Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
 
 
 
 
 
 
 
 
 
 
 
   6
   7#include <linux/kernel.h>
   8#include <linux/device.h>
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/gpio/consumer.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/pm_domain.h>
  24#include <linux/property.h>
  25#include <linux/export.h>
  26#include <linux/sched/rt.h>
  27#include <uapi/linux/sched/types.h>
  28#include <linux/delay.h>
  29#include <linux/kthread.h>
  30#include <linux/ioport.h>
  31#include <linux/acpi.h>
  32#include <linux/highmem.h>
  33#include <linux/idr.h>
  34#include <linux/platform_data/x86/apple.h>
  35#include <linux/ptp_clock_kernel.h>
  36#include <linux/percpu.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
 
 
 
 
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120#define spi_pcpu_stats_totalize(ret, in, field)				\
 121do {									\
 122	int i;								\
 123	ret = 0;							\
 124	for_each_possible_cpu(i) {					\
 125		const struct spi_statistics *pcpu_stats;		\
 126		u64 inc;						\
 127		unsigned int start;					\
 128		pcpu_stats = per_cpu_ptr(in, i);			\
 129		do {							\
 130			start = u64_stats_fetch_begin(		\
 131					&pcpu_stats->syncp);		\
 132			inc = u64_stats_read(&pcpu_stats->field);	\
 133		} while (u64_stats_fetch_retry(			\
 134					&pcpu_stats->syncp, start));	\
 135		ret += inc;						\
 136	}								\
 137} while (0)
 138
 139#define SPI_STATISTICS_ATTRS(field, file)				\
 140static ssize_t spi_controller_##field##_show(struct device *dev,	\
 141					     struct device_attribute *attr, \
 142					     char *buf)			\
 143{									\
 144	struct spi_controller *ctlr = container_of(dev,			\
 145					 struct spi_controller, dev);	\
 146	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 147}									\
 148static struct device_attribute dev_attr_spi_controller_##field = {	\
 149	.attr = { .name = file, .mode = 0444 },				\
 150	.show = spi_controller_##field##_show,				\
 151};									\
 152static ssize_t spi_device_##field##_show(struct device *dev,		\
 153					 struct device_attribute *attr,	\
 154					char *buf)			\
 155{									\
 156	struct spi_device *spi = to_spi_device(dev);			\
 157	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 158}									\
 159static struct device_attribute dev_attr_spi_device_##field = {		\
 160	.attr = { .name = file, .mode = 0444 },				\
 161	.show = spi_device_##field##_show,				\
 162}
 163
 164#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 165static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 166					    char *buf)			\
 167{									\
 
 168	ssize_t len;							\
 169	u64 val;							\
 170	spi_pcpu_stats_totalize(val, stat, field);			\
 171	len = sysfs_emit(buf, "%llu\n", val);				\
 172	return len;							\
 173}									\
 174SPI_STATISTICS_ATTRS(name, file)
 175
 176#define SPI_STATISTICS_SHOW(field)					\
 177	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 178				 field)
 179
 180SPI_STATISTICS_SHOW(messages);
 181SPI_STATISTICS_SHOW(transfers);
 182SPI_STATISTICS_SHOW(errors);
 183SPI_STATISTICS_SHOW(timedout);
 184
 185SPI_STATISTICS_SHOW(spi_sync);
 186SPI_STATISTICS_SHOW(spi_sync_immediate);
 187SPI_STATISTICS_SHOW(spi_async);
 188
 189SPI_STATISTICS_SHOW(bytes);
 190SPI_STATISTICS_SHOW(bytes_rx);
 191SPI_STATISTICS_SHOW(bytes_tx);
 192
 193#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 194	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 195				 "transfer_bytes_histo_" number,	\
 196				 transfer_bytes_histo[index])
 197SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 214
 215SPI_STATISTICS_SHOW(transfers_split_maxsize);
 216
 217static struct attribute *spi_dev_attrs[] = {
 218	&dev_attr_modalias.attr,
 219	&dev_attr_driver_override.attr,
 220	NULL,
 221};
 222
 223static const struct attribute_group spi_dev_group = {
 224	.attrs  = spi_dev_attrs,
 225};
 226
 227static struct attribute *spi_device_statistics_attrs[] = {
 228	&dev_attr_spi_device_messages.attr,
 229	&dev_attr_spi_device_transfers.attr,
 230	&dev_attr_spi_device_errors.attr,
 231	&dev_attr_spi_device_timedout.attr,
 232	&dev_attr_spi_device_spi_sync.attr,
 233	&dev_attr_spi_device_spi_sync_immediate.attr,
 234	&dev_attr_spi_device_spi_async.attr,
 235	&dev_attr_spi_device_bytes.attr,
 236	&dev_attr_spi_device_bytes_rx.attr,
 237	&dev_attr_spi_device_bytes_tx.attr,
 238	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 255	&dev_attr_spi_device_transfers_split_maxsize.attr,
 256	NULL,
 257};
 258
 259static const struct attribute_group spi_device_statistics_group = {
 260	.name  = "statistics",
 261	.attrs  = spi_device_statistics_attrs,
 262};
 263
 264static const struct attribute_group *spi_dev_groups[] = {
 265	&spi_dev_group,
 266	&spi_device_statistics_group,
 267	NULL,
 268};
 269
 270static struct attribute *spi_controller_statistics_attrs[] = {
 271	&dev_attr_spi_controller_messages.attr,
 272	&dev_attr_spi_controller_transfers.attr,
 273	&dev_attr_spi_controller_errors.attr,
 274	&dev_attr_spi_controller_timedout.attr,
 275	&dev_attr_spi_controller_spi_sync.attr,
 276	&dev_attr_spi_controller_spi_sync_immediate.attr,
 277	&dev_attr_spi_controller_spi_async.attr,
 278	&dev_attr_spi_controller_bytes.attr,
 279	&dev_attr_spi_controller_bytes_rx.attr,
 280	&dev_attr_spi_controller_bytes_tx.attr,
 281	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 298	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 299	NULL,
 300};
 301
 302static const struct attribute_group spi_controller_statistics_group = {
 303	.name  = "statistics",
 304	.attrs  = spi_controller_statistics_attrs,
 305};
 306
 307static const struct attribute_group *spi_master_groups[] = {
 308	&spi_controller_statistics_group,
 309	NULL,
 310};
 311
 312static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 313					      struct spi_transfer *xfer,
 314					      struct spi_controller *ctlr)
 315{
 
 316	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 317	struct spi_statistics *stats;
 318
 319	if (l2len < 0)
 320		l2len = 0;
 321
 322	get_cpu();
 323	stats = this_cpu_ptr(pcpu_stats);
 324	u64_stats_update_begin(&stats->syncp);
 325
 326	u64_stats_inc(&stats->transfers);
 327	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 328
 329	u64_stats_add(&stats->bytes, xfer->len);
 330	if ((xfer->tx_buf) &&
 331	    (xfer->tx_buf != ctlr->dummy_tx))
 332		u64_stats_add(&stats->bytes_tx, xfer->len);
 333	if ((xfer->rx_buf) &&
 334	    (xfer->rx_buf != ctlr->dummy_rx))
 335		u64_stats_add(&stats->bytes_rx, xfer->len);
 336
 337	u64_stats_update_end(&stats->syncp);
 338	put_cpu();
 339}
 
 340
 341/*
 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 343 * and the sysfs version makes coldplug work too.
 344 */
 345static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 
 
 346{
 347	while (id->name[0]) {
 348		if (!strcmp(name, id->name))
 349			return id;
 350		id++;
 351	}
 352	return NULL;
 353}
 354
 355const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 356{
 357	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 358
 359	return spi_match_id(sdrv->id_table, sdev->modalias);
 360}
 361EXPORT_SYMBOL_GPL(spi_get_device_id);
 362
 363const void *spi_get_device_match_data(const struct spi_device *sdev)
 364{
 365	const void *match;
 366
 367	match = device_get_match_data(&sdev->dev);
 368	if (match)
 369		return match;
 370
 371	return (const void *)spi_get_device_id(sdev)->driver_data;
 372}
 373EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 374
 375static int spi_match_device(struct device *dev, struct device_driver *drv)
 376{
 377	const struct spi_device	*spi = to_spi_device(dev);
 378	const struct spi_driver	*sdrv = to_spi_driver(drv);
 379
 380	/* Check override first, and if set, only use the named driver */
 381	if (spi->driver_override)
 382		return strcmp(spi->driver_override, drv->name) == 0;
 383
 384	/* Attempt an OF style match */
 385	if (of_driver_match_device(dev, drv))
 386		return 1;
 387
 388	/* Then try ACPI */
 389	if (acpi_driver_match_device(dev, drv))
 390		return 1;
 391
 392	if (sdrv->id_table)
 393		return !!spi_match_id(sdrv->id_table, spi->modalias);
 394
 395	return strcmp(spi->modalias, drv->name) == 0;
 396}
 397
 398static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 399{
 400	const struct spi_device		*spi = to_spi_device(dev);
 401	int rc;
 402
 403	rc = acpi_device_uevent_modalias(dev, env);
 404	if (rc != -ENODEV)
 405		return rc;
 406
 407	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 408}
 409
 410static int spi_probe(struct device *dev)
 
 
 
 
 
 
 
 
 
 411{
 412	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 413	struct spi_device		*spi = to_spi_device(dev);
 414	int ret;
 415
 416	ret = of_clk_set_defaults(dev->of_node, false);
 417	if (ret)
 418		return ret;
 419
 420	if (dev->of_node) {
 421		spi->irq = of_irq_get(dev->of_node, 0);
 422		if (spi->irq == -EPROBE_DEFER)
 423			return -EPROBE_DEFER;
 424		if (spi->irq < 0)
 425			spi->irq = 0;
 426	}
 427
 428	ret = dev_pm_domain_attach(dev, true);
 429	if (ret)
 430		return ret;
 431
 432	if (sdrv->probe) {
 433		ret = sdrv->probe(spi);
 434		if (ret)
 435			dev_pm_domain_detach(dev, true);
 436	}
 437
 438	return ret;
 439}
 440
 441static void spi_remove(struct device *dev)
 442{
 443	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 444
 445	if (sdrv->remove)
 446		sdrv->remove(to_spi_device(dev));
 447
 448	dev_pm_domain_detach(dev, true);
 
 
 449}
 450
 451static void spi_shutdown(struct device *dev)
 452{
 453	if (dev->driver) {
 454		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 455
 456		if (sdrv->shutdown)
 457			sdrv->shutdown(to_spi_device(dev));
 458	}
 459}
 460
 461struct bus_type spi_bus_type = {
 462	.name		= "spi",
 463	.dev_groups	= spi_dev_groups,
 464	.match		= spi_match_device,
 465	.uevent		= spi_uevent,
 466	.probe		= spi_probe,
 467	.remove		= spi_remove,
 468	.shutdown	= spi_shutdown,
 469};
 470EXPORT_SYMBOL_GPL(spi_bus_type);
 471
 472/**
 473 * __spi_register_driver - register a SPI driver
 474 * @owner: owner module of the driver to register
 475 * @sdrv: the driver to register
 476 * Context: can sleep
 477 *
 478 * Return: zero on success, else a negative error code.
 479 */
 480int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 481{
 482	sdrv->driver.owner = owner;
 483	sdrv->driver.bus = &spi_bus_type;
 484
 485	/*
 486	 * For Really Good Reasons we use spi: modaliases not of:
 487	 * modaliases for DT so module autoloading won't work if we
 488	 * don't have a spi_device_id as well as a compatible string.
 489	 */
 490	if (sdrv->driver.of_match_table) {
 491		const struct of_device_id *of_id;
 492
 493		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 494		     of_id++) {
 495			const char *of_name;
 496
 497			/* Strip off any vendor prefix */
 498			of_name = strnchr(of_id->compatible,
 499					  sizeof(of_id->compatible), ',');
 500			if (of_name)
 501				of_name++;
 502			else
 503				of_name = of_id->compatible;
 504
 505			if (sdrv->id_table) {
 506				const struct spi_device_id *spi_id;
 507
 508				spi_id = spi_match_id(sdrv->id_table, of_name);
 509				if (spi_id)
 510					continue;
 511			} else {
 512				if (strcmp(sdrv->driver.name, of_name) == 0)
 513					continue;
 514			}
 515
 516			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 517				sdrv->driver.name, of_id->compatible);
 518		}
 519	}
 520
 521	return driver_register(&sdrv->driver);
 522}
 523EXPORT_SYMBOL_GPL(__spi_register_driver);
 524
 525/*-------------------------------------------------------------------------*/
 526
 527/*
 528 * SPI devices should normally not be created by SPI device drivers; that
 529 * would make them board-specific.  Similarly with SPI controller drivers.
 530 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 531 * with other readonly (flashable) information about mainboard devices.
 532 */
 533
 534struct boardinfo {
 535	struct list_head	list;
 536	struct spi_board_info	board_info;
 537};
 538
 539static LIST_HEAD(board_list);
 540static LIST_HEAD(spi_controller_list);
 541
 542/*
 543 * Used to protect add/del operation for board_info list and
 544 * spi_controller list, and their matching process also used
 545 * to protect object of type struct idr.
 546 */
 547static DEFINE_MUTEX(board_lock);
 548
 549/**
 550 * spi_alloc_device - Allocate a new SPI device
 551 * @ctlr: Controller to which device is connected
 552 * Context: can sleep
 553 *
 554 * Allows a driver to allocate and initialize a spi_device without
 555 * registering it immediately.  This allows a driver to directly
 556 * fill the spi_device with device parameters before calling
 557 * spi_add_device() on it.
 558 *
 559 * Caller is responsible to call spi_add_device() on the returned
 560 * spi_device structure to add it to the SPI controller.  If the caller
 561 * needs to discard the spi_device without adding it, then it should
 562 * call spi_dev_put() on it.
 563 *
 564 * Return: a pointer to the new device, or NULL.
 565 */
 566struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 567{
 568	struct spi_device	*spi;
 569
 570	if (!spi_controller_get(ctlr))
 571		return NULL;
 572
 573	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 574	if (!spi) {
 575		spi_controller_put(ctlr);
 576		return NULL;
 577	}
 578
 579	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 580	if (!spi->pcpu_statistics) {
 581		kfree(spi);
 582		spi_controller_put(ctlr);
 583		return NULL;
 584	}
 585
 586	spi->master = spi->controller = ctlr;
 587	spi->dev.parent = &ctlr->dev;
 588	spi->dev.bus = &spi_bus_type;
 589	spi->dev.release = spidev_release;
 590	spi->mode = ctlr->buswidth_override_bits;
 
 
 591
 592	device_initialize(&spi->dev);
 593	return spi;
 594}
 595EXPORT_SYMBOL_GPL(spi_alloc_device);
 596
 597static void spi_dev_set_name(struct spi_device *spi)
 598{
 599	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 600
 601	if (adev) {
 602		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 603		return;
 604	}
 605
 606	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 607		     spi->chip_select);
 608}
 609
 610static int spi_dev_check(struct device *dev, void *data)
 611{
 612	struct spi_device *spi = to_spi_device(dev);
 613	struct spi_device *new_spi = data;
 614
 615	if (spi->controller == new_spi->controller &&
 616	    spi->chip_select == new_spi->chip_select)
 617		return -EBUSY;
 618	return 0;
 619}
 620
 621static void spi_cleanup(struct spi_device *spi)
 622{
 623	if (spi->controller->cleanup)
 624		spi->controller->cleanup(spi);
 625}
 626
 627static int __spi_add_device(struct spi_device *spi)
 
 
 
 628{
 
 629	struct spi_controller *ctlr = spi->controller;
 630	struct device *dev = ctlr->dev.parent;
 631	int status;
 632
 633	/*
 634	 * We need to make sure there's no other device with this
 
 
 
 
 
 
 
 
 
 635	 * chipselect **BEFORE** we call setup(), else we'll trash
 636	 * its configuration.
 637	 */
 
 
 638	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 639	if (status) {
 640		dev_err(dev, "chipselect %d already in use\n",
 641				spi->chip_select);
 642		return status;
 643	}
 644
 645	/* Controller may unregister concurrently */
 646	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 647	    !device_is_registered(&ctlr->dev)) {
 648		return -ENODEV;
 649	}
 650
 651	if (ctlr->cs_gpiods)
 652		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 653
 654	/*
 655	 * Drivers may modify this initial i/o setup, but will
 656	 * normally rely on the device being setup.  Devices
 657	 * using SPI_CS_HIGH can't coexist well otherwise...
 658	 */
 659	status = spi_setup(spi);
 660	if (status < 0) {
 661		dev_err(dev, "can't setup %s, status %d\n",
 662				dev_name(&spi->dev), status);
 663		return status;
 664	}
 665
 666	/* Device may be bound to an active driver when this returns */
 667	status = device_add(&spi->dev);
 668	if (status < 0) {
 669		dev_err(dev, "can't add %s, status %d\n",
 670				dev_name(&spi->dev), status);
 671		spi_cleanup(spi);
 672	} else {
 673		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 674	}
 675
 676	return status;
 677}
 678
 679/**
 680 * spi_add_device - Add spi_device allocated with spi_alloc_device
 681 * @spi: spi_device to register
 682 *
 683 * Companion function to spi_alloc_device.  Devices allocated with
 684 * spi_alloc_device can be added onto the spi bus with this function.
 685 *
 686 * Return: 0 on success; negative errno on failure
 687 */
 688int spi_add_device(struct spi_device *spi)
 689{
 690	struct spi_controller *ctlr = spi->controller;
 691	struct device *dev = ctlr->dev.parent;
 692	int status;
 693
 694	/* Chipselects are numbered 0..max; validate. */
 695	if (spi->chip_select >= ctlr->num_chipselect) {
 696		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 697			ctlr->num_chipselect);
 698		return -EINVAL;
 699	}
 700
 701	/* Set the bus ID string */
 702	spi_dev_set_name(spi);
 703
 704	mutex_lock(&ctlr->add_lock);
 705	status = __spi_add_device(spi);
 706	mutex_unlock(&ctlr->add_lock);
 707	return status;
 708}
 709EXPORT_SYMBOL_GPL(spi_add_device);
 710
 711static int spi_add_device_locked(struct spi_device *spi)
 712{
 713	struct spi_controller *ctlr = spi->controller;
 714	struct device *dev = ctlr->dev.parent;
 715
 716	/* Chipselects are numbered 0..max; validate. */
 717	if (spi->chip_select >= ctlr->num_chipselect) {
 718		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 719			ctlr->num_chipselect);
 720		return -EINVAL;
 721	}
 722
 723	/* Set the bus ID string */
 724	spi_dev_set_name(spi);
 725
 726	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
 727	return __spi_add_device(spi);
 728}
 729
 730/**
 731 * spi_new_device - instantiate one new SPI device
 732 * @ctlr: Controller to which device is connected
 733 * @chip: Describes the SPI device
 734 * Context: can sleep
 735 *
 736 * On typical mainboards, this is purely internal; and it's not needed
 737 * after board init creates the hard-wired devices.  Some development
 738 * platforms may not be able to use spi_register_board_info though, and
 739 * this is exported so that for example a USB or parport based adapter
 740 * driver could add devices (which it would learn about out-of-band).
 741 *
 742 * Return: the new device, or NULL.
 743 */
 744struct spi_device *spi_new_device(struct spi_controller *ctlr,
 745				  struct spi_board_info *chip)
 746{
 747	struct spi_device	*proxy;
 748	int			status;
 749
 750	/*
 751	 * NOTE:  caller did any chip->bus_num checks necessary.
 752	 *
 753	 * Also, unless we change the return value convention to use
 754	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 755	 * suggests syslogged diagnostics are best here (ugh).
 756	 */
 757
 758	proxy = spi_alloc_device(ctlr);
 759	if (!proxy)
 760		return NULL;
 761
 762	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 763
 764	proxy->chip_select = chip->chip_select;
 765	proxy->max_speed_hz = chip->max_speed_hz;
 766	proxy->mode = chip->mode;
 767	proxy->irq = chip->irq;
 768	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 769	proxy->dev.platform_data = (void *) chip->platform_data;
 770	proxy->controller_data = chip->controller_data;
 771	proxy->controller_state = NULL;
 772
 773	if (chip->swnode) {
 774		status = device_add_software_node(&proxy->dev, chip->swnode);
 775		if (status) {
 776			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 
 777				chip->modalias, status);
 778			goto err_dev_put;
 779		}
 780	}
 781
 782	status = spi_add_device(proxy);
 783	if (status < 0)
 784		goto err_dev_put;
 785
 786	return proxy;
 787
 
 
 
 788err_dev_put:
 789	device_remove_software_node(&proxy->dev);
 790	spi_dev_put(proxy);
 791	return NULL;
 792}
 793EXPORT_SYMBOL_GPL(spi_new_device);
 794
 795/**
 796 * spi_unregister_device - unregister a single SPI device
 797 * @spi: spi_device to unregister
 798 *
 799 * Start making the passed SPI device vanish. Normally this would be handled
 800 * by spi_unregister_controller().
 801 */
 802void spi_unregister_device(struct spi_device *spi)
 803{
 804	if (!spi)
 805		return;
 806
 807	if (spi->dev.of_node) {
 808		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 809		of_node_put(spi->dev.of_node);
 810	}
 811	if (ACPI_COMPANION(&spi->dev))
 812		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 813	device_remove_software_node(&spi->dev);
 814	device_del(&spi->dev);
 815	spi_cleanup(spi);
 816	put_device(&spi->dev);
 817}
 818EXPORT_SYMBOL_GPL(spi_unregister_device);
 819
 820static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 821					      struct spi_board_info *bi)
 822{
 823	struct spi_device *dev;
 824
 825	if (ctlr->bus_num != bi->bus_num)
 826		return;
 827
 828	dev = spi_new_device(ctlr, bi);
 829	if (!dev)
 830		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 831			bi->modalias);
 832}
 833
 834/**
 835 * spi_register_board_info - register SPI devices for a given board
 836 * @info: array of chip descriptors
 837 * @n: how many descriptors are provided
 838 * Context: can sleep
 839 *
 840 * Board-specific early init code calls this (probably during arch_initcall)
 841 * with segments of the SPI device table.  Any device nodes are created later,
 842 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 843 * this table of devices forever, so that reloading a controller driver will
 844 * not make Linux forget about these hard-wired devices.
 845 *
 846 * Other code can also call this, e.g. a particular add-on board might provide
 847 * SPI devices through its expansion connector, so code initializing that board
 848 * would naturally declare its SPI devices.
 849 *
 850 * The board info passed can safely be __initdata ... but be careful of
 851 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 852 *
 853 * Return: zero on success, else a negative error code.
 854 */
 855int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 856{
 857	struct boardinfo *bi;
 858	int i;
 859
 860	if (!n)
 861		return 0;
 862
 863	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 864	if (!bi)
 865		return -ENOMEM;
 866
 867	for (i = 0; i < n; i++, bi++, info++) {
 868		struct spi_controller *ctlr;
 869
 870		memcpy(&bi->board_info, info, sizeof(*info));
 
 
 
 
 
 
 871
 872		mutex_lock(&board_lock);
 873		list_add_tail(&bi->list, &board_list);
 874		list_for_each_entry(ctlr, &spi_controller_list, list)
 875			spi_match_controller_to_boardinfo(ctlr,
 876							  &bi->board_info);
 877		mutex_unlock(&board_lock);
 878	}
 879
 880	return 0;
 881}
 882
 883/*-------------------------------------------------------------------------*/
 884
 885/* Core methods for SPI resource management */
 886
 887/**
 888 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 889 *                 during the processing of a spi_message while using
 890 *                 spi_transfer_one
 891 * @spi:     the spi device for which we allocate memory
 892 * @release: the release code to execute for this resource
 893 * @size:    size to alloc and return
 894 * @gfp:     GFP allocation flags
 895 *
 896 * Return: the pointer to the allocated data
 897 *
 898 * This may get enhanced in the future to allocate from a memory pool
 899 * of the @spi_device or @spi_controller to avoid repeated allocations.
 900 */
 901static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 902			   size_t size, gfp_t gfp)
 903{
 904	struct spi_res *sres;
 905
 906	sres = kzalloc(sizeof(*sres) + size, gfp);
 907	if (!sres)
 908		return NULL;
 909
 910	INIT_LIST_HEAD(&sres->entry);
 911	sres->release = release;
 912
 913	return sres->data;
 914}
 915
 916/**
 917 * spi_res_free - free an spi resource
 918 * @res: pointer to the custom data of a resource
 919 */
 920static void spi_res_free(void *res)
 921{
 922	struct spi_res *sres = container_of(res, struct spi_res, data);
 923
 924	if (!res)
 925		return;
 926
 927	WARN_ON(!list_empty(&sres->entry));
 928	kfree(sres);
 929}
 930
 931/**
 932 * spi_res_add - add a spi_res to the spi_message
 933 * @message: the spi message
 934 * @res:     the spi_resource
 935 */
 936static void spi_res_add(struct spi_message *message, void *res)
 937{
 938	struct spi_res *sres = container_of(res, struct spi_res, data);
 939
 940	WARN_ON(!list_empty(&sres->entry));
 941	list_add_tail(&sres->entry, &message->resources);
 942}
 943
 944/**
 945 * spi_res_release - release all spi resources for this message
 946 * @ctlr:  the @spi_controller
 947 * @message: the @spi_message
 948 */
 949static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
 950{
 951	struct spi_res *res, *tmp;
 952
 953	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
 954		if (res->release)
 955			res->release(ctlr, message, res->data);
 956
 957		list_del(&res->entry);
 958
 959		kfree(res);
 960	}
 961}
 962
 963/*-------------------------------------------------------------------------*/
 964
 965static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
 966{
 967	bool activate = enable;
 968
 969	/*
 970	 * Avoid calling into the driver (or doing delays) if the chip select
 971	 * isn't actually changing from the last time this was called.
 972	 */
 973	if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
 974				(!enable && spi->controller->last_cs != spi->chip_select)) &&
 975	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
 976		return;
 977
 978	trace_spi_set_cs(spi, activate);
 979
 980	spi->controller->last_cs = enable ? spi->chip_select : -1;
 981	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
 982
 983	if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
 984		spi_delay_exec(&spi->cs_hold, NULL);
 985	}
 986
 987	if (spi->mode & SPI_CS_HIGH)
 988		enable = !enable;
 989
 990	if (spi->cs_gpiod) {
 991		if (!(spi->mode & SPI_NO_CS)) {
 992			/*
 993			 * Historically ACPI has no means of the GPIO polarity and
 994			 * thus the SPISerialBus() resource defines it on the per-chip
 995			 * basis. In order to avoid a chain of negations, the GPIO
 996			 * polarity is considered being Active High. Even for the cases
 997			 * when _DSD() is involved (in the updated versions of ACPI)
 998			 * the GPIO CS polarity must be defined Active High to avoid
 999			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1000			 * into account.
1001			 */
1002			if (has_acpi_companion(&spi->dev))
1003				gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
1004			else
1005				/* Polarity handled by GPIO library */
1006				gpiod_set_value_cansleep(spi->cs_gpiod, activate);
1007		}
1008		/* Some SPI masters need both GPIO CS & slave_select */
1009		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1010		    spi->controller->set_cs)
1011			spi->controller->set_cs(spi, !enable);
1012	} else if (spi->controller->set_cs) {
1013		spi->controller->set_cs(spi, !enable);
1014	}
1015
1016	if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
1017		if (activate)
1018			spi_delay_exec(&spi->cs_setup, NULL);
1019		else
1020			spi_delay_exec(&spi->cs_inactive, NULL);
1021	}
1022}
1023
1024#ifdef CONFIG_HAS_DMA
1025static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1026			     struct sg_table *sgt, void *buf, size_t len,
1027			     enum dma_data_direction dir, unsigned long attrs)
1028{
1029	const bool vmalloced_buf = is_vmalloc_addr(buf);
1030	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1031#ifdef CONFIG_HIGHMEM
1032	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1033				(unsigned long)buf < (PKMAP_BASE +
1034					(LAST_PKMAP * PAGE_SIZE)));
1035#else
1036	const bool kmap_buf = false;
1037#endif
1038	int desc_len;
1039	int sgs;
1040	struct page *vm_page;
1041	struct scatterlist *sg;
1042	void *sg_buf;
1043	size_t min;
1044	int i, ret;
1045
1046	if (vmalloced_buf || kmap_buf) {
1047		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1048		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1049	} else if (virt_addr_valid(buf)) {
1050		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1051		sgs = DIV_ROUND_UP(len, desc_len);
1052	} else {
1053		return -EINVAL;
1054	}
1055
1056	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1057	if (ret != 0)
1058		return ret;
1059
1060	sg = &sgt->sgl[0];
1061	for (i = 0; i < sgs; i++) {
1062
1063		if (vmalloced_buf || kmap_buf) {
1064			/*
1065			 * Next scatterlist entry size is the minimum between
1066			 * the desc_len and the remaining buffer length that
1067			 * fits in a page.
1068			 */
1069			min = min_t(size_t, desc_len,
1070				    min_t(size_t, len,
1071					  PAGE_SIZE - offset_in_page(buf)));
1072			if (vmalloced_buf)
1073				vm_page = vmalloc_to_page(buf);
1074			else
1075				vm_page = kmap_to_page(buf);
1076			if (!vm_page) {
1077				sg_free_table(sgt);
1078				return -ENOMEM;
1079			}
1080			sg_set_page(sg, vm_page,
1081				    min, offset_in_page(buf));
1082		} else {
1083			min = min_t(size_t, len, desc_len);
1084			sg_buf = buf;
1085			sg_set_buf(sg, sg_buf, min);
1086		}
1087
1088		buf += min;
1089		len -= min;
1090		sg = sg_next(sg);
1091	}
1092
1093	ret = dma_map_sgtable(dev, sgt, dir, attrs);
 
