Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6
   7#include <linux/kernel.h>
 
   8#include <linux/device.h>
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/gpio/consumer.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/pm_domain.h>
  24#include <linux/property.h>
  25#include <linux/export.h>
  26#include <linux/sched/rt.h>
  27#include <uapi/linux/sched/types.h>
  28#include <linux/delay.h>
  29#include <linux/kthread.h>
  30#include <linux/ioport.h>
  31#include <linux/acpi.h>
  32#include <linux/highmem.h>
  33#include <linux/idr.h>
  34#include <linux/platform_data/x86/apple.h>
  35#include <linux/ptp_clock_kernel.h>
  36#include <linux/percpu.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
 
 
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120#define spi_pcpu_stats_totalize(ret, in, field)				\
 121do {									\
 122	int i;								\
 123	ret = 0;							\
 124	for_each_possible_cpu(i) {					\
 125		const struct spi_statistics *pcpu_stats;		\
 126		u64 inc;						\
 127		unsigned int start;					\
 128		pcpu_stats = per_cpu_ptr(in, i);			\
 129		do {							\
 130			start = u64_stats_fetch_begin(		\
 131					&pcpu_stats->syncp);		\
 132			inc = u64_stats_read(&pcpu_stats->field);	\
 133		} while (u64_stats_fetch_retry(			\
 134					&pcpu_stats->syncp, start));	\
 135		ret += inc;						\
 136	}								\
 137} while (0)
 138
 139#define SPI_STATISTICS_ATTRS(field, file)				\
 140static ssize_t spi_controller_##field##_show(struct device *dev,	\
 141					     struct device_attribute *attr, \
 142					     char *buf)			\
 143{									\
 144	struct spi_controller *ctlr = container_of(dev,			\
 145					 struct spi_controller, dev);	\
 146	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 147}									\
 148static struct device_attribute dev_attr_spi_controller_##field = {	\
 149	.attr = { .name = file, .mode = 0444 },				\
 150	.show = spi_controller_##field##_show,				\
 151};									\
 152static ssize_t spi_device_##field##_show(struct device *dev,		\
 153					 struct device_attribute *attr,	\
 154					char *buf)			\
 155{									\
 156	struct spi_device *spi = to_spi_device(dev);			\
 157	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 158}									\
 159static struct device_attribute dev_attr_spi_device_##field = {		\
 160	.attr = { .name = file, .mode = 0444 },				\
 161	.show = spi_device_##field##_show,				\
 162}
 163
 164#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 165static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 166					    char *buf)			\
 167{									\
 168	ssize_t len;							\
 169	u64 val;							\
 170	spi_pcpu_stats_totalize(val, stat, field);			\
 171	len = sysfs_emit(buf, "%llu\n", val);				\
 172	return len;							\
 173}									\
 174SPI_STATISTICS_ATTRS(name, file)
 175
 176#define SPI_STATISTICS_SHOW(field)					\
 177	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 178				 field)
 179
 180SPI_STATISTICS_SHOW(messages);
 181SPI_STATISTICS_SHOW(transfers);
 182SPI_STATISTICS_SHOW(errors);
 183SPI_STATISTICS_SHOW(timedout);
 184
 185SPI_STATISTICS_SHOW(spi_sync);
 186SPI_STATISTICS_SHOW(spi_sync_immediate);
 187SPI_STATISTICS_SHOW(spi_async);
 188
 189SPI_STATISTICS_SHOW(bytes);
 190SPI_STATISTICS_SHOW(bytes_rx);
 191SPI_STATISTICS_SHOW(bytes_tx);
 192
 193#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 194	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 195				 "transfer_bytes_histo_" number,	\
 196				 transfer_bytes_histo[index])
 197SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 214
 215SPI_STATISTICS_SHOW(transfers_split_maxsize);
 216
 217static struct attribute *spi_dev_attrs[] = {
 218	&dev_attr_modalias.attr,
 219	&dev_attr_driver_override.attr,
 220	NULL,
 221};
 
 222
 223static const struct attribute_group spi_dev_group = {
 224	.attrs  = spi_dev_attrs,
 225};
 226
 227static struct attribute *spi_device_statistics_attrs[] = {
 228	&dev_attr_spi_device_messages.attr,
 229	&dev_attr_spi_device_transfers.attr,
 230	&dev_attr_spi_device_errors.attr,
 231	&dev_attr_spi_device_timedout.attr,
 232	&dev_attr_spi_device_spi_sync.attr,
 233	&dev_attr_spi_device_spi_sync_immediate.attr,
 234	&dev_attr_spi_device_spi_async.attr,
 235	&dev_attr_spi_device_bytes.attr,
 236	&dev_attr_spi_device_bytes_rx.attr,
 237	&dev_attr_spi_device_bytes_tx.attr,
 238	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 255	&dev_attr_spi_device_transfers_split_maxsize.attr,
 256	NULL,
 257};
 258
 259static const struct attribute_group spi_device_statistics_group = {
 260	.name  = "statistics",
 261	.attrs  = spi_device_statistics_attrs,
 262};
 263
 264static const struct attribute_group *spi_dev_groups[] = {
 265	&spi_dev_group,
 266	&spi_device_statistics_group,
 267	NULL,
 268};
 269
 270static struct attribute *spi_controller_statistics_attrs[] = {
 271	&dev_attr_spi_controller_messages.attr,
 272	&dev_attr_spi_controller_transfers.attr,
 273	&dev_attr_spi_controller_errors.attr,
 274	&dev_attr_spi_controller_timedout.attr,
 275	&dev_attr_spi_controller_spi_sync.attr,
 276	&dev_attr_spi_controller_spi_sync_immediate.attr,
 277	&dev_attr_spi_controller_spi_async.attr,
 278	&dev_attr_spi_controller_bytes.attr,
 279	&dev_attr_spi_controller_bytes_rx.attr,
 280	&dev_attr_spi_controller_bytes_tx.attr,
 281	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 298	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 299	NULL,
 300};
 301
 302static const struct attribute_group spi_controller_statistics_group = {
 303	.name  = "statistics",
 304	.attrs  = spi_controller_statistics_attrs,
 305};
 306
 307static const struct attribute_group *spi_master_groups[] = {
 308	&spi_controller_statistics_group,
 309	NULL,
 310};
 311
 312static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 313					      struct spi_transfer *xfer,
 314					      struct spi_controller *ctlr)
 315{
 316	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 317	struct spi_statistics *stats;
 318
 319	if (l2len < 0)
 320		l2len = 0;
 321
 322	get_cpu();
 323	stats = this_cpu_ptr(pcpu_stats);
 324	u64_stats_update_begin(&stats->syncp);
 325
 326	u64_stats_inc(&stats->transfers);
 327	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 328
 329	u64_stats_add(&stats->bytes, xfer->len);
 330	if ((xfer->tx_buf) &&
 331	    (xfer->tx_buf != ctlr->dummy_tx))
 332		u64_stats_add(&stats->bytes_tx, xfer->len);
 333	if ((xfer->rx_buf) &&
 334	    (xfer->rx_buf != ctlr->dummy_rx))
 335		u64_stats_add(&stats->bytes_rx, xfer->len);
 336
 337	u64_stats_update_end(&stats->syncp);
 338	put_cpu();
 339}
 340
 341/*
 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 343 * and the sysfs version makes coldplug work too.
 344 */
 345static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 
 
 346{
 347	while (id->name[0]) {
 348		if (!strcmp(name, id->name))
 349			return id;
 350		id++;
 351	}
 352	return NULL;
 353}
 354
 355const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 356{
 357	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 358
 359	return spi_match_id(sdrv->id_table, sdev->modalias);
 360}
 361EXPORT_SYMBOL_GPL(spi_get_device_id);
 362
 363const void *spi_get_device_match_data(const struct spi_device *sdev)
 364{
 365	const void *match;
 366
 367	match = device_get_match_data(&sdev->dev);
 368	if (match)
 369		return match;
 370
 371	return (const void *)spi_get_device_id(sdev)->driver_data;
 372}
 373EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 374
 375static int spi_match_device(struct device *dev, struct device_driver *drv)
 376{
 377	const struct spi_device	*spi = to_spi_device(dev);
 378	const struct spi_driver	*sdrv = to_spi_driver(drv);
 379
 380	/* Check override first, and if set, only use the named driver */
 381	if (spi->driver_override)
 382		return strcmp(spi->driver_override, drv->name) == 0;
 383
 384	/* Attempt an OF style match */
 385	if (of_driver_match_device(dev, drv))
 386		return 1;
 387
 388	/* Then try ACPI */
 389	if (acpi_driver_match_device(dev, drv))
 390		return 1;
 391
 392	if (sdrv->id_table)
 393		return !!spi_match_id(sdrv->id_table, spi->modalias);
 394
 395	return strcmp(spi->modalias, drv->name) == 0;
 396}
 397
 398static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 399{
 400	const struct spi_device		*spi = to_spi_device(dev);
 401	int rc;
 402
 403	rc = acpi_device_uevent_modalias(dev, env);
 404	if (rc != -ENODEV)
 405		return rc;
 406
 407	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 
 408}
 409
 410static int spi_probe(struct device *dev)
 
 411{
 412	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 413	struct spi_device		*spi = to_spi_device(dev);
 414	int ret;
 415
 416	ret = of_clk_set_defaults(dev->of_node, false);
 417	if (ret)
 418		return ret;
 419
 420	if (dev->of_node) {
 421		spi->irq = of_irq_get(dev->of_node, 0);
 422		if (spi->irq == -EPROBE_DEFER)
 423			return -EPROBE_DEFER;
 424		if (spi->irq < 0)
 425			spi->irq = 0;
 426	}
 
 
 427
 428	ret = dev_pm_domain_attach(dev, true);
 429	if (ret)
 430		return ret;
 
 431
 432	if (sdrv->probe) {
 433		ret = sdrv->probe(spi);
 434		if (ret)
 435			dev_pm_domain_detach(dev, true);
 
 
 436	}
 
 
 437
 438	return ret;
 
 
 
 
 
 
 
 439}
 440
 441static void spi_remove(struct device *dev)
 442{
 443	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 444
 445	if (sdrv->remove)
 446		sdrv->remove(to_spi_device(dev));
 
 
 
 
 
 
 
 447
 448	dev_pm_domain_detach(dev, true);
 
 
 
 449}
 450
 451static void spi_shutdown(struct device *dev)
 452{
 453	if (dev->driver) {
 454		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 455
 456		if (sdrv->shutdown)
 457			sdrv->shutdown(to_spi_device(dev));
 458	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460
 461struct bus_type spi_bus_type = {
 462	.name		= "spi",
 463	.dev_groups	= spi_dev_groups,
 464	.match		= spi_match_device,
 465	.uevent		= spi_uevent,
 466	.probe		= spi_probe,
 467	.remove		= spi_remove,
 468	.shutdown	= spi_shutdown,
 469};
 470EXPORT_SYMBOL_GPL(spi_bus_type);
 471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472/**
 473 * __spi_register_driver - register a SPI driver
 474 * @owner: owner module of the driver to register
 475 * @sdrv: the driver to register
 476 * Context: can sleep
 477 *
 478 * Return: zero on success, else a negative error code.
 479 */
 480int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 481{
 482	sdrv->driver.owner = owner;
 483	sdrv->driver.bus = &spi_bus_type;
 484
 485	/*
 486	 * For Really Good Reasons we use spi: modaliases not of:
 487	 * modaliases for DT so module autoloading won't work if we
 488	 * don't have a spi_device_id as well as a compatible string.
 489	 */
 490	if (sdrv->driver.of_match_table) {
 491		const struct of_device_id *of_id;
 492
 493		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 494		     of_id++) {
 495			const char *of_name;
 496
 497			/* Strip off any vendor prefix */
 498			of_name = strnchr(of_id->compatible,
 499					  sizeof(of_id->compatible), ',');
 500			if (of_name)
 501				of_name++;
 502			else
 503				of_name = of_id->compatible;
 504
 505			if (sdrv->id_table) {
 506				const struct spi_device_id *spi_id;
 507
 508				spi_id = spi_match_id(sdrv->id_table, of_name);
 509				if (spi_id)
 510					continue;
 511			} else {
 512				if (strcmp(sdrv->driver.name, of_name) == 0)
 513					continue;
 514			}
 515
 516			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 517				sdrv->driver.name, of_id->compatible);
 518		}
 519	}
 520
 521	return driver_register(&sdrv->driver);
 522}
 523EXPORT_SYMBOL_GPL(__spi_register_driver);
 524
 525/*-------------------------------------------------------------------------*/
 526
 527/*
 528 * SPI devices should normally not be created by SPI device drivers; that
 529 * would make them board-specific.  Similarly with SPI controller drivers.
 530 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 531 * with other readonly (flashable) information about mainboard devices.
 532 */
 533
 534struct boardinfo {
 535	struct list_head	list;
 536	struct spi_board_info	board_info;
 537};
 538
 539static LIST_HEAD(board_list);
 540static LIST_HEAD(spi_controller_list);
 541
 542/*
 543 * Used to protect add/del operation for board_info list and
 544 * spi_controller list, and their matching process also used
 545 * to protect object of type struct idr.
 546 */
 547static DEFINE_MUTEX(board_lock);
 548
 549/**
 550 * spi_alloc_device - Allocate a new SPI device
 551 * @ctlr: Controller to which device is connected
 552 * Context: can sleep
 553 *
 554 * Allows a driver to allocate and initialize a spi_device without
 555 * registering it immediately.  This allows a driver to directly
 556 * fill the spi_device with device parameters before calling
 557 * spi_add_device() on it.
 558 *
 559 * Caller is responsible to call spi_add_device() on the returned
 560 * spi_device structure to add it to the SPI controller.  If the caller
 561 * needs to discard the spi_device without adding it, then it should
 562 * call spi_dev_put() on it.
 563 *
 564 * Return: a pointer to the new device, or NULL.
 565 */
 566struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 567{
 568	struct spi_device	*spi;
 
