - 1) {
1185		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1186			  (unsigned long)sbi->s_last_block,
1187			  (unsigned long)blocks - 1);
 
 
1188		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1189	}
1190	if (!sbi->s_vat_inode)
1191		return -EIO;
1192
1193	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1194		map->s_type_specific.s_virtual.s_start_offset = 0;
1195		map->s_type_specific.s_virtual.s_num_entries =
1196			(sbi->s_vat_inode->i_size - 36) >> 2;
1197	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1198		vati = UDF_I(sbi->s_vat_inode);
1199		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1200			pos = udf_block_map(sbi->s_vat_inode, 0);
1201			bh = sb_bread(sb, pos);
1202			if (!bh)
1203				return -EIO;
1204			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1205		} else {
1206			vat20 = (struct virtualAllocationTable20 *)
1207							vati->i_data;
1208		}
1209
1210		map->s_type_specific.s_virtual.s_start_offset =
1211			le16_to_cpu(vat20->lengthHeader);
1212		map->s_type_specific.s_virtual.s_num_entries =
1213			(sbi->s_vat_inode->i_size -
1214				map->s_type_specific.s_virtual.
1215					s_start_offset) >> 2;
1216		brelse(bh);
1217	}
1218	return 0;
1219}
1220
1221/*
1222 * Load partition descriptor block
1223 *
1224 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1225 * sequence.
1226 */
1227static int udf_load_partdesc(struct super_block *sb, sector_t block)
1228{
1229	struct buffer_head *bh;
1230	struct partitionDesc *p;
1231	struct udf_part_map *map;
1232	struct udf_sb_info *sbi = UDF_SB(sb);
1233	int i, type1_idx;
1234	uint16_t partitionNumber;
1235	uint16_t ident;
1236	int ret;
1237
1238	bh = udf_read_tagged(sb, block, block, &ident);
1239	if (!bh)
1240		return -EAGAIN;
1241	if (ident != TAG_IDENT_PD) {
1242		ret = 0;
1243		goto out_bh;
1244	}
1245
1246	p = (struct partitionDesc *)bh->b_data;
1247	partitionNumber = le16_to_cpu(p->partitionNumber);
1248
1249	/* First scan for TYPE1 and SPARABLE partitions */
1250	for (i = 0; i < sbi->s_partitions; i++) {
1251		map = &sbi->s_partmaps[i];
1252		udf_debug("Searching map: (%u == %u)\n",
1253			  map->s_partition_num, partitionNumber);
1254		if (map->s_partition_num == partitionNumber &&
1255		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1256		     map->s_partition_type == UDF_SPARABLE_MAP15))
1257			break;
1258	}
1259
1260	if (i >= sbi->s_partitions) {
1261		udf_debug("Partition (%u) not found in partition map\n",
1262			  partitionNumber);
1263		ret = 0;
1264		goto out_bh;
1265	}
1266
1267	ret = udf_fill_partdesc_info(sb, p, i);
1268	if (ret < 0)
1269		goto out_bh;
1270
1271	/*
1272	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1273	 * PHYSICAL partitions are already set up
1274	 */
1275	type1_idx = i;
1276	map = NULL; /* supress 'maybe used uninitialized' warning */
1277	for (i = 0; i < sbi->s_partitions; i++) {
1278		map = &sbi->s_partmaps[i];
1279
1280		if (map->s_partition_num == partitionNumber &&
1281		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1282		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1283		     map->s_partition_type == UDF_METADATA_MAP25))
1284			break;
1285	}
1286
1287	if (i >= sbi->s_partitions) {
1288		ret = 0;
1289		goto out_bh;
1290	}
1291
1292	ret = udf_fill_partdesc_info(sb, p, i);
1293	if (ret < 0)
1294		goto out_bh;
1295
1296	if (map->s_partition_type == UDF_METADATA_MAP25) {
1297		ret = udf_load_metadata_files(sb, i, type1_idx);
1298		if (ret < 0) {
1299			udf_err(sb, "error loading MetaData partition map %d\n",
1300				i);
1301			goto out_bh;
1302		}
1303	} else {
1304		/*
1305		 * If we have a partition with virtual map, we don't handle
1306		 * writing to it (we overwrite blocks instead of relocating
1307		 * them).
1308		 */
1309		if (!sb_rdonly(sb)) {
1310			ret = -EACCES;
1311			goto out_bh;
1312		}
1313		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1314		ret = udf_load_vat(sb, i, type1_idx);
1315		if (ret < 0)
1316			goto out_bh;
 
 
 
 
 
 
 
 
 
1317	}
1318	ret = 0;
1319out_bh:
1320	/* In case loading failed, we handle cleanup in udf_fill_super */
1321	brelse(bh);
1322	return ret;
1323}
1324
1325static int udf_load_sparable_map(struct super_block *sb,
1326				 struct udf_part_map *map,
1327				 struct sparablePartitionMap *spm)
1328{
1329	uint32_t loc;
1330	uint16_t ident;
1331	struct sparingTable *st;
1332	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1333	int i;
1334	struct buffer_head *bh;
1335
1336	map->s_partition_type = UDF_SPARABLE_MAP15;
1337	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1338	if (!is_power_of_2(sdata->s_packet_len)) {
1339		udf_err(sb, "error loading logical volume descriptor: "
1340			"Invalid packet length %u\n",
1341			(unsigned)sdata->s_packet_len);
1342		return -EIO;
1343	}
1344	if (spm->numSparingTables > 4) {
1345		udf_err(sb, "error loading logical volume descriptor: "
1346			"Too many sparing tables (%d)\n",
1347			(int)spm->numSparingTables);
1348		return -EIO;
1349	}
1350	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1351		udf_err(sb, "error loading logical volume descriptor: "
1352			"Too big sparing table size (%u)\n",
1353			le32_to_cpu(spm->sizeSparingTable));
1354		return -EIO;
1355	}
1356
1357	for (i = 0; i < spm->numSparingTables; i++) {
1358		loc = le32_to_cpu(spm->locSparingTable[i]);
1359		bh = udf_read_tagged(sb, loc, loc, &ident);
1360		if (!bh)
1361			continue;
1362
1363		st = (struct sparingTable *)bh->b_data;
1364		if (ident != 0 ||
1365		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366			    strlen(UDF_ID_SPARING)) ||
1367		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368							sb->s_blocksize) {
1369			brelse(bh);
1370			continue;
1371		}
1372
1373		sdata->s_spar_map[i] = bh;
1374	}
1375	map->s_partition_func = udf_get_pblock_spar15;
1376	return 0;
1377}
1378
1379static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380			       struct kernel_lb_addr *fileset)
1381{
1382	struct logicalVolDesc *lvd;
1383	int i, offset;
1384	uint8_t type;
1385	struct udf_sb_info *sbi = UDF_SB(sb);
1386	struct genericPartitionMap *gpm;
1387	uint16_t ident;
1388	struct buffer_head *bh;
1389	unsigned int table_len;
1390	int ret;
1391
1392	bh = udf_read_tagged(sb, block, block, &ident);
1393	if (!bh)
1394		return -EAGAIN;
1395	BUG_ON(ident != TAG_IDENT_LVD);
1396	lvd = (struct logicalVolDesc *)bh->b_data;
1397	table_len = le32_to_cpu(lvd->mapTableLength);
1398	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399		udf_err(sb, "error loading logical volume descriptor: "
1400			"Partition table too long (%u > %lu)\n", table_len,
1401			sb->s_blocksize - sizeof(*lvd));
1402		ret = -EIO;
1403		goto out_bh;
1404	}
1405
1406	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407					   "logical volume");
1408	if (ret)
1409		goto out_bh;
1410	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411	if (ret)
1412		goto out_bh;
 
1413
1414	for (i = 0, offset = 0;
1415	     i < sbi->s_partitions && offset < table_len;
1416	     i++, offset += gpm->partitionMapLength) {
1417		struct udf_part_map *map = &sbi->s_partmaps[i];
1418		gpm = (struct genericPartitionMap *)
1419				&(lvd->partitionMaps[offset]);
1420		type = gpm->partitionMapType;
1421		if (type == 1) {
1422			struct genericPartitionMap1 *gpm1 =
1423				(struct genericPartitionMap1 *)gpm;
1424			map->s_partition_type = UDF_TYPE1_MAP15;
1425			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427			map->s_partition_func = NULL;
1428		} else if (type == 2) {
1429			struct udfPartitionMap2 *upm2 =
1430						(struct udfPartitionMap2 *)gpm;
1431			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432						strlen(UDF_ID_VIRTUAL))) {
1433				u16 suf =
1434					le16_to_cpu(((__le16 *)upm2->partIdent.
1435							identSuffix)[0]);
1436				if (suf < 0x0200) {
1437					map->s_partition_type =
1438							UDF_VIRTUAL_MAP15;
1439					map->s_partition_func =
1440							udf_get_pblock_virt15;
1441				} else {
1442					map->s_partition_type =
1443							UDF_VIRTUAL_MAP20;
1444					map->s_partition_func =
1445							udf_get_pblock_virt20;
1446				}
1447			} else if (!strncmp(upm2->partIdent.ident,
1448						UDF_ID_SPARABLE,
1449						strlen(UDF_ID_SPARABLE))) {
1450				ret = udf_load_sparable_map(sb, map,
1451					(struct sparablePartitionMap *)gpm);
1452				if (ret < 0)
1453					goto out_bh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454			} else if (!strncmp(upm2->partIdent.ident,
1455						UDF_ID_METADATA,
1456						strlen(UDF_ID_METADATA))) {
1457				struct udf_meta_data *mdata =
1458					&map->s_type_specific.s_metadata;
1459				struct metadataPartitionMap *mdm =
1460						(struct metadataPartitionMap *)
1461						&(lvd->partitionMaps[offset]);
1462				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463					  i, type, UDF_ID_METADATA);
 
1464
1465				map->s_partition_type = UDF_METADATA_MAP25;
1466				map->s_partition_func = udf_get_pblock_meta25;
1467
1468				mdata->s_meta_file_loc   =
1469					le32_to_cpu(mdm->metadataFileLoc);
1470				mdata->s_mirror_file_loc =
1471					le32_to_cpu(mdm->metadataMirrorFileLoc);
1472				mdata->s_bitmap_file_loc =
1473					le32_to_cpu(mdm->metadataBitmapFileLoc);
1474				mdata->s_alloc_unit_size =
1475					le32_to_cpu(mdm->allocUnitSize);
1476				mdata->s_align_unit_size =
1477					le16_to_cpu(mdm->alignUnitSize);
1478				if (mdm->flags & 0x01)
1479					mdata->s_flags |= MF_DUPLICATE_MD;
1480
1481				udf_debug("Metadata Ident suffix=0x%x\n",
1482					  le16_to_cpu(*(__le16 *)
1483						      mdm->partIdent.identSuffix));
1484				udf_debug("Metadata part num=%u\n",
1485					  le16_to_cpu(mdm->partitionNum));
1486				udf_debug("Metadata part alloc unit size=%u\n",
1487					  le32_to_cpu(mdm->allocUnitSize));
1488				udf_debug("Metadata file loc=%u\n",
1489					  le32_to_cpu(mdm->metadataFileLoc));
1490				udf_debug("Mirror file loc=%u\n",
1491					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1492				udf_debug("Bitmap file loc=%u\n",
1493					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1494				udf_debug("Flags: %d %u\n",
1495					  mdata->s_flags, mdm->flags);
 
1496			} else {
1497				udf_debug("Unknown ident: %s\n",
1498					  upm2->partIdent.ident);
1499				continue;
1500			}
1501			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503		}
1504		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505			  i, map->s_partition_num, type, map->s_volumeseqnum);
 
1506	}
1507
1508	if (fileset) {
1509		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510
1511		*fileset = lelb_to_cpu(la->extLocation);
1512		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513			  fileset->logicalBlockNum,
1514			  fileset->partitionReferenceNum);
1515	}
1516	if (lvd->integritySeqExt.extLength)
1517		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518	ret = 0;
1519
1520	if (!sbi->s_lvid_bh) {
1521		/* We can't generate unique IDs without a valid LVID */
1522		if (sb_rdonly(sb)) {
1523			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524		} else {
1525			udf_warn(sb, "Damaged or missing LVID, forcing "
1526				     "readonly mount\n");
1527			ret = -EACCES;
1528		}
1529	}
1530out_bh:
1531	brelse(bh);
1532	return ret;
1533}
1534
1535/*
1536 * Find the prevailing Logical Volume Integrity Descriptor.
 
1537 */
1538static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539{
1540	struct buffer_head *bh, *final_bh;
1541	uint16_t ident;
1542	struct udf_sb_info *sbi = UDF_SB(sb);
1543	struct logicalVolIntegrityDesc *lvid;
1544	int indirections = 0;
1545	u32 parts, impuselen;
1546
1547	while (++indirections <= UDF_MAX_LVID_NESTING) {
1548		final_bh = NULL;
1549		while (loc.extLength > 0 &&
1550			(bh = udf_read_tagged(sb, loc.extLocation,
1551					loc.extLocation, &ident))) {
1552			if (ident != TAG_IDENT_LVID) {
1553				brelse(bh);
1554				break;
1555			}
1556
1557			brelse(final_bh);
1558			final_bh = bh;
1559
1560			loc.extLength -= sb->s_blocksize;
1561			loc.extLocation++;
1562		}
1563
1564		if (!final_bh)
1565			return;
1566
1567		brelse(sbi->s_lvid_bh);
1568		sbi->s_lvid_bh = final_bh;
1569
1570		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1571		if (lvid->nextIntegrityExt.extLength == 0)
1572			goto check;
1573
1574		loc = leea_to_cpu(lvid->nextIntegrityExt);
1575	}
1576
1577	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1578		UDF_MAX_LVID_NESTING);
1579out_err:
1580	brelse(sbi->s_lvid_bh);
1581	sbi->s_lvid_bh = NULL;
1582	return;
1583check:
1584	parts = le32_to_cpu(lvid->numOfPartitions);
1585	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1586	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1587	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1588	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1589		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1590			 "ignoring.\n", parts, impuselen);
1591		goto out_err;
1592	}
1593}
1594
1595/*
1596 * Step for reallocation of table of partition descriptor sequence numbers.
1597 * Must be power of 2.
1598 */
1599#define PART_DESC_ALLOC_STEP 32
1600
1601struct part_desc_seq_scan_data {
1602	struct udf_vds_record rec;
1603	u32 partnum;
1604};
1605
1606struct desc_seq_scan_data {
1607	struct udf_vds_record vds[VDS_POS_LENGTH];
1608	unsigned int size_part_descs;
1609	unsigned int num_part_descs;
1610	struct part_desc_seq_scan_data *part_descs_loc;
1611};
1612
1613static struct udf_vds_record *handle_partition_descriptor(
1614				struct buffer_head *bh,
1615				struct desc_seq_scan_data *data)
1616{
1617	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1618	int partnum;
1619	int i;
1620
1621	partnum = le16_to_cpu(desc->partitionNumber);
1622	for (i = 0; i < data->num_part_descs; i++)
1623		if (partnum == data->part_descs_loc[i].partnum)
1624			return &(data->part_descs_loc[i].rec);
1625	if (data->num_part_descs >= data->size_part_descs) {
1626		struct part_desc_seq_scan_data *new_loc;
1627		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1628
1629		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1630		if (!new_loc)
1631			return ERR_PTR(-ENOMEM);
1632		memcpy(new_loc, data->part_descs_loc,
1633		       data->size_part_descs * sizeof(*new_loc));
1634		kfree(data->part_descs_loc);
1635		data->part_descs_loc = new_loc;
1636		data->size_part_descs = new_size;
1637	}
1638	return &(data->part_descs_loc[data->num_part_descs++].rec);
1639}
1640
 
