Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/kernel.h>
   8#include <linux/device.h>
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
 
  21#include <linux/gpio/consumer.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/pm_domain.h>
  24#include <linux/property.h>
  25#include <linux/export.h>
  26#include <linux/sched/rt.h>
  27#include <uapi/linux/sched/types.h>
  28#include <linux/delay.h>
  29#include <linux/kthread.h>
  30#include <linux/ioport.h>
  31#include <linux/acpi.h>
  32#include <linux/highmem.h>
  33#include <linux/idr.h>
  34#include <linux/platform_data/x86/apple.h>
  35#include <linux/ptp_clock_kernel.h>
  36#include <linux/percpu.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
 
 
 
 
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
 
 
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120#define spi_pcpu_stats_totalize(ret, in, field)				\
 121do {									\
 122	int i;								\
 123	ret = 0;							\
 124	for_each_possible_cpu(i) {					\
 125		const struct spi_statistics *pcpu_stats;		\
 126		u64 inc;						\
 127		unsigned int start;					\
 128		pcpu_stats = per_cpu_ptr(in, i);			\
 129		do {							\
 130			start = u64_stats_fetch_begin(		\
 131					&pcpu_stats->syncp);		\
 132			inc = u64_stats_read(&pcpu_stats->field);	\
 133		} while (u64_stats_fetch_retry(			\
 134					&pcpu_stats->syncp, start));	\
 135		ret += inc;						\
 136	}								\
 137} while (0)
 138
 139#define SPI_STATISTICS_ATTRS(field, file)				\
 140static ssize_t spi_controller_##field##_show(struct device *dev,	\
 141					     struct device_attribute *attr, \
 142					     char *buf)			\
 143{									\
 144	struct spi_controller *ctlr = container_of(dev,			\
 145					 struct spi_controller, dev);	\
 146	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 147}									\
 148static struct device_attribute dev_attr_spi_controller_##field = {	\
 149	.attr = { .name = file, .mode = 0444 },				\
 150	.show = spi_controller_##field##_show,				\
 151};									\
 152static ssize_t spi_device_##field##_show(struct device *dev,		\
 153					 struct device_attribute *attr,	\
 154					char *buf)			\
 155{									\
 156	struct spi_device *spi = to_spi_device(dev);			\
 157	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 158}									\
 159static struct device_attribute dev_attr_spi_device_##field = {		\
 160	.attr = { .name = file, .mode = 0444 },				\
 161	.show = spi_device_##field##_show,				\
 162}
 163
 164#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 165static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 166					    char *buf)			\
 167{									\
 
 168	ssize_t len;							\
 169	u64 val;							\
 170	spi_pcpu_stats_totalize(val, stat, field);			\
 171	len = sysfs_emit(buf, "%llu\n", val);				\
 172	return len;							\
 173}									\
 174SPI_STATISTICS_ATTRS(name, file)
 175
 176#define SPI_STATISTICS_SHOW(field)					\
 177	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 178				 field)
 179
 180SPI_STATISTICS_SHOW(messages);
 181SPI_STATISTICS_SHOW(transfers);
 182SPI_STATISTICS_SHOW(errors);
 183SPI_STATISTICS_SHOW(timedout);
 184
 185SPI_STATISTICS_SHOW(spi_sync);
 186SPI_STATISTICS_SHOW(spi_sync_immediate);
 187SPI_STATISTICS_SHOW(spi_async);
 188
 189SPI_STATISTICS_SHOW(bytes);
 190SPI_STATISTICS_SHOW(bytes_rx);
 191SPI_STATISTICS_SHOW(bytes_tx);
 192
 193#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 194	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 195				 "transfer_bytes_histo_" number,	\
 196				 transfer_bytes_histo[index])
 197SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 214
 215SPI_STATISTICS_SHOW(transfers_split_maxsize);
 216
 217static struct attribute *spi_dev_attrs[] = {
 218	&dev_attr_modalias.attr,
 219	&dev_attr_driver_override.attr,
 220	NULL,
 221};
 222
 223static const struct attribute_group spi_dev_group = {
 224	.attrs  = spi_dev_attrs,
 225};
 226
 227static struct attribute *spi_device_statistics_attrs[] = {
 228	&dev_attr_spi_device_messages.attr,
 229	&dev_attr_spi_device_transfers.attr,
 230	&dev_attr_spi_device_errors.attr,
 231	&dev_attr_spi_device_timedout.attr,
 232	&dev_attr_spi_device_spi_sync.attr,
 233	&dev_attr_spi_device_spi_sync_immediate.attr,
 234	&dev_attr_spi_device_spi_async.attr,
 235	&dev_attr_spi_device_bytes.attr,
 236	&dev_attr_spi_device_bytes_rx.attr,
 237	&dev_attr_spi_device_bytes_tx.attr,
 238	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 255	&dev_attr_spi_device_transfers_split_maxsize.attr,
 256	NULL,
 257};
 258
 259static const struct attribute_group spi_device_statistics_group = {
 260	.name  = "statistics",
 261	.attrs  = spi_device_statistics_attrs,
 262};
 263
 264static const struct attribute_group *spi_dev_groups[] = {
 265	&spi_dev_group,
 266	&spi_device_statistics_group,
 267	NULL,
 268};
 269
 270static struct attribute *spi_controller_statistics_attrs[] = {
 271	&dev_attr_spi_controller_messages.attr,
 272	&dev_attr_spi_controller_transfers.attr,
 273	&dev_attr_spi_controller_errors.attr,
 274	&dev_attr_spi_controller_timedout.attr,
 275	&dev_attr_spi_controller_spi_sync.attr,
 276	&dev_attr_spi_controller_spi_sync_immediate.attr,
 277	&dev_attr_spi_controller_spi_async.attr,
 278	&dev_attr_spi_controller_bytes.attr,
 279	&dev_attr_spi_controller_bytes_rx.attr,
 280	&dev_attr_spi_controller_bytes_tx.attr,
 281	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 298	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 299	NULL,
 300};
 301
 302static const struct attribute_group spi_controller_statistics_group = {
 303	.name  = "statistics",
 304	.attrs  = spi_controller_statistics_attrs,
 305};
 306
 307static const struct attribute_group *spi_master_groups[] = {
 308	&spi_controller_statistics_group,
 309	NULL,
 310};
 311
 312static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 313					      struct spi_transfer *xfer,
 314					      struct spi_controller *ctlr)
 315{
 
 316	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 317	struct spi_statistics *stats;
 318
 319	if (l2len < 0)
 320		l2len = 0;
 321
 322	get_cpu();
 323	stats = this_cpu_ptr(pcpu_stats);
 324	u64_stats_update_begin(&stats->syncp);
 325
 326	u64_stats_inc(&stats->transfers);
 327	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 328
 329	u64_stats_add(&stats->bytes, xfer->len);
 330	if ((xfer->tx_buf) &&
 331	    (xfer->tx_buf != ctlr->dummy_tx))
 332		u64_stats_add(&stats->bytes_tx, xfer->len);
 333	if ((xfer->rx_buf) &&
 334	    (xfer->rx_buf != ctlr->dummy_rx))
 335		u64_stats_add(&stats->bytes_rx, xfer->len);
 336
 337	u64_stats_update_end(&stats->syncp);
 338	put_cpu();
 339}
 
 340
 341/*
 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 343 * and the sysfs version makes coldplug work too.
 344 */
 345static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 
 
 346{
 347	while (id->name[0]) {
 348		if (!strcmp(name, id->name))
 349			return id;
 350		id++;
 351	}
 352	return NULL;
 353}
 354
 355const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 356{
 357	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 358
 359	return spi_match_id(sdrv->id_table, sdev->modalias);
 360}
 361EXPORT_SYMBOL_GPL(spi_get_device_id);
 362
 363const void *spi_get_device_match_data(const struct spi_device *sdev)
 364{
 365	const void *match;
 366
 367	match = device_get_match_data(&sdev->dev);
 368	if (match)
 369		return match;
 370
 371	return (const void *)spi_get_device_id(sdev)->driver_data;
 372}
 373EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 374
 375static int spi_match_device(struct device *dev, struct device_driver *drv)
 376{
 377	const struct spi_device	*spi = to_spi_device(dev);
 378	const struct spi_driver	*sdrv = to_spi_driver(drv);
 379
 380	/* Check override first, and if set, only use the named driver */
 381	if (spi->driver_override)
 382		return strcmp(spi->driver_override, drv->name) == 0;
 383
 384	/* Attempt an OF style match */
 385	if (of_driver_match_device(dev, drv))
 386		return 1;
 387
 388	/* Then try ACPI */
 389	if (acpi_driver_match_device(dev, drv))
 390		return 1;
 391
 392	if (sdrv->id_table)
 393		return !!spi_match_id(sdrv->id_table, spi->modalias);
 394
 395	return strcmp(spi->modalias, drv->name) == 0;
 396}
 397
 398static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 399{
 400	const struct spi_device		*spi = to_spi_device(dev);
 401	int rc;
 402
 403	rc = acpi_device_uevent_modalias(dev, env);
 404	if (rc != -ENODEV)
 405		return rc;
 406
 407	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 408}
 409
 410static int spi_probe(struct device *dev)
 
 
 
 
 
 
 
 
 
 411{
 412	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 413	struct spi_device		*spi = to_spi_device(dev);
 414	int ret;
 415
 416	ret = of_clk_set_defaults(dev->of_node, false);
 417	if (ret)
 418		return ret;
 419
 420	if (dev->of_node) {
 421		spi->irq = of_irq_get(dev->of_node, 0);
 422		if (spi->irq == -EPROBE_DEFER)
 423			return -EPROBE_DEFER;
 424		if (spi->irq < 0)
 425			spi->irq = 0;
 426	}
 427
 428	ret = dev_pm_domain_attach(dev, true);
 429	if (ret)
 430		return ret;
 431
 432	if (sdrv->probe) {
 433		ret = sdrv->probe(spi);
 434		if (ret)
 435			dev_pm_domain_detach(dev, true);
 436	}
 437
 438	return ret;
 439}
 440
 441static void spi_remove(struct device *dev)
 442{
 443	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 444
 445	if (sdrv->remove)
 446		sdrv->remove(to_spi_device(dev));
 447
 448	dev_pm_domain_detach(dev, true);
 
 
 449}
 450
 451static void spi_shutdown(struct device *dev)
 452{
 453	if (dev->driver) {
 454		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 455
 456		if (sdrv->shutdown)
 457			sdrv->shutdown(to_spi_device(dev));
 458	}
 459}
 460
 461struct bus_type spi_bus_type = {
 462	.name		= "spi",
 463	.dev_groups	= spi_dev_groups,
 464	.match		= spi_match_device,
 465	.uevent		= spi_uevent,
 466	.probe		= spi_probe,
 467	.remove		= spi_remove,
 468	.shutdown	= spi_shutdown,
 469};
 470EXPORT_SYMBOL_GPL(spi_bus_type);
 471
 472/**
 473 * __spi_register_driver - register a SPI driver
 474 * @owner: owner module of the driver to register
 475 * @sdrv: the driver to register
 476 * Context: can sleep
 477 *
 478 * Return: zero on success, else a negative error code.
 479 */
 480int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 481{
 482	sdrv->driver.owner = owner;
 483	sdrv->driver.bus = &spi_bus_type;
 484
 485	/*
 486	 * For Really Good Reasons we use spi: modaliases not of:
 487	 * modaliases for DT so module autoloading won't work if we
 488	 * don't have a spi_device_id as well as a compatible string.
 489	 */
 490	if (sdrv->driver.of_match_table) {
 491		const struct of_device_id *of_id;
 492
 493		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 494		     of_id++) {
 495			const char *of_name;
 496
 497			/* Strip off any vendor prefix */
 498			of_name = strnchr(of_id->compatible,
 499					  sizeof(of_id->compatible), ',');
 500			if (of_name)
 501				of_name++;
 502			else
 503				of_name = of_id->compatible;
 504
 505			if (sdrv->id_table) {
 506				const struct spi_device_id *spi_id;
 507
 508				spi_id = spi_match_id(sdrv->id_table, of_name);
 509				if (spi_id)
 510					continue;
 511			} else {
 512				if (strcmp(sdrv->driver.name, of_name) == 0)
 513					continue;
 514			}
 515
 516			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 517				sdrv->driver.name, of_id->compatible);
 518		}
 519	}
 520
 521	return driver_register(&sdrv->driver);
 522}
 523EXPORT_SYMBOL_GPL(__spi_register_driver);
 524
 525/*-------------------------------------------------------------------------*/
 526
 527/*
 528 * SPI devices should normally not be created by SPI device drivers; that
 529 * would make them board-specific.  Similarly with SPI controller drivers.
 530 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 531 * with other readonly (flashable) information about mainboard devices.
 532 */
 533
 534struct boardinfo {
 535	struct list_head	list;
 536	struct spi_board_info	board_info;
 537};
 538
 539static LIST_HEAD(board_list);
 540static LIST_HEAD(spi_controller_list);
 541
 542/*
 543 * Used to protect add/del operation for board_info list and
 544 * spi_controller list, and their matching process also used
 545 * to protect object of type struct idr.
 546 */
 547static DEFINE_MUTEX(board_lock);
 548
 
 
 
 
 
 
 549/**
 550 * spi_alloc_device - Allocate a new SPI device
 551 * @ctlr: Controller to which device is connected
 552 * Context: can sleep
 553 *
 554 * Allows a driver to allocate and initialize a spi_device without
 555 * registering it immediately.  This allows a driver to directly
 556 * fill the spi_device with device parameters before calling
 557 * spi_add_device() on it.
 558 *
 559 * Caller is responsible to call spi_add_device() on the returned
 560 * spi_device structure to add it to the SPI controller.  If the caller
 561 * needs to discard the spi_device without adding it, then it should
 562 * call spi_dev_put() on it.
 563 *
 564 * Return: a pointer to the new device, or NULL.
 565 */
 566struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 567{
 568	struct spi_device	*spi;
 569
 570	if (!spi_controller_get(ctlr))
 571		return NULL;
 572
 573	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 574	if (!spi) {
 575		spi_controller_put(ctlr);
 576		return NULL;
 577	}
 578
 579	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 580	if (!spi->pcpu_statistics) {
 581		kfree(spi);
 582		spi_controller_put(ctlr);
 583		return NULL;
 584	}
 585
 586	spi->master = spi->controller = ctlr;
 587	spi->dev.parent = &ctlr->dev;
 588	spi->dev.bus = &spi_bus_type;
 589	spi->dev.release = spidev_release;
 
 590	spi->mode = ctlr->buswidth_override_bits;
 591
 
 
 592	device_initialize(&spi->dev);
 593	return spi;
 594}
 595EXPORT_SYMBOL_GPL(spi_alloc_device);
 596
 597static void spi_dev_set_name(struct spi_device *spi)
 598{
 599	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 600
 601	if (adev) {
 602		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 603		return;
 604	}
 605
 606	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 607		     spi->chip_select);
 608}
 609
 610static int spi_dev_check(struct device *dev, void *data)
 611{
 612	struct spi_device *spi = to_spi_device(dev);
 613	struct spi_device *new_spi = data;
 614
 615	if (spi->controller == new_spi->controller &&
 616	    spi->chip_select == new_spi->chip_select)
 617		return -EBUSY;
 618	return 0;
 619}
 620
 621static void spi_cleanup(struct spi_device *spi)
 622{
 623	if (spi->controller->cleanup)
 624		spi->controller->cleanup(spi);
 625}
 626
 627static int __spi_add_device(struct spi_device *spi)
 
 
 
 628{
 629	struct spi_controller *ctlr = spi->controller;
 630	struct device *dev = ctlr->dev.parent;
 631	int status;
 632
 633	/*
 634	 * We need to make sure there's no other device with this
 
 
 
 
 
 
 
 
 
 635	 * chipselect **BEFORE** we call setup(), else we'll trash
 636	 * its configuration.
 637	 */
 
 
 638	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 639	if (status) {
 640		dev_err(dev, "chipselect %d already in use\n",
 641				spi->chip_select);
 642		return status;
 643	}
 644
 645	/* Controller may unregister concurrently */
 646	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 647	    !device_is_registered(&ctlr->dev)) {
 648		return -ENODEV;
 
 649	}
 650
 
 651	if (ctlr->cs_gpiods)
 652		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 
 
 653
 654	/*
 655	 * Drivers may modify this initial i/o setup, but will
 656	 * normally rely on the device being setup.  Devices
 657	 * using SPI_CS_HIGH can't coexist well otherwise...
 658	 */
 659	status = spi_setup(spi);
 660	if (status < 0) {
 661		dev_err(dev, "can't setup %s, status %d\n",
 662				dev_name(&spi->dev), status);
 663		return status;
 664	}
 665
 666	/* Device may be bound to an active driver when this returns */
 667	status = device_add(&spi->dev);
 668	if (status < 0) {
 669		dev_err(dev, "can't add %s, status %d\n",
 670				dev_name(&spi->dev), status);
 671		spi_cleanup(spi);
 672	} else {
 673		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 674	}
 675
 676	return status;
 677}
 678
 679/**
 680 * spi_add_device - Add spi_device allocated with spi_alloc_device
 681 * @spi: spi_device to register
 682 *
 683 * Companion function to spi_alloc_device.  Devices allocated with
 684 * spi_alloc_device can be added onto the spi bus with this function.
 685 *
 686 * Return: 0 on success; negative errno on failure
 687 */
 688int spi_add_device(struct spi_device *spi)
 689{
 690	struct spi_controller *ctlr = spi->controller;
 691	struct device *dev = ctlr->dev.parent;
 692	int status;
 693
 694	/* Chipselects are numbered 0..max; validate. */
 695	if (spi->chip_select >= ctlr->num_chipselect) {
 696		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 697			ctlr->num_chipselect);
 698		return -EINVAL;
 699	}
 700
 701	/* Set the bus ID string */
 702	spi_dev_set_name(spi);
 703
 704	mutex_lock(&ctlr->add_lock);
 705	status = __spi_add_device(spi);
 706	mutex_unlock(&ctlr->add_lock);
 707	return status;
 708}
 709EXPORT_SYMBOL_GPL(spi_add_device);
 710
 711static int spi_add_device_locked(struct spi_device *spi)
 712{
 713	struct spi_controller *ctlr = spi->controller;
 714	struct device *dev = ctlr->dev.parent;
 715
 716	/* Chipselects are numbered 0..max; validate. */
 717	if (spi->chip_select >= ctlr->num_chipselect) {
 718		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 719			ctlr->num_chipselect);
 720		return -EINVAL;
 721	}
 722
 723	/* Set the bus ID string */
 724	spi_dev_set_name(spi);
 725
 726	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
 727	return __spi_add_device(spi);
 728}
 729
 730/**
 731 * spi_new_device - instantiate one new SPI device
 732 * @ctlr: Controller to which device is connected
 733 * @chip: Describes the SPI device
 734 * Context: can sleep
 735 *
 736 * On typical mainboards, this is purely internal; and it's not needed
 737 * after board init creates the hard-wired devices.  Some development
 738 * platforms may not be able to use spi_register_board_info though, and
 739 * this is exported so that for example a USB or parport based adapter
 740 * driver could add devices (which it would learn about out-of-band).
 741 *
 742 * Return: the new device, or NULL.
 743 */
 744struct spi_device *spi_new_device(struct spi_controller *ctlr,
 745				  struct spi_board_info *chip)
 746{
 747	struct spi_device	*proxy;
 748	int			status;
 749
 750	/*
 751	 * NOTE:  caller did any chip->bus_num checks necessary.
 752	 *
 753	 * Also, unless we change the return value convention to use
 754	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 755	 * suggests syslogged diagnostics are best here (ugh).
 756	 */
 757
 758	proxy = spi_alloc_device(ctlr);
 759	if (!proxy)
 760		return NULL;
 761
 762	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 763
 764	proxy->chip_select = chip->chip_select;
 765	proxy->max_speed_hz = chip->max_speed_hz;
 766	proxy->mode = chip->mode;
 767	proxy->irq = chip->irq;
 768	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 769	proxy->dev.platform_data = (void *) chip->platform_data;
 770	proxy->controller_data = chip->controller_data;
 771	proxy->controller_state = NULL;
 772
 773	if (chip->swnode) {
 774		status = device_add_software_node(&proxy->dev, chip->swnode);
 775		if (status) {
 776			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 
 777				chip->modalias, status);
 778			goto err_dev_put;
 779		}
 780	}
 781
 782	status = spi_add_device(proxy);
 783	if (status < 0)
 784		goto err_dev_put;
 785
 786	return proxy;
 787
 
 
 
 788err_dev_put:
 789	device_remove_software_node(&proxy->dev);
 790	spi_dev_put(proxy);
 791	return NULL;
 792}
 793EXPORT_SYMBOL_GPL(spi_new_device);
 794
 795/**
 796 * spi_unregister_device - unregister a single SPI device
 797 * @spi: spi_device to unregister
 798 *
 799 * Start making the passed SPI device vanish. Normally this would be handled
 800 * by spi_unregister_controller().
 801 */
 802void spi_unregister_device(struct spi_device *spi)
 803{
 804	if (!spi)
 805		return;
 806
 807	if (spi->dev.of_node) {
 808		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 809		of_node_put(spi->dev.of_node);
 810	}
 811	if (ACPI_COMPANION(&spi->dev))
 812		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 813	device_remove_software_node(&spi->dev);
 814	device_del(&spi->dev);
 815	spi_cleanup(spi);
 816	put_device(&spi->dev);
 817}
 818EXPORT_SYMBOL_GPL(spi_unregister_device);
 819
 820static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 821					      struct spi_board_info *bi)
 822{
 823	struct spi_device *dev;
 824
 825	if (ctlr->bus_num != bi->bus_num)
 826		return;
 827
 828	dev = spi_new_device(ctlr, bi);
 829	if (!dev)
 830		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 831			bi->modalias);
 832}
 833
 834/**
 835 * spi_register_board_info - register SPI devices for a given board
 836 * @info: array of chip descriptors
 837 * @n: how many descriptors are provided
 838 * Context: can sleep
 839 *
 840 * Board-specific early init code calls this (probably during arch_initcall)
 841 * with segments of the SPI device table.  Any device nodes are created later,
 842 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 843 * this table of devices forever, so that reloading a controller driver will
 844 * not make Linux forget about these hard-wired devices.
 845 *
 846 * Other code can also call this, e.g. a particular add-on board might provide
 847 * SPI devices through its expansion connector, so code initializing that board
 848 * would naturally declare its SPI devices.
 849 *
 850 * The board info passed can safely be __initdata ... but be careful of
 851 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 852 *
 853 * Return: zero on success, else a negative error code.
 854 */
 855int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 856{
 857	struct boardinfo *bi;
 858	int i;
 859
 860	if (!n)
 861		return 0;
 862
 863	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 864	if (!bi)
 865		return -ENOMEM;
 866
 867	for (i = 0; i < n; i++, bi++, info++) {
 868		struct spi_controller *ctlr;
 869
 870		memcpy(&bi->board_info, info, sizeof(*info));
 
 
 
 
 
 
 871
 872		mutex_lock(&board_lock);
 873		list_add_tail(&bi->list, &board_list);
 874		list_for_each_entry(ctlr, &spi_controller_list, list)
 875			spi_match_controller_to_boardinfo(ctlr,
 876							  &bi->board_info);
 877		mutex_unlock(&board_lock);
 878	}
 879
 880	return 0;
 881}
 882
 883/*-------------------------------------------------------------------------*/
 884
 885/* Core methods for SPI resource management */
 886
 887/**
 888 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 889 *                 during the processing of a spi_message while using
 890 *                 spi_transfer_one
 891 * @spi:     the spi device for which we allocate memory
 892 * @release: the release code to execute for this resource
 893 * @size:    size to alloc and return
 894 * @gfp:     GFP allocation flags
 895 *
 896 * Return: the pointer to the allocated data
 897 *
 898 * This may get enhanced in the future to allocate from a memory pool
 899 * of the @spi_device or @spi_controller to avoid repeated allocations.
 900 */
 901static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 902			   size_t size, gfp_t gfp)
 903{
 904	struct spi_res *sres;
 905
 906	sres = kzalloc(sizeof(*sres) + size, gfp);
 907	if (!sres)
 908		return NULL;
 909
 910	INIT_LIST_HEAD(&sres->entry);
 911	sres->release = release;
 912
 913	return sres->data;
 914}
 915
 916/**
 917 * spi_res_free - free an spi resource
 918 * @res: pointer to the custom data of a resource
 919 */
 920static void spi_res_free(void *res)
 921{
 922	struct spi_res *sres = container_of(res, struct spi_res, data);
 923
 924	if (!res)
 925		return;
 926
 927	WARN_ON(!list_empty(&sres->entry));
 928	kfree(sres);
 929}
 930
 931/**
 932 * spi_res_add - add a spi_res to the spi_message
 933 * @message: the spi message
 934 * @res:     the spi_resource
 935 */
 936static void spi_res_add(struct spi_message *message, void *res)
 937{
 938	struct spi_res *sres = container_of(res, struct spi_res, data);
 939
 940	WARN_ON(!list_empty(&sres->entry));
 941	list_add_tail(&sres->entry, &message->resources);
 942}
 943
 944/**
 945 * spi_res_release - release all spi resources for this message
 946 * @ctlr:  the @spi_controller
 947 * @message: the @spi_message
 948 */
 949static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
 950{
 951	struct spi_res *res, *tmp;
 952
 953	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
 954		if (res->release)
 955			res->release(ctlr, message, res->data);
 956
 957		list_del(&res->entry);
 958
 959		kfree(res);
 960	}
 961}
 962
 963/*-------------------------------------------------------------------------*/
 964
 965static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
 966{
 967	bool activate = enable;
 968
 969	/*
 970	 * Avoid calling into the driver (or doing delays) if the chip select
 971	 * isn't actually changing from the last time this was called.
 972	 */
 973	if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
 974				(!enable && spi->controller->last_cs != spi->chip_select)) &&
 975	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
 976		return;
 977
 978	trace_spi_set_cs(spi, activate);
 979
 980	spi->controller->last_cs = enable ? spi->chip_select : -1;
 981	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
 982
 983	if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
 984		spi_delay_exec(&spi->cs_hold, NULL);
 
 
 
 985	}
 986
 987	if (spi->mode & SPI_CS_HIGH)
 988		enable = !enable;
 989
 990	if (spi->cs_gpiod) {
 
 
 
 
 
 
 
 991		if (!(spi->mode & SPI_NO_CS)) {
 992			/*
 993			 * Historically ACPI has no means of the GPIO polarity and
 994			 * thus the SPISerialBus() resource defines it on the per-chip
 995			 * basis. In order to avoid a chain of negations, the GPIO
 996			 * polarity is considered being Active High. Even for the cases
 997			 * when _DSD() is involved (in the updated versions of ACPI)
 998			 * the GPIO CS polarity must be defined Active High to avoid
 999			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1000			 * into account.
1001			 */
1002			if (has_acpi_companion(&spi->dev))
1003				gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
1004			else
1005				/* Polarity handled by GPIO library */
1006				gpiod_set_value_cansleep(spi->cs_gpiod, activate);
1007		}
1008		/* Some SPI masters need both GPIO CS & slave_select */
1009		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1010		    spi->controller->set_cs)
1011			spi->controller->set_cs(spi, !enable);
1012	} else if (spi->controller->set_cs) {
1013		spi->controller->set_cs(spi, !enable);
1014	}
1015
1016	if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
1017		if (activate)
1018			spi_delay_exec(&spi->cs_setup, NULL);
1019		else
1020			spi_delay_exec(&spi->cs_inactive, NULL);
1021	}
1022}
1023
1024#ifdef CONFIG_HAS_DMA
1025static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1026			     struct sg_table *sgt, void *buf, size_t len,
1027			     enum dma_data_direction dir, unsigned long attrs)
1028{
1029	const bool vmalloced_buf = is_vmalloc_addr(buf);
1030	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1031#ifdef CONFIG_HIGHMEM
1032	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1033				(unsigned long)buf < (PKMAP_BASE +
1034					(LAST_PKMAP * PAGE_SIZE)));
1035#else
1036	const bool kmap_buf = false;
1037#endif
1038	int desc_len;
1039	int sgs;
1040	struct page *vm_page;
1041	struct scatterlist *sg;
1042	void *sg_buf;
1043	size_t min;
1044	int i, ret;
1045
1046	if (vmalloced_buf || kmap_buf) {
1047		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1048		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1049	} else if (virt_addr_valid(buf)) {
1050		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1051		sgs = DIV_ROUND_UP(len, desc_len);
1052	} else {
1053		return -EINVAL;
1054	}
1055
1056	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1057	if (ret != 0)
1058		return ret;
1059
1060	sg = &sgt->sgl[0];
1061	for (i = 0; i < sgs; i++) {
1062
1063		if (vmalloced_buf || kmap_buf) {
1064			/*
1065			 * Next scatterlist entry size is the minimum between
1066			 * the desc_len and the remaining buffer length that
1067			 * fits in a page.
1068			 */
1069			min = min_t(size_t, desc_len,
1070				    min_t(size_t, len,
1071					  PAGE_SIZE - offset_in_page(buf)));
1072			if (vmalloced_buf)
1073				vm_page = vmalloc_to_page(buf);
1074			else
1075				vm_page = kmap_to_page(buf);
1076			if (!vm_page) {
1077				sg_free_table(sgt);
1078				return -ENOMEM;
1079			}
1080			sg_set_page(sg, vm_page,
1081				    min, offset_in_page(buf));
1082		} else {
1083			min = min_t(size_t, len, desc_len);
1084			sg_buf = buf;
1085			sg_set_buf(sg, sg_buf, min);
1086		}
1087
1088		buf += min;
1089		len -= min;
1090		sg = sg_next(sg);
1091	}
1092
1093	ret = dma_map_sgtable(dev, sgt, dir, attrs);
 
 
1094	if (ret < 0) {
1095		sg_free_table(sgt);
1096		return ret;
1097	}
1098
1099	return 0;
1100}
1101
1102int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1103		struct sg_table *sgt, void *buf, size_t len,
1104		enum dma_data_direction dir)
1105{
1106	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1107}
1108
1109static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1110				struct device *dev, struct sg_table *sgt,
1111				enum dma_data_direction dir,
1112				unsigned long attrs)
1113{
1114	if (sgt->orig_nents) {
1115		dma_unmap_sgtable(dev, sgt, dir, attrs);
1116		sg_free_table(sgt);
1117		sgt->orig_nents = 0;
1118		sgt->nents = 0;
1119	}
1120}
1121
1122void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1123		   struct sg_table *sgt, enum dma_data_direction dir)
1124{
1125	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1126}
1127
1128static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1129{
1130	struct device *tx_dev, *rx_dev;
1131	struct spi_transfer *xfer;
1132	int ret;
1133
1134	if (!ctlr->can_dma)
1135		return 0;
1136
1137	if (ctlr->dma_tx)
1138		tx_dev = ctlr->dma_tx->device->dev;
1139	else if (ctlr->dma_map_dev)
1140		tx_dev = ctlr->dma_map_dev;
1141	else
1142		tx_dev = ctlr->dev.parent;
1143
1144	if (ctlr->dma_rx)
1145		rx_dev = ctlr->dma_rx->device->dev;
1146	else if (ctlr->dma_map_dev)
1147		rx_dev = ctlr->dma_map_dev;
1148	else
1149		rx_dev = ctlr->dev.parent;
1150
1151	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1152		/* The sync is done before each transfer. */
1153		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1154
1155		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1156			continue;
1157
1158		if (xfer->tx_buf != NULL) {
1159			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1160						(void *)xfer->tx_buf,
1161						xfer->len, DMA_TO_DEVICE,
1162						attrs);
1163			if (ret != 0)
1164				return ret;
1165		}
1166
1167		if (xfer->rx_buf != NULL) {
1168			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1169						xfer->rx_buf, xfer->len,
1170						DMA_FROM_DEVICE, attrs);
1171			if (ret != 0) {
1172				spi_unmap_buf_attrs(ctlr, tx_dev,
1173						&xfer->tx_sg, DMA_TO_DEVICE,
1174						attrs);
1175
1176				return ret;
1177			}
1178		}
1179	}
1180
1181	ctlr->cur_rx_dma_dev = rx_dev;
1182	ctlr->cur_tx_dma_dev = tx_dev;
1183	ctlr->cur_msg_mapped = true;
1184
1185	return 0;
1186}
1187
1188static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1189{
1190	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1191	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1192	struct spi_transfer *xfer;
 
1193
1194	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1195		return 0;
1196
1197	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1198		/* The sync has already been done after each transfer. */
1199		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
 
1200
 
 
 
 
 