 569
 570	if (!spi_controller_get(ctlr))
 571		return NULL;
 572
 573	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 574	if (!spi) {
 575		spi_controller_put(ctlr);
 
 576		return NULL;
 577	}
 578
 579	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 580	if (!spi->pcpu_statistics) {
 581		kfree(spi);
 582		spi_controller_put(ctlr);
 583		return NULL;
 584	}
 585
 586	spi->master = spi->controller = ctlr;
 587	spi->dev.parent = &ctlr->dev;
 588	spi->dev.bus = &spi_bus_type;
 589	spi->dev.release = spidev_release;
 590	spi->mode = ctlr->buswidth_override_bits;
 591
 592	device_initialize(&spi->dev);
 593	return spi;
 594}
 595EXPORT_SYMBOL_GPL(spi_alloc_device);
 596
 597static void spi_dev_set_name(struct spi_device *spi)
 598{
 599	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 600
 601	if (adev) {
 602		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 603		return;
 604	}
 605
 606	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 607		     spi->chip_select);
 608}
 609
 610static int spi_dev_check(struct device *dev, void *data)
 611{
 612	struct spi_device *spi = to_spi_device(dev);
 613	struct spi_device *new_spi = data;
 614
 615	if (spi->controller == new_spi->controller &&
 616	    spi->chip_select == new_spi->chip_select)
 617		return -EBUSY;
 618	return 0;
 619}
 620
 621static void spi_cleanup(struct spi_device *spi)
 622{
 623	if (spi->controller->cleanup)
 624		spi->controller->cleanup(spi);
 625}
 626
 627static int __spi_add_device(struct spi_device *spi)
 
 
 
 628{
 629	struct spi_controller *ctlr = spi->controller;
 630	struct device *dev = ctlr->dev.parent;
 
 631	int status;
 632
 633	/*
 634	 * We need to make sure there's no other device with this
 
 
 
 
 
 
 
 
 
 
 635	 * chipselect **BEFORE** we call setup(), else we'll trash
 636	 * its configuration.
 637	 */
 
 
 638	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 639	if (status) {
 640		dev_err(dev, "chipselect %d already in use\n",
 641				spi->chip_select);
 642		return status;
 643	}
 644
 645	/* Controller may unregister concurrently */
 646	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 647	    !device_is_registered(&ctlr->dev)) {
 648		return -ENODEV;
 649	}
 650
 651	if (ctlr->cs_gpiods)
 652		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 653
 654	/*
 655	 * Drivers may modify this initial i/o setup, but will
 656	 * normally rely on the device being setup.  Devices
 657	 * using SPI_CS_HIGH can't coexist well otherwise...
 658	 */
 659	status = spi_setup(spi);
 660	if (status < 0) {
 661		dev_err(dev, "can't setup %s, status %d\n",
 662				dev_name(&spi->dev), status);
 663		return status;
 664	}
 665
 666	/* Device may be bound to an active driver when this returns */
 667	status = device_add(&spi->dev);
 668	if (status < 0) {
 669		dev_err(dev, "can't add %s, status %d\n",
 670				dev_name(&spi->dev), status);
 671		spi_cleanup(spi);
 672	} else {
 673		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 674	}
 675
 676	return status;
 677}
 678
 679/**
 680 * spi_add_device - Add spi_device allocated with spi_alloc_device
 681 * @spi: spi_device to register
 682 *
 683 * Companion function to spi_alloc_device.  Devices allocated with
 684 * spi_alloc_device can be added onto the spi bus with this function.
 685 *
 686 * Return: 0 on success; negative errno on failure
 687 */
 688int spi_add_device(struct spi_device *spi)
 689{
 690	struct spi_controller *ctlr = spi->controller;
 691	struct device *dev = ctlr->dev.parent;
 692	int status;
 693
 694	/* Chipselects are numbered 0..max; validate. */
 695	if (spi->chip_select >= ctlr->num_chipselect) {
 696		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 697			ctlr->num_chipselect);
 698		return -EINVAL;
 699	}
 700
 701	/* Set the bus ID string */
 702	spi_dev_set_name(spi);
 703
 704	mutex_lock(&ctlr->add_lock);
 705	status = __spi_add_device(spi);
 706	mutex_unlock(&ctlr->add_lock);
 707	return status;
 708}
 709EXPORT_SYMBOL_GPL(spi_add_device);
 710
 711static int spi_add_device_locked(struct spi_device *spi)
 712{
 713	struct spi_controller *ctlr = spi->controller;
 714	struct device *dev = ctlr->dev.parent;
 715
 716	/* Chipselects are numbered 0..max; validate. */
 717	if (spi->chip_select >= ctlr->num_chipselect) {
 718		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 719			ctlr->num_chipselect);
 720		return -EINVAL;
 721	}
 722
 723	/* Set the bus ID string */
 724	spi_dev_set_name(spi);
 725
 726	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
 727	return __spi_add_device(spi);
 728}
 729
 730/**
 731 * spi_new_device - instantiate one new SPI device
 732 * @ctlr: Controller to which device is connected
 733 * @chip: Describes the SPI device
 734 * Context: can sleep
 735 *
 736 * On typical mainboards, this is purely internal; and it's not needed
 737 * after board init creates the hard-wired devices.  Some development
 738 * platforms may not be able to use spi_register_board_info though, and
 739 * this is exported so that for example a USB or parport based adapter
 740 * driver could add devices (which it would learn about out-of-band).
 741 *
 742 * Return: the new device, or NULL.
 743 */
 744struct spi_device *spi_new_device(struct spi_controller *ctlr,
 745				  struct spi_board_info *chip)
 746{
 747	struct spi_device	*proxy;
 748	int			status;
 749
 750	/*
 751	 * NOTE:  caller did any chip->bus_num checks necessary.
 752	 *
 753	 * Also, unless we change the return value convention to use
 754	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 755	 * suggests syslogged diagnostics are best here (ugh).
 756	 */
 757
 758	proxy = spi_alloc_device(ctlr);
 759	if (!proxy)
 760		return NULL;
 761
 762	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 763
 764	proxy->chip_select = chip->chip_select;
 765	proxy->max_speed_hz = chip->max_speed_hz;
 766	proxy->mode = chip->mode;
 767	proxy->irq = chip->irq;
 768	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 769	proxy->dev.platform_data = (void *) chip->platform_data;
 770	proxy->controller_data = chip->controller_data;
 771	proxy->controller_state = NULL;
 772
 773	if (chip->swnode) {
 774		status = device_add_software_node(&proxy->dev, chip->swnode);
 775		if (status) {
 776			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 777				chip->modalias, status);
 778			goto err_dev_put;
 779		}
 780	}
 781
 782	status = spi_add_device(proxy);
 783	if (status < 0)
 784		goto err_dev_put;
 
 
 785
 786	return proxy;
 787
 788err_dev_put:
 789	device_remove_software_node(&proxy->dev);
 790	spi_dev_put(proxy);
 791	return NULL;
 792}
 793EXPORT_SYMBOL_GPL(spi_new_device);
 794
 795/**
 796 * spi_unregister_device - unregister a single SPI device
 797 * @spi: spi_device to unregister
 798 *
 799 * Start making the passed SPI device vanish. Normally this would be handled
 800 * by spi_unregister_controller().
 801 */
 802void spi_unregister_device(struct spi_device *spi)
 803{
 804	if (!spi)
 805		return;
 806
 807	if (spi->dev.of_node) {
 808		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 809		of_node_put(spi->dev.of_node);
 810	}
 811	if (ACPI_COMPANION(&spi->dev))
 812		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 813	device_remove_software_node(&spi->dev);
 814	device_del(&spi->dev);
 815	spi_cleanup(spi);
 816	put_device(&spi->dev);
 817}
 818EXPORT_SYMBOL_GPL(spi_unregister_device);
 819
 820static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 821					      struct spi_board_info *bi)
 822{
 823	struct spi_device *dev;
 824
 825	if (ctlr->bus_num != bi->bus_num)
 826		return;
 827
 828	dev = spi_new_device(ctlr, bi);
 829	if (!dev)
 830		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 831			bi->modalias);
 832}
 833
 834/**
 835 * spi_register_board_info - register SPI devices for a given board
 836 * @info: array of chip descriptors
 837 * @n: how many descriptors are provided
 838 * Context: can sleep
 839 *
 840 * Board-specific early init code calls this (probably during arch_initcall)
 841 * with segments of the SPI device table.  Any device nodes are created later,
 842 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 843 * this table of devices forever, so that reloading a controller driver will
 844 * not make Linux forget about these hard-wired devices.
 845 *
 846 * Other code can also call this, e.g. a particular add-on board might provide
 847 * SPI devices through its expansion connector, so code initializing that board
 848 * would naturally declare its SPI devices.
 849 *
 850 * The board info passed can safely be __initdata ... but be careful of
 851 * any embedded pointers (platform_data, etc), they're copied as-is.
 852 *
 853 * Return: zero on success, else a negative error code.
 854 */
 855int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 856{
 857	struct boardinfo *bi;
 858	int i;
 859
 860	if (!n)
 861		return 0;
 862
 863	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 864	if (!bi)
 865		return -ENOMEM;
 866
 867	for (i = 0; i < n; i++, bi++, info++) {
 868		struct spi_controller *ctlr;
 869
 870		memcpy(&bi->board_info, info, sizeof(*info));
 871
 872		mutex_lock(&board_lock);
 873		list_add_tail(&bi->list, &board_list);
 874		list_for_each_entry(ctlr, &spi_controller_list, list)
 875			spi_match_controller_to_boardinfo(ctlr,
 876							  &bi->board_info);
 877		mutex_unlock(&board_lock);
 878	}
 879
 880	return 0;
 881}
 882
 883/*-------------------------------------------------------------------------*/
 884
 885/* Core methods for SPI resource management */
 886
 887/**
 888 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 889 *                 during the processing of a spi_message while using
 890 *                 spi_transfer_one
 891 * @spi:     the spi device for which we allocate memory
 892 * @release: the release code to execute for this resource
 893 * @size:    size to alloc and return
 894 * @gfp:     GFP allocation flags
 895 *
 896 * Return: the pointer to the allocated data
 897 *
 898 * This may get enhanced in the future to allocate from a memory pool
 899 * of the @spi_device or @spi_controller to avoid repeated allocations.
 900 */
 901static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 902			   size_t size, gfp_t gfp)
 903{
 904	struct spi_res *sres;
 905
 906	sres = kzalloc(sizeof(*sres) + size, gfp);
 907	if (!sres)
 908		return NULL;
 909
 910	INIT_LIST_HEAD(&sres->entry);
 911	sres->release = release;
 912
 913	return sres->data;
 914}
 915
 916/**
 917 * spi_res_free - free an spi resource
 918 * @res: pointer to the custom data of a resource
 919 */
 920static void spi_res_free(void *res)
 921{
 922	struct spi_res *sres = container_of(res, struct spi_res, data);
 923
 924	if (!res)
 925		return;
 926
 927	WARN_ON(!list_empty(&sres->entry));
 928	kfree(sres);
 929}
 930
 931/**
 932 * spi_res_add - add a spi_res to the spi_message
 933 * @message: the spi message
 934 * @res:     the spi_resource
 935 */
 936static void spi_res_add(struct spi_message *message, void *res)
 937{
 938	struct spi_res *sres = container_of(res, struct spi_res, data);
 939
 940	WARN_ON(!list_empty(&sres->entry));
 941	list_add_tail(&sres->entry, &message->resources);
 942}
 943
 944/**
 945 * spi_res_release - release all spi resources for this message
 946 * @ctlr:  the @spi_controller
 947 * @message: the @spi_message
 948 */
 949static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
 950{
 951	struct spi_res *res, *tmp;
 952
 953	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
 954		if (res->release)
 955			res->release(ctlr, message, res->data);
 956
 957		list_del(&res->entry);
 958
 959		kfree(res);
 960	}
 961}
 962
 963/*-------------------------------------------------------------------------*/
 964
 965static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
 966{
 967	bool activate = enable;
 968
 969	/*
 970	 * Avoid calling into the driver (or doing delays) if the chip select
 971	 * isn't actually changing from the last time this was called.
 972	 */
 973	if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
 974				(!enable && spi->controller->last_cs != spi->chip_select)) &&
 975	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
 976		return;
 977
 978	trace_spi_set_cs(spi, activate);
 979
 980	spi->controller->last_cs = enable ? spi->chip_select : -1;
 981	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
 982
 983	if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
 984		spi_delay_exec(&spi->cs_hold, NULL);
 985	}
 986
 987	if (spi->mode & SPI_CS_HIGH)
 988		enable = !enable;
 989
 990	if (spi->cs_gpiod) {
 991		if (!(spi->mode & SPI_NO_CS)) {
 992			/*
 993			 * Historically ACPI has no means of the GPIO polarity and
 994			 * thus the SPISerialBus() resource defines it on the per-chip
 995			 * basis. In order to avoid a chain of negations, the GPIO
 996			 * polarity is considered being Active High. Even for the cases
 997			 * when _DSD() is involved (in the updated versions of ACPI)
 998			 * the GPIO CS polarity must be defined Active High to avoid
 999			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1000			 * into account.
1001			 */
1002			if (has_acpi_companion(&spi->dev))
1003				gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
1004			else
1005				/* Polarity handled by GPIO library */
1006				gpiod_set_value_cansleep(spi->cs_gpiod, activate);
1007		}
1008		/* Some SPI masters need both GPIO CS & slave_select */
1009		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1010		    spi->controller->set_cs)
1011			spi->controller->set_cs(spi, !enable);
1012	} else if (spi->controller->set_cs) {
1013		spi->controller->set_cs(spi, !enable);
1014	}
1015
1016	if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
1017		if (activate)
1018			spi_delay_exec(&spi->cs_setup, NULL);
1019		else
1020			spi_delay_exec(&spi->cs_inactive, NULL);
1021	}
1022}
1023
1024#ifdef CONFIG_HAS_DMA
1025static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1026			     struct sg_table *sgt, void *buf, size_t len,
1027			     enum dma_data_direction dir, unsigned long attrs)
1028{
1029	const bool vmalloced_buf = is_vmalloc_addr(buf);
1030	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1031#ifdef CONFIG_HIGHMEM
1032	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1033				(unsigned long)buf < (PKMAP_BASE +
1034					(LAST_PKMAP * PAGE_SIZE)));
1035#else
1036	const bool kmap_buf = false;
1037#endif
1038	int desc_len;
1039	int sgs;
1040	struct page *vm_page;
1041	struct scatterlist *sg;
1042	void *sg_buf;
1043	size_t min;
1044	int i, ret;
1045
1046	if (vmalloced_buf || kmap_buf) {
1047		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1048		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1049	} else if (virt_addr_valid(buf)) {
1050		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1051		sgs = DIV_ROUND_UP(len, desc_len);
1052	} else {
1053		return -EINVAL;
1054	}
1055
1056	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1057	if (ret != 0)
1058		return ret;
1059
1060	sg = &sgt->sgl[0];
1061	for (i = 0; i < sgs; i++) {
 