 
 
1641
1642static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1643		struct buffer_head *bh, struct desc_seq_scan_data *data)
1644{
1645	switch (ident) {
1646	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1648	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1649		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1650	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1651		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1652	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1653		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1654	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1655		return handle_partition_descriptor(bh, data);
1656	}
1657	return NULL;
 
1658}
1659
1660/*
1661 * Process a main/reserve volume descriptor sequence.
1662 *   @block		First block of first extent of the sequence.
1663 *   @lastblock		Lastblock of first extent of the sequence.
1664 *   @fileset		There we store extent containing root fileset
1665 *
1666 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1667 * sequence
 
 
 
 
 
 
1668 */
1669static noinline int udf_process_sequence(
1670		struct super_block *sb,
1671		sector_t block, sector_t lastblock,
1672		struct kernel_lb_addr *fileset)
1673{
1674	struct buffer_head *bh = NULL;
 
1675	struct udf_vds_record *curr;
1676	struct generic_desc *gd;
1677	struct volDescPtr *vdp;
1678	bool done = false;
1679	uint32_t vdsn;
1680	uint16_t ident;
1681	int ret;
1682	unsigned int indirections = 0;
1683	struct desc_seq_scan_data data;
1684	unsigned int i;
1685
1686	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1687	data.size_part_descs = PART_DESC_ALLOC_STEP;
1688	data.num_part_descs = 0;
1689	data.part_descs_loc = kcalloc(data.size_part_descs,
1690				      sizeof(*data.part_descs_loc),
1691				      GFP_KERNEL);
1692	if (!data.part_descs_loc)
1693		return -ENOMEM;
1694
1695	/*
1696	 * Read the main descriptor sequence and find which descriptors
1697	 * are in it.
1698	 */
1699	for (; (!done && block <= lastblock); block++) {
 
1700		bh = udf_read_tagged(sb, block, block, &ident);
1701		if (!bh)
1702			break;
 
 
 
 
1703
1704		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1705		gd = (struct generic_desc *)bh->b_data;
1706		vdsn = le32_to_cpu(gd->volDescSeqNum);
1707		switch (ident) {
1708		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1709			if (++indirections > UDF_MAX_TD_NESTING) {
1710				udf_err(sb, "too many Volume Descriptor "
1711					"Pointers (max %u supported)\n",
1712					UDF_MAX_TD_NESTING);
1713				brelse(bh);
1714				ret = -EIO;
1715				goto out;
1716			}
 
 
 
 
 
 
1717
1718			vdp = (struct volDescPtr *)bh->b_data;
1719			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1720			lastblock = le32_to_cpu(
1721				vdp->nextVolDescSeqExt.extLength) >>
1722				sb->s_blocksize_bits;
1723			lastblock += block - 1;
1724			/* For loop is going to increment 'block' again */
1725			block--;
1726			break;
1727		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1728		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1729		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1730		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
 
 
 
 
1731		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1732			curr = get_volume_descriptor_record(ident, bh, &data);
1733			if (IS_ERR(curr)) {
1734				brelse(bh);
1735				ret = PTR_ERR(curr);
1736				goto out;
 
 
 
 
1737			}
1738			/* Descriptor we don't care about? */
1739			if (!curr)
1740				break;
1741			if (vdsn >= curr->volDescSeqNum) {
1742				curr->volDescSeqNum = vdsn;
1743				curr->block = block;
1744			}
1745			break;
1746		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1747			done = true;
 
 
 
 
 
 
1748			break;
1749		}
1750		brelse(bh);
1751	}
1752	/*
1753	 * Now read interesting descriptors again and process them
1754	 * in a suitable order
1755	 */
1756	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1757		udf_err(sb, "Primary Volume Descriptor not found!\n");
1758		ret = -EAGAIN;
1759		goto out;
1760	}
1761	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1762	if (ret < 0)
1763		goto out;
1764
1765	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1766		ret = udf_load_logicalvol(sb,
1767				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1768				fileset);
1769		if (ret < 0)
1770			goto out;
1771	}
1772
1773	/* Now handle prevailing Partition Descriptors */
1774	for (i = 0; i < data.num_part_descs; i++) {
1775		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1776		if (ret < 0)
1777			goto out;
 
 
 
 
 
1778	}
1779	ret = 0;
1780out:
1781	kfree(data.part_descs_loc);
1782	return ret;
1783}
1784
1785/*
1786 * Load Volume Descriptor Sequence described by anchor in bh
1787 *
1788 * Returns <0 on error, 0 on success
1789 */
1790static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1791			     struct kernel_lb_addr *fileset)
1792{
1793	struct anchorVolDescPtr *anchor;
1794	sector_t main_s, main_e, reserve_s, reserve_e;
1795	int ret;
1796
1797	anchor = (struct anchorVolDescPtr *)bh->b_data;
1798
1799	/* Locate the main sequence */
1800	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1801	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1802	main_e = main_e >> sb->s_blocksize_bits;
1803	main_e += main_s - 1;
1804
1805	/* Locate the reserve sequence */
1806	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1807	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1808	reserve_e = reserve_e >> sb->s_blocksize_bits;
1809	reserve_e += reserve_s - 1;
1810
1811	/* Process the main & reserve sequences */
1812	/* responsible for finding the PartitionDesc(s) */
1813	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1814	if (ret != -EAGAIN)
1815		return ret;
1816	udf_sb_free_partitions(sb);
1817	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1818	if (ret < 0) {
1819		udf_sb_free_partitions(sb);
1820		/* No sequence was OK, return -EIO */
1821		if (ret == -EAGAIN)
1822			ret = -EIO;
1823	}
1824	return ret;
1825}
1826
1827/*
1828 * Check whether there is an anchor block in the given block and
1829 * load Volume Descriptor Sequence if so.
1830 *
1831 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1832 * block
1833 */
1834static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1835				  struct kernel_lb_addr *fileset)
1836{
1837	struct buffer_head *bh;
1838	uint16_t ident;
1839	int ret;
1840
1841	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1842	    udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
1843		return -EAGAIN;
 
1844
1845	bh = udf_read_tagged(sb, block, block, &ident);
1846	if (!bh)
1847		return -EAGAIN;
1848	if (ident != TAG_IDENT_AVDP) {
1849		brelse(bh);
1850		return -EAGAIN;
1851	}
1852	ret = udf_load_sequence(sb, bh, fileset);
1853	brelse(bh);
1854	return ret;
1855}
1856
1857/*
1858 * Search for an anchor volume descriptor pointer.
1859 *
1860 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861 * of anchors.
1862 */
1863static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864			    struct kernel_lb_addr *fileset)
1865{
1866	sector_t last[6];
1867	int i;
1868	struct udf_sb_info *sbi = UDF_SB(sb);
1869	int last_count = 0;
1870	int ret;
1871
1872	/* First try user provided anchor */
1873	if (sbi->s_anchor) {
1874		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875		if (ret != -EAGAIN)
1876			return ret;
1877	}
1878	/*
1879	 * according to spec, anchor is in either:
1880	 *     block 256
1881	 *     lastblock-256
1882	 *     lastblock
1883	 *  however, if the disc isn't closed, it could be 512.
1884	 */
1885	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886	if (ret != -EAGAIN)
1887		return ret;
1888	/*
1889	 * The trouble is which block is the last one. Drives often misreport
1890	 * this so we try various possibilities.
1891	 */
1892	last[last_count++] = *lastblock;
1893	if (*lastblock >= 1)
1894		last[last_count++] = *lastblock - 1;
1895	last[last_count++] = *lastblock + 1;
1896	if (*lastblock >= 2)
1897		last[last_count++] = *lastblock - 2;
1898	if (*lastblock >= 150)
1899		last[last_count++] = *lastblock - 150;
1900	if (*lastblock >= 152)
1901		last[last_count++] = *lastblock - 152;
1902
1903	for (i = 0; i < last_count; i++) {
1904		if (last[i] >= sb_bdev_nr_blocks(sb))
 
1905			continue;
1906		ret = udf_check_anchor_block(sb, last[i], fileset);
1907		if (ret != -EAGAIN) {
1908			if (!ret)
1909				*lastblock = last[i];
1910			return ret;
1911		}
1912		if (last[i] < 256)
1913			continue;
1914		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1915		if (ret != -EAGAIN) {
1916			if (!ret)
1917				*lastblock = last[i];
1918			return ret;
1919		}
1920	}
1921
1922	/* Finally try block 512 in case media is open */
1923	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
 
 
1924}
1925
1926/*
1927 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1928 * area specified by it. The function expects sbi->s_lastblock to be the last
1929 * block on the media.
1930 *
1931 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1932 * was not found.
1933 */
1934static int udf_find_anchor(struct super_block *sb,
1935			   struct kernel_lb_addr *fileset)
1936{
 
1937	struct udf_sb_info *sbi = UDF_SB(sb);
1938	sector_t lastblock = sbi->s_last_block;
1939	int ret;
1940
1941	ret = udf_scan_anchors(sb, &lastblock, fileset);
1942	if (ret != -EAGAIN)
1943		goto out;
1944
1945	/* No anchor found? Try VARCONV conversion of block numbers */
1946	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1947	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1948	/* Firstly, we try to not convert number of the last block */
1949	ret = udf_scan_anchors(sb, &lastblock, fileset);
1950	if (ret != -EAGAIN)
 
 
1951		goto out;
1952
1953	lastblock = sbi->s_last_block;
1954	/* Secondly, we try with converted number of the last block */
1955	ret = udf_scan_anchors(sb, &lastblock, fileset);
1956	if (ret < 0) {
1957		/* VARCONV didn't help. Clear it. */
1958		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
 
1959	}
1960out:
1961	if (ret == 0)
1962		sbi->s_last_block = lastblock;
1963	return ret;
1964}
1965
1966/*
1967 * Check Volume Structure Descriptor, find Anchor block and load Volume
1968 * Descriptor Sequence.
1969 *
1970 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1971 * block was not found.
1972 */
1973static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1974			int silent, struct kernel_lb_addr *fileset)
1975{
1976	struct udf_sb_info *sbi = UDF_SB(sb);
1977	int nsr = 0;
1978	int ret;
1979
1980	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1981		if (!silent)
1982			udf_warn(sb, "Bad block size\n");
1983		return -EINVAL;
1984	}
1985	sbi->s_last_block = uopt->lastblock;
1986	if (!uopt->novrs) {
1987		/* Check that it is NSR02 compliant */
1988		nsr = udf_check_vsd(sb);
1989		if (!nsr) {
1990			if (!silent)
1991				udf_warn(sb, "No VRS found\n");
1992			return -EINVAL;
1993		}
1994		if (nsr == -1)
1995			udf_debug("Failed to read sector at offset %d. "
1996				  "Assuming open disc. Skipping validity "
1997				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1998		if (!sbi->s_last_block)
1999			sbi->s_last_block = udf_get_last_block(sb);
2000	} else {
2001		udf_debug("Validity check skipped because of novrs option\n");
2002	}
2003
2004	/* Look for anchor block and load Volume Descriptor Sequence */
2005	sbi->s_anchor = uopt->anchor;
2006	ret = udf_find_anchor(sb, fileset);
2007	if (ret < 0) {
2008		if (!silent && ret == -EAGAIN)
2009			udf_warn(sb, "No anchor found\n");
2010		return ret;
2011	}
2012	return 0;
2013}
2014
2015static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2016{
2017	struct timespec64 ts;
2018
2019	ktime_get_real_ts64(&ts);
2020	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2021	lvid->descTag.descCRC = cpu_to_le16(
2022		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023			le16_to_cpu(lvid->descTag.descCRCLength)));
2024	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2025}
2026
2027static void udf_open_lvid(struct super_block *sb)
2028{
2029	struct udf_sb_info *sbi = UDF_SB(sb);
2030	struct buffer_head *bh = sbi->s_lvid_bh;
2031	struct logicalVolIntegrityDesc *lvid;
2032	struct logicalVolIntegrityDescImpUse *lvidiu;
2033
2034	if (!bh)
2035		return;
2036	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2037	lvidiu = udf_sb_lvidiu(sb);
2038	if (!lvidiu)
2039		return;
2040
2041	mutex_lock(&sbi->s_alloc_mutex);
 
 
 
2042	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2043	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2044	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2045		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2046	else
2047		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2048
2049	udf_finalize_lvid(lvid);
 
 
 
 
2050	mark_buffer_dirty(bh);
2051	sbi->s_lvid_dirty = 0;
2052	mutex_unlock(&sbi->s_alloc_mutex);
2053	/* Make opening of filesystem visible on the media immediately */
2054	sync_dirty_buffer(bh);
2055}
2056
2057static void udf_close_lvid(struct super_block *sb)
2058{
2059	struct udf_sb_info *sbi = UDF_SB(sb);
2060	struct buffer_head *bh = sbi->s_lvid_bh;
2061	struct logicalVolIntegrityDesc *lvid;
2062	struct logicalVolIntegrityDescImpUse *lvidiu;
2063
2064	if (!bh)
2065		return;
2066	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2067	lvidiu = udf_sb_lvidiu(sb);
2068	if (!lvidiu)
2069		return;
2070
2071	mutex_lock(&sbi->s_alloc_mutex);
 
 
2072	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2073	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
 