 
1201		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1202			continue;
1203
1204		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1205				    DMA_FROM_DEVICE, attrs);
1206		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1207				    DMA_TO_DEVICE, attrs);
1208	}
1209
1210	ctlr->cur_msg_mapped = false;
1211
1212	return 0;
1213}
1214
1215static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1216				    struct spi_transfer *xfer)
1217{
1218	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1219	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1220
1221	if (!ctlr->cur_msg_mapped)
1222		return;
1223
1224	if (xfer->tx_sg.orig_nents)
1225		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1226	if (xfer->rx_sg.orig_nents)
1227		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1228}
1229
1230static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1231				 struct spi_transfer *xfer)
1232{
1233	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1234	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1235
1236	if (!ctlr->cur_msg_mapped)
1237		return;
1238
1239	if (xfer->rx_sg.orig_nents)
1240		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1241	if (xfer->tx_sg.orig_nents)
1242		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1243}
1244#else /* !CONFIG_HAS_DMA */
1245static inline int __spi_map_msg(struct spi_controller *ctlr,
1246				struct spi_message *msg)
1247{
1248	return 0;
1249}
1250
1251static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1252				  struct spi_message *msg)
1253{
1254	return 0;
1255}
1256
1257static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1258				    struct spi_transfer *xfer)
1259{
1260}
1261
1262static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1263				 struct spi_transfer *xfer)
1264{
1265}
1266#endif /* !CONFIG_HAS_DMA */
1267
1268static inline int spi_unmap_msg(struct spi_controller *ctlr,
1269				struct spi_message *msg)
1270{
1271	struct spi_transfer *xfer;
1272
1273	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1274		/*
1275		 * Restore the original value of tx_buf or rx_buf if they are
1276		 * NULL.
1277		 */
1278		if (xfer->tx_buf == ctlr->dummy_tx)
1279			xfer->tx_buf = NULL;
1280		if (xfer->rx_buf == ctlr->dummy_rx)
1281			xfer->rx_buf = NULL;
1282	}
1283
1284	return __spi_unmap_msg(ctlr, msg);
1285}
1286
1287static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1288{
1289	struct spi_transfer *xfer;
1290	void *tmp;
1291	unsigned int max_tx, max_rx;
1292
1293	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1294		&& !(msg->spi->mode & SPI_3WIRE)) {
1295		max_tx = 0;
1296		max_rx = 0;
1297
1298		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1299			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1300			    !xfer->tx_buf)
1301				max_tx = max(xfer->len, max_tx);
1302			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1303			    !xfer->rx_buf)
1304				max_rx = max(xfer->len, max_rx);
1305		}
1306
1307		if (max_tx) {
1308			tmp = krealloc(ctlr->dummy_tx, max_tx,
1309				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1310			if (!tmp)
1311				return -ENOMEM;
1312			ctlr->dummy_tx = tmp;
 
1313		}
1314
1315		if (max_rx) {
1316			tmp = krealloc(ctlr->dummy_rx, max_rx,
1317				       GFP_KERNEL | GFP_DMA);
1318			if (!tmp)
1319				return -ENOMEM;
1320			ctlr->dummy_rx = tmp;
1321		}
1322
1323		if (max_tx || max_rx) {
1324			list_for_each_entry(xfer, &msg->transfers,
1325					    transfer_list) {
1326				if (!xfer->len)
1327					continue;
1328				if (!xfer->tx_buf)
1329					xfer->tx_buf = ctlr->dummy_tx;
1330				if (!xfer->rx_buf)
1331					xfer->rx_buf = ctlr->dummy_rx;
1332			}
1333		}
1334	}
1335
1336	return __spi_map_msg(ctlr, msg);
1337}
1338
1339static int spi_transfer_wait(struct spi_controller *ctlr,
1340			     struct spi_message *msg,
1341			     struct spi_transfer *xfer)
1342{
1343	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1344	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1345	u32 speed_hz = xfer->speed_hz;
1346	unsigned long long ms;
1347
1348	if (spi_controller_is_slave(ctlr)) {
1349		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1350			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1351			return -EINTR;
1352		}
1353	} else {
1354		if (!speed_hz)
1355			speed_hz = 100000;
1356
1357		/*
1358		 * For each byte we wait for 8 cycles of the SPI clock.
1359		 * Since speed is defined in Hz and we want milliseconds,
1360		 * use respective multiplier, but before the division,
1361		 * otherwise we may get 0 for short transfers.
1362		 */
1363		ms = 8LL * MSEC_PER_SEC * xfer->len;
1364		do_div(ms, speed_hz);
1365
1366		/*
1367		 * Increase it twice and add 200 ms tolerance, use
1368		 * predefined maximum in case of overflow.
1369		 */
1370		ms += ms + 200;
1371		if (ms > UINT_MAX)
1372			ms = UINT_MAX;
1373
1374		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1375						 msecs_to_jiffies(ms));
1376
1377		if (ms == 0) {
1378			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1379			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1380			dev_err(&msg->spi->dev,
1381				"SPI transfer timed out\n");
1382			return -ETIMEDOUT;
1383		}
1384	}
1385
1386	return 0;
1387}
1388
1389static void _spi_transfer_delay_ns(u32 ns)
1390{
1391	if (!ns)
1392		return;
1393	if (ns <= NSEC_PER_USEC) {
1394		ndelay(ns);
1395	} else {
1396		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1397
1398		if (us <= 10)
1399			udelay(us);
1400		else
1401			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1402	}
1403}
1404
1405int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1406{
1407	u32 delay = _delay->value;
1408	u32 unit = _delay->unit;
1409	u32 hz;
1410
1411	if (!delay)
1412		return 0;
1413
1414	switch (unit) {
1415	case SPI_DELAY_UNIT_USECS:
1416		delay *= NSEC_PER_USEC;
1417		break;
1418	case SPI_DELAY_UNIT_NSECS:
1419		/* Nothing to do here */
1420		break;
1421	case SPI_DELAY_UNIT_SCK:
1422		/* Clock cycles need to be obtained from spi_transfer */
1423		if (!xfer)
1424			return -EINVAL;
1425		/*
1426		 * If there is unknown effective speed, approximate it
1427		 * by underestimating with half of the requested hz.
1428		 */
1429		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1430		if (!hz)
1431			return -EINVAL;
1432
1433		/* Convert delay to nanoseconds */
1434		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1435		break;
1436	default:
1437		return -EINVAL;
1438	}
1439
1440	return delay;
1441}
1442EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1443
1444int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1445{
1446	int delay;
1447
1448	might_sleep();
1449
1450	if (!_delay)
1451		return -EINVAL;
1452
1453	delay = spi_delay_to_ns(_delay, xfer);
1454	if (delay < 0)
1455		return delay;
1456
1457	_spi_transfer_delay_ns(delay);
1458
1459	return 0;
1460}
1461EXPORT_SYMBOL_GPL(spi_delay_exec);
1462
1463static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1464					  struct spi_transfer *xfer)
1465{
1466	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1467	u32 delay = xfer->cs_change_delay.value;
1468	u32 unit = xfer->cs_change_delay.unit;
1469	int ret;
1470
1471	/* Return early on "fast" mode - for everything but USECS */
1472	if (!delay) {
1473		if (unit == SPI_DELAY_UNIT_USECS)
1474			_spi_transfer_delay_ns(default_delay_ns);
1475		return;
1476	}
1477
1478	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1479	if (ret) {
1480		dev_err_once(&msg->spi->dev,
1481			     "Use of unsupported delay unit %i, using default of %luus\n",
1482			     unit, default_delay_ns / NSEC_PER_USEC);
1483		_spi_transfer_delay_ns(default_delay_ns);
1484	}
1485}
1486
1487/*
1488 * spi_transfer_one_message - Default implementation of transfer_one_message()
1489 *
1490 * This is a standard implementation of transfer_one_message() for
1491 * drivers which implement a transfer_one() operation.  It provides
1492 * standard handling of delays and chip select management.
1493 */
1494static int spi_transfer_one_message(struct spi_controller *ctlr,
1495				    struct spi_message *msg)
1496{
1497	struct spi_transfer *xfer;
1498	bool keep_cs = false;
1499	int ret = 0;
1500	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1501	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1502
1503	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1504	spi_set_cs(msg->spi, !xfer->cs_off, false);
1505
1506	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1507	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1508
1509	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1510		trace_spi_transfer_start(msg, xfer);
1511
1512		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1513		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1514
1515		if (!ctlr->ptp_sts_supported) {
1516			xfer->ptp_sts_word_pre = 0;
1517			ptp_read_system_prets(xfer->ptp_sts);
1518		}
1519
1520		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1521			reinit_completion(&ctlr->xfer_completion);
1522
1523fallback_pio:
1524			spi_dma_sync_for_device(ctlr, xfer);
1525			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1526			if (ret < 0) {
1527				spi_dma_sync_for_cpu(ctlr, xfer);
1528
1529				if (ctlr->cur_msg_mapped &&
1530				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1531					__spi_unmap_msg(ctlr, msg);
1532					ctlr->fallback = true;
1533					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1534					goto fallback_pio;
1535				}
1536
1537				SPI_STATISTICS_INCREMENT_FIELD(statm,
1538							       errors);
1539				SPI_STATISTICS_INCREMENT_FIELD(stats,
1540							       errors);
1541				dev_err(&msg->spi->dev,
1542					"SPI transfer failed: %d\n", ret);
1543				goto out;
1544			}
1545
1546			if (ret > 0) {
1547				ret = spi_transfer_wait(ctlr, msg, xfer);
1548				if (ret < 0)
1549					msg->status = ret;
1550			}
1551
1552			spi_dma_sync_for_cpu(ctlr, xfer);
1553		} else {
1554			if (xfer->len)
1555				dev_err(&msg->spi->dev,
1556					"Bufferless transfer has length %u\n",
1557					xfer->len);
1558		}
1559
1560		if (!ctlr->ptp_sts_supported) {
1561			ptp_read_system_postts(xfer->ptp_sts);
1562			xfer->ptp_sts_word_post = xfer->len;
1563		}
1564
1565		trace_spi_transfer_stop(msg, xfer);
1566
1567		if (msg->status != -EINPROGRESS)
1568			goto out;
1569
1570		spi_transfer_delay_exec(xfer);
1571
1572		if (xfer->cs_change) {
1573			if (list_is_last(&xfer->transfer_list,
1574					 &msg->transfers)) {
1575				keep_cs = true;
1576			} else {
1577				if (!xfer->cs_off)
1578					spi_set_cs(msg->spi, false, false);
1579				_spi_transfer_cs_change_delay(msg, xfer);
1580				if (!list_next_entry(xfer, transfer_list)->cs_off)
1581					spi_set_cs(msg->spi, true, false);
1582			}
1583		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1584			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1585			spi_set_cs(msg->spi, xfer->cs_off, false);
1586		}
1587
1588		msg->actual_length += xfer->len;
1589	}
1590
1591out:
1592	if (ret != 0 || !keep_cs)
1593		spi_set_cs(msg->spi, false, false);
1594
1595	if (msg->status == -EINPROGRESS)
1596		msg->status = ret;
1597
1598	if (msg->status && ctlr->handle_err)
1599		ctlr->handle_err(ctlr, msg);
1600
1601	spi_finalize_current_message(ctlr);
1602
1603	return ret;
1604}
1605
1606/**
1607 * spi_finalize_current_transfer - report completion of a transfer
1608 * @ctlr: the controller reporting completion
1609 *
1610 * Called by SPI drivers using the core transfer_one_message()
1611 * implementation to notify it that the current interrupt driven
1612 * transfer has finished and the next one may be scheduled.
1613 */
1614void spi_finalize_current_transfer(struct spi_controller *ctlr)
1615{
1616	complete(&ctlr->xfer_completion);
1617}
1618EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1619
1620static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1621{
1622	if (ctlr->auto_runtime_pm) {
1623		pm_runtime_mark_last_busy(ctlr->dev.parent);
1624		pm_runtime_put_autosuspend(ctlr->dev.parent);
1625	}
1626}
1627
1628static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1629		struct spi_message *msg, bool was_busy)
1630{
1631	struct spi_transfer *xfer;
1632	int ret;
1633
1634	if (!was_busy && ctlr->auto_runtime_pm) {
1635		ret = pm_runtime_get_sync(ctlr->dev.parent);
1636		if (ret < 0) {
1637			pm_runtime_put_noidle(ctlr->dev.parent);
1638			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1639				ret);
1640			return ret;
1641		}
1642	}
1643
1644	if (!was_busy)
1645		trace_spi_controller_busy(ctlr);
1646
1647	if (!was_busy && ctlr->prepare_transfer_hardware) {
1648		ret = ctlr->prepare_transfer_hardware(ctlr);
1649		if (ret) {
1650			dev_err(&ctlr->dev,
1651				"failed to prepare transfer hardware: %d\n",
1652				ret);
1653
1654			if (ctlr->auto_runtime_pm)
1655				pm_runtime_put(ctlr->dev.parent);
1656
1657			msg->status = ret;
1658			spi_finalize_current_message(ctlr);
1659
1660			return ret;
1661		}
1662	}
1663
1664	trace_spi_message_start(msg);
1665
1666	ret = spi_split_transfers_maxsize(ctlr, msg,
1667					  spi_max_transfer_size(msg->spi),
1668					  GFP_KERNEL | GFP_DMA);
1669	if (ret) {
1670		msg->status = ret;
1671		spi_finalize_current_message(ctlr);
1672		return ret;
1673	}
1674
1675	if (ctlr->prepare_message) {
1676		ret = ctlr->prepare_message(ctlr, msg);
1677		if (ret) {
1678			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1679				ret);
1680			msg->status = ret;
1681			spi_finalize_current_message(ctlr);
1682			return ret;
1683		}
1684		msg->prepared = true;
1685	}
1686
1687	ret = spi_map_msg(ctlr, msg);
1688	if (ret) {
1689		msg->status = ret;
1690		spi_finalize_current_message(ctlr);
1691		return ret;
1692	}
1693
1694	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1695		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1696			xfer->ptp_sts_word_pre = 0;
1697			ptp_read_system_prets(xfer->ptp_sts);
1698		}
1699	}
1700
1701	/*
1702	 * Drivers implementation of transfer_one_message() must arrange for
1703	 * spi_finalize_current_message() to get called. Most drivers will do
1704	 * this in the calling context, but some don't. For those cases, a
1705	 * completion is used to guarantee that this function does not return
1706	 * until spi_finalize_current_message() is done accessing
1707	 * ctlr->cur_msg.
1708	 * Use of the following two flags enable to opportunistically skip the
1709	 * use of the completion since its use involves expensive spin locks.
1710	 * In case of a race with the context that calls
1711	 * spi_finalize_current_message() the completion will always be used,
1712	 * due to strict ordering of these flags using barriers.
1713	 */
1714	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1715	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1716	reinit_completion(&ctlr->cur_msg_completion);
1717	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1718
1719	ret = ctlr->transfer_one_message(ctlr, msg);
1720	if (ret) {
1721		dev_err(&ctlr->dev,
1722			"failed to transfer one message from queue\n");
1723		return ret;
1724	}
1725
1726	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1727	smp_mb(); /* See spi_finalize_current_message()... */
1728	if (READ_ONCE(ctlr->cur_msg_incomplete))
1729		wait_for_completion(&ctlr->cur_msg_completion);
1730
1731	return 0;
1732}
1733
1734/**
1735 * __spi_pump_messages - function which processes spi message queue
1736 * @ctlr: controller to process queue for
1737 * @in_kthread: true if we are in the context of the message pump thread
1738 *
1739 * This function checks if there is any spi message in the queue that
1740 * needs processing and if so call out to the driver to initialize hardware
1741 * and transfer each message.
1742 *
1743 * Note that it is called both from the kthread itself and also from
1744 * inside spi_sync(); the queue extraction handling at the top of the
1745 * function should deal with this safely.
1746 */
1747static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1748{
 
1749	struct spi_message *msg;
1750	bool was_busy = false;
1751	unsigned long flags;
1752	int ret;
1753
1754	/* Take the IO mutex */
1755	mutex_lock(&ctlr->io_mutex);
1756
1757	/* Lock queue */
1758	spin_lock_irqsave(&ctlr->queue_lock, flags);
1759
1760	/* Make sure we are not already running a message */
1761	if (ctlr->cur_msg)
1762		goto out_unlock;
 
 
 
 
 
 
 
 
 
1763
1764	/* Check if the queue is idle */
1765	if (list_empty(&ctlr->queue) || !ctlr->running) {
1766		if (!ctlr->busy)
1767			goto out_unlock;
 
 
1768
1769		/* Defer any non-atomic teardown to the thread */
1770		if (!in_kthread) {
1771			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1772			    !ctlr->unprepare_transfer_hardware) {
1773				spi_idle_runtime_pm(ctlr);
1774				ctlr->busy = false;
1775				ctlr->queue_empty = true;
1776				trace_spi_controller_idle(ctlr);
1777			} else {
1778				kthread_queue_work(ctlr->kworker,
1779						   &ctlr->pump_messages);
1780			}
1781			goto out_unlock;
 
1782		}
1783
1784		ctlr->busy = false;
 
1785		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1786
1787		kfree(ctlr->dummy_rx);
1788		ctlr->dummy_rx = NULL;
1789		kfree(ctlr->dummy_tx);
1790		ctlr->dummy_tx = NULL;
1791		if (ctlr->unprepare_transfer_hardware &&
1792		    ctlr->unprepare_transfer_hardware(ctlr))
1793			dev_err(&ctlr->dev,
1794				"failed to unprepare transfer hardware\n");
1795		spi_idle_runtime_pm(ctlr);
1796		trace_spi_controller_idle(ctlr);
1797
1798		spin_lock_irqsave(&ctlr->queue_lock, flags);
1799		ctlr->queue_empty = true;
1800		goto out_unlock;
 
1801	}
1802
1803	/* Extract head of queue */
1804	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1805	ctlr->cur_msg = msg;
1806
1807	list_del_init(&msg->queue);
1808	if (ctlr->busy)
1809		was_busy = true;
1810	else
1811		ctlr->busy = true;
1812	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1813
1814	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1815	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1816
1817	ctlr->cur_msg = NULL;
1818	ctlr->fallback = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820	mutex_unlock(&ctlr->io_mutex);
1821
1822	/* Prod the scheduler in case transfer_one() was busy waiting */
1823	if (!ret)
1824		cond_resched();
1825	return;
1826
1827out_unlock:
1828	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1829	mutex_unlock(&ctlr->io_mutex);
1830}
1831
1832/**
1833 * spi_pump_messages - kthread work function which processes spi message queue
1834 * @work: pointer to kthread work struct contained in the controller struct
1835 */
1836static void spi_pump_messages(struct kthread_work *work)
1837{
1838	struct spi_controller *ctlr =
1839		container_of(work, struct spi_controller, pump_messages);
1840
1841	__spi_pump_messages(ctlr, true);
1842}
1843
1844/**
1845 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
 
 
 
 
 
 
 
 
 
1846 * @ctlr: Pointer to the spi_controller structure of the driver
1847 * @xfer: Pointer to the transfer being timestamped
1848 * @progress: How many words (not bytes) have been transferred so far
1849 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1850 *	      transfer, for less jitter in time measurement. Only compatible
1851 *	      with PIO drivers. If true, must follow up with
1852 *	      spi_take_timestamp_post or otherwise system will crash.
1853 *	      WARNING: for fully predictable results, the CPU frequency must
1854 *	      also be under control (governor).
1855 *
1856 * This is a helper for drivers to collect the beginning of the TX timestamp
1857 * for the requested byte from the SPI transfer. The frequency with which this
1858 * function must be called (once per word, once for the whole transfer, once
1859 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1860 * greater than or equal to the requested byte at the time of the call. The
1861 * timestamp is only taken once, at the first such call. It is assumed that
1862 * the driver advances its @tx buffer pointer monotonically.
1863 */
1864void spi_take_timestamp_pre(struct spi_controller *ctlr,
1865			    struct spi_transfer *xfer,
1866			    size_t progress, bool irqs_off)
1867{
1868	if (!xfer->ptp_sts)
1869		return;
1870
1871	if (xfer->timestamped)
1872		return;
1873
1874	if (progress > xfer->ptp_sts_word_pre)
1875		return;
1876
1877	/* Capture the resolution of the timestamp */
1878	xfer->ptp_sts_word_pre = progress;
1879
1880	if (irqs_off) {
1881		local_irq_save(ctlr->irq_flags);
1882		preempt_disable();
1883	}
1884
1885	ptp_read_system_prets(xfer->ptp_sts);
1886}
1887EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1888
1889/**
1890 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
 
 
 
 
 
1891 * @ctlr: Pointer to the spi_controller structure of the driver
1892 * @xfer: Pointer to the transfer being timestamped
1893 * @progress: How many words (not bytes) have been transferred so far
1894 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1895 *
1896 * This is a helper for drivers to collect the end of the TX timestamp for
1897 * the requested byte from the SPI transfer. Can be called with an arbitrary
1898 * frequency: only the first call where @tx exceeds or is equal to the
1899 * requested word will be timestamped.
1900 */
1901void spi_take_timestamp_post(struct spi_controller *ctlr,
1902			     struct spi_transfer *xfer,
1903			     size_t progress, bool irqs_off)
1904{
1905	if (!xfer->ptp_sts)
1906		return;
1907
1908	if (xfer->timestamped)
1909		return;
1910
1911	if (progress < xfer->ptp_sts_word_post)
1912		return;
1913
1914	ptp_read_system_postts(xfer->ptp_sts);
1915
1916	if (irqs_off) {
1917		local_irq_restore(ctlr->irq_flags);
1918		preempt_enable();
1919	}
1920
1921	/* Capture the resolution of the timestamp */
1922	xfer->ptp_sts_word_post = progress;
1923
1924	xfer->timestamped = true;
1925}
1926EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1927
1928/**
1929 * spi_set_thread_rt - set the controller to pump at realtime priority
1930 * @ctlr: controller to boost priority of
1931 *
1932 * This can be called because the controller requested realtime priority
1933 * (by setting the ->rt value before calling spi_register_controller()) or
1934 * because a device on the bus said that its transfers needed realtime
1935 * priority.
1936 *
1937 * NOTE: at the moment if any device on a bus says it needs realtime then
1938 * the thread will be at realtime priority for all transfers on that
1939 * controller.  If this eventually becomes a problem we may see if we can
1940 * find a way to boost the priority only temporarily during relevant
1941 * transfers.
1942 */
1943static void spi_set_thread_rt(struct spi_controller *ctlr)
1944{
1945	dev_info(&ctlr->dev,
1946		"will run message pump with realtime priority\n");
1947	sched_set_fifo(ctlr->kworker->task);
1948}
1949
1950static int spi_init_queue(struct spi_controller *ctlr)
1951{
1952	ctlr->running = false;
1953	ctlr->busy = false;
1954	ctlr->queue_empty = true;
1955
1956	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1957	if (IS_ERR(ctlr->kworker)) {
1958		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1959		return PTR_ERR(ctlr->kworker);
1960	}
1961
1962	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1963
1964	/*
1965	 * Controller config will indicate if this controller should run the
1966	 * message pump with high (realtime) priority to reduce the transfer
1967	 * latency on the bus by minimising the delay between a transfer
1968	 * request and the scheduling of the message pump thread. Without this
1969	 * setting the message pump thread will remain at default priority.
1970	 */
1971	if (ctlr->rt)
1972		spi_set_thread_rt(ctlr);
1973
1974	return 0;
1975}
1976
1977/**
1978 * spi_get_next_queued_message() - called by driver to check for queued
1979 * messages
1980 * @ctlr: the controller to check for queued messages
1981 *
1982 * If there are more messages in the queue, the next message is returned from
1983 * this call.
1984 *
1985 * Return: the next message in the queue, else NULL if the queue is empty.
1986 */
1987struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1988{
1989	struct spi_message *next;
1990	unsigned long flags;
1991
1992	/* Get a pointer to the next message, if any */
1993	spin_lock_irqsave(&ctlr->queue_lock, flags);
1994	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1995					queue);
1996	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1997
1998	return next;
1999}
2000EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2001
2002/**
2003 * spi_finalize_current_message() - the current message is complete
2004 * @ctlr: the controller to return the message to
2005 *
2006 * Called by the driver to notify the core that the message in the front of the
2007 * queue is complete and can be removed from the queue.
2008 */
2009void spi_finalize_current_message(struct spi_controller *ctlr)
2010{
2011	struct spi_transfer *xfer;
2012	struct spi_message *mesg;
 
2013	int ret;
2014
 
2015	mesg = ctlr->cur_msg;
 
2016
2017	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2018		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2019			ptp_read_system_postts(xfer->ptp_sts);
2020			xfer->ptp_sts_word_post = xfer->len;
2021		}
2022	}
2023
2024	if (unlikely(ctlr->ptp_sts_supported))
2025		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2026			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2027
2028	spi_unmap_msg(ctlr, mesg);
2029
2030	/*
2031	 * In the prepare_messages callback the SPI bus has the opportunity
2032	 * to split a transfer to smaller chunks.
2033	 *
2034	 * Release the split transfers here since spi_map_msg() is done on
2035	 * the split transfers.
2036	 */
2037	spi_res_release(ctlr, mesg);
2038
2039	if (mesg->prepared && ctlr->unprepare_message) {
2040		ret = ctlr->unprepare_message(ctlr, mesg);
2041		if (ret) {
2042			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2043				ret);
2044		}
2045	}
2046
2047	mesg->prepared = false;
2048
2049	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2050	smp_mb(); /* See __spi_pump_transfer_message()... */
2051	if (READ_ONCE(ctlr->cur_msg_need_completion))
2052		complete(&ctlr->cur_msg_completion);
2053
2054	trace_spi_message_done(mesg);
2055
2056	mesg->state = NULL;
2057	if (mesg->complete)
2058		mesg->complete(mesg->context);
2059}
2060EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2061
2062static int spi_start_queue(struct spi_controller *ctlr)
2063{
2064	unsigned long flags;
2065
2066	spin_lock_irqsave(&ctlr->queue_lock, flags);
2067
2068	if (ctlr->running || ctlr->busy) {
2069		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2070		return -EBUSY;
2071	}
2072
2073	ctlr->running = true;
2074	ctlr->cur_msg = NULL;
2075	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2076
2077	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2078
2079	return 0;
2080}
2081
2082static int spi_stop_queue(struct spi_controller *ctlr)
2083{
2084	unsigned long flags;
2085	unsigned limit = 500;
2086	int ret = 0;
2087
2088	spin_lock_irqsave(&ctlr->queue_lock, flags);
2089
2090	/*
2091	 * This is a bit lame, but is optimized for the common execution path.
2092	 * A wait_queue on the ctlr->busy could be used, but then the common
2093	 * execution path (pump_messages) would be required to call wake_up or
2094	 * friends on every SPI message. Do this instead.
2095	 */
2096	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2097		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2098		usleep_range(10000, 11000);
2099		spin_lock_irqsave(&ctlr->queue_lock, flags);
2100	}
2101
2102	if (!list_empty(&ctlr->queue) || ctlr->busy)
2103		ret = -EBUSY;
2104	else
2105		ctlr->running = false;
2106
2107	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2108
2109	if (ret) {
2110		dev_warn(&ctlr->dev, "could not stop message queue\n");
2111		return ret;
2112	}
2113	return ret;
2114}
2115
2116static int spi_destroy_queue(struct spi_controller *ctlr)
2117{
2118	int ret;
2119
2120	ret = spi_stop_queue(ctlr);
2121
2122	/*
2123	 * kthread_flush_worker will block until all work is done.
2124	 * If the reason that stop_queue timed out is that the work will never
2125	 * finish, then it does no good to call flush/stop thread, so
2126	 * return anyway.
2127	 */
2128	if (ret) {
2129		dev_err(&ctlr->dev, "problem destroying queue\n");
2130		return ret;
2131	}
2132
2133	kthread_destroy_worker(ctlr->kworker);
2134
2135	return 0;
2136}
2137
2138static int __spi_queued_transfer(struct spi_device *spi,
2139				 struct spi_message *msg,
2140				 bool need_pump)
2141{
2142	struct spi_controller *ctlr = spi->controller;
2143	unsigned long flags;
2144
2145	spin_lock_irqsave(&ctlr->queue_lock, flags);
2146
2147	if (!ctlr->running) {
2148		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2149		return -ESHUTDOWN;
2150	}
2151	msg->actual_length = 0;
2152	msg->status = -EINPROGRESS;
2153
2154	list_add_tail(&msg->queue, &ctlr->queue);
2155	ctlr->queue_empty = false;
2156	if (!ctlr->busy && need_pump)
2157		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2158
2159	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2160	return 0;
2161}
2162
2163/**
2164 * spi_queued_transfer - transfer function for queued transfers
2165 * @spi: spi device which is requesting transfer
2166 * @msg: spi message which is to handled is queued to driver queue
2167 *
2168 * Return: zero on success, else a negative error code.
2169 */
2170static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2171{
2172	return __spi_queued_transfer(spi, msg, true);
2173}
2174
2175static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2176{
2177	int ret;
2178
2179	ctlr->transfer = spi_queued_transfer;
2180	if (!ctlr->transfer_one_message)
2181		ctlr->transfer_one_message = spi_transfer_one_message;
2182
2183	/* Initialize and start queue */
2184	ret = spi_init_queue(ctlr);
2185	if (ret) {
2186		dev_err(&ctlr->dev, "problem initializing queue\n");
2187		goto err_init_queue;
2188	}
2189	ctlr->queued = true;
2190	ret = spi_start_queue(ctlr);
2191	if (ret) {
2192		dev_err(&ctlr->dev, "problem starting queue\n");
2193		goto err_start_queue;
2194	}
2195
2196	return 0;
2197
2198err_start_queue:
2199	spi_destroy_queue(ctlr);
2200err_init_queue:
2201	return ret;
2202}
2203
2204/**
2205 * spi_flush_queue - Send all pending messages in the queue from the callers'
2206 *		     context
2207 * @ctlr: controller to process queue for
2208 *
2209 * This should be used when one wants to ensure all pending messages have been
2210 * sent before doing something. Is used by the spi-mem code to make sure SPI
2211 * memory operations do not preempt regular SPI transfers that have been queued
2212 * before the spi-mem operation.
2213 */
2214void spi_flush_queue(struct spi_controller *ctlr)
2215{
2216	if (ctlr->transfer == spi_queued_transfer)
2217		__spi_pump_messages(ctlr, false);
2218}
2219
2220/*-------------------------------------------------------------------------*/
2221
2222#if defined(CONFIG_OF)
2223static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2224				     struct spi_delay *delay, const char *prop)
2225{
2226	u32 value;
2227
2228	if (!of_property_read_u32(nc, prop, &value)) {
2229		if (value > U16_MAX) {
2230			delay->value = DIV_ROUND_UP(value, 1000);
2231			delay->unit = SPI_DELAY_UNIT_USECS;
2232		} else {
2233			delay->value = value;
2234			delay->unit = SPI_DELAY_UNIT_NSECS;
2235		}
2236	}
2237}
2238
2239static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2240			   struct device_node *nc)
2241{
2242	u32 value;
2243	int rc;
2244
2245	/* Mode (clock phase/polarity/etc.) */
2246	if (of_property_read_bool(nc, "spi-cpha"))
2247		spi->mode |= SPI_CPHA;
2248	if (of_property_read_bool(nc, "spi-cpol"))
2249		spi->mode |= SPI_CPOL;
2250	if (of_property_read_bool(nc, "spi-3wire"))
2251		spi->mode |= SPI_3WIRE;
2252	if (of_property_read_bool(nc, "spi-lsb-first"))
2253		spi->mode |= SPI_LSB_FIRST;
2254	if (of_property_read_bool(nc, "spi-cs-high"))
2255		spi->mode |= SPI_CS_HIGH;
2256
2257	/* Device DUAL/QUAD mode */
2258	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2259		switch (value) {
2260		case 0:
2261			spi->mode |= SPI_NO_TX;
2262			break;
2263		case 1:
2264			break;
2265		case 2:
2266			spi->mode |= SPI_TX_DUAL;
2267			break;
2268		case 4:
2269			spi->mode |= SPI_TX_QUAD;
2270			break;
2271		case 8:
2272			spi->mode |= SPI_TX_OCTAL;
2273			break;
2274		default:
2275			dev_warn(&ctlr->dev,
2276				"spi-tx-bus-width %d not supported\n",
2277				value);
2278			break;
2279		}
2280	}
2281
2282	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2283		switch (value) {
2284		case 0:
2285			spi->mode |= SPI_NO_RX;
2286			break;
2287		case 1:
2288			break;
2289		case 2:
2290			spi->mode |= SPI_RX_DUAL;
2291			break;
2292		case 4:
2293			spi->mode |= SPI_RX_QUAD;
2294			break;
2295		case 8:
2296			spi->mode |= SPI_RX_OCTAL;
2297			break;
2298		default:
2299			dev_warn(&ctlr->dev,
2300				"spi-rx-bus-width %d not supported\n",
2301				value);
2302			break;
2303		}
2304	}
2305
2306	if (spi_controller_is_slave(ctlr)) {
2307		if (!of_node_name_eq(nc, "slave")) {
2308			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2309				nc);
2310			return -EINVAL;
2311		}
2312		return 0;
2313	}
2314
2315	/* Device address */
2316	rc = of_property_read_u32(nc, "reg", &value);
2317	if (rc) {
2318		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2319			nc, rc);
2320		return rc;
2321	}
2322	spi->chip_select = value;
2323
 