 
1094	if (ret < 0) {
1095		sg_free_table(sgt);
1096		return ret;
1097	}
1098
1099	return 0;
1100}
1101
1102int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1103		struct sg_table *sgt, void *buf, size_t len,
1104		enum dma_data_direction dir)
1105{
1106	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1107}
1108
1109static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1110				struct device *dev, struct sg_table *sgt,
1111				enum dma_data_direction dir,
1112				unsigned long attrs)
1113{
1114	if (sgt->orig_nents) {
1115		dma_unmap_sgtable(dev, sgt, dir, attrs);
1116		sg_free_table(sgt);
1117		sgt->orig_nents = 0;
1118		sgt->nents = 0;
1119	}
1120}
1121
1122void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1123		   struct sg_table *sgt, enum dma_data_direction dir)
1124{
1125	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1126}
1127
1128static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1129{
1130	struct device *tx_dev, *rx_dev;
1131	struct spi_transfer *xfer;
1132	int ret;
1133
1134	if (!ctlr->can_dma)
1135		return 0;
1136
1137	if (ctlr->dma_tx)
1138		tx_dev = ctlr->dma_tx->device->dev;
1139	else if (ctlr->dma_map_dev)
1140		tx_dev = ctlr->dma_map_dev;
1141	else
1142		tx_dev = ctlr->dev.parent;
1143
1144	if (ctlr->dma_rx)
1145		rx_dev = ctlr->dma_rx->device->dev;
1146	else if (ctlr->dma_map_dev)
1147		rx_dev = ctlr->dma_map_dev;
1148	else
1149		rx_dev = ctlr->dev.parent;
1150
1151	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1152		/* The sync is done before each transfer. */
1153		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1154
1155		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1156			continue;
1157
1158		if (xfer->tx_buf != NULL) {
1159			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1160						(void *)xfer->tx_buf,
1161						xfer->len, DMA_TO_DEVICE,
1162						attrs);
1163			if (ret != 0)
1164				return ret;
1165		}
1166
1167		if (xfer->rx_buf != NULL) {
1168			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1169						xfer->rx_buf, xfer->len,
1170						DMA_FROM_DEVICE, attrs);
1171			if (ret != 0) {
1172				spi_unmap_buf_attrs(ctlr, tx_dev,
1173						&xfer->tx_sg, DMA_TO_DEVICE,
1174						attrs);
1175
1176				return ret;
1177			}
1178		}
1179	}
1180
1181	ctlr->cur_rx_dma_dev = rx_dev;
1182	ctlr->cur_tx_dma_dev = tx_dev;
1183	ctlr->cur_msg_mapped = true;
1184
1185	return 0;
1186}
1187
1188static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1189{
1190	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1191	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1192	struct spi_transfer *xfer;
 
1193
1194	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1195		return 0;
1196
1197	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1198		/* The sync has already been done after each transfer. */
1199		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
 
1200
 
 
 
 
 
 
1201		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1202			continue;
1203
1204		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1205				    DMA_FROM_DEVICE, attrs);
1206		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1207				    DMA_TO_DEVICE, attrs);
1208	}
1209
1210	ctlr->cur_msg_mapped = false;
1211
1212	return 0;
1213}
1214
1215static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1216				    struct spi_transfer *xfer)
 
1217{
1218	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1219	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1220
1221	if (!ctlr->cur_msg_mapped)
1222		return;
1223
1224	if (xfer->tx_sg.orig_nents)
1225		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1226	if (xfer->rx_sg.orig_nents)
1227		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1228}
1229
1230static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1231				 struct spi_transfer *xfer)
 
1232{
1233	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1234	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1235
1236	if (!ctlr->cur_msg_mapped)
1237		return;
1238
1239	if (xfer->rx_sg.orig_nents)
1240		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1241	if (xfer->tx_sg.orig_nents)
1242		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1243}
1244#else /* !CONFIG_HAS_DMA */
1245static inline int __spi_map_msg(struct spi_controller *ctlr,
1246				struct spi_message *msg)
1247{
1248	return 0;
1249}
1250
1251static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1252				  struct spi_message *msg)
1253{
1254	return 0;
1255}
1256
1257static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1258				    struct spi_transfer *xfer)
1259{
1260}
1261
1262static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1263				 struct spi_transfer *xfer)
1264{
1265}
1266#endif /* !CONFIG_HAS_DMA */
1267
1268static inline int spi_unmap_msg(struct spi_controller *ctlr,
1269				struct spi_message *msg)
1270{
1271	struct spi_transfer *xfer;
1272
1273	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1274		/*
1275		 * Restore the original value of tx_buf or rx_buf if they are
1276		 * NULL.
1277		 */
1278		if (xfer->tx_buf == ctlr->dummy_tx)
1279			xfer->tx_buf = NULL;
1280		if (xfer->rx_buf == ctlr->dummy_rx)
1281			xfer->rx_buf = NULL;
1282	}
1283
1284	return __spi_unmap_msg(ctlr, msg);
1285}
1286
1287static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1288{
1289	struct spi_transfer *xfer;
1290	void *tmp;
1291	unsigned int max_tx, max_rx;
1292
1293	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1294		&& !(msg->spi->mode & SPI_3WIRE)) {
1295		max_tx = 0;
1296		max_rx = 0;
1297
1298		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1299			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1300			    !xfer->tx_buf)
1301				max_tx = max(xfer->len, max_tx);
1302			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1303			    !xfer->rx_buf)
1304				max_rx = max(xfer->len, max_rx);
1305		}
1306
1307		if (max_tx) {
1308			tmp = krealloc(ctlr->dummy_tx, max_tx,
1309				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1310			if (!tmp)
1311				return -ENOMEM;
1312			ctlr->dummy_tx = tmp;
 
1313		}
1314
1315		if (max_rx) {
1316			tmp = krealloc(ctlr->dummy_rx, max_rx,
1317				       GFP_KERNEL | GFP_DMA);
1318			if (!tmp)
1319				return -ENOMEM;
1320			ctlr->dummy_rx = tmp;
1321		}
1322
1323		if (max_tx || max_rx) {
1324			list_for_each_entry(xfer, &msg->transfers,
1325					    transfer_list) {
1326				if (!xfer->len)
1327					continue;
1328				if (!xfer->tx_buf)
1329					xfer->tx_buf = ctlr->dummy_tx;
1330				if (!xfer->rx_buf)
1331					xfer->rx_buf = ctlr->dummy_rx;
1332			}
1333		}
1334	}
1335
1336	return __spi_map_msg(ctlr, msg);
1337}
1338
1339static int spi_transfer_wait(struct spi_controller *ctlr,
1340			     struct spi_message *msg,
1341			     struct spi_transfer *xfer)
1342{
1343	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1344	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1345	u32 speed_hz = xfer->speed_hz;
1346	unsigned long long ms;
1347
1348	if (spi_controller_is_slave(ctlr)) {
1349		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1350			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1351			return -EINTR;
1352		}
1353	} else {
1354		if (!speed_hz)
1355			speed_hz = 100000;
1356
1357		/*
1358		 * For each byte we wait for 8 cycles of the SPI clock.
1359		 * Since speed is defined in Hz and we want milliseconds,
1360		 * use respective multiplier, but before the division,
1361		 * otherwise we may get 0 for short transfers.
1362		 */
1363		ms = 8LL * MSEC_PER_SEC * xfer->len;
1364		do_div(ms, speed_hz);
1365
1366		/*
1367		 * Increase it twice and add 200 ms tolerance, use
1368		 * predefined maximum in case of overflow.
1369		 */
1370		ms += ms + 200;
1371		if (ms > UINT_MAX)
1372			ms = UINT_MAX;
1373
1374		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1375						 msecs_to_jiffies(ms));
1376
1377		if (ms == 0) {
1378			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1379			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1380			dev_err(&msg->spi->dev,
1381				"SPI transfer timed out\n");
1382			return -ETIMEDOUT;
1383		}
1384	}
1385
1386	return 0;
1387}
1388
1389static void _spi_transfer_delay_ns(u32 ns)
1390{
1391	if (!ns)
1392		return;
1393	if (ns <= NSEC_PER_USEC) {
1394		ndelay(ns);
1395	} else {
1396		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1397
1398		if (us <= 10)
1399			udelay(us);
1400		else
1401			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1402	}
1403}
1404
1405int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1406{
1407	u32 delay = _delay->value;
1408	u32 unit = _delay->unit;
1409	u32 hz;
1410
1411	if (!delay)
1412		return 0;
1413
1414	switch (unit) {
1415	case SPI_DELAY_UNIT_USECS:
1416		delay *= NSEC_PER_USEC;
1417		break;
1418	case SPI_DELAY_UNIT_NSECS:
1419		/* Nothing to do here */
1420		break;
1421	case SPI_DELAY_UNIT_SCK:
1422		/* Clock cycles need to be obtained from spi_transfer */
1423		if (!xfer)
1424			return -EINVAL;
1425		/*
1426		 * If there is unknown effective speed, approximate it
1427		 * by underestimating with half of the requested hz.
1428		 */
1429		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1430		if (!hz)
1431			return -EINVAL;
1432
1433		/* Convert delay to nanoseconds */
1434		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1435		break;
1436	default:
1437		return -EINVAL;
1438	}
1439
1440	return delay;
1441}
1442EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1443
1444int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1445{
1446	int delay;
1447
1448	might_sleep();
1449
1450	if (!_delay)
1451		return -EINVAL;
1452
1453	delay = spi_delay_to_ns(_delay, xfer);
1454	if (delay < 0)
1455		return delay;
1456
1457	_spi_transfer_delay_ns(delay);
1458
1459	return 0;
1460}
1461EXPORT_SYMBOL_GPL(spi_delay_exec);
1462
1463static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1464					  struct spi_transfer *xfer)
1465{
1466	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1467	u32 delay = xfer->cs_change_delay.value;
1468	u32 unit = xfer->cs_change_delay.unit;
1469	int ret;
1470
1471	/* Return early on "fast" mode - for everything but USECS */
1472	if (!delay) {
1473		if (unit == SPI_DELAY_UNIT_USECS)
1474			_spi_transfer_delay_ns(default_delay_ns);
1475		return;
1476	}
1477
1478	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1479	if (ret) {
1480		dev_err_once(&msg->spi->dev,
1481			     "Use of unsupported delay unit %i, using default of %luus\n",
1482			     unit, default_delay_ns / NSEC_PER_USEC);
1483		_spi_transfer_delay_ns(default_delay_ns);
1484	}
1485}
1486
1487/*
1488 * spi_transfer_one_message - Default implementation of transfer_one_message()
1489 *
1490 * This is a standard implementation of transfer_one_message() for
1491 * drivers which implement a transfer_one() operation.  It provides
1492 * standard handling of delays and chip select management.
1493 */
1494static int spi_transfer_one_message(struct spi_controller *ctlr,
1495				    struct spi_message *msg)
1496{
1497	struct spi_transfer *xfer;
1498	bool keep_cs = false;
1499	int ret = 0;
1500	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1501	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
 
1502
1503	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1504	spi_set_cs(msg->spi, !xfer->cs_off, false);
1505
1506	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1507	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1508
1509	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1510		trace_spi_transfer_start(msg, xfer);
1511
1512		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1513		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1514
1515		if (!ctlr->ptp_sts_supported) {
1516			xfer->ptp_sts_word_pre = 0;
1517			ptp_read_system_prets(xfer->ptp_sts);
1518		}
1519
1520		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1521			reinit_completion(&ctlr->xfer_completion);
1522
1523fallback_pio:
1524			spi_dma_sync_for_device(ctlr, xfer);
1525			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1526			if (ret < 0) {
1527				spi_dma_sync_for_cpu(ctlr, xfer);
1528
1529				if (ctlr->cur_msg_mapped &&
1530				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1531					__spi_unmap_msg(ctlr, msg);
1532					ctlr->fallback = true;
1533					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1534					goto fallback_pio;
1535				}
1536
1537				SPI_STATISTICS_INCREMENT_FIELD(statm,
1538							       errors);
1539				SPI_STATISTICS_INCREMENT_FIELD(stats,
1540							       errors);
1541				dev_err(&msg->spi->dev,
1542					"SPI transfer failed: %d\n", ret);
1543				goto out;
1544			}
1545
1546			if (ret > 0) {
1547				ret = spi_transfer_wait(ctlr, msg, xfer);
1548				if (ret < 0)
1549					msg->status = ret;
 
 
 
 
 
 
 
1550			}
1551
1552			spi_dma_sync_for_cpu(ctlr, xfer);
 
 
 
 
 
 
 
 
1553		} else {
1554			if (xfer->len)
1555				dev_err(&msg->spi->dev,
1556					"Bufferless transfer has length %u\n",
1557					xfer->len);
1558		}
1559
1560		if (!ctlr->ptp_sts_supported) {
1561			ptp_read_system_postts(xfer->ptp_sts);
1562			xfer->ptp_sts_word_post = xfer->len;
1563		}
1564
1565		trace_spi_transfer_stop(msg, xfer);
1566
1567		if (msg->status != -EINPROGRESS)
1568			goto out;
1569
1570		spi_transfer_delay_exec(xfer);
 
 
 
 
 
 
 
1571
1572		if (xfer->cs_change) {
1573			if (list_is_last(&xfer->transfer_list,
1574					 &msg->transfers)) {
1575				keep_cs = true;
1576			} else {
1577				if (!xfer->cs_off)
1578					spi_set_cs(msg->spi, false, false);
1579				_spi_transfer_cs_change_delay(msg, xfer);
1580				if (!list_next_entry(xfer, transfer_list)->cs_off)
1581					spi_set_cs(msg->spi, true, false);
1582			}
1583		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1584			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1585			spi_set_cs(msg->spi, xfer->cs_off, false);
1586		}
1587
1588		msg->actual_length += xfer->len;
1589	}
1590
1591out:
1592	if (ret != 0 || !keep_cs)
1593		spi_set_cs(msg->spi, false, false);
1594
1595	if (msg->status == -EINPROGRESS)
1596		msg->status = ret;
1597
1598	if (msg->status && ctlr->handle_err)
1599		ctlr->handle_err(ctlr, msg);
1600
 
 
1601	spi_finalize_current_message(ctlr);
1602
1603	return ret;
1604}
1605
1606/**
1607 * spi_finalize_current_transfer - report completion of a transfer
1608 * @ctlr: the controller reporting completion
1609 *
1610 * Called by SPI drivers using the core transfer_one_message()
1611 * implementation to notify it that the current interrupt driven
1612 * transfer has finished and the next one may be scheduled.
1613 */
1614void spi_finalize_current_transfer(struct spi_controller *ctlr)
1615{
1616	complete(&ctlr->xfer_completion);
1617}
1618EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1619
1620static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1621{
1622	if (ctlr->auto_runtime_pm) {
1623		pm_runtime_mark_last_busy(ctlr->dev.parent);
1624		pm_runtime_put_autosuspend(ctlr->dev.parent);
1625	}
1626}
1627
1628static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1629		struct spi_message *msg, bool was_busy)
1630{
1631	struct spi_transfer *xfer;
1632	int ret;
1633
1634	if (!was_busy && ctlr->auto_runtime_pm) {
1635		ret = pm_runtime_get_sync(ctlr->dev.parent);
1636		if (ret < 0) {
1637			pm_runtime_put_noidle(ctlr->dev.parent);
1638			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1639				ret);
1640			return ret;
1641		}
1642	}
1643
1644	if (!was_busy)
1645		trace_spi_controller_busy(ctlr);
1646
1647	if (!was_busy && ctlr->prepare_transfer_hardware) {
1648		ret = ctlr->prepare_transfer_hardware(ctlr);
1649		if (ret) {
1650			dev_err(&ctlr->dev,
1651				"failed to prepare transfer hardware: %d\n",
1652				ret);
1653
1654			if (ctlr->auto_runtime_pm)
1655				pm_runtime_put(ctlr->dev.parent);
1656
1657			msg->status = ret;
1658			spi_finalize_current_message(ctlr);
1659
1660			return ret;
1661		}
1662	}
1663
1664	trace_spi_message_start(msg);
1665
1666	ret = spi_split_transfers_maxsize(ctlr, msg,
1667					  spi_max_transfer_size(msg->spi),
1668					  GFP_KERNEL | GFP_DMA);
1669	if (ret) {
1670		msg->status = ret;
1671		spi_finalize_current_message(ctlr);
1672		return ret;
1673	}
1674
1675	if (ctlr->prepare_message) {
1676		ret = ctlr->prepare_message(ctlr, msg);
1677		if (ret) {
1678			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1679				ret);
1680			msg->status = ret;
1681			spi_finalize_current_message(ctlr);
1682			return ret;
1683		}
1684		msg->prepared = true;
1685	}
1686
1687	ret = spi_map_msg(ctlr, msg);
1688	if (ret) {
1689		msg->status = ret;
1690		spi_finalize_current_message(ctlr);
1691		return ret;
1692	}
1693
1694	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1695		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1696			xfer->ptp_sts_word_pre = 0;
1697			ptp_read_system_prets(xfer->ptp_sts);
1698		}
1699	}
1700
1701	/*
1702	 * Drivers implementation of transfer_one_message() must arrange for
1703	 * spi_finalize_current_message() to get called. Most drivers will do
1704	 * this in the calling context, but some don't. For those cases, a
1705	 * completion is used to guarantee that this function does not return
1706	 * until spi_finalize_current_message() is done accessing
1707	 * ctlr->cur_msg.
1708	 * Use of the following two flags enable to opportunistically skip the
1709	 * use of the completion since its use involves expensive spin locks.
1710	 * In case of a race with the context that calls
1711	 * spi_finalize_current_message() the completion will always be used,
1712	 * due to strict ordering of these flags using barriers.
1713	 */
1714	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1715	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1716	reinit_completion(&ctlr->cur_msg_completion);
1717	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1718
1719	ret = ctlr->transfer_one_message(ctlr, msg);
1720	if (ret) {
1721		dev_err(&ctlr->dev,
1722			"failed to transfer one message from queue\n");
1723		return ret;
1724	}
1725
1726	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1727	smp_mb(); /* See spi_finalize_current_message()... */
1728	if (READ_ONCE(ctlr->cur_msg_incomplete))
1729		wait_for_completion(&ctlr->cur_msg_completion);
1730
1731	return 0;
1732}
1733
1734/**
1735 * __spi_pump_messages - function which processes spi message queue
1736 * @ctlr: controller to process queue for
1737 * @in_kthread: true if we are in the context of the message pump thread
1738 *
1739 * This function checks if there is any spi message in the queue that
1740 * needs processing and if so call out to the driver to initialize hardware
1741 * and transfer each message.
1742 *
1743 * Note that it is called both from the kthread itself and also from
1744 * inside spi_sync(); the queue extraction handling at the top of the
1745 * function should deal with this safely.
1746 */
1747static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1748{
1749	struct spi_message *msg;
1750	bool was_busy = false;
1751	unsigned long flags;
 
1752	int ret;
1753
1754	/* Take the IO mutex */
1755	mutex_lock(&ctlr->io_mutex);
1756
1757	/* Lock queue */
1758	spin_lock_irqsave(&ctlr->queue_lock, flags);
1759
1760	/* Make sure we are not already running a message */
1761	if (ctlr->cur_msg)
1762		goto out_unlock;
 
 
 
 
 
 
 
 
 
1763
1764	/* Check if the queue is idle */
1765	if (list_empty(&ctlr->queue) || !ctlr->running) {
1766		if (!ctlr->busy)
1767			goto out_unlock;
 
 
1768
1769		/* Defer any non-atomic teardown to the thread */
1770		if (!in_kthread) {
1771			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1772			    !ctlr->unprepare_transfer_hardware) {
1773				spi_idle_runtime_pm(ctlr);
1774				ctlr->busy = false;
1775				ctlr->queue_empty = true;
1776				trace_spi_controller_idle(ctlr);
1777			} else {
1778				kthread_queue_work(ctlr->kworker,
1779						   &ctlr->pump_messages);
1780			}
1781			goto out_unlock;
1782		}
1783
1784		ctlr->busy = false;
 
1785		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1786
1787		kfree(ctlr->dummy_rx);
1788		ctlr->dummy_rx = NULL;
1789		kfree(ctlr->dummy_tx);
1790		ctlr->dummy_tx = NULL;
1791		if (ctlr->unprepare_transfer_hardware &&
1792		    ctlr->unprepare_transfer_hardware(ctlr))
1793			dev_err(&ctlr->dev,
1794				"failed to unprepare transfer hardware\n");
1795		spi_idle_runtime_pm(ctlr);
 
 
 
1796		trace_spi_controller_idle(ctlr);
1797
1798		spin_lock_irqsave(&ctlr->queue_lock, flags);
1799		ctlr->queue_empty = true;
1800		goto out_unlock;
 
1801	}
1802
1803	/* Extract head of queue */
1804	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1805	ctlr->cur_msg = msg;
1806
1807	list_del_init(&msg->queue);
1808	if (ctlr->busy)
1809		was_busy = true;
1810	else
1811		ctlr->busy = true;
1812	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1813
1814	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1815	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1816
1817	ctlr->cur_msg = NULL;
1818	ctlr->fallback = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820	mutex_unlock(&ctlr->io_mutex);
1821
1822	/* Prod the scheduler in case transfer_one() was busy waiting */
1823	if (!ret)
1824		cond_resched();
1825	return;
1826
1827out_unlock:
1828	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1829	mutex_unlock(&ctlr->io_mutex);
1830}
1831
1832/**
1833 * spi_pump_messages - kthread work function which processes spi message queue
1834 * @work: pointer to kthread work struct contained in the controller struct
1835 */
1836static void spi_pump_messages(struct kthread_work *work)
1837{
1838	struct spi_controller *ctlr =
1839		container_of(work, struct spi_controller, pump_messages);
1840
1841	__spi_pump_messages(ctlr, true);
1842}
1843
1844/**
1845 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1846 * @ctlr: Pointer to the spi_controller structure of the driver
1847 * @xfer: Pointer to the transfer being timestamped
1848 * @progress: How many words (not bytes) have been transferred so far
1849 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1850 *	      transfer, for less jitter in time measurement. Only compatible
1851 *	      with PIO drivers. If true, must follow up with
1852 *	      spi_take_timestamp_post or otherwise system will crash.
1853 *	      WARNING: for fully predictable results, the CPU frequency must
1854 *	      also be under control (governor).
1855 *
1856 * This is a helper for drivers to collect the beginning of the TX timestamp
1857 * for the requested byte from the SPI transfer. The frequency with which this
1858 * function must be called (once per word, once for the whole transfer, once
1859 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1860 * greater than or equal to the requested byte at the time of the call. The
1861 * timestamp is only taken once, at the first such call. It is assumed that
1862 * the driver advances its @tx buffer pointer monotonically.
1863 */
1864void spi_take_timestamp_pre(struct spi_controller *ctlr,
1865			    struct spi_transfer *xfer,
1866			    size_t progress, bool irqs_off)
1867{
1868	if (!xfer->ptp_sts)
1869		return;
1870
1871	if (xfer->timestamped)
1872		return;
1873
1874	if (progress > xfer->ptp_sts_word_pre)
1875		return;
1876
1877	/* Capture the resolution of the timestamp */
1878	xfer->ptp_sts_word_pre = progress;
1879
1880	if (irqs_off) {
1881		local_irq_save(ctlr->irq_flags);
1882		preempt_disable();
1883	}
1884
1885	ptp_read_system_prets(xfer->ptp_sts);
1886}
1887EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1888
1889/**
1890 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1891 * @ctlr: Pointer to the spi_controller structure of the driver
1892 * @xfer: Pointer to the transfer being timestamped
1893 * @progress: How many words (not bytes) have been transferred so far
1894 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1895 *
1896 * This is a helper for drivers to collect the end of the TX timestamp for
1897 * the requested byte from the SPI transfer. Can be called with an arbitrary
1898 * frequency: only the first call where @tx exceeds or is equal to the
1899 * requested word will be timestamped.
1900 */
1901void spi_take_timestamp_post(struct spi_controller *ctlr,
1902			     struct spi_transfer *xfer,
1903			     size_t progress, bool irqs_off)
1904{
1905	if (!xfer->ptp_sts)
1906		return;
1907
1908	if (xfer->timestamped)
1909		return;
1910
1911	if (progress < xfer->ptp_sts_word_post)
1912		return;
1913
1914	ptp_read_system_postts(xfer->ptp_sts);
1915
1916	if (irqs_off) {
1917		local_irq_restore(ctlr->irq_flags);
1918		preempt_enable();
1919	}
1920
1921	/* Capture the resolution of the timestamp */
1922	xfer->ptp_sts_word_post = progress;
1923
1924	xfer->timestamped = true;
1925}
1926EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1927
1928/**
1929 * spi_set_thread_rt - set the controller to pump at realtime priority
1930 * @ctlr: controller to boost priority of
1931 *
1932 * This can be called because the controller requested realtime priority
1933 * (by setting the ->rt value before calling spi_register_controller()) or
1934 * because a device on the bus said that its transfers needed realtime
1935 * priority.
1936 *
1937 * NOTE: at the moment if any device on a bus says it needs realtime then
1938 * the thread will be at realtime priority for all transfers on that
1939 * controller.  If this eventually becomes a problem we may see if we can
1940 * find a way to boost the priority only temporarily during relevant
1941 * transfers.
1942 */
1943static void spi_set_thread_rt(struct spi_controller *ctlr)
1944{
1945	dev_info(&ctlr->dev,
1946		"will run message pump with realtime priority\n");
1947	sched_set_fifo(ctlr->kworker->task);
1948}
1949
1950static int spi_init_queue(struct spi_controller *ctlr)
1951{
 
 
1952	ctlr->running = false;
1953	ctlr->busy = false;
1954	ctlr->queue_empty = true;
1955
1956	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1957	if (IS_ERR(ctlr->kworker)) {
1958		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1959		return PTR_ERR(ctlr->kworker);
 
 
1960	}
1961
1962	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1963
1964	/*
1965	 * Controller config will indicate if this controller should run the
1966	 * message pump with high (realtime) priority to reduce the transfer
1967	 * latency on the bus by minimising the delay between a transfer
1968	 * request and the scheduling of the message pump thread. Without this
1969	 * setting the message pump thread will remain at default priority.
1970	 */
1971	if (ctlr->rt)
1972		spi_set_thread_rt(ctlr);
 
 
 
1973
1974	return 0;
1975}
1976
1977/**
1978 * spi_get_next_queued_message() - called by driver to check for queued
1979 * messages
1980 * @ctlr: the controller to check for queued messages
1981 *
1982 * If there are more messages in the queue, the next message is returned from
1983 * this call.
1984 *
1985 * Return: the next message in the queue, else NULL if the queue is empty.
1986 */
1987struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1988{
1989	struct spi_message *next;
1990	unsigned long flags;
1991
1992	/* Get a pointer to the next message, if any */
1993	spin_lock_irqsave(&ctlr->queue_lock, flags);
1994	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1995					queue);
1996	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1997
1998	return next;
1999}
2000EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2001
2002/**
2003 * spi_finalize_current_message() - the current message is complete
2004 * @ctlr: the controller to return the message to
2005 *
2006 * Called by the driver to notify the core that the message in the front of the
2007 * queue is complete and can be removed from the queue.
2008 */
2009void spi_finalize_current_message(struct spi_controller *ctlr)
2010{
2011	struct spi_transfer *xfer;
2012	struct spi_message *mesg;
 
2013	int ret;
2014
 
2015	mesg = ctlr->cur_msg;
2016
2017	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2018		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2019			ptp_read_system_postts(xfer->ptp_sts);
2020			xfer->ptp_sts_word_post = xfer->len;
2021		}
2022	}
2023
2024	if (unlikely(ctlr->ptp_sts_supported))
2025		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2026			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2027
2028	spi_unmap_msg(ctlr, mesg);
2029
2030	/*
2031	 * In the prepare_messages callback the SPI bus has the opportunity
2032	 * to split a transfer to smaller chunks.
2033	 *
2034	 * Release the split transfers here since spi_map_msg() is done on
2035	 * the split transfers.
2036	 */
2037	spi_res_release(ctlr, mesg);
2038
2039	if (mesg->prepared && ctlr->unprepare_message) {
2040		ret = ctlr->unprepare_message(ctlr, mesg);
2041		if (ret) {
2042			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2043				ret);
2044		}
2045	}
2046
2047	mesg->prepared = false;
2048
2049	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2050	smp_mb(); /* See __spi_pump_transfer_message()... */
2051	if (READ_ONCE(ctlr->cur_msg_need_completion))
2052		complete(&ctlr->cur_msg_completion);
2053
2054	trace_spi_message_done(mesg);
2055
2056	mesg->state = NULL;
2057	if (mesg->complete)
2058		mesg->complete(mesg->context);
2059}
2060EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2061
2062static int spi_start_queue(struct spi_controller *ctlr)
2063{
2064	unsigned long flags;
2065
2066	spin_lock_irqsave(&ctlr->queue_lock, flags);
2067
2068	if (ctlr->running || ctlr->busy) {
2069		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2070		return -EBUSY;
2071	}
2072
2073	ctlr->running = true;
2074	ctlr->cur_msg = NULL;
2075	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2076
2077	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2078
2079	return 0;
2080}
2081
2082static int spi_stop_queue(struct spi_controller *ctlr)
2083{
2084	unsigned long flags;
2085	unsigned limit = 500;
2086	int ret = 0;
2087
2088	spin_lock_irqsave(&ctlr->queue_lock, flags);
2089
2090	/*
2091	 * This is a bit lame, but is optimized for the common execution path.
2092	 * A wait_queue on the ctlr->busy could be used, but then the common
2093	 * execution path (pump_messages) would be required to call wake_up or
2094	 * friends on every SPI message. Do this instead.
2095	 */
2096	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2097		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2098		usleep_range(10000, 11000);
2099		spin_lock_irqsave(&ctlr->queue_lock, flags);
2100	}
2101
2102	if (!list_empty(&ctlr->queue) || ctlr->busy)
2103		ret = -EBUSY;
2104	else
2105		ctlr->running = false;
2106
2107	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2108
2109	if (ret) {
2110		dev_warn(&ctlr->dev, "could not stop message queue\n");
2111		return ret;
2112	}
2113	return ret;
2114}
2115
2116static int spi_destroy_queue(struct spi_controller *ctlr)
2117{
2118	int ret;
2119
2120	ret = spi_stop_queue(ctlr);
2121
2122	/*
2123	 * kthread_flush_worker will block until all work is done.
2124	 * If the reason that stop_queue timed out is that the work will never
2125	 * finish, then it does no good to call flush/stop thread, so
2126	 * return anyway.
2127	 */
2128	if (ret) {
2129		dev_err(&ctlr->dev, "problem destroying queue\n");
2130		return ret;
2131	}
2132
2133	kthread_destroy_worker(ctlr->kworker);
 