2074	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2075		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2076	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2077		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2078	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2079		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2080	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2081		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2082
2083	/*
2084	 * We set buffer uptodate unconditionally here to avoid spurious
2085	 * warnings from mark_buffer_dirty() when previous EIO has marked
2086	 * the buffer as !uptodate
2087	 */
2088	set_buffer_uptodate(bh);
2089	udf_finalize_lvid(lvid);
2090	mark_buffer_dirty(bh);
2091	sbi->s_lvid_dirty = 0;
2092	mutex_unlock(&sbi->s_alloc_mutex);
2093	/* Make closing of filesystem visible on the media immediately */
2094	sync_dirty_buffer(bh);
2095}
2096
2097u64 lvid_get_unique_id(struct super_block *sb)
2098{
2099	struct buffer_head *bh;
2100	struct udf_sb_info *sbi = UDF_SB(sb);
2101	struct logicalVolIntegrityDesc *lvid;
2102	struct logicalVolHeaderDesc *lvhd;
2103	u64 uniqueID;
2104	u64 ret;
2105
2106	bh = sbi->s_lvid_bh;
2107	if (!bh)
2108		return 0;
2109
2110	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2111	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2112
2113	mutex_lock(&sbi->s_alloc_mutex);
2114	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2115	if (!(++uniqueID & 0xFFFFFFFF))
2116		uniqueID += 16;
2117	lvhd->uniqueID = cpu_to_le64(uniqueID);
2118	udf_updated_lvid(sb);
2119	mutex_unlock(&sbi->s_alloc_mutex);
 
2120
2121	return ret;
2122}
2123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124static int udf_fill_super(struct super_block *sb, void *options, int silent)
2125{
2126	int ret = -EINVAL;
 
2127	struct inode *inode = NULL;
2128	struct udf_options uopt;
2129	struct kernel_lb_addr rootdir, fileset;
2130	struct udf_sb_info *sbi;
2131	bool lvid_open = false;
2132
2133	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2134	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2135	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2136	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2137	uopt.umask = 0;
2138	uopt.fmode = UDF_INVALID_MODE;
2139	uopt.dmode = UDF_INVALID_MODE;
2140	uopt.nls_map = NULL;
2141
2142	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2143	if (!sbi)
2144		return -ENOMEM;
2145
2146	sb->s_fs_info = sbi;
2147
2148	mutex_init(&sbi->s_alloc_mutex);
2149
2150	if (!udf_parse_options((char *)options, &uopt, false))
2151		goto parse_options_failure;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2152
2153	fileset.logicalBlockNum = 0xFFFFFFFF;
2154	fileset.partitionReferenceNum = 0xFFFF;
2155
2156	sbi->s_flags = uopt.flags;
2157	sbi->s_uid = uopt.uid;
2158	sbi->s_gid = uopt.gid;
2159	sbi->s_umask = uopt.umask;
2160	sbi->s_fmode = uopt.fmode;
2161	sbi->s_dmode = uopt.dmode;
2162	sbi->s_nls_map = uopt.nls_map;
2163	rwlock_init(&sbi->s_cred_lock);
2164
2165	if (uopt.session == 0xFFFFFFFF)
2166		sbi->s_session = udf_get_last_session(sb);
2167	else
2168		sbi->s_session = uopt.session;
2169
2170	udf_debug("Multi-session=%d\n", sbi->s_session);
2171
2172	/* Fill in the rest of the superblock */
2173	sb->s_op = &udf_sb_ops;
2174	sb->s_export_op = &udf_export_ops;
2175
 
2176	sb->s_magic = UDF_SUPER_MAGIC;
2177	sb->s_time_gran = 1000;
2178
2179	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2180		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2181	} else {
2182		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2183		while (uopt.blocksize <= 4096) {
 
 
 
 
 
 
2184			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185			if (ret < 0) {
2186				if (!silent && ret != -EACCES) {
2187					pr_notice("Scanning with blocksize %u failed\n",
2188						  uopt.blocksize);
2189				}
2190				brelse(sbi->s_lvid_bh);
2191				sbi->s_lvid_bh = NULL;
2192				/*
2193				 * EACCES is special - we want to propagate to
2194				 * upper layers that we cannot handle RW mount.
2195				 */
2196				if (ret == -EACCES)
2197					break;
2198			} else
2199				break;
2200
2201			uopt.blocksize <<= 1;
2202		}
2203	}
2204	if (ret < 0) {
2205		if (ret == -EAGAIN) {
2206			udf_warn(sb, "No partition found (1)\n");
2207			ret = -EINVAL;
2208		}
2209		goto error_out;
2210	}
2211
2212	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2213
2214	if (sbi->s_lvid_bh) {
2215		struct logicalVolIntegrityDescImpUse *lvidiu =
2216							udf_sb_lvidiu(sb);
2217		uint16_t minUDFReadRev;
2218		uint16_t minUDFWriteRev;
 
 
2219
2220		if (!lvidiu) {
2221			ret = -EINVAL;
2222			goto error_out;
2223		}
2224		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2225		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2226		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2227			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2228				minUDFReadRev,
2229				UDF_MAX_READ_VERSION);
2230			ret = -EINVAL;
2231			goto error_out;
2232		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2233			if (!sb_rdonly(sb)) {
2234				ret = -EACCES;
2235				goto error_out;
2236			}
2237			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2238		}
2239
2240		sbi->s_udfrev = minUDFWriteRev;
2241
2242		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2243			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2244		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2245			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2246	}
2247
2248	if (!sbi->s_partitions) {
2249		udf_warn(sb, "No partition found (2)\n");
2250		ret = -EINVAL;
2251		goto error_out;
2252	}
2253
2254	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2255			UDF_PART_FLAG_READ_ONLY) {
2256		if (!sb_rdonly(sb)) {
2257			ret = -EACCES;
2258			goto error_out;
2259		}
2260		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2261	}
2262
2263	ret = udf_find_fileset(sb, &fileset, &rootdir);
2264	if (ret < 0) {
2265		udf_warn(sb, "No fileset found\n");
2266		goto error_out;
2267	}
2268
2269	if (!silent) {
2270		struct timestamp ts;
2271		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2272		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2273			 sbi->s_volume_ident,
2274			 le16_to_cpu(ts.year), ts.month, ts.day,
2275			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2276	}
2277	if (!sb_rdonly(sb)) {
2278		udf_open_lvid(sb);
2279		lvid_open = true;
2280	}
2281
2282	/* Assign the root inode */
2283	/* assign inodes by physical block number */
2284	/* perhaps it's not extensible enough, but for now ... */
2285	inode = udf_iget(sb, &rootdir);
2286	if (IS_ERR(inode)) {
2287		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
 
2288		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2289		ret = PTR_ERR(inode);
2290		goto error_out;
2291	}
2292
2293	/* Allocate a dentry for the root inode */
2294	sb->s_root = d_make_root(inode);
2295	if (!sb->s_root) {
2296		udf_err(sb, "Couldn't allocate root dentry\n");
2297		ret = -ENOMEM;
2298		goto error_out;
2299	}
2300	sb->s_maxbytes = MAX_LFS_FILESIZE;
2301	sb->s_max_links = UDF_MAX_LINKS;
2302	return 0;
2303
2304error_out:
2305	iput(sbi->s_vat_inode);
2306parse_options_failure:
2307	unload_nls(uopt.nls_map);
2308	if (lvid_open)
 
 
 
 
 
 
2309		udf_close_lvid(sb);
2310	brelse(sbi->s_lvid_bh);
2311	udf_sb_free_partitions(sb);
 
2312	kfree(sbi);
2313	sb->s_fs_info = NULL;
2314
2315	return ret;
2316}
2317
2318void _udf_err(struct super_block *sb, const char *function,
2319	      const char *fmt, ...)
2320{
2321	struct va_format vaf;
2322	va_list args;
2323
 
 
 
 
2324	va_start(args, fmt);
2325
2326	vaf.fmt = fmt;
2327	vaf.va = &args;
2328
2329	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330
2331	va_end(args);
 
 
2332}
2333
2334void _udf_warn(struct super_block *sb, const char *function,
2335	       const char *fmt, ...)
2336{
2337	struct va_format vaf;
2338	va_list args;
2339
2340	va_start(args, fmt);
2341
2342	vaf.fmt = fmt;
2343	vaf.va = &args;
2344
2345	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346
2347	va_end(args);
 
 
2348}
2349
2350static void udf_put_super(struct super_block *sb)
2351{
 
2352	struct udf_sb_info *sbi;
2353
2354	sbi = UDF_SB(sb);
2355
2356	iput(sbi->s_vat_inode);
2357	unload_nls(sbi->s_nls_map);
2358	if (!sb_rdonly(sb))
 
 
 
 
 
 
 
2359		udf_close_lvid(sb);
2360	brelse(sbi->s_lvid_bh);
2361	udf_sb_free_partitions(sb);
2362	mutex_destroy(&sbi->s_alloc_mutex);
2363	kfree(sb->s_fs_info);
2364	sb->s_fs_info = NULL;
2365}
2366
2367static int udf_sync_fs(struct super_block *sb, int wait)
2368{
2369	struct udf_sb_info *sbi = UDF_SB(sb);
2370
2371	mutex_lock(&sbi->s_alloc_mutex);
2372	if (sbi->s_lvid_dirty) {
2373		struct buffer_head *bh = sbi->s_lvid_bh;
2374		struct logicalVolIntegrityDesc *lvid;
2375
2376		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2377		udf_finalize_lvid(lvid);
2378
2379		/*
2380		 * Blockdevice will be synced later so we don't have to submit
2381		 * the buffer for IO
2382		 */
2383		mark_buffer_dirty(bh);
 
2384		sbi->s_lvid_dirty = 0;
2385	}
2386	mutex_unlock(&sbi->s_alloc_mutex);
2387
2388	return 0;
2389}
2390
2391static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2392{
2393	struct super_block *sb = dentry->d_sb;
2394	struct udf_sb_info *sbi = UDF_SB(sb);
2395	struct logicalVolIntegrityDescImpUse *lvidiu;
2396	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2397
2398	lvidiu = udf_sb_lvidiu(sb);
 
 
 
 
2399	buf->f_type = UDF_SUPER_MAGIC;
2400	buf->f_bsize = sb->s_blocksize;
2401	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2402	buf->f_bfree = udf_count_free(sb);
2403	buf->f_bavail = buf->f_bfree;
2404	/*
2405	 * Let's pretend each free block is also a free 'inode' since UDF does
2406	 * not have separate preallocated table of inodes.
2407	 */
2408	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2409					  le32_to_cpu(lvidiu->numDirs)) : 0)
2410			+ buf->f_bfree;
2411	buf->f_ffree = buf->f_bfree;
2412	buf->f_namelen = UDF_NAME_LEN;
2413	buf->f_fsid = u64_to_fsid(id);
 
2414
2415	return 0;
2416}
2417
2418static unsigned int udf_count_free_bitmap(struct super_block *sb,
2419					  struct udf_bitmap *bitmap)
2420{
2421	struct buffer_head *bh = NULL;
2422	unsigned int accum = 0;
2423	int index;
2424	udf_pblk_t block = 0, newblock;
2425	struct kernel_lb_addr loc;
2426	uint32_t bytes;
2427	uint8_t *ptr;
2428	uint16_t ident;
2429	struct spaceBitmapDesc *bm;
2430
2431	loc.logicalBlockNum = bitmap->s_extPosition;
2432	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2433	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2434
2435	if (!bh) {
2436		udf_err(sb, "udf_count_free failed\n");
2437		goto out;
2438	} else if (ident != TAG_IDENT_SBD) {
2439		brelse(bh);
2440		udf_err(sb, "udf_count_free failed\n");
2441		goto out;
2442	}
2443
2444	bm = (struct spaceBitmapDesc *)bh->b_data;
2445	bytes = le32_to_cpu(bm->numOfBytes);
2446	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2447	ptr = (uint8_t *)bh->b_data;
2448
2449	while (bytes > 0) {
2450		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2451		accum += bitmap_weight((const unsigned long *)(ptr + index),
2452					cur_bytes * 8);
2453		bytes -= cur_bytes;
2454		if (bytes) {
2455			brelse(bh);
2456			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2457			bh = udf_tread(sb, newblock);
2458			if (!bh) {
2459				udf_debug("read failed\n");
2460				goto out;
2461			}
2462			index = 0;
2463			ptr = (uint8_t *)bh->b_data;
2464		}
2465	}
2466	brelse(bh);
2467out:
2468	return accum;
2469}
2470
2471static unsigned int udf_count_free_table(struct super_block *sb,
2472					 struct inode *table)
2473{
2474	unsigned int accum = 0;
2475	uint32_t elen;
2476	struct kernel_lb_addr eloc;
 
2477	struct extent_position epos;
2478
2479	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2480	epos.block = UDF_I(table)->i_location;
2481	epos.offset = sizeof(struct unallocSpaceEntry);
2482	epos.bh = NULL;
2483
2484	while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2485		accum += (elen >> table->i_sb->s_blocksize_bits);
2486
2487	brelse(epos.bh);
2488	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2489
2490	return accum;
2491}
2492
2493static unsigned int udf_count_free(struct super_block *sb)
2494{
2495	unsigned int accum = 0;
2496	struct udf_sb_info *sbi = UDF_SB(sb);
2497	struct udf_part_map *map;
2498	unsigned int part = sbi->s_partition;
2499	int ptype = sbi->s_partmaps[part].s_partition_type;
2500
2501	if (ptype == UDF_METADATA_MAP25) {
2502		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2503							s_phys_partition_ref;
2504	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2505		/*
2506		 * Filesystems with VAT are append-only and we cannot write to
2507 		 * them. Let's just report 0 here.
2508		 */
2509		return 0;
2510	}
2511
 
2512	if (sbi->s_lvid_bh) {
2513		struct logicalVolIntegrityDesc *lvid =
2514			(struct logicalVolIntegrityDesc *)
2515			sbi->s_lvid_bh->b_data;
2516		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2517			accum = le32_to_cpu(
2518					lvid->freeSpaceTable[part]);
2519			if (accum == 0xFFFFFFFF)
2520				accum = 0;
2521		}
2522	}
2523
2524	if (accum)
2525		return accum;
2526
2527	map = &sbi->s_partmaps[part];
2528	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2529		accum += udf_count_free_bitmap(sb,
2530					       map->s_uspace.s_bitmap);
2531	}
 
 
 
 
2532	if (accum)
2533		return accum;
2534
2535	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2536		accum += udf_count_free_table(sb,
2537					      map->s_uspace.s_table);
2538	}
 
 
 
 
 
2539	return accum;
2540}
2541
2542MODULE_AUTHOR("Ben Fennema");
2543MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2544MODULE_LICENSE("GPL");
2545module_init(init_udf_fs)
2546module_exit(exit_udf_fs)
v3.1
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    http://www.ecma.ch/
  15 *    http://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
  51#include <linux/buffer_head.h>
  52#include <linux/vfs.h>
  53#include <linux/vmalloc.h>
  54#include <linux/errno.h>
  55#include <linux/mount.h>
  56#include <linux/seq_file.h>
  57#include <linux/bitmap.h>
  58#include <linux/crc-itu-t.h>
 