 
 
 
 
 
 
 
 
2324	/* Device speed */
2325	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2326		spi->max_speed_hz = value;
2327
2328	/* Device CS delays */
2329	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2330
2331	return 0;
2332}
2333
2334static struct spi_device *
2335of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2336{
2337	struct spi_device *spi;
2338	int rc;
2339
2340	/* Alloc an spi_device */
2341	spi = spi_alloc_device(ctlr);
2342	if (!spi) {
2343		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2344		rc = -ENOMEM;
2345		goto err_out;
2346	}
2347
2348	/* Select device driver */
2349	rc = of_modalias_node(nc, spi->modalias,
2350				sizeof(spi->modalias));
2351	if (rc < 0) {
2352		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2353		goto err_out;
2354	}
2355
2356	rc = of_spi_parse_dt(ctlr, spi, nc);
2357	if (rc)
2358		goto err_out;
2359
2360	/* Store a pointer to the node in the device structure */
2361	of_node_get(nc);
2362	spi->dev.of_node = nc;
2363	spi->dev.fwnode = of_fwnode_handle(nc);
2364
2365	/* Register the new device */
2366	rc = spi_add_device(spi);
2367	if (rc) {
2368		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2369		goto err_of_node_put;
2370	}
2371
2372	return spi;
2373
2374err_of_node_put:
2375	of_node_put(nc);
2376err_out:
2377	spi_dev_put(spi);
2378	return ERR_PTR(rc);
2379}
2380
2381/**
2382 * of_register_spi_devices() - Register child devices onto the SPI bus
2383 * @ctlr:	Pointer to spi_controller device
2384 *
2385 * Registers an spi_device for each child node of controller node which
2386 * represents a valid SPI slave.
2387 */
2388static void of_register_spi_devices(struct spi_controller *ctlr)
2389{
2390	struct spi_device *spi;
2391	struct device_node *nc;
2392
2393	if (!ctlr->dev.of_node)
2394		return;
2395
2396	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2397		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2398			continue;
2399		spi = of_register_spi_device(ctlr, nc);
2400		if (IS_ERR(spi)) {
2401			dev_warn(&ctlr->dev,
2402				 "Failed to create SPI device for %pOF\n", nc);
2403			of_node_clear_flag(nc, OF_POPULATED);
2404		}
2405	}
2406}
2407#else
2408static void of_register_spi_devices(struct spi_controller *ctlr) { }
2409#endif
2410
2411/**
2412 * spi_new_ancillary_device() - Register ancillary SPI device
2413 * @spi:         Pointer to the main SPI device registering the ancillary device
2414 * @chip_select: Chip Select of the ancillary device
2415 *
2416 * Register an ancillary SPI device; for example some chips have a chip-select
2417 * for normal device usage and another one for setup/firmware upload.
2418 *
2419 * This may only be called from main SPI device's probe routine.
2420 *
2421 * Return: 0 on success; negative errno on failure
2422 */
2423struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2424					     u8 chip_select)
2425{
2426	struct spi_device *ancillary;
2427	int rc = 0;
2428
2429	/* Alloc an spi_device */
2430	ancillary = spi_alloc_device(spi->controller);
2431	if (!ancillary) {
2432		rc = -ENOMEM;
2433		goto err_out;
2434	}
2435
2436	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2437
2438	/* Use provided chip-select for ancillary device */
2439	ancillary->chip_select = chip_select;
2440
2441	/* Take over SPI mode/speed from SPI main device */
2442	ancillary->max_speed_hz = spi->max_speed_hz;
2443	ancillary->mode = spi->mode;
2444
2445	/* Register the new device */
2446	rc = spi_add_device_locked(ancillary);
2447	if (rc) {
2448		dev_err(&spi->dev, "failed to register ancillary device\n");
2449		goto err_out;
2450	}
2451
2452	return ancillary;
2453
2454err_out:
2455	spi_dev_put(ancillary);
2456	return ERR_PTR(rc);
2457}
2458EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2459
2460#ifdef CONFIG_ACPI
2461struct acpi_spi_lookup {
2462	struct spi_controller 	*ctlr;
2463	u32			max_speed_hz;
2464	u32			mode;
2465	int			irq;
2466	u8			bits_per_word;
2467	u8			chip_select;
2468	int			n;
2469	int			index;
2470};
2471
2472static int acpi_spi_count(struct acpi_resource *ares, void *data)
2473{
2474	struct acpi_resource_spi_serialbus *sb;
2475	int *count = data;
2476
2477	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2478		return 1;
2479
2480	sb = &ares->data.spi_serial_bus;
2481	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2482		return 1;
2483
2484	*count = *count + 1;
2485
2486	return 1;
2487}
2488
2489/**
2490 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2491 * @adev:	ACPI device
2492 *
2493 * Returns the number of SpiSerialBus resources in the ACPI-device's
2494 * resource-list; or a negative error code.
2495 */
2496int acpi_spi_count_resources(struct acpi_device *adev)
2497{
2498	LIST_HEAD(r);
2499	int count = 0;
2500	int ret;
2501
2502	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2503	if (ret < 0)
2504		return ret;
2505
2506	acpi_dev_free_resource_list(&r);
2507
2508	return count;
2509}
2510EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2511
2512static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2513					    struct acpi_spi_lookup *lookup)
2514{
2515	const union acpi_object *obj;
2516
2517	if (!x86_apple_machine)
2518		return;
2519
2520	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2521	    && obj->buffer.length >= 4)
2522		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2523
2524	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2525	    && obj->buffer.length == 8)
2526		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2527
2528	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2529	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2530		lookup->mode |= SPI_LSB_FIRST;
2531
2532	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2533	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2534		lookup->mode |= SPI_CPOL;
2535
2536	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2537	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2538		lookup->mode |= SPI_CPHA;
2539}
2540
2541static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2542
2543static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2544{
2545	struct acpi_spi_lookup *lookup = data;
2546	struct spi_controller *ctlr = lookup->ctlr;
2547
2548	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2549		struct acpi_resource_spi_serialbus *sb;
2550		acpi_handle parent_handle;
2551		acpi_status status;
2552
2553		sb = &ares->data.spi_serial_bus;
2554		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2555
2556			if (lookup->index != -1 && lookup->n++ != lookup->index)
2557				return 1;
2558
2559			status = acpi_get_handle(NULL,
2560						 sb->resource_source.string_ptr,
2561						 &parent_handle);
2562
2563			if (ACPI_FAILURE(status))
 
2564				return -ENODEV;
2565
2566			if (ctlr) {
2567				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2568					return -ENODEV;
2569			} else {
2570				struct acpi_device *adev;
2571
2572				adev = acpi_fetch_acpi_dev(parent_handle);
2573				if (!adev)
2574					return -ENODEV;
2575
2576				ctlr = acpi_spi_find_controller_by_adev(adev);
2577				if (!ctlr)
2578					return -EPROBE_DEFER;
2579
2580				lookup->ctlr = ctlr;
2581			}
2582
2583			/*
2584			 * ACPI DeviceSelection numbering is handled by the
2585			 * host controller driver in Windows and can vary
2586			 * from driver to driver. In Linux we always expect
2587			 * 0 .. max - 1 so we need to ask the driver to
2588			 * translate between the two schemes.
2589			 */
2590			if (ctlr->fw_translate_cs) {
2591				int cs = ctlr->fw_translate_cs(ctlr,
2592						sb->device_selection);
2593				if (cs < 0)
2594					return cs;
2595				lookup->chip_select = cs;
2596			} else {
2597				lookup->chip_select = sb->device_selection;
2598			}
2599
2600			lookup->max_speed_hz = sb->connection_speed;
2601			lookup->bits_per_word = sb->data_bit_length;
2602
2603			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2604				lookup->mode |= SPI_CPHA;
2605			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2606				lookup->mode |= SPI_CPOL;
2607			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2608				lookup->mode |= SPI_CS_HIGH;
2609		}
2610	} else if (lookup->irq < 0) {
2611		struct resource r;
2612
2613		if (acpi_dev_resource_interrupt(ares, 0, &r))
2614			lookup->irq = r.start;
2615	}
2616
2617	/* Always tell the ACPI core to skip this resource */
2618	return 1;
2619}
2620
2621/**
2622 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2623 * @ctlr: controller to which the spi device belongs
2624 * @adev: ACPI Device for the spi device
2625 * @index: Index of the spi resource inside the ACPI Node
2626 *
2627 * This should be used to allocate a new spi device from and ACPI Node.
2628 * The caller is responsible for calling spi_add_device to register the spi device.
2629 *
2630 * If ctlr is set to NULL, the Controller for the spi device will be looked up
2631 * using the resource.
2632 * If index is set to -1, index is not used.
2633 * Note: If index is -1, ctlr must be set.
2634 *
2635 * Return: a pointer to the new device, or ERR_PTR on error.
2636 */
2637struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2638					 struct acpi_device *adev,
2639					 int index)
2640{
2641	acpi_handle parent_handle = NULL;
2642	struct list_head resource_list;
2643	struct acpi_spi_lookup lookup = {};
2644	struct spi_device *spi;
2645	int ret;
2646
2647	if (!ctlr && index == -1)
2648		return ERR_PTR(-EINVAL);
 
2649
2650	lookup.ctlr		= ctlr;
2651	lookup.irq		= -1;
2652	lookup.index		= index;
2653	lookup.n		= 0;
2654
2655	INIT_LIST_HEAD(&resource_list);
2656	ret = acpi_dev_get_resources(adev, &resource_list,
2657				     acpi_spi_add_resource, &lookup);
2658	acpi_dev_free_resource_list(&resource_list);
2659
2660	if (ret < 0)
2661		/* Found SPI in _CRS but it points to another controller */
2662		return ERR_PTR(ret);
2663
2664	if (!lookup.max_speed_hz &&
2665	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2666	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2667		/* Apple does not use _CRS but nested devices for SPI slaves */
2668		acpi_spi_parse_apple_properties(adev, &lookup);
2669	}
2670
2671	if (!lookup.max_speed_hz)
2672		return ERR_PTR(-ENODEV);
2673
2674	spi = spi_alloc_device(lookup.ctlr);
2675	if (!spi) {
2676		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2677			dev_name(&adev->dev));
2678		return ERR_PTR(-ENOMEM);
2679	}
2680
 
2681	ACPI_COMPANION_SET(&spi->dev, adev);
2682	spi->max_speed_hz	= lookup.max_speed_hz;
2683	spi->mode		|= lookup.mode;
2684	spi->irq		= lookup.irq;
2685	spi->bits_per_word	= lookup.bits_per_word;
2686	spi->chip_select	= lookup.chip_select;
2687
2688	return spi;
2689}
2690EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2691
2692static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2693					    struct acpi_device *adev)
2694{
2695	struct spi_device *spi;
2696
2697	if (acpi_bus_get_status(adev) || !adev->status.present ||
2698	    acpi_device_enumerated(adev))
2699		return AE_OK;
2700
2701	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2702	if (IS_ERR(spi)) {
2703		if (PTR_ERR(spi) == -ENOMEM)
2704			return AE_NO_MEMORY;
2705		else
2706			return AE_OK;
2707	}
2708
2709	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2710			  sizeof(spi->modalias));
2711
2712	if (spi->irq < 0)
2713		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2714
2715	acpi_device_set_enumerated(adev);
2716
2717	adev->power.flags.ignore_parent = true;
2718	if (spi_add_device(spi)) {
2719		adev->power.flags.ignore_parent = false;
2720		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2721			dev_name(&adev->dev));
2722		spi_dev_put(spi);
2723	}
2724
2725	return AE_OK;
2726}
2727
2728static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2729				       void *data, void **return_value)
2730{
2731	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2732	struct spi_controller *ctlr = data;
 
2733
2734	if (!adev)
2735		return AE_OK;
2736
2737	return acpi_register_spi_device(ctlr, adev);
2738}
2739
2740#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2741
2742static void acpi_register_spi_devices(struct spi_controller *ctlr)
2743{
2744	acpi_status status;
2745	acpi_handle handle;
2746
2747	handle = ACPI_HANDLE(ctlr->dev.parent);
2748	if (!handle)
2749		return;
2750
2751	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2752				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2753				     acpi_spi_add_device, NULL, ctlr, NULL);
2754	if (ACPI_FAILURE(status))
2755		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2756}
2757#else
2758static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2759#endif /* CONFIG_ACPI */
2760
2761static void spi_controller_release(struct device *dev)
2762{
2763	struct spi_controller *ctlr;
2764
2765	ctlr = container_of(dev, struct spi_controller, dev);
2766	kfree(ctlr);
2767}
2768
2769static struct class spi_master_class = {
2770	.name		= "spi_master",
2771	.owner		= THIS_MODULE,
2772	.dev_release	= spi_controller_release,
2773	.dev_groups	= spi_master_groups,
2774};
2775
2776#ifdef CONFIG_SPI_SLAVE
2777/**
2778 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2779 *		     controller
2780 * @spi: device used for the current transfer
2781 */
2782int spi_slave_abort(struct spi_device *spi)
2783{
2784	struct spi_controller *ctlr = spi->controller;
2785
2786	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2787		return ctlr->slave_abort(ctlr);
2788
2789	return -ENOTSUPP;
2790}
2791EXPORT_SYMBOL_GPL(spi_slave_abort);
2792
2793int spi_target_abort(struct spi_device *spi)
2794{
2795	struct spi_controller *ctlr = spi->controller;
2796
2797	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2798		return ctlr->target_abort(ctlr);
2799
2800	return -ENOTSUPP;
2801}
2802EXPORT_SYMBOL_GPL(spi_target_abort);
2803
2804static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2805			  char *buf)
2806{
2807	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2808						   dev);
2809	struct device *child;
2810
2811	child = device_find_any_child(&ctlr->dev);
2812	return sprintf(buf, "%s\n",
2813		       child ? to_spi_device(child)->modalias : NULL);
2814}
2815
2816static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2817			   const char *buf, size_t count)
2818{
2819	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2820						   dev);
2821	struct spi_device *spi;
2822	struct device *child;
2823	char name[32];
2824	int rc;
2825
2826	rc = sscanf(buf, "%31s", name);
2827	if (rc != 1 || !name[0])
2828		return -EINVAL;
2829
2830	child = device_find_any_child(&ctlr->dev);
2831	if (child) {
2832		/* Remove registered slave */
2833		device_unregister(child);
2834		put_device(child);
2835	}
2836
2837	if (strcmp(name, "(null)")) {
2838		/* Register new slave */
2839		spi = spi_alloc_device(ctlr);
2840		if (!spi)
2841			return -ENOMEM;
2842
2843		strscpy(spi->modalias, name, sizeof(spi->modalias));
2844
2845		rc = spi_add_device(spi);
2846		if (rc) {
2847			spi_dev_put(spi);
2848			return rc;
2849		}
2850	}
2851
2852	return count;
2853}
2854
2855static DEVICE_ATTR_RW(slave);
2856
2857static struct attribute *spi_slave_attrs[] = {
2858	&dev_attr_slave.attr,
2859	NULL,
2860};
2861
2862static const struct attribute_group spi_slave_group = {
2863	.attrs = spi_slave_attrs,
2864};
2865
2866static const struct attribute_group *spi_slave_groups[] = {
2867	&spi_controller_statistics_group,
2868	&spi_slave_group,
2869	NULL,
2870};
2871
2872static struct class spi_slave_class = {
2873	.name		= "spi_slave",
2874	.owner		= THIS_MODULE,
2875	.dev_release	= spi_controller_release,
2876	.dev_groups	= spi_slave_groups,
2877};
2878#else
2879extern struct class spi_slave_class;	/* dummy */
2880#endif
2881
2882/**
2883 * __spi_alloc_controller - allocate an SPI master or slave controller
2884 * @dev: the controller, possibly using the platform_bus
2885 * @size: how much zeroed driver-private data to allocate; the pointer to this
2886 *	memory is in the driver_data field of the returned device, accessible
2887 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2888 *	drivers granting DMA access to portions of their private data need to
2889 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2890 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2891 *	slave (true) controller
2892 * Context: can sleep
2893 *
2894 * This call is used only by SPI controller drivers, which are the
2895 * only ones directly touching chip registers.  It's how they allocate
2896 * an spi_controller structure, prior to calling spi_register_controller().
2897 *
2898 * This must be called from context that can sleep.
2899 *
2900 * The caller is responsible for assigning the bus number and initializing the
2901 * controller's methods before calling spi_register_controller(); and (after
2902 * errors adding the device) calling spi_controller_put() to prevent a memory
2903 * leak.
2904 *
2905 * Return: the SPI controller structure on success, else NULL.
2906 */
2907struct spi_controller *__spi_alloc_controller(struct device *dev,
2908					      unsigned int size, bool slave)
2909{
2910	struct spi_controller	*ctlr;
2911	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2912
2913	if (!dev)
2914		return NULL;
2915
2916	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2917	if (!ctlr)
2918		return NULL;
2919
2920	device_initialize(&ctlr->dev);
2921	INIT_LIST_HEAD(&ctlr->queue);
2922	spin_lock_init(&ctlr->queue_lock);
2923	spin_lock_init(&ctlr->bus_lock_spinlock);
2924	mutex_init(&ctlr->bus_lock_mutex);
2925	mutex_init(&ctlr->io_mutex);
2926	mutex_init(&ctlr->add_lock);
2927	ctlr->bus_num = -1;
2928	ctlr->num_chipselect = 1;
2929	ctlr->slave = slave;
2930	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2931		ctlr->dev.class = &spi_slave_class;
2932	else
2933		ctlr->dev.class = &spi_master_class;
2934	ctlr->dev.parent = dev;
2935	pm_suspend_ignore_children(&ctlr->dev, true);
2936	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2937
2938	return ctlr;
2939}
2940EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2941
2942static void devm_spi_release_controller(struct device *dev, void *ctlr)
 
2943{
2944	spi_controller_put(*(struct spi_controller **)ctlr);
2945}
2946
2947/**
2948 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2949 * @dev: physical device of SPI controller
2950 * @size: how much zeroed driver-private data to allocate
2951 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2952 * Context: can sleep
2953 *
2954 * Allocate an SPI controller and automatically release a reference on it
2955 * when @dev is unbound from its driver.  Drivers are thus relieved from
2956 * having to call spi_controller_put().
2957 *
2958 * The arguments to this function are identical to __spi_alloc_controller().
2959 *
2960 * Return: the SPI controller structure on success, else NULL.
2961 */
2962struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2963						   unsigned int size,
2964						   bool slave)
2965{
2966	struct spi_controller **ptr, *ctlr;
2967
2968	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2969			   GFP_KERNEL);
2970	if (!ptr)
2971		return NULL;
2972
2973	ctlr = __spi_alloc_controller(dev, size, slave);
2974	if (ctlr) {
2975		ctlr->devm_allocated = true;
2976		*ptr = ctlr;
2977		devres_add(dev, ptr);
2978	} else {
2979		devres_free(ptr);
2980	}
2981
2982	return ctlr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2983}
2984EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2985
2986/**
2987 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2988 * @ctlr: The SPI master to grab GPIO descriptors for
2989 */
2990static int spi_get_gpio_descs(struct spi_controller *ctlr)
2991{
2992	int nb, i;
2993	struct gpio_desc **cs;
2994	struct device *dev = &ctlr->dev;
2995	unsigned long native_cs_mask = 0;
2996	unsigned int num_cs_gpios = 0;
2997
2998	nb = gpiod_count(dev, "cs");
2999	if (nb < 0) {
3000		/* No GPIOs at all is fine, else return the error */
3001		if (nb == -ENOENT)
3002			return 0;
3003		return nb;
3004	}
3005
3006	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3007
 
 
 
 
 
 
3008	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3009			  GFP_KERNEL);
3010	if (!cs)
3011		return -ENOMEM;
3012	ctlr->cs_gpiods = cs;
3013
3014	for (i = 0; i < nb; i++) {
3015		/*
3016		 * Most chipselects are active low, the inverted
3017		 * semantics are handled by special quirks in gpiolib,
3018		 * so initializing them GPIOD_OUT_LOW here means
3019		 * "unasserted", in most cases this will drive the physical
3020		 * line high.
3021		 */
3022		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3023						      GPIOD_OUT_LOW);
3024		if (IS_ERR(cs[i]))
3025			return PTR_ERR(cs[i]);
3026
3027		if (cs[i]) {
3028			/*
3029			 * If we find a CS GPIO, name it after the device and
3030			 * chip select line.
3031			 */
3032			char *gpioname;
3033
3034			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3035						  dev_name(dev), i);
3036			if (!gpioname)
3037				return -ENOMEM;
3038			gpiod_set_consumer_name(cs[i], gpioname);
3039			num_cs_gpios++;
3040			continue;
3041		}
3042
3043		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3044			dev_err(dev, "Invalid native chip select %d\n", i);
3045			return -EINVAL;
3046		}
3047		native_cs_mask |= BIT(i);
3048	}
3049
3050	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3051
3052	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3053	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3054		dev_err(dev, "No unused native chip select available\n");
3055		return -EINVAL;
3056	}
3057
3058	return 0;
3059}
3060
3061static int spi_controller_check_ops(struct spi_controller *ctlr)
3062{
3063	/*
3064	 * The controller may implement only the high-level SPI-memory like
3065	 * operations if it does not support regular SPI transfers, and this is
3066	 * valid use case.
3067	 * If ->mem_ops is NULL, we request that at least one of the
3068	 * ->transfer_xxx() method be implemented.
3069	 */
3070	if (ctlr->mem_ops) {
3071		if (!ctlr->mem_ops->exec_op)
3072			return -EINVAL;
3073	} else if (!ctlr->transfer && !ctlr->transfer_one &&
3074		   !ctlr->transfer_one_message) {
3075		return -EINVAL;
3076	}
3077
3078	return 0;
3079}
3080
3081/**
3082 * spi_register_controller - register SPI master or slave controller
3083 * @ctlr: initialized master, originally from spi_alloc_master() or
3084 *	spi_alloc_slave()
3085 * Context: can sleep
3086 *
3087 * SPI controllers connect to their drivers using some non-SPI bus,
3088 * such as the platform bus.  The final stage of probe() in that code
3089 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3090 *
3091 * SPI controllers use board specific (often SOC specific) bus numbers,
3092 * and board-specific addressing for SPI devices combines those numbers
3093 * with chip select numbers.  Since SPI does not directly support dynamic
3094 * device identification, boards need configuration tables telling which
3095 * chip is at which address.
3096 *
3097 * This must be called from context that can sleep.  It returns zero on
3098 * success, else a negative error code (dropping the controller's refcount).
3099 * After a successful return, the caller is responsible for calling
3100 * spi_unregister_controller().
3101 *
3102 * Return: zero on success, else a negative error code.
3103 */
3104int spi_register_controller(struct spi_controller *ctlr)
3105{
3106	struct device		*dev = ctlr->dev.parent;
3107	struct boardinfo	*bi;
3108	int			status;
3109	int			id, first_dynamic;
3110
3111	if (!dev)
3112		return -ENODEV;
3113
3114	/*
3115	 * Make sure all necessary hooks are implemented before registering
3116	 * the SPI controller.
3117	 */
3118	status = spi_controller_check_ops(ctlr);
3119	if (status)
3120		return status;
3121
3122	if (ctlr->bus_num >= 0) {
3123		/* Devices with a fixed bus num must check-in with the num */
3124		mutex_lock(&board_lock);
3125		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3126			ctlr->bus_num + 1, GFP_KERNEL);
3127		mutex_unlock(&board_lock);
3128		if (WARN(id < 0, "couldn't get idr"))
3129			return id == -ENOSPC ? -EBUSY : id;
3130		ctlr->bus_num = id;
3131	} else if (ctlr->dev.of_node) {
3132		/* Allocate dynamic bus number using Linux idr */
3133		id = of_alias_get_id(ctlr->dev.of_node, "spi");
3134		if (id >= 0) {
3135			ctlr->bus_num = id;
3136			mutex_lock(&board_lock);
3137			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3138				       ctlr->bus_num + 1, GFP_KERNEL);
3139			mutex_unlock(&board_lock);
3140			if (WARN(id < 0, "couldn't get idr"))
3141				return id == -ENOSPC ? -EBUSY : id;
3142		}
3143	}
3144	if (ctlr->bus_num < 0) {
3145		first_dynamic = of_alias_get_highest_id("spi");
3146		if (first_dynamic < 0)
3147			first_dynamic = 0;
3148		else
3149			first_dynamic++;
3150
3151		mutex_lock(&board_lock);
3152		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3153			       0, GFP_KERNEL);
3154		mutex_unlock(&board_lock);
3155		if (WARN(id < 0, "couldn't get idr"))
3156			return id;
3157		ctlr->bus_num = id;
3158	}
 
 
 
 
 
3159	ctlr->bus_lock_flag = 0;
3160	init_completion(&ctlr->xfer_completion);
3161	init_completion(&ctlr->cur_msg_completion);
3162	if (!ctlr->max_dma_len)
3163		ctlr->max_dma_len = INT_MAX;
3164
3165	/*
3166	 * Register the device, then userspace will see it.
3167	 * Registration fails if the bus ID is in use.
3168	 */
3169	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3170
3171	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3172		status = spi_get_gpio_descs(ctlr);
3173		if (status)
3174			goto free_bus_id;
3175		/*
3176		 * A controller using GPIO descriptors always
3177		 * supports SPI_CS_HIGH if need be.
3178		 */
3179		ctlr->mode_bits |= SPI_CS_HIGH;
 
 
 
 
 
 
 
3180	}
3181
3182	/*
3183	 * Even if it's just one always-selected device, there must
3184	 * be at least one chipselect.
3185	 */
3186	if (!ctlr->num_chipselect) {
3187		status = -EINVAL;
3188		goto free_bus_id;
3189	}
3190
3191	/* Setting last_cs to -1 means no chip selected */
3192	ctlr->last_cs = -1;
3193
3194	status = device_add(&ctlr->dev);
3195	if (status < 0)
3196		goto free_bus_id;
3197	dev_dbg(dev, "registered %s %s\n",
3198			spi_controller_is_slave(ctlr) ? "slave" : "master",
3199			dev_name(&ctlr->dev));
3200
3201	/*
3202	 * If we're using a queued driver, start the queue. Note that we don't
3203	 * need the queueing logic if the driver is only supporting high-level
3204	 * memory operations.
3205	 */
3206	if (ctlr->transfer) {
3207		dev_info(dev, "controller is unqueued, this is deprecated\n");
3208	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3209		status = spi_controller_initialize_queue(ctlr);
3210		if (status) {
3211			device_del(&ctlr->dev);
3212			goto free_bus_id;
3213		}
3214	}
3215	/* Add statistics */
3216	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3217	if (!ctlr->pcpu_statistics) {
3218		dev_err(dev, "Error allocating per-cpu statistics\n");
3219		status = -ENOMEM;
3220		goto destroy_queue;
3221	}
3222
3223	mutex_lock(&board_lock);
3224	list_add_tail(&ctlr->list, &spi_controller_list);
3225	list_for_each_entry(bi, &board_list, list)
3226		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3227	mutex_unlock(&board_lock);
3228
3229	/* Register devices from the device tree and ACPI */
3230	of_register_spi_devices(ctlr);
3231	acpi_register_spi_devices(ctlr);
3232	return status;
3233
3234destroy_queue:
3235	spi_destroy_queue(ctlr);
3236free_bus_id:
3237	mutex_lock(&board_lock);
3238	idr_remove(&spi_master_idr, ctlr->bus_num);
3239	mutex_unlock(&board_lock);
3240	return status;
3241}
3242EXPORT_SYMBOL_GPL(spi_register_controller);
3243
3244static void devm_spi_unregister(struct device *dev, void *res)
3245{
3246	spi_unregister_controller(*(struct spi_controller **)res);
3247}
3248
3249/**
3250 * devm_spi_register_controller - register managed SPI master or slave
3251 *	controller
3252 * @dev:    device managing SPI controller
3253 * @ctlr: initialized controller, originally from spi_alloc_master() or
3254 *	spi_alloc_slave()
3255 * Context: can sleep
3256 *
3257 * Register a SPI device as with spi_register_controller() which will
3258 * automatically be unregistered and freed.
3259 *
3260 * Return: zero on success, else a negative error code.
3261 */
3262int devm_spi_register_controller(struct device *dev,
3263				 struct spi_controller *ctlr)
3264{
3265	struct spi_controller **ptr;
3266	int ret;
3267
3268	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3269	if (!ptr)
3270		return -ENOMEM;
3271
3272	ret = spi_register_controller(ctlr);
3273	if (!ret) {
3274		*ptr = ctlr;
3275		devres_add(dev, ptr);
3276	} else {
3277		devres_free(ptr);
3278	}
3279
3280	return ret;
3281}
3282EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3283
3284static int __unregister(struct device *dev, void *null)
3285{
3286	spi_unregister_device(to_spi_device(dev));
3287	return 0;
3288}
3289
3290/**
3291 * spi_unregister_controller - unregister SPI master or slave controller
3292 * @ctlr: the controller being unregistered
3293 * Context: can sleep
3294 *
3295 * This call is used only by SPI controller drivers, which are the
3296 * only ones directly touching chip registers.
3297 *
3298 * This must be called from context that can sleep.
3299 *
3300 * Note that this function also drops a reference to the controller.
3301 */
3302void spi_unregister_controller(struct spi_controller *ctlr)
3303{
3304	struct spi_controller *found;
3305	int id = ctlr->bus_num;
3306
3307	/* Prevent addition of new devices, unregister existing ones */
3308	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3309		mutex_lock(&ctlr->add_lock);
3310
3311	device_for_each_child(&ctlr->dev, NULL, __unregister);
3312
3313	/* First make sure that this controller was ever added */
3314	mutex_lock(&board_lock);
3315	found = idr_find(&spi_master_idr, id);
3316	mutex_unlock(&board_lock);
3317	if (ctlr->queued) {
3318		if (spi_destroy_queue(ctlr))
3319			dev_err(&ctlr->dev, "queue remove failed\n");
3320	}
3321	mutex_lock(&board_lock);
3322	list_del(&ctlr->list);
3323	mutex_unlock(&board_lock);
3324
3325	device_del(&ctlr->dev);
3326
3327	/* Free bus id */
3328	mutex_lock(&board_lock);
3329	if (found == ctlr)
3330		idr_remove(&spi_master_idr, id);
3331	mutex_unlock(&board_lock);
3332
3333	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3334		mutex_unlock(&ctlr->add_lock);
3335
3336	/* Release the last reference on the controller if its driver
3337	 * has not yet been converted to devm_spi_alloc_master/slave().
3338	 */
3339	if (!ctlr->devm_allocated)
3340		put_device(&ctlr->dev);
3341}
3342EXPORT_SYMBOL_GPL(spi_unregister_controller);
3343
3344int spi_controller_suspend(struct spi_controller *ctlr)
3345{
3346	int ret;
3347
3348	/* Basically no-ops for non-queued controllers */
3349	if (!ctlr->queued)
3350		return 0;
3351
3352	ret = spi_stop_queue(ctlr);
3353	if (ret)
3354		dev_err(&ctlr->dev, "queue stop failed\n");
3355
3356	return ret;
3357}
3358EXPORT_SYMBOL_GPL(spi_controller_suspend);
3359
3360int spi_controller_resume(struct spi_controller *ctlr)
3361{
3362	int ret;
3363
3364	if (!ctlr->queued)
3365		return 0;
3366
3367	ret = spi_start_queue(ctlr);
3368	if (ret)
3369		dev_err(&ctlr->dev, "queue restart failed\n");
3370
3371	return ret;
3372}
3373EXPORT_SYMBOL_GPL(spi_controller_resume);
3374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3375/*-------------------------------------------------------------------------*/
3376
3377/* Core methods for spi_message alterations */
3378
3379static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3380					    struct spi_message *msg,
3381					    void *res)
3382{
3383	struct spi_replaced_transfers *rxfer = res;
3384	size_t i;
3385
3386	/* Call extra callback if requested */
3387	if (rxfer->release)
3388		rxfer->release(ctlr, msg, res);
3389
3390	/* Insert replaced transfers back into the message */
3391	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3392
3393	/* Remove the formerly inserted entries */
3394	for (i = 0; i < rxfer->inserted; i++)
3395		list_del(&rxfer->inserted_transfers[i].transfer_list);
3396}
3397
3398/**
3399 * spi_replace_transfers - replace transfers with several transfers
3400 *                         and register change with spi_message.resources
3401 * @msg:           the spi_message we work upon
3402 * @xfer_first:    the first spi_transfer we want to replace
3403 * @remove:        number of transfers to remove
3404 * @insert:        the number of transfers we want to insert instead
3405 * @release:       extra release code necessary in some circumstances
3406 * @extradatasize: extra data to allocate (with alignment guarantees
3407 *                 of struct @spi_transfer)
3408 * @gfp:           gfp flags
3409 *
3410 * Returns: pointer to @spi_replaced_transfers,
3411 *          PTR_ERR(...) in case of errors.
3412 */
3413static struct spi_replaced_transfers *spi_replace_transfers(
3414	struct spi_message *msg,
3415	struct spi_transfer *xfer_first,
3416	size_t remove,
3417	size_t insert,
3418	spi_replaced_release_t release,
3419	size_t extradatasize,
3420	gfp_t gfp)
3421{
3422	struct spi_replaced_transfers *rxfer;
3423	struct spi_transfer *xfer;
3424	size_t i;
3425
3426	/* Allocate the structure using spi_res */
3427	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3428			      struct_size(rxfer, inserted_transfers, insert)
3429			      + extradatasize,
3430			      gfp);
3431	if (!rxfer)
3432		return ERR_PTR(-ENOMEM);
3433
3434	/* The release code to invoke before running the generic release */
3435	rxfer->release = release;
3436
3437	/* Assign extradata */
3438	if (extradatasize)
3439		rxfer->extradata =
3440			&rxfer->inserted_transfers[insert];
3441
3442	/* Init the replaced_transfers list */
3443	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3444
3445	/*
3446	 * Assign the list_entry after which we should reinsert
3447	 * the @replaced_transfers - it may be spi_message.messages!
3448	 */
3449	rxfer->replaced_after = xfer_first->transfer_list.prev;
3450
3451	/* Remove the requested number of transfers */
3452	for (i = 0; i < remove; i++) {
3453		/*
3454		 * If the entry after replaced_after it is msg->transfers
3455		 * then we have been requested to remove more transfers
3456		 * than are in the list.
3457		 */
3458		if (rxfer->replaced_after->next == &msg->transfers) {
3459			dev_err(&msg->spi->dev,
3460				"requested to remove more spi_transfers than are available\n");
3461			/* Insert replaced transfers back into the message */
3462			list_splice(&rxfer->replaced_transfers,
3463				    rxfer->replaced_after);
3464
3465			/* Free the spi_replace_transfer structure... */
3466			spi_res_free(rxfer);
3467
3468			/* ...and return with an error */
3469			return ERR_PTR(-EINVAL);
3470		}
3471
3472		/*
3473		 * Remove the entry after replaced_after from list of
3474		 * transfers and add it to list of replaced_transfers.
3475		 */
3476		list_move_tail(rxfer->replaced_after->next,
3477			       &rxfer->replaced_transfers);
3478	}
3479
3480	/*
3481	 * Create copy of the given xfer with identical settings
3482	 * based on the first transfer to get removed.
3483	 */
3484	for (i = 0; i < insert; i++) {
3485		/* We need to run in reverse order */
3486		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3487
3488		/* Copy all spi_transfer data */
3489		memcpy(xfer, xfer_first, sizeof(*xfer));
3490
3491		/* Add to list */
3492		list_add(&xfer->transfer_list, rxfer->replaced_after);
3493
3494		/* Clear cs_change and delay for all but the last */
3495		if (i) {
3496			xfer->cs_change = false;
 