1062
1063		if (vmalloced_buf || kmap_buf) {
1064			/*
1065			 * Next scatterlist entry size is the minimum between
1066			 * the desc_len and the remaining buffer length that
1067			 * fits in a page.
1068			 */
1069			min = min_t(size_t, desc_len,
1070				    min_t(size_t, len,
1071					  PAGE_SIZE - offset_in_page(buf)));
1072			if (vmalloced_buf)
1073				vm_page = vmalloc_to_page(buf);
1074			else
1075				vm_page = kmap_to_page(buf);
1076			if (!vm_page) {
1077				sg_free_table(sgt);
1078				return -ENOMEM;
1079			}
1080			sg_set_page(sg, vm_page,
1081				    min, offset_in_page(buf));
1082		} else {
1083			min = min_t(size_t, len, desc_len);
1084			sg_buf = buf;
1085			sg_set_buf(sg, sg_buf, min);
1086		}
1087
 
 
1088		buf += min;
1089		len -= min;
1090		sg = sg_next(sg);
1091	}
1092
1093	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1094	if (ret < 0) {
1095		sg_free_table(sgt);
1096		return ret;
1097	}
1098
1099	return 0;
1100}
1101
1102int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1103		struct sg_table *sgt, void *buf, size_t len,
1104		enum dma_data_direction dir)
1105{
1106	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1107}
1108
1109static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1110				struct device *dev, struct sg_table *sgt,
1111				enum dma_data_direction dir,
1112				unsigned long attrs)
1113{
1114	if (sgt->orig_nents) {
1115		dma_unmap_sgtable(dev, sgt, dir, attrs);
1116		sg_free_table(sgt);
1117		sgt->orig_nents = 0;
1118		sgt->nents = 0;
1119	}
1120}
1121
1122void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1123		   struct sg_table *sgt, enum dma_data_direction dir)
1124{
1125	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1126}
1127
1128static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1129{
1130	struct device *tx_dev, *rx_dev;
1131	struct spi_transfer *xfer;
1132	int ret;
1133
1134	if (!ctlr->can_dma)
1135		return 0;
1136
1137	if (ctlr->dma_tx)
1138		tx_dev = ctlr->dma_tx->device->dev;
1139	else if (ctlr->dma_map_dev)
1140		tx_dev = ctlr->dma_map_dev;
1141	else
1142		tx_dev = ctlr->dev.parent;
1143
1144	if (ctlr->dma_rx)
1145		rx_dev = ctlr->dma_rx->device->dev;
1146	else if (ctlr->dma_map_dev)
1147		rx_dev = ctlr->dma_map_dev;
1148	else
1149		rx_dev = ctlr->dev.parent;
1150
1151	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1152		/* The sync is done before each transfer. */
1153		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1154
1155		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1156			continue;
1157
1158		if (xfer->tx_buf != NULL) {
1159			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1160						(void *)xfer->tx_buf,
1161						xfer->len, DMA_TO_DEVICE,
1162						attrs);
1163			if (ret != 0)
1164				return ret;
1165		}
1166
1167		if (xfer->rx_buf != NULL) {
1168			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1169						xfer->rx_buf, xfer->len,
1170						DMA_FROM_DEVICE, attrs);
1171			if (ret != 0) {
1172				spi_unmap_buf_attrs(ctlr, tx_dev,
1173						&xfer->tx_sg, DMA_TO_DEVICE,
1174						attrs);
1175
1176				return ret;
1177			}
1178		}
1179	}
1180
1181	ctlr->cur_rx_dma_dev = rx_dev;
1182	ctlr->cur_tx_dma_dev = tx_dev;
1183	ctlr->cur_msg_mapped = true;
1184
1185	return 0;
1186}
1187
1188static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1189{
1190	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1191	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1192	struct spi_transfer *xfer;
 
1193
1194	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1195		return 0;
1196
1197	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1198		/* The sync has already been done after each transfer. */
1199		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1200
1201		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 
1202			continue;
1203
1204		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1205				    DMA_FROM_DEVICE, attrs);
1206		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1207				    DMA_TO_DEVICE, attrs);
1208	}
1209
1210	ctlr->cur_msg_mapped = false;
1211
1212	return 0;
1213}
1214
1215static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1216				    struct spi_transfer *xfer)
1217{
1218	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1219	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1220
1221	if (!ctlr->cur_msg_mapped)
1222		return;
1223
1224	if (xfer->tx_sg.orig_nents)
1225		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1226	if (xfer->rx_sg.orig_nents)
1227		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1228}
1229
1230static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1231				 struct spi_transfer *xfer)
1232{
1233	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1234	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1235
1236	if (!ctlr->cur_msg_mapped)
1237		return;
1238
1239	if (xfer->rx_sg.orig_nents)
1240		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1241	if (xfer->tx_sg.orig_nents)
1242		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1243}
1244#else /* !CONFIG_HAS_DMA */
1245static inline int __spi_map_msg(struct spi_controller *ctlr,
1246				struct spi_message *msg)
1247{
1248	return 0;
1249}
1250
1251static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1252				  struct spi_message *msg)
1253{
1254	return 0;
1255}
1256
1257static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1258				    struct spi_transfer *xfer)
1259{
1260}
1261
1262static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1263				 struct spi_transfer *xfer)
1264{
1265}
1266#endif /* !CONFIG_HAS_DMA */
1267
1268static inline int spi_unmap_msg(struct spi_controller *ctlr,
1269				struct spi_message *msg)
1270{
1271	struct spi_transfer *xfer;
1272
1273	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1274		/*
1275		 * Restore the original value of tx_buf or rx_buf if they are
1276		 * NULL.
1277		 */
1278		if (xfer->tx_buf == ctlr->dummy_tx)
1279			xfer->tx_buf = NULL;
1280		if (xfer->rx_buf == ctlr->dummy_rx)
1281			xfer->rx_buf = NULL;
1282	}
1283
1284	return __spi_unmap_msg(ctlr, msg);
1285}
1286
1287static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1288{
1289	struct spi_transfer *xfer;
1290	void *tmp;
1291	unsigned int max_tx, max_rx;
1292
1293	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1294		&& !(msg->spi->mode & SPI_3WIRE)) {
1295		max_tx = 0;
1296		max_rx = 0;
1297
1298		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1299			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1300			    !xfer->tx_buf)
1301				max_tx = max(xfer->len, max_tx);
1302			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1303			    !xfer->rx_buf)
1304				max_rx = max(xfer->len, max_rx);
1305		}
1306
1307		if (max_tx) {
1308			tmp = krealloc(ctlr->dummy_tx, max_tx,
1309				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1310			if (!tmp)
1311				return -ENOMEM;
1312			ctlr->dummy_tx = tmp;
 
1313		}
1314
1315		if (max_rx) {
1316			tmp = krealloc(ctlr->dummy_rx, max_rx,
1317				       GFP_KERNEL | GFP_DMA);
1318			if (!tmp)
1319				return -ENOMEM;
1320			ctlr->dummy_rx = tmp;
1321		}
1322
1323		if (max_tx || max_rx) {
1324			list_for_each_entry(xfer, &msg->transfers,
1325					    transfer_list) {
1326				if (!xfer->len)
1327					continue;
1328				if (!xfer->tx_buf)
1329					xfer->tx_buf = ctlr->dummy_tx;
1330				if (!xfer->rx_buf)
1331					xfer->rx_buf = ctlr->dummy_rx;
1332			}
1333		}
1334	}
1335
1336	return __spi_map_msg(ctlr, msg);
1337}
1338
1339static int spi_transfer_wait(struct spi_controller *ctlr,
1340			     struct spi_message *msg,
1341			     struct spi_transfer *xfer)
1342{
1343	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1344	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1345	u32 speed_hz = xfer->speed_hz;
1346	unsigned long long ms;
1347
1348	if (spi_controller_is_slave(ctlr)) {
1349		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1350			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1351			return -EINTR;
1352		}
1353	} else {
1354		if (!speed_hz)
1355			speed_hz = 100000;
1356
1357		/*
1358		 * For each byte we wait for 8 cycles of the SPI clock.
1359		 * Since speed is defined in Hz and we want milliseconds,
1360		 * use respective multiplier, but before the division,
1361		 * otherwise we may get 0 for short transfers.
1362		 */
1363		ms = 8LL * MSEC_PER_SEC * xfer->len;
1364		do_div(ms, speed_hz);
1365
1366		/*
1367		 * Increase it twice and add 200 ms tolerance, use
1368		 * predefined maximum in case of overflow.
1369		 */
1370		ms += ms + 200;
1371		if (ms > UINT_MAX)
1372			ms = UINT_MAX;
1373
1374		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1375						 msecs_to_jiffies(ms));
1376
1377		if (ms == 0) {
1378			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1379			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1380			dev_err(&msg->spi->dev,
1381				"SPI transfer timed out\n");
1382			return -ETIMEDOUT;
1383		}
1384	}
1385
1386	return 0;
1387}
1388
1389static void _spi_transfer_delay_ns(u32 ns)
1390{
1391	if (!ns)
1392		return;
1393	if (ns <= NSEC_PER_USEC) {
1394		ndelay(ns);
1395	} else {
1396		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1397
1398		if (us <= 10)
1399			udelay(us);
1400		else
1401			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1402	}
1403}
1404
1405int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1406{
1407	u32 delay = _delay->value;
1408	u32 unit = _delay->unit;
1409	u32 hz;
1410
1411	if (!delay)
1412		return 0;
1413
1414	switch (unit) {
1415	case SPI_DELAY_UNIT_USECS:
1416		delay *= NSEC_PER_USEC;
1417		break;
1418	case SPI_DELAY_UNIT_NSECS:
1419		/* Nothing to do here */
1420		break;
1421	case SPI_DELAY_UNIT_SCK:
1422		/* Clock cycles need to be obtained from spi_transfer */
1423		if (!xfer)
1424			return -EINVAL;
1425		/*
1426		 * If there is unknown effective speed, approximate it
1427		 * by underestimating with half of the requested hz.
1428		 */
1429		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1430		if (!hz)
1431			return -EINVAL;
1432
1433		/* Convert delay to nanoseconds */
1434		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1435		break;
1436	default:
1437		return -EINVAL;
1438	}
1439
1440	return delay;
1441}
1442EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1443
1444int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1445{
1446	int delay;
1447
1448	might_sleep();
1449
1450	if (!_delay)
1451		return -EINVAL;
1452
1453	delay = spi_delay_to_ns(_delay, xfer);
1454	if (delay < 0)
1455		return delay;
1456
1457	_spi_transfer_delay_ns(delay);
1458
1459	return 0;
1460}
1461EXPORT_SYMBOL_GPL(spi_delay_exec);
1462
1463static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1464					  struct spi_transfer *xfer)
1465{
1466	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1467	u32 delay = xfer->cs_change_delay.value;
1468	u32 unit = xfer->cs_change_delay.unit;
1469	int ret;
1470
1471	/* Return early on "fast" mode - for everything but USECS */
1472	if (!delay) {
1473		if (unit == SPI_DELAY_UNIT_USECS)
1474			_spi_transfer_delay_ns(default_delay_ns);
1475		return;
1476	}
1477
1478	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1479	if (ret) {
1480		dev_err_once(&msg->spi->dev,
1481			     "Use of unsupported delay unit %i, using default of %luus\n",
1482			     unit, default_delay_ns / NSEC_PER_USEC);
1483		_spi_transfer_delay_ns(default_delay_ns);
1484	}
1485}
1486
1487/*
1488 * spi_transfer_one_message - Default implementation of transfer_one_message()
1489 *
1490 * This is a standard implementation of transfer_one_message() for
1491 * drivers which implement a transfer_one() operation.  It provides
1492 * standard handling of delays and chip select management.
1493 */
1494static int spi_transfer_one_message(struct spi_controller *ctlr,
1495				    struct spi_message *msg)
1496{
1497	struct spi_transfer *xfer;
1498	bool keep_cs = false;
1499	int ret = 0;
1500	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1501	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1502
1503	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1504	spi_set_cs(msg->spi, !xfer->cs_off, false);
1505
1506	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1507	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1508
1509	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1510		trace_spi_transfer_start(msg, xfer);
1511
1512		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1513		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1514
1515		if (!ctlr->ptp_sts_supported) {
1516			xfer->ptp_sts_word_pre = 0;
1517			ptp_read_system_prets(xfer->ptp_sts);
 