  59#include <asm/byteorder.h>
 
  60
  61#include "udf_sb.h"
  62#include "udf_i.h"
  63
  64#include <linux/init.h>
  65#include <asm/uaccess.h>
  66
  67#define VDS_POS_PRIMARY_VOL_DESC	0
  68#define VDS_POS_UNALLOC_SPACE_DESC	1
  69#define VDS_POS_LOGICAL_VOL_DESC	2
  70#define VDS_POS_PARTITION_DESC		3
  71#define VDS_POS_IMP_USE_VOL_DESC	4
  72#define VDS_POS_VOL_DESC_PTR		5
  73#define VDS_POS_TERMINATING_DESC	6
  74#define VDS_POS_LENGTH			7
 
 
  75
  76#define UDF_DEFAULT_BLOCKSIZE 2048
 
 
 
 
 
 
 
  77
  78static char error_buf[1024];
  79
  80/* These are the "meat" - everything else is stuffing */
  81static int udf_fill_super(struct super_block *, void *, int);
  82static void udf_put_super(struct super_block *);
  83static int udf_sync_fs(struct super_block *, int);
  84static int udf_remount_fs(struct super_block *, int *, char *);
  85static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
  86static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
  87			    struct kernel_lb_addr *);
  88static void udf_load_fileset(struct super_block *, struct buffer_head *,
  89			     struct kernel_lb_addr *);
  90static void udf_open_lvid(struct super_block *);
  91static void udf_close_lvid(struct super_block *);
  92static unsigned int udf_count_free(struct super_block *);
  93static int udf_statfs(struct dentry *, struct kstatfs *);
  94static int udf_show_options(struct seq_file *, struct vfsmount *);
  95static void udf_error(struct super_block *sb, const char *function,
  96		      const char *fmt, ...);
  97
  98struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
  99{
 100	struct logicalVolIntegrityDesc *lvid =
 101		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
 102	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
 103	__u32 offset = number_of_partitions * 2 *
 104				sizeof(uint32_t)/sizeof(uint8_t);
 105	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
 
 
 
 
 106}
 107
 108/* UDF filesystem type */
 109static struct dentry *udf_mount(struct file_system_type *fs_type,
 110		      int flags, const char *dev_name, void *data)
 111{
 112	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 113}
 114
 115static struct file_system_type udf_fstype = {
 116	.owner		= THIS_MODULE,
 117	.name		= "udf",
 118	.mount		= udf_mount,
 119	.kill_sb	= kill_block_super,
 120	.fs_flags	= FS_REQUIRES_DEV,
 121};
 
 122
 123static struct kmem_cache *udf_inode_cachep;
 124
 125static struct inode *udf_alloc_inode(struct super_block *sb)
 126{
 127	struct udf_inode_info *ei;
 128	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
 129	if (!ei)
 130		return NULL;
 131
 132	ei->i_unique = 0;
 133	ei->i_lenExtents = 0;
 
 134	ei->i_next_alloc_block = 0;
 135	ei->i_next_alloc_goal = 0;
 136	ei->i_strat4096 = 0;
 
 137	init_rwsem(&ei->i_data_sem);
 
 
 
 138
 139	return &ei->vfs_inode;
 140}
 141
 142static void udf_i_callback(struct rcu_head *head)
 143{
 144	struct inode *inode = container_of(head, struct inode, i_rcu);
 145	INIT_LIST_HEAD(&inode->i_dentry);
 146	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 147}
 148
 149static void udf_destroy_inode(struct inode *inode)
 150{
 151	call_rcu(&inode->i_rcu, udf_i_callback);
 152}
 153
 154static void init_once(void *foo)
 155{
 156	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
 157
 158	ei->i_ext.i_data = NULL;
 159	inode_init_once(&ei->vfs_inode);
 160}
 161
 162static int init_inodecache(void)
 163{
 164	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 165					     sizeof(struct udf_inode_info),
 166					     0, (SLAB_RECLAIM_ACCOUNT |
 167						 SLAB_MEM_SPREAD),
 
 168					     init_once);
 169	if (!udf_inode_cachep)
 170		return -ENOMEM;
 171	return 0;
 172}
 173
 174static void destroy_inodecache(void)
 175{
 
 
 
 
 
 176	kmem_cache_destroy(udf_inode_cachep);
 177}
 178
 179/* Superblock operations */
 180static const struct super_operations udf_sb_ops = {
 181	.alloc_inode	= udf_alloc_inode,
 182	.destroy_inode	= udf_destroy_inode,
 183	.write_inode	= udf_write_inode,
 184	.evict_inode	= udf_evict_inode,
 185	.put_super	= udf_put_super,
 186	.sync_fs	= udf_sync_fs,
 187	.statfs		= udf_statfs,
 188	.remount_fs	= udf_remount_fs,
 189	.show_options	= udf_show_options,
 190};
 191
 192struct udf_options {
 193	unsigned char novrs;
 194	unsigned int blocksize;
 195	unsigned int session;
 196	unsigned int lastblock;
 197	unsigned int anchor;
 198	unsigned int volume;
 199	unsigned short partition;
 200	unsigned int fileset;
 201	unsigned int rootdir;
 202	unsigned int flags;
 203	mode_t umask;
 204	gid_t gid;
 205	uid_t uid;
 206	mode_t fmode;
 207	mode_t dmode;
 208	struct nls_table *nls_map;
 209};
 210
 211static int __init init_udf_fs(void)
 212{
 213	int err;
 214
 215	err = init_inodecache();
 216	if (err)
 217		goto out1;
 218	err = register_filesystem(&udf_fstype);
 219	if (err)
 220		goto out;
 221
 222	return 0;
 223
 224out:
 225	destroy_inodecache();
 226
 227out1:
 228	return err;
 229}
 230
 231static void __exit exit_udf_fs(void)
 232{
 233	unregister_filesystem(&udf_fstype);
 234	destroy_inodecache();
 235}
 236
 237module_init(init_udf_fs)
 238module_exit(exit_udf_fs)
 239
 240static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 241{
 242	struct udf_sb_info *sbi = UDF_SB(sb);
 243
 244	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
 245				  GFP_KERNEL);
 246	if (!sbi->s_partmaps) {
 247		udf_error(sb, __func__,
 248			  "Unable to allocate space for %d partition maps",
 249			  count);
 250		sbi->s_partitions = 0;
 251		return -ENOMEM;
 252	}
 253
 254	sbi->s_partitions = count;
 255	return 0;
 256}
 257
 258static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259{
 260	struct super_block *sb = mnt->mnt_sb;
 261	struct udf_sb_info *sbi = UDF_SB(sb);
 262
 263	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 264		seq_puts(seq, ",nostrict");
 265	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 266		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 267	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 268		seq_puts(seq, ",unhide");
 269	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 270		seq_puts(seq, ",undelete");
 271	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 272		seq_puts(seq, ",noadinicb");
 273	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 274		seq_puts(seq, ",shortad");
 275	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 276		seq_puts(seq, ",uid=forget");
 277	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
 278		seq_puts(seq, ",uid=ignore");
 279	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 280		seq_puts(seq, ",gid=forget");
 281	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
 282		seq_puts(seq, ",gid=ignore");
 283	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 284		seq_printf(seq, ",uid=%u", sbi->s_uid);
 285	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 286		seq_printf(seq, ",gid=%u", sbi->s_gid);
 287	if (sbi->s_umask != 0)
 288		seq_printf(seq, ",umask=%o", sbi->s_umask);
 289	if (sbi->s_fmode != UDF_INVALID_MODE)
 290		seq_printf(seq, ",mode=%o", sbi->s_fmode);
 291	if (sbi->s_dmode != UDF_INVALID_MODE)
 292		seq_printf(seq, ",dmode=%o", sbi->s_dmode);
 293	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 294		seq_printf(seq, ",session=%u", sbi->s_session);
 295	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 296		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 297	if (sbi->s_anchor != 0)
 298		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 299	/*
 300	 * volume, partition, fileset and rootdir seem to be ignored
 301	 * currently
 302	 */
 303	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
 304		seq_puts(seq, ",utf8");
 305	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
 306		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 
 
 307
 308	return 0;
 309}
 310
 311/*
 312 * udf_parse_options
 313 *
 314 * PURPOSE
 315 *	Parse mount options.
 316 *
 317 * DESCRIPTION
 318 *	The following mount options are supported:
 319 *
 320 *	gid=		Set the default group.
 321 *	umask=		Set the default umask.
 322 *	mode=		Set the default file permissions.
 323 *	dmode=		Set the default directory permissions.
 324 *	uid=		Set the default user.
 325 *	bs=		Set the block size.
 326 *	unhide		Show otherwise hidden files.
 327 *	undelete	Show deleted files in lists.
 328 *	adinicb		Embed data in the inode (default)
 329 *	noadinicb	Don't embed data in the inode
 330 *	shortad		Use short ad's
 331 *	longad		Use long ad's (default)
 332 *	nostrict	Unset strict conformance
 333 *	iocharset=	Set the NLS character set
 334 *
 335 *	The remaining are for debugging and disaster recovery:
 336 *
 337 *	novrs		Skip volume sequence recognition
 338 *
 339 *	The following expect a offset from 0.
 340 *
 341 *	session=	Set the CDROM session (default= last session)
 342 *	anchor=		Override standard anchor location. (default= 256)
 343 *	volume=		Override the VolumeDesc location. (unused)
 344 *	partition=	Override the PartitionDesc location. (unused)
 345 *	lastblock=	Set the last block of the filesystem/
 346 *
 347 *	The following expect a offset from the partition root.
 348 *
 349 *	fileset=	Override the fileset block location. (unused)
 350 *	rootdir=	Override the root directory location. (unused)
 351 *		WARNING: overriding the rootdir to a non-directory may
 352 *		yield highly unpredictable results.
 353 *
 354 * PRE-CONDITIONS
 355 *	options		Pointer to mount options string.
 356 *	uopts		Pointer to mount options variable.
 357 *
 358 * POST-CONDITIONS
 359 *	<return>	1	Mount options parsed okay.
 360 *	<return>	0	Error parsing mount options.
 361 *
 362 * HISTORY
 363 *	July 1, 1997 - Andrew E. Mileski
 364 *	Written, tested, and released.
 365 */
 366
 367enum {
 368	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 369	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 370	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 371	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 372	Opt_rootdir, Opt_utf8, Opt_iocharset,
 373	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 374	Opt_fmode, Opt_dmode
 375};
 376
 377static const match_table_t tokens = {
 378	{Opt_novrs,	"novrs"},
 379	{Opt_nostrict,	"nostrict"},
 380	{Opt_bs,	"bs=%u"},
 381	{Opt_unhide,	"unhide"},
 382	{Opt_undelete,	"undelete"},
 383	{Opt_noadinicb,	"noadinicb"},
 384	{Opt_adinicb,	"adinicb"},
 385	{Opt_shortad,	"shortad"},
 386	{Opt_longad,	"longad"},
 387	{Opt_uforget,	"uid=forget"},
 388	{Opt_uignore,	"uid=ignore"},
 389	{Opt_gforget,	"gid=forget"},
 390	{Opt_gignore,	"gid=ignore"},
 391	{Opt_gid,	"gid=%u"},
 392	{Opt_uid,	"uid=%u"},
 393	{Opt_umask,	"umask=%o"},
 394	{Opt_session,	"session=%u"},
 395	{Opt_lastblock,	"lastblock=%u"},
 396	{Opt_anchor,	"anchor=%u"},
 397	{Opt_volume,	"volume=%u"},
 398	{Opt_partition,	"partition=%u"},
 399	{Opt_fileset,	"fileset=%u"},
 400	{Opt_rootdir,	"rootdir=%u"},
 401	{Opt_utf8,	"utf8"},
 402	{Opt_iocharset,	"iocharset=%s"},
 403	{Opt_fmode,     "mode=%o"},
 404	{Opt_dmode,     "dmode=%o"},
 405	{Opt_err,	NULL}
 406};
 407
 408static int udf_parse_options(char *options, struct udf_options *uopt,
 409			     bool remount)
 410{
 411	char *p;
 412	int option;
 
 413
 414	uopt->novrs = 0;
 415	uopt->partition = 0xFFFF;
 416	uopt->session = 0xFFFFFFFF;
 417	uopt->lastblock = 0;
 418	uopt->anchor = 0;
 419	uopt->volume = 0xFFFFFFFF;
 420	uopt->rootdir = 0xFFFFFFFF;
 421	uopt->fileset = 0xFFFFFFFF;
 422	uopt->nls_map = NULL;
 423
 424	if (!options)
 425		return 1;
 426
 427	while ((p = strsep(&options, ",")) != NULL) {
 428		substring_t args[MAX_OPT_ARGS];
 429		int token;
 
 430		if (!*p)
 431			continue;
 432
 433		token = match_token(p, tokens, args);
 434		switch (token) {
 435		case Opt_novrs:
 436			uopt->novrs = 1;
 437			break;
 438		case Opt_bs:
 439			if (match_int(&args[0], &option))
 440				return 0;
 441			uopt->blocksize = option;
 
 
 
 442			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 443			break;
 444		case Opt_unhide:
 445			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 446			break;
 447		case Opt_undelete:
 448			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 449			break;
 450		case Opt_noadinicb:
 451			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 452			break;
 453		case Opt_adinicb:
 454			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 455			break;
 456		case Opt_shortad:
 457			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 458			break;
 459		case Opt_longad:
 460			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 461			break;
 462		case Opt_gid:
 463			if (match_int(args, &option))
 
 
 
 464				return 0;
 465			uopt->gid = option;
 466			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 467			break;
 468		case Opt_uid:
 469			if (match_int(args, &option))
 
 
 
 470				return 0;
 471			uopt->uid = option;
 472			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 473			break;
 474		case Opt_umask:
 475			if (match_octal(args, &option))
 476				return 0;
 477			uopt->umask = option;
 478			break;
 479		case Opt_nostrict:
 480			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 481			break;
 482		case Opt_session:
 483			if (match_int(args, &option))
 484				return 0;
 485			uopt->session = option;
 486			if (!remount)
 487				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 488			break;
 489		case Opt_lastblock:
 490			if (match_int(args, &option))
 491				return 0;
 492			uopt->lastblock = option;
 493			if (!remount)
 494				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 495			break;
 496		case Opt_anchor:
 497			if (match_int(args, &option))
 498				return 0;
 499			uopt->anchor = option;
 500			break;
 501		case Opt_volume:
 502			if (match_int(args, &option))
 503				return 0;
 504			uopt->volume = option;
 505			break;
 506		case Opt_partition:
 507			if (match_int(args, &option))
 508				return 0;
 509			uopt->partition = option;
 510			break;
 511		case Opt_fileset:
 512			if (match_int(args, &option))
 513				return 0;
 514			uopt->fileset = option;
 515			break;
 516		case Opt_rootdir:
 517			if (match_int(args, &option))
 518				return 0;
 519			uopt->rootdir = option;
 520			break;
 521		case Opt_utf8:
 522			uopt->flags |= (1 << UDF_FLAG_UTF8);
 