3497			xfer->delay.value = 0;
3498		}
3499	}
3500
3501	/* Set up inserted... */
3502	rxfer->inserted = insert;
3503
3504	/* ...and register it with spi_res/spi_message */
3505	spi_res_add(msg, rxfer);
3506
3507	return rxfer;
3508}
 
3509
3510static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3511					struct spi_message *msg,
3512					struct spi_transfer **xferp,
3513					size_t maxsize,
3514					gfp_t gfp)
3515{
3516	struct spi_transfer *xfer = *xferp, *xfers;
3517	struct spi_replaced_transfers *srt;
3518	size_t offset;
3519	size_t count, i;
3520
3521	/* Calculate how many we have to replace */
3522	count = DIV_ROUND_UP(xfer->len, maxsize);
3523
3524	/* Create replacement */
3525	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3526	if (IS_ERR(srt))
3527		return PTR_ERR(srt);
3528	xfers = srt->inserted_transfers;
3529
3530	/*
3531	 * Now handle each of those newly inserted spi_transfers.
3532	 * Note that the replacements spi_transfers all are preset
3533	 * to the same values as *xferp, so tx_buf, rx_buf and len
3534	 * are all identical (as well as most others)
3535	 * so we just have to fix up len and the pointers.
3536	 *
3537	 * This also includes support for the depreciated
3538	 * spi_message.is_dma_mapped interface.
3539	 */
3540
3541	/*
3542	 * The first transfer just needs the length modified, so we
3543	 * run it outside the loop.
3544	 */
3545	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3546
3547	/* All the others need rx_buf/tx_buf also set */
3548	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3549		/* Update rx_buf, tx_buf and dma */
3550		if (xfers[i].rx_buf)
3551			xfers[i].rx_buf += offset;
3552		if (xfers[i].rx_dma)
3553			xfers[i].rx_dma += offset;
3554		if (xfers[i].tx_buf)
3555			xfers[i].tx_buf += offset;
3556		if (xfers[i].tx_dma)
3557			xfers[i].tx_dma += offset;
3558
3559		/* Update length */
3560		xfers[i].len = min(maxsize, xfers[i].len - offset);
3561	}
3562
3563	/*
3564	 * We set up xferp to the last entry we have inserted,
3565	 * so that we skip those already split transfers.
3566	 */
3567	*xferp = &xfers[count - 1];
3568
3569	/* Increment statistics counters */
3570	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3571				       transfers_split_maxsize);
3572	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3573				       transfers_split_maxsize);
3574
3575	return 0;
3576}
3577
3578/**
3579 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3580 *                               when an individual transfer exceeds a
3581 *                               certain size
3582 * @ctlr:    the @spi_controller for this transfer
3583 * @msg:   the @spi_message to transform
3584 * @maxsize:  the maximum when to apply this
3585 * @gfp: GFP allocation flags
3586 *
3587 * Return: status of transformation
3588 */
3589int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3590				struct spi_message *msg,
3591				size_t maxsize,
3592				gfp_t gfp)
3593{
3594	struct spi_transfer *xfer;
3595	int ret;
3596
3597	/*
3598	 * Iterate over the transfer_list,
3599	 * but note that xfer is advanced to the last transfer inserted
3600	 * to avoid checking sizes again unnecessarily (also xfer does
3601	 * potentially belong to a different list by the time the
3602	 * replacement has happened).
3603	 */
3604	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3605		if (xfer->len > maxsize) {
3606			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3607							   maxsize, gfp);
3608			if (ret)
3609				return ret;
3610		}
3611	}
3612
3613	return 0;
3614}
3615EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3616
3617/*-------------------------------------------------------------------------*/
3618
3619/* Core methods for SPI controller protocol drivers.  Some of the
3620 * other core methods are currently defined as inline functions.
3621 */
3622
3623static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3624					u8 bits_per_word)
3625{
3626	if (ctlr->bits_per_word_mask) {
3627		/* Only 32 bits fit in the mask */
3628		if (bits_per_word > 32)
3629			return -EINVAL;
3630		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3631			return -EINVAL;
3632	}
3633
3634	return 0;
3635}
3636
3637/**
3638 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3639 * @spi: the device that requires specific CS timing configuration
3640 *
3641 * Return: zero on success, else a negative error code.
3642 */
3643static int spi_set_cs_timing(struct spi_device *spi)
3644{
3645	struct device *parent = spi->controller->dev.parent;
3646	int status = 0;
3647
3648	if (spi->controller->set_cs_timing && !spi->cs_gpiod) {
3649		if (spi->controller->auto_runtime_pm) {
3650			status = pm_runtime_get_sync(parent);
3651			if (status < 0) {
3652				pm_runtime_put_noidle(parent);
3653				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3654					status);
3655				return status;
3656			}
3657
3658			status = spi->controller->set_cs_timing(spi);
3659			pm_runtime_mark_last_busy(parent);
3660			pm_runtime_put_autosuspend(parent);
3661		} else {
3662			status = spi->controller->set_cs_timing(spi);
3663		}
3664	}
3665	return status;
3666}
3667
3668/**
3669 * spi_setup - setup SPI mode and clock rate
3670 * @spi: the device whose settings are being modified
3671 * Context: can sleep, and no requests are queued to the device
3672 *
3673 * SPI protocol drivers may need to update the transfer mode if the
3674 * device doesn't work with its default.  They may likewise need
3675 * to update clock rates or word sizes from initial values.  This function
3676 * changes those settings, and must be called from a context that can sleep.
3677 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3678 * effect the next time the device is selected and data is transferred to
3679 * or from it.  When this function returns, the spi device is deselected.
3680 *
3681 * Note that this call will fail if the protocol driver specifies an option
3682 * that the underlying controller or its driver does not support.  For
3683 * example, not all hardware supports wire transfers using nine bit words,
3684 * LSB-first wire encoding, or active-high chipselects.
3685 *
3686 * Return: zero on success, else a negative error code.
3687 */
3688int spi_setup(struct spi_device *spi)
3689{
3690	unsigned	bad_bits, ugly_bits;
3691	int		status = 0;
3692
3693	/*
3694	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3695	 * are set at the same time.
3696	 */
3697	if ((hweight_long(spi->mode &
3698		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3699	    (hweight_long(spi->mode &
3700		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3701		dev_err(&spi->dev,
3702		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3703		return -EINVAL;
3704	}
3705	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
 
3706	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3707		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3708		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3709		return -EINVAL;
3710	/*
3711	 * Help drivers fail *cleanly* when they need options
3712	 * that aren't supported with their current controller.
3713	 * SPI_CS_WORD has a fallback software implementation,
3714	 * so it is ignored here.
3715	 */
3716	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3717				 SPI_NO_TX | SPI_NO_RX);
 
 
 
 
3718	ugly_bits = bad_bits &
3719		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3720		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3721	if (ugly_bits) {
3722		dev_warn(&spi->dev,
3723			 "setup: ignoring unsupported mode bits %x\n",
3724			 ugly_bits);
3725		spi->mode &= ~ugly_bits;
3726		bad_bits &= ~ugly_bits;
3727	}
3728	if (bad_bits) {
3729		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3730			bad_bits);
3731		return -EINVAL;
3732	}
3733
3734	if (!spi->bits_per_word) {
3735		spi->bits_per_word = 8;
3736	} else {
3737		/*
3738		 * Some controllers may not support the default 8 bits-per-word
3739		 * so only perform the check when this is explicitly provided.
3740		 */
3741		status = __spi_validate_bits_per_word(spi->controller,
3742						      spi->bits_per_word);
3743		if (status)
3744			return status;
3745	}
3746
3747	if (spi->controller->max_speed_hz &&
3748	    (!spi->max_speed_hz ||
3749	     spi->max_speed_hz > spi->controller->max_speed_hz))
3750		spi->max_speed_hz = spi->controller->max_speed_hz;
3751
3752	mutex_lock(&spi->controller->io_mutex);
 
3753
3754	if (spi->controller->setup) {
3755		status = spi->controller->setup(spi);
3756		if (status) {
3757			mutex_unlock(&spi->controller->io_mutex);
3758			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3759				status);
3760			return status;
3761		}
3762	}
3763
3764	status = spi_set_cs_timing(spi);
3765	if (status) {
3766		mutex_unlock(&spi->controller->io_mutex);
3767		return status;
3768	}
3769
3770	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3771		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3772		if (status < 0) {
3773			mutex_unlock(&spi->controller->io_mutex);
3774			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3775				status);
3776			return status;
3777		}
3778
3779		/*
3780		 * We do not want to return positive value from pm_runtime_get,
3781		 * there are many instances of devices calling spi_setup() and
3782		 * checking for a non-zero return value instead of a negative
3783		 * return value.
3784		 */
3785		status = 0;
3786
3787		spi_set_cs(spi, false, true);
3788		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3789		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3790	} else {
3791		spi_set_cs(spi, false, true);
3792	}
3793
3794	mutex_unlock(&spi->controller->io_mutex);
3795
3796	if (spi->rt && !spi->controller->rt) {
3797		spi->controller->rt = true;
3798		spi_set_thread_rt(spi->controller);
3799	}
3800
3801	trace_spi_setup(spi, status);
3802
3803	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3804			spi->mode & SPI_MODE_X_MASK,
3805			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3806			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3807			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3808			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3809			spi->bits_per_word, spi->max_speed_hz,
3810			status);
3811
3812	return status;
3813}
3814EXPORT_SYMBOL_GPL(spi_setup);
3815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3816static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3817				       struct spi_device *spi)
3818{
3819	int delay1, delay2;
3820
3821	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3822	if (delay1 < 0)
3823		return delay1;
3824
3825	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3826	if (delay2 < 0)
3827		return delay2;
3828
3829	if (delay1 < delay2)
3830		memcpy(&xfer->word_delay, &spi->word_delay,
3831		       sizeof(xfer->word_delay));
3832
3833	return 0;
3834}
3835
3836static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3837{
3838	struct spi_controller *ctlr = spi->controller;
3839	struct spi_transfer *xfer;
3840	int w_size;
3841
3842	if (list_empty(&message->transfers))
3843		return -EINVAL;
3844
3845	/*
3846	 * If an SPI controller does not support toggling the CS line on each
3847	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3848	 * for the CS line, we can emulate the CS-per-word hardware function by
3849	 * splitting transfers into one-word transfers and ensuring that
3850	 * cs_change is set for each transfer.
3851	 */
3852	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3853					  spi->cs_gpiod)) {
 
3854		size_t maxsize;
3855		int ret;
3856
3857		maxsize = (spi->bits_per_word + 7) / 8;
3858
3859		/* spi_split_transfers_maxsize() requires message->spi */
3860		message->spi = spi;
3861
3862		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3863						  GFP_KERNEL);
3864		if (ret)
3865			return ret;
3866
3867		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3868			/* Don't change cs_change on the last entry in the list */
3869			if (list_is_last(&xfer->transfer_list, &message->transfers))
3870				break;
3871			xfer->cs_change = 1;
3872		}
3873	}
3874
3875	/*
3876	 * Half-duplex links include original MicroWire, and ones with
3877	 * only one data pin like SPI_3WIRE (switches direction) or where
3878	 * either MOSI or MISO is missing.  They can also be caused by
3879	 * software limitations.
3880	 */
3881	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3882	    (spi->mode & SPI_3WIRE)) {
3883		unsigned flags = ctlr->flags;
3884
3885		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3886			if (xfer->rx_buf && xfer->tx_buf)
3887				return -EINVAL;
3888			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3889				return -EINVAL;
3890			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3891				return -EINVAL;
3892		}
3893	}
3894
3895	/*
3896	 * Set transfer bits_per_word and max speed as spi device default if
3897	 * it is not set for this transfer.
3898	 * Set transfer tx_nbits and rx_nbits as single transfer default
3899	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3900	 * Ensure transfer word_delay is at least as long as that required by
3901	 * device itself.
3902	 */
3903	message->frame_length = 0;
3904	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3905		xfer->effective_speed_hz = 0;
3906		message->frame_length += xfer->len;
3907		if (!xfer->bits_per_word)
3908			xfer->bits_per_word = spi->bits_per_word;
3909
3910		if (!xfer->speed_hz)
3911			xfer->speed_hz = spi->max_speed_hz;
3912
3913		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3914			xfer->speed_hz = ctlr->max_speed_hz;
3915
3916		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3917			return -EINVAL;
3918
3919		/*
3920		 * SPI transfer length should be multiple of SPI word size
3921		 * where SPI word size should be power-of-two multiple.
3922		 */
3923		if (xfer->bits_per_word <= 8)
3924			w_size = 1;
3925		else if (xfer->bits_per_word <= 16)
3926			w_size = 2;
3927		else
3928			w_size = 4;
3929
3930		/* No partial transfers accepted */
3931		if (xfer->len % w_size)
3932			return -EINVAL;
3933
3934		if (xfer->speed_hz && ctlr->min_speed_hz &&
3935		    xfer->speed_hz < ctlr->min_speed_hz)
3936			return -EINVAL;
3937
3938		if (xfer->tx_buf && !xfer->tx_nbits)
3939			xfer->tx_nbits = SPI_NBITS_SINGLE;
3940		if (xfer->rx_buf && !xfer->rx_nbits)
3941			xfer->rx_nbits = SPI_NBITS_SINGLE;
3942		/*
3943		 * Check transfer tx/rx_nbits:
3944		 * 1. check the value matches one of single, dual and quad
3945		 * 2. check tx/rx_nbits match the mode in spi_device
3946		 */
3947		if (xfer->tx_buf) {
3948			if (spi->mode & SPI_NO_TX)
3949				return -EINVAL;
3950			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3951				xfer->tx_nbits != SPI_NBITS_DUAL &&
3952				xfer->tx_nbits != SPI_NBITS_QUAD)
3953				return -EINVAL;
3954			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3955				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3956				return -EINVAL;
3957			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3958				!(spi->mode & SPI_TX_QUAD))
3959				return -EINVAL;
3960		}
3961		/* Check transfer rx_nbits */
3962		if (xfer->rx_buf) {
3963			if (spi->mode & SPI_NO_RX)
3964				return -EINVAL;
3965			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3966				xfer->rx_nbits != SPI_NBITS_DUAL &&
3967				xfer->rx_nbits != SPI_NBITS_QUAD)
3968				return -EINVAL;
3969			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3970				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3971				return -EINVAL;
3972			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3973				!(spi->mode & SPI_RX_QUAD))
3974				return -EINVAL;
3975		}
3976
3977		if (_spi_xfer_word_delay_update(xfer, spi))
3978			return -EINVAL;
3979	}
3980
3981	message->status = -EINPROGRESS;
3982
3983	return 0;
3984}
3985
3986static int __spi_async(struct spi_device *spi, struct spi_message *message)
3987{
3988	struct spi_controller *ctlr = spi->controller;
3989	struct spi_transfer *xfer;
3990
3991	/*
3992	 * Some controllers do not support doing regular SPI transfers. Return
3993	 * ENOTSUPP when this is the case.
3994	 */
3995	if (!ctlr->transfer)
3996		return -ENOTSUPP;
3997
3998	message->spi = spi;
3999
4000	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4001	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4002
4003	trace_spi_message_submit(message);
4004
4005	if (!ctlr->ptp_sts_supported) {
4006		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4007			xfer->ptp_sts_word_pre = 0;
4008			ptp_read_system_prets(xfer->ptp_sts);
4009		}
4010	}
4011
4012	return ctlr->transfer(spi, message);
4013}
4014
4015/**
4016 * spi_async - asynchronous SPI transfer
4017 * @spi: device with which data will be exchanged
4018 * @message: describes the data transfers, including completion callback
4019 * Context: any (irqs may be blocked, etc)
4020 *
4021 * This call may be used in_irq and other contexts which can't sleep,
4022 * as well as from task contexts which can sleep.
4023 *
4024 * The completion callback is invoked in a context which can't sleep.
4025 * Before that invocation, the value of message->status is undefined.
4026 * When the callback is issued, message->status holds either zero (to
4027 * indicate complete success) or a negative error code.  After that
4028 * callback returns, the driver which issued the transfer request may
4029 * deallocate the associated memory; it's no longer in use by any SPI
4030 * core or controller driver code.
4031 *
4032 * Note that although all messages to a spi_device are handled in
4033 * FIFO order, messages may go to different devices in other orders.
4034 * Some device might be higher priority, or have various "hard" access
4035 * time requirements, for example.
4036 *
4037 * On detection of any fault during the transfer, processing of
4038 * the entire message is aborted, and the device is deselected.
4039 * Until returning from the associated message completion callback,
4040 * no other spi_message queued to that device will be processed.
4041 * (This rule applies equally to all the synchronous transfer calls,
4042 * which are wrappers around this core asynchronous primitive.)
4043 *
4044 * Return: zero on success, else a negative error code.
4045 */
4046int spi_async(struct spi_device *spi, struct spi_message *message)
4047{
4048	struct spi_controller *ctlr = spi->controller;
4049	int ret;
4050	unsigned long flags;
4051
4052	ret = __spi_validate(spi, message);
4053	if (ret != 0)
4054		return ret;
4055
4056	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4057
4058	if (ctlr->bus_lock_flag)
4059		ret = -EBUSY;
4060	else
4061		ret = __spi_async(spi, message);
4062
4063	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4064
4065	return ret;
4066}
4067EXPORT_SYMBOL_GPL(spi_async);
4068
4069/**
4070 * spi_async_locked - version of spi_async with exclusive bus usage
4071 * @spi: device with which data will be exchanged
4072 * @message: describes the data transfers, including completion callback
4073 * Context: any (irqs may be blocked, etc)
4074 *
4075 * This call may be used in_irq and other contexts which can't sleep,
4076 * as well as from task contexts which can sleep.
4077 *
4078 * The completion callback is invoked in a context which can't sleep.
4079 * Before that invocation, the value of message->status is undefined.
4080 * When the callback is issued, message->status holds either zero (to
4081 * indicate complete success) or a negative error code.  After that
4082 * callback returns, the driver which issued the transfer request may
4083 * deallocate the associated memory; it's no longer in use by any SPI
4084 * core or controller driver code.
4085 *
4086 * Note that although all messages to a spi_device are handled in
4087 * FIFO order, messages may go to different devices in other orders.
4088 * Some device might be higher priority, or have various "hard" access
4089 * time requirements, for example.
4090 *
4091 * On detection of any fault during the transfer, processing of
4092 * the entire message is aborted, and the device is deselected.
4093 * Until returning from the associated message completion callback,
4094 * no other spi_message queued to that device will be processed.
4095 * (This rule applies equally to all the synchronous transfer calls,
4096 * which are wrappers around this core asynchronous primitive.)
4097 *
4098 * Return: zero on success, else a negative error code.
4099 */
4100static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4101{
4102	struct spi_controller *ctlr = spi->controller;
4103	int ret;
4104	unsigned long flags;
4105
4106	ret = __spi_validate(spi, message);
4107	if (ret != 0)
4108		return ret;
4109
4110	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4111
4112	ret = __spi_async(spi, message);
4113
4114	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4115
4116	return ret;
4117
4118}
4119
4120static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4121{
4122	bool was_busy;
4123	int ret;
4124
4125	mutex_lock(&ctlr->io_mutex);
4126
4127	was_busy = ctlr->busy;
4128
4129	ctlr->cur_msg = msg;
4130	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4131	if (ret)
4132		goto out;
4133
4134	ctlr->cur_msg = NULL;
4135	ctlr->fallback = false;
4136
4137	if (!was_busy) {
4138		kfree(ctlr->dummy_rx);
4139		ctlr->dummy_rx = NULL;
4140		kfree(ctlr->dummy_tx);
4141		ctlr->dummy_tx = NULL;
4142		if (ctlr->unprepare_transfer_hardware &&
4143		    ctlr->unprepare_transfer_hardware(ctlr))
4144			dev_err(&ctlr->dev,
4145				"failed to unprepare transfer hardware\n");
4146		spi_idle_runtime_pm(ctlr);
4147	}
4148
4149out:
4150	mutex_unlock(&ctlr->io_mutex);
4151}
4152
4153/*-------------------------------------------------------------------------*/
4154
4155/*
4156 * Utility methods for SPI protocol drivers, layered on
4157 * top of the core.  Some other utility methods are defined as
4158 * inline functions.
4159 */
4160
4161static void spi_complete(void *arg)
4162{
4163	complete(arg);
4164}
4165
4166static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4167{
4168	DECLARE_COMPLETION_ONSTACK(done);
4169	int status;
4170	struct spi_controller *ctlr = spi->controller;
 
4171
4172	status = __spi_validate(spi, message);
4173	if (status != 0)
4174		return status;
4175
 
 
4176	message->spi = spi;
4177
4178	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4179	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4180
4181	/*
4182	 * Checking queue_empty here only guarantees async/sync message
4183	 * ordering when coming from the same context. It does not need to
4184	 * guard against reentrancy from a different context. The io_mutex
4185	 * will catch those cases.
4186	 */
4187	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4188		message->actual_length = 0;
4189		message->status = -EINPROGRESS;
4190
4191		trace_spi_message_submit(message);
4192
4193		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4194		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4195
4196		__spi_transfer_message_noqueue(ctlr, message);
4197
4198		return message->status;
 
 
4199	}
4200
4201	/*
4202	 * There are messages in the async queue that could have originated
4203	 * from the same context, so we need to preserve ordering.
4204	 * Therefor we send the message to the async queue and wait until they
4205	 * are completed.
4206	 */
4207	message->complete = spi_complete;
4208	message->context = &done;
4209	status = spi_async_locked(spi, message);
4210	if (status == 0) {
 
 
 
 
 
 
 
 
 
 
 
4211		wait_for_completion(&done);
4212		status = message->status;
4213	}
4214	message->context = NULL;
4215
4216	return status;
4217}
4218
4219/**
4220 * spi_sync - blocking/synchronous SPI data transfers
4221 * @spi: device with which data will be exchanged
4222 * @message: describes the data transfers
4223 * Context: can sleep
4224 *
4225 * This call may only be used from a context that may sleep.  The sleep
4226 * is non-interruptible, and has no timeout.  Low-overhead controller
4227 * drivers may DMA directly into and out of the message buffers.
4228 *
4229 * Note that the SPI device's chip select is active during the message,
4230 * and then is normally disabled between messages.  Drivers for some
4231 * frequently-used devices may want to minimize costs of selecting a chip,
4232 * by leaving it selected in anticipation that the next message will go
4233 * to the same chip.  (That may increase power usage.)
4234 *
4235 * Also, the caller is guaranteeing that the memory associated with the
4236 * message will not be freed before this call returns.
4237 *
4238 * Return: zero on success, else a negative error code.
4239 */
4240int spi_sync(struct spi_device *spi, struct spi_message *message)
4241{
4242	int ret;
4243
4244	mutex_lock(&spi->controller->bus_lock_mutex);
4245	ret = __spi_sync(spi, message);
4246	mutex_unlock(&spi->controller->bus_lock_mutex);
4247
4248	return ret;
4249}
4250EXPORT_SYMBOL_GPL(spi_sync);
4251
4252/**
4253 * spi_sync_locked - version of spi_sync with exclusive bus usage
4254 * @spi: device with which data will be exchanged
4255 * @message: describes the data transfers
4256 * Context: can sleep
4257 *
4258 * This call may only be used from a context that may sleep.  The sleep
4259 * is non-interruptible, and has no timeout.  Low-overhead controller
4260 * drivers may DMA directly into and out of the message buffers.
4261 *
4262 * This call should be used by drivers that require exclusive access to the
4263 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4264 * be released by a spi_bus_unlock call when the exclusive access is over.
4265 *
4266 * Return: zero on success, else a negative error code.
4267 */
4268int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4269{
4270	return __spi_sync(spi, message);
4271}
4272EXPORT_SYMBOL_GPL(spi_sync_locked);
4273
4274/**
4275 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4276 * @ctlr: SPI bus master that should be locked for exclusive bus access
4277 * Context: can sleep
4278 *
4279 * This call may only be used from a context that may sleep.  The sleep
4280 * is non-interruptible, and has no timeout.
4281 *
4282 * This call should be used by drivers that require exclusive access to the
4283 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4284 * exclusive access is over. Data transfer must be done by spi_sync_locked
4285 * and spi_async_locked calls when the SPI bus lock is held.
4286 *
4287 * Return: always zero.
4288 */
4289int spi_bus_lock(struct spi_controller *ctlr)
4290{
4291	unsigned long flags;
4292
4293	mutex_lock(&ctlr->bus_lock_mutex);
4294
4295	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4296	ctlr->bus_lock_flag = 1;
4297	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4298
4299	/* Mutex remains locked until spi_bus_unlock() is called */
4300
4301	return 0;
4302}
4303EXPORT_SYMBOL_GPL(spi_bus_lock);
4304
4305/**
4306 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4307 * @ctlr: SPI bus master that was locked for exclusive bus access
4308 * Context: can sleep
4309 *
4310 * This call may only be used from a context that may sleep.  The sleep
4311 * is non-interruptible, and has no timeout.
4312 *
4313 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4314 * call.
4315 *
4316 * Return: always zero.
4317 */
4318int spi_bus_unlock(struct spi_controller *ctlr)
4319{
4320	ctlr->bus_lock_flag = 0;
4321
4322	mutex_unlock(&ctlr->bus_lock_mutex);
4323
4324	return 0;
4325}
4326EXPORT_SYMBOL_GPL(spi_bus_unlock);
4327
4328/* Portable code must never pass more than 32 bytes */
4329#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4330
4331static u8	*buf;
4332
4333/**
4334 * spi_write_then_read - SPI synchronous write followed by read
4335 * @spi: device with which data will be exchanged
4336 * @txbuf: data to be written (need not be dma-safe)
4337 * @n_tx: size of txbuf, in bytes
4338 * @rxbuf: buffer into which data will be read (need not be dma-safe)
4339 * @n_rx: size of rxbuf, in bytes
4340 * Context: can sleep
4341 *
4342 * This performs a half duplex MicroWire style transaction with the
4343 * device, sending txbuf and then reading rxbuf.  The return value
4344 * is zero for success, else a negative errno status code.
4345 * This call may only be used from a context that may sleep.
4346 *
4347 * Parameters to this routine are always copied using a small buffer.
4348 * Performance-sensitive or bulk transfer code should instead use
4349 * spi_{async,sync}() calls with dma-safe buffers.
4350 *
4351 * Return: zero on success, else a negative error code.
4352 */
4353int spi_write_then_read(struct spi_device *spi,
4354		const void *txbuf, unsigned n_tx,
4355		void *rxbuf, unsigned n_rx)
4356{
4357	static DEFINE_MUTEX(lock);
4358
4359	int			status;
4360	struct spi_message	message;
4361	struct spi_transfer	x[2];
4362	u8			*local_buf;
4363
4364	/*
4365	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4366	 * copying here, (as a pure convenience thing), but we can
4367	 * keep heap costs out of the hot path unless someone else is
4368	 * using the pre-allocated buffer or the transfer is too large.
4369	 */
4370	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4371		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4372				    GFP_KERNEL | GFP_DMA);
4373		if (!local_buf)
4374			return -ENOMEM;
4375	} else {
4376		local_buf = buf;
4377	}
4378
4379	spi_message_init(&message);
4380	memset(x, 0, sizeof(x));
4381	if (n_tx) {
4382		x[0].len = n_tx;
4383		spi_message_add_tail(&x[0], &message);
4384	}
4385	if (n_rx) {
4386		x[1].len = n_rx;
4387		spi_message_add_tail(&x[1], &message);
4388	}
4389
4390	memcpy(local_buf, txbuf, n_tx);
4391	x[0].tx_buf = local_buf;
4392	x[1].rx_buf = local_buf + n_tx;
4393
4394	/* Do the i/o */
4395	status = spi_sync(spi, &message);
4396	if (status == 0)
4397		memcpy(rxbuf, x[1].rx_buf, n_rx);
4398
4399	if (x[0].tx_buf == buf)
4400		mutex_unlock(&lock);
4401	else
4402		kfree(local_buf);
4403
4404	return status;
4405}
4406EXPORT_SYMBOL_GPL(spi_write_then_read);
4407
4408/*-------------------------------------------------------------------------*/
4409
4410#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4411/* Must call put_device() when done with returned spi_device device */
4412static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4413{
4414	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4415
4416	return dev ? to_spi_device(dev) : NULL;
4417}
 
 
4418
4419/* The spi controllers are not using spi_bus, so we find it with another way */
 