2134
2135	return 0;
2136}
2137
2138static int __spi_queued_transfer(struct spi_device *spi,
2139				 struct spi_message *msg,
2140				 bool need_pump)
2141{
2142	struct spi_controller *ctlr = spi->controller;
2143	unsigned long flags;
2144
2145	spin_lock_irqsave(&ctlr->queue_lock, flags);
2146
2147	if (!ctlr->running) {
2148		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2149		return -ESHUTDOWN;
2150	}
2151	msg->actual_length = 0;
2152	msg->status = -EINPROGRESS;
2153
2154	list_add_tail(&msg->queue, &ctlr->queue);
2155	ctlr->queue_empty = false;
2156	if (!ctlr->busy && need_pump)
2157		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2158
2159	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2160	return 0;
2161}
2162
2163/**
2164 * spi_queued_transfer - transfer function for queued transfers
2165 * @spi: spi device which is requesting transfer
2166 * @msg: spi message which is to handled is queued to driver queue
2167 *
2168 * Return: zero on success, else a negative error code.
2169 */
2170static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2171{
2172	return __spi_queued_transfer(spi, msg, true);
2173}
2174
2175static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2176{
2177	int ret;
2178
2179	ctlr->transfer = spi_queued_transfer;
2180	if (!ctlr->transfer_one_message)
2181		ctlr->transfer_one_message = spi_transfer_one_message;
2182
2183	/* Initialize and start queue */
2184	ret = spi_init_queue(ctlr);
2185	if (ret) {
2186		dev_err(&ctlr->dev, "problem initializing queue\n");
2187		goto err_init_queue;
2188	}
2189	ctlr->queued = true;
2190	ret = spi_start_queue(ctlr);
2191	if (ret) {
2192		dev_err(&ctlr->dev, "problem starting queue\n");
2193		goto err_start_queue;
2194	}
2195
2196	return 0;
2197
2198err_start_queue:
2199	spi_destroy_queue(ctlr);
2200err_init_queue:
2201	return ret;
2202}
2203
2204/**
2205 * spi_flush_queue - Send all pending messages in the queue from the callers'
2206 *		     context
2207 * @ctlr: controller to process queue for
2208 *
2209 * This should be used when one wants to ensure all pending messages have been
2210 * sent before doing something. Is used by the spi-mem code to make sure SPI
2211 * memory operations do not preempt regular SPI transfers that have been queued
2212 * before the spi-mem operation.
2213 */
2214void spi_flush_queue(struct spi_controller *ctlr)
2215{
2216	if (ctlr->transfer == spi_queued_transfer)
2217		__spi_pump_messages(ctlr, false);
2218}
2219
2220/*-------------------------------------------------------------------------*/
2221
2222#if defined(CONFIG_OF)
2223static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2224				     struct spi_delay *delay, const char *prop)
2225{
2226	u32 value;
2227
2228	if (!of_property_read_u32(nc, prop, &value)) {
2229		if (value > U16_MAX) {
2230			delay->value = DIV_ROUND_UP(value, 1000);
2231			delay->unit = SPI_DELAY_UNIT_USECS;
2232		} else {
2233			delay->value = value;
2234			delay->unit = SPI_DELAY_UNIT_NSECS;
2235		}
2236	}
2237}
2238
2239static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2240			   struct device_node *nc)
2241{
2242	u32 value;
2243	int rc;
2244
2245	/* Mode (clock phase/polarity/etc.) */
2246	if (of_property_read_bool(nc, "spi-cpha"))
2247		spi->mode |= SPI_CPHA;
2248	if (of_property_read_bool(nc, "spi-cpol"))
2249		spi->mode |= SPI_CPOL;
 
 
2250	if (of_property_read_bool(nc, "spi-3wire"))
2251		spi->mode |= SPI_3WIRE;
2252	if (of_property_read_bool(nc, "spi-lsb-first"))
2253		spi->mode |= SPI_LSB_FIRST;
2254	if (of_property_read_bool(nc, "spi-cs-high"))
2255		spi->mode |= SPI_CS_HIGH;
2256
2257	/* Device DUAL/QUAD mode */
2258	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2259		switch (value) {
2260		case 0:
2261			spi->mode |= SPI_NO_TX;
2262			break;
2263		case 1:
2264			break;
2265		case 2:
2266			spi->mode |= SPI_TX_DUAL;
2267			break;
2268		case 4:
2269			spi->mode |= SPI_TX_QUAD;
2270			break;
2271		case 8:
2272			spi->mode |= SPI_TX_OCTAL;
2273			break;
2274		default:
2275			dev_warn(&ctlr->dev,
2276				"spi-tx-bus-width %d not supported\n",
2277				value);
2278			break;
2279		}
2280	}
2281
2282	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2283		switch (value) {
2284		case 0:
2285			spi->mode |= SPI_NO_RX;
2286			break;
2287		case 1:
2288			break;
2289		case 2:
2290			spi->mode |= SPI_RX_DUAL;
2291			break;
2292		case 4:
2293			spi->mode |= SPI_RX_QUAD;
2294			break;
2295		case 8:
2296			spi->mode |= SPI_RX_OCTAL;
2297			break;
2298		default:
2299			dev_warn(&ctlr->dev,
2300				"spi-rx-bus-width %d not supported\n",
2301				value);
2302			break;
2303		}
2304	}
2305
2306	if (spi_controller_is_slave(ctlr)) {
2307		if (!of_node_name_eq(nc, "slave")) {
2308			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2309				nc);
2310			return -EINVAL;
2311		}
2312		return 0;
2313	}
2314
2315	/* Device address */
2316	rc = of_property_read_u32(nc, "reg", &value);
2317	if (rc) {
2318		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2319			nc, rc);
2320		return rc;
2321	}
2322	spi->chip_select = value;
2323
2324	/* Device speed */
2325	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2326		spi->max_speed_hz = value;
2327
2328	/* Device CS delays */
2329	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
 
 
2330
2331	return 0;
2332}
2333
2334static struct spi_device *
2335of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2336{
2337	struct spi_device *spi;
2338	int rc;
2339
2340	/* Alloc an spi_device */
2341	spi = spi_alloc_device(ctlr);
2342	if (!spi) {
2343		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2344		rc = -ENOMEM;
2345		goto err_out;
2346	}
2347
2348	/* Select device driver */
2349	rc = of_modalias_node(nc, spi->modalias,
2350				sizeof(spi->modalias));
2351	if (rc < 0) {
2352		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2353		goto err_out;
2354	}
2355
2356	rc = of_spi_parse_dt(ctlr, spi, nc);
2357	if (rc)
2358		goto err_out;
2359
2360	/* Store a pointer to the node in the device structure */
2361	of_node_get(nc);
2362	spi->dev.of_node = nc;
2363	spi->dev.fwnode = of_fwnode_handle(nc);
2364
2365	/* Register the new device */
2366	rc = spi_add_device(spi);
2367	if (rc) {
2368		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2369		goto err_of_node_put;
2370	}
2371
2372	return spi;
2373
2374err_of_node_put:
2375	of_node_put(nc);
2376err_out:
2377	spi_dev_put(spi);
2378	return ERR_PTR(rc);
2379}
2380
2381/**
2382 * of_register_spi_devices() - Register child devices onto the SPI bus
2383 * @ctlr:	Pointer to spi_controller device
2384 *
2385 * Registers an spi_device for each child node of controller node which
2386 * represents a valid SPI slave.
2387 */
2388static void of_register_spi_devices(struct spi_controller *ctlr)
2389{
2390	struct spi_device *spi;
2391	struct device_node *nc;
2392
2393	if (!ctlr->dev.of_node)
2394		return;
2395
2396	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2397		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2398			continue;
2399		spi = of_register_spi_device(ctlr, nc);
2400		if (IS_ERR(spi)) {
2401			dev_warn(&ctlr->dev,
2402				 "Failed to create SPI device for %pOF\n", nc);
2403			of_node_clear_flag(nc, OF_POPULATED);
2404		}
2405	}
2406}
2407#else
2408static void of_register_spi_devices(struct spi_controller *ctlr) { }
2409#endif
2410
2411/**
2412 * spi_new_ancillary_device() - Register ancillary SPI device
2413 * @spi:         Pointer to the main SPI device registering the ancillary device
2414 * @chip_select: Chip Select of the ancillary device
2415 *
2416 * Register an ancillary SPI device; for example some chips have a chip-select
2417 * for normal device usage and another one for setup/firmware upload.
2418 *
2419 * This may only be called from main SPI device's probe routine.
2420 *
2421 * Return: 0 on success; negative errno on failure
2422 */
2423struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2424					     u8 chip_select)
2425{
2426	struct spi_device *ancillary;
2427	int rc = 0;
2428
2429	/* Alloc an spi_device */
2430	ancillary = spi_alloc_device(spi->controller);
2431	if (!ancillary) {
2432		rc = -ENOMEM;
2433		goto err_out;
2434	}
2435
2436	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2437
2438	/* Use provided chip-select for ancillary device */
2439	ancillary->chip_select = chip_select;
2440
2441	/* Take over SPI mode/speed from SPI main device */
2442	ancillary->max_speed_hz = spi->max_speed_hz;
2443	ancillary->mode = spi->mode;
2444
2445	/* Register the new device */
2446	rc = spi_add_device_locked(ancillary);
2447	if (rc) {
2448		dev_err(&spi->dev, "failed to register ancillary device\n");
2449		goto err_out;
2450	}
2451
2452	return ancillary;
2453
2454err_out:
2455	spi_dev_put(ancillary);
2456	return ERR_PTR(rc);
2457}
2458EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2459
2460#ifdef CONFIG_ACPI
2461struct acpi_spi_lookup {
2462	struct spi_controller 	*ctlr;
2463	u32			max_speed_hz;
2464	u32			mode;
2465	int			irq;
2466	u8			bits_per_word;
2467	u8			chip_select;
2468	int			n;
2469	int			index;
2470};
2471
2472static int acpi_spi_count(struct acpi_resource *ares, void *data)
2473{
2474	struct acpi_resource_spi_serialbus *sb;
2475	int *count = data;
2476
2477	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2478		return 1;
2479
2480	sb = &ares->data.spi_serial_bus;
2481	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2482		return 1;
2483
2484	*count = *count + 1;
2485
2486	return 1;
2487}
2488
2489/**
2490 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2491 * @adev:	ACPI device
2492 *
2493 * Returns the number of SpiSerialBus resources in the ACPI-device's
2494 * resource-list; or a negative error code.
2495 */
2496int acpi_spi_count_resources(struct acpi_device *adev)
2497{
2498	LIST_HEAD(r);
2499	int count = 0;
2500	int ret;
2501
2502	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2503	if (ret < 0)
2504		return ret;
2505
2506	acpi_dev_free_resource_list(&r);
2507
2508	return count;
2509}
2510EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2511
2512static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2513					    struct acpi_spi_lookup *lookup)
2514{
 
2515	const union acpi_object *obj;
2516
2517	if (!x86_apple_machine)
2518		return;
2519
2520	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2521	    && obj->buffer.length >= 4)
2522		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2523
2524	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2525	    && obj->buffer.length == 8)
2526		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2527
2528	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2529	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2530		lookup->mode |= SPI_LSB_FIRST;
2531
2532	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2533	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2534		lookup->mode |= SPI_CPOL;
2535
2536	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2537	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2538		lookup->mode |= SPI_CPHA;
2539}
2540
2541static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2542
2543static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2544{
2545	struct acpi_spi_lookup *lookup = data;
2546	struct spi_controller *ctlr = lookup->ctlr;
2547
2548	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2549		struct acpi_resource_spi_serialbus *sb;
2550		acpi_handle parent_handle;
2551		acpi_status status;
2552
2553		sb = &ares->data.spi_serial_bus;
2554		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2555
2556			if (lookup->index != -1 && lookup->n++ != lookup->index)
2557				return 1;
2558
2559			status = acpi_get_handle(NULL,
2560						 sb->resource_source.string_ptr,
2561						 &parent_handle);
2562
2563			if (ACPI_FAILURE(status))
2564				return -ENODEV;
2565
2566			if (ctlr) {
2567				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2568					return -ENODEV;
2569			} else {
2570				struct acpi_device *adev;
2571
2572				adev = acpi_fetch_acpi_dev(parent_handle);
2573				if (!adev)
2574					return -ENODEV;
2575
2576				ctlr = acpi_spi_find_controller_by_adev(adev);
2577				if (!ctlr)
2578					return -EPROBE_DEFER;
2579
2580				lookup->ctlr = ctlr;
2581			}
2582
2583			/*
2584			 * ACPI DeviceSelection numbering is handled by the
2585			 * host controller driver in Windows and can vary
2586			 * from driver to driver. In Linux we always expect
2587			 * 0 .. max - 1 so we need to ask the driver to
2588			 * translate between the two schemes.
2589			 */
2590			if (ctlr->fw_translate_cs) {
2591				int cs = ctlr->fw_translate_cs(ctlr,
2592						sb->device_selection);
2593				if (cs < 0)
2594					return cs;
2595				lookup->chip_select = cs;
2596			} else {
2597				lookup->chip_select = sb->device_selection;
2598			}
2599
2600			lookup->max_speed_hz = sb->connection_speed;
2601			lookup->bits_per_word = sb->data_bit_length;
2602
2603			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2604				lookup->mode |= SPI_CPHA;
2605			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2606				lookup->mode |= SPI_CPOL;
2607			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2608				lookup->mode |= SPI_CS_HIGH;
2609		}
2610	} else if (lookup->irq < 0) {
2611		struct resource r;
2612
2613		if (acpi_dev_resource_interrupt(ares, 0, &r))
2614			lookup->irq = r.start;
2615	}
2616
2617	/* Always tell the ACPI core to skip this resource */
2618	return 1;
2619}
2620
2621/**
2622 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2623 * @ctlr: controller to which the spi device belongs
2624 * @adev: ACPI Device for the spi device
2625 * @index: Index of the spi resource inside the ACPI Node
2626 *
2627 * This should be used to allocate a new spi device from and ACPI Node.
2628 * The caller is responsible for calling spi_add_device to register the spi device.
2629 *
2630 * If ctlr is set to NULL, the Controller for the spi device will be looked up
2631 * using the resource.
2632 * If index is set to -1, index is not used.
2633 * Note: If index is -1, ctlr must be set.
2634 *
2635 * Return: a pointer to the new device, or ERR_PTR on error.
2636 */
2637struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2638					 struct acpi_device *adev,
2639					 int index)
2640{
2641	acpi_handle parent_handle = NULL;
2642	struct list_head resource_list;
2643	struct acpi_spi_lookup lookup = {};
2644	struct spi_device *spi;
2645	int ret;
2646
2647	if (!ctlr && index == -1)
2648		return ERR_PTR(-EINVAL);
2649
2650	lookup.ctlr		= ctlr;
2651	lookup.irq		= -1;
2652	lookup.index		= index;
2653	lookup.n		= 0;
2654
2655	INIT_LIST_HEAD(&resource_list);
2656	ret = acpi_dev_get_resources(adev, &resource_list,
2657				     acpi_spi_add_resource, &lookup);
2658	acpi_dev_free_resource_list(&resource_list);
2659
2660	if (ret < 0)
2661		/* Found SPI in _CRS but it points to another controller */
2662		return ERR_PTR(ret);
2663
2664	if (!lookup.max_speed_hz &&
2665	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2666	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2667		/* Apple does not use _CRS but nested devices for SPI slaves */
2668		acpi_spi_parse_apple_properties(adev, &lookup);
2669	}
2670
2671	if (!lookup.max_speed_hz)
2672		return ERR_PTR(-ENODEV);
2673
2674	spi = spi_alloc_device(lookup.ctlr);
2675	if (!spi) {
2676		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2677			dev_name(&adev->dev));
2678		return ERR_PTR(-ENOMEM);
2679	}
2680
2681	ACPI_COMPANION_SET(&spi->dev, adev);
2682	spi->max_speed_hz	= lookup.max_speed_hz;
2683	spi->mode		|= lookup.mode;
2684	spi->irq		= lookup.irq;
2685	spi->bits_per_word	= lookup.bits_per_word;
2686	spi->chip_select	= lookup.chip_select;
2687
2688	return spi;
2689}
2690EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
 
2691
2692static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2693					    struct acpi_device *adev)
2694{
2695	struct spi_device *spi;
2696
2697	if (acpi_bus_get_status(adev) || !adev->status.present ||
2698	    acpi_device_enumerated(adev))
2699		return AE_OK;
2700
2701	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2702	if (IS_ERR(spi)) {
2703		if (PTR_ERR(spi) == -ENOMEM)
2704			return AE_NO_MEMORY;
2705		else
2706			return AE_OK;
2707	}
2708
2709	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2710			  sizeof(spi->modalias));
2711
2712	if (spi->irq < 0)
2713		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2714
2715	acpi_device_set_enumerated(adev);
2716
2717	adev->power.flags.ignore_parent = true;
2718	if (spi_add_device(spi)) {
2719		adev->power.flags.ignore_parent = false;
2720		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2721			dev_name(&adev->dev));
2722		spi_dev_put(spi);
2723	}
2724
2725	return AE_OK;
2726}
2727
2728static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2729				       void *data, void **return_value)
2730{
2731	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2732	struct spi_controller *ctlr = data;
 
2733
2734	if (!adev)
2735		return AE_OK;
2736
2737	return acpi_register_spi_device(ctlr, adev);
2738}
2739
2740#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2741
2742static void acpi_register_spi_devices(struct spi_controller *ctlr)
2743{
2744	acpi_status status;
2745	acpi_handle handle;
2746
2747	handle = ACPI_HANDLE(ctlr->dev.parent);
2748	if (!handle)
2749		return;
2750
2751	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2752				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2753				     acpi_spi_add_device, NULL, ctlr, NULL);
2754	if (ACPI_FAILURE(status))
2755		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2756}
2757#else
2758static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2759#endif /* CONFIG_ACPI */
2760
2761static void spi_controller_release(struct device *dev)
2762{
2763	struct spi_controller *ctlr;
2764
2765	ctlr = container_of(dev, struct spi_controller, dev);
2766	kfree(ctlr);
2767}
2768
2769static struct class spi_master_class = {
2770	.name		= "spi_master",
2771	.owner		= THIS_MODULE,
2772	.dev_release	= spi_controller_release,
2773	.dev_groups	= spi_master_groups,
2774};
2775
2776#ifdef CONFIG_SPI_SLAVE
2777/**
2778 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2779 *		     controller
2780 * @spi: device used for the current transfer
2781 */
2782int spi_slave_abort(struct spi_device *spi)
2783{
2784	struct spi_controller *ctlr = spi->controller;
2785
2786	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2787		return ctlr->slave_abort(ctlr);
2788
2789	return -ENOTSUPP;
2790}
2791EXPORT_SYMBOL_GPL(spi_slave_abort);
2792
2793int spi_target_abort(struct spi_device *spi)
2794{
2795	struct spi_controller *ctlr = spi->controller;
2796
2797	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2798		return ctlr->target_abort(ctlr);
2799
2800	return -ENOTSUPP;
2801}
2802EXPORT_SYMBOL_GPL(spi_target_abort);
2803
2804static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2805			  char *buf)
2806{
2807	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2808						   dev);
2809	struct device *child;
2810
2811	child = device_find_any_child(&ctlr->dev);
2812	return sprintf(buf, "%s\n",
2813		       child ? to_spi_device(child)->modalias : NULL);
2814}
2815
2816static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2817			   const char *buf, size_t count)
 
2818{
2819	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2820						   dev);
2821	struct spi_device *spi;
2822	struct device *child;
2823	char name[32];
2824	int rc;
2825
2826	rc = sscanf(buf, "%31s", name);
2827	if (rc != 1 || !name[0])
2828		return -EINVAL;
2829
2830	child = device_find_any_child(&ctlr->dev);
2831	if (child) {
2832		/* Remove registered slave */
2833		device_unregister(child);
2834		put_device(child);
2835	}
2836
2837	if (strcmp(name, "(null)")) {
2838		/* Register new slave */
2839		spi = spi_alloc_device(ctlr);
2840		if (!spi)
2841			return -ENOMEM;
2842
2843		strscpy(spi->modalias, name, sizeof(spi->modalias));
2844
2845		rc = spi_add_device(spi);
2846		if (rc) {
2847			spi_dev_put(spi);
2848			return rc;
2849		}
2850	}
2851
2852	return count;
2853}
2854
2855static DEVICE_ATTR_RW(slave);
2856
2857static struct attribute *spi_slave_attrs[] = {
2858	&dev_attr_slave.attr,
2859	NULL,
2860};
2861
2862static const struct attribute_group spi_slave_group = {
2863	.attrs = spi_slave_attrs,
2864};
2865
2866static const struct attribute_group *spi_slave_groups[] = {
2867	&spi_controller_statistics_group,
2868	&spi_slave_group,
2869	NULL,
2870};
2871
2872static struct class spi_slave_class = {
2873	.name		= "spi_slave",
2874	.owner		= THIS_MODULE,
2875	.dev_release	= spi_controller_release,
2876	.dev_groups	= spi_slave_groups,
2877};
2878#else
2879extern struct class spi_slave_class;	/* dummy */
2880#endif
2881
2882/**
2883 * __spi_alloc_controller - allocate an SPI master or slave controller
2884 * @dev: the controller, possibly using the platform_bus
2885 * @size: how much zeroed driver-private data to allocate; the pointer to this
2886 *	memory is in the driver_data field of the returned device, accessible
2887 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2888 *	drivers granting DMA access to portions of their private data need to
2889 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2890 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2891 *	slave (true) controller
2892 * Context: can sleep
2893 *
2894 * This call is used only by SPI controller drivers, which are the
2895 * only ones directly touching chip registers.  It's how they allocate
2896 * an spi_controller structure, prior to calling spi_register_controller().
2897 *
2898 * This must be called from context that can sleep.
2899 *
2900 * The caller is responsible for assigning the bus number and initializing the
2901 * controller's methods before calling spi_register_controller(); and (after
2902 * errors adding the device) calling spi_controller_put() to prevent a memory
2903 * leak.
2904 *
2905 * Return: the SPI controller structure on success, else NULL.
2906 */
2907struct spi_controller *__spi_alloc_controller(struct device *dev,
2908					      unsigned int size, bool slave)
2909{
2910	struct spi_controller	*ctlr;
2911	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2912
2913	if (!dev)
2914		return NULL;
2915
2916	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2917	if (!ctlr)
2918		return NULL;
2919
2920	device_initialize(&ctlr->dev);
2921	INIT_LIST_HEAD(&ctlr->queue);
2922	spin_lock_init(&ctlr->queue_lock);
2923	spin_lock_init(&ctlr->bus_lock_spinlock);
2924	mutex_init(&ctlr->bus_lock_mutex);
2925	mutex_init(&ctlr->io_mutex);
2926	mutex_init(&ctlr->add_lock);
2927	ctlr->bus_num = -1;
2928	ctlr->num_chipselect = 1;
2929	ctlr->slave = slave;
2930	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2931		ctlr->dev.class = &spi_slave_class;
2932	else
2933		ctlr->dev.class = &spi_master_class;
2934	ctlr->dev.parent = dev;
2935	pm_suspend_ignore_children(&ctlr->dev, true);
2936	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2937
2938	return ctlr;
2939}
2940EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2941
2942static void devm_spi_release_controller(struct device *dev, void *ctlr)
 
2943{
2944	spi_controller_put(*(struct spi_controller **)ctlr);
2945}
2946
2947/**
2948 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2949 * @dev: physical device of SPI controller
2950 * @size: how much zeroed driver-private data to allocate
2951 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2952 * Context: can sleep
2953 *
2954 * Allocate an SPI controller and automatically release a reference on it
2955 * when @dev is unbound from its driver.  Drivers are thus relieved from
2956 * having to call spi_controller_put().
2957 *
2958 * The arguments to this function are identical to __spi_alloc_controller().
2959 *
2960 * Return: the SPI controller structure on success, else NULL.
2961 */
2962struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2963						   unsigned int size,
2964						   bool slave)
2965{
2966	struct spi_controller **ptr, *ctlr;
2967
2968	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2969			   GFP_KERNEL);
2970	if (!ptr)
2971		return NULL;
2972
2973	ctlr = __spi_alloc_controller(dev, size, slave);
2974	if (ctlr) {
2975		ctlr->devm_allocated = true;
2976		*ptr = ctlr;
2977		devres_add(dev, ptr);
2978	} else {
2979		devres_free(ptr);
2980	}
2981
2982	return ctlr;
2983}
2984EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2985
2986/**
2987 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2988 * @ctlr: The SPI master to grab GPIO descriptors for
2989 */
2990static int spi_get_gpio_descs(struct spi_controller *ctlr)
2991{
2992	int nb, i;
2993	struct gpio_desc **cs;
2994	struct device *dev = &ctlr->dev;
2995	unsigned long native_cs_mask = 0;
2996	unsigned int num_cs_gpios = 0;
2997
2998	nb = gpiod_count(dev, "cs");
2999	if (nb < 0) {
3000		/* No GPIOs at all is fine, else return the error */
3001		if (nb == -ENOENT)
3002			return 0;
3003		return nb;
3004	}
3005
3006	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3007
3008	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3009			  GFP_KERNEL);
3010	if (!cs)
3011		return -ENOMEM;
3012	ctlr->cs_gpiods = cs;
3013
3014	for (i = 0; i < nb; i++) {
3015		/*
3016		 * Most chipselects are active low, the inverted
3017		 * semantics are handled by special quirks in gpiolib,
3018		 * so initializing them GPIOD_OUT_LOW here means
3019		 * "unasserted", in most cases this will drive the physical
3020		 * line high.
3021		 */
3022		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3023						      GPIOD_OUT_LOW);
3024		if (IS_ERR(cs[i]))
3025			return PTR_ERR(cs[i]);
3026
3027		if (cs[i]) {
3028			/*
3029			 * If we find a CS GPIO, name it after the device and
3030			 * chip select line.
3031			 */
3032			char *gpioname;
3033
3034			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3035						  dev_name(dev), i);
3036			if (!gpioname)
3037				return -ENOMEM;
3038			gpiod_set_consumer_name(cs[i], gpioname);
3039			num_cs_gpios++;
3040			continue;
3041		}
3042
3043		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3044			dev_err(dev, "Invalid native chip select %d\n", i);
3045			return -EINVAL;
3046		}
3047		native_cs_mask |= BIT(i);
3048	}
3049
3050	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
 
3051
3052	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3053	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3054		dev_err(dev, "No unused native chip select available\n");
3055		return -EINVAL;
3056	}
3057
3058	return 0;
3059}
3060
3061static int spi_controller_check_ops(struct spi_controller *ctlr)
3062{
3063	/*
3064	 * The controller may implement only the high-level SPI-memory like
3065	 * operations if it does not support regular SPI transfers, and this is
3066	 * valid use case.
3067	 * If ->mem_ops is NULL, we request that at least one of the
3068	 * ->transfer_xxx() method be implemented.
3069	 */
3070	if (ctlr->mem_ops) {
3071		if (!ctlr->mem_ops->exec_op)
3072			return -EINVAL;
3073	} else if (!ctlr->transfer && !ctlr->transfer_one &&
3074		   !ctlr->transfer_one_message) {
3075		return -EINVAL;
3076	}
3077
3078	return 0;
3079}
 
3080
3081/**
3082 * spi_register_controller - register SPI master or slave controller
3083 * @ctlr: initialized master, originally from spi_alloc_master() or
3084 *	spi_alloc_slave()
3085 * Context: can sleep
3086 *
3087 * SPI controllers connect to their drivers using some non-SPI bus,
3088 * such as the platform bus.  The final stage of probe() in that code
3089 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3090 *
3091 * SPI controllers use board specific (often SOC specific) bus numbers,
3092 * and board-specific addressing for SPI devices combines those numbers
3093 * with chip select numbers.  Since SPI does not directly support dynamic
3094 * device identification, boards need configuration tables telling which
3095 * chip is at which address.
3096 *
3097 * This must be called from context that can sleep.  It returns zero on
3098 * success, else a negative error code (dropping the controller's refcount).
3099 * After a successful return, the caller is responsible for calling
3100 * spi_unregister_controller().
3101 *
3102 * Return: zero on success, else a negative error code.
3103 */
3104int spi_register_controller(struct spi_controller *ctlr)
3105{
3106	struct device		*dev = ctlr->dev.parent;
3107	struct boardinfo	*bi;
3108	int			status;
3109	int			id, first_dynamic;
3110
3111	if (!dev)
3112		return -ENODEV;
3113
3114	/*
3115	 * Make sure all necessary hooks are implemented before registering
3116	 * the SPI controller.
3117	 */
3118	status = spi_controller_check_ops(ctlr);
3119	if (status)
3120		return status;
3121
3122	if (ctlr->bus_num >= 0) {
3123		/* Devices with a fixed bus num must check-in with the num */
3124		mutex_lock(&board_lock);
3125		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3126			ctlr->bus_num + 1, GFP_KERNEL);
3127		mutex_unlock(&board_lock);
3128		if (WARN(id < 0, "couldn't get idr"))
3129			return id == -ENOSPC ? -EBUSY : id;
3130		ctlr->bus_num = id;
3131	} else if (ctlr->dev.of_node) {
3132		/* Allocate dynamic bus number using Linux idr */
3133		id = of_alias_get_id(ctlr->dev.of_node, "spi");
3134		if (id >= 0) {
3135			ctlr->bus_num = id;
3136			mutex_lock(&board_lock);
3137			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3138				       ctlr->bus_num + 1, GFP_KERNEL);
3139			mutex_unlock(&board_lock);
3140			if (WARN(id < 0, "couldn't get idr"))
3141				return id == -ENOSPC ? -EBUSY : id;
3142		}
3143	}
3144	if (ctlr->bus_num < 0) {
3145		first_dynamic = of_alias_get_highest_id("spi");
3146		if (first_dynamic < 0)
3147			first_dynamic = 0;
3148		else
3149			first_dynamic++;
3150
3151		mutex_lock(&board_lock);
3152		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3153			       0, GFP_KERNEL);
3154		mutex_unlock(&board_lock);
3155		if (WARN(id < 0, "couldn't get idr"))
3156			return id;
3157		ctlr->bus_num = id;
3158	}
 
 
 
 
 