 
 
 523			break;
 524#ifdef CONFIG_UDF_NLS
 525		case Opt_iocharset:
 526			uopt->nls_map = load_nls(args[0].from);
 527			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
 528			break;
 529#endif
 530		case Opt_uignore:
 531			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
 
 
 
 
 
 
 
 532			break;
 533		case Opt_uforget:
 534			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 535			break;
 
 536		case Opt_gignore:
 537			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
 538			break;
 539		case Opt_gforget:
 540			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 541			break;
 542		case Opt_fmode:
 543			if (match_octal(args, &option))
 544				return 0;
 545			uopt->fmode = option & 0777;
 546			break;
 547		case Opt_dmode:
 548			if (match_octal(args, &option))
 549				return 0;
 550			uopt->dmode = option & 0777;
 551			break;
 552		default:
 553			printk(KERN_ERR "udf: bad mount option \"%s\" "
 554			       "or missing value\n", p);
 555			return 0;
 556		}
 557	}
 558	return 1;
 559}
 560
 561static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 562{
 563	struct udf_options uopt;
 564	struct udf_sb_info *sbi = UDF_SB(sb);
 565	int error = 0;
 566
 
 
 
 
 
 567	uopt.flags = sbi->s_flags;
 568	uopt.uid   = sbi->s_uid;
 569	uopt.gid   = sbi->s_gid;
 570	uopt.umask = sbi->s_umask;
 571	uopt.fmode = sbi->s_fmode;
 572	uopt.dmode = sbi->s_dmode;
 
 573
 574	if (!udf_parse_options(options, &uopt, true))
 575		return -EINVAL;
 576
 577	write_lock(&sbi->s_cred_lock);
 578	sbi->s_flags = uopt.flags;
 579	sbi->s_uid   = uopt.uid;
 580	sbi->s_gid   = uopt.gid;
 581	sbi->s_umask = uopt.umask;
 582	sbi->s_fmode = uopt.fmode;
 583	sbi->s_dmode = uopt.dmode;
 584	write_unlock(&sbi->s_cred_lock);
 585
 586	if (sbi->s_lvid_bh) {
 587		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
 588		if (write_rev > UDF_MAX_WRITE_VERSION)
 589			*flags |= MS_RDONLY;
 590	}
 591
 592	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 593		goto out_unlock;
 594
 595	if (*flags & MS_RDONLY)
 596		udf_close_lvid(sb);
 597	else
 598		udf_open_lvid(sb);
 599
 600out_unlock:
 601	return error;
 602}
 603
 604/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
 605/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
 606static loff_t udf_check_vsd(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607{
 608	struct volStructDesc *vsd = NULL;
 609	loff_t sector = 32768;
 610	int sectorsize;
 611	struct buffer_head *bh = NULL;
 612	int nsr02 = 0;
 613	int nsr03 = 0;
 614	struct udf_sb_info *sbi;
 
 615
 616	sbi = UDF_SB(sb);
 617	if (sb->s_blocksize < sizeof(struct volStructDesc))
 618		sectorsize = sizeof(struct volStructDesc);
 619	else
 620		sectorsize = sb->s_blocksize;
 621
 622	sector += (sbi->s_session << sb->s_blocksize_bits);
 
 623
 624	udf_debug("Starting at sector %u (%ld byte sectors)\n",
 625		  (unsigned int)(sector >> sb->s_blocksize_bits),
 626		  sb->s_blocksize);
 627	/* Process the sequence (if applicable) */
 628	for (; !nsr02 && !nsr03; sector += sectorsize) {
 
 
 
 
 
 
 
 
 
 629		/* Read a block */
 630		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 631		if (!bh)
 632			break;
 633
 634		/* Look for ISO  descriptors */
 635		vsd = (struct volStructDesc *)(bh->b_data +
 636					      (sector & (sb->s_blocksize - 1)));
 637
 638		if (vsd->stdIdent[0] == 0) {
 
 639			brelse(bh);
 640			break;
 641		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
 642				    VSD_STD_ID_LEN)) {
 643			switch (vsd->structType) {
 644			case 0:
 645				udf_debug("ISO9660 Boot Record found\n");
 646				break;
 647			case 1:
 648				udf_debug("ISO9660 Primary Volume Descriptor "
 649					  "found\n");
 650				break;
 651			case 2:
 652				udf_debug("ISO9660 Supplementary Volume "
 653					  "Descriptor found\n");
 654				break;
 655			case 3:
 656				udf_debug("ISO9660 Volume Partition Descriptor "
 657					  "found\n");
 658				break;
 659			case 255:
 660				udf_debug("ISO9660 Volume Descriptor Set "
 661					  "Terminator found\n");
 662				break;
 663			default:
 664				udf_debug("ISO9660 VRS (%u) found\n",
 665					  vsd->structType);
 666				break;
 667			}
 668		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
 669				    VSD_STD_ID_LEN))
 670			; /* nothing */
 671		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
 672				    VSD_STD_ID_LEN)) {
 673			brelse(bh);
 674			break;
 675		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
 676				    VSD_STD_ID_LEN))
 677			nsr02 = sector;
 678		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
 679				    VSD_STD_ID_LEN))
 680			nsr03 = sector;
 681		brelse(bh);
 682	}
 683
 684	if (nsr03)
 685		return nsr03;
 686	else if (nsr02)
 687		return nsr02;
 688	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
 689		return -1;
 690	else
 691		return 0;
 692}
 693
 694static int udf_find_fileset(struct super_block *sb,
 695			    struct kernel_lb_addr *fileset,
 696			    struct kernel_lb_addr *root)
 697{
 698	struct buffer_head *bh = NULL;
 699	long lastblock;
 700	uint16_t ident;
 701	struct udf_sb_info *sbi;
 702
 703	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
 704	    fileset->partitionReferenceNum != 0xFFFF) {
 705		bh = udf_read_ptagged(sb, fileset, 0, &ident);
 706
 707		if (!bh) {
 708			return 1;
 709		} else if (ident != TAG_IDENT_FSD) {
 710			brelse(bh);
 711			return 1;
 
 
 
 
 
 
 712		}
 
 
 
 
 
 
 
 
 
 
 713
 714	}
 
 
 
 715
 716	sbi = UDF_SB(sb);
 717	if (!bh) {
 718		/* Search backwards through the partitions */
 719		struct kernel_lb_addr newfileset;
 720
 721/* --> cvg: FIXME - is it reasonable? */
 722		return 1;
 723
 724		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
 725		     (newfileset.partitionReferenceNum != 0xFFFF &&
 726		      fileset->logicalBlockNum == 0xFFFFFFFF &&
 727		      fileset->partitionReferenceNum == 0xFFFF);
 728		     newfileset.partitionReferenceNum--) {
 729			lastblock = sbi->s_partmaps
 730					[newfileset.partitionReferenceNum]
 731						.s_partition_len;
 732			newfileset.logicalBlockNum = 0;
 733
 734			do {
 735				bh = udf_read_ptagged(sb, &newfileset, 0,
 736						      &ident);
 737				if (!bh) {
 738					newfileset.logicalBlockNum++;
 739					continue;
 740				}
 741
 742				switch (ident) {
 743				case TAG_IDENT_SBD:
 744				{
 745					struct spaceBitmapDesc *sp;
 746					sp = (struct spaceBitmapDesc *)
 747								bh->b_data;
 748					newfileset.logicalBlockNum += 1 +
 749						((le32_to_cpu(sp->numOfBytes) +
 750						  sizeof(struct spaceBitmapDesc)
 751						  - 1) >> sb->s_blocksize_bits);
 752					brelse(bh);
 753					break;
 754				}
 755				case TAG_IDENT_FSD:
 756					*fileset = newfileset;
 757					break;
 758				default:
 759					newfileset.logicalBlockNum++;
 760					brelse(bh);
 761					bh = NULL;
 762					break;
 763				}
 764			} while (newfileset.logicalBlockNum < lastblock &&
 765				 fileset->logicalBlockNum == 0xFFFFFFFF &&
 766				 fileset->partitionReferenceNum == 0xFFFF);
 767		}
 768	}
 769
 770	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
 771	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
 772		udf_debug("Fileset at block=%d, partition=%d\n",
 773			  fileset->logicalBlockNum,
 774			  fileset->partitionReferenceNum);
 775
 776		sbi->s_partition = fileset->partitionReferenceNum;
 777		udf_load_fileset(sb, bh, root);
 
 
 778		brelse(bh);
 779		return 0;
 780	}
 781	return 1;
 
 
 
 
 
 
 
 782}
 783
 
 
 
 
 
 
 784static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 785{
 786	struct primaryVolDesc *pvoldesc;
 787	struct ustr *instr, *outstr;
 788	struct buffer_head *bh;
 789	uint16_t ident;
 790	int ret = 1;
 791
 792	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
 793	if (!instr)
 794		return 1;
 795
 796	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
 797	if (!outstr)
 798		goto out1;
 799
 800	bh = udf_read_tagged(sb, block, block, &ident);
 801	if (!bh)
 
 802		goto out2;
 
 803
 804	BUG_ON(ident != TAG_IDENT_PVD);
 
 
 
 805
 806	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 807
 808	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 809			      pvoldesc->recordingDateAndTime)) {
 810#ifdef UDFFS_DEBUG
 811		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
 812		udf_debug("recording time %04u/%02u/%02u"
 813			  " %02u:%02u (%x)\n",
 814			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 815			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 816#endif
 817	}
 818
 819	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
 820		if (udf_CS0toUTF8(outstr, instr)) {
 821			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
 822				outstr->u_len > 31 ? 31 : outstr->u_len);
 823			udf_debug("volIdent[] = '%s'\n",
 824					UDF_SB(sb)->s_volume_ident);
 825		}
 826
 827	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
 828		if (udf_CS0toUTF8(outstr, instr))
 829			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
 
 
 830
 
 
 831	brelse(bh);
 832	ret = 0;
 833out2:
 834	kfree(outstr);
 835out1:
 836	kfree(instr);
 837	return ret;
 838}
 839
 840static int udf_load_metadata_files(struct super_block *sb, int partition)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841{
 842	struct udf_sb_info *sbi = UDF_SB(sb);
 843	struct udf_part_map *map;
 844	struct udf_meta_data *mdata;
 845	struct kernel_lb_addr addr;
 846	int fe_error = 0;
 847
 848	map = &sbi->s_partmaps[partition];
 849	mdata = &map->s_type_specific.s_metadata;
 
 850
 851	/* metadata address */
 852	addr.logicalBlockNum =  mdata->s_meta_file_loc;
 853	addr.partitionReferenceNum = map->s_partition_num;
 854
 855	udf_debug("Metadata file location: block = %d part = %d\n",
 856			  addr.logicalBlockNum, addr.partitionReferenceNum);
 857
 858	mdata->s_metadata_fe = udf_iget(sb, &addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 859
 860	if (mdata->s_metadata_fe == NULL) {
 861		udf_warning(sb, __func__, "metadata inode efe not found, "
 862				"will try mirror inode.");
 863		fe_error = 1;
 864	} else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
 865		 ICBTAG_FLAG_AD_SHORT) {
 866		udf_warning(sb, __func__, "metadata inode efe does not have "
 867			"short allocation descriptors!");
 868		fe_error = 1;
 869		iput(mdata->s_metadata_fe);
 870		mdata->s_metadata_fe = NULL;
 871	}
 872
 873	/* mirror file entry */
 874	addr.logicalBlockNum = mdata->s_mirror_file_loc;
 875	addr.partitionReferenceNum = map->s_partition_num;
 876
 877	udf_debug("Mirror metadata file location: block = %d part = %d\n",
 878			  addr.logicalBlockNum, addr.partitionReferenceNum);
 879
 880	mdata->s_mirror_fe = udf_iget(sb, &addr);
 881
 882	if (mdata->s_mirror_fe == NULL) {
 883		if (fe_error) {
 884			udf_error(sb, __func__, "mirror inode efe not found "
 885			"and metadata inode is missing too, exiting...");
 886			goto error_exit;
 887		} else
 888			udf_warning(sb, __func__, "mirror inode efe not found,"
 889					" but metadata inode is OK");
 890	} else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
 891		 ICBTAG_FLAG_AD_SHORT) {
 892		udf_warning(sb, __func__, "mirror inode efe does not have "
 893			"short allocation descriptors!");
 894		iput(mdata->s_mirror_fe);
 895		mdata->s_mirror_fe = NULL;
 896		if (fe_error)
 897			goto error_exit;
 898	}
 899
 900	/*
 901	 * bitmap file entry
 902	 * Note:
 903	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
 904	*/
 905	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
 906		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
 907		addr.partitionReferenceNum = map->s_partition_num;
 908
 909		udf_debug("Bitmap file location: block = %d part = %d\n",
 910			addr.logicalBlockNum, addr.partitionReferenceNum);
 911
 912		mdata->s_bitmap_fe = udf_iget(sb, &addr);
 913
 914		if (mdata->s_bitmap_fe == NULL) {
 915			if (sb->s_flags & MS_RDONLY)
 916				udf_warning(sb, __func__, "bitmap inode efe "
 917					"not found but it's ok since the disc"
 918					" is mounted read-only");
 919			else {
 920				udf_error(sb, __func__, "bitmap inode efe not "
 921					"found and attempted read-write mount");
 922				goto error_exit;
 923			}
 924		}
 
 925	}
 926
 927	udf_debug("udf_load_metadata_files Ok\n");
 928
 929	return 0;
 930
 931error_exit:
 932	return 1;
 933}
 934
 935static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
 936			     struct kernel_lb_addr *root)
 937{
 938	struct fileSetDesc *fset;
 939
 940	fset = (struct fileSetDesc *)bh->b_data;
 941
 942	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
 943
 944	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
 945
 946	udf_debug("Rootdir at block=%d, partition=%d\n",
 947		  root->logicalBlockNum, root->partitionReferenceNum);
 948}
 949
 950int udf_compute_nr_groups(struct super_block *sb, u32 partition)
 951{
 952	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 953	return DIV_ROUND_UP(map->s_partition_len +
 954			    (sizeof(struct spaceBitmapDesc) << 3),
 955			    sb->s_blocksize * 8);
 956}
 957
 958static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
 959{
 960	struct udf_bitmap *bitmap;
 961	int nr_groups;
 962	int size;
 963
 964	nr_groups = udf_compute_nr_groups(sb, index);
 965	size = sizeof(struct udf_bitmap) +
 966		(sizeof(struct buffer_head *) * nr_groups);
 
 
 
 
 
 967
 968	if (size <= PAGE_SIZE)
 969		bitmap = kzalloc(size, GFP_KERNEL);
 970	else
 971		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
 