4420static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4421{
4422	struct device *dev;
4423
4424	dev = class_find_device_by_of_node(&spi_master_class, node);
4425	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4426		dev = class_find_device_by_of_node(&spi_slave_class, node);
4427	if (!dev)
4428		return NULL;
4429
4430	/* Reference got in class_find_device */
4431	return container_of(dev, struct spi_controller, dev);
4432}
4433
4434static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4435			 void *arg)
4436{
4437	struct of_reconfig_data *rd = arg;
4438	struct spi_controller *ctlr;
4439	struct spi_device *spi;
4440
4441	switch (of_reconfig_get_state_change(action, arg)) {
4442	case OF_RECONFIG_CHANGE_ADD:
4443		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4444		if (ctlr == NULL)
4445			return NOTIFY_OK;	/* Not for us */
4446
4447		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4448			put_device(&ctlr->dev);
4449			return NOTIFY_OK;
4450		}
4451
4452		spi = of_register_spi_device(ctlr, rd->dn);
4453		put_device(&ctlr->dev);
4454
4455		if (IS_ERR(spi)) {
4456			pr_err("%s: failed to create for '%pOF'\n",
4457					__func__, rd->dn);
4458			of_node_clear_flag(rd->dn, OF_POPULATED);
4459			return notifier_from_errno(PTR_ERR(spi));
4460		}
4461		break;
4462
4463	case OF_RECONFIG_CHANGE_REMOVE:
4464		/* Already depopulated? */
4465		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4466			return NOTIFY_OK;
4467
4468		/* Find our device by node */
4469		spi = of_find_spi_device_by_node(rd->dn);
4470		if (spi == NULL)
4471			return NOTIFY_OK;	/* No? not meant for us */
4472
4473		/* Unregister takes one ref away */
4474		spi_unregister_device(spi);
4475
4476		/* And put the reference of the find */
4477		put_device(&spi->dev);
4478		break;
4479	}
4480
4481	return NOTIFY_OK;
4482}
4483
4484static struct notifier_block spi_of_notifier = {
4485	.notifier_call = of_spi_notify,
4486};
4487#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4488extern struct notifier_block spi_of_notifier;
4489#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4490
4491#if IS_ENABLED(CONFIG_ACPI)
4492static int spi_acpi_controller_match(struct device *dev, const void *data)
4493{
4494	return ACPI_COMPANION(dev->parent) == data;
4495}
4496
4497static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4498{
4499	struct device *dev;
4500
4501	dev = class_find_device(&spi_master_class, NULL, adev,
4502				spi_acpi_controller_match);
4503	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4504		dev = class_find_device(&spi_slave_class, NULL, adev,
4505					spi_acpi_controller_match);
4506	if (!dev)
4507		return NULL;
4508
4509	return container_of(dev, struct spi_controller, dev);
4510}
4511
4512static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4513{
4514	struct device *dev;
4515
4516	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4517	return to_spi_device(dev);
4518}
4519
4520static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4521			   void *arg)
4522{
4523	struct acpi_device *adev = arg;
4524	struct spi_controller *ctlr;
4525	struct spi_device *spi;
4526
4527	switch (value) {
4528	case ACPI_RECONFIG_DEVICE_ADD:
4529		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4530		if (!ctlr)
4531			break;
4532
4533		acpi_register_spi_device(ctlr, adev);
4534		put_device(&ctlr->dev);
4535		break;
4536	case ACPI_RECONFIG_DEVICE_REMOVE:
4537		if (!acpi_device_enumerated(adev))
4538			break;
4539
4540		spi = acpi_spi_find_device_by_adev(adev);
4541		if (!spi)
4542			break;
4543
4544		spi_unregister_device(spi);
4545		put_device(&spi->dev);
4546		break;
4547	}
4548
4549	return NOTIFY_OK;
4550}
4551
4552static struct notifier_block spi_acpi_notifier = {
4553	.notifier_call = acpi_spi_notify,
4554};
4555#else
4556extern struct notifier_block spi_acpi_notifier;
4557#endif
4558
4559static int __init spi_init(void)
4560{
4561	int	status;
4562
4563	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4564	if (!buf) {
4565		status = -ENOMEM;
4566		goto err0;
4567	}
4568
4569	status = bus_register(&spi_bus_type);
4570	if (status < 0)
4571		goto err1;
4572
4573	status = class_register(&spi_master_class);
4574	if (status < 0)
4575		goto err2;
4576
4577	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4578		status = class_register(&spi_slave_class);
4579		if (status < 0)
4580			goto err3;
4581	}
4582
4583	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4584		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4585	if (IS_ENABLED(CONFIG_ACPI))
4586		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4587
4588	return 0;
4589
4590err3:
4591	class_unregister(&spi_master_class);
4592err2:
4593	bus_unregister(&spi_bus_type);
4594err1:
4595	kfree(buf);
4596	buf = NULL;
4597err0:
4598	return status;
4599}
4600
4601/*
4602 * A board_info is normally registered in arch_initcall(),
4603 * but even essential drivers wait till later.
4604 *
4605 * REVISIT only boardinfo really needs static linking. The rest (device and
4606 * driver registration) _could_ be dynamically linked (modular) ... Costs
4607 * include needing to have boardinfo data structures be much more public.
4608 */
4609postcore_initcall(spi_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/kernel.h>
   8#include <linux/device.h>
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/of_gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/pm_domain.h>
  25#include <linux/property.h>
  26#include <linux/export.h>
  27#include <linux/sched/rt.h>
  28#include <uapi/linux/sched/types.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/ioport.h>
  32#include <linux/acpi.h>
  33#include <linux/highmem.h>
  34#include <linux/idr.h>
  35#include <linux/platform_data/x86/apple.h>
 
 
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/spi.h>
  39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  41
  42#include "internals.h"
  43
  44static DEFINE_IDR(spi_master_idr);
  45
  46static void spidev_release(struct device *dev)
  47{
  48	struct spi_device	*spi = to_spi_device(dev);
  49
  50	/* spi controllers may cleanup for released devices */
  51	if (spi->controller->cleanup)
  52		spi->controller->cleanup(spi);
  53
  54	spi_controller_put(spi->controller);
  55	kfree(spi->driver_override);
 
  56	kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62	const struct spi_device	*spi = to_spi_device(dev);
  63	int len;
  64
  65	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66	if (len != -ENODEV)
  67		return len;
  68
  69	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
  73static ssize_t driver_override_store(struct device *dev,
  74				     struct device_attribute *a,
  75				     const char *buf, size_t count)
  76{
  77	struct spi_device *spi = to_spi_device(dev);
  78	const char *end = memchr(buf, '\n', count);
  79	const size_t len = end ? end - buf : count;
  80	const char *driver_override, *old;
  81
  82	/* We need to keep extra room for a newline when displaying value */
  83	if (len >= (PAGE_SIZE - 1))
  84		return -EINVAL;
  85
  86	driver_override = kstrndup(buf, len, GFP_KERNEL);
  87	if (!driver_override)
  88		return -ENOMEM;
  89
  90	device_lock(dev);
  91	old = spi->driver_override;
  92	if (len) {
  93		spi->driver_override = driver_override;
  94	} else {
  95		/* Empty string, disable driver override */
  96		spi->driver_override = NULL;
  97		kfree(driver_override);
  98	}
  99	device_unlock(dev);
 100	kfree(old);
 101
 102	return count;
 103}
 104
 105static ssize_t driver_override_show(struct device *dev,
 106				    struct device_attribute *a, char *buf)
 107{
 108	const struct spi_device *spi = to_spi_device(dev);
 109	ssize_t len;
 110
 111	device_lock(dev);
 112	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
 113	device_unlock(dev);
 114	return len;
 115}
 116static DEVICE_ATTR_RW(driver_override);
 117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118#define SPI_STATISTICS_ATTRS(field, file)				\
 119static ssize_t spi_controller_##field##_show(struct device *dev,	\
 120					     struct device_attribute *attr, \
 121					     char *buf)			\
 122{									\
 123	struct spi_controller *ctlr = container_of(dev,			\
 124					 struct spi_controller, dev);	\
 125	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
 126}									\
 127static struct device_attribute dev_attr_spi_controller_##field = {	\
 128	.attr = { .name = file, .mode = 0444 },				\
 129	.show = spi_controller_##field##_show,				\
 130};									\
 131static ssize_t spi_device_##field##_show(struct device *dev,		\
 132					 struct device_attribute *attr,	\
 133					char *buf)			\
 134{									\
 135	struct spi_device *spi = to_spi_device(dev);			\
 136	return spi_statistics_##field##_show(&spi->statistics, buf);	\
 137}									\
 138static struct device_attribute dev_attr_spi_device_##field = {		\
 139	.attr = { .name = file, .mode = 0444 },				\
 140	.show = spi_device_##field##_show,				\
 141}
 142
 143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 145					    char *buf)			\
 146{									\
 147	unsigned long flags;						\
 148	ssize_t len;							\
 149	spin_lock_irqsave(&stat->lock, flags);				\
 150	len = sprintf(buf, format_string, stat->field);			\
 151	spin_unlock_irqrestore(&stat->lock, flags);			\
 152	return len;							\
 153}									\
 154SPI_STATISTICS_ATTRS(name, file)
 155
 156#define SPI_STATISTICS_SHOW(field, format_string)			\
 157	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 158				 field, format_string)
 159
 160SPI_STATISTICS_SHOW(messages, "%lu");
 161SPI_STATISTICS_SHOW(transfers, "%lu");
 162SPI_STATISTICS_SHOW(errors, "%lu");
 163SPI_STATISTICS_SHOW(timedout, "%lu");
 164
 165SPI_STATISTICS_SHOW(spi_sync, "%lu");
 166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 167SPI_STATISTICS_SHOW(spi_async, "%lu");
 168
 169SPI_STATISTICS_SHOW(bytes, "%llu");
 170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 172
 173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 174	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 175				 "transfer_bytes_histo_" number,	\
 176				 transfer_bytes_histo[index],  "%lu")
 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 194
 195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 196
 197static struct attribute *spi_dev_attrs[] = {
 198	&dev_attr_modalias.attr,
 199	&dev_attr_driver_override.attr,
 200	NULL,
 201};
 202
 203static const struct attribute_group spi_dev_group = {
 204	.attrs  = spi_dev_attrs,
 205};
 206
 207static struct attribute *spi_device_statistics_attrs[] = {
 208	&dev_attr_spi_device_messages.attr,
 209	&dev_attr_spi_device_transfers.attr,
 210	&dev_attr_spi_device_errors.attr,
 211	&dev_attr_spi_device_timedout.attr,
 212	&dev_attr_spi_device_spi_sync.attr,
 213	&dev_attr_spi_device_spi_sync_immediate.attr,
 214	&dev_attr_spi_device_spi_async.attr,
 215	&dev_attr_spi_device_bytes.attr,
 216	&dev_attr_spi_device_bytes_rx.attr,
 217	&dev_attr_spi_device_bytes_tx.attr,
 218	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 219	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 220	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 221	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 222	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 223	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 224	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 225	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 226	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 227	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 228	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 229	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 230	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 231	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 232	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 233	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 234	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 235	&dev_attr_spi_device_transfers_split_maxsize.attr,
 236	NULL,
 237};
 238
 239static const struct attribute_group spi_device_statistics_group = {
 240	.name  = "statistics",
 241	.attrs  = spi_device_statistics_attrs,
 242};
 243
 244static const struct attribute_group *spi_dev_groups[] = {
 245	&spi_dev_group,
 246	&spi_device_statistics_group,
 247	NULL,
 248};
 249
 250static struct attribute *spi_controller_statistics_attrs[] = {
 251	&dev_attr_spi_controller_messages.attr,
 252	&dev_attr_spi_controller_transfers.attr,
 253	&dev_attr_spi_controller_errors.attr,
 254	&dev_attr_spi_controller_timedout.attr,
 255	&dev_attr_spi_controller_spi_sync.attr,
 256	&dev_attr_spi_controller_spi_sync_immediate.attr,
 257	&dev_attr_spi_controller_spi_async.attr,
 258	&dev_attr_spi_controller_bytes.attr,
 259	&dev_attr_spi_controller_bytes_rx.attr,
 260	&dev_attr_spi_controller_bytes_tx.attr,
 261	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 262	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 263	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 264	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 265	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 266	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 267	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 268	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 269	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 270	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 271	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 272	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 273	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 274	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 275	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 276	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 277	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 278	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 279	NULL,
 280};
 281
 282static const struct attribute_group spi_controller_statistics_group = {
 283	.name  = "statistics",
 284	.attrs  = spi_controller_statistics_attrs,
 285};
 286
 287static const struct attribute_group *spi_master_groups[] = {
 288	&spi_controller_statistics_group,
 289	NULL,
 290};
 291
 292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 293				       struct spi_transfer *xfer,
 294				       struct spi_controller *ctlr)
 295{
 296	unsigned long flags;
 297	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 
 298
 299	if (l2len < 0)
 300		l2len = 0;
 301
 302	spin_lock_irqsave(&stats->lock, flags);
 
 
 303
 304	stats->transfers++;
 305	stats->transfer_bytes_histo[l2len]++;
 306
 307	stats->bytes += xfer->len;
 308	if ((xfer->tx_buf) &&
 309	    (xfer->tx_buf != ctlr->dummy_tx))
 310		stats->bytes_tx += xfer->len;
 311	if ((xfer->rx_buf) &&
 312	    (xfer->rx_buf != ctlr->dummy_rx))
 313		stats->bytes_rx += xfer->len;
 314
 315	spin_unlock_irqrestore(&stats->lock, flags);
 
 316}
 317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 318
 319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 
 320 * and the sysfs version makes coldplug work too.
 321 */
 322
 323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 324						const struct spi_device *sdev)
 325{
 326	while (id->name[0]) {
 327		if (!strcmp(sdev->modalias, id->name))
 328			return id;
 329		id++;
 330	}
 331	return NULL;
 332}
 333
 334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 335{
 336	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 337
 338	return spi_match_id(sdrv->id_table, sdev);
 339}
 340EXPORT_SYMBOL_GPL(spi_get_device_id);
 341
 
 
 
 
 
 
 
 
 
 
 
 
 342static int spi_match_device(struct device *dev, struct device_driver *drv)
 343{
 344	const struct spi_device	*spi = to_spi_device(dev);
 345	const struct spi_driver	*sdrv = to_spi_driver(drv);
 346
 347	/* Check override first, and if set, only use the named driver */
 348	if (spi->driver_override)
 349		return strcmp(spi->driver_override, drv->name) == 0;
 350
 351	/* Attempt an OF style match */
 352	if (of_driver_match_device(dev, drv))
 353		return 1;
 354
 355	/* Then try ACPI */
 356	if (acpi_driver_match_device(dev, drv))
 357		return 1;
 358
 359	if (sdrv->id_table)
 360		return !!spi_match_id(sdrv->id_table, spi);
 361
 362	return strcmp(spi->modalias, drv->name) == 0;
 363}
 364
 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 366{
 367	const struct spi_device		*spi = to_spi_device(dev);
 368	int rc;
 369
 370	rc = acpi_device_uevent_modalias(dev, env);
 371	if (rc != -ENODEV)
 372		return rc;
 373
 374	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 375}
 376
 377struct bus_type spi_bus_type = {
 378	.name		= "spi",
 379	.dev_groups	= spi_dev_groups,
 380	.match		= spi_match_device,
 381	.uevent		= spi_uevent,
 382};
 383EXPORT_SYMBOL_GPL(spi_bus_type);
 384
 385
 386static int spi_drv_probe(struct device *dev)
 387{
 388	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 389	struct spi_device		*spi = to_spi_device(dev);
 390	int ret;
 391
 392	ret = of_clk_set_defaults(dev->of_node, false);
 393	if (ret)
 394		return ret;
 395
 396	if (dev->of_node) {
 397		spi->irq = of_irq_get(dev->of_node, 0);
 398		if (spi->irq == -EPROBE_DEFER)
 399			return -EPROBE_DEFER;
 400		if (spi->irq < 0)
 401			spi->irq = 0;
 402	}
 403
 404	ret = dev_pm_domain_attach(dev, true);
 405	if (ret)
 406		return ret;
 407
 408	ret = sdrv->probe(spi);
 409	if (ret)
 410		dev_pm_domain_detach(dev, true);
 
 
 411
 412	return ret;
 413}
 414
 415static int spi_drv_remove(struct device *dev)
 416{
 417	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 418	int ret;
 419
 420	ret = sdrv->remove(to_spi_device(dev));
 
 
 421	dev_pm_domain_detach(dev, true);
 422
 423	return ret;
 424}
 425
 426static void spi_drv_shutdown(struct device *dev)
 427{
 428	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 429
 430	sdrv->shutdown(to_spi_device(dev));
 
 
 431}
 432
 
 
 
 
 
 
 
 
 
 
 
 433/**
 434 * __spi_register_driver - register a SPI driver
 435 * @owner: owner module of the driver to register
 436 * @sdrv: the driver to register
 437 * Context: can sleep
 438 *
 439 * Return: zero on success, else a negative error code.
 440 */
 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 442{
 443	sdrv->driver.owner = owner;
 444	sdrv->driver.bus = &spi_bus_type;
 445	if (sdrv->probe)
 446		sdrv->driver.probe = spi_drv_probe;
 447	if (sdrv->remove)
 448		sdrv->driver.remove = spi_drv_remove;
 449	if (sdrv->shutdown)
 450		sdrv->driver.shutdown = spi_drv_shutdown;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451	return driver_register(&sdrv->driver);
 452}
 453EXPORT_SYMBOL_GPL(__spi_register_driver);
 454
 455/*-------------------------------------------------------------------------*/
 456
 457/* SPI devices should normally not be created by SPI device drivers; that
 
 458 * would make them board-specific.  Similarly with SPI controller drivers.
 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 460 * with other readonly (flashable) information about mainboard devices.
 461 */
 462
 463struct boardinfo {
 464	struct list_head	list;
 465	struct spi_board_info	board_info;
 466};
 467
 468static LIST_HEAD(board_list);
 469static LIST_HEAD(spi_controller_list);
 470
 471/*
 472 * Used to protect add/del operation for board_info list and
 473 * spi_controller list, and their matching process
 474 * also used to protect object of type struct idr
 475 */
 476static DEFINE_MUTEX(board_lock);
 477
 478/*
 479 * Prevents addition of devices with same chip select and
 480 * addition of devices below an unregistering controller.
 481 */
 482static DEFINE_MUTEX(spi_add_lock);
 483
 484/**
 485 * spi_alloc_device - Allocate a new SPI device
 486 * @ctlr: Controller to which device is connected
 487 * Context: can sleep
 488 *
 489 * Allows a driver to allocate and initialize a spi_device without
 490 * registering it immediately.  This allows a driver to directly
 491 * fill the spi_device with device parameters before calling
 492 * spi_add_device() on it.
 493 *
 494 * Caller is responsible to call spi_add_device() on the returned
 495 * spi_device structure to add it to the SPI controller.  If the caller
 496 * needs to discard the spi_device without adding it, then it should
 497 * call spi_dev_put() on it.
 498 *
 499 * Return: a pointer to the new device, or NULL.
 500 */
 501struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 502{
 503	struct spi_device	*spi;
 504
 505	if (!spi_controller_get(ctlr))
 506		return NULL;
 507
 508	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 509	if (!spi) {
 510		spi_controller_put(ctlr);
 511		return NULL;
 512	}
 513
 
 
 
 
 
 
 
 514	spi->master = spi->controller = ctlr;
 515	spi->dev.parent = &ctlr->dev;
 516	spi->dev.bus = &spi_bus_type;
 517	spi->dev.release = spidev_release;
 518	spi->cs_gpio = -ENOENT;
 519	spi->mode = ctlr->buswidth_override_bits;
 520
 521	spin_lock_init(&spi->statistics.lock);
 522
 523	device_initialize(&spi->dev);
 524	return spi;
 525}
 526EXPORT_SYMBOL_GPL(spi_alloc_device);
 527
 528static void spi_dev_set_name(struct spi_device *spi)
 529{
 530	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 531
 532	if (adev) {
 533		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 534		return;
 535	}
 536
 537	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 538		     spi->chip_select);
 539}
 540
 541static int spi_dev_check(struct device *dev, void *data)
 542{
 543	struct spi_device *spi = to_spi_device(dev);
 544	struct spi_device *new_spi = data;
 545
 546	if (spi->controller == new_spi->controller &&
 547	    spi->chip_select == new_spi->chip_select)
 548		return -EBUSY;
 549	return 0;
 550}
 551
 552/**
 553 * spi_add_device - Add spi_device allocated with spi_alloc_device
 554 * @spi: spi_device to register
 555 *
 556 * Companion function to spi_alloc_device.  Devices allocated with
 557 * spi_alloc_device can be added onto the spi bus with this function.
 558 *
 559 * Return: 0 on success; negative errno on failure
 560 */
 561int spi_add_device(struct spi_device *spi)
 562{
 563	struct spi_controller *ctlr = spi->controller;
 564	struct device *dev = ctlr->dev.parent;
 565	int status;
 566
 567	/* Chipselects are numbered 0..max; validate. */
 568	if (spi->chip_select >= ctlr->num_chipselect) {
 569		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 570			ctlr->num_chipselect);
 571		return -EINVAL;
 572	}
 573
 574	/* Set the bus ID string */
 575	spi_dev_set_name(spi);
 576
 577	/* We need to make sure there's no other device with this
 578	 * chipselect **BEFORE** we call setup(), else we'll trash
 579	 * its configuration.  Lock against concurrent add() calls.
 580	 */
 581	mutex_lock(&spi_add_lock);
 582
 583	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 584	if (status) {
 585		dev_err(dev, "chipselect %d already in use\n",
 586				spi->chip_select);
 587		goto done;
 588	}
 589
 590	/* Controller may unregister concurrently */
 591	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 592	    !device_is_registered(&ctlr->dev)) {
 593		status = -ENODEV;
 594		goto done;
 595	}
 596
 597	/* Descriptors take precedence */
 598	if (ctlr->cs_gpiods)
 599		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 600	else if (ctlr->cs_gpios)
 601		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 602
 603	/* Drivers may modify this initial i/o setup, but will
 
 604	 * normally rely on the device being setup.  Devices
 605	 * using SPI_CS_HIGH can't coexist well otherwise...
 606	 */
 607	status = spi_setup(spi);
 608	if (status < 0) {
 609		dev_err(dev, "can't setup %s, status %d\n",
 610				dev_name(&spi->dev), status);
 611		goto done;
 612	}
 613
 614	/* Device may be bound to an active driver when this returns */
 615	status = device_add(&spi->dev);
 616	if (status < 0)
 617		dev_err(dev, "can't add %s, status %d\n",
 618				dev_name(&spi->dev), status);
 619	else
 
 620		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 
 621
 622done:
 623	mutex_unlock(&spi_add_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624	return status;
 625}
 626EXPORT_SYMBOL_GPL(spi_add_device);
 627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628/**
 629 * spi_new_device - instantiate one new SPI device
 630 * @ctlr: Controller to which device is connected
 631 * @chip: Describes the SPI device
 632 * Context: can sleep
 633 *
 634 * On typical mainboards, this is purely internal; and it's not needed
 635 * after board init creates the hard-wired devices.  Some development
 636 * platforms may not be able to use spi_register_board_info though, and
 637 * this is exported so that for example a USB or parport based adapter
 638 * driver could add devices (which it would learn about out-of-band).
 639 *
 640 * Return: the new device, or NULL.
 641 */
 642struct spi_device *spi_new_device(struct spi_controller *ctlr,
 643				  struct spi_board_info *chip)
 644{
 645	struct spi_device	*proxy;
 646	int			status;
 647
 648	/* NOTE:  caller did any chip->bus_num checks necessary.
 
 649	 *
 650	 * Also, unless we change the return value convention to use
 651	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 652	 * suggests syslogged diagnostics are best here (ugh).
 653	 */
 654
 655	proxy = spi_alloc_device(ctlr);
 656	if (!proxy)
 657		return NULL;
 658
 659	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 660
 661	proxy->chip_select = chip->chip_select;
 662	proxy->max_speed_hz = chip->max_speed_hz;
 663	proxy->mode = chip->mode;
 664	proxy->irq = chip->irq;
 665	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 666	proxy->dev.platform_data = (void *) chip->platform_data;
 667	proxy->controller_data = chip->controller_data;
 668	proxy->controller_state = NULL;
 669
 670	if (chip->properties) {
 671		status = device_add_properties(&proxy->dev, chip->properties);
 672		if (status) {
 673			dev_err(&ctlr->dev,
 674				"failed to add properties to '%s': %d\n",
 675				chip->modalias, status);
 676			goto err_dev_put;
 677		}
 678	}
 679
 680	status = spi_add_device(proxy);
 681	if (status < 0)
 682		goto err_remove_props;
 683
 684	return proxy;
 685
 686err_remove_props:
 687	if (chip->properties)
 688		device_remove_properties(&proxy->dev);
 689err_dev_put:
 
 690	spi_dev_put(proxy);
 691	return NULL;
 692}
 693EXPORT_SYMBOL_GPL(spi_new_device);
 694
 695/**
 696 * spi_unregister_device - unregister a single SPI device
 697 * @spi: spi_device to unregister
 698 *
 699 * Start making the passed SPI device vanish. Normally this would be handled
 700 * by spi_unregister_controller().
 701 */
 702void spi_unregister_device(struct spi_device *spi)
 703{
 704	if (!spi)
 705		return;
 706
 707	if (spi->dev.of_node) {
 708		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 709		of_node_put(spi->dev.of_node);
 710	}
 711	if (ACPI_COMPANION(&spi->dev))
 712		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 713	device_unregister(&spi->dev);
 
 
 
 714}
 715EXPORT_SYMBOL_GPL(spi_unregister_device);
 716
 717static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 718					      struct spi_board_info *bi)
 719{
 720	struct spi_device *dev;
 721
 722	if (ctlr->bus_num != bi->bus_num)
 723		return;
 724
 725	dev = spi_new_device(ctlr, bi);
 726	if (!dev)
 727		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 728			bi->modalias);
 729}
 730
 731/**
 732 * spi_register_board_info - register SPI devices for a given board
 733 * @info: array of chip descriptors
 734 * @n: how many descriptors are provided
 735 * Context: can sleep
 736 *
 737 * Board-specific early init code calls this (probably during arch_initcall)
 738 * with segments of the SPI device table.  Any device nodes are created later,
 739 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 740 * this table of devices forever, so that reloading a controller driver will
 741 * not make Linux forget about these hard-wired devices.
 742 *
 743 * Other code can also call this, e.g. a particular add-on board might provide
 744 * SPI devices through its expansion connector, so code initializing that board
 745 * would naturally declare its SPI devices.
 746 *
 747 * The board info passed can safely be __initdata ... but be careful of
 748 * any embedded pointers (platform_data, etc), they're copied as-is.
 749 * Device properties are deep-copied though.
 750 *
 751 * Return: zero on success, else a negative error code.
 752 */
 753int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 754{
 755	struct boardinfo *bi;
 756	int i;
 757
 758	if (!n)
 759		return 0;
 760
 761	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 762	if (!bi)
 763		return -ENOMEM;
 764
 765	for (i = 0; i < n; i++, bi++, info++) {
 766		struct spi_controller *ctlr;
 767
 768		memcpy(&bi->board_info, info, sizeof(*info));
 769		if (info->properties) {
 770			bi->board_info.properties =
 771					property_entries_dup(info->properties);
 772			if (IS_ERR(bi->board_info.properties))
 773				return PTR_ERR(bi->board_info.properties);
 774		}
 775
 776		mutex_lock(&board_lock);
 777		list_add_tail(&bi->list, &board_list);
 778		list_for_each_entry(ctlr, &spi_controller_list, list)
 779			spi_match_controller_to_boardinfo(ctlr,
 780							  &bi->board_info);
 781		mutex_unlock(&board_lock);
 782	}
 783
 784	return 0;
 785}
 786
 787/*-------------------------------------------------------------------------*/
 788
 789static void spi_set_cs(struct spi_device *spi, bool enable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790{
 791	bool enable1 = enable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792
 793	/*
 794	 * Avoid calling into the driver (or doing delays) if the chip select
 795	 * isn't actually changing from the last time this was called.
 796	 */
 797	if ((spi->controller->last_cs_enable == enable) &&
 
 798	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
 799		return;
 800
 801	spi->controller->last_cs_enable = enable;
 
 
 802	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
 803
 804	if (!spi->controller->set_cs_timing) {
 805		if (enable1)
 806			spi_delay_exec(&spi->controller->cs_setup, NULL);
 807		else
 808			spi_delay_exec(&spi->controller->cs_hold, NULL);
 809	}
 810
 811	if (spi->mode & SPI_CS_HIGH)
 812		enable = !enable;
 813
 814	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
 815		/*
 816		 * Honour the SPI_NO_CS flag and invert the enable line, as
 817		 * active low is default for SPI. Execution paths that handle
 818		 * polarity inversion in gpiolib (such as device tree) will
 819		 * enforce active high using the SPI_CS_HIGH resulting in a
 820		 * double inversion through the code above.
 821		 */
 822		if (!(spi->mode & SPI_NO_CS)) {
 823			if (spi->cs_gpiod)
 824				gpiod_set_value_cansleep(spi->cs_gpiod,
 825							 !enable);
 
 
 
 
 
 
 
 
 
 826			else
 827				gpio_set_value_cansleep(spi->cs_gpio, !enable);
 
 828		}
 829		/* Some SPI masters need both GPIO CS & slave_select */
 830		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 831		    spi->controller->set_cs)
 832			spi->controller->set_cs(spi, !enable);
 833	} else if (spi->controller->set_cs) {
 834		spi->controller->set_cs(spi, !enable);
 835	}
 836
 837	if (!spi->controller->set_cs_timing) {
 838		if (!enable1)
 839			spi_delay_exec(&spi->controller->cs_inactive, NULL);
 
 
 840	}
 841}
 842
 843#ifdef CONFIG_HAS_DMA
 844int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 845		struct sg_table *sgt, void *buf, size_t len,
 846		enum dma_data_direction dir)
 847{
 848	const bool vmalloced_buf = is_vmalloc_addr(buf);
 849	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 850#ifdef CONFIG_HIGHMEM
 851	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 852				(unsigned long)buf < (PKMAP_BASE +
 853					(LAST_PKMAP * PAGE_SIZE)));
 854#else
 855	const bool kmap_buf = false;
 856#endif
 857	int desc_len;
 858	int sgs;
 859	struct page *vm_page;
 860	struct scatterlist *sg;
 861	void *sg_buf;
 862	size_t min;
 863	int i, ret;
 864
 865	if (vmalloced_buf || kmap_buf) {
 866		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 867		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 868	} else if (virt_addr_valid(buf)) {
 869		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 870		sgs = DIV_ROUND_UP(len, desc_len);
 871	} else {
 872		return -EINVAL;
 873	}
 874
 875	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 876	if (ret != 0)
 877		return ret;
 878
 879	sg = &sgt->sgl[0];
 880	for (i = 0; i < sgs; i++) {
 881
 882		if (vmalloced_buf || kmap_buf) {
 883			/*
 884			 * Next scatterlist entry size is the minimum between
 885			 * the desc_len and the remaining buffer length that
 886			 * fits in a page.
 887			 */
 888			min = min_t(size_t, desc_len,
 889				    min_t(size_t, len,
 890					  PAGE_SIZE - offset_in_page(buf)));
 891			if (vmalloced_buf)
 892				vm_page = vmalloc_to_page(buf);
 893			else
 894				vm_page = kmap_to_page(buf);
 895			if (!vm_page) {
 896				sg_free_table(sgt);
 897				return -ENOMEM;
 898			}
 899			sg_set_page(sg, vm_page,
 900				    min, offset_in_page(buf));
 901		} else {
 902			min = min_t(size_t, len, desc_len);
 903			sg_buf = buf;
 904			sg_set_buf(sg, sg_buf, min);
 905		}
 906
 907		buf += min;
 908		len -= min;
 909		sg = sg_next(sg);
 910	}
 911
 912	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 913	if (!ret)
 914		ret = -ENOMEM;
 915	if (ret < 0) {
 916		sg_free_table(sgt);
 917		return ret;
 918	}
 919
 920	sgt->nents = ret;
 
 921
 922	return 0;
 
 
 
 
 923}
 924
 925void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 926		   struct sg_table *sgt, enum dma_data_direction dir)
 
 
 927{
 928	if (sgt->orig_nents) {
 929		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 930		sg_free_table(sgt);
 
 
 931	}
 932}
 933
 
 
 
 
 
 
 934static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 935{
 936	struct device *tx_dev, *rx_dev;
 937	struct spi_transfer *xfer;
 938	int ret;
 939
 940	if (!ctlr->can_dma)
 941		return 0;
 942
 943	if (ctlr->dma_tx)
 944		tx_dev = ctlr->dma_tx->device->dev;
 
 
 945	else
 946		tx_dev = ctlr->dev.parent;
 947
 948	if (ctlr->dma_rx)
 949		rx_dev = ctlr->dma_rx->device->dev;
 
 
 950	else
 951		rx_dev = ctlr->dev.parent;
 952
 953	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 
 
 
 954		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 955			continue;
 956
 957		if (xfer->tx_buf != NULL) {
 958			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 959					  (void *)xfer->tx_buf, xfer->len,
 960					  DMA_TO_DEVICE);
 