3159	ctlr->bus_lock_flag = 0;
3160	init_completion(&ctlr->xfer_completion);
3161	init_completion(&ctlr->cur_msg_completion);
3162	if (!ctlr->max_dma_len)
3163		ctlr->max_dma_len = INT_MAX;
3164
3165	/*
3166	 * Register the device, then userspace will see it.
3167	 * Registration fails if the bus ID is in use.
3168	 */
3169	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3170
3171	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3172		status = spi_get_gpio_descs(ctlr);
3173		if (status)
3174			goto free_bus_id;
3175		/*
3176		 * A controller using GPIO descriptors always
3177		 * supports SPI_CS_HIGH if need be.
3178		 */
3179		ctlr->mode_bits |= SPI_CS_HIGH;
3180	}
3181
3182	/*
3183	 * Even if it's just one always-selected device, there must
3184	 * be at least one chipselect.
3185	 */
3186	if (!ctlr->num_chipselect) {
3187		status = -EINVAL;
3188		goto free_bus_id;
3189	}
3190
3191	/* Setting last_cs to -1 means no chip selected */
3192	ctlr->last_cs = -1;
3193
3194	status = device_add(&ctlr->dev);
3195	if (status < 0)
3196		goto free_bus_id;
 
 
 
 
 
3197	dev_dbg(dev, "registered %s %s\n",
3198			spi_controller_is_slave(ctlr) ? "slave" : "master",
3199			dev_name(&ctlr->dev));
3200
3201	/*
3202	 * If we're using a queued driver, start the queue. Note that we don't
3203	 * need the queueing logic if the driver is only supporting high-level
3204	 * memory operations.
3205	 */
3206	if (ctlr->transfer) {
3207		dev_info(dev, "controller is unqueued, this is deprecated\n");
3208	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3209		status = spi_controller_initialize_queue(ctlr);
3210		if (status) {
3211			device_del(&ctlr->dev);
3212			goto free_bus_id;
 
 
 
 
3213		}
3214	}
3215	/* Add statistics */
3216	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3217	if (!ctlr->pcpu_statistics) {
3218		dev_err(dev, "Error allocating per-cpu statistics\n");
3219		status = -ENOMEM;
3220		goto destroy_queue;
3221	}
3222
3223	mutex_lock(&board_lock);
3224	list_add_tail(&ctlr->list, &spi_controller_list);
3225	list_for_each_entry(bi, &board_list, list)
3226		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3227	mutex_unlock(&board_lock);
3228
3229	/* Register devices from the device tree and ACPI */
3230	of_register_spi_devices(ctlr);
3231	acpi_register_spi_devices(ctlr);
3232	return status;
3233
3234destroy_queue:
3235	spi_destroy_queue(ctlr);
3236free_bus_id:
3237	mutex_lock(&board_lock);
3238	idr_remove(&spi_master_idr, ctlr->bus_num);
3239	mutex_unlock(&board_lock);
3240	return status;
3241}
3242EXPORT_SYMBOL_GPL(spi_register_controller);
3243
3244static void devm_spi_unregister(struct device *dev, void *res)
3245{
3246	spi_unregister_controller(*(struct spi_controller **)res);
3247}
3248
3249/**
3250 * devm_spi_register_controller - register managed SPI master or slave
3251 *	controller
3252 * @dev:    device managing SPI controller
3253 * @ctlr: initialized controller, originally from spi_alloc_master() or
3254 *	spi_alloc_slave()
3255 * Context: can sleep
3256 *
3257 * Register a SPI device as with spi_register_controller() which will
3258 * automatically be unregistered and freed.
3259 *
3260 * Return: zero on success, else a negative error code.
3261 */
3262int devm_spi_register_controller(struct device *dev,
3263				 struct spi_controller *ctlr)
3264{
3265	struct spi_controller **ptr;
3266	int ret;
3267
3268	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3269	if (!ptr)
3270		return -ENOMEM;
3271
3272	ret = spi_register_controller(ctlr);
3273	if (!ret) {
3274		*ptr = ctlr;
3275		devres_add(dev, ptr);
3276	} else {
3277		devres_free(ptr);
3278	}
3279
3280	return ret;
3281}
3282EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3283
3284static int __unregister(struct device *dev, void *null)
3285{
3286	spi_unregister_device(to_spi_device(dev));
3287	return 0;
3288}
3289
3290/**
3291 * spi_unregister_controller - unregister SPI master or slave controller
3292 * @ctlr: the controller being unregistered
3293 * Context: can sleep
3294 *
3295 * This call is used only by SPI controller drivers, which are the
3296 * only ones directly touching chip registers.
3297 *
3298 * This must be called from context that can sleep.
3299 *
3300 * Note that this function also drops a reference to the controller.
3301 */
3302void spi_unregister_controller(struct spi_controller *ctlr)
3303{
3304	struct spi_controller *found;
3305	int id = ctlr->bus_num;
3306
3307	/* Prevent addition of new devices, unregister existing ones */
3308	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3309		mutex_lock(&ctlr->add_lock);
3310
3311	device_for_each_child(&ctlr->dev, NULL, __unregister);
3312
3313	/* First make sure that this controller was ever added */
3314	mutex_lock(&board_lock);
3315	found = idr_find(&spi_master_idr, id);
3316	mutex_unlock(&board_lock);
3317	if (ctlr->queued) {
3318		if (spi_destroy_queue(ctlr))
3319			dev_err(&ctlr->dev, "queue remove failed\n");
3320	}
3321	mutex_lock(&board_lock);
3322	list_del(&ctlr->list);
3323	mutex_unlock(&board_lock);
3324
3325	device_del(&ctlr->dev);
3326
3327	/* Free bus id */
3328	mutex_lock(&board_lock);
3329	if (found == ctlr)
3330		idr_remove(&spi_master_idr, id);
3331	mutex_unlock(&board_lock);
3332
3333	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3334		mutex_unlock(&ctlr->add_lock);
3335
3336	/* Release the last reference on the controller if its driver
3337	 * has not yet been converted to devm_spi_alloc_master/slave().
3338	 */
3339	if (!ctlr->devm_allocated)
3340		put_device(&ctlr->dev);
3341}
3342EXPORT_SYMBOL_GPL(spi_unregister_controller);
3343
3344int spi_controller_suspend(struct spi_controller *ctlr)
3345{
3346	int ret;
3347
3348	/* Basically no-ops for non-queued controllers */
3349	if (!ctlr->queued)
3350		return 0;
3351
3352	ret = spi_stop_queue(ctlr);
3353	if (ret)
3354		dev_err(&ctlr->dev, "queue stop failed\n");
3355
3356	return ret;
3357}
3358EXPORT_SYMBOL_GPL(spi_controller_suspend);
3359
3360int spi_controller_resume(struct spi_controller *ctlr)
3361{
3362	int ret;
3363
3364	if (!ctlr->queued)
3365		return 0;
3366
3367	ret = spi_start_queue(ctlr);
3368	if (ret)
3369		dev_err(&ctlr->dev, "queue restart failed\n");
3370
3371	return ret;
3372}
3373EXPORT_SYMBOL_GPL(spi_controller_resume);
3374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3375/*-------------------------------------------------------------------------*/
3376
3377/* Core methods for spi_message alterations */
3378
3379static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3380					    struct spi_message *msg,
3381					    void *res)
3382{
3383	struct spi_replaced_transfers *rxfer = res;
3384	size_t i;
3385
3386	/* Call extra callback if requested */
3387	if (rxfer->release)
3388		rxfer->release(ctlr, msg, res);
3389
3390	/* Insert replaced transfers back into the message */
3391	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3392
3393	/* Remove the formerly inserted entries */
3394	for (i = 0; i < rxfer->inserted; i++)
3395		list_del(&rxfer->inserted_transfers[i].transfer_list);
3396}
3397
3398/**
3399 * spi_replace_transfers - replace transfers with several transfers
3400 *                         and register change with spi_message.resources
3401 * @msg:           the spi_message we work upon
3402 * @xfer_first:    the first spi_transfer we want to replace
3403 * @remove:        number of transfers to remove
3404 * @insert:        the number of transfers we want to insert instead
3405 * @release:       extra release code necessary in some circumstances
3406 * @extradatasize: extra data to allocate (with alignment guarantees
3407 *                 of struct @spi_transfer)
3408 * @gfp:           gfp flags
3409 *
3410 * Returns: pointer to @spi_replaced_transfers,
3411 *          PTR_ERR(...) in case of errors.
3412 */
3413static struct spi_replaced_transfers *spi_replace_transfers(
3414	struct spi_message *msg,
3415	struct spi_transfer *xfer_first,
3416	size_t remove,
3417	size_t insert,
3418	spi_replaced_release_t release,
3419	size_t extradatasize,
3420	gfp_t gfp)
3421{
3422	struct spi_replaced_transfers *rxfer;
3423	struct spi_transfer *xfer;
3424	size_t i;
3425
3426	/* Allocate the structure using spi_res */
3427	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3428			      struct_size(rxfer, inserted_transfers, insert)
 
3429			      + extradatasize,
3430			      gfp);
3431	if (!rxfer)
3432		return ERR_PTR(-ENOMEM);
3433
3434	/* The release code to invoke before running the generic release */
3435	rxfer->release = release;
3436
3437	/* Assign extradata */
3438	if (extradatasize)
3439		rxfer->extradata =
3440			&rxfer->inserted_transfers[insert];
3441
3442	/* Init the replaced_transfers list */
3443	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3444
3445	/*
3446	 * Assign the list_entry after which we should reinsert
3447	 * the @replaced_transfers - it may be spi_message.messages!
3448	 */
3449	rxfer->replaced_after = xfer_first->transfer_list.prev;
3450
3451	/* Remove the requested number of transfers */
3452	for (i = 0; i < remove; i++) {
3453		/*
3454		 * If the entry after replaced_after it is msg->transfers
3455		 * then we have been requested to remove more transfers
3456		 * than are in the list.
3457		 */
3458		if (rxfer->replaced_after->next == &msg->transfers) {
3459			dev_err(&msg->spi->dev,
3460				"requested to remove more spi_transfers than are available\n");
3461			/* Insert replaced transfers back into the message */
3462			list_splice(&rxfer->replaced_transfers,
3463				    rxfer->replaced_after);
3464
3465			/* Free the spi_replace_transfer structure... */
3466			spi_res_free(rxfer);
3467
3468			/* ...and return with an error */
3469			return ERR_PTR(-EINVAL);
3470		}
3471
3472		/*
3473		 * Remove the entry after replaced_after from list of
3474		 * transfers and add it to list of replaced_transfers.
3475		 */
3476		list_move_tail(rxfer->replaced_after->next,
3477			       &rxfer->replaced_transfers);
3478	}
3479
3480	/*
3481	 * Create copy of the given xfer with identical settings
3482	 * based on the first transfer to get removed.
3483	 */
3484	for (i = 0; i < insert; i++) {
3485		/* We need to run in reverse order */
3486		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3487
3488		/* Copy all spi_transfer data */
3489		memcpy(xfer, xfer_first, sizeof(*xfer));
3490
3491		/* Add to list */
3492		list_add(&xfer->transfer_list, rxfer->replaced_after);
3493
3494		/* Clear cs_change and delay for all but the last */
3495		if (i) {
3496			xfer->cs_change = false;
3497			xfer->delay.value = 0;
3498		}
3499	}
3500
3501	/* Set up inserted... */
3502	rxfer->inserted = insert;
3503
3504	/* ...and register it with spi_res/spi_message */
3505	spi_res_add(msg, rxfer);
3506
3507	return rxfer;
3508}
 
3509
3510static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3511					struct spi_message *msg,
3512					struct spi_transfer **xferp,
3513					size_t maxsize,
3514					gfp_t gfp)
3515{
3516	struct spi_transfer *xfer = *xferp, *xfers;
3517	struct spi_replaced_transfers *srt;
3518	size_t offset;
3519	size_t count, i;
3520
3521	/* Calculate how many we have to replace */
 
 
 
 
 
3522	count = DIV_ROUND_UP(xfer->len, maxsize);
3523
3524	/* Create replacement */
3525	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3526	if (IS_ERR(srt))
3527		return PTR_ERR(srt);
3528	xfers = srt->inserted_transfers;
3529
3530	/*
3531	 * Now handle each of those newly inserted spi_transfers.
3532	 * Note that the replacements spi_transfers all are preset
3533	 * to the same values as *xferp, so tx_buf, rx_buf and len
3534	 * are all identical (as well as most others)
3535	 * so we just have to fix up len and the pointers.
3536	 *
3537	 * This also includes support for the depreciated
3538	 * spi_message.is_dma_mapped interface.
3539	 */
3540
3541	/*
3542	 * The first transfer just needs the length modified, so we
3543	 * run it outside the loop.
3544	 */
3545	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3546
3547	/* All the others need rx_buf/tx_buf also set */
3548	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3549		/* Update rx_buf, tx_buf and dma */
3550		if (xfers[i].rx_buf)
3551			xfers[i].rx_buf += offset;
3552		if (xfers[i].rx_dma)
3553			xfers[i].rx_dma += offset;
3554		if (xfers[i].tx_buf)
3555			xfers[i].tx_buf += offset;
3556		if (xfers[i].tx_dma)
3557			xfers[i].tx_dma += offset;
3558
3559		/* Update length */
3560		xfers[i].len = min(maxsize, xfers[i].len - offset);
3561	}
3562
3563	/*
3564	 * We set up xferp to the last entry we have inserted,
3565	 * so that we skip those already split transfers.
3566	 */
3567	*xferp = &xfers[count - 1];
3568
3569	/* Increment statistics counters */
3570	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3571				       transfers_split_maxsize);
3572	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3573				       transfers_split_maxsize);
3574
3575	return 0;
3576}
3577
3578/**
3579 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3580 *                               when an individual transfer exceeds a
3581 *                               certain size
3582 * @ctlr:    the @spi_controller for this transfer
3583 * @msg:   the @spi_message to transform
3584 * @maxsize:  the maximum when to apply this
3585 * @gfp: GFP allocation flags
3586 *
3587 * Return: status of transformation
3588 */
3589int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3590				struct spi_message *msg,
3591				size_t maxsize,
3592				gfp_t gfp)
3593{
3594	struct spi_transfer *xfer;
3595	int ret;
3596
3597	/*
3598	 * Iterate over the transfer_list,
3599	 * but note that xfer is advanced to the last transfer inserted
3600	 * to avoid checking sizes again unnecessarily (also xfer does
3601	 * potentially belong to a different list by the time the
3602	 * replacement has happened).
3603	 */
3604	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3605		if (xfer->len > maxsize) {
3606			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3607							   maxsize, gfp);
3608			if (ret)
3609				return ret;
3610		}
3611	}
3612
3613	return 0;
3614}
3615EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3616
3617/*-------------------------------------------------------------------------*/
3618
3619/* Core methods for SPI controller protocol drivers.  Some of the
3620 * other core methods are currently defined as inline functions.
3621 */
3622
3623static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3624					u8 bits_per_word)
3625{
3626	if (ctlr->bits_per_word_mask) {
3627		/* Only 32 bits fit in the mask */
3628		if (bits_per_word > 32)
3629			return -EINVAL;
3630		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3631			return -EINVAL;
3632	}
3633
3634	return 0;
3635}
3636
3637/**
3638 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3639 * @spi: the device that requires specific CS timing configuration
3640 *
3641 * Return: zero on success, else a negative error code.
3642 */
3643static int spi_set_cs_timing(struct spi_device *spi)
3644{
3645	struct device *parent = spi->controller->dev.parent;
3646	int status = 0;
3647
3648	if (spi->controller->set_cs_timing && !spi->cs_gpiod) {
3649		if (spi->controller->auto_runtime_pm) {
3650			status = pm_runtime_get_sync(parent);
3651			if (status < 0) {
3652				pm_runtime_put_noidle(parent);
3653				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3654					status);
3655				return status;
3656			}
3657
3658			status = spi->controller->set_cs_timing(spi);
3659			pm_runtime_mark_last_busy(parent);
3660			pm_runtime_put_autosuspend(parent);
3661		} else {
3662			status = spi->controller->set_cs_timing(spi);
3663		}
3664	}
3665	return status;
3666}
3667
3668/**
3669 * spi_setup - setup SPI mode and clock rate
3670 * @spi: the device whose settings are being modified
3671 * Context: can sleep, and no requests are queued to the device
3672 *
3673 * SPI protocol drivers may need to update the transfer mode if the
3674 * device doesn't work with its default.  They may likewise need
3675 * to update clock rates or word sizes from initial values.  This function
3676 * changes those settings, and must be called from a context that can sleep.
3677 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3678 * effect the next time the device is selected and data is transferred to
3679 * or from it.  When this function returns, the spi device is deselected.
3680 *
3681 * Note that this call will fail if the protocol driver specifies an option
3682 * that the underlying controller or its driver does not support.  For
3683 * example, not all hardware supports wire transfers using nine bit words,
3684 * LSB-first wire encoding, or active-high chipselects.
3685 *
3686 * Return: zero on success, else a negative error code.
3687 */
3688int spi_setup(struct spi_device *spi)
3689{
3690	unsigned	bad_bits, ugly_bits;
3691	int		status = 0;
3692
3693	/*
3694	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3695	 * are set at the same time.
3696	 */
3697	if ((hweight_long(spi->mode &
3698		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3699	    (hweight_long(spi->mode &
3700		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3701		dev_err(&spi->dev,
3702		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3703		return -EINVAL;
3704	}
3705	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
 
3706	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3707		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3708		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3709		return -EINVAL;
3710	/*
3711	 * Help drivers fail *cleanly* when they need options
3712	 * that aren't supported with their current controller.
3713	 * SPI_CS_WORD has a fallback software implementation,
3714	 * so it is ignored here.
3715	 */
3716	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3717				 SPI_NO_TX | SPI_NO_RX);
3718	ugly_bits = bad_bits &
3719		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3720		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3721	if (ugly_bits) {
3722		dev_warn(&spi->dev,
3723			 "setup: ignoring unsupported mode bits %x\n",
3724			 ugly_bits);
3725		spi->mode &= ~ugly_bits;
3726		bad_bits &= ~ugly_bits;
3727	}
3728	if (bad_bits) {
3729		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3730			bad_bits);
3731		return -EINVAL;
3732	}
3733
3734	if (!spi->bits_per_word) {
3735		spi->bits_per_word = 8;
3736	} else {
3737		/*
3738		 * Some controllers may not support the default 8 bits-per-word
3739		 * so only perform the check when this is explicitly provided.
3740		 */
3741		status = __spi_validate_bits_per_word(spi->controller,
3742						      spi->bits_per_word);
3743		if (status)
3744			return status;
3745	}
3746
3747	if (spi->controller->max_speed_hz &&
3748	    (!spi->max_speed_hz ||
3749	     spi->max_speed_hz > spi->controller->max_speed_hz))
3750		spi->max_speed_hz = spi->controller->max_speed_hz;
3751
3752	mutex_lock(&spi->controller->io_mutex);
3753
3754	if (spi->controller->setup) {
3755		status = spi->controller->setup(spi);
3756		if (status) {
3757			mutex_unlock(&spi->controller->io_mutex);
3758			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3759				status);
3760			return status;
3761		}
3762	}
3763
3764	status = spi_set_cs_timing(spi);
3765	if (status) {
3766		mutex_unlock(&spi->controller->io_mutex);
3767		return status;
3768	}
3769
3770	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3771		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3772		if (status < 0) {
3773			mutex_unlock(&spi->controller->io_mutex);
3774			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3775				status);
3776			return status;
3777		}
3778
3779		/*
3780		 * We do not want to return positive value from pm_runtime_get,
3781		 * there are many instances of devices calling spi_setup() and
3782		 * checking for a non-zero return value instead of a negative
3783		 * return value.
3784		 */
3785		status = 0;
3786
3787		spi_set_cs(spi, false, true);
3788		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3789		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3790	} else {
3791		spi_set_cs(spi, false, true);
3792	}
3793
3794	mutex_unlock(&spi->controller->io_mutex);
 
3795
3796	if (spi->rt && !spi->controller->rt) {
3797		spi->controller->rt = true;
3798		spi_set_thread_rt(spi->controller);
3799	}
3800
3801	trace_spi_setup(spi, status);
3802
3803	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3804			spi->mode & SPI_MODE_X_MASK,
3805			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3806			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3807			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3808			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3809			spi->bits_per_word, spi->max_speed_hz,
3810			status);
3811
3812	return status;
3813}
3814EXPORT_SYMBOL_GPL(spi_setup);
3815
3816static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3817				       struct spi_device *spi)
3818{
3819	int delay1, delay2;
3820
3821	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3822	if (delay1 < 0)
3823		return delay1;
3824
3825	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3826	if (delay2 < 0)
3827		return delay2;
3828
3829	if (delay1 < delay2)
3830		memcpy(&xfer->word_delay, &spi->word_delay,
3831		       sizeof(xfer->word_delay));
3832
3833	return 0;
3834}
3835
3836static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3837{
3838	struct spi_controller *ctlr = spi->controller;
3839	struct spi_transfer *xfer;
3840	int w_size;
3841
3842	if (list_empty(&message->transfers))
3843		return -EINVAL;
3844
3845	/*
3846	 * If an SPI controller does not support toggling the CS line on each
3847	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3848	 * for the CS line, we can emulate the CS-per-word hardware function by
3849	 * splitting transfers into one-word transfers and ensuring that
3850	 * cs_change is set for each transfer.
3851	 */
3852	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3853					  spi->cs_gpiod)) {
3854		size_t maxsize;
3855		int ret;
3856
3857		maxsize = (spi->bits_per_word + 7) / 8;
3858
3859		/* spi_split_transfers_maxsize() requires message->spi */
3860		message->spi = spi;
3861
3862		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3863						  GFP_KERNEL);
3864		if (ret)
3865			return ret;
3866
3867		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3868			/* Don't change cs_change on the last entry in the list */
3869			if (list_is_last(&xfer->transfer_list, &message->transfers))
3870				break;
3871			xfer->cs_change = 1;
3872		}
3873	}
3874
3875	/*
3876	 * Half-duplex links include original MicroWire, and ones with
3877	 * only one data pin like SPI_3WIRE (switches direction) or where
3878	 * either MOSI or MISO is missing.  They can also be caused by
3879	 * software limitations.
3880	 */
3881	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3882	    (spi->mode & SPI_3WIRE)) {
3883		unsigned flags = ctlr->flags;
3884
3885		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3886			if (xfer->rx_buf && xfer->tx_buf)
3887				return -EINVAL;
3888			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3889				return -EINVAL;
3890			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3891				return -EINVAL;
3892		}
3893	}
3894
3895	/*
3896	 * Set transfer bits_per_word and max speed as spi device default if
3897	 * it is not set for this transfer.
3898	 * Set transfer tx_nbits and rx_nbits as single transfer default
3899	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3900	 * Ensure transfer word_delay is at least as long as that required by
3901	 * device itself.
3902	 */
3903	message->frame_length = 0;
3904	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3905		xfer->effective_speed_hz = 0;
3906		message->frame_length += xfer->len;
3907		if (!xfer->bits_per_word)
3908			xfer->bits_per_word = spi->bits_per_word;
3909
3910		if (!xfer->speed_hz)
3911			xfer->speed_hz = spi->max_speed_hz;
 
 
3912
3913		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3914			xfer->speed_hz = ctlr->max_speed_hz;
3915
3916		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3917			return -EINVAL;
3918
3919		/*
3920		 * SPI transfer length should be multiple of SPI word size
3921		 * where SPI word size should be power-of-two multiple.
3922		 */
3923		if (xfer->bits_per_word <= 8)
3924			w_size = 1;
3925		else if (xfer->bits_per_word <= 16)
3926			w_size = 2;
3927		else
3928			w_size = 4;
3929
3930		/* No partial transfers accepted */
3931		if (xfer->len % w_size)
3932			return -EINVAL;
3933
3934		if (xfer->speed_hz && ctlr->min_speed_hz &&
3935		    xfer->speed_hz < ctlr->min_speed_hz)
3936			return -EINVAL;
3937
3938		if (xfer->tx_buf && !xfer->tx_nbits)
3939			xfer->tx_nbits = SPI_NBITS_SINGLE;
3940		if (xfer->rx_buf && !xfer->rx_nbits)
3941			xfer->rx_nbits = SPI_NBITS_SINGLE;
3942		/*
3943		 * Check transfer tx/rx_nbits:
3944		 * 1. check the value matches one of single, dual and quad
3945		 * 2. check tx/rx_nbits match the mode in spi_device
3946		 */
3947		if (xfer->tx_buf) {
3948			if (spi->mode & SPI_NO_TX)
3949				return -EINVAL;
3950			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3951				xfer->tx_nbits != SPI_NBITS_DUAL &&
3952				xfer->tx_nbits != SPI_NBITS_QUAD)
3953				return -EINVAL;
3954			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3955				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3956				return -EINVAL;
3957			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3958				!(spi->mode & SPI_TX_QUAD))
3959				return -EINVAL;
3960		}
3961		/* Check transfer rx_nbits */
3962		if (xfer->rx_buf) {
3963			if (spi->mode & SPI_NO_RX)
3964				return -EINVAL;
3965			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3966				xfer->rx_nbits != SPI_NBITS_DUAL &&
3967				xfer->rx_nbits != SPI_NBITS_QUAD)
3968				return -EINVAL;
3969			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3970				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3971				return -EINVAL;
3972			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3973				!(spi->mode & SPI_RX_QUAD))
3974				return -EINVAL;
3975		}
3976
3977		if (_spi_xfer_word_delay_update(xfer, spi))
3978			return -EINVAL;
3979	}
3980
3981	message->status = -EINPROGRESS;
3982
3983	return 0;
3984}
3985
3986static int __spi_async(struct spi_device *spi, struct spi_message *message)
3987{
3988	struct spi_controller *ctlr = spi->controller;
3989	struct spi_transfer *xfer;
3990
3991	/*
3992	 * Some controllers do not support doing regular SPI transfers. Return
3993	 * ENOTSUPP when this is the case.
3994	 */
3995	if (!ctlr->transfer)
3996		return -ENOTSUPP;
3997
3998	message->spi = spi;
3999
4000	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4001	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4002
4003	trace_spi_message_submit(message);
4004
4005	if (!ctlr->ptp_sts_supported) {
4006		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4007			xfer->ptp_sts_word_pre = 0;
4008			ptp_read_system_prets(xfer->ptp_sts);
4009		}
4010	}
4011
4012	return ctlr->transfer(spi, message);
4013}
4014
4015/**
4016 * spi_async - asynchronous SPI transfer
4017 * @spi: device with which data will be exchanged
4018 * @message: describes the data transfers, including completion callback
4019 * Context: any (irqs may be blocked, etc)
4020 *
4021 * This call may be used in_irq and other contexts which can't sleep,
4022 * as well as from task contexts which can sleep.
4023 *
4024 * The completion callback is invoked in a context which can't sleep.
4025 * Before that invocation, the value of message->status is undefined.
4026 * When the callback is issued, message->status holds either zero (to
4027 * indicate complete success) or a negative error code.  After that
4028 * callback returns, the driver which issued the transfer request may
4029 * deallocate the associated memory; it's no longer in use by any SPI
4030 * core or controller driver code.
4031 *
4032 * Note that although all messages to a spi_device are handled in
4033 * FIFO order, messages may go to different devices in other orders.
4034 * Some device might be higher priority, or have various "hard" access
4035 * time requirements, for example.
4036 *
4037 * On detection of any fault during the transfer, processing of
4038 * the entire message is aborted, and the device is deselected.
4039 * Until returning from the associated message completion callback,
4040 * no other spi_message queued to that device will be processed.
4041 * (This rule applies equally to all the synchronous transfer calls,
4042 * which are wrappers around this core asynchronous primitive.)
4043 *
4044 * Return: zero on success, else a negative error code.
4045 */
4046int spi_async(struct spi_device *spi, struct spi_message *message)
4047{
4048	struct spi_controller *ctlr = spi->controller;
4049	int ret;
4050	unsigned long flags;
4051
4052	ret = __spi_validate(spi, message);
4053	if (ret != 0)
4054		return ret;
4055
4056	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4057
4058	if (ctlr->bus_lock_flag)
4059		ret = -EBUSY;
4060	else
4061		ret = __spi_async(spi, message);
4062
4063	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4064
4065	return ret;
4066}
4067EXPORT_SYMBOL_GPL(spi_async);
4068
4069/**
4070 * spi_async_locked - version of spi_async with exclusive bus usage
4071 * @spi: device with which data will be exchanged
4072 * @message: describes the data transfers, including completion callback
4073 * Context: any (irqs may be blocked, etc)
4074 *
4075 * This call may be used in_irq and other contexts which can't sleep,
4076 * as well as from task contexts which can sleep.
4077 *
4078 * The completion callback is invoked in a context which can't sleep.
4079 * Before that invocation, the value of message->status is undefined.
4080 * When the callback is issued, message->status holds either zero (to
4081 * indicate complete success) or a negative error code.  After that
4082 * callback returns, the driver which issued the transfer request may
4083 * deallocate the associated memory; it's no longer in use by any SPI
4084 * core or controller driver code.
4085 *
4086 * Note that although all messages to a spi_device are handled in
4087 * FIFO order, messages may go to different devices in other orders.
4088 * Some device might be higher priority, or have various "hard" access
4089 * time requirements, for example.
4090 *
4091 * On detection of any fault during the transfer, processing of
4092 * the entire message is aborted, and the device is deselected.
4093 * Until returning from the associated message completion callback,
4094 * no other spi_message queued to that device will be processed.
4095 * (This rule applies equally to all the synchronous transfer calls,
4096 * which are wrappers around this core asynchronous primitive.)
4097 *
4098 * Return: zero on success, else a negative error code.
4099 */
4100static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4101{
4102	struct spi_controller *ctlr = spi->controller;
4103	int ret;
4104	unsigned long flags;
4105
4106	ret = __spi_validate(spi, message);
4107	if (ret != 0)
4108		return ret;
4109
4110	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4111
4112	ret = __spi_async(spi, message);
4113
4114	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4115
4116	return ret;
4117
4118}
 
 
 
 
 
4119
4120static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4121{
4122	bool was_busy;
 
4123	int ret;
4124
4125	mutex_lock(&ctlr->io_mutex);
4126
4127	was_busy = ctlr->busy;
 
 
 
 
 
 
 
 
 
 
 
4128
4129	ctlr->cur_msg = msg;
4130	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4131	if (ret)
4132		goto out;
 
 
 