 
 972
 973	if (bitmap == NULL) {
 974		udf_error(sb, __func__,
 975			  "Unable to allocate space for bitmap "
 976			  "and %d buffer_head pointers", nr_groups);
 977		return NULL;
 978	}
 979
 980	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
 981	bitmap->s_nr_groups = nr_groups;
 982	return bitmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983}
 984
 985static int udf_fill_partdesc_info(struct super_block *sb,
 986		struct partitionDesc *p, int p_index)
 987{
 988	struct udf_part_map *map;
 989	struct udf_sb_info *sbi = UDF_SB(sb);
 990	struct partitionHeaderDesc *phd;
 
 991
 992	map = &sbi->s_partmaps[p_index];
 993
 994	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
 995	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
 996
 997	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
 998		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
 999	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1000		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1001	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1002		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1003	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1004		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1005
1006	udf_debug("Partition (%d type %x) starts at physical %d, "
1007		  "block length %d\n", p_index,
1008		  map->s_partition_type, map->s_partition_root,
1009		  map->s_partition_len);
 
 
 
1010
1011	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1012	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
 
 
 
 
1013		return 0;
1014
1015	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1016	if (phd->unallocSpaceTable.extLength) {
1017		struct kernel_lb_addr loc = {
1018			.logicalBlockNum = le32_to_cpu(
1019				phd->unallocSpaceTable.extPosition),
1020			.partitionReferenceNum = p_index,
1021		};
 
1022
1023		map->s_uspace.s_table = udf_iget(sb, &loc);
1024		if (!map->s_uspace.s_table) {
1025			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1026					p_index);
1027			return 1;
1028		}
 
1029		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1030		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1031				p_index, map->s_uspace.s_table->i_ino);
1032	}
1033
1034	if (phd->unallocSpaceBitmap.extLength) {
1035		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1036		if (!bitmap)
1037			return 1;
1038		map->s_uspace.s_bitmap = bitmap;
1039		bitmap->s_extLength = le32_to_cpu(
1040				phd->unallocSpaceBitmap.extLength);
1041		bitmap->s_extPosition = le32_to_cpu(
1042				phd->unallocSpaceBitmap.extPosition);
1043		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1044		udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1045						bitmap->s_extPosition);
1046	}
1047
1048	if (phd->partitionIntegrityTable.extLength)
1049		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1050
1051	if (phd->freedSpaceTable.extLength) {
1052		struct kernel_lb_addr loc = {
1053			.logicalBlockNum = le32_to_cpu(
1054				phd->freedSpaceTable.extPosition),
1055			.partitionReferenceNum = p_index,
1056		};
1057
1058		map->s_fspace.s_table = udf_iget(sb, &loc);
1059		if (!map->s_fspace.s_table) {
1060			udf_debug("cannot load freedSpaceTable (part %d)\n",
1061				p_index);
1062			return 1;
1063		}
1064
1065		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1066		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1067				p_index, map->s_fspace.s_table->i_ino);
1068	}
1069
1070	if (phd->freedSpaceBitmap.extLength) {
1071		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1072		if (!bitmap)
1073			return 1;
1074		map->s_fspace.s_bitmap = bitmap;
1075		bitmap->s_extLength = le32_to_cpu(
1076				phd->freedSpaceBitmap.extLength);
1077		bitmap->s_extPosition = le32_to_cpu(
1078				phd->freedSpaceBitmap.extPosition);
1079		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1080		udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1081					bitmap->s_extPosition);
1082	}
1083	return 0;
1084}
1085
1086static void udf_find_vat_block(struct super_block *sb, int p_index,
1087			       int type1_index, sector_t start_block)
1088{
1089	struct udf_sb_info *sbi = UDF_SB(sb);
1090	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1091	sector_t vat_block;
1092	struct kernel_lb_addr ino;
 
1093
1094	/*
1095	 * VAT file entry is in the last recorded block. Some broken disks have
1096	 * it a few blocks before so try a bit harder...
1097	 */
1098	ino.partitionReferenceNum = type1_index;
1099	for (vat_block = start_block;
1100	     vat_block >= map->s_partition_root &&
1101	     vat_block >= start_block - 3 &&
1102	     !sbi->s_vat_inode; vat_block--) {
1103		ino.logicalBlockNum = vat_block - map->s_partition_root;
1104		sbi->s_vat_inode = udf_iget(sb, &ino);
 
 
 
 
1105	}
1106}
1107
1108static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1109{
1110	struct udf_sb_info *sbi = UDF_SB(sb);
1111	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1112	struct buffer_head *bh = NULL;
1113	struct udf_inode_info *vati;
1114	uint32_t pos;
1115	struct virtualAllocationTable20 *vat20;
1116	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1117
1118	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1119	if (!sbi->s_vat_inode &&
1120	    sbi->s_last_block != blocks - 1) {
1121		printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the"
1122		       " last recorded block (%lu), retrying with the last "
1123		       "block of the device (%lu).\n",
1124		       (unsigned long)sbi->s_last_block,
1125		       (unsigned long)blocks - 1);
1126		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1127	}
1128	if (!sbi->s_vat_inode)
1129		return 1;
1130
1131	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1132		map->s_type_specific.s_virtual.s_start_offset = 0;
1133		map->s_type_specific.s_virtual.s_num_entries =
1134			(sbi->s_vat_inode->i_size - 36) >> 2;
1135	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1136		vati = UDF_I(sbi->s_vat_inode);
1137		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1138			pos = udf_block_map(sbi->s_vat_inode, 0);
1139			bh = sb_bread(sb, pos);
1140			if (!bh)
1141				return 1;
1142			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1143		} else {
1144			vat20 = (struct virtualAllocationTable20 *)
1145							vati->i_ext.i_data;
1146		}
1147
1148		map->s_type_specific.s_virtual.s_start_offset =
1149			le16_to_cpu(vat20->lengthHeader);
1150		map->s_type_specific.s_virtual.s_num_entries =
1151			(sbi->s_vat_inode->i_size -
1152				map->s_type_specific.s_virtual.
1153					s_start_offset) >> 2;
1154		brelse(bh);
1155	}
1156	return 0;
1157}
1158
 
 
 
 
 
 
1159static int udf_load_partdesc(struct super_block *sb, sector_t block)
1160{
1161	struct buffer_head *bh;
1162	struct partitionDesc *p;
1163	struct udf_part_map *map;
1164	struct udf_sb_info *sbi = UDF_SB(sb);
1165	int i, type1_idx;
1166	uint16_t partitionNumber;
1167	uint16_t ident;
1168	int ret = 0;
1169
1170	bh = udf_read_tagged(sb, block, block, &ident);
1171	if (!bh)
1172		return 1;
1173	if (ident != TAG_IDENT_PD)
 
1174		goto out_bh;
 
1175
1176	p = (struct partitionDesc *)bh->b_data;
1177	partitionNumber = le16_to_cpu(p->partitionNumber);
1178
1179	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1180	for (i = 0; i < sbi->s_partitions; i++) {
1181		map = &sbi->s_partmaps[i];
1182		udf_debug("Searching map: (%d == %d)\n",
1183			  map->s_partition_num, partitionNumber);
1184		if (map->s_partition_num == partitionNumber &&
1185		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1186		     map->s_partition_type == UDF_SPARABLE_MAP15))
1187			break;
1188	}
1189
1190	if (i >= sbi->s_partitions) {
1191		udf_debug("Partition (%d) not found in partition map\n",
1192			  partitionNumber);
 
1193		goto out_bh;
1194	}
1195
1196	ret = udf_fill_partdesc_info(sb, p, i);
 
 
1197
1198	/*
1199	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1200	 * PHYSICAL partitions are already set up
1201	 */
1202	type1_idx = i;
 
1203	for (i = 0; i < sbi->s_partitions; i++) {
1204		map = &sbi->s_partmaps[i];
1205
1206		if (map->s_partition_num == partitionNumber &&
1207		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1208		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1209		     map->s_partition_type == UDF_METADATA_MAP25))
1210			break;
1211	}
1212
1213	if (i >= sbi->s_partitions)
 
1214		goto out_bh;
 
1215
1216	ret = udf_fill_partdesc_info(sb, p, i);
1217	if (ret)
1218		goto out_bh;
1219
1220	if (map->s_partition_type == UDF_METADATA_MAP25) {
1221		ret = udf_load_metadata_files(sb, i);
1222		if (ret) {
1223			printk(KERN_ERR "UDF-fs: error loading MetaData "
1224			"partition map %d\n", i);
1225			goto out_bh;
1226		}
1227	} else {
 
 
 
 
 
 
 
 
 
 
1228		ret = udf_load_vat(sb, i, type1_idx);
1229		if (ret)
1230			goto out_bh;
1231		/*
1232		 * Mark filesystem read-only if we have a partition with
1233		 * virtual map since we don't handle writing to it (we
1234		 * overwrite blocks instead of relocating them).
1235		 */
1236		sb->s_flags |= MS_RDONLY;
1237		printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1238			"because writing to pseudooverwrite partition is "
1239			"not implemented.\n");
1240	}
 
1241out_bh:
1242	/* In case loading failed, we handle cleanup in udf_fill_super */
1243	brelse(bh);
1244	return ret;
1245}
1246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1248			       struct kernel_lb_addr *fileset)
1249{
1250	struct logicalVolDesc *lvd;
1251	int i, j, offset;
1252	uint8_t type;
1253	struct udf_sb_info *sbi = UDF_SB(sb);
1254	struct genericPartitionMap *gpm;
1255	uint16_t ident;
1256	struct buffer_head *bh;
1257	int ret = 0;
 
1258
1259	bh = udf_read_tagged(sb, block, block, &ident);
1260	if (!bh)
1261		return 1;
1262	BUG_ON(ident != TAG_IDENT_LVD);
1263	lvd = (struct logicalVolDesc *)bh->b_data;
 
 
 
 
 
 
 
 
1264
1265	i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1266	if (i != 0) {
1267		ret = i;
 
 
 
1268		goto out_bh;
1269	}
1270
1271	for (i = 0, offset = 0;
1272	     i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1273	     i++, offset += gpm->partitionMapLength) {
1274		struct udf_part_map *map = &sbi->s_partmaps[i];
1275		gpm = (struct genericPartitionMap *)
1276				&(lvd->partitionMaps[offset]);
1277		type = gpm->partitionMapType;
1278		if (type == 1) {
1279			struct genericPartitionMap1 *gpm1 =
1280				(struct genericPartitionMap1 *)gpm;
1281			map->s_partition_type = UDF_TYPE1_MAP15;
1282			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1283			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1284			map->s_partition_func = NULL;
1285		} else if (type == 2) {
1286			struct udfPartitionMap2 *upm2 =
1287						(struct udfPartitionMap2 *)gpm;
1288			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1289						strlen(UDF_ID_VIRTUAL))) {
1290				u16 suf =
1291					le16_to_cpu(((__le16 *)upm2->partIdent.
1292							identSuffix)[0]);
1293				if (suf < 0x0200) {
1294					map->s_partition_type =
1295							UDF_VIRTUAL_MAP15;
1296					map->s_partition_func =
1297							udf_get_pblock_virt15;
1298				} else {
1299					map->s_partition_type =
1300							UDF_VIRTUAL_MAP20;
1301					map->s_partition_func =
1302							udf_get_pblock_virt20;
1303				}
1304			} else if (!strncmp(upm2->partIdent.ident,
1305						UDF_ID_SPARABLE,
1306						strlen(UDF_ID_SPARABLE))) {
1307				uint32_t loc;
1308				struct sparingTable *st;
1309				struct sparablePartitionMap *spm =
1310					(struct sparablePartitionMap *)gpm;
1311
1312				map->s_partition_type = UDF_SPARABLE_MAP15;
1313				map->s_type_specific.s_sparing.s_packet_len =
1314						le16_to_cpu(spm->packetLength);
1315				for (j = 0; j < spm->numSparingTables; j++) {
1316					struct buffer_head *bh2;
1317
1318					loc = le32_to_cpu(
1319						spm->locSparingTable[j]);
1320					bh2 = udf_read_tagged(sb, loc, loc,
1321							     &ident);
1322					map->s_type_specific.s_sparing.
1323							s_spar_map[j] = bh2;
1324
1325					if (bh2 == NULL)
1326						continue;
1327
1328					st = (struct sparingTable *)bh2->b_data;
1329					if (ident != 0 || strncmp(
1330						st->sparingIdent.ident,
1331						UDF_ID_SPARING,
1332						strlen(UDF_ID_SPARING))) {
1333						brelse(bh2);
1334						map->s_type_specific.s_sparing.
1335							s_spar_map[j] = NULL;
1336					}
1337				}
1338				map->s_partition_func = udf_get_pblock_spar15;
1339			} else if (!strncmp(upm2->partIdent.ident,
1340						UDF_ID_METADATA,
1341						strlen(UDF_ID_METADATA))) {
1342				struct udf_meta_data *mdata =
1343					&map->s_type_specific.s_metadata;
1344				struct metadataPartitionMap *mdm =
1345						(struct metadataPartitionMap *)
1346						&(lvd->partitionMaps[offset]);
1347				udf_debug("Parsing Logical vol part %d "
1348					"type %d  id=%s\n", i, type,
1349					UDF_ID_METADATA);
1350
1351				map->s_partition_type = UDF_METADATA_MAP25;
1352				map->s_partition_func = udf_get_pblock_meta25;
1353
1354				mdata->s_meta_file_loc   =
1355					le32_to_cpu(mdm->metadataFileLoc);
1356				mdata->s_mirror_file_loc =
1357					le32_to_cpu(mdm->metadataMirrorFileLoc);
1358				mdata->s_bitmap_file_loc =
1359					le32_to_cpu(mdm->metadataBitmapFileLoc);
1360				mdata->s_alloc_unit_size =
1361					le32_to_cpu(mdm->allocUnitSize);
1362				mdata->s_align_unit_size =
1363					le16_to_cpu(mdm->alignUnitSize);
1364				mdata->s_dup_md_flag 	 =
1365					mdm->flags & 0x01;
1366
1367				udf_debug("Metadata Ident suffix=0x%x\n",
1368					(le16_to_cpu(
1369					 ((__le16 *)
1370					      mdm->partIdent.identSuffix)[0])));
1371				udf_debug("Metadata part num=%d\n",
1372					le16_to_cpu(mdm->partitionNum));
1373				udf_debug("Metadata part alloc unit size=%d\n",
1374					le32_to_cpu(mdm->allocUnitSize));
1375				udf_debug("Metadata file loc=%d\n",
1376					le32_to_cpu(mdm->metadataFileLoc));
1377				udf_debug("Mirror file loc=%d\n",
1378				       le32_to_cpu(mdm->metadataMirrorFileLoc));
1379				udf_debug("Bitmap file loc=%d\n",
1380				       le32_to_cpu(mdm->metadataBitmapFileLoc));
1381				udf_debug("Duplicate Flag: %d %d\n",
1382					mdata->s_dup_md_flag, mdm->flags);
1383			} else {
1384				udf_debug("Unknown ident: %s\n",
1385					  upm2->partIdent.ident);
1386				continue;
1387			}
1388			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1389			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1390		}
1391		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1392			  i, map->s_partition_num, type,
1393			  map->s_volumeseqnum);
1394	}
1395
1396	if (fileset) {
1397		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1398
1399		*fileset = lelb_to_cpu(la->extLocation);
1400		udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1401			  "partition=%d\n", fileset->logicalBlockNum,
1402			  fileset->partitionReferenceNum);
1403	}
1404	if (lvd->integritySeqExt.extLength)
1405		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
 