 961			if (ret != 0)
 962				return ret;
 963		}
 964
 965		if (xfer->rx_buf != NULL) {
 966			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 967					  xfer->rx_buf, xfer->len,
 968					  DMA_FROM_DEVICE);
 969			if (ret != 0) {
 970				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 971					      DMA_TO_DEVICE);
 
 
 972				return ret;
 973			}
 974		}
 975	}
 976
 
 
 977	ctlr->cur_msg_mapped = true;
 978
 979	return 0;
 980}
 981
 982static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 983{
 
 
 984	struct spi_transfer *xfer;
 985	struct device *tx_dev, *rx_dev;
 986
 987	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 988		return 0;
 989
 990	if (ctlr->dma_tx)
 991		tx_dev = ctlr->dma_tx->device->dev;
 992	else
 993		tx_dev = ctlr->dev.parent;
 994
 995	if (ctlr->dma_rx)
 996		rx_dev = ctlr->dma_rx->device->dev;
 997	else
 998		rx_dev = ctlr->dev.parent;
 999
1000	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1001		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1002			continue;
1003
1004		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1005		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 
 
1006	}
1007
1008	ctlr->cur_msg_mapped = false;
1009
1010	return 0;
1011}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012#else /* !CONFIG_HAS_DMA */
1013static inline int __spi_map_msg(struct spi_controller *ctlr,
1014				struct spi_message *msg)
1015{
1016	return 0;
1017}
1018
1019static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1020				  struct spi_message *msg)
1021{
1022	return 0;
1023}
 
 
 
 
 
 
 
 
 
 
1024#endif /* !CONFIG_HAS_DMA */
1025
1026static inline int spi_unmap_msg(struct spi_controller *ctlr,
1027				struct spi_message *msg)
1028{
1029	struct spi_transfer *xfer;
1030
1031	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1032		/*
1033		 * Restore the original value of tx_buf or rx_buf if they are
1034		 * NULL.
1035		 */
1036		if (xfer->tx_buf == ctlr->dummy_tx)
1037			xfer->tx_buf = NULL;
1038		if (xfer->rx_buf == ctlr->dummy_rx)
1039			xfer->rx_buf = NULL;
1040	}
1041
1042	return __spi_unmap_msg(ctlr, msg);
1043}
1044
1045static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1046{
1047	struct spi_transfer *xfer;
1048	void *tmp;
1049	unsigned int max_tx, max_rx;
1050
1051	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1052		&& !(msg->spi->mode & SPI_3WIRE)) {
1053		max_tx = 0;
1054		max_rx = 0;
1055
1056		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1057			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1058			    !xfer->tx_buf)
1059				max_tx = max(xfer->len, max_tx);
1060			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1061			    !xfer->rx_buf)
1062				max_rx = max(xfer->len, max_rx);
1063		}
1064
1065		if (max_tx) {
1066			tmp = krealloc(ctlr->dummy_tx, max_tx,
1067				       GFP_KERNEL | GFP_DMA);
1068			if (!tmp)
1069				return -ENOMEM;
1070			ctlr->dummy_tx = tmp;
1071			memset(tmp, 0, max_tx);
1072		}
1073
1074		if (max_rx) {
1075			tmp = krealloc(ctlr->dummy_rx, max_rx,
1076				       GFP_KERNEL | GFP_DMA);
1077			if (!tmp)
1078				return -ENOMEM;
1079			ctlr->dummy_rx = tmp;
1080		}
1081
1082		if (max_tx || max_rx) {
1083			list_for_each_entry(xfer, &msg->transfers,
1084					    transfer_list) {
1085				if (!xfer->len)
1086					continue;
1087				if (!xfer->tx_buf)
1088					xfer->tx_buf = ctlr->dummy_tx;
1089				if (!xfer->rx_buf)
1090					xfer->rx_buf = ctlr->dummy_rx;
1091			}
1092		}
1093	}
1094
1095	return __spi_map_msg(ctlr, msg);
1096}
1097
1098static int spi_transfer_wait(struct spi_controller *ctlr,
1099			     struct spi_message *msg,
1100			     struct spi_transfer *xfer)
1101{
1102	struct spi_statistics *statm = &ctlr->statistics;
1103	struct spi_statistics *stats = &msg->spi->statistics;
 
1104	unsigned long long ms;
1105
1106	if (spi_controller_is_slave(ctlr)) {
1107		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1108			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1109			return -EINTR;
1110		}
1111	} else {
1112		ms = 8LL * 1000LL * xfer->len;
1113		do_div(ms, xfer->speed_hz);
1114		ms += ms + 200; /* some tolerance */
 
 
 
 
 
 
 
 
1115
 
 
 
 
 
1116		if (ms > UINT_MAX)
1117			ms = UINT_MAX;
1118
1119		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1120						 msecs_to_jiffies(ms));
1121
1122		if (ms == 0) {
1123			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1124			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1125			dev_err(&msg->spi->dev,
1126				"SPI transfer timed out\n");
1127			return -ETIMEDOUT;
1128		}
1129	}
1130
1131	return 0;
1132}
1133
1134static void _spi_transfer_delay_ns(u32 ns)
1135{
1136	if (!ns)
1137		return;
1138	if (ns <= 1000) {
1139		ndelay(ns);
1140	} else {
1141		u32 us = DIV_ROUND_UP(ns, 1000);
1142
1143		if (us <= 10)
1144			udelay(us);
1145		else
1146			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1147	}
1148}
1149
1150int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1151{
1152	u32 delay = _delay->value;
1153	u32 unit = _delay->unit;
1154	u32 hz;
1155
1156	if (!delay)
1157		return 0;
1158
1159	switch (unit) {
1160	case SPI_DELAY_UNIT_USECS:
1161		delay *= 1000;
1162		break;
1163	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
 
1164		break;
1165	case SPI_DELAY_UNIT_SCK:
1166		/* clock cycles need to be obtained from spi_transfer */
1167		if (!xfer)
1168			return -EINVAL;
1169		/* if there is no effective speed know, then approximate
1170		 * by underestimating with half the requested hz
 
1171		 */
1172		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1173		if (!hz)
1174			return -EINVAL;
1175		delay *= DIV_ROUND_UP(1000000000, hz);
 
 
1176		break;
1177	default:
1178		return -EINVAL;
1179	}
1180
1181	return delay;
1182}
1183EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1184
1185int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1186{
1187	int delay;
1188
1189	might_sleep();
1190
1191	if (!_delay)
1192		return -EINVAL;
1193
1194	delay = spi_delay_to_ns(_delay, xfer);
1195	if (delay < 0)
1196		return delay;
1197
1198	_spi_transfer_delay_ns(delay);
1199
1200	return 0;
1201}
1202EXPORT_SYMBOL_GPL(spi_delay_exec);
1203
1204static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1205					  struct spi_transfer *xfer)
1206{
 
1207	u32 delay = xfer->cs_change_delay.value;
1208	u32 unit = xfer->cs_change_delay.unit;
1209	int ret;
1210
1211	/* return early on "fast" mode - for everything but USECS */
1212	if (!delay) {
1213		if (unit == SPI_DELAY_UNIT_USECS)
1214			_spi_transfer_delay_ns(10000);
1215		return;
1216	}
1217
1218	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1219	if (ret) {
1220		dev_err_once(&msg->spi->dev,
1221			     "Use of unsupported delay unit %i, using default of 10us\n",
1222			     unit);
1223		_spi_transfer_delay_ns(10000);
1224	}
1225}
1226
1227/*
1228 * spi_transfer_one_message - Default implementation of transfer_one_message()
1229 *
1230 * This is a standard implementation of transfer_one_message() for
1231 * drivers which implement a transfer_one() operation.  It provides
1232 * standard handling of delays and chip select management.
1233 */
1234static int spi_transfer_one_message(struct spi_controller *ctlr,
1235				    struct spi_message *msg)
1236{
1237	struct spi_transfer *xfer;
1238	bool keep_cs = false;
1239	int ret = 0;
1240	struct spi_statistics *statm = &ctlr->statistics;
1241	struct spi_statistics *stats = &msg->spi->statistics;
1242
1243	spi_set_cs(msg->spi, true);
 
1244
1245	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1246	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1247
1248	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1249		trace_spi_transfer_start(msg, xfer);
1250
1251		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1252		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1253
1254		if (!ctlr->ptp_sts_supported) {
1255			xfer->ptp_sts_word_pre = 0;
1256			ptp_read_system_prets(xfer->ptp_sts);
1257		}
1258
1259		if (xfer->tx_buf || xfer->rx_buf) {
1260			reinit_completion(&ctlr->xfer_completion);
1261
1262fallback_pio:
 
1263			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1264			if (ret < 0) {
 
 
1265				if (ctlr->cur_msg_mapped &&
1266				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1267					__spi_unmap_msg(ctlr, msg);
1268					ctlr->fallback = true;
1269					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1270					goto fallback_pio;
1271				}
1272
1273				SPI_STATISTICS_INCREMENT_FIELD(statm,
1274							       errors);
1275				SPI_STATISTICS_INCREMENT_FIELD(stats,
1276							       errors);
1277				dev_err(&msg->spi->dev,
1278					"SPI transfer failed: %d\n", ret);
1279				goto out;
1280			}
1281
1282			if (ret > 0) {
1283				ret = spi_transfer_wait(ctlr, msg, xfer);
1284				if (ret < 0)
1285					msg->status = ret;
1286			}
 
 
1287		} else {
1288			if (xfer->len)
1289				dev_err(&msg->spi->dev,
1290					"Bufferless transfer has length %u\n",
1291					xfer->len);
1292		}
1293
1294		if (!ctlr->ptp_sts_supported) {
1295			ptp_read_system_postts(xfer->ptp_sts);
1296			xfer->ptp_sts_word_post = xfer->len;
1297		}
1298
1299		trace_spi_transfer_stop(msg, xfer);
1300
1301		if (msg->status != -EINPROGRESS)
1302			goto out;
1303
1304		spi_transfer_delay_exec(xfer);
1305
1306		if (xfer->cs_change) {
1307			if (list_is_last(&xfer->transfer_list,
1308					 &msg->transfers)) {
1309				keep_cs = true;
1310			} else {
1311				spi_set_cs(msg->spi, false);
 
1312				_spi_transfer_cs_change_delay(msg, xfer);
1313				spi_set_cs(msg->spi, true);
 
1314			}
 
 
 
1315		}
1316
1317		msg->actual_length += xfer->len;
1318	}
1319
1320out:
1321	if (ret != 0 || !keep_cs)
1322		spi_set_cs(msg->spi, false);
1323
1324	if (msg->status == -EINPROGRESS)
1325		msg->status = ret;
1326
1327	if (msg->status && ctlr->handle_err)
1328		ctlr->handle_err(ctlr, msg);
1329
1330	spi_finalize_current_message(ctlr);
1331
1332	return ret;
1333}
1334
1335/**
1336 * spi_finalize_current_transfer - report completion of a transfer
1337 * @ctlr: the controller reporting completion
1338 *
1339 * Called by SPI drivers using the core transfer_one_message()
1340 * implementation to notify it that the current interrupt driven
1341 * transfer has finished and the next one may be scheduled.
1342 */
1343void spi_finalize_current_transfer(struct spi_controller *ctlr)
1344{
1345	complete(&ctlr->xfer_completion);
1346}
1347EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1348
1349static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1350{
1351	if (ctlr->auto_runtime_pm) {
1352		pm_runtime_mark_last_busy(ctlr->dev.parent);
1353		pm_runtime_put_autosuspend(ctlr->dev.parent);
1354	}
1355}
1356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357/**
1358 * __spi_pump_messages - function which processes spi message queue
1359 * @ctlr: controller to process queue for
1360 * @in_kthread: true if we are in the context of the message pump thread
1361 *
1362 * This function checks if there is any spi message in the queue that
1363 * needs processing and if so call out to the driver to initialize hardware
1364 * and transfer each message.
1365 *
1366 * Note that it is called both from the kthread itself and also from
1367 * inside spi_sync(); the queue extraction handling at the top of the
1368 * function should deal with this safely.
1369 */
1370static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1371{
1372	struct spi_transfer *xfer;
1373	struct spi_message *msg;
1374	bool was_busy = false;
1375	unsigned long flags;
1376	int ret;
1377
 
 
 
1378	/* Lock queue */
1379	spin_lock_irqsave(&ctlr->queue_lock, flags);
1380
1381	/* Make sure we are not already running a message */
1382	if (ctlr->cur_msg) {
1383		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1384		return;
1385	}
1386
1387	/* If another context is idling the device then defer */
1388	if (ctlr->idling) {
1389		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1390		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1391		return;
1392	}
1393
1394	/* Check if the queue is idle */
1395	if (list_empty(&ctlr->queue) || !ctlr->running) {
1396		if (!ctlr->busy) {
1397			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1398			return;
1399		}
1400
1401		/* Defer any non-atomic teardown to the thread */
1402		if (!in_kthread) {
1403			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1404			    !ctlr->unprepare_transfer_hardware) {
1405				spi_idle_runtime_pm(ctlr);
1406				ctlr->busy = false;
 
1407				trace_spi_controller_idle(ctlr);
1408			} else {
1409				kthread_queue_work(ctlr->kworker,
1410						   &ctlr->pump_messages);
1411			}
1412			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1413			return;
1414		}
1415
1416		ctlr->busy = false;
1417		ctlr->idling = true;
1418		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1419
1420		kfree(ctlr->dummy_rx);
1421		ctlr->dummy_rx = NULL;
1422		kfree(ctlr->dummy_tx);
1423		ctlr->dummy_tx = NULL;
1424		if (ctlr->unprepare_transfer_hardware &&
1425		    ctlr->unprepare_transfer_hardware(ctlr))
1426			dev_err(&ctlr->dev,
1427				"failed to unprepare transfer hardware\n");
1428		spi_idle_runtime_pm(ctlr);
1429		trace_spi_controller_idle(ctlr);
1430
1431		spin_lock_irqsave(&ctlr->queue_lock, flags);
1432		ctlr->idling = false;
1433		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1434		return;
1435	}
1436
1437	/* Extract head of queue */
1438	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1439	ctlr->cur_msg = msg;
1440
1441	list_del_init(&msg->queue);
1442	if (ctlr->busy)
1443		was_busy = true;
1444	else
1445		ctlr->busy = true;
1446	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1447
1448	mutex_lock(&ctlr->io_mutex);
 
1449
1450	if (!was_busy && ctlr->auto_runtime_pm) {
1451		ret = pm_runtime_get_sync(ctlr->dev.parent);
1452		if (ret < 0) {
1453			pm_runtime_put_noidle(ctlr->dev.parent);
1454			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1455				ret);
1456			mutex_unlock(&ctlr->io_mutex);
1457			return;
1458		}
1459	}
1460
1461	if (!was_busy)
1462		trace_spi_controller_busy(ctlr);
1463
1464	if (!was_busy && ctlr->prepare_transfer_hardware) {
1465		ret = ctlr->prepare_transfer_hardware(ctlr);
1466		if (ret) {
1467			dev_err(&ctlr->dev,
1468				"failed to prepare transfer hardware: %d\n",
1469				ret);
1470
1471			if (ctlr->auto_runtime_pm)
1472				pm_runtime_put(ctlr->dev.parent);
1473
1474			msg->status = ret;
1475			spi_finalize_current_message(ctlr);
1476
1477			mutex_unlock(&ctlr->io_mutex);
1478			return;
1479		}
1480	}
1481
1482	trace_spi_message_start(msg);
1483
1484	if (ctlr->prepare_message) {
1485		ret = ctlr->prepare_message(ctlr, msg);
1486		if (ret) {
1487			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1488				ret);
1489			msg->status = ret;
1490			spi_finalize_current_message(ctlr);
1491			goto out;
1492		}
1493		ctlr->cur_msg_prepared = true;
1494	}
1495
1496	ret = spi_map_msg(ctlr, msg);
1497	if (ret) {
1498		msg->status = ret;
1499		spi_finalize_current_message(ctlr);
1500		goto out;
1501	}
1502
1503	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1504		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1505			xfer->ptp_sts_word_pre = 0;
1506			ptp_read_system_prets(xfer->ptp_sts);
1507		}
1508	}
1509
1510	ret = ctlr->transfer_one_message(ctlr, msg);
1511	if (ret) {
1512		dev_err(&ctlr->dev,
1513			"failed to transfer one message from queue\n");
1514		goto out;
1515	}
1516
1517out:
1518	mutex_unlock(&ctlr->io_mutex);
1519
1520	/* Prod the scheduler in case transfer_one() was busy waiting */
1521	if (!ret)
1522		cond_resched();
 
 
 
 
 
1523}
1524
1525/**
1526 * spi_pump_messages - kthread work function which processes spi message queue
1527 * @work: pointer to kthread work struct contained in the controller struct
1528 */
1529static void spi_pump_messages(struct kthread_work *work)
1530{
1531	struct spi_controller *ctlr =
1532		container_of(work, struct spi_controller, pump_messages);
1533
1534	__spi_pump_messages(ctlr, true);
1535}
1536
1537/**
1538 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1539 *			    TX timestamp for the requested byte from the SPI
1540 *			    transfer. The frequency with which this function
1541 *			    must be called (once per word, once for the whole
1542 *			    transfer, once per batch of words etc) is arbitrary
1543 *			    as long as the @tx buffer offset is greater than or
1544 *			    equal to the requested byte at the time of the
1545 *			    call. The timestamp is only taken once, at the
1546 *			    first such call. It is assumed that the driver
1547 *			    advances its @tx buffer pointer monotonically.
1548 * @ctlr: Pointer to the spi_controller structure of the driver
1549 * @xfer: Pointer to the transfer being timestamped
1550 * @progress: How many words (not bytes) have been transferred so far
1551 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1552 *	      transfer, for less jitter in time measurement. Only compatible
1553 *	      with PIO drivers. If true, must follow up with
1554 *	      spi_take_timestamp_post or otherwise system will crash.
1555 *	      WARNING: for fully predictable results, the CPU frequency must
1556 *	      also be under control (governor).
 
 
 
 
 
 
 
 
1557 */
1558void spi_take_timestamp_pre(struct spi_controller *ctlr,
1559			    struct spi_transfer *xfer,
1560			    size_t progress, bool irqs_off)
1561{
1562	if (!xfer->ptp_sts)
1563		return;
1564
1565	if (xfer->timestamped)
1566		return;
1567
1568	if (progress > xfer->ptp_sts_word_pre)
1569		return;
1570
1571	/* Capture the resolution of the timestamp */
1572	xfer->ptp_sts_word_pre = progress;
1573
1574	if (irqs_off) {
1575		local_irq_save(ctlr->irq_flags);
1576		preempt_disable();
1577	}
1578
1579	ptp_read_system_prets(xfer->ptp_sts);
1580}
1581EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1582
1583/**
1584 * spi_take_timestamp_post - helper for drivers to collect the end of the
1585 *			     TX timestamp for the requested byte from the SPI
1586 *			     transfer. Can be called with an arbitrary
1587 *			     frequency: only the first call where @tx exceeds
1588 *			     or is equal to the requested word will be
1589 *			     timestamped.
1590 * @ctlr: Pointer to the spi_controller structure of the driver
1591 * @xfer: Pointer to the transfer being timestamped
1592 * @progress: How many words (not bytes) have been transferred so far
1593 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
 
 
 
 
 
1594 */
1595void spi_take_timestamp_post(struct spi_controller *ctlr,
1596			     struct spi_transfer *xfer,
1597			     size_t progress, bool irqs_off)
1598{
1599	if (!xfer->ptp_sts)
1600		return;
1601
1602	if (xfer->timestamped)
1603		return;
1604
1605	if (progress < xfer->ptp_sts_word_post)
1606		return;
1607
1608	ptp_read_system_postts(xfer->ptp_sts);
1609
1610	if (irqs_off) {
1611		local_irq_restore(ctlr->irq_flags);
1612		preempt_enable();
1613	}
1614
1615	/* Capture the resolution of the timestamp */
1616	xfer->ptp_sts_word_post = progress;
1617
1618	xfer->timestamped = true;
1619}
1620EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1621
1622/**
1623 * spi_set_thread_rt - set the controller to pump at realtime priority
1624 * @ctlr: controller to boost priority of
1625 *
1626 * This can be called because the controller requested realtime priority
1627 * (by setting the ->rt value before calling spi_register_controller()) or
1628 * because a device on the bus said that its transfers needed realtime
1629 * priority.
1630 *
1631 * NOTE: at the moment if any device on a bus says it needs realtime then
1632 * the thread will be at realtime priority for all transfers on that
1633 * controller.  If this eventually becomes a problem we may see if we can
1634 * find a way to boost the priority only temporarily during relevant
1635 * transfers.
1636 */
1637static void spi_set_thread_rt(struct spi_controller *ctlr)
1638{
1639	dev_info(&ctlr->dev,
1640		"will run message pump with realtime priority\n");
1641	sched_set_fifo(ctlr->kworker->task);
1642}
1643
1644static int spi_init_queue(struct spi_controller *ctlr)
1645{
1646	ctlr->running = false;
1647	ctlr->busy = false;
 
1648
1649	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1650	if (IS_ERR(ctlr->kworker)) {
1651		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1652		return PTR_ERR(ctlr->kworker);
1653	}
1654
1655	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1656
1657	/*
1658	 * Controller config will indicate if this controller should run the
1659	 * message pump with high (realtime) priority to reduce the transfer
1660	 * latency on the bus by minimising the delay between a transfer
1661	 * request and the scheduling of the message pump thread. Without this
1662	 * setting the message pump thread will remain at default priority.
1663	 */
1664	if (ctlr->rt)
1665		spi_set_thread_rt(ctlr);
1666
1667	return 0;
1668}
1669
1670/**
1671 * spi_get_next_queued_message() - called by driver to check for queued
1672 * messages
1673 * @ctlr: the controller to check for queued messages
1674 *
1675 * If there are more messages in the queue, the next message is returned from
1676 * this call.
1677 *
1678 * Return: the next message in the queue, else NULL if the queue is empty.
1679 */
1680struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1681{
1682	struct spi_message *next;
1683	unsigned long flags;
1684
1685	/* get a pointer to the next message, if any */
1686	spin_lock_irqsave(&ctlr->queue_lock, flags);
1687	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1688					queue);
1689	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1690
1691	return next;
1692}
1693EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1694
1695/**
1696 * spi_finalize_current_message() - the current message is complete
1697 * @ctlr: the controller to return the message to
1698 *
1699 * Called by the driver to notify the core that the message in the front of the
1700 * queue is complete and can be removed from the queue.
1701 */
1702void spi_finalize_current_message(struct spi_controller *ctlr)
1703{
1704	struct spi_transfer *xfer;
1705	struct spi_message *mesg;
1706	unsigned long flags;
1707	int ret;
1708
1709	spin_lock_irqsave(&ctlr->queue_lock, flags);
1710	mesg = ctlr->cur_msg;
1711	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1712
1713	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1714		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1715			ptp_read_system_postts(xfer->ptp_sts);
1716			xfer->ptp_sts_word_post = xfer->len;
1717		}
1718	}
1719
1720	if (unlikely(ctlr->ptp_sts_supported))
1721		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1722			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1723
1724	spi_unmap_msg(ctlr, mesg);
1725
1726	/* In the prepare_messages callback the spi bus has the opportunity to
1727	 * split a transfer to smaller chunks.
1728	 * Release splited transfers here since spi_map_msg is done on the
1729	 * splited transfers.
 
 
1730	 */
1731	spi_res_release(ctlr, mesg);
1732
1733	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1734		ret = ctlr->unprepare_message(ctlr, mesg);
1735		if (ret) {
1736			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1737				ret);
1738		}
1739	}
1740
1741	spin_lock_irqsave(&ctlr->queue_lock, flags);
1742	ctlr->cur_msg = NULL;
1743	ctlr->cur_msg_prepared = false;
1744	ctlr->fallback = false;
1745	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1746	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1747
1748	trace_spi_message_done(mesg);
1749
1750	mesg->state = NULL;
1751	if (mesg->complete)
1752		mesg->complete(mesg->context);
1753}
1754EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1755
1756static int spi_start_queue(struct spi_controller *ctlr)
1757{
1758	unsigned long flags;
1759
1760	spin_lock_irqsave(&ctlr->queue_lock, flags);
1761
1762	if (ctlr->running || ctlr->busy) {
1763		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1764		return -EBUSY;
1765	}
1766
1767	ctlr->running = true;
1768	ctlr->cur_msg = NULL;
1769	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1770
1771	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1772
1773	return 0;
1774}
1775
1776static int spi_stop_queue(struct spi_controller *ctlr)
1777{
1778	unsigned long flags;
1779	unsigned limit = 500;
1780	int ret = 0;
1781
1782	spin_lock_irqsave(&ctlr->queue_lock, flags);
1783
1784	/*
1785	 * This is a bit lame, but is optimized for the common execution path.
1786	 * A wait_queue on the ctlr->busy could be used, but then the common
1787	 * execution path (pump_messages) would be required to call wake_up or
1788	 * friends on every SPI message. Do this instead.
1789	 */
1790	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1791		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792		usleep_range(10000, 11000);
1793		spin_lock_irqsave(&ctlr->queue_lock, flags);
1794	}
1795
1796	if (!list_empty(&ctlr->queue) || ctlr->busy)
1797		ret = -EBUSY;
1798	else
1799		ctlr->running = false;
1800
1801	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1802
1803	if (ret) {
1804		dev_warn(&ctlr->dev, "could not stop message queue\n");
1805		return ret;
1806	}
1807	return ret;
1808}
1809
1810static int spi_destroy_queue(struct spi_controller *ctlr)
1811{
1812	int ret;
1813
1814	ret = spi_stop_queue(ctlr);
1815
1816	/*
1817	 * kthread_flush_worker will block until all work is done.
1818	 * If the reason that stop_queue timed out is that the work will never
1819	 * finish, then it does no good to call flush/stop thread, so
1820	 * return anyway.
1821	 */
1822	if (ret) {
1823		dev_err(&ctlr->dev, "problem destroying queue\n");
1824		return ret;
1825	}
1826
1827	kthread_destroy_worker(ctlr->kworker);
1828
1829	return 0;
1830}
1831
1832static int __spi_queued_transfer(struct spi_device *spi,
1833				 struct spi_message *msg,
1834				 bool need_pump)
1835{
1836	struct spi_controller *ctlr = spi->controller;
1837	unsigned long flags;
1838
1839	spin_lock_irqsave(&ctlr->queue_lock, flags);
1840
1841	if (!ctlr->running) {
1842		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1843		return -ESHUTDOWN;
1844	}
1845	msg->actual_length = 0;
1846	msg->status = -EINPROGRESS;
1847
1848	list_add_tail(&msg->queue, &ctlr->queue);
 
1849	if (!ctlr->busy && need_pump)
1850		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1851
1852	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1853	return 0;
1854}
1855
1856/**
1857 * spi_queued_transfer - transfer function for queued transfers
1858 * @spi: spi device which is requesting transfer
1859 * @msg: spi message which is to handled is queued to driver queue
1860 *
1861 * Return: zero on success, else a negative error code.
1862 */
1863static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1864{
1865	return __spi_queued_transfer(spi, msg, true);
1866}
1867
1868static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1869{
1870	int ret;
1871
1872	ctlr->transfer = spi_queued_transfer;
1873	if (!ctlr->transfer_one_message)
1874		ctlr->transfer_one_message = spi_transfer_one_message;
1875
1876	/* Initialize and start queue */
1877	ret = spi_init_queue(ctlr);
1878	if (ret) {
1879		dev_err(&ctlr->dev, "problem initializing queue\n");
1880		goto err_init_queue;
1881	}
1882	ctlr->queued = true;
1883	ret = spi_start_queue(ctlr);
1884	if (ret) {
1885		dev_err(&ctlr->dev, "problem starting queue\n");
1886		goto err_start_queue;
1887	}
1888
1889	return 0;
1890
1891err_start_queue:
1892	spi_destroy_queue(ctlr);
1893err_init_queue:
1894	return ret;
1895}
1896
1897/**
1898 * spi_flush_queue - Send all pending messages in the queue from the callers'
1899 *		     context
1900 * @ctlr: controller to process queue for
1901 *
1902 * This should be used when one wants to ensure all pending messages have been
1903 * sent before doing something. Is used by the spi-mem code to make sure SPI
1904 * memory operations do not preempt regular SPI transfers that have been queued
1905 * before the spi-mem operation.
1906 */
1907void spi_flush_queue(struct spi_controller *ctlr)
1908{
1909	if (ctlr->transfer == spi_queued_transfer)
1910		__spi_pump_messages(ctlr, false);
1911}
1912
1913/*-------------------------------------------------------------------------*/
1914
1915#if defined(CONFIG_OF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1916static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1917			   struct device_node *nc)
1918{
1919	u32 value;
1920	int rc;
1921
1922	/* Mode (clock phase/polarity/etc.) */
1923	if (of_property_read_bool(nc, "spi-cpha"))
1924		spi->mode |= SPI_CPHA;
1925	if (of_property_read_bool(nc, "spi-cpol"))
1926		spi->mode |= SPI_CPOL;
1927	if (of_property_read_bool(nc, "spi-3wire"))
1928		spi->mode |= SPI_3WIRE;
1929	if (of_property_read_bool(nc, "spi-lsb-first"))
1930		spi->mode |= SPI_LSB_FIRST;
1931	if (of_property_read_bool(nc, "spi-cs-high"))
1932		spi->mode |= SPI_CS_HIGH;
1933
1934	/* Device DUAL/QUAD mode */
1935	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1936		switch (value) {
 
 
 
1937		case 1:
1938			break;
1939		case 2:
1940			spi->mode |= SPI_TX_DUAL;
1941			break;
1942		case 4:
1943			spi->mode |= SPI_TX_QUAD;
1944			break;
1945		case 8:
1946			spi->mode |= SPI_TX_OCTAL;
1947			break;
1948		default:
1949			dev_warn(&ctlr->dev,
1950				"spi-tx-bus-width %d not supported\n",
1951				value);
1952			break;
1953		}
1954	}
1955
1956	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1957		switch (value) {
 
 
 
1958		case 1:
1959			break;
1960		case 2:
1961			spi->mode |= SPI_RX_DUAL;
1962			break;
1963		case 4:
1964			spi->mode |= SPI_RX_QUAD;
1965			break;
1966		case 8:
1967			spi->mode |= SPI_RX_OCTAL;
1968			break;
1969		default:
1970			dev_warn(&ctlr->dev,
1971				"spi-rx-bus-width %d not supported\n",
1972				value);
1973			break;
1974		}
1975	}
1976
1977	if (spi_controller_is_slave(ctlr)) {
1978		if (!of_node_name_eq(nc, "slave")) {
1979			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1980				nc);
1981			return -EINVAL;
1982		}
1983		return 0;
1984	}
1985
1986	/* Device address */
1987	rc = of_property_read_u32(nc, "reg", &value);
1988	if (rc) {
1989		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1990			nc, rc);
1991		return rc;
1992	}
1993	spi->chip_select = value;
1994
1995	/*
1996	 * For descriptors associated with the device, polarity inversion is
1997	 * handled in the gpiolib, so all gpio chip selects are "active high"
1998	 * in the logical sense, the gpiolib will invert the line if need be.
1999	 */
2000	if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
2001	    ctlr->cs_gpiods[spi->chip_select])
2002		spi->mode |= SPI_CS_HIGH;
2003
2004	/* Device speed */
2005	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2006		spi->max_speed_hz = value;
2007
 
 
 
2008	return 0;
2009}
2010
2011static struct spi_device *
2012of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2013{
2014	struct spi_device *spi;
2015	int rc;
2016
2017	/* Alloc an spi_device */
2018	spi = spi_alloc_device(ctlr);
2019	if (!spi) {
2020		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2021		rc = -ENOMEM;
2022		goto err_out;
2023	}
2024
2025	/* Select device driver */
2026	rc = of_modalias_node(nc, spi->modalias,
2027				sizeof(spi->modalias));
2028	if (rc < 0) {
2029		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2030		goto err_out;
2031	}
2032
2033	rc = of_spi_parse_dt(ctlr, spi, nc);
2034	if (rc)
2035		goto err_out;
2036
2037	/* Store a pointer to the node in the device structure */
2038	of_node_get(nc);
2039	spi->dev.of_node = nc;
 