 
4133
4134	ctlr->cur_msg = NULL;
4135	ctlr->fallback = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4136
4137	if (!was_busy) {
4138		kfree(ctlr->dummy_rx);
4139		ctlr->dummy_rx = NULL;
4140		kfree(ctlr->dummy_tx);
4141		ctlr->dummy_tx = NULL;
4142		if (ctlr->unprepare_transfer_hardware &&
4143		    ctlr->unprepare_transfer_hardware(ctlr))
4144			dev_err(&ctlr->dev,
4145				"failed to unprepare transfer hardware\n");
4146		spi_idle_runtime_pm(ctlr);
4147	}
4148
4149out:
4150	mutex_unlock(&ctlr->io_mutex);
4151}
 
4152
4153/*-------------------------------------------------------------------------*/
4154
4155/*
4156 * Utility methods for SPI protocol drivers, layered on
4157 * top of the core.  Some other utility methods are defined as
4158 * inline functions.
4159 */
4160
4161static void spi_complete(void *arg)
4162{
4163	complete(arg);
4164}
4165
4166static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4167{
4168	DECLARE_COMPLETION_ONSTACK(done);
4169	int status;
4170	struct spi_controller *ctlr = spi->controller;
 
4171
4172	status = __spi_validate(spi, message);
4173	if (status != 0)
4174		return status;
4175
 
 
4176	message->spi = spi;
4177
4178	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4179	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4180
4181	/*
4182	 * Checking queue_empty here only guarantees async/sync message
4183	 * ordering when coming from the same context. It does not need to
4184	 * guard against reentrancy from a different context. The io_mutex
4185	 * will catch those cases.
4186	 */
4187	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4188		message->actual_length = 0;
4189		message->status = -EINPROGRESS;
4190
4191		trace_spi_message_submit(message);
4192
4193		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4194		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4195
4196		__spi_transfer_message_noqueue(ctlr, message);
4197
4198		return message->status;
 
 
4199	}
4200
4201	/*
4202	 * There are messages in the async queue that could have originated
4203	 * from the same context, so we need to preserve ordering.
4204	 * Therefor we send the message to the async queue and wait until they
4205	 * are completed.
4206	 */
4207	message->complete = spi_complete;
4208	message->context = &done;
4209	status = spi_async_locked(spi, message);
4210	if (status == 0) {
 
 
 
 
 
 
 
 
 
 
 
4211		wait_for_completion(&done);
4212		status = message->status;
4213	}
4214	message->context = NULL;
4215
4216	return status;
4217}
4218
4219/**
4220 * spi_sync - blocking/synchronous SPI data transfers
4221 * @spi: device with which data will be exchanged
4222 * @message: describes the data transfers
4223 * Context: can sleep
4224 *
4225 * This call may only be used from a context that may sleep.  The sleep
4226 * is non-interruptible, and has no timeout.  Low-overhead controller
4227 * drivers may DMA directly into and out of the message buffers.
4228 *
4229 * Note that the SPI device's chip select is active during the message,
4230 * and then is normally disabled between messages.  Drivers for some
4231 * frequently-used devices may want to minimize costs of selecting a chip,
4232 * by leaving it selected in anticipation that the next message will go
4233 * to the same chip.  (That may increase power usage.)
4234 *
4235 * Also, the caller is guaranteeing that the memory associated with the
4236 * message will not be freed before this call returns.
4237 *
4238 * Return: zero on success, else a negative error code.
4239 */
4240int spi_sync(struct spi_device *spi, struct spi_message *message)
4241{
4242	int ret;
4243
4244	mutex_lock(&spi->controller->bus_lock_mutex);
4245	ret = __spi_sync(spi, message);
4246	mutex_unlock(&spi->controller->bus_lock_mutex);
4247
4248	return ret;
4249}
4250EXPORT_SYMBOL_GPL(spi_sync);
4251
4252/**
4253 * spi_sync_locked - version of spi_sync with exclusive bus usage
4254 * @spi: device with which data will be exchanged
4255 * @message: describes the data transfers
4256 * Context: can sleep
4257 *
4258 * This call may only be used from a context that may sleep.  The sleep
4259 * is non-interruptible, and has no timeout.  Low-overhead controller
4260 * drivers may DMA directly into and out of the message buffers.
4261 *
4262 * This call should be used by drivers that require exclusive access to the
4263 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4264 * be released by a spi_bus_unlock call when the exclusive access is over.
4265 *
4266 * Return: zero on success, else a negative error code.
4267 */
4268int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4269{
4270	return __spi_sync(spi, message);
4271}
4272EXPORT_SYMBOL_GPL(spi_sync_locked);
4273
4274/**
4275 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4276 * @ctlr: SPI bus master that should be locked for exclusive bus access
4277 * Context: can sleep
4278 *
4279 * This call may only be used from a context that may sleep.  The sleep
4280 * is non-interruptible, and has no timeout.
4281 *
4282 * This call should be used by drivers that require exclusive access to the
4283 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4284 * exclusive access is over. Data transfer must be done by spi_sync_locked
4285 * and spi_async_locked calls when the SPI bus lock is held.
4286 *
4287 * Return: always zero.
4288 */
4289int spi_bus_lock(struct spi_controller *ctlr)
4290{
4291	unsigned long flags;
4292
4293	mutex_lock(&ctlr->bus_lock_mutex);
4294
4295	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4296	ctlr->bus_lock_flag = 1;
4297	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4298
4299	/* Mutex remains locked until spi_bus_unlock() is called */
4300
4301	return 0;
4302}
4303EXPORT_SYMBOL_GPL(spi_bus_lock);
4304
4305/**
4306 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4307 * @ctlr: SPI bus master that was locked for exclusive bus access
4308 * Context: can sleep
4309 *
4310 * This call may only be used from a context that may sleep.  The sleep
4311 * is non-interruptible, and has no timeout.
4312 *
4313 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4314 * call.
4315 *
4316 * Return: always zero.
4317 */
4318int spi_bus_unlock(struct spi_controller *ctlr)
4319{
4320	ctlr->bus_lock_flag = 0;
4321
4322	mutex_unlock(&ctlr->bus_lock_mutex);
4323
4324	return 0;
4325}
4326EXPORT_SYMBOL_GPL(spi_bus_unlock);
4327
4328/* Portable code must never pass more than 32 bytes */
4329#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4330
4331static u8	*buf;
4332
4333/**
4334 * spi_write_then_read - SPI synchronous write followed by read
4335 * @spi: device with which data will be exchanged
4336 * @txbuf: data to be written (need not be dma-safe)
4337 * @n_tx: size of txbuf, in bytes
4338 * @rxbuf: buffer into which data will be read (need not be dma-safe)
4339 * @n_rx: size of rxbuf, in bytes
4340 * Context: can sleep
4341 *
4342 * This performs a half duplex MicroWire style transaction with the
4343 * device, sending txbuf and then reading rxbuf.  The return value
4344 * is zero for success, else a negative errno status code.
4345 * This call may only be used from a context that may sleep.
4346 *
4347 * Parameters to this routine are always copied using a small buffer.
 
4348 * Performance-sensitive or bulk transfer code should instead use
4349 * spi_{async,sync}() calls with dma-safe buffers.
4350 *
4351 * Return: zero on success, else a negative error code.
4352 */
4353int spi_write_then_read(struct spi_device *spi,
4354		const void *txbuf, unsigned n_tx,
4355		void *rxbuf, unsigned n_rx)
4356{
4357	static DEFINE_MUTEX(lock);
4358
4359	int			status;
4360	struct spi_message	message;
4361	struct spi_transfer	x[2];
4362	u8			*local_buf;
4363
4364	/*
4365	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4366	 * copying here, (as a pure convenience thing), but we can
4367	 * keep heap costs out of the hot path unless someone else is
4368	 * using the pre-allocated buffer or the transfer is too large.
4369	 */
4370	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4371		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4372				    GFP_KERNEL | GFP_DMA);
4373		if (!local_buf)
4374			return -ENOMEM;
4375	} else {
4376		local_buf = buf;
4377	}
4378
4379	spi_message_init(&message);
4380	memset(x, 0, sizeof(x));
4381	if (n_tx) {
4382		x[0].len = n_tx;
4383		spi_message_add_tail(&x[0], &message);
4384	}
4385	if (n_rx) {
4386		x[1].len = n_rx;
4387		spi_message_add_tail(&x[1], &message);
4388	}
4389
4390	memcpy(local_buf, txbuf, n_tx);
4391	x[0].tx_buf = local_buf;
4392	x[1].rx_buf = local_buf + n_tx;
4393
4394	/* Do the i/o */
4395	status = spi_sync(spi, &message);
4396	if (status == 0)
4397		memcpy(rxbuf, x[1].rx_buf, n_rx);
4398
4399	if (x[0].tx_buf == buf)
4400		mutex_unlock(&lock);
4401	else
4402		kfree(local_buf);
4403
4404	return status;
4405}
4406EXPORT_SYMBOL_GPL(spi_write_then_read);
4407
4408/*-------------------------------------------------------------------------*/
4409
4410#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4411/* Must call put_device() when done with returned spi_device device */
4412static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4413{
4414	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
 
4415
 
 
 
 
 
4416	return dev ? to_spi_device(dev) : NULL;
4417}
4418
4419/* The spi controllers are not using spi_bus, so we find it with another way */
 
 
 
 
 
4420static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4421{
4422	struct device *dev;
4423
4424	dev = class_find_device_by_of_node(&spi_master_class, node);
 
4425	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4426		dev = class_find_device_by_of_node(&spi_slave_class, node);
 
4427	if (!dev)
4428		return NULL;
4429
4430	/* Reference got in class_find_device */
4431	return container_of(dev, struct spi_controller, dev);
4432}
4433
4434static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4435			 void *arg)
4436{
4437	struct of_reconfig_data *rd = arg;
4438	struct spi_controller *ctlr;
4439	struct spi_device *spi;
4440
4441	switch (of_reconfig_get_state_change(action, arg)) {
4442	case OF_RECONFIG_CHANGE_ADD:
4443		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4444		if (ctlr == NULL)
4445			return NOTIFY_OK;	/* Not for us */
4446
4447		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4448			put_device(&ctlr->dev);
4449			return NOTIFY_OK;
4450		}
4451
4452		spi = of_register_spi_device(ctlr, rd->dn);
4453		put_device(&ctlr->dev);
4454
4455		if (IS_ERR(spi)) {
4456			pr_err("%s: failed to create for '%pOF'\n",
4457					__func__, rd->dn);
4458			of_node_clear_flag(rd->dn, OF_POPULATED);
4459			return notifier_from_errno(PTR_ERR(spi));
4460		}
4461		break;
4462
4463	case OF_RECONFIG_CHANGE_REMOVE:
4464		/* Already depopulated? */
4465		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4466			return NOTIFY_OK;
4467
4468		/* Find our device by node */
4469		spi = of_find_spi_device_by_node(rd->dn);
4470		if (spi == NULL)
4471			return NOTIFY_OK;	/* No? not meant for us */
4472
4473		/* Unregister takes one ref away */
4474		spi_unregister_device(spi);
4475
4476		/* And put the reference of the find */
4477		put_device(&spi->dev);
4478		break;
4479	}
4480
4481	return NOTIFY_OK;
4482}
4483
4484static struct notifier_block spi_of_notifier = {
4485	.notifier_call = of_spi_notify,
4486};
4487#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4488extern struct notifier_block spi_of_notifier;
4489#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4490
4491#if IS_ENABLED(CONFIG_ACPI)
4492static int spi_acpi_controller_match(struct device *dev, const void *data)
4493{
4494	return ACPI_COMPANION(dev->parent) == data;
4495}
4496
 
 
 
 
 
4497static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4498{
4499	struct device *dev;
4500
4501	dev = class_find_device(&spi_master_class, NULL, adev,
4502				spi_acpi_controller_match);
4503	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4504		dev = class_find_device(&spi_slave_class, NULL, adev,
4505					spi_acpi_controller_match);
4506	if (!dev)
4507		return NULL;
4508
4509	return container_of(dev, struct spi_controller, dev);
4510}
4511
4512static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4513{
4514	struct device *dev;
4515
4516	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4517	return to_spi_device(dev);
 
4518}
4519
4520static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4521			   void *arg)
4522{
4523	struct acpi_device *adev = arg;
4524	struct spi_controller *ctlr;
4525	struct spi_device *spi;
4526
4527	switch (value) {
4528	case ACPI_RECONFIG_DEVICE_ADD:
4529		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4530		if (!ctlr)
4531			break;
4532
4533		acpi_register_spi_device(ctlr, adev);
4534		put_device(&ctlr->dev);
4535		break;
4536	case ACPI_RECONFIG_DEVICE_REMOVE:
4537		if (!acpi_device_enumerated(adev))
4538			break;
4539
4540		spi = acpi_spi_find_device_by_adev(adev);
4541		if (!spi)
4542			break;
4543
4544		spi_unregister_device(spi);
4545		put_device(&spi->dev);
4546		break;
4547	}
4548
4549	return NOTIFY_OK;
4550}
4551
4552static struct notifier_block spi_acpi_notifier = {
4553	.notifier_call = acpi_spi_notify,
4554};
4555#else
4556extern struct notifier_block spi_acpi_notifier;
4557#endif
4558
4559static int __init spi_init(void)
4560{
4561	int	status;
4562
4563	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4564	if (!buf) {
4565		status = -ENOMEM;
4566		goto err0;
4567	}
4568
4569	status = bus_register(&spi_bus_type);
4570	if (status < 0)
4571		goto err1;
4572
4573	status = class_register(&spi_master_class);
4574	if (status < 0)
4575		goto err2;
4576
4577	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4578		status = class_register(&spi_slave_class);
4579		if (status < 0)
4580			goto err3;
4581	}
4582
4583	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4584		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4585	if (IS_ENABLED(CONFIG_ACPI))
4586		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4587
4588	return 0;
4589
4590err3:
4591	class_unregister(&spi_master_class);
4592err2:
4593	bus_unregister(&spi_bus_type);
4594err1:
4595	kfree(buf);
4596	buf = NULL;
4597err0:
4598	return status;
4599}
4600
4601/*
4602 * A board_info is normally registered in arch_initcall(),
4603 * but even essential drivers wait till later.
4604 *
4605 * REVISIT only boardinfo really needs static linking. The rest (device and
4606 * driver registration) _could_ be dynamically linked (modular) ... Costs
4607 * include needing to have boardinfo data structures be much more public.
4608 */
4609postcore_initcall(spi_init);
v4.17
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
 
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/property.h>
  35#include <linux/export.h>
  36#include <linux/sched/rt.h>
  37#include <uapi/linux/sched/types.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/ioport.h>
  41#include <linux/acpi.h>
  42#include <linux/highmem.h>
  43#include <linux/idr.h>
  44#include <linux/platform_data/x86/apple.h>
 
 
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/spi.h>
 
 
 
 
  48
  49static DEFINE_IDR(spi_master_idr);
  50
  51static void spidev_release(struct device *dev)
  52{
  53	struct spi_device	*spi = to_spi_device(dev);
  54
  55	/* spi controllers may cleanup for released devices */
  56	if (spi->controller->cleanup)
  57		spi->controller->cleanup(spi);
  58
  59	spi_controller_put(spi->controller);
 
 
  60	kfree(spi);
  61}
  62
  63static ssize_t
  64modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  65{
  66	const struct spi_device	*spi = to_spi_device(dev);
  67	int len;
  68
  69	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  70	if (len != -ENODEV)
  71		return len;
  72
  73	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  74}
  75static DEVICE_ATTR_RO(modalias);
  76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77#define SPI_STATISTICS_ATTRS(field, file)				\
  78static ssize_t spi_controller_##field##_show(struct device *dev,	\
  79					     struct device_attribute *attr, \
  80					     char *buf)			\
  81{									\
  82	struct spi_controller *ctlr = container_of(dev,			\
  83					 struct spi_controller, dev);	\
  84	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
  85}									\
  86static struct device_attribute dev_attr_spi_controller_##field = {	\
  87	.attr = { .name = file, .mode = 0444 },				\
  88	.show = spi_controller_##field##_show,				\
  89};									\
  90static ssize_t spi_device_##field##_show(struct device *dev,		\
  91					 struct device_attribute *attr,	\
  92					char *buf)			\
  93{									\
  94	struct spi_device *spi = to_spi_device(dev);			\
  95	return spi_statistics_##field##_show(&spi->statistics, buf);	\
  96}									\
  97static struct device_attribute dev_attr_spi_device_##field = {		\
  98	.attr = { .name = file, .mode = 0444 },				\
  99	.show = spi_device_##field##_show,				\
 100}
 101
 102#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 103static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 104					    char *buf)			\
 105{									\
 106	unsigned long flags;						\
 107	ssize_t len;							\
 108	spin_lock_irqsave(&stat->lock, flags);				\
 109	len = sprintf(buf, format_string, stat->field);			\
 110	spin_unlock_irqrestore(&stat->lock, flags);			\
 111	return len;							\
 112}									\
 113SPI_STATISTICS_ATTRS(name, file)
 114
 115#define SPI_STATISTICS_SHOW(field, format_string)			\
 116	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 117				 field, format_string)
 118
 119SPI_STATISTICS_SHOW(messages, "%lu");
 120SPI_STATISTICS_SHOW(transfers, "%lu");
 121SPI_STATISTICS_SHOW(errors, "%lu");
 122SPI_STATISTICS_SHOW(timedout, "%lu");
 123
 124SPI_STATISTICS_SHOW(spi_sync, "%lu");
 125SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 126SPI_STATISTICS_SHOW(spi_async, "%lu");
 127
 128SPI_STATISTICS_SHOW(bytes, "%llu");
 129SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 130SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 131
 132#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 133	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 134				 "transfer_bytes_histo_" number,	\
 135				 transfer_bytes_histo[index],  "%lu")
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 146SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 147SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 148SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 149SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 150SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 151SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 152SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 153
 154SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 155
 156static struct attribute *spi_dev_attrs[] = {
 157	&dev_attr_modalias.attr,
 
 158	NULL,
 159};
 160
 161static const struct attribute_group spi_dev_group = {
 162	.attrs  = spi_dev_attrs,
 163};
 164
 165static struct attribute *spi_device_statistics_attrs[] = {
 166	&dev_attr_spi_device_messages.attr,
 167	&dev_attr_spi_device_transfers.attr,
 168	&dev_attr_spi_device_errors.attr,
 169	&dev_attr_spi_device_timedout.attr,
 170	&dev_attr_spi_device_spi_sync.attr,
 171	&dev_attr_spi_device_spi_sync_immediate.attr,
 172	&dev_attr_spi_device_spi_async.attr,
 173	&dev_attr_spi_device_bytes.attr,
 174	&dev_attr_spi_device_bytes_rx.attr,
 175	&dev_attr_spi_device_bytes_tx.attr,
 176	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 177	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 178	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 179	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 180	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 181	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 182	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 183	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 184	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 185	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 186	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 187	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 188	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 189	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 190	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 191	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 192	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 193	&dev_attr_spi_device_transfers_split_maxsize.attr,
 194	NULL,
 195};
 196
 197static const struct attribute_group spi_device_statistics_group = {
 198	.name  = "statistics",
 199	.attrs  = spi_device_statistics_attrs,
 200};
 201
 202static const struct attribute_group *spi_dev_groups[] = {
 203	&spi_dev_group,
 204	&spi_device_statistics_group,
 205	NULL,
 206};
 207
 208static struct attribute *spi_controller_statistics_attrs[] = {
 209	&dev_attr_spi_controller_messages.attr,
 210	&dev_attr_spi_controller_transfers.attr,
 211	&dev_attr_spi_controller_errors.attr,
 212	&dev_attr_spi_controller_timedout.attr,
 213	&dev_attr_spi_controller_spi_sync.attr,
 214	&dev_attr_spi_controller_spi_sync_immediate.attr,
 215	&dev_attr_spi_controller_spi_async.attr,
 216	&dev_attr_spi_controller_bytes.attr,
 217	&dev_attr_spi_controller_bytes_rx.attr,
 218	&dev_attr_spi_controller_bytes_tx.attr,
 219	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 220	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 221	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 222	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 223	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 224	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 225	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 226	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 227	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 228	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 229	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 230	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 231	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 232	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 233	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 234	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 235	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 236	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 237	NULL,
 238};
 239
 240static const struct attribute_group spi_controller_statistics_group = {
 241	.name  = "statistics",
 242	.attrs  = spi_controller_statistics_attrs,
 243};
 244
 245static const struct attribute_group *spi_master_groups[] = {
 246	&spi_controller_statistics_group,
 247	NULL,
 248};
 249
 250void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 251				       struct spi_transfer *xfer,
 252				       struct spi_controller *ctlr)
 253{
 254	unsigned long flags;
 255	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 
 256
 257	if (l2len < 0)
 258		l2len = 0;
 259
 260	spin_lock_irqsave(&stats->lock, flags);
 
 
 261
 262	stats->transfers++;
 263	stats->transfer_bytes_histo[l2len]++;
 264
 265	stats->bytes += xfer->len;
 266	if ((xfer->tx_buf) &&
 267	    (xfer->tx_buf != ctlr->dummy_tx))
 268		stats->bytes_tx += xfer->len;
 269	if ((xfer->rx_buf) &&
 270	    (xfer->rx_buf != ctlr->dummy_rx))
 271		stats->bytes_rx += xfer->len;
 272
 273	spin_unlock_irqrestore(&stats->lock, flags);
 
 274}
 275EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 276
 277/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 
 278 * and the sysfs version makes coldplug work too.
 279 */
 280
 281static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 282						const struct spi_device *sdev)
 283{
 284	while (id->name[0]) {
 285		if (!strcmp(sdev->modalias, id->name))
 286			return id;
 287		id++;
 288	}
 289	return NULL;
 290}
 291
 292const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 293{
 294	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 295
 296	return spi_match_id(sdrv->id_table, sdev);
 297}
 298EXPORT_SYMBOL_GPL(spi_get_device_id);
 299
 
 
 
 
 
 
 
 
 
 
 
 
 300static int spi_match_device(struct device *dev, struct device_driver *drv)
 301{
 302	const struct spi_device	*spi = to_spi_device(dev);
 303	const struct spi_driver	*sdrv = to_spi_driver(drv);
 304
 
 
 
 
 305	/* Attempt an OF style match */
 306	if (of_driver_match_device(dev, drv))
 307		return 1;
 308
 309	/* Then try ACPI */
 310	if (acpi_driver_match_device(dev, drv))
 311		return 1;
 312
 313	if (sdrv->id_table)
 314		return !!spi_match_id(sdrv->id_table, spi);
 315
 316	return strcmp(spi->modalias, drv->name) == 0;
 317}
 318
 319static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 320{
 321	const struct spi_device		*spi = to_spi_device(dev);
 322	int rc;
 323
 324	rc = acpi_device_uevent_modalias(dev, env);
 325	if (rc != -ENODEV)
 326		return rc;
 327
 328	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 329}
 330
 331struct bus_type spi_bus_type = {
 332	.name		= "spi",
 333	.dev_groups	= spi_dev_groups,
 334	.match		= spi_match_device,
 335	.uevent		= spi_uevent,
 336};
 337EXPORT_SYMBOL_GPL(spi_bus_type);
 338
 339
 340static int spi_drv_probe(struct device *dev)
 341{
 342	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 343	struct spi_device		*spi = to_spi_device(dev);
 344	int ret;
 345
 346	ret = of_clk_set_defaults(dev->of_node, false);
 347	if (ret)
 348		return ret;
 349
 350	if (dev->of_node) {
 351		spi->irq = of_irq_get(dev->of_node, 0);
 352		if (spi->irq == -EPROBE_DEFER)
 353			return -EPROBE_DEFER;
 354		if (spi->irq < 0)
 355			spi->irq = 0;
 356	}
 357
 358	ret = dev_pm_domain_attach(dev, true);
 359	if (ret != -EPROBE_DEFER) {
 
 
 
 360		ret = sdrv->probe(spi);
 361		if (ret)
 362			dev_pm_domain_detach(dev, true);
 363	}
 364
 365	return ret;
 366}
 367
 368static int spi_drv_remove(struct device *dev)
 369{
 370	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 371	int ret;
 372
 373	ret = sdrv->remove(to_spi_device(dev));
 
 
 374	dev_pm_domain_detach(dev, true);
 375
 376	return ret;
 377}
 378
 379static void spi_drv_shutdown(struct device *dev)
 380{
 381	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 382
 383	sdrv->shutdown(to_spi_device(dev));
 
 
 384}
 385
 
 
 
 
 
 
 
 
 
 
 
 386/**
 387 * __spi_register_driver - register a SPI driver
 388 * @owner: owner module of the driver to register
 389 * @sdrv: the driver to register
 390 * Context: can sleep
 391 *
 392 * Return: zero on success, else a negative error code.
 393 */
 394int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 395{
 396	sdrv->driver.owner = owner;
 397	sdrv->driver.bus = &spi_bus_type;
 398	if (sdrv->probe)
 399		sdrv->driver.probe = spi_drv_probe;
 400	if (sdrv->remove)
 401		sdrv->driver.remove = spi_drv_remove;
 402	if (sdrv->shutdown)
 403		sdrv->driver.shutdown = spi_drv_shutdown;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404	return driver_register(&sdrv->driver);
 405}
 406EXPORT_SYMBOL_GPL(__spi_register_driver);
 407
 408/*-------------------------------------------------------------------------*/
 409
 410/* SPI devices should normally not be created by SPI device drivers; that
 
 411 * would make them board-specific.  Similarly with SPI controller drivers.
 412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 413 * with other readonly (flashable) information about mainboard devices.
 414 */
 415
 416struct boardinfo {
 417	struct list_head	list;
 418	struct spi_board_info	board_info;
 419};
 420
 421static LIST_HEAD(board_list);
 422static LIST_HEAD(spi_controller_list);
 423
 424/*
 425 * Used to protect add/del opertion for board_info list and
 426 * spi_controller list, and their matching process
 427 * also used to protect object of type struct idr
 428 */
 429static DEFINE_MUTEX(board_lock);
 430
 431/**
 432 * spi_alloc_device - Allocate a new SPI device
 433 * @ctlr: Controller to which device is connected
 434 * Context: can sleep
 435 *
 436 * Allows a driver to allocate and initialize a spi_device without
 437 * registering it immediately.  This allows a driver to directly
 438 * fill the spi_device with device parameters before calling
 439 * spi_add_device() on it.
 440 *
 441 * Caller is responsible to call spi_add_device() on the returned
 442 * spi_device structure to add it to the SPI controller.  If the caller
 443 * needs to discard the spi_device without adding it, then it should
 444 * call spi_dev_put() on it.
 445 *
 446 * Return: a pointer to the new device, or NULL.
 447 */
 448struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 449{
 450	struct spi_device	*spi;
 451
 452	if (!spi_controller_get(ctlr))
 453		return NULL;
 454
 455	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 456	if (!spi) {
 457		spi_controller_put(ctlr);
 458		return NULL;
 459	}
 460
 
 
 
 
 
 
 
 461	spi->master = spi->controller = ctlr;
 462	spi->dev.parent = &ctlr->dev;
 463	spi->dev.bus = &spi_bus_type;
 464	spi->dev.release = spidev_release;
 465	spi->cs_gpio = -ENOENT;
 466
 467	spin_lock_init(&spi->statistics.lock);
 468
 469	device_initialize(&spi->dev);
 470	return spi;
 471}
 472EXPORT_SYMBOL_GPL(spi_alloc_device);
 473
 474static void spi_dev_set_name(struct spi_device *spi)
 475{
 476	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 477
 478	if (adev) {
 479		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 480		return;
 481	}
 482
 483	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 484		     spi->chip_select);
 485}
 486
 487static int spi_dev_check(struct device *dev, void *data)
 488{
 489	struct spi_device *spi = to_spi_device(dev);
 490	struct spi_device *new_spi = data;
 491
 492	if (spi->controller == new_spi->controller &&
 493	    spi->chip_select == new_spi->chip_select)
 494		return -EBUSY;
 495	return 0;
 496}
 497
 498/**
 499 * spi_add_device - Add spi_device allocated with spi_alloc_device
 500 * @spi: spi_device to register
 501 *
 502 * Companion function to spi_alloc_device.  Devices allocated with
 503 * spi_alloc_device can be added onto the spi bus with this function.
 504 *
 505 * Return: 0 on success; negative errno on failure
 506 */
 507int spi_add_device(struct spi_device *spi)
 508{
 509	static DEFINE_MUTEX(spi_add_lock);
 510	struct spi_controller *ctlr = spi->controller;
 511	struct device *dev = ctlr->dev.parent;
 512	int status;
 513
 514	/* Chipselects are numbered 0..max; validate. */
 515	if (spi->chip_select >= ctlr->num_chipselect) {
 516		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 517			ctlr->num_chipselect);
 518		return -EINVAL;
 519	}
 520
 521	/* Set the bus ID string */
 522	spi_dev_set_name(spi);
 523
 524	/* We need to make sure there's no other device with this
 525	 * chipselect **BEFORE** we call setup(), else we'll trash
 526	 * its configuration.  Lock against concurrent add() calls.
 527	 */
 528	mutex_lock(&spi_add_lock);
 529
 530	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 531	if (status) {
 532		dev_err(dev, "chipselect %d already in use\n",
 533				spi->chip_select);
 534		goto done;
 
 
 
 
 
 
 535	}
 536
 537	if (ctlr->cs_gpios)
 538		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 539
 540	/* Drivers may modify this initial i/o setup, but will
 
 541	 * normally rely on the device being setup.  Devices
 542	 * using SPI_CS_HIGH can't coexist well otherwise...
 543	 */
 544	status = spi_setup(spi);
 545	if (status < 0) {
 546		dev_err(dev, "can't setup %s, status %d\n",
 547				dev_name(&spi->dev), status);
 548		goto done;
 549	}
 550
 551	/* Device may be bound to an active driver when this returns */
 552	status = device_add(&spi->dev);
 553	if (status < 0)
 554		dev_err(dev, "can't add %s, status %d\n",
 555				dev_name(&spi->dev), status);
 556	else
 
 557		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558
 559done:
 560	mutex_unlock(&spi_add_lock);
 
 
 
 
 
 
 
 
 
 
 
 561	return status;
 562}
 563EXPORT_SYMBOL_GPL(spi_add_device);
 564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565/**
 566 * spi_new_device - instantiate one new SPI device
 567 * @ctlr: Controller to which device is connected
 568 * @chip: Describes the SPI device
 569 * Context: can sleep
 570 *
 571 * On typical mainboards, this is purely internal; and it's not needed
 572 * after board init creates the hard-wired devices.  Some development
 573 * platforms may not be able to use spi_register_board_info though, and
 574 * this is exported so that for example a USB or parport based adapter
 575 * driver could add devices (which it would learn about out-of-band).
 576 *
 577 * Return: the new device, or NULL.
 578 */
 579struct spi_device *spi_new_device(struct spi_controller *ctlr,
 580				  struct spi_board_info *chip)
 581{
 582	struct spi_device	*proxy;
 583	int			status;
 584
 585	/* NOTE:  caller did any chip->bus_num checks necessary.
 