1406
 
 
 
 
 
 
 
 
 
 
1407out_bh:
1408	brelse(bh);
1409	return ret;
1410}
1411
1412/*
1413 * udf_load_logicalvolint
1414 *
1415 */
1416static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1417{
1418	struct buffer_head *bh = NULL;
1419	uint16_t ident;
1420	struct udf_sb_info *sbi = UDF_SB(sb);
1421	struct logicalVolIntegrityDesc *lvid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1422
1423	while (loc.extLength > 0 &&
1424	       (bh = udf_read_tagged(sb, loc.extLocation,
1425				     loc.extLocation, &ident)) &&
1426	       ident == TAG_IDENT_LVID) {
1427		sbi->s_lvid_bh = bh;
1428		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429
1430		if (lvid->nextIntegrityExt.extLength)
1431			udf_load_logicalvolint(sb,
1432				leea_to_cpu(lvid->nextIntegrityExt));
1433
1434		if (sbi->s_lvid_bh != bh)
1435			brelse(bh);
1436		loc.extLength -= sb->s_blocksize;
1437		loc.extLocation++;
 
 
 
 
 
 
 
 
 
 
1438	}
1439	if (sbi->s_lvid_bh != bh)
1440		brelse(bh);
1441}
1442
1443/*
1444 * udf_process_sequence
1445 *
1446 * PURPOSE
1447 *	Process a main/reserve volume descriptor sequence.
1448 *
1449 * PRE-CONDITIONS
1450 *	sb			Pointer to _locked_ superblock.
1451 *	block			First block of first extent of the sequence.
1452 *	lastblock		Lastblock of first extent of the sequence.
1453 *
1454 * HISTORY
1455 *	July 1, 1997 - Andrew E. Mileski
1456 *	Written, tested, and released.
1457 */
1458static noinline int udf_process_sequence(struct super_block *sb, long block,
1459				long lastblock, struct kernel_lb_addr *fileset)
 
 
1460{
1461	struct buffer_head *bh = NULL;
1462	struct udf_vds_record vds[VDS_POS_LENGTH];
1463	struct udf_vds_record *curr;
1464	struct generic_desc *gd;
1465	struct volDescPtr *vdp;
1466	int done = 0;
1467	uint32_t vdsn;
1468	uint16_t ident;
1469	long next_s = 0, next_e = 0;
1470
1471	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
 
 
 
 
 
 
 
 
 
 
1472
1473	/*
1474	 * Read the main descriptor sequence and find which descriptors
1475	 * are in it.
1476	 */
1477	for (; (!done && block <= lastblock); block++) {
1478
1479		bh = udf_read_tagged(sb, block, block, &ident);
1480		if (!bh) {
1481			printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1482			       "sequence is corrupted or we could not read "
1483			       "it.\n", (unsigned long long)block);
1484			return 1;
1485		}
1486
1487		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1488		gd = (struct generic_desc *)bh->b_data;
1489		vdsn = le32_to_cpu(gd->volDescSeqNum);
1490		switch (ident) {
1491		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1492			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1493			if (vdsn >= curr->volDescSeqNum) {
1494				curr->volDescSeqNum = vdsn;
1495				curr->block = block;
 
 
 
1496			}
1497			break;
1498		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1499			curr = &vds[VDS_POS_VOL_DESC_PTR];
1500			if (vdsn >= curr->volDescSeqNum) {
1501				curr->volDescSeqNum = vdsn;
1502				curr->block = block;
1503
1504				vdp = (struct volDescPtr *)bh->b_data;
1505				next_s = le32_to_cpu(
1506					vdp->nextVolDescSeqExt.extLocation);
1507				next_e = le32_to_cpu(
1508					vdp->nextVolDescSeqExt.extLength);
1509				next_e = next_e >> sb->s_blocksize_bits;
1510				next_e += next_s;
1511			}
1512			break;
 
1513		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1514			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1515			if (vdsn >= curr->volDescSeqNum) {
1516				curr->volDescSeqNum = vdsn;
1517				curr->block = block;
1518			}
1519			break;
1520		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1521			curr = &vds[VDS_POS_PARTITION_DESC];
1522			if (!curr->block)
1523				curr->block = block;
1524			break;
1525		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1526			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1527			if (vdsn >= curr->volDescSeqNum) {
1528				curr->volDescSeqNum = vdsn;
1529				curr->block = block;
1530			}
1531			break;
1532		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1533			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1534			if (vdsn >= curr->volDescSeqNum) {
1535				curr->volDescSeqNum = vdsn;
1536				curr->block = block;
1537			}
1538			break;
1539		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1540			vds[VDS_POS_TERMINATING_DESC].block = block;
1541			if (next_e) {
1542				block = next_s;
1543				lastblock = next_e;
1544				next_s = next_e = 0;
1545			} else
1546				done = 1;
1547			break;
1548		}
1549		brelse(bh);
1550	}
1551	/*
1552	 * Now read interesting descriptors again and process them
1553	 * in a suitable order
1554	 */
1555	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1556		printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1557		return 1;
 
1558	}
1559	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1560		return 1;
 
1561
1562	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1563	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1564		return 1;
 
 
 
 
1565
1566	if (vds[VDS_POS_PARTITION_DESC].block) {
1567		/*
1568		 * We rescan the whole descriptor sequence to find
1569		 * partition descriptor blocks and process them.
1570		 */
1571		for (block = vds[VDS_POS_PARTITION_DESC].block;
1572		     block < vds[VDS_POS_TERMINATING_DESC].block;
1573		     block++)
1574			if (udf_load_partdesc(sb, block))
1575				return 1;
1576	}
1577
1578	return 0;
 
 
1579}
1580
 
 
 
 
 
1581static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1582			     struct kernel_lb_addr *fileset)
1583{
1584	struct anchorVolDescPtr *anchor;
1585	long main_s, main_e, reserve_s, reserve_e;
 
1586
1587	anchor = (struct anchorVolDescPtr *)bh->b_data;
1588
1589	/* Locate the main sequence */
1590	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1591	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1592	main_e = main_e >> sb->s_blocksize_bits;
1593	main_e += main_s;
1594
1595	/* Locate the reserve sequence */
1596	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1597	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1598	reserve_e = reserve_e >> sb->s_blocksize_bits;
1599	reserve_e += reserve_s;
1600
1601	/* Process the main & reserve sequences */
1602	/* responsible for finding the PartitionDesc(s) */
1603	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1604		return 1;
1605	return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
 
 
 
 
 
 
 
 
 
1606}
1607
1608/*
1609 * Check whether there is an anchor block in the given block and
1610 * load Volume Descriptor Sequence if so.
 
 
 
1611 */
1612static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1613				  struct kernel_lb_addr *fileset)
1614{
1615	struct buffer_head *bh;
1616	uint16_t ident;
1617	int ret;
1618
1619	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1620	    udf_fixed_to_variable(block) >=
1621	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1622		return 0;
1623
1624	bh = udf_read_tagged(sb, block, block, &ident);
1625	if (!bh)
1626		return 0;
1627	if (ident != TAG_IDENT_AVDP) {
1628		brelse(bh);
1629		return 0;
1630	}
1631	ret = udf_load_sequence(sb, bh, fileset);
1632	brelse(bh);
1633	return ret;
1634}
1635
1636/* Search for an anchor volume descriptor pointer */
1637static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1638				 struct kernel_lb_addr *fileset)
 
 
 
 
 
1639{
1640	sector_t last[6];
1641	int i;
1642	struct udf_sb_info *sbi = UDF_SB(sb);
1643	int last_count = 0;
 
1644
1645	/* First try user provided anchor */
1646	if (sbi->s_anchor) {
1647		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1648			return lastblock;
 
1649	}
1650	/*
1651	 * according to spec, anchor is in either:
1652	 *     block 256
1653	 *     lastblock-256
1654	 *     lastblock
1655	 *  however, if the disc isn't closed, it could be 512.
1656	 */
1657	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1658		return lastblock;
 
1659	/*
1660	 * The trouble is which block is the last one. Drives often misreport
1661	 * this so we try various possibilities.
1662	 */
1663	last[last_count++] = lastblock;
1664	if (lastblock >= 1)
1665		last[last_count++] = lastblock - 1;
1666	last[last_count++] = lastblock + 1;
1667	if (lastblock >= 2)
1668		last[last_count++] = lastblock - 2;
1669	if (lastblock >= 150)
1670		last[last_count++] = lastblock - 150;
1671	if (lastblock >= 152)
1672		last[last_count++] = lastblock - 152;
1673
1674	for (i = 0; i < last_count; i++) {
1675		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1676				sb->s_blocksize_bits)
1677			continue;
1678		if (udf_check_anchor_block(sb, last[i], fileset))
1679			return last[i];
 
 
 
 
1680		if (last[i] < 256)
1681			continue;
1682		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1683			return last[i];
 
 
 
 
1684	}
1685
1686	/* Finally try block 512 in case media is open */
1687	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1688		return last[0];
1689	return 0;
1690}
1691
1692/*
1693 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1694 * area specified by it. The function expects sbi->s_lastblock to be the last
1695 * block on the media.
1696 *
1697 * Return 1 if ok, 0 if not found.
1698 *
1699 */
1700static int udf_find_anchor(struct super_block *sb,
1701			   struct kernel_lb_addr *fileset)
1702{
1703	sector_t lastblock;
1704	struct udf_sb_info *sbi = UDF_SB(sb);
 
 
1705
1706	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1707	if (lastblock)
1708		goto out;
1709
1710	/* No anchor found? Try VARCONV conversion of block numbers */
1711	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
 
1712	/* Firstly, we try to not convert number of the last block */
1713	lastblock = udf_scan_anchors(sb,
1714				udf_variable_to_fixed(sbi->s_last_block),
1715				fileset);
1716	if (lastblock)
1717		goto out;
1718
 
1719	/* Secondly, we try with converted number of the last block */
1720	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1721	if (!lastblock) {
1722		/* VARCONV didn't help. Clear it. */
1723		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1724		return 0;
1725	}
1726out:
1727	sbi->s_last_block = lastblock;
1728	return 1;
 
1729}
1730
1731/*
1732 * Check Volume Structure Descriptor, find Anchor block and load Volume
1733 * Descriptor Sequence
 
 
 
1734 */
1735static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1736			int silent, struct kernel_lb_addr *fileset)
1737{
1738	struct udf_sb_info *sbi = UDF_SB(sb);
1739	loff_t nsr_off;
 
1740
1741	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1742		if (!silent)
1743			printk(KERN_WARNING "UDF-fs: Bad block size\n");
1744		return 0;
1745	}
1746	sbi->s_last_block = uopt->lastblock;
1747	if (!uopt->novrs) {
1748		/* Check that it is NSR02 compliant */
1749		nsr_off = udf_check_vsd(sb);
1750		if (!nsr_off) {
1751			if (!silent)
1752				printk(KERN_WARNING "UDF-fs: No VRS found\n");
1753			return 0;
1754		}
1755		if (nsr_off == -1)
1756			udf_debug("Failed to read byte 32768. Assuming open "
1757				  "disc. Skipping validity check\n");
 
1758		if (!sbi->s_last_block)
1759			sbi->s_last_block = udf_get_last_block(sb);
1760	} else {
1761		udf_debug("Validity check skipped because of novrs option\n");
1762	}
1763
1764	/* Look for anchor block and load Volume Descriptor Sequence */
1765	sbi->s_anchor = uopt->anchor;
1766	if (!udf_find_anchor(sb, fileset)) {
1767		if (!silent)
1768			printk(KERN_WARNING "UDF-fs: No anchor found\n");
1769		return 0;
 
1770	}
1771	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
1772}
1773
1774static void udf_open_lvid(struct super_block *sb)
1775{
1776	struct udf_sb_info *sbi = UDF_SB(sb);
1777	struct buffer_head *bh = sbi->s_lvid_bh;
1778	struct logicalVolIntegrityDesc *lvid;
1779	struct logicalVolIntegrityDescImpUse *lvidiu;
1780
1781	if (!bh)
1782		return;
 
 
 
 
1783
1784	mutex_lock(&sbi->s_alloc_mutex);
1785	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1786	lvidiu = udf_sb_lvidiu(sbi);
1787
1788	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1789	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1790	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1791				CURRENT_TIME);
1792	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
 
1793
1794	lvid->descTag.descCRC = cpu_to_le16(
1795		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1796			le16_to_cpu(lvid->descTag.descCRCLength)));
1797
1798	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1799	mark_buffer_dirty(bh);
1800	sbi->s_lvid_dirty = 0;
1801	mutex_unlock(&sbi->s_alloc_mutex);
 
 
1802}
1803
1804static void udf_close_lvid(struct super_block *sb)
1805{
1806	struct udf_sb_info *sbi = UDF_SB(sb);
1807	struct buffer_head *bh = sbi->s_lvid_bh;
1808	struct logicalVolIntegrityDesc *lvid;
1809	struct logicalVolIntegrityDescImpUse *lvidiu;
1810
1811	if (!bh)
1812		return;
 
 
 
 
1813
1814	mutex_lock(&sbi->s_alloc_mutex);
1815	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1816	lvidiu = udf_sb_lvidiu(sbi);
1817	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1818	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1819	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1820	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1821		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1822	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1823		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1824	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1825		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1826	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
 
1827
1828	lvid->descTag.descCRC = cpu_to_le16(
1829			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1830				le16_to_cpu(lvid->descTag.descCRCLength)));
1831
1832	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
 
 
1833	mark_buffer_dirty(bh);
1834	sbi->s_lvid_dirty = 0;
1835	mutex_unlock(&sbi->s_alloc_mutex);
 
 
1836}
1837
1838u64 lvid_get_unique_id(struct super_block *sb)
1839{
1840	struct buffer_head *bh;
1841	struct udf_sb_info *sbi = UDF_SB(sb);
1842	struct logicalVolIntegrityDesc *lvid;
1843	struct logicalVolHeaderDesc *lvhd;
1844	u64 uniqueID;
1845	u64 ret;
1846
1847	bh = sbi->s_lvid_bh;
1848	if (!bh)
1849		return 0;
1850
1851	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1852	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1853
1854	mutex_lock(&sbi->s_alloc_mutex);
1855	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1856	if (!(++uniqueID & 0xFFFFFFFF))
1857		uniqueID += 16;
1858	lvhd->uniqueID = cpu_to_le64(uniqueID);
 