 
1518		}
1519
1520		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1521			reinit_completion(&ctlr->xfer_completion);
1522
1523fallback_pio:
1524			spi_dma_sync_for_device(ctlr, xfer);
1525			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1526			if (ret < 0) {
1527				spi_dma_sync_for_cpu(ctlr, xfer);
1528
1529				if (ctlr->cur_msg_mapped &&
1530				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1531					__spi_unmap_msg(ctlr, msg);
1532					ctlr->fallback = true;
1533					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1534					goto fallback_pio;
1535				}
1536
1537				SPI_STATISTICS_INCREMENT_FIELD(statm,
1538							       errors);
1539				SPI_STATISTICS_INCREMENT_FIELD(stats,
1540							       errors);
1541				dev_err(&msg->spi->dev,
1542					"SPI transfer failed: %d\n", ret);
1543				goto out;
1544			}
1545
1546			if (ret > 0) {
1547				ret = spi_transfer_wait(ctlr, msg, xfer);
1548				if (ret < 0)
1549					msg->status = ret;
1550			}
1551
1552			spi_dma_sync_for_cpu(ctlr, xfer);
1553		} else {
1554			if (xfer->len)
1555				dev_err(&msg->spi->dev,
1556					"Bufferless transfer has length %u\n",
1557					xfer->len);
1558		}
1559
1560		if (!ctlr->ptp_sts_supported) {
1561			ptp_read_system_postts(xfer->ptp_sts);
1562			xfer->ptp_sts_word_post = xfer->len;
1563		}
1564
1565		trace_spi_transfer_stop(msg, xfer);
1566
1567		if (msg->status != -EINPROGRESS)
1568			goto out;
1569
1570		spi_transfer_delay_exec(xfer);
 
1571
1572		if (xfer->cs_change) {
1573			if (list_is_last(&xfer->transfer_list,
1574					 &msg->transfers)) {
1575				keep_cs = true;
1576			} else {
1577				if (!xfer->cs_off)
1578					spi_set_cs(msg->spi, false, false);
1579				_spi_transfer_cs_change_delay(msg, xfer);
1580				if (!list_next_entry(xfer, transfer_list)->cs_off)
1581					spi_set_cs(msg->spi, true, false);
1582			}
1583		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1584			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1585			spi_set_cs(msg->spi, xfer->cs_off, false);
1586		}
1587
1588		msg->actual_length += xfer->len;
1589	}
1590
1591out:
1592	if (ret != 0 || !keep_cs)
1593		spi_set_cs(msg->spi, false, false);
1594
1595	if (msg->status == -EINPROGRESS)
1596		msg->status = ret;
1597
1598	if (msg->status && ctlr->handle_err)
1599		ctlr->handle_err(ctlr, msg);
1600
1601	spi_finalize_current_message(ctlr);
1602
1603	return ret;
1604}
1605
1606/**
1607 * spi_finalize_current_transfer - report completion of a transfer
1608 * @ctlr: the controller reporting completion
1609 *
1610 * Called by SPI drivers using the core transfer_one_message()
1611 * implementation to notify it that the current interrupt driven
1612 * transfer has finished and the next one may be scheduled.
1613 */
1614void spi_finalize_current_transfer(struct spi_controller *ctlr)
1615{
1616	complete(&ctlr->xfer_completion);
1617}
1618EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1619
1620static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1621{
1622	if (ctlr->auto_runtime_pm) {
1623		pm_runtime_mark_last_busy(ctlr->dev.parent);
1624		pm_runtime_put_autosuspend(ctlr->dev.parent);
1625	}
1626}
1627
1628static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1629		struct spi_message *msg, bool was_busy)
1630{
1631	struct spi_transfer *xfer;
1632	int ret;
1633
1634	if (!was_busy && ctlr->auto_runtime_pm) {
1635		ret = pm_runtime_get_sync(ctlr->dev.parent);
1636		if (ret < 0) {
1637			pm_runtime_put_noidle(ctlr->dev.parent);
1638			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1639				ret);
1640			return ret;
1641		}
1642	}
1643
1644	if (!was_busy)
1645		trace_spi_controller_busy(ctlr);
1646
1647	if (!was_busy && ctlr->prepare_transfer_hardware) {
1648		ret = ctlr->prepare_transfer_hardware(ctlr);
1649		if (ret) {
1650			dev_err(&ctlr->dev,
1651				"failed to prepare transfer hardware: %d\n",
1652				ret);
1653
1654			if (ctlr->auto_runtime_pm)
1655				pm_runtime_put(ctlr->dev.parent);
1656
1657			msg->status = ret;
1658			spi_finalize_current_message(ctlr);
1659
1660			return ret;
1661		}
1662	}
1663
1664	trace_spi_message_start(msg);
1665
1666	ret = spi_split_transfers_maxsize(ctlr, msg,
1667					  spi_max_transfer_size(msg->spi),
1668					  GFP_KERNEL | GFP_DMA);
1669	if (ret) {
1670		msg->status = ret;
1671		spi_finalize_current_message(ctlr);
1672		return ret;
1673	}
1674
1675	if (ctlr->prepare_message) {
1676		ret = ctlr->prepare_message(ctlr, msg);
1677		if (ret) {
1678			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1679				ret);
1680			msg->status = ret;
1681			spi_finalize_current_message(ctlr);
1682			return ret;
1683		}
1684		msg->prepared = true;
1685	}
1686
1687	ret = spi_map_msg(ctlr, msg);
1688	if (ret) {
1689		msg->status = ret;
1690		spi_finalize_current_message(ctlr);
1691		return ret;
1692	}
1693
1694	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1695		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1696			xfer->ptp_sts_word_pre = 0;
1697			ptp_read_system_prets(xfer->ptp_sts);
1698		}
1699	}
1700
1701	/*
1702	 * Drivers implementation of transfer_one_message() must arrange for
1703	 * spi_finalize_current_message() to get called. Most drivers will do
1704	 * this in the calling context, but some don't. For those cases, a
1705	 * completion is used to guarantee that this function does not return
1706	 * until spi_finalize_current_message() is done accessing
1707	 * ctlr->cur_msg.
1708	 * Use of the following two flags enable to opportunistically skip the
1709	 * use of the completion since its use involves expensive spin locks.
1710	 * In case of a race with the context that calls
1711	 * spi_finalize_current_message() the completion will always be used,
1712	 * due to strict ordering of these flags using barriers.
1713	 */
1714	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1715	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1716	reinit_completion(&ctlr->cur_msg_completion);
1717	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1718
1719	ret = ctlr->transfer_one_message(ctlr, msg);
1720	if (ret) {
1721		dev_err(&ctlr->dev,
1722			"failed to transfer one message from queue\n");
1723		return ret;
1724	}
1725
1726	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1727	smp_mb(); /* See spi_finalize_current_message()... */
1728	if (READ_ONCE(ctlr->cur_msg_incomplete))
1729		wait_for_completion(&ctlr->cur_msg_completion);
1730
1731	return 0;
1732}
1733
1734/**
1735 * __spi_pump_messages - function which processes spi message queue
1736 * @ctlr: controller to process queue for
1737 * @in_kthread: true if we are in the context of the message pump thread
1738 *
1739 * This function checks if there is any spi message in the queue that
1740 * needs processing and if so call out to the driver to initialize hardware
1741 * and transfer each message.
1742 *
1743 * Note that it is called both from the kthread itself and also from
1744 * inside spi_sync(); the queue extraction handling at the top of the
1745 * function should deal with this safely.
1746 */
1747static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1748{
1749	struct spi_message *msg;
1750	bool was_busy = false;
1751	unsigned long flags;
 
1752	int ret;
1753
1754	/* Take the IO mutex */
1755	mutex_lock(&ctlr->io_mutex);
1756
1757	/* Lock queue */
1758	spin_lock_irqsave(&ctlr->queue_lock, flags);
1759
1760	/* Make sure we are not already running a message */
1761	if (ctlr->cur_msg)
1762		goto out_unlock;
1763
1764	/* Check if the queue is idle */
1765	if (list_empty(&ctlr->queue) || !ctlr->running) {
1766		if (!ctlr->busy)
1767			goto out_unlock;
1768
1769		/* Defer any non-atomic teardown to the thread */
1770		if (!in_kthread) {
1771			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1772			    !ctlr->unprepare_transfer_hardware) {
1773				spi_idle_runtime_pm(ctlr);
1774				ctlr->busy = false;
1775				ctlr->queue_empty = true;
1776				trace_spi_controller_idle(ctlr);
1777			} else {
1778				kthread_queue_work(ctlr->kworker,
1779						   &ctlr->pump_messages);
1780			}
1781			goto out_unlock;
1782		}
1783
1784		ctlr->busy = false;
1785		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1786
1787		kfree(ctlr->dummy_rx);
1788		ctlr->dummy_rx = NULL;
1789		kfree(ctlr->dummy_tx);
1790		ctlr->dummy_tx = NULL;
1791		if (ctlr->unprepare_transfer_hardware &&
1792		    ctlr->unprepare_transfer_hardware(ctlr))
1793			dev_err(&ctlr->dev,
1794				"failed to unprepare transfer hardware\n");
1795		spi_idle_runtime_pm(ctlr);
1796		trace_spi_controller_idle(ctlr);
1797
1798		spin_lock_irqsave(&ctlr->queue_lock, flags);
1799		ctlr->queue_empty = true;
1800		goto out_unlock;
1801	}
1802
 
 
 
 
 
1803	/* Extract head of queue */
1804	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1805	ctlr->cur_msg = msg;
1806
1807	list_del_init(&msg->queue);
1808	if (ctlr->busy)
1809		was_busy = true;
1810	else
1811		ctlr->busy = true;
1812	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1813
1814	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1815	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1816
1817	ctlr->cur_msg = NULL;
1818	ctlr->fallback = false;
1819
1820	mutex_unlock(&ctlr->io_mutex);
1821
1822	/* Prod the scheduler in case transfer_one() was busy waiting */
1823	if (!ret)
1824		cond_resched();
1825	return;
1826
1827out_unlock:
1828	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1829	mutex_unlock(&ctlr->io_mutex);
1830}
1831
1832/**
1833 * spi_pump_messages - kthread work function which processes spi message queue
1834 * @work: pointer to kthread work struct contained in the controller struct
1835 */
1836static void spi_pump_messages(struct kthread_work *work)
1837{
1838	struct spi_controller *ctlr =
1839		container_of(work, struct spi_controller, pump_messages);
1840
1841	__spi_pump_messages(ctlr, true);
1842}
1843
1844/**
1845 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1846 * @ctlr: Pointer to the spi_controller structure of the driver
1847 * @xfer: Pointer to the transfer being timestamped
1848 * @progress: How many words (not bytes) have been transferred so far
1849 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1850 *	      transfer, for less jitter in time measurement. Only compatible
1851 *	      with PIO drivers. If true, must follow up with
1852 *	      spi_take_timestamp_post or otherwise system will crash.
1853 *	      WARNING: for fully predictable results, the CPU frequency must
1854 *	      also be under control (governor).
1855 *
1856 * This is a helper for drivers to collect the beginning of the TX timestamp
1857 * for the requested byte from the SPI transfer. The frequency with which this
1858 * function must be called (once per word, once for the whole transfer, once
1859 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1860 * greater than or equal to the requested byte at the time of the call. The
1861 * timestamp is only taken once, at the first such call. It is assumed that
1862 * the driver advances its @tx buffer pointer monotonically.
1863 */
1864void spi_take_timestamp_pre(struct spi_controller *ctlr,
1865			    struct spi_transfer *xfer,
1866			    size_t progress, bool irqs_off)
1867{
1868	if (!xfer->ptp_sts)
1869		return;
1870
1871	if (xfer->timestamped)
1872		return;
1873
1874	if (progress > xfer->ptp_sts_word_pre)
1875		return;
1876
1877	/* Capture the resolution of the timestamp */
1878	xfer->ptp_sts_word_pre = progress;
 
 
 
1879
1880	if (irqs_off) {
1881		local_irq_save(ctlr->irq_flags);
1882		preempt_disable();
 
1883	}
1884
1885	ptp_read_system_prets(xfer->ptp_sts);
1886}
1887EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1888
1889/**
1890 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1891 * @ctlr: Pointer to the spi_controller structure of the driver
1892 * @xfer: Pointer to the transfer being timestamped
1893 * @progress: How many words (not bytes) have been transferred so far
1894 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1895 *
1896 * This is a helper for drivers to collect the end of the TX timestamp for
1897 * the requested byte from the SPI transfer. Can be called with an arbitrary
1898 * frequency: only the first call where @tx exceeds or is equal to the
1899 * requested word will be timestamped.
1900 */
1901void spi_take_timestamp_post(struct spi_controller *ctlr,
1902			     struct spi_transfer *xfer,
1903			     size_t progress, bool irqs_off)
1904{
1905	if (!xfer->ptp_sts)
1906		return;
1907
1908	if (xfer->timestamped)
 
 
 
1909		return;
 
1910
1911	if (progress < xfer->ptp_sts_word_post)
 
 
 