 586	 *
 587	 * Also, unless we change the return value convention to use
 588	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 589	 * suggests syslogged diagnostics are best here (ugh).
 590	 */
 591
 592	proxy = spi_alloc_device(ctlr);
 593	if (!proxy)
 594		return NULL;
 595
 596	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 597
 598	proxy->chip_select = chip->chip_select;
 599	proxy->max_speed_hz = chip->max_speed_hz;
 600	proxy->mode = chip->mode;
 601	proxy->irq = chip->irq;
 602	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 603	proxy->dev.platform_data = (void *) chip->platform_data;
 604	proxy->controller_data = chip->controller_data;
 605	proxy->controller_state = NULL;
 606
 607	if (chip->properties) {
 608		status = device_add_properties(&proxy->dev, chip->properties);
 609		if (status) {
 610			dev_err(&ctlr->dev,
 611				"failed to add properties to '%s': %d\n",
 612				chip->modalias, status);
 613			goto err_dev_put;
 614		}
 615	}
 616
 617	status = spi_add_device(proxy);
 618	if (status < 0)
 619		goto err_remove_props;
 620
 621	return proxy;
 622
 623err_remove_props:
 624	if (chip->properties)
 625		device_remove_properties(&proxy->dev);
 626err_dev_put:
 
 627	spi_dev_put(proxy);
 628	return NULL;
 629}
 630EXPORT_SYMBOL_GPL(spi_new_device);
 631
 632/**
 633 * spi_unregister_device - unregister a single SPI device
 634 * @spi: spi_device to unregister
 635 *
 636 * Start making the passed SPI device vanish. Normally this would be handled
 637 * by spi_unregister_controller().
 638 */
 639void spi_unregister_device(struct spi_device *spi)
 640{
 641	if (!spi)
 642		return;
 643
 644	if (spi->dev.of_node) {
 645		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 646		of_node_put(spi->dev.of_node);
 647	}
 648	if (ACPI_COMPANION(&spi->dev))
 649		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 650	device_unregister(&spi->dev);
 
 
 
 651}
 652EXPORT_SYMBOL_GPL(spi_unregister_device);
 653
 654static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 655					      struct spi_board_info *bi)
 656{
 657	struct spi_device *dev;
 658
 659	if (ctlr->bus_num != bi->bus_num)
 660		return;
 661
 662	dev = spi_new_device(ctlr, bi);
 663	if (!dev)
 664		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 665			bi->modalias);
 666}
 667
 668/**
 669 * spi_register_board_info - register SPI devices for a given board
 670 * @info: array of chip descriptors
 671 * @n: how many descriptors are provided
 672 * Context: can sleep
 673 *
 674 * Board-specific early init code calls this (probably during arch_initcall)
 675 * with segments of the SPI device table.  Any device nodes are created later,
 676 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 677 * this table of devices forever, so that reloading a controller driver will
 678 * not make Linux forget about these hard-wired devices.
 679 *
 680 * Other code can also call this, e.g. a particular add-on board might provide
 681 * SPI devices through its expansion connector, so code initializing that board
 682 * would naturally declare its SPI devices.
 683 *
 684 * The board info passed can safely be __initdata ... but be careful of
 685 * any embedded pointers (platform_data, etc), they're copied as-is.
 686 * Device properties are deep-copied though.
 687 *
 688 * Return: zero on success, else a negative error code.
 689 */
 690int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 691{
 692	struct boardinfo *bi;
 693	int i;
 694
 695	if (!n)
 696		return 0;
 697
 698	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 699	if (!bi)
 700		return -ENOMEM;
 701
 702	for (i = 0; i < n; i++, bi++, info++) {
 703		struct spi_controller *ctlr;
 704
 705		memcpy(&bi->board_info, info, sizeof(*info));
 706		if (info->properties) {
 707			bi->board_info.properties =
 708					property_entries_dup(info->properties);
 709			if (IS_ERR(bi->board_info.properties))
 710				return PTR_ERR(bi->board_info.properties);
 711		}
 712
 713		mutex_lock(&board_lock);
 714		list_add_tail(&bi->list, &board_list);
 715		list_for_each_entry(ctlr, &spi_controller_list, list)
 716			spi_match_controller_to_boardinfo(ctlr,
 717							  &bi->board_info);
 718		mutex_unlock(&board_lock);
 719	}
 720
 721	return 0;
 722}
 723
 724/*-------------------------------------------------------------------------*/
 725
 726static void spi_set_cs(struct spi_device *spi, bool enable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728	if (spi->mode & SPI_CS_HIGH)
 729		enable = !enable;
 730
 731	if (gpio_is_valid(spi->cs_gpio)) {
 732		gpio_set_value(spi->cs_gpio, !enable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733		/* Some SPI masters need both GPIO CS & slave_select */
 734		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 735		    spi->controller->set_cs)
 736			spi->controller->set_cs(spi, !enable);
 737	} else if (spi->controller->set_cs) {
 738		spi->controller->set_cs(spi, !enable);
 739	}
 
 
 
 
 
 
 
 740}
 741
 742#ifdef CONFIG_HAS_DMA
 743static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 744		       struct sg_table *sgt, void *buf, size_t len,
 745		       enum dma_data_direction dir)
 746{
 747	const bool vmalloced_buf = is_vmalloc_addr(buf);
 748	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 749#ifdef CONFIG_HIGHMEM
 750	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 751				(unsigned long)buf < (PKMAP_BASE +
 752					(LAST_PKMAP * PAGE_SIZE)));
 753#else
 754	const bool kmap_buf = false;
 755#endif
 756	int desc_len;
 757	int sgs;
 758	struct page *vm_page;
 759	struct scatterlist *sg;
 760	void *sg_buf;
 761	size_t min;
 762	int i, ret;
 763
 764	if (vmalloced_buf || kmap_buf) {
 765		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 766		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 767	} else if (virt_addr_valid(buf)) {
 768		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 769		sgs = DIV_ROUND_UP(len, desc_len);
 770	} else {
 771		return -EINVAL;
 772	}
 773
 774	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 775	if (ret != 0)
 776		return ret;
 777
 778	sg = &sgt->sgl[0];
 779	for (i = 0; i < sgs; i++) {
 780
 781		if (vmalloced_buf || kmap_buf) {
 782			/*
 783			 * Next scatterlist entry size is the minimum between
 784			 * the desc_len and the remaining buffer length that
 785			 * fits in a page.
 786			 */
 787			min = min_t(size_t, desc_len,
 788				    min_t(size_t, len,
 789					  PAGE_SIZE - offset_in_page(buf)));
 790			if (vmalloced_buf)
 791				vm_page = vmalloc_to_page(buf);
 792			else
 793				vm_page = kmap_to_page(buf);
 794			if (!vm_page) {
 795				sg_free_table(sgt);
 796				return -ENOMEM;
 797			}
 798			sg_set_page(sg, vm_page,
 799				    min, offset_in_page(buf));
 800		} else {
 801			min = min_t(size_t, len, desc_len);
 802			sg_buf = buf;
 803			sg_set_buf(sg, sg_buf, min);
 804		}
 805
 806		buf += min;
 807		len -= min;
 808		sg = sg_next(sg);
 809	}
 810
 811	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 812	if (!ret)
 813		ret = -ENOMEM;
 814	if (ret < 0) {
 815		sg_free_table(sgt);
 816		return ret;
 817	}
 818
 819	sgt->nents = ret;
 
 820
 821	return 0;
 
 
 
 
 822}
 823
 824static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 825			  struct sg_table *sgt, enum dma_data_direction dir)
 
 
 826{
 827	if (sgt->orig_nents) {
 828		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 829		sg_free_table(sgt);
 
 
 830	}
 831}
 832
 
 
 
 
 
 
 833static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 834{
 835	struct device *tx_dev, *rx_dev;
 836	struct spi_transfer *xfer;
 837	int ret;
 838
 839	if (!ctlr->can_dma)
 840		return 0;
 841
 842	if (ctlr->dma_tx)
 843		tx_dev = ctlr->dma_tx->device->dev;
 
 
 844	else
 845		tx_dev = ctlr->dev.parent;
 846
 847	if (ctlr->dma_rx)
 848		rx_dev = ctlr->dma_rx->device->dev;
 
 
 849	else
 850		rx_dev = ctlr->dev.parent;
 851
 852	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 
 
 
 853		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 854			continue;
 855
 856		if (xfer->tx_buf != NULL) {
 857			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 858					  (void *)xfer->tx_buf, xfer->len,
 859					  DMA_TO_DEVICE);
 
 860			if (ret != 0)
 861				return ret;
 862		}
 863
 864		if (xfer->rx_buf != NULL) {
 865			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 866					  xfer->rx_buf, xfer->len,
 867					  DMA_FROM_DEVICE);
 868			if (ret != 0) {
 869				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 870					      DMA_TO_DEVICE);
 
 
 871				return ret;
 872			}
 873		}
 874	}
 875
 
 
 876	ctlr->cur_msg_mapped = true;
 877
 878	return 0;
 879}
 880
 881static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 882{
 
 
 883	struct spi_transfer *xfer;
 884	struct device *tx_dev, *rx_dev;
 885
 886	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 887		return 0;
 888
 889	if (ctlr->dma_tx)
 890		tx_dev = ctlr->dma_tx->device->dev;
 891	else
 892		tx_dev = ctlr->dev.parent;
 893
 894	if (ctlr->dma_rx)
 895		rx_dev = ctlr->dma_rx->device->dev;
 896	else
 897		rx_dev = ctlr->dev.parent;
 898
 899	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 900		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 901			continue;
 902
 903		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 904		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 
 
 905	}
 906
 
 
 907	return 0;
 908}
 909#else /* !CONFIG_HAS_DMA */
 910static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 911			      struct sg_table *sgt, void *buf, size_t len,
 912			      enum dma_data_direction dir)
 913{
 914	return -EINVAL;
 
 
 
 
 
 
 
 
 
 915}
 916
 917static inline void spi_unmap_buf(struct spi_controller *ctlr,
 918				 struct device *dev, struct sg_table *sgt,
 919				 enum dma_data_direction dir)
 920{
 
 
 
 
 
 
 
 
 
 
 921}
 922
 923static inline int __spi_map_msg(struct spi_controller *ctlr,
 924				struct spi_message *msg)
 925{
 926	return 0;
 927}
 928
 929static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 930				  struct spi_message *msg)
 931{
 932	return 0;
 933}
 
 
 
 
 
 
 
 
 
 
 934#endif /* !CONFIG_HAS_DMA */
 935
 936static inline int spi_unmap_msg(struct spi_controller *ctlr,
 937				struct spi_message *msg)
 938{
 939	struct spi_transfer *xfer;
 940
 941	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 942		/*
 943		 * Restore the original value of tx_buf or rx_buf if they are
 944		 * NULL.
 945		 */
 946		if (xfer->tx_buf == ctlr->dummy_tx)
 947			xfer->tx_buf = NULL;
 948		if (xfer->rx_buf == ctlr->dummy_rx)
 949			xfer->rx_buf = NULL;
 950	}
 951
 952	return __spi_unmap_msg(ctlr, msg);
 953}
 954
 955static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 956{
 957	struct spi_transfer *xfer;
 958	void *tmp;
 959	unsigned int max_tx, max_rx;
 960
 961	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
 
 962		max_tx = 0;
 963		max_rx = 0;
 964
 965		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 966			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
 967			    !xfer->tx_buf)
 968				max_tx = max(xfer->len, max_tx);
 969			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
 970			    !xfer->rx_buf)
 971				max_rx = max(xfer->len, max_rx);
 972		}
 973
 974		if (max_tx) {
 975			tmp = krealloc(ctlr->dummy_tx, max_tx,
 976				       GFP_KERNEL | GFP_DMA);
 977			if (!tmp)
 978				return -ENOMEM;
 979			ctlr->dummy_tx = tmp;
 980			memset(tmp, 0, max_tx);
 981		}
 982
 983		if (max_rx) {
 984			tmp = krealloc(ctlr->dummy_rx, max_rx,
 985				       GFP_KERNEL | GFP_DMA);
 986			if (!tmp)
 987				return -ENOMEM;
 988			ctlr->dummy_rx = tmp;
 989		}
 990
 991		if (max_tx || max_rx) {
 992			list_for_each_entry(xfer, &msg->transfers,
 993					    transfer_list) {
 
 
 994				if (!xfer->tx_buf)
 995					xfer->tx_buf = ctlr->dummy_tx;
 996				if (!xfer->rx_buf)
 997					xfer->rx_buf = ctlr->dummy_rx;
 998			}
 999		}
1000	}
1001
1002	return __spi_map_msg(ctlr, msg);
1003}
1004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005/*
1006 * spi_transfer_one_message - Default implementation of transfer_one_message()
1007 *
1008 * This is a standard implementation of transfer_one_message() for
1009 * drivers which implement a transfer_one() operation.  It provides
1010 * standard handling of delays and chip select management.
1011 */
1012static int spi_transfer_one_message(struct spi_controller *ctlr,
1013				    struct spi_message *msg)
1014{
1015	struct spi_transfer *xfer;
1016	bool keep_cs = false;
1017	int ret = 0;
1018	unsigned long long ms = 1;
1019	struct spi_statistics *statm = &ctlr->statistics;
1020	struct spi_statistics *stats = &msg->spi->statistics;
1021
1022	spi_set_cs(msg->spi, true);
 
1023
1024	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1025	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1026
1027	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1028		trace_spi_transfer_start(msg, xfer);
1029
1030		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1031		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1032
1033		if (xfer->tx_buf || xfer->rx_buf) {
 
 
 
 
 
1034			reinit_completion(&ctlr->xfer_completion);
1035
 
 
1036			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1037			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
1038				SPI_STATISTICS_INCREMENT_FIELD(statm,
1039							       errors);
1040				SPI_STATISTICS_INCREMENT_FIELD(stats,
1041							       errors);
1042				dev_err(&msg->spi->dev,
1043					"SPI transfer failed: %d\n", ret);
1044				goto out;
1045			}
1046
1047			if (ret > 0) {
1048				ret = 0;
1049				ms = 8LL * 1000LL * xfer->len;
1050				do_div(ms, xfer->speed_hz);
1051				ms += ms + 200; /* some tolerance */
1052
1053				if (ms > UINT_MAX)
1054					ms = UINT_MAX;
1055
1056				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1057								 msecs_to_jiffies(ms));
1058			}
1059
1060			if (ms == 0) {
1061				SPI_STATISTICS_INCREMENT_FIELD(statm,
1062							       timedout);
1063				SPI_STATISTICS_INCREMENT_FIELD(stats,
1064							       timedout);
1065				dev_err(&msg->spi->dev,
1066					"SPI transfer timed out\n");
1067				msg->status = -ETIMEDOUT;
1068			}
1069		} else {
1070			if (xfer->len)
1071				dev_err(&msg->spi->dev,
1072					"Bufferless transfer has length %u\n",
1073					xfer->len);
1074		}
1075
 
 
 
 
 
1076		trace_spi_transfer_stop(msg, xfer);
1077
1078		if (msg->status != -EINPROGRESS)
1079			goto out;
1080
1081		if (xfer->delay_usecs) {
1082			u16 us = xfer->delay_usecs;
1083
1084			if (us <= 10)
1085				udelay(us);
1086			else
1087				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1088		}
1089
1090		if (xfer->cs_change) {
1091			if (list_is_last(&xfer->transfer_list,
1092					 &msg->transfers)) {
1093				keep_cs = true;
1094			} else {
1095				spi_set_cs(msg->spi, false);
1096				udelay(10);
1097				spi_set_cs(msg->spi, true);
 
 
1098			}
 
 
 
1099		}
1100
1101		msg->actual_length += xfer->len;
1102	}
1103
1104out:
1105	if (ret != 0 || !keep_cs)
1106		spi_set_cs(msg->spi, false);
1107
1108	if (msg->status == -EINPROGRESS)
1109		msg->status = ret;
1110
1111	if (msg->status && ctlr->handle_err)
1112		ctlr->handle_err(ctlr, msg);
1113
1114	spi_res_release(ctlr, msg);
1115
1116	spi_finalize_current_message(ctlr);
1117
1118	return ret;
1119}
1120
1121/**
1122 * spi_finalize_current_transfer - report completion of a transfer
1123 * @ctlr: the controller reporting completion
1124 *
1125 * Called by SPI drivers using the core transfer_one_message()
1126 * implementation to notify it that the current interrupt driven
1127 * transfer has finished and the next one may be scheduled.
1128 */
1129void spi_finalize_current_transfer(struct spi_controller *ctlr)
1130{
1131	complete(&ctlr->xfer_completion);
1132}
1133EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135/**
1136 * __spi_pump_messages - function which processes spi message queue
1137 * @ctlr: controller to process queue for
1138 * @in_kthread: true if we are in the context of the message pump thread
1139 *
1140 * This function checks if there is any spi message in the queue that
1141 * needs processing and if so call out to the driver to initialize hardware
1142 * and transfer each message.
1143 *
1144 * Note that it is called both from the kthread itself and also from
1145 * inside spi_sync(); the queue extraction handling at the top of the
1146 * function should deal with this safely.
1147 */
1148static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1149{
 
 
1150	unsigned long flags;
1151	bool was_busy = false;
1152	int ret;
1153
 
 
 
1154	/* Lock queue */
1155	spin_lock_irqsave(&ctlr->queue_lock, flags);
1156
1157	/* Make sure we are not already running a message */
1158	if (ctlr->cur_msg) {
1159		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1160		return;
1161	}
1162
1163	/* If another context is idling the device then defer */
1164	if (ctlr->idling) {
1165		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1166		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1167		return;
1168	}
1169
1170	/* Check if the queue is idle */
1171	if (list_empty(&ctlr->queue) || !ctlr->running) {
1172		if (!ctlr->busy) {
1173			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1174			return;
1175		}
1176
1177		/* Only do teardown in the thread */
1178		if (!in_kthread) {
1179			kthread_queue_work(&ctlr->kworker,
1180					   &ctlr->pump_messages);
1181			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182			return;
 
 
 
 
 
 
 
1183		}
1184
1185		ctlr->busy = false;
1186		ctlr->idling = true;
1187		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1188
1189		kfree(ctlr->dummy_rx);
1190		ctlr->dummy_rx = NULL;
1191		kfree(ctlr->dummy_tx);
1192		ctlr->dummy_tx = NULL;
1193		if (ctlr->unprepare_transfer_hardware &&
1194		    ctlr->unprepare_transfer_hardware(ctlr))
1195			dev_err(&ctlr->dev,
1196				"failed to unprepare transfer hardware\n");
1197		if (ctlr->auto_runtime_pm) {
1198			pm_runtime_mark_last_busy(ctlr->dev.parent);
1199			pm_runtime_put_autosuspend(ctlr->dev.parent);
1200		}
1201		trace_spi_controller_idle(ctlr);
1202
1203		spin_lock_irqsave(&ctlr->queue_lock, flags);
1204		ctlr->idling = false;
1205		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1206		return;
1207	}
1208
1209	/* Extract head of queue */
1210	ctlr->cur_msg =
1211		list_first_entry(&ctlr->queue, struct spi_message, queue);
1212
1213	list_del_init(&ctlr->cur_msg->queue);
1214	if (ctlr->busy)
1215		was_busy = true;
1216	else
1217		ctlr->busy = true;
1218	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1219
1220	mutex_lock(&ctlr->io_mutex);
 
1221
1222	if (!was_busy && ctlr->auto_runtime_pm) {
1223		ret = pm_runtime_get_sync(ctlr->dev.parent);
1224		if (ret < 0) {
1225			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1226				ret);
1227			mutex_unlock(&ctlr->io_mutex);
1228			return;
1229		}
1230	}
1231
1232	if (!was_busy)
1233		trace_spi_controller_busy(ctlr);
1234
1235	if (!was_busy && ctlr->prepare_transfer_hardware) {
1236		ret = ctlr->prepare_transfer_hardware(ctlr);
1237		if (ret) {
1238			dev_err(&ctlr->dev,
1239				"failed to prepare transfer hardware\n");
1240
1241			if (ctlr->auto_runtime_pm)
1242				pm_runtime_put(ctlr->dev.parent);
1243			mutex_unlock(&ctlr->io_mutex);
1244			return;
1245		}
1246	}
1247
1248	trace_spi_message_start(ctlr->cur_msg);
1249
1250	if (ctlr->prepare_message) {
1251		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1252		if (ret) {
1253			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1254				ret);
1255			ctlr->cur_msg->status = ret;
1256			spi_finalize_current_message(ctlr);
1257			goto out;
1258		}
1259		ctlr->cur_msg_prepared = true;
1260	}
1261
1262	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1263	if (ret) {
1264		ctlr->cur_msg->status = ret;
1265		spi_finalize_current_message(ctlr);
1266		goto out;
1267	}
1268
1269	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1270	if (ret) {
1271		dev_err(&ctlr->dev,
1272			"failed to transfer one message from queue\n");
1273		goto out;
1274	}
1275
1276out:
1277	mutex_unlock(&ctlr->io_mutex);
1278
1279	/* Prod the scheduler in case transfer_one() was busy waiting */
1280	if (!ret)
1281		cond_resched();
 
 
 
 
 
1282}
1283
1284/**
1285 * spi_pump_messages - kthread work function which processes spi message queue
1286 * @work: pointer to kthread work struct contained in the controller struct
1287 */
1288static void spi_pump_messages(struct kthread_work *work)
1289{
1290	struct spi_controller *ctlr =
1291		container_of(work, struct spi_controller, pump_messages);
1292
1293	__spi_pump_messages(ctlr, true);
1294}
1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296static int spi_init_queue(struct spi_controller *ctlr)
1297{
1298	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1299
1300	ctlr->running = false;
1301	ctlr->busy = false;
 
1302
1303	kthread_init_worker(&ctlr->kworker);
1304	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1305					 "%s", dev_name(&ctlr->dev));
1306	if (IS_ERR(ctlr->kworker_task)) {
1307		dev_err(&ctlr->dev, "failed to create message pump task\n");
1308		return PTR_ERR(ctlr->kworker_task);
1309	}
 
1310	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1311
1312	/*
1313	 * Controller config will indicate if this controller should run the
1314	 * message pump with high (realtime) priority to reduce the transfer
1315	 * latency on the bus by minimising the delay between a transfer
1316	 * request and the scheduling of the message pump thread. Without this
1317	 * setting the message pump thread will remain at default priority.
1318	 */
1319	if (ctlr->rt) {
1320		dev_info(&ctlr->dev,
1321			"will run message pump with realtime priority\n");
1322		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1323	}
1324
1325	return 0;
1326}
1327
1328/**
1329 * spi_get_next_queued_message() - called by driver to check for queued
1330 * messages
1331 * @ctlr: the controller to check for queued messages
1332 *
1333 * If there are more messages in the queue, the next message is returned from
1334 * this call.
1335 *
1336 * Return: the next message in the queue, else NULL if the queue is empty.
1337 */
1338struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1339{
1340	struct spi_message *next;
1341	unsigned long flags;
1342
1343	/* get a pointer to the next message, if any */
1344	spin_lock_irqsave(&ctlr->queue_lock, flags);
1345	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1346					queue);
1347	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1348
1349	return next;
1350}
1351EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1352
1353/**
1354 * spi_finalize_current_message() - the current message is complete
1355 * @ctlr: the controller to return the message to
1356 *
1357 * Called by the driver to notify the core that the message in the front of the
1358 * queue is complete and can be removed from the queue.
1359 */
1360void spi_finalize_current_message(struct spi_controller *ctlr)
1361{
 
1362	struct spi_message *mesg;
1363	unsigned long flags;
1364	int ret;
1365
1366	spin_lock_irqsave(&ctlr->queue_lock, flags);
1367	mesg = ctlr->cur_msg;
1368	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
1369
1370	spi_unmap_msg(ctlr, mesg);
1371
1372	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
 
 
 
 
 
 
 
 
 
1373		ret = ctlr->unprepare_message(ctlr, mesg);
1374		if (ret) {
1375			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1376				ret);
1377		}
1378	}
1379
1380	spin_lock_irqsave(&ctlr->queue_lock, flags);
1381	ctlr->cur_msg = NULL;
1382	ctlr->cur_msg_prepared = false;
1383	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1384	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
 
1385
1386	trace_spi_message_done(mesg);
1387
1388	mesg->state = NULL;
1389	if (mesg->complete)
1390		mesg->complete(mesg->context);
1391}
1392EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1393
1394static int spi_start_queue(struct spi_controller *ctlr)
1395{
1396	unsigned long flags;
1397
1398	spin_lock_irqsave(&ctlr->queue_lock, flags);
1399
1400	if (ctlr->running || ctlr->busy) {
1401		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402		return -EBUSY;
1403	}
1404
1405	ctlr->running = true;
1406	ctlr->cur_msg = NULL;
1407	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1408
1409	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1410
1411	return 0;
1412}
1413
1414static int spi_stop_queue(struct spi_controller *ctlr)
1415{
1416	unsigned long flags;
1417	unsigned limit = 500;
1418	int ret = 0;
1419
1420	spin_lock_irqsave(&ctlr->queue_lock, flags);
1421
1422	/*
1423	 * This is a bit lame, but is optimized for the common execution path.
1424	 * A wait_queue on the ctlr->busy could be used, but then the common
1425	 * execution path (pump_messages) would be required to call wake_up or
1426	 * friends on every SPI message. Do this instead.
1427	 */
1428	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1429		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1430		usleep_range(10000, 11000);
1431		spin_lock_irqsave(&ctlr->queue_lock, flags);
1432	}
1433
1434	if (!list_empty(&ctlr->queue) || ctlr->busy)
1435		ret = -EBUSY;
1436	else
1437		ctlr->running = false;
1438
1439	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1440
1441	if (ret) {
1442		dev_warn(&ctlr->dev, "could not stop message queue\n");
1443		return ret;
1444	}
1445	return ret;
1446}
1447
1448static int spi_destroy_queue(struct spi_controller *ctlr)
1449{
1450	int ret;
1451
1452	ret = spi_stop_queue(ctlr);
1453
1454	/*
1455	 * kthread_flush_worker will block until all work is done.
1456	 * If the reason that stop_queue timed out is that the work will never
1457	 * finish, then it does no good to call flush/stop thread, so
1458	 * return anyway.
1459	 */
1460	if (ret) {
1461		dev_err(&ctlr->dev, "problem destroying queue\n");
1462		return ret;
1463	}
1464
1465	kthread_flush_worker(&ctlr->kworker);
1466	kthread_stop(ctlr->kworker_task);
1467
1468	return 0;
1469}
1470
1471static int __spi_queued_transfer(struct spi_device *spi,
1472				 struct spi_message *msg,
1473				 bool need_pump)
1474{
1475	struct spi_controller *ctlr = spi->controller;
1476	unsigned long flags;
1477
1478	spin_lock_irqsave(&ctlr->queue_lock, flags);
1479
1480	if (!ctlr->running) {
1481		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1482		return -ESHUTDOWN;
1483	}
1484	msg->actual_length = 0;
1485	msg->status = -EINPROGRESS;
1486
1487	list_add_tail(&msg->queue, &ctlr->queue);
 
1488	if (!ctlr->busy && need_pump)
1489		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1490
1491	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492	return 0;
1493}
1494
1495/**
1496 * spi_queued_transfer - transfer function for queued transfers
1497 * @spi: spi device which is requesting transfer
1498 * @msg: spi message which is to handled is queued to driver queue
1499 *
1500 * Return: zero on success, else a negative error code.
1501 */
1502static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1503{
1504	return __spi_queued_transfer(spi, msg, true);
1505}
1506
1507static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1508{
1509	int ret;
1510
1511	ctlr->transfer = spi_queued_transfer;
1512	if (!ctlr->transfer_one_message)
1513		ctlr->transfer_one_message = spi_transfer_one_message;
1514
1515	/* Initialize and start queue */
1516	ret = spi_init_queue(ctlr);
1517	if (ret) {
1518		dev_err(&ctlr->dev, "problem initializing queue\n");
1519		goto err_init_queue;
1520	}
1521	ctlr->queued = true;
1522	ret = spi_start_queue(ctlr);
1523	if (ret) {
1524		dev_err(&ctlr->dev, "problem starting queue\n");
1525		goto err_start_queue;
1526	}
1527
1528	return 0;
1529
1530err_start_queue:
1531	spi_destroy_queue(ctlr);
1532err_init_queue:
1533	return ret;
1534}
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536/*-------------------------------------------------------------------------*/
1537
1538#if defined(CONFIG_OF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1540			   struct device_node *nc)
1541{
1542	u32 value;
1543	int rc;
1544
1545	/* Mode (clock phase/polarity/etc.) */
1546	if (of_property_read_bool(nc, "spi-cpha"))
1547		spi->mode |= SPI_CPHA;
1548	if (of_property_read_bool(nc, "spi-cpol"))
1549		spi->mode |= SPI_CPOL;
1550	if (of_property_read_bool(nc, "spi-cs-high"))
1551		spi->mode |= SPI_CS_HIGH;
1552	if (of_property_read_bool(nc, "spi-3wire"))
1553		spi->mode |= SPI_3WIRE;
1554	if (of_property_read_bool(nc, "spi-lsb-first"))
1555		spi->mode |= SPI_LSB_FIRST;
 
 
1556
1557	/* Device DUAL/QUAD mode */
1558	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1559		switch (value) {
 
 
 
1560		case 1:
1561			break;
1562		case 2:
1563			spi->mode |= SPI_TX_DUAL;
1564			break;
1565		case 4:
1566			spi->mode |= SPI_TX_QUAD;
1567			break;
 
 
 
1568		default:
1569			dev_warn(&ctlr->dev,
1570				"spi-tx-bus-width %d not supported\n",
1571				value);
1572			break;
1573		}
1574	}
1575
1576	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1577		switch (value) {
 
 
 
1578		case 1:
1579			break;
1580		case 2:
1581			spi->mode |= SPI_RX_DUAL;
1582			break;
1583		case 4:
1584			spi->mode |= SPI_RX_QUAD;
1585			break;
 