2040
2041	/* Register the new device */
2042	rc = spi_add_device(spi);
2043	if (rc) {
2044		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2045		goto err_of_node_put;
2046	}
2047
2048	return spi;
2049
2050err_of_node_put:
2051	of_node_put(nc);
2052err_out:
2053	spi_dev_put(spi);
2054	return ERR_PTR(rc);
2055}
2056
2057/**
2058 * of_register_spi_devices() - Register child devices onto the SPI bus
2059 * @ctlr:	Pointer to spi_controller device
2060 *
2061 * Registers an spi_device for each child node of controller node which
2062 * represents a valid SPI slave.
2063 */
2064static void of_register_spi_devices(struct spi_controller *ctlr)
2065{
2066	struct spi_device *spi;
2067	struct device_node *nc;
2068
2069	if (!ctlr->dev.of_node)
2070		return;
2071
2072	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2073		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2074			continue;
2075		spi = of_register_spi_device(ctlr, nc);
2076		if (IS_ERR(spi)) {
2077			dev_warn(&ctlr->dev,
2078				 "Failed to create SPI device for %pOF\n", nc);
2079			of_node_clear_flag(nc, OF_POPULATED);
2080		}
2081	}
2082}
2083#else
2084static void of_register_spi_devices(struct spi_controller *ctlr) { }
2085#endif
2086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087#ifdef CONFIG_ACPI
2088struct acpi_spi_lookup {
2089	struct spi_controller 	*ctlr;
2090	u32			max_speed_hz;
2091	u32			mode;
2092	int			irq;
2093	u8			bits_per_word;
2094	u8			chip_select;
 
 
2095};
2096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2098					    struct acpi_spi_lookup *lookup)
2099{
2100	const union acpi_object *obj;
2101
2102	if (!x86_apple_machine)
2103		return;
2104
2105	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2106	    && obj->buffer.length >= 4)
2107		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2108
2109	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2110	    && obj->buffer.length == 8)
2111		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2112
2113	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2114	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2115		lookup->mode |= SPI_LSB_FIRST;
2116
2117	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2118	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2119		lookup->mode |= SPI_CPOL;
2120
2121	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2122	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2123		lookup->mode |= SPI_CPHA;
2124}
2125
 
 
2126static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2127{
2128	struct acpi_spi_lookup *lookup = data;
2129	struct spi_controller *ctlr = lookup->ctlr;
2130
2131	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2132		struct acpi_resource_spi_serialbus *sb;
2133		acpi_handle parent_handle;
2134		acpi_status status;
2135
2136		sb = &ares->data.spi_serial_bus;
2137		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2138
 
 
 
2139			status = acpi_get_handle(NULL,
2140						 sb->resource_source.string_ptr,
2141						 &parent_handle);
2142
2143			if (ACPI_FAILURE(status) ||
2144			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2145				return -ENODEV;
2146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147			/*
2148			 * ACPI DeviceSelection numbering is handled by the
2149			 * host controller driver in Windows and can vary
2150			 * from driver to driver. In Linux we always expect
2151			 * 0 .. max - 1 so we need to ask the driver to
2152			 * translate between the two schemes.
2153			 */
2154			if (ctlr->fw_translate_cs) {
2155				int cs = ctlr->fw_translate_cs(ctlr,
2156						sb->device_selection);
2157				if (cs < 0)
2158					return cs;
2159				lookup->chip_select = cs;
2160			} else {
2161				lookup->chip_select = sb->device_selection;
2162			}
2163
2164			lookup->max_speed_hz = sb->connection_speed;
2165			lookup->bits_per_word = sb->data_bit_length;
2166
2167			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2168				lookup->mode |= SPI_CPHA;
2169			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2170				lookup->mode |= SPI_CPOL;
2171			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2172				lookup->mode |= SPI_CS_HIGH;
2173		}
2174	} else if (lookup->irq < 0) {
2175		struct resource r;
2176
2177		if (acpi_dev_resource_interrupt(ares, 0, &r))
2178			lookup->irq = r.start;
2179	}
2180
2181	/* Always tell the ACPI core to skip this resource */
2182	return 1;
2183}
2184
2185static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2186					    struct acpi_device *adev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187{
2188	acpi_handle parent_handle = NULL;
2189	struct list_head resource_list;
2190	struct acpi_spi_lookup lookup = {};
2191	struct spi_device *spi;
2192	int ret;
2193
2194	if (acpi_bus_get_status(adev) || !adev->status.present ||
2195	    acpi_device_enumerated(adev))
2196		return AE_OK;
2197
2198	lookup.ctlr		= ctlr;
2199	lookup.irq		= -1;
 
 
2200
2201	INIT_LIST_HEAD(&resource_list);
2202	ret = acpi_dev_get_resources(adev, &resource_list,
2203				     acpi_spi_add_resource, &lookup);
2204	acpi_dev_free_resource_list(&resource_list);
2205
2206	if (ret < 0)
2207		/* found SPI in _CRS but it points to another controller */
2208		return AE_OK;
2209
2210	if (!lookup.max_speed_hz &&
2211	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2212	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2213		/* Apple does not use _CRS but nested devices for SPI slaves */
2214		acpi_spi_parse_apple_properties(adev, &lookup);
2215	}
2216
2217	if (!lookup.max_speed_hz)
2218		return AE_OK;
2219
2220	spi = spi_alloc_device(ctlr);
2221	if (!spi) {
2222		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2223			dev_name(&adev->dev));
2224		return AE_NO_MEMORY;
2225	}
2226
2227
2228	ACPI_COMPANION_SET(&spi->dev, adev);
2229	spi->max_speed_hz	= lookup.max_speed_hz;
2230	spi->mode		|= lookup.mode;
2231	spi->irq		= lookup.irq;
2232	spi->bits_per_word	= lookup.bits_per_word;
2233	spi->chip_select	= lookup.chip_select;
2234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2235	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2236			  sizeof(spi->modalias));
2237
2238	if (spi->irq < 0)
2239		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2240
2241	acpi_device_set_enumerated(adev);
2242
2243	adev->power.flags.ignore_parent = true;
2244	if (spi_add_device(spi)) {
2245		adev->power.flags.ignore_parent = false;
2246		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2247			dev_name(&adev->dev));
2248		spi_dev_put(spi);
2249	}
2250
2251	return AE_OK;
2252}
2253
2254static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2255				       void *data, void **return_value)
2256{
 
2257	struct spi_controller *ctlr = data;
2258	struct acpi_device *adev;
2259
2260	if (acpi_bus_get_device(handle, &adev))
2261		return AE_OK;
2262
2263	return acpi_register_spi_device(ctlr, adev);
2264}
2265
2266#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2267
2268static void acpi_register_spi_devices(struct spi_controller *ctlr)
2269{
2270	acpi_status status;
2271	acpi_handle handle;
2272
2273	handle = ACPI_HANDLE(ctlr->dev.parent);
2274	if (!handle)
2275		return;
2276
2277	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2278				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2279				     acpi_spi_add_device, NULL, ctlr, NULL);
2280	if (ACPI_FAILURE(status))
2281		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2282}
2283#else
2284static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2285#endif /* CONFIG_ACPI */
2286
2287static void spi_controller_release(struct device *dev)
2288{
2289	struct spi_controller *ctlr;
2290
2291	ctlr = container_of(dev, struct spi_controller, dev);
2292	kfree(ctlr);
2293}
2294
2295static struct class spi_master_class = {
2296	.name		= "spi_master",
2297	.owner		= THIS_MODULE,
2298	.dev_release	= spi_controller_release,
2299	.dev_groups	= spi_master_groups,
2300};
2301
2302#ifdef CONFIG_SPI_SLAVE
2303/**
2304 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2305 *		     controller
2306 * @spi: device used for the current transfer
2307 */
2308int spi_slave_abort(struct spi_device *spi)
2309{
2310	struct spi_controller *ctlr = spi->controller;
2311
2312	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2313		return ctlr->slave_abort(ctlr);
2314
2315	return -ENOTSUPP;
2316}
2317EXPORT_SYMBOL_GPL(spi_slave_abort);
2318
2319static int match_true(struct device *dev, void *data)
2320{
2321	return 1;
 
 
 
 
 
2322}
 
2323
2324static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2325			  char *buf)
2326{
2327	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2328						   dev);
2329	struct device *child;
2330
2331	child = device_find_child(&ctlr->dev, NULL, match_true);
2332	return sprintf(buf, "%s\n",
2333		       child ? to_spi_device(child)->modalias : NULL);
2334}
2335
2336static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2337			   const char *buf, size_t count)
2338{
2339	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2340						   dev);
2341	struct spi_device *spi;
2342	struct device *child;
2343	char name[32];
2344	int rc;
2345
2346	rc = sscanf(buf, "%31s", name);
2347	if (rc != 1 || !name[0])
2348		return -EINVAL;
2349
2350	child = device_find_child(&ctlr->dev, NULL, match_true);
2351	if (child) {
2352		/* Remove registered slave */
2353		device_unregister(child);
2354		put_device(child);
2355	}
2356
2357	if (strcmp(name, "(null)")) {
2358		/* Register new slave */
2359		spi = spi_alloc_device(ctlr);
2360		if (!spi)
2361			return -ENOMEM;
2362
2363		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2364
2365		rc = spi_add_device(spi);
2366		if (rc) {
2367			spi_dev_put(spi);
2368			return rc;
2369		}
2370	}
2371
2372	return count;
2373}
2374
2375static DEVICE_ATTR_RW(slave);
2376
2377static struct attribute *spi_slave_attrs[] = {
2378	&dev_attr_slave.attr,
2379	NULL,
2380};
2381
2382static const struct attribute_group spi_slave_group = {
2383	.attrs = spi_slave_attrs,
2384};
2385
2386static const struct attribute_group *spi_slave_groups[] = {
2387	&spi_controller_statistics_group,
2388	&spi_slave_group,
2389	NULL,
2390};
2391
2392static struct class spi_slave_class = {
2393	.name		= "spi_slave",
2394	.owner		= THIS_MODULE,
2395	.dev_release	= spi_controller_release,
2396	.dev_groups	= spi_slave_groups,
2397};
2398#else
2399extern struct class spi_slave_class;	/* dummy */
2400#endif
2401
2402/**
2403 * __spi_alloc_controller - allocate an SPI master or slave controller
2404 * @dev: the controller, possibly using the platform_bus
2405 * @size: how much zeroed driver-private data to allocate; the pointer to this
2406 *	memory is in the driver_data field of the returned device, accessible
2407 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2408 *	drivers granting DMA access to portions of their private data need to
2409 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2410 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2411 *	slave (true) controller
2412 * Context: can sleep
2413 *
2414 * This call is used only by SPI controller drivers, which are the
2415 * only ones directly touching chip registers.  It's how they allocate
2416 * an spi_controller structure, prior to calling spi_register_controller().
2417 *
2418 * This must be called from context that can sleep.
2419 *
2420 * The caller is responsible for assigning the bus number and initializing the
2421 * controller's methods before calling spi_register_controller(); and (after
2422 * errors adding the device) calling spi_controller_put() to prevent a memory
2423 * leak.
2424 *
2425 * Return: the SPI controller structure on success, else NULL.
2426 */
2427struct spi_controller *__spi_alloc_controller(struct device *dev,
2428					      unsigned int size, bool slave)
2429{
2430	struct spi_controller	*ctlr;
2431	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2432
2433	if (!dev)
2434		return NULL;
2435
2436	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2437	if (!ctlr)
2438		return NULL;
2439
2440	device_initialize(&ctlr->dev);
 
 
 
 
 
 
2441	ctlr->bus_num = -1;
2442	ctlr->num_chipselect = 1;
2443	ctlr->slave = slave;
2444	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2445		ctlr->dev.class = &spi_slave_class;
2446	else
2447		ctlr->dev.class = &spi_master_class;
2448	ctlr->dev.parent = dev;
2449	pm_suspend_ignore_children(&ctlr->dev, true);
2450	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2451
2452	return ctlr;
2453}
2454EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2455
2456#ifdef CONFIG_OF
2457static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2458{
2459	int nb, i, *cs;
2460	struct device_node *np = ctlr->dev.of_node;
2461
2462	if (!np)
2463		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464
2465	nb = of_gpio_named_count(np, "cs-gpios");
2466	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
 
 
2467
2468	/* Return error only for an incorrectly formed cs-gpios property */
2469	if (nb == 0 || nb == -ENOENT)
2470		return 0;
2471	else if (nb < 0)
2472		return nb;
 
 
 
2473
2474	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2475			  GFP_KERNEL);
2476	ctlr->cs_gpios = cs;
2477
2478	if (!ctlr->cs_gpios)
2479		return -ENOMEM;
2480
2481	for (i = 0; i < ctlr->num_chipselect; i++)
2482		cs[i] = -ENOENT;
2483
2484	for (i = 0; i < nb; i++)
2485		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2486
2487	return 0;
2488}
2489#else
2490static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2491{
2492	return 0;
2493}
2494#endif
2495
2496/**
2497 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2498 * @ctlr: The SPI master to grab GPIO descriptors for
2499 */
2500static int spi_get_gpio_descs(struct spi_controller *ctlr)
2501{
2502	int nb, i;
2503	struct gpio_desc **cs;
2504	struct device *dev = &ctlr->dev;
2505	unsigned long native_cs_mask = 0;
2506	unsigned int num_cs_gpios = 0;
2507
2508	nb = gpiod_count(dev, "cs");
 
 
 
 
 
 
 
2509	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2510
2511	/* No GPIOs at all is fine, else return the error */
2512	if (nb == 0 || nb == -ENOENT)
2513		return 0;
2514	else if (nb < 0)
2515		return nb;
2516
2517	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2518			  GFP_KERNEL);
2519	if (!cs)
2520		return -ENOMEM;
2521	ctlr->cs_gpiods = cs;
2522
2523	for (i = 0; i < nb; i++) {
2524		/*
2525		 * Most chipselects are active low, the inverted
2526		 * semantics are handled by special quirks in gpiolib,
2527		 * so initializing them GPIOD_OUT_LOW here means
2528		 * "unasserted", in most cases this will drive the physical
2529		 * line high.
2530		 */
2531		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2532						      GPIOD_OUT_LOW);
2533		if (IS_ERR(cs[i]))
2534			return PTR_ERR(cs[i]);
2535
2536		if (cs[i]) {
2537			/*
2538			 * If we find a CS GPIO, name it after the device and
2539			 * chip select line.
2540			 */
2541			char *gpioname;
2542
2543			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2544						  dev_name(dev), i);
2545			if (!gpioname)
2546				return -ENOMEM;
2547			gpiod_set_consumer_name(cs[i], gpioname);
2548			num_cs_gpios++;
2549			continue;
2550		}
2551
2552		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2553			dev_err(dev, "Invalid native chip select %d\n", i);
2554			return -EINVAL;
2555		}
2556		native_cs_mask |= BIT(i);
2557	}
2558
2559	ctlr->unused_native_cs = ffz(native_cs_mask);
2560	if (num_cs_gpios && ctlr->max_native_cs &&
2561	    ctlr->unused_native_cs >= ctlr->max_native_cs) {
 
2562		dev_err(dev, "No unused native chip select available\n");
2563		return -EINVAL;
2564	}
2565
2566	return 0;
2567}
2568
2569static int spi_controller_check_ops(struct spi_controller *ctlr)
2570{
2571	/*
2572	 * The controller may implement only the high-level SPI-memory like
2573	 * operations if it does not support regular SPI transfers, and this is
2574	 * valid use case.
2575	 * If ->mem_ops is NULL, we request that at least one of the
2576	 * ->transfer_xxx() method be implemented.
2577	 */
2578	if (ctlr->mem_ops) {
2579		if (!ctlr->mem_ops->exec_op)
2580			return -EINVAL;
2581	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2582		   !ctlr->transfer_one_message) {
2583		return -EINVAL;
2584	}
2585
2586	return 0;
2587}
2588
2589/**
2590 * spi_register_controller - register SPI master or slave controller
2591 * @ctlr: initialized master, originally from spi_alloc_master() or
2592 *	spi_alloc_slave()
2593 * Context: can sleep
2594 *
2595 * SPI controllers connect to their drivers using some non-SPI bus,
2596 * such as the platform bus.  The final stage of probe() in that code
2597 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2598 *
2599 * SPI controllers use board specific (often SOC specific) bus numbers,
2600 * and board-specific addressing for SPI devices combines those numbers
2601 * with chip select numbers.  Since SPI does not directly support dynamic
2602 * device identification, boards need configuration tables telling which
2603 * chip is at which address.
2604 *
2605 * This must be called from context that can sleep.  It returns zero on
2606 * success, else a negative error code (dropping the controller's refcount).
2607 * After a successful return, the caller is responsible for calling
2608 * spi_unregister_controller().
2609 *
2610 * Return: zero on success, else a negative error code.
2611 */
2612int spi_register_controller(struct spi_controller *ctlr)
2613{
2614	struct device		*dev = ctlr->dev.parent;
2615	struct boardinfo	*bi;
2616	int			status;
2617	int			id, first_dynamic;
2618
2619	if (!dev)
2620		return -ENODEV;
2621
2622	/*
2623	 * Make sure all necessary hooks are implemented before registering
2624	 * the SPI controller.
2625	 */
2626	status = spi_controller_check_ops(ctlr);
2627	if (status)
2628		return status;
2629
2630	if (ctlr->bus_num >= 0) {
2631		/* devices with a fixed bus num must check-in with the num */
2632		mutex_lock(&board_lock);
2633		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2634			ctlr->bus_num + 1, GFP_KERNEL);
2635		mutex_unlock(&board_lock);
2636		if (WARN(id < 0, "couldn't get idr"))
2637			return id == -ENOSPC ? -EBUSY : id;
2638		ctlr->bus_num = id;
2639	} else if (ctlr->dev.of_node) {
2640		/* allocate dynamic bus number using Linux idr */
2641		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2642		if (id >= 0) {
2643			ctlr->bus_num = id;
2644			mutex_lock(&board_lock);
2645			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2646				       ctlr->bus_num + 1, GFP_KERNEL);
2647			mutex_unlock(&board_lock);
2648			if (WARN(id < 0, "couldn't get idr"))
2649				return id == -ENOSPC ? -EBUSY : id;
2650		}
2651	}
2652	if (ctlr->bus_num < 0) {
2653		first_dynamic = of_alias_get_highest_id("spi");
2654		if (first_dynamic < 0)
2655			first_dynamic = 0;
2656		else
2657			first_dynamic++;
2658
2659		mutex_lock(&board_lock);
2660		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2661			       0, GFP_KERNEL);
2662		mutex_unlock(&board_lock);
2663		if (WARN(id < 0, "couldn't get idr"))
2664			return id;
2665		ctlr->bus_num = id;
2666	}
2667	INIT_LIST_HEAD(&ctlr->queue);
2668	spin_lock_init(&ctlr->queue_lock);
2669	spin_lock_init(&ctlr->bus_lock_spinlock);
2670	mutex_init(&ctlr->bus_lock_mutex);
2671	mutex_init(&ctlr->io_mutex);
2672	ctlr->bus_lock_flag = 0;
2673	init_completion(&ctlr->xfer_completion);
 
2674	if (!ctlr->max_dma_len)
2675		ctlr->max_dma_len = INT_MAX;
2676
2677	/* register the device, then userspace will see it.
2678	 * registration fails if the bus ID is in use.
 
2679	 */
2680	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2681
2682	if (!spi_controller_is_slave(ctlr)) {
2683		if (ctlr->use_gpio_descriptors) {
2684			status = spi_get_gpio_descs(ctlr);
2685			if (status)
2686				goto free_bus_id;
2687			/*
2688			 * A controller using GPIO descriptors always
2689			 * supports SPI_CS_HIGH if need be.
2690			 */
2691			ctlr->mode_bits |= SPI_CS_HIGH;
2692		} else {
2693			/* Legacy code path for GPIOs from DT */
2694			status = of_spi_get_gpio_numbers(ctlr);
2695			if (status)
2696				goto free_bus_id;
2697		}
2698	}
2699
2700	/*
2701	 * Even if it's just one always-selected device, there must
2702	 * be at least one chipselect.
2703	 */
2704	if (!ctlr->num_chipselect) {
2705		status = -EINVAL;
2706		goto free_bus_id;
2707	}
2708
 
 
 
2709	status = device_add(&ctlr->dev);
2710	if (status < 0)
2711		goto free_bus_id;
2712	dev_dbg(dev, "registered %s %s\n",
2713			spi_controller_is_slave(ctlr) ? "slave" : "master",
2714			dev_name(&ctlr->dev));
2715
2716	/*
2717	 * If we're using a queued driver, start the queue. Note that we don't
2718	 * need the queueing logic if the driver is only supporting high-level
2719	 * memory operations.
2720	 */
2721	if (ctlr->transfer) {
2722		dev_info(dev, "controller is unqueued, this is deprecated\n");
2723	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2724		status = spi_controller_initialize_queue(ctlr);
2725		if (status) {
2726			device_del(&ctlr->dev);
2727			goto free_bus_id;
2728		}
2729	}
2730	/* add statistics */
2731	spin_lock_init(&ctlr->statistics.lock);
 
 
 
 
 
2732
2733	mutex_lock(&board_lock);
2734	list_add_tail(&ctlr->list, &spi_controller_list);
2735	list_for_each_entry(bi, &board_list, list)
2736		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2737	mutex_unlock(&board_lock);
2738
2739	/* Register devices from the device tree and ACPI */
2740	of_register_spi_devices(ctlr);
2741	acpi_register_spi_devices(ctlr);
2742	return status;
2743
 
 
2744free_bus_id:
2745	mutex_lock(&board_lock);
2746	idr_remove(&spi_master_idr, ctlr->bus_num);
2747	mutex_unlock(&board_lock);
2748	return status;
2749}
2750EXPORT_SYMBOL_GPL(spi_register_controller);
2751
2752static void devm_spi_unregister(struct device *dev, void *res)
2753{
2754	spi_unregister_controller(*(struct spi_controller **)res);
2755}
2756
2757/**
2758 * devm_spi_register_controller - register managed SPI master or slave
2759 *	controller
2760 * @dev:    device managing SPI controller
2761 * @ctlr: initialized controller, originally from spi_alloc_master() or
2762 *	spi_alloc_slave()
2763 * Context: can sleep
2764 *
2765 * Register a SPI device as with spi_register_controller() which will
2766 * automatically be unregistered and freed.
2767 *
2768 * Return: zero on success, else a negative error code.
2769 */
2770int devm_spi_register_controller(struct device *dev,
2771				 struct spi_controller *ctlr)
2772{
2773	struct spi_controller **ptr;
2774	int ret;
2775
2776	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2777	if (!ptr)
2778		return -ENOMEM;
2779
2780	ret = spi_register_controller(ctlr);
2781	if (!ret) {
2782		*ptr = ctlr;
2783		devres_add(dev, ptr);
2784	} else {
2785		devres_free(ptr);
2786	}
2787
2788	return ret;
2789}
2790EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2791
2792static int __unregister(struct device *dev, void *null)
2793{
2794	spi_unregister_device(to_spi_device(dev));
2795	return 0;
2796}
2797
2798/**
2799 * spi_unregister_controller - unregister SPI master or slave controller
2800 * @ctlr: the controller being unregistered
2801 * Context: can sleep
2802 *
2803 * This call is used only by SPI controller drivers, which are the
2804 * only ones directly touching chip registers.
2805 *
2806 * This must be called from context that can sleep.
2807 *
2808 * Note that this function also drops a reference to the controller.
2809 */
2810void spi_unregister_controller(struct spi_controller *ctlr)
2811{
2812	struct spi_controller *found;
2813	int id = ctlr->bus_num;
2814
2815	/* Prevent addition of new devices, unregister existing ones */
2816	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2817		mutex_lock(&spi_add_lock);
2818
2819	device_for_each_child(&ctlr->dev, NULL, __unregister);
2820
2821	/* First make sure that this controller was ever added */
2822	mutex_lock(&board_lock);
2823	found = idr_find(&spi_master_idr, id);
2824	mutex_unlock(&board_lock);
2825	if (ctlr->queued) {
2826		if (spi_destroy_queue(ctlr))
2827			dev_err(&ctlr->dev, "queue remove failed\n");
2828	}
2829	mutex_lock(&board_lock);
2830	list_del(&ctlr->list);
2831	mutex_unlock(&board_lock);
2832
2833	device_unregister(&ctlr->dev);
2834	/* free bus id */
 
2835	mutex_lock(&board_lock);
2836	if (found == ctlr)
2837		idr_remove(&spi_master_idr, id);
2838	mutex_unlock(&board_lock);
2839
2840	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2841		mutex_unlock(&spi_add_lock);
 
 
 
 
 
 
2842}
2843EXPORT_SYMBOL_GPL(spi_unregister_controller);
2844
2845int spi_controller_suspend(struct spi_controller *ctlr)
2846{
2847	int ret;
2848
2849	/* Basically no-ops for non-queued controllers */
2850	if (!ctlr->queued)
2851		return 0;
2852
2853	ret = spi_stop_queue(ctlr);
2854	if (ret)
2855		dev_err(&ctlr->dev, "queue stop failed\n");
2856
2857	return ret;
2858}
2859EXPORT_SYMBOL_GPL(spi_controller_suspend);
2860
2861int spi_controller_resume(struct spi_controller *ctlr)
2862{
2863	int ret;
2864
2865	if (!ctlr->queued)
2866		return 0;
2867
2868	ret = spi_start_queue(ctlr);
2869	if (ret)
2870		dev_err(&ctlr->dev, "queue restart failed\n");
2871
2872	return ret;
2873}
2874EXPORT_SYMBOL_GPL(spi_controller_resume);
2875
2876static int __spi_controller_match(struct device *dev, const void *data)
2877{
2878	struct spi_controller *ctlr;
2879	const u16 *bus_num = data;
2880
2881	ctlr = container_of(dev, struct spi_controller, dev);
2882	return ctlr->bus_num == *bus_num;
2883}
2884
2885/**
2886 * spi_busnum_to_master - look up master associated with bus_num
2887 * @bus_num: the master's bus number
2888 * Context: can sleep
2889 *
2890 * This call may be used with devices that are registered after
2891 * arch init time.  It returns a refcounted pointer to the relevant
2892 * spi_controller (which the caller must release), or NULL if there is
2893 * no such master registered.
2894 *
2895 * Return: the SPI master structure on success, else NULL.
2896 */
2897struct spi_controller *spi_busnum_to_master(u16 bus_num)
2898{
2899	struct device		*dev;
2900	struct spi_controller	*ctlr = NULL;
2901
2902	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2903				__spi_controller_match);
2904	if (dev)
2905		ctlr = container_of(dev, struct spi_controller, dev);
2906	/* reference got in class_find_device */
2907	return ctlr;
2908}
2909EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2910
2911/*-------------------------------------------------------------------------*/
2912
2913/* Core methods for SPI resource management */
2914
2915/**
2916 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2917 *                 during the processing of a spi_message while using
2918 *                 spi_transfer_one
2919 * @spi:     the spi device for which we allocate memory
2920 * @release: the release code to execute for this resource
2921 * @size:    size to alloc and return
2922 * @gfp:     GFP allocation flags
2923 *
2924 * Return: the pointer to the allocated data
2925 *
2926 * This may get enhanced in the future to allocate from a memory pool
2927 * of the @spi_device or @spi_controller to avoid repeated allocations.
2928 */
2929void *spi_res_alloc(struct spi_device *spi,
2930		    spi_res_release_t release,
2931		    size_t size, gfp_t gfp)
2932{
2933	struct spi_res *sres;
2934
2935	sres = kzalloc(sizeof(*sres) + size, gfp);
2936	if (!sres)
2937		return NULL;
2938
2939	INIT_LIST_HEAD(&sres->entry);
2940	sres->release = release;
2941
2942	return sres->data;
2943}
2944EXPORT_SYMBOL_GPL(spi_res_alloc);
2945
2946/**
2947 * spi_res_free - free an spi resource
2948 * @res: pointer to the custom data of a resource
2949 *
2950 */
2951void spi_res_free(void *res)
2952{
2953	struct spi_res *sres = container_of(res, struct spi_res, data);
2954
2955	if (!res)
2956		return;
2957
2958	WARN_ON(!list_empty(&sres->entry));
2959	kfree(sres);
2960}
2961EXPORT_SYMBOL_GPL(spi_res_free);
2962
2963/**
2964 * spi_res_add - add a spi_res to the spi_message
2965 * @message: the spi message
2966 * @res:     the spi_resource
2967 */
2968void spi_res_add(struct spi_message *message, void *res)
2969{
2970	struct spi_res *sres = container_of(res, struct spi_res, data);
2971
2972	WARN_ON(!list_empty(&sres->entry));
2973	list_add_tail(&sres->entry, &message->resources);
2974}
2975EXPORT_SYMBOL_GPL(spi_res_add);
2976
2977/**
2978 * spi_res_release - release all spi resources for this message
2979 * @ctlr:  the @spi_controller
2980 * @message: the @spi_message
2981 */
2982void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2983{
2984	struct spi_res *res, *tmp;
2985
2986	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2987		if (res->release)
2988			res->release(ctlr, message, res->data);
2989
2990		list_del(&res->entry);
2991
2992		kfree(res);
2993	}
2994}
2995EXPORT_SYMBOL_GPL(spi_res_release);
2996
2997/*-------------------------------------------------------------------------*/
2998
2999/* Core methods for spi_message alterations */
3000
3001static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3002					    struct spi_message *msg,
3003					    void *res)
3004{
3005	struct spi_replaced_transfers *rxfer = res;
3006	size_t i;
3007
3008	/* call extra callback if requested */
3009	if (rxfer->release)
3010		rxfer->release(ctlr, msg, res);
3011
3012	/* insert replaced transfers back into the message */
3013	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3014
3015	/* remove the formerly inserted entries */
3016	for (i = 0; i < rxfer->inserted; i++)
3017		list_del(&rxfer->inserted_transfers[i].transfer_list);
3018}
3019
3020/**
3021 * spi_replace_transfers - replace transfers with several transfers
3022 *                         and register change with spi_message.resources
3023 * @msg:           the spi_message we work upon
3024 * @xfer_first:    the first spi_transfer we want to replace
3025 * @remove:        number of transfers to remove
3026 * @insert:        the number of transfers we want to insert instead
3027 * @release:       extra release code necessary in some circumstances
3028 * @extradatasize: extra data to allocate (with alignment guarantees
3029 *                 of struct @spi_transfer)
3030 * @gfp:           gfp flags
3031 *
3032 * Returns: pointer to @spi_replaced_transfers,
3033 *          PTR_ERR(...) in case of errors.
3034 */
3035struct spi_replaced_transfers *spi_replace_transfers(
3036	struct spi_message *msg,
3037	struct spi_transfer *xfer_first,
3038	size_t remove,
3039	size_t insert,
3040	spi_replaced_release_t release,
3041	size_t extradatasize,
3042	gfp_t gfp)
3043{
3044	struct spi_replaced_transfers *rxfer;
3045	struct spi_transfer *xfer;
3046	size_t i;
3047
3048	/* allocate the structure using spi_res */
3049	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3050			      struct_size(rxfer, inserted_transfers, insert)
3051			      + extradatasize,
3052			      gfp);
3053	if (!rxfer)
3054		return ERR_PTR(-ENOMEM);
3055
3056	/* the release code to invoke before running the generic release */
3057	rxfer->release = release;
3058
3059	/* assign extradata */
3060	if (extradatasize)
3061		rxfer->extradata =
3062			&rxfer->inserted_transfers[insert];
3063
3064	/* init the replaced_transfers list */
3065	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3066
3067	/* assign the list_entry after which we should reinsert
 
3068	 * the @replaced_transfers - it may be spi_message.messages!
3069	 */
3070	rxfer->replaced_after = xfer_first->transfer_list.prev;
3071
3072	/* remove the requested number of transfers */
3073	for (i = 0; i < remove; i++) {
3074		/* if the entry after replaced_after it is msg->transfers
 
3075		 * then we have been requested to remove more transfers
3076		 * than are in the list
3077		 */
3078		if (rxfer->replaced_after->next == &msg->transfers) {
3079			dev_err(&msg->spi->dev,
3080				"requested to remove more spi_transfers than are available\n");
3081			/* insert replaced transfers back into the message */
3082			list_splice(&rxfer->replaced_transfers,
3083				    rxfer->replaced_after);
3084
3085			/* free the spi_replace_transfer structure */
3086			spi_res_free(rxfer);
3087
3088			/* and return with an error */
3089			return ERR_PTR(-EINVAL);
3090		}
3091
3092		/* remove the entry after replaced_after from list of
3093		 * transfers and add it to list of replaced_transfers
 
3094		 */
3095		list_move_tail(rxfer->replaced_after->next,
3096			       &rxfer->replaced_transfers);
3097	}
3098
3099	/* create copy of the given xfer with identical settings
3100	 * based on the first transfer to get removed
 