1912		return;
1913
1914	ptp_read_system_postts(xfer->ptp_sts);
1915
1916	if (irqs_off) {
1917		local_irq_restore(ctlr->irq_flags);
1918		preempt_enable();
1919	}
1920
1921	/* Capture the resolution of the timestamp */
1922	xfer->ptp_sts_word_post = progress;
1923
1924	xfer->timestamped = true;
1925}
1926EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1927
1928/**
1929 * spi_set_thread_rt - set the controller to pump at realtime priority
1930 * @ctlr: controller to boost priority of
1931 *
1932 * This can be called because the controller requested realtime priority
1933 * (by setting the ->rt value before calling spi_register_controller()) or
1934 * because a device on the bus said that its transfers needed realtime
1935 * priority.
1936 *
1937 * NOTE: at the moment if any device on a bus says it needs realtime then
1938 * the thread will be at realtime priority for all transfers on that
1939 * controller.  If this eventually becomes a problem we may see if we can
1940 * find a way to boost the priority only temporarily during relevant
1941 * transfers.
1942 */
1943static void spi_set_thread_rt(struct spi_controller *ctlr)
1944{
1945	dev_info(&ctlr->dev,
1946		"will run message pump with realtime priority\n");
1947	sched_set_fifo(ctlr->kworker->task);
1948}
1949
1950static int spi_init_queue(struct spi_controller *ctlr)
1951{
1952	ctlr->running = false;
1953	ctlr->busy = false;
1954	ctlr->queue_empty = true;
1955
1956	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1957	if (IS_ERR(ctlr->kworker)) {
1958		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1959		return PTR_ERR(ctlr->kworker);
 
 
 
 
 
 
1960	}
1961
1962	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1963
1964	/*
1965	 * Controller config will indicate if this controller should run the
1966	 * message pump with high (realtime) priority to reduce the transfer
1967	 * latency on the bus by minimising the delay between a transfer
1968	 * request and the scheduling of the message pump thread. Without this
1969	 * setting the message pump thread will remain at default priority.
1970	 */
1971	if (ctlr->rt)
1972		spi_set_thread_rt(ctlr);
 
 
 
1973
1974	return 0;
1975}
1976
1977/**
1978 * spi_get_next_queued_message() - called by driver to check for queued
1979 * messages
1980 * @ctlr: the controller to check for queued messages
1981 *
1982 * If there are more messages in the queue, the next message is returned from
1983 * this call.
1984 *
1985 * Return: the next message in the queue, else NULL if the queue is empty.
1986 */
1987struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1988{
1989	struct spi_message *next;
1990	unsigned long flags;
1991
1992	/* Get a pointer to the next message, if any */
1993	spin_lock_irqsave(&ctlr->queue_lock, flags);
1994	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1995					queue);
1996	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1997
1998	return next;
1999}
2000EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2001
2002/**
2003 * spi_finalize_current_message() - the current message is complete
2004 * @ctlr: the controller to return the message to
2005 *
2006 * Called by the driver to notify the core that the message in the front of the
2007 * queue is complete and can be removed from the queue.
2008 */
2009void spi_finalize_current_message(struct spi_controller *ctlr)
2010{
2011	struct spi_transfer *xfer;
2012	struct spi_message *mesg;
 
2013	int ret;
2014
2015	mesg = ctlr->cur_msg;
 
 
2016
2017	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2018		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2019			ptp_read_system_postts(xfer->ptp_sts);
2020			xfer->ptp_sts_word_post = xfer->len;
2021		}
2022	}
2023
2024	if (unlikely(ctlr->ptp_sts_supported))
2025		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2026			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2027
2028	spi_unmap_msg(ctlr, mesg);
2029
2030	/*
2031	 * In the prepare_messages callback the SPI bus has the opportunity
2032	 * to split a transfer to smaller chunks.
2033	 *
2034	 * Release the split transfers here since spi_map_msg() is done on
2035	 * the split transfers.
2036	 */
2037	spi_res_release(ctlr, mesg);
2038
2039	if (mesg->prepared && ctlr->unprepare_message) {
2040		ret = ctlr->unprepare_message(ctlr, mesg);
2041		if (ret) {
2042			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2043				ret);
2044		}
2045	}
2046
2047	mesg->prepared = false;
2048
2049	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2050	smp_mb(); /* See __spi_pump_transfer_message()... */
2051	if (READ_ONCE(ctlr->cur_msg_need_completion))
2052		complete(&ctlr->cur_msg_completion);
2053
2054	trace_spi_message_done(mesg);
2055
2056	mesg->state = NULL;
2057	if (mesg->complete)
2058		mesg->complete(mesg->context);
 
 
2059}
2060EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2061
2062static int spi_start_queue(struct spi_controller *ctlr)
2063{
2064	unsigned long flags;
2065
2066	spin_lock_irqsave(&ctlr->queue_lock, flags);
2067
2068	if (ctlr->running || ctlr->busy) {
2069		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2070		return -EBUSY;
2071	}
2072
2073	ctlr->running = true;
2074	ctlr->cur_msg = NULL;
2075	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2076
2077	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2078
2079	return 0;
2080}
2081
2082static int spi_stop_queue(struct spi_controller *ctlr)
2083{
2084	unsigned long flags;
2085	unsigned limit = 500;
2086	int ret = 0;
2087
2088	spin_lock_irqsave(&ctlr->queue_lock, flags);
2089
2090	/*
2091	 * This is a bit lame, but is optimized for the common execution path.
2092	 * A wait_queue on the ctlr->busy could be used, but then the common
2093	 * execution path (pump_messages) would be required to call wake_up or
2094	 * friends on every SPI message. Do this instead.
2095	 */
2096	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2097		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2098		usleep_range(10000, 11000);
2099		spin_lock_irqsave(&ctlr->queue_lock, flags);
2100	}
2101
2102	if (!list_empty(&ctlr->queue) || ctlr->busy)
2103		ret = -EBUSY;
2104	else
2105		ctlr->running = false;
2106
2107	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2108
2109	if (ret) {
2110		dev_warn(&ctlr->dev, "could not stop message queue\n");
 
2111		return ret;
2112	}
2113	return ret;
2114}
2115
2116static int spi_destroy_queue(struct spi_controller *ctlr)
2117{
2118	int ret;
2119
2120	ret = spi_stop_queue(ctlr);
2121
2122	/*
2123	 * kthread_flush_worker will block until all work is done.
2124	 * If the reason that stop_queue timed out is that the work will never
2125	 * finish, then it does no good to call flush/stop thread, so
2126	 * return anyway.
2127	 */
2128	if (ret) {
2129		dev_err(&ctlr->dev, "problem destroying queue\n");
2130		return ret;
2131	}
2132
2133	kthread_destroy_worker(ctlr->kworker);
 
2134
2135	return 0;
2136}
2137
2138static int __spi_queued_transfer(struct spi_device *spi,
2139				 struct spi_message *msg,
2140				 bool need_pump)
 
 
 
2141{
2142	struct spi_controller *ctlr = spi->controller;
2143	unsigned long flags;
2144
2145	spin_lock_irqsave(&ctlr->queue_lock, flags);
2146
2147	if (!ctlr->running) {
2148		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2149		return -ESHUTDOWN;
2150	}
2151	msg->actual_length = 0;
2152	msg->status = -EINPROGRESS;
2153
2154	list_add_tail(&msg->queue, &ctlr->queue);
2155	ctlr->queue_empty = false;
2156	if (!ctlr->busy && need_pump)
2157		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2158
2159	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2160	return 0;
2161}
2162
2163/**
2164 * spi_queued_transfer - transfer function for queued transfers
2165 * @spi: spi device which is requesting transfer
2166 * @msg: spi message which is to handled is queued to driver queue
2167 *
2168 * Return: zero on success, else a negative error code.
2169 */
2170static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2171{
2172	return __spi_queued_transfer(spi, msg, true);
2173}
2174
2175static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2176{
2177	int ret;
2178
2179	ctlr->transfer = spi_queued_transfer;
2180	if (!ctlr->transfer_one_message)
2181		ctlr->transfer_one_message = spi_transfer_one_message;
2182
2183	/* Initialize and start queue */
2184	ret = spi_init_queue(ctlr);
2185	if (ret) {
2186		dev_err(&ctlr->dev, "problem initializing queue\n");
2187		goto err_init_queue;
2188	}
2189	ctlr->queued = true;
2190	ret = spi_start_queue(ctlr);
2191	if (ret) {
2192		dev_err(&ctlr->dev, "problem starting queue\n");
2193		goto err_start_queue;
2194	}
2195
2196	return 0;
2197
2198err_start_queue:
2199	spi_destroy_queue(ctlr);
2200err_init_queue:
2201	return ret;
2202}
2203
2204/**
2205 * spi_flush_queue - Send all pending messages in the queue from the callers'
2206 *		     context
2207 * @ctlr: controller to process queue for
2208 *
2209 * This should be used when one wants to ensure all pending messages have been
2210 * sent before doing something. Is used by the spi-mem code to make sure SPI
2211 * memory operations do not preempt regular SPI transfers that have been queued
2212 * before the spi-mem operation.
2213 */
2214void spi_flush_queue(struct spi_controller *ctlr)
2215{
2216	if (ctlr->transfer == spi_queued_transfer)
2217		__spi_pump_messages(ctlr, false);
2218}
2219
2220/*-------------------------------------------------------------------------*/
2221
2222#if defined(CONFIG_OF)
2223static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2224				     struct spi_delay *delay, const char *prop)
2225{
2226	u32 value;
2227
2228	if (!of_property_read_u32(nc, prop, &value)) {
2229		if (value > U16_MAX) {
2230			delay->value = DIV_ROUND_UP(value, 1000);
2231			delay->unit = SPI_DELAY_UNIT_USECS;
2232		} else {
2233			delay->value = value;
2234			delay->unit = SPI_DELAY_UNIT_NSECS;
2235		}
2236	}
2237}
2238
2239static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2240			   struct device_node *nc)
2241{
2242	u32 value;
2243	int rc;
2244
2245	/* Mode (clock phase/polarity/etc.) */
2246	if (of_property_read_bool(nc, "spi-cpha"))
2247		spi->mode |= SPI_CPHA;
2248	if (of_property_read_bool(nc, "spi-cpol"))
2249		spi->mode |= SPI_CPOL;
2250	if (of_property_read_bool(nc, "spi-3wire"))
2251		spi->mode |= SPI_3WIRE;
2252	if (of_property_read_bool(nc, "spi-lsb-first"))
2253		spi->mode |= SPI_LSB_FIRST;
2254	if (of_property_read_bool(nc, "spi-cs-high"))
2255		spi->mode |= SPI_CS_HIGH;
2256
2257	/* Device DUAL/QUAD mode */
2258	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2259		switch (value) {
2260		case 0:
2261			spi->mode |= SPI_NO_TX;
2262			break;
2263		case 1:
2264			break;
2265		case 2:
2266			spi->mode |= SPI_TX_DUAL;
2267			break;
2268		case 4:
2269			spi->mode |= SPI_TX_QUAD;
2270			break;
2271		case 8:
2272			spi->mode |= SPI_TX_OCTAL;
2273			break;
2274		default:
2275			dev_warn(&ctlr->dev,
2276				"spi-tx-bus-width %d not supported\n",
2277				value);
2278			break;
2279		}
2280	}
2281
2282	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2283		switch (value) {
2284		case 0:
2285			spi->mode |= SPI_NO_RX;
2286			break;
2287		case 1:
2288			break;
2289		case 2:
2290			spi->mode |= SPI_RX_DUAL;
2291			break;
2292		case 4:
2293			spi->mode |= SPI_RX_QUAD;
2294			break;
2295		case 8:
2296			spi->mode |= SPI_RX_OCTAL;
2297			break;
2298		default:
2299			dev_warn(&ctlr->dev,
2300				"spi-rx-bus-width %d not supported\n",
2301				value);
2302			break;
2303		}
2304	}
2305
2306	if (spi_controller_is_slave(ctlr)) {
2307		if (!of_node_name_eq(nc, "slave")) {
2308			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2309				nc);
2310			return -EINVAL;
2311		}
2312		return 0;
2313	}
2314
2315	/* Device address */
2316	rc = of_property_read_u32(nc, "reg", &value);
2317	if (rc) {
2318		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2319			nc, rc);
2320		return rc;
2321	}
2322	spi->chip_select = value;
2323
2324	/* Device speed */
2325	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2326		spi->max_speed_hz = value;
2327
2328	/* Device CS delays */
2329	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2330
2331	return 0;
2332}
2333
2334static struct spi_device *
2335of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2336{
2337	struct spi_device *spi;
2338	int rc;
2339
2340	/* Alloc an spi_device */
2341	spi = spi_alloc_device(ctlr);
2342	if (!spi) {
2343		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2344		rc = -ENOMEM;
2345		goto err_out;
2346	}
2347
2348	/* Select device driver */
2349	rc = of_modalias_node(nc, spi->modalias,
2350				sizeof(spi->modalias));
2351	if (rc < 0) {
2352		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2353		goto err_out;
2354	}
2355
2356	rc = of_spi_parse_dt(ctlr, spi, nc);
2357	if (rc)
2358		goto err_out;
2359
2360	/* Store a pointer to the node in the device structure */
2361	of_node_get(nc);
2362	spi->dev.of_node = nc;
2363	spi->dev.fwnode = of_fwnode_handle(nc);
2364
2365	/* Register the new device */
2366	rc = spi_add_device(spi);
2367	if (rc) {
2368		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2369		goto err_of_node_put;
2370	}
2371
2372	return spi;
2373
2374err_of_node_put:
2375	of_node_put(nc);
2376err_out:
2377	spi_dev_put(spi);
2378	return ERR_PTR(rc);
2379}
2380
2381/**
2382 * of_register_spi_devices() - Register child devices onto the SPI bus
2383 * @ctlr:	Pointer to spi_controller device
2384 *
2385 * Registers an spi_device for each child node of controller node which
2386 * represents a valid SPI slave.
2387 */
2388static void of_register_spi_devices(struct spi_controller *ctlr)
2389{
2390	struct spi_device *spi;
2391	struct device_node *nc;
 