 
 
1586		default:
1587			dev_warn(&ctlr->dev,
1588				"spi-rx-bus-width %d not supported\n",
1589				value);
1590			break;
1591		}
1592	}
1593
1594	if (spi_controller_is_slave(ctlr)) {
1595		if (strcmp(nc->name, "slave")) {
1596			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1597				nc);
1598			return -EINVAL;
1599		}
1600		return 0;
1601	}
1602
1603	/* Device address */
1604	rc = of_property_read_u32(nc, "reg", &value);
1605	if (rc) {
1606		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1607			nc, rc);
1608		return rc;
1609	}
1610	spi->chip_select = value;
1611
1612	/* Device speed */
1613	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1614	if (rc) {
1615		dev_err(&ctlr->dev,
1616			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1617		return rc;
1618	}
1619	spi->max_speed_hz = value;
1620
1621	return 0;
1622}
1623
1624static struct spi_device *
1625of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1626{
1627	struct spi_device *spi;
1628	int rc;
1629
1630	/* Alloc an spi_device */
1631	spi = spi_alloc_device(ctlr);
1632	if (!spi) {
1633		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1634		rc = -ENOMEM;
1635		goto err_out;
1636	}
1637
1638	/* Select device driver */
1639	rc = of_modalias_node(nc, spi->modalias,
1640				sizeof(spi->modalias));
1641	if (rc < 0) {
1642		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1643		goto err_out;
1644	}
1645
1646	rc = of_spi_parse_dt(ctlr, spi, nc);
1647	if (rc)
1648		goto err_out;
1649
1650	/* Store a pointer to the node in the device structure */
1651	of_node_get(nc);
1652	spi->dev.of_node = nc;
 
1653
1654	/* Register the new device */
1655	rc = spi_add_device(spi);
1656	if (rc) {
1657		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1658		goto err_of_node_put;
1659	}
1660
1661	return spi;
1662
1663err_of_node_put:
1664	of_node_put(nc);
1665err_out:
1666	spi_dev_put(spi);
1667	return ERR_PTR(rc);
1668}
1669
1670/**
1671 * of_register_spi_devices() - Register child devices onto the SPI bus
1672 * @ctlr:	Pointer to spi_controller device
1673 *
1674 * Registers an spi_device for each child node of controller node which
1675 * represents a valid SPI slave.
1676 */
1677static void of_register_spi_devices(struct spi_controller *ctlr)
1678{
1679	struct spi_device *spi;
1680	struct device_node *nc;
1681
1682	if (!ctlr->dev.of_node)
1683		return;
1684
1685	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1686		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1687			continue;
1688		spi = of_register_spi_device(ctlr, nc);
1689		if (IS_ERR(spi)) {
1690			dev_warn(&ctlr->dev,
1691				 "Failed to create SPI device for %pOF\n", nc);
1692			of_node_clear_flag(nc, OF_POPULATED);
1693		}
1694	}
1695}
1696#else
1697static void of_register_spi_devices(struct spi_controller *ctlr) { }
1698#endif
1699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700#ifdef CONFIG_ACPI
1701static void acpi_spi_parse_apple_properties(struct spi_device *spi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702{
1703	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1704	const union acpi_object *obj;
1705
1706	if (!x86_apple_machine)
1707		return;
1708
1709	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1710	    && obj->buffer.length >= 4)
1711		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1712
1713	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1714	    && obj->buffer.length == 8)
1715		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1716
1717	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1718	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1719		spi->mode |= SPI_LSB_FIRST;
1720
1721	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1722	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1723		spi->mode |= SPI_CPOL;
1724
1725	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1726	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1727		spi->mode |= SPI_CPHA;
1728}
1729
 
 
1730static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1731{
1732	struct spi_device *spi = data;
1733	struct spi_controller *ctlr = spi->controller;
1734
1735	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1736		struct acpi_resource_spi_serialbus *sb;
 
 
1737
1738		sb = &ares->data.spi_serial_bus;
1739		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1740			/*
1741			 * ACPI DeviceSelection numbering is handled by the
1742			 * host controller driver in Windows and can vary
1743			 * from driver to driver. In Linux we always expect
1744			 * 0 .. max - 1 so we need to ask the driver to
1745			 * translate between the two schemes.
1746			 */
1747			if (ctlr->fw_translate_cs) {
1748				int cs = ctlr->fw_translate_cs(ctlr,
1749						sb->device_selection);
1750				if (cs < 0)
1751					return cs;
1752				spi->chip_select = cs;
1753			} else {
1754				spi->chip_select = sb->device_selection;
1755			}
1756
1757			spi->max_speed_hz = sb->connection_speed;
 
1758
1759			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1760				spi->mode |= SPI_CPHA;
1761			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1762				spi->mode |= SPI_CPOL;
1763			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1764				spi->mode |= SPI_CS_HIGH;
1765		}
1766	} else if (spi->irq < 0) {
1767		struct resource r;
1768
1769		if (acpi_dev_resource_interrupt(ares, 0, &r))
1770			spi->irq = r.start;
1771	}
1772
1773	/* Always tell the ACPI core to skip this resource */
1774	return 1;
1775}
1776
1777static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1778					    struct acpi_device *adev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779{
 
1780	struct list_head resource_list;
 
1781	struct spi_device *spi;
1782	int ret;
1783
1784	if (acpi_bus_get_status(adev) || !adev->status.present ||
1785	    acpi_device_enumerated(adev))
1786		return AE_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787
1788	spi = spi_alloc_device(ctlr);
1789	if (!spi) {
1790		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1791			dev_name(&adev->dev));
1792		return AE_NO_MEMORY;
1793	}
1794
1795	ACPI_COMPANION_SET(&spi->dev, adev);
1796	spi->irq = -1;
 
 
 
 
1797
1798	INIT_LIST_HEAD(&resource_list);
1799	ret = acpi_dev_get_resources(adev, &resource_list,
1800				     acpi_spi_add_resource, spi);
1801	acpi_dev_free_resource_list(&resource_list);
1802
1803	acpi_spi_parse_apple_properties(spi);
 
 
 
1804
1805	if (ret < 0 || !spi->max_speed_hz) {
1806		spi_dev_put(spi);
1807		return AE_OK;
 
 
 
 
 
 
 
1808	}
1809
1810	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1811			  sizeof(spi->modalias));
1812
1813	if (spi->irq < 0)
1814		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1815
1816	acpi_device_set_enumerated(adev);
1817
1818	adev->power.flags.ignore_parent = true;
1819	if (spi_add_device(spi)) {
1820		adev->power.flags.ignore_parent = false;
1821		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1822			dev_name(&adev->dev));
1823		spi_dev_put(spi);
1824	}
1825
1826	return AE_OK;
1827}
1828
1829static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1830				       void *data, void **return_value)
1831{
 
1832	struct spi_controller *ctlr = data;
1833	struct acpi_device *adev;
1834
1835	if (acpi_bus_get_device(handle, &adev))
1836		return AE_OK;
1837
1838	return acpi_register_spi_device(ctlr, adev);
1839}
1840
 
 
1841static void acpi_register_spi_devices(struct spi_controller *ctlr)
1842{
1843	acpi_status status;
1844	acpi_handle handle;
1845
1846	handle = ACPI_HANDLE(ctlr->dev.parent);
1847	if (!handle)
1848		return;
1849
1850	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
 
1851				     acpi_spi_add_device, NULL, ctlr, NULL);
1852	if (ACPI_FAILURE(status))
1853		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1854}
1855#else
1856static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1857#endif /* CONFIG_ACPI */
1858
1859static void spi_controller_release(struct device *dev)
1860{
1861	struct spi_controller *ctlr;
1862
1863	ctlr = container_of(dev, struct spi_controller, dev);
1864	kfree(ctlr);
1865}
1866
1867static struct class spi_master_class = {
1868	.name		= "spi_master",
1869	.owner		= THIS_MODULE,
1870	.dev_release	= spi_controller_release,
1871	.dev_groups	= spi_master_groups,
1872};
1873
1874#ifdef CONFIG_SPI_SLAVE
1875/**
1876 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1877 *		     controller
1878 * @spi: device used for the current transfer
1879 */
1880int spi_slave_abort(struct spi_device *spi)
1881{
1882	struct spi_controller *ctlr = spi->controller;
1883
1884	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1885		return ctlr->slave_abort(ctlr);
1886
1887	return -ENOTSUPP;
1888}
1889EXPORT_SYMBOL_GPL(spi_slave_abort);
1890
1891static int match_true(struct device *dev, void *data)
1892{
1893	return 1;
 
 
 
 
 
1894}
 
1895
1896static ssize_t spi_slave_show(struct device *dev,
1897			      struct device_attribute *attr, char *buf)
1898{
1899	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1900						   dev);
1901	struct device *child;
1902
1903	child = device_find_child(&ctlr->dev, NULL, match_true);
1904	return sprintf(buf, "%s\n",
1905		       child ? to_spi_device(child)->modalias : NULL);
1906}
1907
1908static ssize_t spi_slave_store(struct device *dev,
1909			       struct device_attribute *attr, const char *buf,
1910			       size_t count)
1911{
1912	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1913						   dev);
1914	struct spi_device *spi;
1915	struct device *child;
1916	char name[32];
1917	int rc;
1918
1919	rc = sscanf(buf, "%31s", name);
1920	if (rc != 1 || !name[0])
1921		return -EINVAL;
1922
1923	child = device_find_child(&ctlr->dev, NULL, match_true);
1924	if (child) {
1925		/* Remove registered slave */
1926		device_unregister(child);
1927		put_device(child);
1928	}
1929
1930	if (strcmp(name, "(null)")) {
1931		/* Register new slave */
1932		spi = spi_alloc_device(ctlr);
1933		if (!spi)
1934			return -ENOMEM;
1935
1936		strlcpy(spi->modalias, name, sizeof(spi->modalias));
1937
1938		rc = spi_add_device(spi);
1939		if (rc) {
1940			spi_dev_put(spi);
1941			return rc;
1942		}
1943	}
1944
1945	return count;
1946}
1947
1948static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1949
1950static struct attribute *spi_slave_attrs[] = {
1951	&dev_attr_slave.attr,
1952	NULL,
1953};
1954
1955static const struct attribute_group spi_slave_group = {
1956	.attrs = spi_slave_attrs,
1957};
1958
1959static const struct attribute_group *spi_slave_groups[] = {
1960	&spi_controller_statistics_group,
1961	&spi_slave_group,
1962	NULL,
1963};
1964
1965static struct class spi_slave_class = {
1966	.name		= "spi_slave",
1967	.owner		= THIS_MODULE,
1968	.dev_release	= spi_controller_release,
1969	.dev_groups	= spi_slave_groups,
1970};
1971#else
1972extern struct class spi_slave_class;	/* dummy */
1973#endif
1974
1975/**
1976 * __spi_alloc_controller - allocate an SPI master or slave controller
1977 * @dev: the controller, possibly using the platform_bus
1978 * @size: how much zeroed driver-private data to allocate; the pointer to this
1979 *	memory is in the driver_data field of the returned device,
1980 *	accessible with spi_controller_get_devdata().
 
 
1981 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1982 *	slave (true) controller
1983 * Context: can sleep
1984 *
1985 * This call is used only by SPI controller drivers, which are the
1986 * only ones directly touching chip registers.  It's how they allocate
1987 * an spi_controller structure, prior to calling spi_register_controller().
1988 *
1989 * This must be called from context that can sleep.
1990 *
1991 * The caller is responsible for assigning the bus number and initializing the
1992 * controller's methods before calling spi_register_controller(); and (after
1993 * errors adding the device) calling spi_controller_put() to prevent a memory
1994 * leak.
1995 *
1996 * Return: the SPI controller structure on success, else NULL.
1997 */
1998struct spi_controller *__spi_alloc_controller(struct device *dev,
1999					      unsigned int size, bool slave)
2000{
2001	struct spi_controller	*ctlr;
 
2002
2003	if (!dev)
2004		return NULL;
2005
2006	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2007	if (!ctlr)
2008		return NULL;
2009
2010	device_initialize(&ctlr->dev);
 
 
 
 
 
 
2011	ctlr->bus_num = -1;
2012	ctlr->num_chipselect = 1;
2013	ctlr->slave = slave;
2014	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2015		ctlr->dev.class = &spi_slave_class;
2016	else
2017		ctlr->dev.class = &spi_master_class;
2018	ctlr->dev.parent = dev;
2019	pm_suspend_ignore_children(&ctlr->dev, true);
2020	spi_controller_set_devdata(ctlr, &ctlr[1]);
2021
2022	return ctlr;
2023}
2024EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2025
2026#ifdef CONFIG_OF
2027static int of_spi_register_master(struct spi_controller *ctlr)
2028{
2029	int nb, i, *cs;
2030	struct device_node *np = ctlr->dev.of_node;
2031
2032	if (!np)
2033		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034
2035	nb = of_gpio_named_count(np, "cs-gpios");
2036	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
 
2037
2038	/* Return error only for an incorrectly formed cs-gpios property */
2039	if (nb == 0 || nb == -ENOENT)
2040		return 0;
2041	else if (nb < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
2042		return nb;
 
2043
2044	cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
 
 
2045			  GFP_KERNEL);
2046	ctlr->cs_gpios = cs;
 
 
2047
2048	if (!ctlr->cs_gpios)
2049		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2050
2051	for (i = 0; i < ctlr->num_chipselect; i++)
2052		cs[i] = -ENOENT;
2053
2054	for (i = 0; i < nb; i++)
2055		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
 
 
 
2056
2057	return 0;
2058}
2059#else
2060static int of_spi_register_master(struct spi_controller *ctlr)
2061{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062	return 0;
2063}
2064#endif
2065
2066/**
2067 * spi_register_controller - register SPI master or slave controller
2068 * @ctlr: initialized master, originally from spi_alloc_master() or
2069 *	spi_alloc_slave()
2070 * Context: can sleep
2071 *
2072 * SPI controllers connect to their drivers using some non-SPI bus,
2073 * such as the platform bus.  The final stage of probe() in that code
2074 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2075 *
2076 * SPI controllers use board specific (often SOC specific) bus numbers,
2077 * and board-specific addressing for SPI devices combines those numbers
2078 * with chip select numbers.  Since SPI does not directly support dynamic
2079 * device identification, boards need configuration tables telling which
2080 * chip is at which address.
2081 *
2082 * This must be called from context that can sleep.  It returns zero on
2083 * success, else a negative error code (dropping the controller's refcount).
2084 * After a successful return, the caller is responsible for calling
2085 * spi_unregister_controller().
2086 *
2087 * Return: zero on success, else a negative error code.
2088 */
2089int spi_register_controller(struct spi_controller *ctlr)
2090{
2091	struct device		*dev = ctlr->dev.parent;
2092	struct boardinfo	*bi;
2093	int			status = -ENODEV;
2094	int			id, first_dynamic;
2095
2096	if (!dev)
2097		return -ENODEV;
2098
2099	if (!spi_controller_is_slave(ctlr)) {
2100		status = of_spi_register_master(ctlr);
2101		if (status)
2102			return status;
2103	}
 
 
2104
2105	/* even if it's just one always-selected device, there must
2106	 * be at least one chipselect
2107	 */
2108	if (ctlr->num_chipselect == 0)
2109		return -EINVAL;
2110	/* allocate dynamic bus number using Linux idr */
2111	if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
 
 
 
 
2112		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2113		if (id >= 0) {
2114			ctlr->bus_num = id;
2115			mutex_lock(&board_lock);
2116			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2117				       ctlr->bus_num + 1, GFP_KERNEL);
2118			mutex_unlock(&board_lock);
2119			if (WARN(id < 0, "couldn't get idr"))
2120				return id == -ENOSPC ? -EBUSY : id;
2121		}
2122	}
2123	if (ctlr->bus_num < 0) {
2124		first_dynamic = of_alias_get_highest_id("spi");
2125		if (first_dynamic < 0)
2126			first_dynamic = 0;
2127		else
2128			first_dynamic++;
2129
2130		mutex_lock(&board_lock);
2131		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2132			       0, GFP_KERNEL);
2133		mutex_unlock(&board_lock);
2134		if (WARN(id < 0, "couldn't get idr"))
2135			return id;
2136		ctlr->bus_num = id;
2137	}
2138	INIT_LIST_HEAD(&ctlr->queue);
2139	spin_lock_init(&ctlr->queue_lock);
2140	spin_lock_init(&ctlr->bus_lock_spinlock);
2141	mutex_init(&ctlr->bus_lock_mutex);
2142	mutex_init(&ctlr->io_mutex);
2143	ctlr->bus_lock_flag = 0;
2144	init_completion(&ctlr->xfer_completion);
 
2145	if (!ctlr->max_dma_len)
2146		ctlr->max_dma_len = INT_MAX;
2147
2148	/* register the device, then userspace will see it.
2149	 * registration fails if the bus ID is in use.
 
2150	 */
2151	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2152	status = device_add(&ctlr->dev);
2153	if (status < 0) {
2154		/* free bus id */
2155		mutex_lock(&board_lock);
2156		idr_remove(&spi_master_idr, ctlr->bus_num);
2157		mutex_unlock(&board_lock);
2158		goto done;
2159	}
2160	dev_dbg(dev, "registered %s %s\n",
2161			spi_controller_is_slave(ctlr) ? "slave" : "master",
2162			dev_name(&ctlr->dev));
2163
2164	/* If we're using a queued driver, start the queue */
2165	if (ctlr->transfer)
 
 
 
 
2166		dev_info(dev, "controller is unqueued, this is deprecated\n");
2167	else {
2168		status = spi_controller_initialize_queue(ctlr);
2169		if (status) {
2170			device_del(&ctlr->dev);
2171			/* free bus id */
2172			mutex_lock(&board_lock);
2173			idr_remove(&spi_master_idr, ctlr->bus_num);
2174			mutex_unlock(&board_lock);
2175			goto done;
2176		}
2177	}
2178	/* add statistics */
2179	spin_lock_init(&ctlr->statistics.lock);
 
 
 
 
 
2180
2181	mutex_lock(&board_lock);
2182	list_add_tail(&ctlr->list, &spi_controller_list);
2183	list_for_each_entry(bi, &board_list, list)
2184		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2185	mutex_unlock(&board_lock);
2186
2187	/* Register devices from the device tree and ACPI */
2188	of_register_spi_devices(ctlr);
2189	acpi_register_spi_devices(ctlr);
2190done:
 
 
 
 
 
 
 
2191	return status;
2192}
2193EXPORT_SYMBOL_GPL(spi_register_controller);
2194
2195static void devm_spi_unregister(struct device *dev, void *res)
2196{
2197	spi_unregister_controller(*(struct spi_controller **)res);
2198}
2199
2200/**
2201 * devm_spi_register_controller - register managed SPI master or slave
2202 *	controller
2203 * @dev:    device managing SPI controller
2204 * @ctlr: initialized controller, originally from spi_alloc_master() or
2205 *	spi_alloc_slave()
2206 * Context: can sleep
2207 *
2208 * Register a SPI device as with spi_register_controller() which will
2209 * automatically be unregistered and freed.
2210 *
2211 * Return: zero on success, else a negative error code.
2212 */
2213int devm_spi_register_controller(struct device *dev,
2214				 struct spi_controller *ctlr)
2215{
2216	struct spi_controller **ptr;
2217	int ret;
2218
2219	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2220	if (!ptr)
2221		return -ENOMEM;
2222
2223	ret = spi_register_controller(ctlr);
2224	if (!ret) {
2225		*ptr = ctlr;
2226		devres_add(dev, ptr);
2227	} else {
2228		devres_free(ptr);
2229	}
2230
2231	return ret;
2232}
2233EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2234
2235static int __unregister(struct device *dev, void *null)
2236{
2237	spi_unregister_device(to_spi_device(dev));
2238	return 0;
2239}
2240
2241/**
2242 * spi_unregister_controller - unregister SPI master or slave controller
2243 * @ctlr: the controller being unregistered
2244 * Context: can sleep
2245 *
2246 * This call is used only by SPI controller drivers, which are the
2247 * only ones directly touching chip registers.
2248 *
2249 * This must be called from context that can sleep.
2250 *
2251 * Note that this function also drops a reference to the controller.
2252 */
2253void spi_unregister_controller(struct spi_controller *ctlr)
2254{
2255	struct spi_controller *found;
2256	int id = ctlr->bus_num;
2257	int dummy;
 
 
 
 
 
2258
2259	/* First make sure that this controller was ever added */
2260	mutex_lock(&board_lock);
2261	found = idr_find(&spi_master_idr, id);
2262	mutex_unlock(&board_lock);
2263	if (ctlr->queued) {
2264		if (spi_destroy_queue(ctlr))
2265			dev_err(&ctlr->dev, "queue remove failed\n");
2266	}
2267	mutex_lock(&board_lock);
2268	list_del(&ctlr->list);
2269	mutex_unlock(&board_lock);
2270
2271	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2272	device_unregister(&ctlr->dev);
2273	/* free bus id */
2274	mutex_lock(&board_lock);
2275	if (found == ctlr)
2276		idr_remove(&spi_master_idr, id);
2277	mutex_unlock(&board_lock);
 
 
 
 
 
 
 
 
 
2278}
2279EXPORT_SYMBOL_GPL(spi_unregister_controller);
2280
2281int spi_controller_suspend(struct spi_controller *ctlr)
2282{
2283	int ret;
2284
2285	/* Basically no-ops for non-queued controllers */
2286	if (!ctlr->queued)
2287		return 0;
2288
2289	ret = spi_stop_queue(ctlr);
2290	if (ret)
2291		dev_err(&ctlr->dev, "queue stop failed\n");
2292
2293	return ret;
2294}
2295EXPORT_SYMBOL_GPL(spi_controller_suspend);
2296
2297int spi_controller_resume(struct spi_controller *ctlr)
2298{
2299	int ret;
2300
2301	if (!ctlr->queued)
2302		return 0;
2303
2304	ret = spi_start_queue(ctlr);
2305	if (ret)
2306		dev_err(&ctlr->dev, "queue restart failed\n");
2307
2308	return ret;
2309}
2310EXPORT_SYMBOL_GPL(spi_controller_resume);
2311
2312static int __spi_controller_match(struct device *dev, const void *data)
2313{
2314	struct spi_controller *ctlr;
2315	const u16 *bus_num = data;
2316
2317	ctlr = container_of(dev, struct spi_controller, dev);
2318	return ctlr->bus_num == *bus_num;
2319}
2320
2321/**
2322 * spi_busnum_to_master - look up master associated with bus_num
2323 * @bus_num: the master's bus number
2324 * Context: can sleep
2325 *
2326 * This call may be used with devices that are registered after
2327 * arch init time.  It returns a refcounted pointer to the relevant
2328 * spi_controller (which the caller must release), or NULL if there is
2329 * no such master registered.
2330 *
2331 * Return: the SPI master structure on success, else NULL.
2332 */
2333struct spi_controller *spi_busnum_to_master(u16 bus_num)
2334{
2335	struct device		*dev;
2336	struct spi_controller	*ctlr = NULL;
2337
2338	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2339				__spi_controller_match);
2340	if (dev)
2341		ctlr = container_of(dev, struct spi_controller, dev);
2342	/* reference got in class_find_device */
2343	return ctlr;
2344}
2345EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2346
2347/*-------------------------------------------------------------------------*/
2348
2349/* Core methods for SPI resource management */
2350
2351/**
2352 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2353 *                 during the processing of a spi_message while using
2354 *                 spi_transfer_one
2355 * @spi:     the spi device for which we allocate memory
2356 * @release: the release code to execute for this resource
2357 * @size:    size to alloc and return
2358 * @gfp:     GFP allocation flags
2359 *
2360 * Return: the pointer to the allocated data
2361 *
2362 * This may get enhanced in the future to allocate from a memory pool
2363 * of the @spi_device or @spi_controller to avoid repeated allocations.
2364 */
2365void *spi_res_alloc(struct spi_device *spi,
2366		    spi_res_release_t release,
2367		    size_t size, gfp_t gfp)
2368{
2369	struct spi_res *sres;
2370
2371	sres = kzalloc(sizeof(*sres) + size, gfp);
2372	if (!sres)
2373		return NULL;
2374
2375	INIT_LIST_HEAD(&sres->entry);
2376	sres->release = release;
2377
2378	return sres->data;
2379}
2380EXPORT_SYMBOL_GPL(spi_res_alloc);
2381
2382/**
2383 * spi_res_free - free an spi resource
2384 * @res: pointer to the custom data of a resource
2385 *
2386 */
2387void spi_res_free(void *res)
2388{
2389	struct spi_res *sres = container_of(res, struct spi_res, data);
2390
2391	if (!res)
2392		return;
2393
2394	WARN_ON(!list_empty(&sres->entry));
2395	kfree(sres);
2396}
2397EXPORT_SYMBOL_GPL(spi_res_free);
2398
2399/**
2400 * spi_res_add - add a spi_res to the spi_message
2401 * @message: the spi message
2402 * @res:     the spi_resource
2403 */
2404void spi_res_add(struct spi_message *message, void *res)
2405{
2406	struct spi_res *sres = container_of(res, struct spi_res, data);
2407
2408	WARN_ON(!list_empty(&sres->entry));
2409	list_add_tail(&sres->entry, &message->resources);
2410}
2411EXPORT_SYMBOL_GPL(spi_res_add);
2412
2413/**
2414 * spi_res_release - release all spi resources for this message
2415 * @ctlr:  the @spi_controller
2416 * @message: the @spi_message
2417 */
2418void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2419{
2420	struct spi_res *res;
2421
2422	while (!list_empty(&message->resources)) {
2423		res = list_last_entry(&message->resources,
2424				      struct spi_res, entry);
2425
2426		if (res->release)
2427			res->release(ctlr, message, res->data);
2428
2429		list_del(&res->entry);
2430
2431		kfree(res);
2432	}
2433}
2434EXPORT_SYMBOL_GPL(spi_res_release);
2435
2436/*-------------------------------------------------------------------------*/
2437
2438/* Core methods for spi_message alterations */
2439
2440static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2441					    struct spi_message *msg,
2442					    void *res)
2443{
2444	struct spi_replaced_transfers *rxfer = res;
2445	size_t i;
2446
2447	/* call extra callback if requested */
2448	if (rxfer->release)
2449		rxfer->release(ctlr, msg, res);
2450
2451	/* insert replaced transfers back into the message */
2452	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2453
2454	/* remove the formerly inserted entries */
2455	for (i = 0; i < rxfer->inserted; i++)
2456		list_del(&rxfer->inserted_transfers[i].transfer_list);
2457}
2458
2459/**
2460 * spi_replace_transfers - replace transfers with several transfers
2461 *                         and register change with spi_message.resources
2462 * @msg:           the spi_message we work upon
2463 * @xfer_first:    the first spi_transfer we want to replace
2464 * @remove:        number of transfers to remove
2465 * @insert:        the number of transfers we want to insert instead
2466 * @release:       extra release code necessary in some circumstances
2467 * @extradatasize: extra data to allocate (with alignment guarantees
2468 *                 of struct @spi_transfer)
2469 * @gfp:           gfp flags
2470 *
2471 * Returns: pointer to @spi_replaced_transfers,
2472 *          PTR_ERR(...) in case of errors.
2473 */
2474struct spi_replaced_transfers *spi_replace_transfers(
2475	struct spi_message *msg,
2476	struct spi_transfer *xfer_first,
2477	size_t remove,
2478	size_t insert,
2479	spi_replaced_release_t release,
2480	size_t extradatasize,
2481	gfp_t gfp)
2482{
2483	struct spi_replaced_transfers *rxfer;
2484	struct spi_transfer *xfer;
2485	size_t i;
2486
2487	/* allocate the structure using spi_res */
2488	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2489			      insert * sizeof(struct spi_transfer)
2490			      + sizeof(struct spi_replaced_transfers)
2491			      + extradatasize,
2492			      gfp);
2493	if (!rxfer)
2494		return ERR_PTR(-ENOMEM);
2495
2496	/* the release code to invoke before running the generic release */
2497	rxfer->release = release;
2498
2499	/* assign extradata */
2500	if (extradatasize)
2501		rxfer->extradata =
2502			&rxfer->inserted_transfers[insert];
2503
2504	/* init the replaced_transfers list */
2505	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2506
2507	/* assign the list_entry after which we should reinsert
 
2508	 * the @replaced_transfers - it may be spi_message.messages!
2509	 */
2510	rxfer->replaced_after = xfer_first->transfer_list.prev;
2511
2512	/* remove the requested number of transfers */
2513	for (i = 0; i < remove; i++) {
2514		/* if the entry after replaced_after it is msg->transfers
 
2515		 * then we have been requested to remove more transfers
2516		 * than are in the list
2517		 */
2518		if (rxfer->replaced_after->next == &msg->transfers) {
2519			dev_err(&msg->spi->dev,
2520				"requested to remove more spi_transfers than are available\n");
2521			/* insert replaced transfers back into the message */
2522			list_splice(&rxfer->replaced_transfers,
2523				    rxfer->replaced_after);
2524
2525			/* free the spi_replace_transfer structure */
2526			spi_res_free(rxfer);
2527
2528			/* and return with an error */
2529			return ERR_PTR(-EINVAL);
2530		}
2531
2532		/* remove the entry after replaced_after from list of
2533		 * transfers and add it to list of replaced_transfers
 
2534		 */
2535		list_move_tail(rxfer->replaced_after->next,
2536			       &rxfer->replaced_transfers);
2537	}
2538
2539	/* create copy of the given xfer with identical settings
2540	 * based on the first transfer to get removed
 