1859	mutex_unlock(&sbi->s_alloc_mutex);
1860	mark_buffer_dirty(bh);
1861
1862	return ret;
1863}
1864
1865static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1866{
1867	int i;
1868	int nr_groups = bitmap->s_nr_groups;
1869	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1870						nr_groups);
1871
1872	for (i = 0; i < nr_groups; i++)
1873		if (bitmap->s_block_bitmap[i])
1874			brelse(bitmap->s_block_bitmap[i]);
1875
1876	if (size <= PAGE_SIZE)
1877		kfree(bitmap);
1878	else
1879		vfree(bitmap);
1880}
1881
1882static void udf_free_partition(struct udf_part_map *map)
1883{
1884	int i;
1885	struct udf_meta_data *mdata;
1886
1887	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1888		iput(map->s_uspace.s_table);
1889	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1890		iput(map->s_fspace.s_table);
1891	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1892		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1893	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1894		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1895	if (map->s_partition_type == UDF_SPARABLE_MAP15)
1896		for (i = 0; i < 4; i++)
1897			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1898	else if (map->s_partition_type == UDF_METADATA_MAP25) {
1899		mdata = &map->s_type_specific.s_metadata;
1900		iput(mdata->s_metadata_fe);
1901		mdata->s_metadata_fe = NULL;
1902
1903		iput(mdata->s_mirror_fe);
1904		mdata->s_mirror_fe = NULL;
1905
1906		iput(mdata->s_bitmap_fe);
1907		mdata->s_bitmap_fe = NULL;
1908	}
1909}
1910
1911static int udf_fill_super(struct super_block *sb, void *options, int silent)
1912{
1913	int i;
1914	int ret;
1915	struct inode *inode = NULL;
1916	struct udf_options uopt;
1917	struct kernel_lb_addr rootdir, fileset;
1918	struct udf_sb_info *sbi;
 
1919
1920	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1921	uopt.uid = -1;
1922	uopt.gid = -1;
 
1923	uopt.umask = 0;
1924	uopt.fmode = UDF_INVALID_MODE;
1925	uopt.dmode = UDF_INVALID_MODE;
 
1926
1927	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1928	if (!sbi)
1929		return -ENOMEM;
1930
1931	sb->s_fs_info = sbi;
1932
1933	mutex_init(&sbi->s_alloc_mutex);
1934
1935	if (!udf_parse_options((char *)options, &uopt, false))
1936		goto error_out;
1937
1938	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1939	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1940		udf_error(sb, "udf_read_super",
1941			  "utf8 cannot be combined with iocharset\n");
1942		goto error_out;
1943	}
1944#ifdef CONFIG_UDF_NLS
1945	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1946		uopt.nls_map = load_nls_default();
1947		if (!uopt.nls_map)
1948			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1949		else
1950			udf_debug("Using default NLS map\n");
1951	}
1952#endif
1953	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1954		uopt.flags |= (1 << UDF_FLAG_UTF8);
1955
1956	fileset.logicalBlockNum = 0xFFFFFFFF;
1957	fileset.partitionReferenceNum = 0xFFFF;
1958
1959	sbi->s_flags = uopt.flags;
1960	sbi->s_uid = uopt.uid;
1961	sbi->s_gid = uopt.gid;
1962	sbi->s_umask = uopt.umask;
1963	sbi->s_fmode = uopt.fmode;
1964	sbi->s_dmode = uopt.dmode;
1965	sbi->s_nls_map = uopt.nls_map;
1966	rwlock_init(&sbi->s_cred_lock);
1967
1968	if (uopt.session == 0xFFFFFFFF)
1969		sbi->s_session = udf_get_last_session(sb);
1970	else
1971		sbi->s_session = uopt.session;
1972
1973	udf_debug("Multi-session=%d\n", sbi->s_session);
1974
1975	/* Fill in the rest of the superblock */
1976	sb->s_op = &udf_sb_ops;
1977	sb->s_export_op = &udf_export_ops;
1978
1979	sb->s_dirt = 0;
1980	sb->s_magic = UDF_SUPER_MAGIC;
1981	sb->s_time_gran = 1000;
1982
1983	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1984		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1985	} else {
1986		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1987		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1988		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1989			if (!silent)
1990				printk(KERN_NOTICE
1991				       "UDF-fs: Rescanning with blocksize "
1992				       "%d\n", UDF_DEFAULT_BLOCKSIZE);
1993			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1994			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1995		}
1996	}
1997	if (!ret) {
1998		printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
 
 
 
1999		goto error_out;
2000	}
2001
2002	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2003
2004	if (sbi->s_lvid_bh) {
2005		struct logicalVolIntegrityDescImpUse *lvidiu =
2006							udf_sb_lvidiu(sbi);
2007		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2008		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2009		/* uint16_t maxUDFWriteRev =
2010				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2011
 
 
 
 
 
 
2012		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2013			printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
2014					"(max is %x)\n",
2015			       le16_to_cpu(lvidiu->minUDFReadRev),
2016			       UDF_MAX_READ_VERSION);
2017			goto error_out;
2018		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2019			sb->s_flags |= MS_RDONLY;
 
 
 
 
 
2020
2021		sbi->s_udfrev = minUDFWriteRev;
2022
2023		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2024			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2025		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2026			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2027	}
2028
2029	if (!sbi->s_partitions) {
2030		printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
 
2031		goto error_out;
2032	}
2033
2034	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2035			UDF_PART_FLAG_READ_ONLY) {
2036		printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
2037				   "forcing readonly mount\n");
2038		sb->s_flags |= MS_RDONLY;
 
 
2039	}
2040
2041	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2042		printk(KERN_WARNING "UDF-fs: No fileset found\n");
 
2043		goto error_out;
2044	}
2045
2046	if (!silent) {
2047		struct timestamp ts;
2048		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2049		udf_info("UDF: Mounting volume '%s', "
2050			 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2051			 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
2052			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2053	}
2054	if (!(sb->s_flags & MS_RDONLY))
2055		udf_open_lvid(sb);
 
 
2056
2057	/* Assign the root inode */
2058	/* assign inodes by physical block number */
2059	/* perhaps it's not extensible enough, but for now ... */
2060	inode = udf_iget(sb, &rootdir);
2061	if (!inode) {
2062		printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2063				"partition=%d\n",
2064		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
 
2065		goto error_out;
2066	}
2067
2068	/* Allocate a dentry for the root inode */
2069	sb->s_root = d_alloc_root(inode);
2070	if (!sb->s_root) {
2071		printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2072		iput(inode);
2073		goto error_out;
2074	}
2075	sb->s_maxbytes = MAX_LFS_FILESIZE;
 
2076	return 0;
2077
2078error_out:
2079	if (sbi->s_vat_inode)
2080		iput(sbi->s_vat_inode);
2081	if (sbi->s_partitions)
2082		for (i = 0; i < sbi->s_partitions; i++)
2083			udf_free_partition(&sbi->s_partmaps[i]);
2084#ifdef CONFIG_UDF_NLS
2085	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2086		unload_nls(sbi->s_nls_map);
2087#endif
2088	if (!(sb->s_flags & MS_RDONLY))
2089		udf_close_lvid(sb);
2090	brelse(sbi->s_lvid_bh);
2091
2092	kfree(sbi->s_partmaps);
2093	kfree(sbi);
2094	sb->s_fs_info = NULL;
2095
2096	return -EINVAL;
2097}
2098
2099static void udf_error(struct super_block *sb, const char *function,
2100		      const char *fmt, ...)
2101{
 
2102	va_list args;
2103
2104	if (!(sb->s_flags & MS_RDONLY)) {
2105		/* mark sb error */
2106		sb->s_dirt = 1;
2107	}
2108	va_start(args, fmt);
2109	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
 
 
 
 
 
2110	va_end(args);
2111	printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2112		sb->s_id, function, error_buf);
2113}
2114
2115void udf_warning(struct super_block *sb, const char *function,
2116		 const char *fmt, ...)
2117{
 
2118	va_list args;
2119
2120	va_start(args, fmt);
2121	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
 
 
 
 
 
2122	va_end(args);
2123	printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2124	       sb->s_id, function, error_buf);
2125}
2126
2127static void udf_put_super(struct super_block *sb)
2128{
2129	int i;
2130	struct udf_sb_info *sbi;
2131
2132	sbi = UDF_SB(sb);
2133
2134	if (sbi->s_vat_inode)
2135		iput(sbi->s_vat_inode);
2136	if (sbi->s_partitions)
2137		for (i = 0; i < sbi->s_partitions; i++)
2138			udf_free_partition(&sbi->s_partmaps[i]);
2139#ifdef CONFIG_UDF_NLS
2140	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2141		unload_nls(sbi->s_nls_map);
2142#endif
2143	if (!(sb->s_flags & MS_RDONLY))
2144		udf_close_lvid(sb);
2145	brelse(sbi->s_lvid_bh);
2146	kfree(sbi->s_partmaps);
 
2147	kfree(sb->s_fs_info);
2148	sb->s_fs_info = NULL;
2149}
2150
2151static int udf_sync_fs(struct super_block *sb, int wait)
2152{
2153	struct udf_sb_info *sbi = UDF_SB(sb);
2154
2155	mutex_lock(&sbi->s_alloc_mutex);
2156	if (sbi->s_lvid_dirty) {
 
 
 
 
 
 
2157		/*
2158		 * Blockdevice will be synced later so we don't have to submit
2159		 * the buffer for IO
2160		 */
2161		mark_buffer_dirty(sbi->s_lvid_bh);
2162		sb->s_dirt = 0;
2163		sbi->s_lvid_dirty = 0;
2164	}
2165	mutex_unlock(&sbi->s_alloc_mutex);
2166
2167	return 0;
2168}
2169
2170static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2171{
2172	struct super_block *sb = dentry->d_sb;
2173	struct udf_sb_info *sbi = UDF_SB(sb);
2174	struct logicalVolIntegrityDescImpUse *lvidiu;
2175	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2176
2177	if (sbi->s_lvid_bh != NULL)
2178		lvidiu = udf_sb_lvidiu(sbi);
2179	else
2180		lvidiu = NULL;
2181
2182	buf->f_type = UDF_SUPER_MAGIC;
2183	buf->f_bsize = sb->s_blocksize;
2184	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2185	buf->f_bfree = udf_count_free(sb);
2186	buf->f_bavail = buf->f_bfree;
 
 
 
 
2187	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2188					  le32_to_cpu(lvidiu->numDirs)) : 0)
2189			+ buf->f_bfree;
2190	buf->f_ffree = buf->f_bfree;
2191	buf->f_namelen = UDF_NAME_LEN - 2;
2192	buf->f_fsid.val[0] = (u32)id;
2193	buf->f_fsid.val[1] = (u32)(id >> 32);
2194
2195	return 0;
2196}
2197
2198static unsigned int udf_count_free_bitmap(struct super_block *sb,
2199					  struct udf_bitmap *bitmap)
2200{
2201	struct buffer_head *bh = NULL;
2202	unsigned int accum = 0;
2203	int index;
2204	int block = 0, newblock;
2205	struct kernel_lb_addr loc;
2206	uint32_t bytes;
2207	uint8_t *ptr;
2208	uint16_t ident;
2209	struct spaceBitmapDesc *bm;
2210
2211	loc.logicalBlockNum = bitmap->s_extPosition;
2212	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2213	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2214
2215	if (!bh) {
2216		printk(KERN_ERR "udf: udf_count_free failed\n");
2217		goto out;
2218	} else if (ident != TAG_IDENT_SBD) {
2219		brelse(bh);
2220		printk(KERN_ERR "udf: udf_count_free failed\n");
2221		goto out;
2222	}
2223
2224	bm = (struct spaceBitmapDesc *)bh->b_data;
2225	bytes = le32_to_cpu(bm->numOfBytes);
2226	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2227	ptr = (uint8_t *)bh->b_data;
2228
2229	while (bytes > 0) {
2230		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2231		accum += bitmap_weight((const unsigned long *)(ptr + index),
2232					cur_bytes * 8);
2233		bytes -= cur_bytes;
2234		if (bytes) {
2235			brelse(bh);
2236			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2237			bh = udf_tread(sb, newblock);
2238			if (!bh) {
2239				udf_debug("read failed\n");
2240				goto out;
2241			}
2242			index = 0;
2243			ptr = (uint8_t *)bh->b_data;
2244		}
2245	}
2246	brelse(bh);
2247out:
2248	return accum;
2249}
2250
2251static unsigned int udf_count_free_table(struct super_block *sb,
2252					 struct inode *table)
2253{
2254	unsigned int accum = 0;
2255	uint32_t elen;
2256	struct kernel_lb_addr eloc;
2257	int8_t etype;
2258	struct extent_position epos;
2259
2260	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2261	epos.block = UDF_I(table)->i_location;
2262	epos.offset = sizeof(struct unallocSpaceEntry);
2263	epos.bh = NULL;
2264
2265	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2266		accum += (elen >> table->i_sb->s_blocksize_bits);
2267
2268	brelse(epos.bh);
2269	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2270
2271	return accum;
2272}
2273
2274static unsigned int udf_count_free(struct super_block *sb)
2275{
2276	unsigned int accum = 0;
2277	struct udf_sb_info *sbi;
2278	struct udf_part_map *map;
 
 
 
 
 
 
 
 
 
 
 
 
 
2279
2280	sbi = UDF_SB(sb);
2281	if (sbi->s_lvid_bh) {
2282		struct logicalVolIntegrityDesc *lvid =
2283			(struct logicalVolIntegrityDesc *)
2284			sbi->s_lvid_bh->b_data;
2285		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2286			accum = le32_to_cpu(
2287					lvid->freeSpaceTable[sbi->s_partition]);
2288			if (accum == 0xFFFFFFFF)
2289				accum = 0;
2290		}
2291	}
2292
2293	if (accum)
2294		return accum;
2295
2296	map = &sbi->s_partmaps[sbi->s_partition];
2297	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2298		accum += udf_count_free_bitmap(sb,
2299					       map->s_uspace.s_bitmap);
2300	}
2301	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2302		accum += udf_count_free_bitmap(sb,
2303					       map->s_fspace.s_bitmap);
2304	}
2305	if (accum)
2306		return accum;
2307
2308	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2309		accum += udf_count_free_table(sb,
2310					      map->s_uspace.s_table);
2311	}
2312	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2313		accum += udf_count_free_table(sb,
2314					      map->s_fspace.s_table);
2315	}
2316
2317	return accum;
2318}