 
2392
2393	if (!ctlr->dev.of_node)
2394		return;
2395
2396	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2397		if (of_node_test_and_set_flag(nc, OF_POPULATED))
 
 
 
 
 
2398			continue;
2399		spi = of_register_spi_device(ctlr, nc);
2400		if (IS_ERR(spi)) {
2401			dev_warn(&ctlr->dev,
2402				 "Failed to create SPI device for %pOF\n", nc);
2403			of_node_clear_flag(nc, OF_POPULATED);
2404		}
2405	}
2406}
2407#else
2408static void of_register_spi_devices(struct spi_controller *ctlr) { }
2409#endif
2410
2411/**
2412 * spi_new_ancillary_device() - Register ancillary SPI device
2413 * @spi:         Pointer to the main SPI device registering the ancillary device
2414 * @chip_select: Chip Select of the ancillary device
2415 *
2416 * Register an ancillary SPI device; for example some chips have a chip-select
2417 * for normal device usage and another one for setup/firmware upload.
2418 *
2419 * This may only be called from main SPI device's probe routine.
2420 *
2421 * Return: 0 on success; negative errno on failure
2422 */
2423struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2424					     u8 chip_select)
2425{
2426	struct spi_device *ancillary;
2427	int rc = 0;
2428
2429	/* Alloc an spi_device */
2430	ancillary = spi_alloc_device(spi->controller);
2431	if (!ancillary) {
2432		rc = -ENOMEM;
2433		goto err_out;
2434	}
2435
2436	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2437
2438	/* Use provided chip-select for ancillary device */
2439	ancillary->chip_select = chip_select;
2440
2441	/* Take over SPI mode/speed from SPI main device */
2442	ancillary->max_speed_hz = spi->max_speed_hz;
2443	ancillary->mode = spi->mode;
2444
2445	/* Register the new device */
2446	rc = spi_add_device_locked(ancillary);
2447	if (rc) {
2448		dev_err(&spi->dev, "failed to register ancillary device\n");
2449		goto err_out;
2450	}
2451
2452	return ancillary;
2453
2454err_out:
2455	spi_dev_put(ancillary);
2456	return ERR_PTR(rc);
2457}
2458EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2459
2460#ifdef CONFIG_ACPI
2461struct acpi_spi_lookup {
2462	struct spi_controller 	*ctlr;
2463	u32			max_speed_hz;
2464	u32			mode;
2465	int			irq;
2466	u8			bits_per_word;
2467	u8			chip_select;
2468	int			n;
2469	int			index;
2470};
2471
2472static int acpi_spi_count(struct acpi_resource *ares, void *data)
2473{
2474	struct acpi_resource_spi_serialbus *sb;
2475	int *count = data;
2476
2477	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2478		return 1;
2479
2480	sb = &ares->data.spi_serial_bus;
2481	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2482		return 1;
2483
2484	*count = *count + 1;
2485
2486	return 1;
2487}
2488
2489/**
2490 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2491 * @adev:	ACPI device
2492 *
2493 * Returns the number of SpiSerialBus resources in the ACPI-device's
2494 * resource-list; or a negative error code.
2495 */
2496int acpi_spi_count_resources(struct acpi_device *adev)
2497{
2498	LIST_HEAD(r);
2499	int count = 0;
2500	int ret;
2501
2502	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2503	if (ret < 0)
2504		return ret;
2505
2506	acpi_dev_free_resource_list(&r);
 
 
 
2507
2508	return count;
2509}
2510EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
 
 
 
 
 
 
2511
2512static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2513					    struct acpi_spi_lookup *lookup)
2514{
2515	const union acpi_object *obj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516
2517	if (!x86_apple_machine)
2518		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2519
2520	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2521	    && obj->buffer.length >= 4)
2522		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
 
 
 
 
 
 
2523
2524	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2525	    && obj->buffer.length == 8)
2526		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2527
2528	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2529	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2530		lookup->mode |= SPI_LSB_FIRST;
2531
2532	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2533	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2534		lookup->mode |= SPI_CPOL;
 
 
 
 
 
2535
2536	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2537	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2538		lookup->mode |= SPI_CPHA;
2539}
 
 
 
2540
2541static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2542
2543static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2544{
2545	struct acpi_spi_lookup *lookup = data;
2546	struct spi_controller *ctlr = lookup->ctlr;
2547
2548	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2549		struct acpi_resource_spi_serialbus *sb;
2550		acpi_handle parent_handle;
2551		acpi_status status;
2552
2553		sb = &ares->data.spi_serial_bus;
2554		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2555
2556			if (lookup->index != -1 && lookup->n++ != lookup->index)
2557				return 1;
2558
2559			status = acpi_get_handle(NULL,
2560						 sb->resource_source.string_ptr,
2561						 &parent_handle);
2562
2563			if (ACPI_FAILURE(status))
2564				return -ENODEV;
2565
2566			if (ctlr) {
2567				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2568					return -ENODEV;
2569			} else {
2570				struct acpi_device *adev;
2571
2572				adev = acpi_fetch_acpi_dev(parent_handle);
2573				if (!adev)
2574					return -ENODEV;
2575
2576				ctlr = acpi_spi_find_controller_by_adev(adev);
2577				if (!ctlr)
2578					return -EPROBE_DEFER;
2579
2580				lookup->ctlr = ctlr;
2581			}
2582
2583			/*
2584			 * ACPI DeviceSelection numbering is handled by the
2585			 * host controller driver in Windows and can vary
2586			 * from driver to driver. In Linux we always expect
2587			 * 0 .. max - 1 so we need to ask the driver to
2588			 * translate between the two schemes.
2589			 */
2590			if (ctlr->fw_translate_cs) {
2591				int cs = ctlr->fw_translate_cs(ctlr,
2592						sb->device_selection);
2593				if (cs < 0)
2594					return cs;
2595				lookup->chip_select = cs;
2596			} else {
2597				lookup->chip_select = sb->device_selection;
2598			}
2599
2600			lookup->max_speed_hz = sb->connection_speed;
2601			lookup->bits_per_word = sb->data_bit_length;
2602
2603			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2604				lookup->mode |= SPI_CPHA;
2605			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2606				lookup->mode |= SPI_CPOL;
2607			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2608				lookup->mode |= SPI_CS_HIGH;
2609		}
2610	} else if (lookup->irq < 0) {
2611		struct resource r;
2612
2613		if (acpi_dev_resource_interrupt(ares, 0, &r))
2614			lookup->irq = r.start;
2615	}
2616
2617	/* Always tell the ACPI core to skip this resource */
2618	return 1;
2619}
2620
2621/**
2622 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2623 * @ctlr: controller to which the spi device belongs
2624 * @adev: ACPI Device for the spi device
2625 * @index: Index of the spi resource inside the ACPI Node
2626 *
2627 * This should be used to allocate a new spi device from and ACPI Node.
2628 * The caller is responsible for calling spi_add_device to register the spi device.
2629 *
2630 * If ctlr is set to NULL, the Controller for the spi device will be looked up
2631 * using the resource.
2632 * If index is set to -1, index is not used.
2633 * Note: If index is -1, ctlr must be set.
2634 *
2635 * Return: a pointer to the new device, or ERR_PTR on error.
2636 */
2637struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2638					 struct acpi_device *adev,
2639					 int index)
2640{
2641	acpi_handle parent_handle = NULL;
2642	struct list_head resource_list;
2643	struct acpi_spi_lookup lookup = {};
2644	struct spi_device *spi;
2645	int ret;
2646
2647	if (!ctlr && index == -1)
2648		return ERR_PTR(-EINVAL);
2649
2650	lookup.ctlr		= ctlr;
2651	lookup.irq		= -1;
2652	lookup.index		= index;
2653	lookup.n		= 0;
2654
2655	INIT_LIST_HEAD(&resource_list);
2656	ret = acpi_dev_get_resources(adev, &resource_list,
2657				     acpi_spi_add_resource, &lookup);
2658	acpi_dev_free_resource_list(&resource_list);
2659
2660	if (ret < 0)
2661		/* Found SPI in _CRS but it points to another controller */
2662		return ERR_PTR(ret);
2663
2664	if (!lookup.max_speed_hz &&
2665	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2666	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2667		/* Apple does not use _CRS but nested devices for SPI slaves */
2668		acpi_spi_parse_apple_properties(adev, &lookup);
2669	}
2670
2671	if (!lookup.max_speed_hz)
2672		return ERR_PTR(-ENODEV);
2673
2674	spi = spi_alloc_device(lookup.ctlr);
2675	if (!spi) {
2676		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2677			dev_name(&adev->dev));
2678		return ERR_PTR(-ENOMEM);
2679	}
2680
2681	ACPI_COMPANION_SET(&spi->dev, adev);
2682	spi->max_speed_hz	= lookup.max_speed_hz;
2683	spi->mode		|= lookup.mode;
2684	spi->irq		= lookup.irq;
2685	spi->bits_per_word	= lookup.bits_per_word;
2686	spi->chip_select	= lookup.chip_select;
2687
2688	return spi;
2689}
2690EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2691
2692static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2693					    struct acpi_device *adev)
2694{
2695	struct spi_device *spi;
2696
2697	if (acpi_bus_get_status(adev) || !adev->status.present ||
2698	    acpi_device_enumerated(adev))
2699		return AE_OK;
2700
2701	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2702	if (IS_ERR(spi)) {
2703		if (PTR_ERR(spi) == -ENOMEM)
2704			return AE_NO_MEMORY;
2705		else
2706			return AE_OK;
2707	}
2708
2709	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2710			  sizeof(spi->modalias));
2711
2712	if (spi->irq < 0)
2713		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2714
2715	acpi_device_set_enumerated(adev);
2716
2717	adev->power.flags.ignore_parent = true;
 
2718	if (spi_add_device(spi)) {
2719		adev->power.flags.ignore_parent = false;
2720		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2721			dev_name(&adev->dev));
2722		spi_dev_put(spi);
2723	}
2724
2725	return AE_OK;
2726}
2727
2728static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2729				       void *data, void **return_value)
2730{
2731	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2732	struct spi_controller *ctlr = data;
2733
2734	if (!adev)
2735		return AE_OK;
2736
2737	return acpi_register_spi_device(ctlr, adev);
2738}
2739
2740#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2741
2742static void acpi_register_spi_devices(struct spi_controller *ctlr)
2743{
2744	acpi_status status;
2745	acpi_handle handle;
2746
2747	handle = ACPI_HANDLE(ctlr->dev.parent);
2748	if (!handle)
2749		return;
2750
2751	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2752				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2753				     acpi_spi_add_device, NULL, ctlr, NULL);
2754	if (ACPI_FAILURE(status))
2755		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2756}
2757#else
2758static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2759#endif /* CONFIG_ACPI */
2760
2761static void spi_controller_release(struct device *dev)
2762{
2763	struct spi_controller *ctlr;
2764
2765	ctlr = container_of(dev, struct spi_controller, dev);
2766	kfree(ctlr);
2767}
2768
2769static struct class spi_master_class = {
2770	.name		= "spi_master",
2771	.owner		= THIS_MODULE,
2772	.dev_release	= spi_controller_release,
2773	.dev_groups	= spi_master_groups,
2774};
2775
2776#ifdef CONFIG_SPI_SLAVE
2777/**
2778 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2779 *		     controller
2780 * @spi: device used for the current transfer
2781 */
2782int spi_slave_abort(struct spi_device *spi)
2783{
2784	struct spi_controller *ctlr = spi->controller;
2785
2786	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2787		return ctlr->slave_abort(ctlr);
2788
2789	return -ENOTSUPP;
2790}
2791EXPORT_SYMBOL_GPL(spi_slave_abort);
2792
2793int spi_target_abort(struct spi_device *spi)
2794{
2795	struct spi_controller *ctlr = spi->controller;
2796
2797	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2798		return ctlr->target_abort(ctlr);
2799
2800	return -ENOTSUPP;
2801}
2802EXPORT_SYMBOL_GPL(spi_target_abort);
2803
2804static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2805			  char *buf)
2806{
2807	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2808						   dev);
2809	struct device *child;
2810
2811	child = device_find_any_child(&ctlr->dev);
2812	return sprintf(buf, "%s\n",
2813		       child ? to_spi_device(child)->modalias : NULL);
2814}
2815
2816static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2817			   const char *buf, size_t count)
2818{
2819	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2820						   dev);
2821	struct spi_device *spi;
2822	struct device *child;
2823	char name[32];
2824	int rc;
2825
2826	rc = sscanf(buf, "%31s", name);
2827	if (rc != 1 || !name[0])
2828		return -EINVAL;
2829
2830	child = device_find_any_child(&ctlr->dev);
2831	if (child) {
2832		/* Remove registered slave */
2833		device_unregister(child);
2834		put_device(child);
2835	}
2836
2837	if (strcmp(name, "(null)")) {
2838		/* Register new slave */
2839		spi = spi_alloc_device(ctlr);
2840		if (!spi)
2841			return -ENOMEM;
2842
2843		strscpy(spi->modalias, name, sizeof(spi->modalias));
2844
2845		rc = spi_add_device(spi);
2846		if (rc) {
2847			spi_dev_put(spi);
2848			return rc;
2849		}
2850	}
2851
2852	return count;
2853}
2854
2855static DEVICE_ATTR_RW(slave);
2856
2857static struct attribute *spi_slave_attrs[] = {
2858	&dev_attr_slave.attr,
2859	NULL,
2860};
2861
2862static const struct attribute_group spi_slave_group = {
2863	.attrs = spi_slave_attrs,
2864};
2865
2866static const struct attribute_group *spi_slave_groups[] = {
2867	&spi_controller_statistics_group,
2868	&spi_slave_group,
2869	NULL,
2870};
2871
2872static struct class spi_slave_class = {
2873	.name		= "spi_slave",
2874	.owner		= THIS_MODULE,
2875	.dev_release	= spi_controller_release,
2876	.dev_groups	= spi_slave_groups,
2877};
2878#else
2879extern struct class spi_slave_class;	/* dummy */
2880#endif
2881
2882/**
2883 * __spi_alloc_controller - allocate an SPI master or slave controller
2884 * @dev: the controller, possibly using the platform_bus
2885 * @size: how much zeroed driver-private data to allocate; the pointer to this
2886 *	memory is in the driver_data field of the returned device, accessible
2887 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2888 *	drivers granting DMA access to portions of their private data need to
2889 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2890 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2891 *	slave (true) controller
2892 * Context: can sleep
2893 *
2894 * This call is used only by SPI controller drivers, which are the
2895 * only ones directly touching chip registers.  It's how they allocate
2896 * an spi_controller structure, prior to calling spi_register_controller().
2897 *
2898 * This must be called from context that can sleep.
 