3101	 */
3102	for (i = 0; i < insert; i++) {
3103		/* we need to run in reverse order */
3104		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3105
3106		/* copy all spi_transfer data */
3107		memcpy(xfer, xfer_first, sizeof(*xfer));
3108
3109		/* add to list */
3110		list_add(&xfer->transfer_list, rxfer->replaced_after);
3111
3112		/* clear cs_change and delay for all but the last */
3113		if (i) {
3114			xfer->cs_change = false;
3115			xfer->delay_usecs = 0;
3116			xfer->delay.value = 0;
3117		}
3118	}
3119
3120	/* set up inserted */
3121	rxfer->inserted = insert;
3122
3123	/* and register it with spi_res/spi_message */
3124	spi_res_add(msg, rxfer);
3125
3126	return rxfer;
3127}
3128EXPORT_SYMBOL_GPL(spi_replace_transfers);
3129
3130static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3131					struct spi_message *msg,
3132					struct spi_transfer **xferp,
3133					size_t maxsize,
3134					gfp_t gfp)
3135{
3136	struct spi_transfer *xfer = *xferp, *xfers;
3137	struct spi_replaced_transfers *srt;
3138	size_t offset;
3139	size_t count, i;
3140
3141	/* calculate how many we have to replace */
3142	count = DIV_ROUND_UP(xfer->len, maxsize);
3143
3144	/* create replacement */
3145	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3146	if (IS_ERR(srt))
3147		return PTR_ERR(srt);
3148	xfers = srt->inserted_transfers;
3149
3150	/* now handle each of those newly inserted spi_transfers
3151	 * note that the replacements spi_transfers all are preset
 
3152	 * to the same values as *xferp, so tx_buf, rx_buf and len
3153	 * are all identical (as well as most others)
3154	 * so we just have to fix up len and the pointers.
3155	 *
3156	 * this also includes support for the depreciated
3157	 * spi_message.is_dma_mapped interface
3158	 */
3159
3160	/* the first transfer just needs the length modified, so we
3161	 * run it outside the loop
 
3162	 */
3163	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3164
3165	/* all the others need rx_buf/tx_buf also set */
3166	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3167		/* update rx_buf, tx_buf and dma */
3168		if (xfers[i].rx_buf)
3169			xfers[i].rx_buf += offset;
3170		if (xfers[i].rx_dma)
3171			xfers[i].rx_dma += offset;
3172		if (xfers[i].tx_buf)
3173			xfers[i].tx_buf += offset;
3174		if (xfers[i].tx_dma)
3175			xfers[i].tx_dma += offset;
3176
3177		/* update length */
3178		xfers[i].len = min(maxsize, xfers[i].len - offset);
3179	}
3180
3181	/* we set up xferp to the last entry we have inserted,
3182	 * so that we skip those already split transfers
 
3183	 */
3184	*xferp = &xfers[count - 1];
3185
3186	/* increment statistics counters */
3187	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3188				       transfers_split_maxsize);
3189	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3190				       transfers_split_maxsize);
3191
3192	return 0;
3193}
3194
3195/**
3196 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3197 *                              when an individual transfer exceeds a
3198 *                              certain size
3199 * @ctlr:    the @spi_controller for this transfer
3200 * @msg:   the @spi_message to transform
3201 * @maxsize:  the maximum when to apply this
3202 * @gfp: GFP allocation flags
3203 *
3204 * Return: status of transformation
3205 */
3206int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3207				struct spi_message *msg,
3208				size_t maxsize,
3209				gfp_t gfp)
3210{
3211	struct spi_transfer *xfer;
3212	int ret;
3213
3214	/* iterate over the transfer_list,
 
3215	 * but note that xfer is advanced to the last transfer inserted
3216	 * to avoid checking sizes again unnecessarily (also xfer does
3217	 * potentiall belong to a different list by the time the
3218	 * replacement has happened
3219	 */
3220	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3221		if (xfer->len > maxsize) {
3222			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3223							   maxsize, gfp);
3224			if (ret)
3225				return ret;
3226		}
3227	}
3228
3229	return 0;
3230}
3231EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3232
3233/*-------------------------------------------------------------------------*/
3234
3235/* Core methods for SPI controller protocol drivers.  Some of the
3236 * other core methods are currently defined as inline functions.
3237 */
3238
3239static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3240					u8 bits_per_word)
3241{
3242	if (ctlr->bits_per_word_mask) {
3243		/* Only 32 bits fit in the mask */
3244		if (bits_per_word > 32)
3245			return -EINVAL;
3246		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3247			return -EINVAL;
3248	}
3249
3250	return 0;
3251}
3252
3253/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3254 * spi_setup - setup SPI mode and clock rate
3255 * @spi: the device whose settings are being modified
3256 * Context: can sleep, and no requests are queued to the device
3257 *
3258 * SPI protocol drivers may need to update the transfer mode if the
3259 * device doesn't work with its default.  They may likewise need
3260 * to update clock rates or word sizes from initial values.  This function
3261 * changes those settings, and must be called from a context that can sleep.
3262 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3263 * effect the next time the device is selected and data is transferred to
3264 * or from it.  When this function returns, the spi device is deselected.
3265 *
3266 * Note that this call will fail if the protocol driver specifies an option
3267 * that the underlying controller or its driver does not support.  For
3268 * example, not all hardware supports wire transfers using nine bit words,
3269 * LSB-first wire encoding, or active-high chipselects.
3270 *
3271 * Return: zero on success, else a negative error code.
3272 */
3273int spi_setup(struct spi_device *spi)
3274{
3275	unsigned	bad_bits, ugly_bits;
3276	int		status;
3277
3278	/* check mode to prevent that DUAL and QUAD set at the same time
 
 
3279	 */
3280	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3281		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
 
 
3282		dev_err(&spi->dev,
3283		"setup: can not select dual and quad at the same time\n");
3284		return -EINVAL;
3285	}
3286	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3287	 */
3288	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3289		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3290		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3291		return -EINVAL;
3292	/* help drivers fail *cleanly* when they need options
3293	 * that aren't supported with their current controller
 
3294	 * SPI_CS_WORD has a fallback software implementation,
3295	 * so it is ignored here.
3296	 */
3297	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3298	/* nothing prevents from working with active-high CS in case if it
3299	 * is driven by GPIO.
3300	 */
3301	if (gpio_is_valid(spi->cs_gpio))
3302		bad_bits &= ~SPI_CS_HIGH;
3303	ugly_bits = bad_bits &
3304		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3305		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3306	if (ugly_bits) {
3307		dev_warn(&spi->dev,
3308			 "setup: ignoring unsupported mode bits %x\n",
3309			 ugly_bits);
3310		spi->mode &= ~ugly_bits;
3311		bad_bits &= ~ugly_bits;
3312	}
3313	if (bad_bits) {
3314		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3315			bad_bits);
3316		return -EINVAL;
3317	}
3318
3319	if (!spi->bits_per_word)
3320		spi->bits_per_word = 8;
 
 
 
 
 
 
 
 
 
 
3321
3322	status = __spi_validate_bits_per_word(spi->controller,
3323					      spi->bits_per_word);
3324	if (status)
3325		return status;
3326
3327	if (!spi->max_speed_hz)
3328		spi->max_speed_hz = spi->controller->max_speed_hz;
3329
3330	if (spi->controller->setup)
3331		status = spi->controller->setup(spi);
 
 
 
 
 
 
 
 
 
 
 
 
 
3332
3333	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3334		status = pm_runtime_get_sync(spi->controller->dev.parent);
3335		if (status < 0) {
3336			pm_runtime_put_noidle(spi->controller->dev.parent);
3337			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3338				status);
3339			return status;
3340		}
3341
3342		/*
3343		 * We do not want to return positive value from pm_runtime_get,
3344		 * there are many instances of devices calling spi_setup() and
3345		 * checking for a non-zero return value instead of a negative
3346		 * return value.
3347		 */
3348		status = 0;
3349
3350		spi_set_cs(spi, false);
3351		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3352		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3353	} else {
3354		spi_set_cs(spi, false);
3355	}
3356
 
 
3357	if (spi->rt && !spi->controller->rt) {
3358		spi->controller->rt = true;
3359		spi_set_thread_rt(spi->controller);
3360	}
3361
3362	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3363			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 
 
3364			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3365			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3366			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3367			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3368			spi->bits_per_word, spi->max_speed_hz,
3369			status);
3370
3371	return status;
3372}
3373EXPORT_SYMBOL_GPL(spi_setup);
3374
3375/**
3376 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3377 * @spi: the device that requires specific CS timing configuration
3378 * @setup: CS setup time specified via @spi_delay
3379 * @hold: CS hold time specified via @spi_delay
3380 * @inactive: CS inactive delay between transfers specified via @spi_delay
3381 *
3382 * Return: zero on success, else a negative error code.
3383 */
3384int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3385		      struct spi_delay *hold, struct spi_delay *inactive)
3386{
3387	size_t len;
3388
3389	if (spi->controller->set_cs_timing)
3390		return spi->controller->set_cs_timing(spi, setup, hold,
3391						      inactive);
3392
3393	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3394	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3395	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3396		dev_err(&spi->dev,
3397			"Clock-cycle delays for CS not supported in SW mode\n");
3398		return -ENOTSUPP;
3399	}
3400
3401	len = sizeof(struct spi_delay);
3402
3403	/* copy delays to controller */
3404	if (setup)
3405		memcpy(&spi->controller->cs_setup, setup, len);
3406	else
3407		memset(&spi->controller->cs_setup, 0, len);
3408
3409	if (hold)
3410		memcpy(&spi->controller->cs_hold, hold, len);
3411	else
3412		memset(&spi->controller->cs_hold, 0, len);
3413
3414	if (inactive)
3415		memcpy(&spi->controller->cs_inactive, inactive, len);
3416	else
3417		memset(&spi->controller->cs_inactive, 0, len);
3418
3419	return 0;
3420}
3421EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3422
3423static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3424				       struct spi_device *spi)
3425{
3426	int delay1, delay2;
3427
3428	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3429	if (delay1 < 0)
3430		return delay1;
3431
3432	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3433	if (delay2 < 0)
3434		return delay2;
3435
3436	if (delay1 < delay2)
3437		memcpy(&xfer->word_delay, &spi->word_delay,
3438		       sizeof(xfer->word_delay));
3439
3440	return 0;
3441}
3442
3443static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3444{
3445	struct spi_controller *ctlr = spi->controller;
3446	struct spi_transfer *xfer;
3447	int w_size;
3448
3449	if (list_empty(&message->transfers))
3450		return -EINVAL;
3451
3452	/* If an SPI controller does not support toggling the CS line on each
 
3453	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3454	 * for the CS line, we can emulate the CS-per-word hardware function by
3455	 * splitting transfers into one-word transfers and ensuring that
3456	 * cs_change is set for each transfer.
3457	 */
3458	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3459					  spi->cs_gpiod ||
3460					  gpio_is_valid(spi->cs_gpio))) {
3461		size_t maxsize;
3462		int ret;
3463
3464		maxsize = (spi->bits_per_word + 7) / 8;
3465
3466		/* spi_split_transfers_maxsize() requires message->spi */
3467		message->spi = spi;
3468
3469		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3470						  GFP_KERNEL);
3471		if (ret)
3472			return ret;
3473
3474		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3475			/* don't change cs_change on the last entry in the list */
3476			if (list_is_last(&xfer->transfer_list, &message->transfers))
3477				break;
3478			xfer->cs_change = 1;
3479		}
3480	}
3481
3482	/* Half-duplex links include original MicroWire, and ones with
 
3483	 * only one data pin like SPI_3WIRE (switches direction) or where
3484	 * either MOSI or MISO is missing.  They can also be caused by
3485	 * software limitations.
3486	 */
3487	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3488	    (spi->mode & SPI_3WIRE)) {
3489		unsigned flags = ctlr->flags;
3490
3491		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3492			if (xfer->rx_buf && xfer->tx_buf)
3493				return -EINVAL;
3494			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3495				return -EINVAL;
3496			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3497				return -EINVAL;
3498		}
3499	}
3500
3501	/**
3502	 * Set transfer bits_per_word and max speed as spi device default if
3503	 * it is not set for this transfer.
3504	 * Set transfer tx_nbits and rx_nbits as single transfer default
3505	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3506	 * Ensure transfer word_delay is at least as long as that required by
3507	 * device itself.
3508	 */
3509	message->frame_length = 0;
3510	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3511		xfer->effective_speed_hz = 0;
3512		message->frame_length += xfer->len;
3513		if (!xfer->bits_per_word)
3514			xfer->bits_per_word = spi->bits_per_word;
3515
3516		if (!xfer->speed_hz)
3517			xfer->speed_hz = spi->max_speed_hz;
3518
3519		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3520			xfer->speed_hz = ctlr->max_speed_hz;
3521
3522		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3523			return -EINVAL;
3524
3525		/*
3526		 * SPI transfer length should be multiple of SPI word size
3527		 * where SPI word size should be power-of-two multiple
3528		 */
3529		if (xfer->bits_per_word <= 8)
3530			w_size = 1;
3531		else if (xfer->bits_per_word <= 16)
3532			w_size = 2;
3533		else
3534			w_size = 4;
3535
3536		/* No partial transfers accepted */
3537		if (xfer->len % w_size)
3538			return -EINVAL;
3539
3540		if (xfer->speed_hz && ctlr->min_speed_hz &&
3541		    xfer->speed_hz < ctlr->min_speed_hz)
3542			return -EINVAL;
3543
3544		if (xfer->tx_buf && !xfer->tx_nbits)
3545			xfer->tx_nbits = SPI_NBITS_SINGLE;
3546		if (xfer->rx_buf && !xfer->rx_nbits)
3547			xfer->rx_nbits = SPI_NBITS_SINGLE;
3548		/* check transfer tx/rx_nbits:
 
3549		 * 1. check the value matches one of single, dual and quad
3550		 * 2. check tx/rx_nbits match the mode in spi_device
3551		 */
3552		if (xfer->tx_buf) {
 
 
3553			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3554				xfer->tx_nbits != SPI_NBITS_DUAL &&
3555				xfer->tx_nbits != SPI_NBITS_QUAD)
3556				return -EINVAL;
3557			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3558				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3559				return -EINVAL;
3560			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3561				!(spi->mode & SPI_TX_QUAD))
3562				return -EINVAL;
3563		}
3564		/* check transfer rx_nbits */
3565		if (xfer->rx_buf) {
 
 
3566			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3567				xfer->rx_nbits != SPI_NBITS_DUAL &&
3568				xfer->rx_nbits != SPI_NBITS_QUAD)
3569				return -EINVAL;
3570			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3571				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3572				return -EINVAL;
3573			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3574				!(spi->mode & SPI_RX_QUAD))
3575				return -EINVAL;
3576		}
3577
3578		if (_spi_xfer_word_delay_update(xfer, spi))
3579			return -EINVAL;
3580	}
3581
3582	message->status = -EINPROGRESS;
3583
3584	return 0;
3585}
3586
3587static int __spi_async(struct spi_device *spi, struct spi_message *message)
3588{
3589	struct spi_controller *ctlr = spi->controller;
3590	struct spi_transfer *xfer;
3591
3592	/*
3593	 * Some controllers do not support doing regular SPI transfers. Return
3594	 * ENOTSUPP when this is the case.
3595	 */
3596	if (!ctlr->transfer)
3597		return -ENOTSUPP;
3598
3599	message->spi = spi;
3600
3601	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3602	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3603
3604	trace_spi_message_submit(message);
3605
3606	if (!ctlr->ptp_sts_supported) {
3607		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3608			xfer->ptp_sts_word_pre = 0;
3609			ptp_read_system_prets(xfer->ptp_sts);
3610		}
3611	}
3612
3613	return ctlr->transfer(spi, message);
3614}
3615
3616/**
3617 * spi_async - asynchronous SPI transfer
3618 * @spi: device with which data will be exchanged
3619 * @message: describes the data transfers, including completion callback
3620 * Context: any (irqs may be blocked, etc)
3621 *
3622 * This call may be used in_irq and other contexts which can't sleep,
3623 * as well as from task contexts which can sleep.
3624 *
3625 * The completion callback is invoked in a context which can't sleep.
3626 * Before that invocation, the value of message->status is undefined.
3627 * When the callback is issued, message->status holds either zero (to
3628 * indicate complete success) or a negative error code.  After that
3629 * callback returns, the driver which issued the transfer request may
3630 * deallocate the associated memory; it's no longer in use by any SPI
3631 * core or controller driver code.
3632 *
3633 * Note that although all messages to a spi_device are handled in
3634 * FIFO order, messages may go to different devices in other orders.
3635 * Some device might be higher priority, or have various "hard" access
3636 * time requirements, for example.
3637 *
3638 * On detection of any fault during the transfer, processing of
3639 * the entire message is aborted, and the device is deselected.
3640 * Until returning from the associated message completion callback,
3641 * no other spi_message queued to that device will be processed.
3642 * (This rule applies equally to all the synchronous transfer calls,
3643 * which are wrappers around this core asynchronous primitive.)
3644 *
3645 * Return: zero on success, else a negative error code.
3646 */
3647int spi_async(struct spi_device *spi, struct spi_message *message)
3648{
3649	struct spi_controller *ctlr = spi->controller;
3650	int ret;
3651	unsigned long flags;
3652
3653	ret = __spi_validate(spi, message);
3654	if (ret != 0)
3655		return ret;
3656
3657	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3658
3659	if (ctlr->bus_lock_flag)
3660		ret = -EBUSY;
3661	else
3662		ret = __spi_async(spi, message);
3663
3664	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3665
3666	return ret;
3667}
3668EXPORT_SYMBOL_GPL(spi_async);
3669
3670/**
3671 * spi_async_locked - version of spi_async with exclusive bus usage
3672 * @spi: device with which data will be exchanged
3673 * @message: describes the data transfers, including completion callback
3674 * Context: any (irqs may be blocked, etc)
3675 *
3676 * This call may be used in_irq and other contexts which can't sleep,
3677 * as well as from task contexts which can sleep.
3678 *
3679 * The completion callback is invoked in a context which can't sleep.
3680 * Before that invocation, the value of message->status is undefined.
3681 * When the callback is issued, message->status holds either zero (to
3682 * indicate complete success) or a negative error code.  After that
3683 * callback returns, the driver which issued the transfer request may
3684 * deallocate the associated memory; it's no longer in use by any SPI
3685 * core or controller driver code.
3686 *
3687 * Note that although all messages to a spi_device are handled in
3688 * FIFO order, messages may go to different devices in other orders.
3689 * Some device might be higher priority, or have various "hard" access
3690 * time requirements, for example.
3691 *
3692 * On detection of any fault during the transfer, processing of
3693 * the entire message is aborted, and the device is deselected.
3694 * Until returning from the associated message completion callback,
3695 * no other spi_message queued to that device will be processed.
3696 * (This rule applies equally to all the synchronous transfer calls,
3697 * which are wrappers around this core asynchronous primitive.)
3698 *
3699 * Return: zero on success, else a negative error code.
3700 */
3701int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3702{
3703	struct spi_controller *ctlr = spi->controller;
3704	int ret;
3705	unsigned long flags;
3706
3707	ret = __spi_validate(spi, message);
3708	if (ret != 0)
3709		return ret;
3710
3711	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3712
3713	ret = __spi_async(spi, message);
3714
3715	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3716
3717	return ret;
3718
3719}
3720EXPORT_SYMBOL_GPL(spi_async_locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3721
3722/*-------------------------------------------------------------------------*/
3723
3724/* Utility methods for SPI protocol drivers, layered on
 
3725 * top of the core.  Some other utility methods are defined as
3726 * inline functions.
3727 */
3728
3729static void spi_complete(void *arg)
3730{
3731	complete(arg);
3732}
3733
3734static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3735{
3736	DECLARE_COMPLETION_ONSTACK(done);
3737	int status;
3738	struct spi_controller *ctlr = spi->controller;
3739	unsigned long flags;
3740
3741	status = __spi_validate(spi, message);
3742	if (status != 0)
3743		return status;
3744
3745	message->complete = spi_complete;
3746	message->context = &done;
3747	message->spi = spi;
3748
3749	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3750	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3751
3752	/* If we're not using the legacy transfer method then we will
3753	 * try to transfer in the calling context so special case.
3754	 * This code would be less tricky if we could remove the
3755	 * support for driver implemented message queues.
 
3756	 */
3757	if (ctlr->transfer == spi_queued_transfer) {
3758		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
 
3759
3760		trace_spi_message_submit(message);
3761
3762		status = __spi_queued_transfer(spi, message, false);
 
 
 
3763
3764		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3765	} else {
3766		status = spi_async_locked(spi, message);
3767	}
3768
 
 
 
 
 
 
 
 
 
3769	if (status == 0) {
3770		/* Push out the messages in the calling context if we
3771		 * can.
3772		 */
3773		if (ctlr->transfer == spi_queued_transfer) {
3774			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3775						       spi_sync_immediate);
3776			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3777						       spi_sync_immediate);
3778			__spi_pump_messages(ctlr, false);
3779		}
3780
3781		wait_for_completion(&done);
3782		status = message->status;
3783	}
3784	message->context = NULL;
 
3785	return status;
3786}
3787
3788/**
3789 * spi_sync - blocking/synchronous SPI data transfers
3790 * @spi: device with which data will be exchanged
3791 * @message: describes the data transfers
3792 * Context: can sleep
3793 *
3794 * This call may only be used from a context that may sleep.  The sleep
3795 * is non-interruptible, and has no timeout.  Low-overhead controller
3796 * drivers may DMA directly into and out of the message buffers.
3797 *
3798 * Note that the SPI device's chip select is active during the message,
3799 * and then is normally disabled between messages.  Drivers for some
3800 * frequently-used devices may want to minimize costs of selecting a chip,
3801 * by leaving it selected in anticipation that the next message will go
3802 * to the same chip.  (That may increase power usage.)
3803 *
3804 * Also, the caller is guaranteeing that the memory associated with the
3805 * message will not be freed before this call returns.
3806 *
3807 * Return: zero on success, else a negative error code.
3808 */
3809int spi_sync(struct spi_device *spi, struct spi_message *message)
3810{
3811	int ret;
3812
3813	mutex_lock(&spi->controller->bus_lock_mutex);
3814	ret = __spi_sync(spi, message);
3815	mutex_unlock(&spi->controller->bus_lock_mutex);
3816
3817	return ret;
3818}
3819EXPORT_SYMBOL_GPL(spi_sync);
3820
3821/**
3822 * spi_sync_locked - version of spi_sync with exclusive bus usage
3823 * @spi: device with which data will be exchanged
3824 * @message: describes the data transfers
3825 * Context: can sleep
3826 *
3827 * This call may only be used from a context that may sleep.  The sleep
3828 * is non-interruptible, and has no timeout.  Low-overhead controller
3829 * drivers may DMA directly into and out of the message buffers.
3830 *
3831 * This call should be used by drivers that require exclusive access to the
3832 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3833 * be released by a spi_bus_unlock call when the exclusive access is over.
3834 *
3835 * Return: zero on success, else a negative error code.
3836 */
3837int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3838{
3839	return __spi_sync(spi, message);
3840}
3841EXPORT_SYMBOL_GPL(spi_sync_locked);
3842
3843/**
3844 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3845 * @ctlr: SPI bus master that should be locked for exclusive bus access
3846 * Context: can sleep
3847 *
3848 * This call may only be used from a context that may sleep.  The sleep
3849 * is non-interruptible, and has no timeout.
3850 *
3851 * This call should be used by drivers that require exclusive access to the
3852 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3853 * exclusive access is over. Data transfer must be done by spi_sync_locked
3854 * and spi_async_locked calls when the SPI bus lock is held.
3855 *
3856 * Return: always zero.
3857 */
3858int spi_bus_lock(struct spi_controller *ctlr)
3859{
3860	unsigned long flags;
3861
3862	mutex_lock(&ctlr->bus_lock_mutex);
3863
3864	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3865	ctlr->bus_lock_flag = 1;
3866	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3867
3868	/* mutex remains locked until spi_bus_unlock is called */
3869
3870	return 0;
3871}
3872EXPORT_SYMBOL_GPL(spi_bus_lock);
3873
3874/**
3875 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3876 * @ctlr: SPI bus master that was locked for exclusive bus access
3877 * Context: can sleep
3878 *
3879 * This call may only be used from a context that may sleep.  The sleep
3880 * is non-interruptible, and has no timeout.
3881 *
3882 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3883 * call.
3884 *
3885 * Return: always zero.
3886 */
3887int spi_bus_unlock(struct spi_controller *ctlr)
3888{
3889	ctlr->bus_lock_flag = 0;
3890
3891	mutex_unlock(&ctlr->bus_lock_mutex);
3892
3893	return 0;
3894}
3895EXPORT_SYMBOL_GPL(spi_bus_unlock);
3896
3897/* portable code must never pass more than 32 bytes */
3898#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3899
3900static u8	*buf;
3901
3902/**
3903 * spi_write_then_read - SPI synchronous write followed by read
3904 * @spi: device with which data will be exchanged
3905 * @txbuf: data to be written (need not be dma-safe)
3906 * @n_tx: size of txbuf, in bytes
3907 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3908 * @n_rx: size of rxbuf, in bytes
3909 * Context: can sleep
3910 *
3911 * This performs a half duplex MicroWire style transaction with the
3912 * device, sending txbuf and then reading rxbuf.  The return value
3913 * is zero for success, else a negative errno status code.
3914 * This call may only be used from a context that may sleep.
3915 *
3916 * Parameters to this routine are always copied using a small buffer.
3917 * Performance-sensitive or bulk transfer code should instead use
3918 * spi_{async,sync}() calls with dma-safe buffers.
3919 *
3920 * Return: zero on success, else a negative error code.
3921 */
3922int spi_write_then_read(struct spi_device *spi,
3923		const void *txbuf, unsigned n_tx,
3924		void *rxbuf, unsigned n_rx)
3925{
3926	static DEFINE_MUTEX(lock);
3927
3928	int			status;
3929	struct spi_message	message;
3930	struct spi_transfer	x[2];
3931	u8			*local_buf;
3932
3933	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
 
3934	 * copying here, (as a pure convenience thing), but we can
3935	 * keep heap costs out of the hot path unless someone else is
3936	 * using the pre-allocated buffer or the transfer is too large.
3937	 */
3938	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3939		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3940				    GFP_KERNEL | GFP_DMA);
3941		if (!local_buf)
3942			return -ENOMEM;
3943	} else {
3944		local_buf = buf;
3945	}
3946
3947	spi_message_init(&message);
3948	memset(x, 0, sizeof(x));
3949	if (n_tx) {
3950		x[0].len = n_tx;
3951		spi_message_add_tail(&x[0], &message);
3952	}
3953	if (n_rx) {
3954		x[1].len = n_rx;
3955		spi_message_add_tail(&x[1], &message);
3956	}
3957
3958	memcpy(local_buf, txbuf, n_tx);
3959	x[0].tx_buf = local_buf;
3960	x[1].rx_buf = local_buf + n_tx;
3961
3962	/* do the i/o */
3963	status = spi_sync(spi, &message);
3964	if (status == 0)
3965		memcpy(rxbuf, x[1].rx_buf, n_rx);
3966
3967	if (x[0].tx_buf == buf)
3968		mutex_unlock(&lock);
3969	else
3970		kfree(local_buf);
3971
3972	return status;
3973}
3974EXPORT_SYMBOL_GPL(spi_write_then_read);
3975
3976/*-------------------------------------------------------------------------*/
3977
3978#if IS_ENABLED(CONFIG_OF)
3979/* must call put_device() when done with returned spi_device device */
3980struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3981{
3982	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3983
3984	return dev ? to_spi_device(dev) : NULL;
3985}
3986EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3987#endif /* IS_ENABLED(CONFIG_OF) */
3988
3989#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3990/* the spi controllers are not using spi_bus, so we find it with another way */
3991static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3992{
3993	struct device *dev;
3994
3995	dev = class_find_device_by_of_node(&spi_master_class, node);
3996	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3997		dev = class_find_device_by_of_node(&spi_slave_class, node);
3998	if (!dev)
3999		return NULL;
4000
4001	/* reference got in class_find_device */
4002	return container_of(dev, struct spi_controller, dev);
4003}
4004
4005static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4006			 void *arg)
4007{
4008	struct of_reconfig_data *rd = arg;
4009	struct spi_controller *ctlr;
4010	struct spi_device *spi;
4011
4012	switch (of_reconfig_get_state_change(action, arg)) {
4013	case OF_RECONFIG_CHANGE_ADD:
4014		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4015		if (ctlr == NULL)
4016			return NOTIFY_OK;	/* not for us */
4017
4018		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4019			put_device(&ctlr->dev);
4020			return NOTIFY_OK;
4021		}
4022
4023		spi = of_register_spi_device(ctlr, rd->dn);
4024		put_device(&ctlr->dev);
4025
4026		if (IS_ERR(spi)) {
4027			pr_err("%s: failed to create for '%pOF'\n",
4028					__func__, rd->dn);
4029			of_node_clear_flag(rd->dn, OF_POPULATED);
4030			return notifier_from_errno(PTR_ERR(spi));
4031		}
4032		break;
4033
4034	case OF_RECONFIG_CHANGE_REMOVE:
4035		/* already depopulated? */
4036		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4037			return NOTIFY_OK;
4038
4039		/* find our device by node */
4040		spi = of_find_spi_device_by_node(rd->dn);
4041		if (spi == NULL)
4042			return NOTIFY_OK;	/* no? not meant for us */
4043
4044		/* unregister takes one ref away */
4045		spi_unregister_device(spi);
4046
4047		/* and put the reference of the find */
4048		put_device(&spi->dev);
4049		break;
4050	}
4051
4052	return NOTIFY_OK;
4053}
4054
4055static struct notifier_block spi_of_notifier = {
4056	.notifier_call = of_spi_notify,
4057};
4058#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4059extern struct notifier_block spi_of_notifier;
4060#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4061
4062#if IS_ENABLED(CONFIG_ACPI)
4063static int spi_acpi_controller_match(struct device *dev, const void *data)
4064{
4065	return ACPI_COMPANION(dev->parent) == data;
4066}
4067
4068static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4069{
4070	struct device *dev;
4071
4072	dev = class_find_device(&spi_master_class, NULL, adev,
4073				spi_acpi_controller_match);
4074	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4075		dev = class_find_device(&spi_slave_class, NULL, adev,
4076					spi_acpi_controller_match);
4077	if (!dev)
4078		return NULL;
4079
4080	return container_of(dev, struct spi_controller, dev);
4081}
4082
4083static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4084{
4085	struct device *dev;
4086
4087	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4088	return to_spi_device(dev);
4089}
4090
4091static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4092			   void *arg)
4093{
4094	struct acpi_device *adev = arg;
4095	struct spi_controller *ctlr;
4096	struct spi_device *spi;
4097
4098	switch (value) {
4099	case ACPI_RECONFIG_DEVICE_ADD:
4100		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4101		if (!ctlr)
4102			break;
4103
4104		acpi_register_spi_device(ctlr, adev);
4105		put_device(&ctlr->dev);
4106		break;
4107	case ACPI_RECONFIG_DEVICE_REMOVE:
4108		if (!acpi_device_enumerated(adev))
4109			break;
4110
4111		spi = acpi_spi_find_device_by_adev(adev);
4112		if (!spi)
4113			break;
4114
4115		spi_unregister_device(spi);
4116		put_device(&spi->dev);
4117		break;
4118	}
4119
4120	return NOTIFY_OK;
4121}
4122
4123static struct notifier_block spi_acpi_notifier = {
4124	.notifier_call = acpi_spi_notify,
4125};
4126#else
4127extern struct notifier_block spi_acpi_notifier;
4128#endif
4129
4130static int __init spi_init(void)
4131{
4132	int	status;
4133
4134	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4135	if (!buf) {
4136		status = -ENOMEM;
4137		goto err0;
4138	}
4139
4140	status = bus_register(&spi_bus_type);
4141	if (status < 0)
4142		goto err1;
4143
4144	status = class_register(&spi_master_class);
4145	if (status < 0)
4146		goto err2;
4147
4148	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4149		status = class_register(&spi_slave_class);
4150		if (status < 0)
4151			goto err3;
4152	}
4153
4154	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4155		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4156	if (IS_ENABLED(CONFIG_ACPI))
4157		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4158
4159	return 0;
4160
4161err3:
4162	class_unregister(&spi_master_class);
4163err2:
4164	bus_unregister(&spi_bus_type);
4165err1:
4166	kfree(buf);
4167	buf = NULL;
4168err0:
4169	return status;
4170}
4171
4172/* board_info is normally registered in arch_initcall(),
4173 * but even essential drivers wait till later
 
4174 *
4175 * REVISIT only boardinfo really needs static linking. the rest (device and
4176 * driver registration) _could_ be dynamically linked (modular) ... costs
4177 * include needing to have boardinfo data structures be much more public.
4178 */
4179postcore_initcall(spi_init);