2541	 */
2542	for (i = 0; i < insert; i++) {
2543		/* we need to run in reverse order */
2544		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2545
2546		/* copy all spi_transfer data */
2547		memcpy(xfer, xfer_first, sizeof(*xfer));
2548
2549		/* add to list */
2550		list_add(&xfer->transfer_list, rxfer->replaced_after);
2551
2552		/* clear cs_change and delay_usecs for all but the last */
2553		if (i) {
2554			xfer->cs_change = false;
2555			xfer->delay_usecs = 0;
2556		}
2557	}
2558
2559	/* set up inserted */
2560	rxfer->inserted = insert;
2561
2562	/* and register it with spi_res/spi_message */
2563	spi_res_add(msg, rxfer);
2564
2565	return rxfer;
2566}
2567EXPORT_SYMBOL_GPL(spi_replace_transfers);
2568
2569static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2570					struct spi_message *msg,
2571					struct spi_transfer **xferp,
2572					size_t maxsize,
2573					gfp_t gfp)
2574{
2575	struct spi_transfer *xfer = *xferp, *xfers;
2576	struct spi_replaced_transfers *srt;
2577	size_t offset;
2578	size_t count, i;
2579
2580	/* warn once about this fact that we are splitting a transfer */
2581	dev_warn_once(&msg->spi->dev,
2582		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2583		      xfer->len, maxsize);
2584
2585	/* calculate how many we have to replace */
2586	count = DIV_ROUND_UP(xfer->len, maxsize);
2587
2588	/* create replacement */
2589	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2590	if (IS_ERR(srt))
2591		return PTR_ERR(srt);
2592	xfers = srt->inserted_transfers;
2593
2594	/* now handle each of those newly inserted spi_transfers
2595	 * note that the replacements spi_transfers all are preset
 
2596	 * to the same values as *xferp, so tx_buf, rx_buf and len
2597	 * are all identical (as well as most others)
2598	 * so we just have to fix up len and the pointers.
2599	 *
2600	 * this also includes support for the depreciated
2601	 * spi_message.is_dma_mapped interface
2602	 */
2603
2604	/* the first transfer just needs the length modified, so we
2605	 * run it outside the loop
 
2606	 */
2607	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2608
2609	/* all the others need rx_buf/tx_buf also set */
2610	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2611		/* update rx_buf, tx_buf and dma */
2612		if (xfers[i].rx_buf)
2613			xfers[i].rx_buf += offset;
2614		if (xfers[i].rx_dma)
2615			xfers[i].rx_dma += offset;
2616		if (xfers[i].tx_buf)
2617			xfers[i].tx_buf += offset;
2618		if (xfers[i].tx_dma)
2619			xfers[i].tx_dma += offset;
2620
2621		/* update length */
2622		xfers[i].len = min(maxsize, xfers[i].len - offset);
2623	}
2624
2625	/* we set up xferp to the last entry we have inserted,
2626	 * so that we skip those already split transfers
 
2627	 */
2628	*xferp = &xfers[count - 1];
2629
2630	/* increment statistics counters */
2631	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2632				       transfers_split_maxsize);
2633	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2634				       transfers_split_maxsize);
2635
2636	return 0;
2637}
2638
2639/**
2640 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2641 *                              when an individual transfer exceeds a
2642 *                              certain size
2643 * @ctlr:    the @spi_controller for this transfer
2644 * @msg:   the @spi_message to transform
2645 * @maxsize:  the maximum when to apply this
2646 * @gfp: GFP allocation flags
2647 *
2648 * Return: status of transformation
2649 */
2650int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2651				struct spi_message *msg,
2652				size_t maxsize,
2653				gfp_t gfp)
2654{
2655	struct spi_transfer *xfer;
2656	int ret;
2657
2658	/* iterate over the transfer_list,
 
2659	 * but note that xfer is advanced to the last transfer inserted
2660	 * to avoid checking sizes again unnecessarily (also xfer does
2661	 * potentiall belong to a different list by the time the
2662	 * replacement has happened
2663	 */
2664	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2665		if (xfer->len > maxsize) {
2666			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2667							   maxsize, gfp);
2668			if (ret)
2669				return ret;
2670		}
2671	}
2672
2673	return 0;
2674}
2675EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2676
2677/*-------------------------------------------------------------------------*/
2678
2679/* Core methods for SPI controller protocol drivers.  Some of the
2680 * other core methods are currently defined as inline functions.
2681 */
2682
2683static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2684					u8 bits_per_word)
2685{
2686	if (ctlr->bits_per_word_mask) {
2687		/* Only 32 bits fit in the mask */
2688		if (bits_per_word > 32)
2689			return -EINVAL;
2690		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2691			return -EINVAL;
2692	}
2693
2694	return 0;
2695}
2696
2697/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698 * spi_setup - setup SPI mode and clock rate
2699 * @spi: the device whose settings are being modified
2700 * Context: can sleep, and no requests are queued to the device
2701 *
2702 * SPI protocol drivers may need to update the transfer mode if the
2703 * device doesn't work with its default.  They may likewise need
2704 * to update clock rates or word sizes from initial values.  This function
2705 * changes those settings, and must be called from a context that can sleep.
2706 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2707 * effect the next time the device is selected and data is transferred to
2708 * or from it.  When this function returns, the spi device is deselected.
2709 *
2710 * Note that this call will fail if the protocol driver specifies an option
2711 * that the underlying controller or its driver does not support.  For
2712 * example, not all hardware supports wire transfers using nine bit words,
2713 * LSB-first wire encoding, or active-high chipselects.
2714 *
2715 * Return: zero on success, else a negative error code.
2716 */
2717int spi_setup(struct spi_device *spi)
2718{
2719	unsigned	bad_bits, ugly_bits;
2720	int		status;
2721
2722	/* check mode to prevent that DUAL and QUAD set at the same time
 
 
2723	 */
2724	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2725		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
 
 
2726		dev_err(&spi->dev,
2727		"setup: can not select dual and quad at the same time\n");
2728		return -EINVAL;
2729	}
2730	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2731	 */
2732	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2733		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
 
2734		return -EINVAL;
2735	/* help drivers fail *cleanly* when they need options
2736	 * that aren't supported with their current controller
 
 
 
2737	 */
2738	bad_bits = spi->mode & ~spi->controller->mode_bits;
 
2739	ugly_bits = bad_bits &
2740		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
 
2741	if (ugly_bits) {
2742		dev_warn(&spi->dev,
2743			 "setup: ignoring unsupported mode bits %x\n",
2744			 ugly_bits);
2745		spi->mode &= ~ugly_bits;
2746		bad_bits &= ~ugly_bits;
2747	}
2748	if (bad_bits) {
2749		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2750			bad_bits);
2751		return -EINVAL;
2752	}
2753
2754	if (!spi->bits_per_word)
2755		spi->bits_per_word = 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2756
2757	status = __spi_validate_bits_per_word(spi->controller,
2758					      spi->bits_per_word);
2759	if (status)
 
 
 
 
 
 
 
 
 
 
2760		return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2761
2762	if (!spi->max_speed_hz)
2763		spi->max_speed_hz = spi->controller->max_speed_hz;
2764
2765	if (spi->controller->setup)
2766		status = spi->controller->setup(spi);
 
 
2767
2768	spi_set_cs(spi, false);
2769
2770	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2771			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2772			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2773			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2774			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2775			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2776			spi->bits_per_word, spi->max_speed_hz,
2777			status);
2778
2779	return status;
2780}
2781EXPORT_SYMBOL_GPL(spi_setup);
2782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2783static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2784{
2785	struct spi_controller *ctlr = spi->controller;
2786	struct spi_transfer *xfer;
2787	int w_size;
2788
2789	if (list_empty(&message->transfers))
2790		return -EINVAL;
2791
2792	/* Half-duplex links include original MicroWire, and ones with
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2793	 * only one data pin like SPI_3WIRE (switches direction) or where
2794	 * either MOSI or MISO is missing.  They can also be caused by
2795	 * software limitations.
2796	 */
2797	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2798	    (spi->mode & SPI_3WIRE)) {
2799		unsigned flags = ctlr->flags;
2800
2801		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2802			if (xfer->rx_buf && xfer->tx_buf)
2803				return -EINVAL;
2804			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2805				return -EINVAL;
2806			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2807				return -EINVAL;
2808		}
2809	}
2810
2811	/**
2812	 * Set transfer bits_per_word and max speed as spi device default if
2813	 * it is not set for this transfer.
2814	 * Set transfer tx_nbits and rx_nbits as single transfer default
2815	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
 
 
2816	 */
2817	message->frame_length = 0;
2818	list_for_each_entry(xfer, &message->transfers, transfer_list) {
 
2819		message->frame_length += xfer->len;
2820		if (!xfer->bits_per_word)
2821			xfer->bits_per_word = spi->bits_per_word;
2822
2823		if (!xfer->speed_hz)
2824			xfer->speed_hz = spi->max_speed_hz;
2825		if (!xfer->speed_hz)
2826			xfer->speed_hz = ctlr->max_speed_hz;
2827
2828		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2829			xfer->speed_hz = ctlr->max_speed_hz;
2830
2831		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2832			return -EINVAL;
2833
2834		/*
2835		 * SPI transfer length should be multiple of SPI word size
2836		 * where SPI word size should be power-of-two multiple
2837		 */
2838		if (xfer->bits_per_word <= 8)
2839			w_size = 1;
2840		else if (xfer->bits_per_word <= 16)
2841			w_size = 2;
2842		else
2843			w_size = 4;
2844
2845		/* No partial transfers accepted */
2846		if (xfer->len % w_size)
2847			return -EINVAL;
2848
2849		if (xfer->speed_hz && ctlr->min_speed_hz &&
2850		    xfer->speed_hz < ctlr->min_speed_hz)
2851			return -EINVAL;
2852
2853		if (xfer->tx_buf && !xfer->tx_nbits)
2854			xfer->tx_nbits = SPI_NBITS_SINGLE;
2855		if (xfer->rx_buf && !xfer->rx_nbits)
2856			xfer->rx_nbits = SPI_NBITS_SINGLE;
2857		/* check transfer tx/rx_nbits:
 
2858		 * 1. check the value matches one of single, dual and quad
2859		 * 2. check tx/rx_nbits match the mode in spi_device
2860		 */
2861		if (xfer->tx_buf) {
 
 
2862			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2863				xfer->tx_nbits != SPI_NBITS_DUAL &&
2864				xfer->tx_nbits != SPI_NBITS_QUAD)
2865				return -EINVAL;
2866			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2867				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2868				return -EINVAL;
2869			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2870				!(spi->mode & SPI_TX_QUAD))
2871				return -EINVAL;
2872		}
2873		/* check transfer rx_nbits */
2874		if (xfer->rx_buf) {
 
 
2875			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2876				xfer->rx_nbits != SPI_NBITS_DUAL &&
2877				xfer->rx_nbits != SPI_NBITS_QUAD)
2878				return -EINVAL;
2879			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2880				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2881				return -EINVAL;
2882			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2883				!(spi->mode & SPI_RX_QUAD))
2884				return -EINVAL;
2885		}
 
 
 
2886	}
2887
2888	message->status = -EINPROGRESS;
2889
2890	return 0;
2891}
2892
2893static int __spi_async(struct spi_device *spi, struct spi_message *message)
2894{
2895	struct spi_controller *ctlr = spi->controller;
 
 
 
 
 
 
 
 
2896
2897	message->spi = spi;
2898
2899	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2900	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2901
2902	trace_spi_message_submit(message);
2903
 
 
 
 
 
 
 
2904	return ctlr->transfer(spi, message);
2905}
2906
2907/**
2908 * spi_async - asynchronous SPI transfer
2909 * @spi: device with which data will be exchanged
2910 * @message: describes the data transfers, including completion callback
2911 * Context: any (irqs may be blocked, etc)
2912 *
2913 * This call may be used in_irq and other contexts which can't sleep,
2914 * as well as from task contexts which can sleep.
2915 *
2916 * The completion callback is invoked in a context which can't sleep.
2917 * Before that invocation, the value of message->status is undefined.
2918 * When the callback is issued, message->status holds either zero (to
2919 * indicate complete success) or a negative error code.  After that
2920 * callback returns, the driver which issued the transfer request may
2921 * deallocate the associated memory; it's no longer in use by any SPI
2922 * core or controller driver code.
2923 *
2924 * Note that although all messages to a spi_device are handled in
2925 * FIFO order, messages may go to different devices in other orders.
2926 * Some device might be higher priority, or have various "hard" access
2927 * time requirements, for example.
2928 *
2929 * On detection of any fault during the transfer, processing of
2930 * the entire message is aborted, and the device is deselected.
2931 * Until returning from the associated message completion callback,
2932 * no other spi_message queued to that device will be processed.
2933 * (This rule applies equally to all the synchronous transfer calls,
2934 * which are wrappers around this core asynchronous primitive.)
2935 *
2936 * Return: zero on success, else a negative error code.
2937 */
2938int spi_async(struct spi_device *spi, struct spi_message *message)
2939{
2940	struct spi_controller *ctlr = spi->controller;
2941	int ret;
2942	unsigned long flags;
2943
2944	ret = __spi_validate(spi, message);
2945	if (ret != 0)
2946		return ret;
2947
2948	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2949
2950	if (ctlr->bus_lock_flag)
2951		ret = -EBUSY;
2952	else
2953		ret = __spi_async(spi, message);
2954
2955	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2956
2957	return ret;
2958}
2959EXPORT_SYMBOL_GPL(spi_async);
2960
2961/**
2962 * spi_async_locked - version of spi_async with exclusive bus usage
2963 * @spi: device with which data will be exchanged
2964 * @message: describes the data transfers, including completion callback
2965 * Context: any (irqs may be blocked, etc)
2966 *
2967 * This call may be used in_irq and other contexts which can't sleep,
2968 * as well as from task contexts which can sleep.
2969 *
2970 * The completion callback is invoked in a context which can't sleep.
2971 * Before that invocation, the value of message->status is undefined.
2972 * When the callback is issued, message->status holds either zero (to
2973 * indicate complete success) or a negative error code.  After that
2974 * callback returns, the driver which issued the transfer request may
2975 * deallocate the associated memory; it's no longer in use by any SPI
2976 * core or controller driver code.
2977 *
2978 * Note that although all messages to a spi_device are handled in
2979 * FIFO order, messages may go to different devices in other orders.
2980 * Some device might be higher priority, or have various "hard" access
2981 * time requirements, for example.
2982 *
2983 * On detection of any fault during the transfer, processing of
2984 * the entire message is aborted, and the device is deselected.
2985 * Until returning from the associated message completion callback,
2986 * no other spi_message queued to that device will be processed.
2987 * (This rule applies equally to all the synchronous transfer calls,
2988 * which are wrappers around this core asynchronous primitive.)
2989 *
2990 * Return: zero on success, else a negative error code.
2991 */
2992int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2993{
2994	struct spi_controller *ctlr = spi->controller;
2995	int ret;
2996	unsigned long flags;
2997
2998	ret = __spi_validate(spi, message);
2999	if (ret != 0)
3000		return ret;
3001
3002	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3003
3004	ret = __spi_async(spi, message);
3005
3006	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3007
3008	return ret;
3009
3010}
3011EXPORT_SYMBOL_GPL(spi_async_locked);
3012
3013
3014int spi_flash_read(struct spi_device *spi,
3015		   struct spi_flash_read_message *msg)
3016
 
3017{
3018	struct spi_controller *master = spi->controller;
3019	struct device *rx_dev = NULL;
3020	int ret;
3021
3022	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3023	     msg->addr_nbits == SPI_NBITS_DUAL) &&
3024	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3025		return -EINVAL;
3026	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3027	     msg->addr_nbits == SPI_NBITS_QUAD) &&
3028	    !(spi->mode & SPI_TX_QUAD))
3029		return -EINVAL;
3030	if (msg->data_nbits == SPI_NBITS_DUAL &&
3031	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3032		return -EINVAL;
3033	if (msg->data_nbits == SPI_NBITS_QUAD &&
3034	    !(spi->mode &  SPI_RX_QUAD))
3035		return -EINVAL;
3036
3037	if (master->auto_runtime_pm) {
3038		ret = pm_runtime_get_sync(master->dev.parent);
3039		if (ret < 0) {
3040			dev_err(&master->dev, "Failed to power device: %d\n",
3041				ret);
3042			return ret;
3043		}
3044	}
3045
3046	mutex_lock(&master->bus_lock_mutex);
3047	mutex_lock(&master->io_mutex);
3048	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3049		rx_dev = master->dma_rx->device->dev;
3050		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3051				  msg->buf, msg->len,
3052				  DMA_FROM_DEVICE);
3053		if (!ret)
3054			msg->cur_msg_mapped = true;
3055	}
3056	ret = master->spi_flash_read(spi, msg);
3057	if (msg->cur_msg_mapped)
3058		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3059			      DMA_FROM_DEVICE);
3060	mutex_unlock(&master->io_mutex);
3061	mutex_unlock(&master->bus_lock_mutex);
3062
3063	if (master->auto_runtime_pm)
3064		pm_runtime_put(master->dev.parent);
 
 
 
 
 
 
 
 
 
3065
3066	return ret;
 
3067}
3068EXPORT_SYMBOL_GPL(spi_flash_read);
3069
3070/*-------------------------------------------------------------------------*/
3071
3072/* Utility methods for SPI protocol drivers, layered on
 
3073 * top of the core.  Some other utility methods are defined as
3074 * inline functions.
3075 */
3076
3077static void spi_complete(void *arg)
3078{
3079	complete(arg);
3080}
3081
3082static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3083{
3084	DECLARE_COMPLETION_ONSTACK(done);
3085	int status;
3086	struct spi_controller *ctlr = spi->controller;
3087	unsigned long flags;
3088
3089	status = __spi_validate(spi, message);
3090	if (status != 0)
3091		return status;
3092
3093	message->complete = spi_complete;
3094	message->context = &done;
3095	message->spi = spi;
3096
3097	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3098	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3099
3100	/* If we're not using the legacy transfer method then we will
3101	 * try to transfer in the calling context so special case.
3102	 * This code would be less tricky if we could remove the
3103	 * support for driver implemented message queues.
 
3104	 */
3105	if (ctlr->transfer == spi_queued_transfer) {
3106		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
 
3107
3108		trace_spi_message_submit(message);
3109
3110		status = __spi_queued_transfer(spi, message, false);
 
 
 
3111
3112		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3113	} else {
3114		status = spi_async_locked(spi, message);
3115	}
3116
 
 
 
 
 
 
 
 
 
3117	if (status == 0) {
3118		/* Push out the messages in the calling context if we
3119		 * can.
3120		 */
3121		if (ctlr->transfer == spi_queued_transfer) {
3122			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3123						       spi_sync_immediate);
3124			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3125						       spi_sync_immediate);
3126			__spi_pump_messages(ctlr, false);
3127		}
3128
3129		wait_for_completion(&done);
3130		status = message->status;
3131	}
3132	message->context = NULL;
 
3133	return status;
3134}
3135
3136/**
3137 * spi_sync - blocking/synchronous SPI data transfers
3138 * @spi: device with which data will be exchanged
3139 * @message: describes the data transfers
3140 * Context: can sleep
3141 *
3142 * This call may only be used from a context that may sleep.  The sleep
3143 * is non-interruptible, and has no timeout.  Low-overhead controller
3144 * drivers may DMA directly into and out of the message buffers.
3145 *
3146 * Note that the SPI device's chip select is active during the message,
3147 * and then is normally disabled between messages.  Drivers for some
3148 * frequently-used devices may want to minimize costs of selecting a chip,
3149 * by leaving it selected in anticipation that the next message will go
3150 * to the same chip.  (That may increase power usage.)
3151 *
3152 * Also, the caller is guaranteeing that the memory associated with the
3153 * message will not be freed before this call returns.
3154 *
3155 * Return: zero on success, else a negative error code.
3156 */
3157int spi_sync(struct spi_device *spi, struct spi_message *message)
3158{
3159	int ret;
3160
3161	mutex_lock(&spi->controller->bus_lock_mutex);
3162	ret = __spi_sync(spi, message);
3163	mutex_unlock(&spi->controller->bus_lock_mutex);
3164
3165	return ret;
3166}
3167EXPORT_SYMBOL_GPL(spi_sync);
3168
3169/**
3170 * spi_sync_locked - version of spi_sync with exclusive bus usage
3171 * @spi: device with which data will be exchanged
3172 * @message: describes the data transfers
3173 * Context: can sleep
3174 *
3175 * This call may only be used from a context that may sleep.  The sleep
3176 * is non-interruptible, and has no timeout.  Low-overhead controller
3177 * drivers may DMA directly into and out of the message buffers.
3178 *
3179 * This call should be used by drivers that require exclusive access to the
3180 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3181 * be released by a spi_bus_unlock call when the exclusive access is over.
3182 *
3183 * Return: zero on success, else a negative error code.
3184 */
3185int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3186{
3187	return __spi_sync(spi, message);
3188}
3189EXPORT_SYMBOL_GPL(spi_sync_locked);
3190
3191/**
3192 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3193 * @ctlr: SPI bus master that should be locked for exclusive bus access
3194 * Context: can sleep
3195 *
3196 * This call may only be used from a context that may sleep.  The sleep
3197 * is non-interruptible, and has no timeout.
3198 *
3199 * This call should be used by drivers that require exclusive access to the
3200 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3201 * exclusive access is over. Data transfer must be done by spi_sync_locked
3202 * and spi_async_locked calls when the SPI bus lock is held.
3203 *
3204 * Return: always zero.
3205 */
3206int spi_bus_lock(struct spi_controller *ctlr)
3207{
3208	unsigned long flags;
3209
3210	mutex_lock(&ctlr->bus_lock_mutex);
3211
3212	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3213	ctlr->bus_lock_flag = 1;
3214	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3215
3216	/* mutex remains locked until spi_bus_unlock is called */
3217
3218	return 0;
3219}
3220EXPORT_SYMBOL_GPL(spi_bus_lock);
3221
3222/**
3223 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3224 * @ctlr: SPI bus master that was locked for exclusive bus access
3225 * Context: can sleep
3226 *
3227 * This call may only be used from a context that may sleep.  The sleep
3228 * is non-interruptible, and has no timeout.
3229 *
3230 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3231 * call.
3232 *
3233 * Return: always zero.
3234 */
3235int spi_bus_unlock(struct spi_controller *ctlr)
3236{
3237	ctlr->bus_lock_flag = 0;
3238
3239	mutex_unlock(&ctlr->bus_lock_mutex);
3240
3241	return 0;
3242}
3243EXPORT_SYMBOL_GPL(spi_bus_unlock);
3244
3245/* portable code must never pass more than 32 bytes */
3246#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3247
3248static u8	*buf;
3249
3250/**
3251 * spi_write_then_read - SPI synchronous write followed by read
3252 * @spi: device with which data will be exchanged
3253 * @txbuf: data to be written (need not be dma-safe)
3254 * @n_tx: size of txbuf, in bytes
3255 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3256 * @n_rx: size of rxbuf, in bytes
3257 * Context: can sleep
3258 *
3259 * This performs a half duplex MicroWire style transaction with the
3260 * device, sending txbuf and then reading rxbuf.  The return value
3261 * is zero for success, else a negative errno status code.
3262 * This call may only be used from a context that may sleep.
3263 *
3264 * Parameters to this routine are always copied using a small buffer;
3265 * portable code should never use this for more than 32 bytes.
3266 * Performance-sensitive or bulk transfer code should instead use
3267 * spi_{async,sync}() calls with dma-safe buffers.
3268 *
3269 * Return: zero on success, else a negative error code.
3270 */
3271int spi_write_then_read(struct spi_device *spi,
3272		const void *txbuf, unsigned n_tx,
3273		void *rxbuf, unsigned n_rx)
3274{
3275	static DEFINE_MUTEX(lock);
3276
3277	int			status;
3278	struct spi_message	message;
3279	struct spi_transfer	x[2];
3280	u8			*local_buf;
3281
3282	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
 
3283	 * copying here, (as a pure convenience thing), but we can
3284	 * keep heap costs out of the hot path unless someone else is
3285	 * using the pre-allocated buffer or the transfer is too large.
3286	 */
3287	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3288		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3289				    GFP_KERNEL | GFP_DMA);
3290		if (!local_buf)
3291			return -ENOMEM;
3292	} else {
3293		local_buf = buf;
3294	}
3295
3296	spi_message_init(&message);
3297	memset(x, 0, sizeof(x));
3298	if (n_tx) {
3299		x[0].len = n_tx;
3300		spi_message_add_tail(&x[0], &message);
3301	}
3302	if (n_rx) {
3303		x[1].len = n_rx;
3304		spi_message_add_tail(&x[1], &message);
3305	}
3306
3307	memcpy(local_buf, txbuf, n_tx);
3308	x[0].tx_buf = local_buf;
3309	x[1].rx_buf = local_buf + n_tx;
3310
3311	/* do the i/o */
3312	status = spi_sync(spi, &message);
3313	if (status == 0)
3314		memcpy(rxbuf, x[1].rx_buf, n_rx);
3315
3316	if (x[0].tx_buf == buf)
3317		mutex_unlock(&lock);
3318	else
3319		kfree(local_buf);
3320
3321	return status;
3322}
3323EXPORT_SYMBOL_GPL(spi_write_then_read);
3324
3325/*-------------------------------------------------------------------------*/
3326
3327#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3328static int __spi_of_device_match(struct device *dev, void *data)
 
3329{
3330	return dev->of_node == data;
3331}
3332
3333/* must call put_device() when done with returned spi_device device */
3334static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3335{
3336	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3337						__spi_of_device_match);
3338	return dev ? to_spi_device(dev) : NULL;
3339}
3340
3341static int __spi_of_controller_match(struct device *dev, const void *data)
3342{
3343	return dev->of_node == data;
3344}
3345
3346/* the spi controllers are not using spi_bus, so we find it with another way */
3347static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3348{
3349	struct device *dev;
3350
3351	dev = class_find_device(&spi_master_class, NULL, node,
3352				__spi_of_controller_match);
3353	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3354		dev = class_find_device(&spi_slave_class, NULL, node,
3355					__spi_of_controller_match);
3356	if (!dev)
3357		return NULL;
3358
3359	/* reference got in class_find_device */
3360	return container_of(dev, struct spi_controller, dev);
3361}
3362
3363static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3364			 void *arg)
3365{
3366	struct of_reconfig_data *rd = arg;
3367	struct spi_controller *ctlr;
3368	struct spi_device *spi;
3369
3370	switch (of_reconfig_get_state_change(action, arg)) {
3371	case OF_RECONFIG_CHANGE_ADD:
3372		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3373		if (ctlr == NULL)
3374			return NOTIFY_OK;	/* not for us */
3375
3376		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3377			put_device(&ctlr->dev);
3378			return NOTIFY_OK;
3379		}
3380
3381		spi = of_register_spi_device(ctlr, rd->dn);
3382		put_device(&ctlr->dev);
3383
3384		if (IS_ERR(spi)) {
3385			pr_err("%s: failed to create for '%pOF'\n",
3386					__func__, rd->dn);
3387			of_node_clear_flag(rd->dn, OF_POPULATED);
3388			return notifier_from_errno(PTR_ERR(spi));
3389		}
3390		break;
3391
3392	case OF_RECONFIG_CHANGE_REMOVE:
3393		/* already depopulated? */
3394		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3395			return NOTIFY_OK;
3396
3397		/* find our device by node */
3398		spi = of_find_spi_device_by_node(rd->dn);
3399		if (spi == NULL)
3400			return NOTIFY_OK;	/* no? not meant for us */
3401
3402		/* unregister takes one ref away */
3403		spi_unregister_device(spi);
3404
3405		/* and put the reference of the find */
3406		put_device(&spi->dev);
3407		break;
3408	}
3409
3410	return NOTIFY_OK;
3411}
3412
3413static struct notifier_block spi_of_notifier = {
3414	.notifier_call = of_spi_notify,
3415};
3416#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3417extern struct notifier_block spi_of_notifier;
3418#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3419
3420#if IS_ENABLED(CONFIG_ACPI)
3421static int spi_acpi_controller_match(struct device *dev, const void *data)
3422{
3423	return ACPI_COMPANION(dev->parent) == data;
3424}
3425
3426static int spi_acpi_device_match(struct device *dev, void *data)
3427{
3428	return ACPI_COMPANION(dev) == data;
3429}
3430
3431static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3432{
3433	struct device *dev;
3434
3435	dev = class_find_device(&spi_master_class, NULL, adev,
3436				spi_acpi_controller_match);
3437	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3438		dev = class_find_device(&spi_slave_class, NULL, adev,
3439					spi_acpi_controller_match);
3440	if (!dev)
3441		return NULL;
3442
3443	return container_of(dev, struct spi_controller, dev);
3444}
3445
3446static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3447{
3448	struct device *dev;
3449
3450	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3451
3452	return dev ? to_spi_device(dev) : NULL;
3453}
3454
3455static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3456			   void *arg)
3457{
3458	struct acpi_device *adev = arg;
3459	struct spi_controller *ctlr;
3460	struct spi_device *spi;
3461
3462	switch (value) {
3463	case ACPI_RECONFIG_DEVICE_ADD:
3464		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3465		if (!ctlr)
3466			break;
3467
3468		acpi_register_spi_device(ctlr, adev);
3469		put_device(&ctlr->dev);
3470		break;
3471	case ACPI_RECONFIG_DEVICE_REMOVE:
3472		if (!acpi_device_enumerated(adev))
3473			break;
3474
3475		spi = acpi_spi_find_device_by_adev(adev);
3476		if (!spi)
3477			break;
3478
3479		spi_unregister_device(spi);
3480		put_device(&spi->dev);
3481		break;
3482	}
3483
3484	return NOTIFY_OK;
3485}
3486
3487static struct notifier_block spi_acpi_notifier = {
3488	.notifier_call = acpi_spi_notify,
3489};
3490#else
3491extern struct notifier_block spi_acpi_notifier;
3492#endif
3493
3494static int __init spi_init(void)
3495{
3496	int	status;
3497
3498	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3499	if (!buf) {
3500		status = -ENOMEM;
3501		goto err0;
3502	}
3503
3504	status = bus_register(&spi_bus_type);
3505	if (status < 0)
3506		goto err1;
3507
3508	status = class_register(&spi_master_class);
3509	if (status < 0)
3510		goto err2;
3511
3512	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3513		status = class_register(&spi_slave_class);
3514		if (status < 0)
3515			goto err3;
3516	}
3517
3518	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3519		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3520	if (IS_ENABLED(CONFIG_ACPI))
3521		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3522
3523	return 0;
3524
3525err3:
3526	class_unregister(&spi_master_class);
3527err2:
3528	bus_unregister(&spi_bus_type);
3529err1:
3530	kfree(buf);
3531	buf = NULL;
3532err0:
3533	return status;
3534}
3535
3536/* board_info is normally registered in arch_initcall(),
3537 * but even essential drivers wait till later
 
3538 *
3539 * REVISIT only boardinfo really needs static linking. the rest (device and
3540 * driver registration) _could_ be dynamically linked (modular) ... costs
3541 * include needing to have boardinfo data structures be much more public.
3542 */
3543postcore_initcall(spi_init);
3544