2899 *
2900 * The caller is responsible for assigning the bus number and initializing the
2901 * controller's methods before calling spi_register_controller(); and (after
2902 * errors adding the device) calling spi_controller_put() to prevent a memory
2903 * leak.
2904 *
2905 * Return: the SPI controller structure on success, else NULL.
2906 */
2907struct spi_controller *__spi_alloc_controller(struct device *dev,
2908					      unsigned int size, bool slave)
2909{
2910	struct spi_controller	*ctlr;
2911	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2912
2913	if (!dev)
2914		return NULL;
2915
2916	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2917	if (!ctlr)
2918		return NULL;
2919
2920	device_initialize(&ctlr->dev);
2921	INIT_LIST_HEAD(&ctlr->queue);
2922	spin_lock_init(&ctlr->queue_lock);
2923	spin_lock_init(&ctlr->bus_lock_spinlock);
2924	mutex_init(&ctlr->bus_lock_mutex);
2925	mutex_init(&ctlr->io_mutex);
2926	mutex_init(&ctlr->add_lock);
2927	ctlr->bus_num = -1;
2928	ctlr->num_chipselect = 1;
2929	ctlr->slave = slave;
2930	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2931		ctlr->dev.class = &spi_slave_class;
2932	else
2933		ctlr->dev.class = &spi_master_class;
2934	ctlr->dev.parent = dev;
2935	pm_suspend_ignore_children(&ctlr->dev, true);
2936	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2937
2938	return ctlr;
2939}
2940EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2941
2942static void devm_spi_release_controller(struct device *dev, void *ctlr)
 
2943{
2944	spi_controller_put(*(struct spi_controller **)ctlr);
2945}
2946
2947/**
2948 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2949 * @dev: physical device of SPI controller
2950 * @size: how much zeroed driver-private data to allocate
2951 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2952 * Context: can sleep
2953 *
2954 * Allocate an SPI controller and automatically release a reference on it
2955 * when @dev is unbound from its driver.  Drivers are thus relieved from
2956 * having to call spi_controller_put().
2957 *
2958 * The arguments to this function are identical to __spi_alloc_controller().
2959 *
2960 * Return: the SPI controller structure on success, else NULL.
2961 */
2962struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2963						   unsigned int size,
2964						   bool slave)
2965{
2966	struct spi_controller **ptr, *ctlr;
2967
2968	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2969			   GFP_KERNEL);
2970	if (!ptr)
2971		return NULL;
2972
2973	ctlr = __spi_alloc_controller(dev, size, slave);
2974	if (ctlr) {
2975		ctlr->devm_allocated = true;
2976		*ptr = ctlr;
2977		devres_add(dev, ptr);
2978	} else {
2979		devres_free(ptr);
2980	}
2981
2982	return ctlr;
2983}
2984EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2985
2986/**
2987 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2988 * @ctlr: The SPI master to grab GPIO descriptors for
2989 */
2990static int spi_get_gpio_descs(struct spi_controller *ctlr)
2991{
2992	int nb, i;
2993	struct gpio_desc **cs;
2994	struct device *dev = &ctlr->dev;
2995	unsigned long native_cs_mask = 0;
2996	unsigned int num_cs_gpios = 0;
2997
2998	nb = gpiod_count(dev, "cs");
2999	if (nb < 0) {
3000		/* No GPIOs at all is fine, else return the error */
3001		if (nb == -ENOENT)
3002			return 0;
3003		return nb;
3004	}
3005
3006	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3007
3008	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3009			  GFP_KERNEL);
3010	if (!cs)
3011		return -ENOMEM;
3012	ctlr->cs_gpiods = cs;
3013
3014	for (i = 0; i < nb; i++) {
3015		/*
3016		 * Most chipselects are active low, the inverted
3017		 * semantics are handled by special quirks in gpiolib,
3018		 * so initializing them GPIOD_OUT_LOW here means
3019		 * "unasserted", in most cases this will drive the physical
3020		 * line high.
3021		 */
3022		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3023						      GPIOD_OUT_LOW);
3024		if (IS_ERR(cs[i]))
3025			return PTR_ERR(cs[i]);
3026
3027		if (cs[i]) {
3028			/*
3029			 * If we find a CS GPIO, name it after the device and
3030			 * chip select line.
3031			 */
3032			char *gpioname;
3033
3034			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3035						  dev_name(dev), i);
3036			if (!gpioname)
3037				return -ENOMEM;
3038			gpiod_set_consumer_name(cs[i], gpioname);
3039			num_cs_gpios++;
3040			continue;
3041		}
3042
3043		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3044			dev_err(dev, "Invalid native chip select %d\n", i);
3045			return -EINVAL;
3046		}
3047		native_cs_mask |= BIT(i);
3048	}
3049
3050	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
 
3051
3052	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3053	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3054		dev_err(dev, "No unused native chip select available\n");
3055		return -EINVAL;
3056	}
3057
3058	return 0;
3059}
3060
3061static int spi_controller_check_ops(struct spi_controller *ctlr)
3062{
3063	/*
3064	 * The controller may implement only the high-level SPI-memory like
3065	 * operations if it does not support regular SPI transfers, and this is
3066	 * valid use case.
3067	 * If ->mem_ops is NULL, we request that at least one of the
3068	 * ->transfer_xxx() method be implemented.
3069	 */
3070	if (ctlr->mem_ops) {
3071		if (!ctlr->mem_ops->exec_op)
3072			return -EINVAL;
3073	} else if (!ctlr->transfer && !ctlr->transfer_one &&
3074		   !ctlr->transfer_one_message) {
3075		return -EINVAL;
3076	}
3077
3078	return 0;
3079}
 
3080
3081/**
3082 * spi_register_controller - register SPI master or slave controller
3083 * @ctlr: initialized master, originally from spi_alloc_master() or
3084 *	spi_alloc_slave()
3085 * Context: can sleep
3086 *
3087 * SPI controllers connect to their drivers using some non-SPI bus,
3088 * such as the platform bus.  The final stage of probe() in that code
3089 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3090 *
3091 * SPI controllers use board specific (often SOC specific) bus numbers,
3092 * and board-specific addressing for SPI devices combines those numbers
3093 * with chip select numbers.  Since SPI does not directly support dynamic
3094 * device identification, boards need configuration tables telling which
3095 * chip is at which address.
3096 *
3097 * This must be called from context that can sleep.  It returns zero on
3098 * success, else a negative error code (dropping the controller's refcount).
3099 * After a successful return, the caller is responsible for calling
3100 * spi_unregister_controller().
3101 *
3102 * Return: zero on success, else a negative error code.
3103 */
3104int spi_register_controller(struct spi_controller *ctlr)
3105{
3106	struct device		*dev = ctlr->dev.parent;
 
3107	struct boardinfo	*bi;
3108	int			status;
3109	int			id, first_dynamic;
3110
3111	if (!dev)
3112		return -ENODEV;
3113
3114	/*
3115	 * Make sure all necessary hooks are implemented before registering
3116	 * the SPI controller.
3117	 */
3118	status = spi_controller_check_ops(ctlr);
3119	if (status)
3120		return status;
3121
3122	if (ctlr->bus_num >= 0) {
3123		/* Devices with a fixed bus num must check-in with the num */
3124		mutex_lock(&board_lock);
3125		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3126			ctlr->bus_num + 1, GFP_KERNEL);
3127		mutex_unlock(&board_lock);
3128		if (WARN(id < 0, "couldn't get idr"))
3129			return id == -ENOSPC ? -EBUSY : id;
3130		ctlr->bus_num = id;
3131	} else if (ctlr->dev.of_node) {
3132		/* Allocate dynamic bus number using Linux idr */
3133		id = of_alias_get_id(ctlr->dev.of_node, "spi");
3134		if (id >= 0) {
3135			ctlr->bus_num = id;
3136			mutex_lock(&board_lock);
3137			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3138				       ctlr->bus_num + 1, GFP_KERNEL);
3139			mutex_unlock(&board_lock);
3140			if (WARN(id < 0, "couldn't get idr"))
3141				return id == -ENOSPC ? -EBUSY : id;
3142		}
3143	}
3144	if (ctlr->bus_num < 0) {
3145		first_dynamic = of_alias_get_highest_id("spi");
3146		if (first_dynamic < 0)
3147			first_dynamic = 0;
3148		else
3149			first_dynamic++;
3150
3151		mutex_lock(&board_lock);
3152		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3153			       0, GFP_KERNEL);
3154		mutex_unlock(&board_lock);
3155		if (WARN(id < 0, "couldn't get idr"))
3156			return id;
3157		ctlr->bus_num = id;
3158	}
3159	ctlr->bus_lock_flag = 0;
3160	init_completion(&ctlr->xfer_completion);
3161	init_completion(&ctlr->cur_msg_completion);
3162	if (!ctlr->max_dma_len)
3163		ctlr->max_dma_len = INT_MAX;
3164
3165	/*
3166	 * Register the device, then userspace will see it.
3167	 * Registration fails if the bus ID is in use.
3168	 */
3169	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
 
3170
3171	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3172		status = spi_get_gpio_descs(ctlr);
3173		if (status)
3174			goto free_bus_id;
3175		/*
3176		 * A controller using GPIO descriptors always
3177		 * supports SPI_CS_HIGH if need be.
3178		 */
3179		ctlr->mode_bits |= SPI_CS_HIGH;
3180	}
3181
3182	/*
3183	 * Even if it's just one always-selected device, there must
3184	 * be at least one chipselect.
3185	 */
3186	if (!ctlr->num_chipselect) {
3187		status = -EINVAL;
3188		goto free_bus_id;
3189	}
3190
3191	/* Setting last_cs to -1 means no chip selected */
3192	ctlr->last_cs = -1;
 
 
 
 
3193
3194	status = device_add(&ctlr->dev);
3195	if (status < 0)
3196		goto free_bus_id;
3197	dev_dbg(dev, "registered %s %s\n",
3198			spi_controller_is_slave(ctlr) ? "slave" : "master",
3199			dev_name(&ctlr->dev));
3200
3201	/*
3202	 * If we're using a queued driver, start the queue. Note that we don't
3203	 * need the queueing logic if the driver is only supporting high-level
3204	 * memory operations.
3205	 */
3206	if (ctlr->transfer) {
3207		dev_info(dev, "controller is unqueued, this is deprecated\n");
3208	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3209		status = spi_controller_initialize_queue(ctlr);
 
 
 
 
 
 
 
 
3210		if (status) {
3211			device_del(&ctlr->dev);
3212			goto free_bus_id;
3213		}
3214	}
3215	/* Add statistics */
3216	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3217	if (!ctlr->pcpu_statistics) {
3218		dev_err(dev, "Error allocating per-cpu statistics\n");
3219		status = -ENOMEM;
3220		goto destroy_queue;
3221	}
3222
3223	mutex_lock(&board_lock);
3224	list_add_tail(&ctlr->list, &spi_controller_list);
3225	list_for_each_entry(bi, &board_list, list)
3226		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3227	mutex_unlock(&board_lock);
3228
3229	/* Register devices from the device tree and ACPI */
3230	of_register_spi_devices(ctlr);
3231	acpi_register_spi_devices(ctlr);
3232	return status;
3233
3234destroy_queue:
3235	spi_destroy_queue(ctlr);
3236free_bus_id:
3237	mutex_lock(&board_lock);
3238	idr_remove(&spi_master_idr, ctlr->bus_num);
3239	mutex_unlock(&board_lock);
3240	return status;
3241}
3242EXPORT_SYMBOL_GPL(spi_register_controller);
3243
3244static void devm_spi_unregister(struct device *dev, void *res)
3245{
3246	spi_unregister_controller(*(struct spi_controller **)res);
3247}
3248
3249/**
3250 * devm_spi_register_controller - register managed SPI master or slave
3251 *	controller
3252 * @dev:    device managing SPI controller
3253 * @ctlr: initialized controller, originally from spi_alloc_master() or
3254 *	spi_alloc_slave()
3255 * Context: can sleep
3256 *
3257 * Register a SPI device as with spi_register_controller() which will
3258 * automatically be unregistered and freed.
3259 *
3260 * Return: zero on success, else a negative error code.
3261 */
3262int devm_spi_register_controller(struct device *dev,
3263				 struct spi_controller *ctlr)
3264{
3265	struct spi_controller **ptr;
3266	int ret;
3267
3268	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3269	if (!ptr)
3270		return -ENOMEM;
3271
3272	ret = spi_register_controller(ctlr);
3273	if (!ret) {
3274		*ptr = ctlr;
3275		devres_add(dev, ptr);
3276	} else {
3277		devres_free(ptr);
3278	}
3279
3280	return ret;
3281}
3282EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3283
3284static int __unregister(struct device *dev, void *null)
3285{
3286	spi_unregister_device(to_spi_device(dev));
3287	return 0;
3288}
3289
3290/**
3291 * spi_unregister_controller - unregister SPI master or slave controller
3292 * @ctlr: the controller being unregistered
3293 * Context: can sleep
3294 *
3295 * This call is used only by SPI controller drivers, which are the
3296 * only ones directly touching chip registers.
3297 *
3298 * This must be called from context that can sleep.
3299 *
3300 * Note that this function also drops a reference to the controller.
3301 */
3302void spi_unregister_controller(struct spi_controller *ctlr)
3303{
3304	struct spi_controller *found;
3305	int id = ctlr->bus_num;
3306
3307	/* Prevent addition of new devices, unregister existing ones */
3308	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3309		mutex_lock(&ctlr->add_lock);
3310
3311	device_for_each_child(&ctlr->dev, NULL, __unregister);
3312
3313	/* First make sure that this controller was ever added */
3314	mutex_lock(&board_lock);
3315	found = idr_find(&spi_master_idr, id);
3316	mutex_unlock(&board_lock);
3317	if (ctlr->queued) {
3318		if (spi_destroy_queue(ctlr))
3319			dev_err(&ctlr->dev, "queue remove failed\n");
3320	}
3321	mutex_lock(&board_lock);
3322	list_del(&ctlr->list);
3323	mutex_unlock(&board_lock);
3324
3325	device_del(&ctlr->dev);
3326
3327	/* Free bus id */
3328	mutex_lock(&board_lock);
3329	if (found == ctlr)
3330		idr_remove(&spi_master_idr, id);
3331	mutex_unlock(&board_lock);
3332
3333	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3334		mutex_unlock(&ctlr->add_lock);
3335
3336	/* Release the last reference on the controller if its driver
3337	 * has not yet been converted to devm_spi_alloc_master/slave().
3338	 */
3339	if (!ctlr->devm_allocated)
3340		put_device(&ctlr->dev);
3341}
3342EXPORT_SYMBOL_GPL(spi_unregister_controller);
3343
3344int spi_controller_suspend(struct spi_controller *ctlr)
3345{
3346	int ret;
3347
3348	/* Basically no-ops for non-queued controllers */
3349	if (!ctlr->queued)
3350		return 0;
3351
3352	ret = spi_stop_queue(ctlr);
3353	if (ret)
3354		dev_err(&ctlr->dev, "queue stop failed\n");
3355
3356	return ret;
3357}
3358EXPORT_SYMBOL_GPL(spi_controller_suspend);
3359
3360int spi_controller_resume(struct spi_controller *ctlr)
3361{
3362	int ret;
3363
3364	if (!ctlr->queued)
3365		return 0;
3366
3367	ret = spi_start_queue(ctlr);
3368	if (ret)
3369		dev_err(&ctlr->dev, "queue restart failed\n");
3370
3371	return ret;
3372}
3373EXPORT_SYMBOL_GPL(spi_controller_resume);
3374
3375/*-------------------------------------------------------------------------*/
3376
3377/* Core methods for spi_message alterations */
3378
3379static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3380					    struct spi_message *msg,
3381					    void *res)
3382{
3383	struct spi_replaced_transfers *rxfer = res;
3384	size_t i;
3385
3386	/* Call extra callback if requested */
3387	if (rxfer->release)
3388		rxfer->release(ctlr, msg, res);
3389
3390	/* Insert replaced transfers back into the message */
3391	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3392
3393	/* Remove the formerly inserted entries */
3394	for (i = 0; i < rxfer->inserted; i++)
3395		list_del(&rxfer->inserted_transfers[i].transfer_list);
3396}
3397
3398/**
3399 * spi_replace_transfers - replace transfers with several transfers
3400 *                         and register change with spi_message.resources
3401 * @msg:           the spi_message we work upon
3402 * @xfer_first:    the first spi_transfer we want to replace
3403 * @remove:        number of transfers to remove
3404 * @insert:        the number of transfers we want to insert instead
3405 * @release:       extra release code necessary in some circumstances
3406 * @extradatasize: extra data to allocate (with alignment guarantees
3407 *                 of struct @spi_transfer)
3408 * @gfp:           gfp flags
3409 *
3410 * Returns: pointer to @spi_replaced_transfers,
3411 *          PTR_ERR(...) in case of errors.
 
 
3412 */
3413static struct spi_replaced_transfers *spi_replace_transfers(
3414	struct spi_message *msg,
3415	struct spi_transfer *xfer_first,
3416	size_t remove,
3417	size_t insert,
3418	spi_replaced_release_t release,
3419	size_t extradatasize,
3420	gfp_t gfp)
3421{
3422	struct spi_replaced_transfers *rxfer;
3423	struct spi_transfer *xfer;
3424	size_t i;
3425
3426	/* Allocate the structure using spi_res */
3427	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3428			      struct_size(rxfer, inserted_transfers, insert)
3429			      + extradatasize,
3430			      gfp);
3431	if (!rxfer)
3432		return ERR_PTR(-ENOMEM);
3433
3434	/* The release code to invoke before running the generic release */
3435	rxfer->release = release;
3436
3437	/* Assign extradata */
3438	if (extradatasize)
3439		rxfer->extradata =
3440			&rxfer->inserted_transfers[insert];
3441
3442	/* Init the replaced_transfers list */
3443	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3444
3445	/*
3446	 * Assign the list_entry after which we should reinsert
3447	 * the @replaced_transfers - it may be spi_message.messages!
3448	 */
3449	rxfer->replaced_after = xfer_first->transfer_list.prev;
3450
3451	/* Remove the requested number of transfers */
3452	for (i = 0; i < remove; i++) {
3453		/*
3454		 * If the entry after replaced_after it is msg->transfers
3455		 * then we have been requested to remove more transfers
3456		 * than are in the list.
3457		 */
3458		if (rxfer->replaced_after->next == &msg->transfers) {
3459			dev_err(&msg->spi->dev,
3460				"requested to remove more spi_transfers than are available\n");
3461			/* Insert replaced transfers back into the message */
3462			list_splice(&rxfer->replaced_transfers,
3463				    rxfer->replaced_after);
3464
3465			/* Free the spi_replace_transfer structure... */
3466			spi_res_free(rxfer);
3467
3468			/* ...and return with an error */
3469			return ERR_PTR(-EINVAL);
3470		}
3471
3472		/*
3473		 * Remove the entry after replaced_after from list of
3474		 * transfers and add it to list of replaced_transfers.
3475		 */
3476		list_move_tail(rxfer->replaced_after->next,
3477			       &rxfer->replaced_transfers);
3478	}
3479
3480	/*
3481	 * Create copy of the given xfer with identical settings
3482	 * based on the first transfer to get removed.
3483	 */
3484	for (i = 0; i < insert; i++) {
3485		/* We need to run in reverse order */
3486		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3487
3488		/* Copy all spi_transfer data */
3489		memcpy(xfer, xfer_first, sizeof(*xfer));
3490
3491		/* Add to list */
3492		list_add(&xfer->transfer_list, rxfer->replaced_after);
3493
3494		/* Clear cs_change and delay for all but the last */
3495		if (i) {
3496			xfer->cs_change = false;
3497			xfer->delay.value = 0;
3498		}
3499	}
3500
3501	/* Set up inserted... */
3502	rxfer->inserted = insert;
3503
3504	/* ...and register it with spi_res/spi_message */
3505	spi_res_add(msg, rxfer);
3506
3507	return rxfer;
3508}
3509
3510static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3511					struct spi_message *msg,
3512					struct spi_transfer **xferp,
3513					size_t maxsize,
3514					gfp_t gfp)
3515{
3516	struct spi_transfer *xfer = *xferp, *xfers;
3517	struct spi_replaced_transfers *srt;
3518	size_t offset;
3519	size_t count, i;
3520
3521	/* Calculate how many we have to replace */
3522	count = DIV_ROUND_UP(xfer->len, maxsize);
3523
3524	/* Create replacement */
3525	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3526	if (IS_ERR(srt))
3527		return PTR_ERR(srt);
3528	xfers = srt->inserted_transfers;
3529
3530	/*
3531	 * Now handle each of those newly inserted spi_transfers.
3532	 * Note that the replacements spi_transfers all are preset
3533	 * to the same values as *xferp, so tx_buf, rx_buf and len
3534	 * are all identical (as well as most others)
3535	 * so we just have to fix up len and the pointers.
3536	 *
3537	 * This also includes support for the depreciated
3538	 * spi_message.is_dma_mapped interface.
3539	 */
3540
3541	/*
3542	 * The first transfer just needs the length modified, so we
3543	 * run it outside the loop.
3544	 */
3545	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3546
3547	/* All the others need rx_buf/tx_buf also set */
3548	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3549		/* Update rx_buf, tx_buf and dma */
3550		if (xfers[i].rx_buf)
3551			xfers[i].rx_buf += offset;
3552		if (xfers[i].rx_dma)
3553			xfers[i].rx_dma += offset;
3554		if (xfers[i].tx_buf)
3555			xfers[i].tx_buf += offset;
3556		if (xfers[i].tx_dma)
3557			xfers[i].tx_dma += offset;
3558
3559		/* Update length */
3560		xfers[i].len = min(maxsize, xfers[i].len - offset);
3561	}
3562
3563	/*
3564	 * We set up xferp to the last entry we have inserted,
3565	 * so that we skip those already split transfers.
3566	 */
3567	*xferp = &xfers[count - 1];
3568
3569	/* Increment statistics counters */
3570	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3571				       transfers_split_maxsize);
3572	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3573				       transfers_split_maxsize);
3574
3575	return 0;
3576}
 
3577
3578/**
3579 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3580 *                               when an individual transfer exceeds a
3581 *                               certain size
3582 * @ctlr:    the @spi_controller for this transfer
3583 * @msg:   the @spi_message to transform
3584 * @maxsize:  the maximum when to apply this
3585 * @gfp: GFP allocation flags
3586 *
3587 * Return: status of transformation
3588 */
3589int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3590				struct spi_message *msg,
3591				size_t maxsize,
3592				gfp_t gfp)
3593{
3594	struct spi_transfer *xfer;
3595	int ret;
3596
3597	/*
3598	 * Iterate over the transfer_list,
3599	 * but note that xfer is advanced to the last transfer inserted
3600	 * to avoid checking sizes again unnecessarily (also xfer does
3601	 * potentially belong to a different list by the time the
3602	 * replacement has happened).
3603	 */
3604	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3605		if (xfer->len > maxsize) {
3606			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3607							   maxsize, gfp);
3608			if (ret)
3609				return ret;
3610		}
3611	}
3612
3613	return 0;
3614}
3615EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3616
3617/*-------------------------------------------------------------------------*/
3618
3619/* Core methods for SPI controller protocol drivers.  Some of the
3620 * other core methods are currently defined as inline functions.
3621 */
3622
3623static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3624					u8 bits_per_word)
3625{
3626	if (ctlr->bits_per_word_mask) {
3627		/* Only 32 bits fit in the mask */
3628		if (bits_per_word > 32)
3629			return -EINVAL;
3630		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3631			return -EINVAL;
3632	}
3633
3634	return 0;
3635}
3636
3637/**
3638 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3639 * @spi: the device that requires specific CS timing configuration
3640 *
3641 * Return: zero on success, else a negative error code.
3642 */
3643static int spi_set_cs_timing(struct spi_device *spi)
3644{
3645	struct device *parent = spi->controller->dev.parent;
3646	int status = 0;
3647
3648	if (spi->controller->set_cs_timing && !spi->cs_gpiod) {
3649		if (spi->controller->auto_runtime_pm) {
3650			status = pm_runtime_get_sync(parent);
3651			if (status < 0) {
3652				pm_runtime_put_noidle(parent);
3653				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3654					status);
3655				return status;
3656			}
3657
3658			status = spi->controller->set_cs_timing(spi);
3659			pm_runtime_mark_last_busy(parent);
3660			pm_runtime_put_autosuspend(parent);
3661		} else {
3662			status = spi->controller->set_cs_timing(spi);
3663		}
3664	}
3665	return status;
3666}
3667
3668/**
3669 * spi_setup - setup SPI mode and clock rate
3670 * @spi: the device whose settings are being modified
3671 * Context: can sleep, and no requests are queued to the device
3672 *
3673 * SPI protocol drivers may need to update the transfer mode if the
3674 * device doesn't work with its default.  They may likewise need
3675 * to update clock rates or word sizes from initial values.  This function
3676 * changes those settings, and must be called from a context that can sleep.
3677 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3678 * effect the next time the device is selected and data is transferred to
3679 * or from it.  When this function returns, the spi device is deselected.
3680 *
3681 * Note that this call will fail if the protocol driver specifies an option
3682 * that the underlying controller or its driver does not support.  For
3683 * example, not all hardware supports wire transfers using nine bit words,
3684 * LSB-first wire encoding, or active-high chipselects.
3685 *
3686 * Return: zero on success, else a negative error code.
3687 */
3688int spi_setup(struct spi_device *spi)
3689{
3690	unsigned	bad_bits, ugly_bits;
3691	int		status = 0;
3692
3693	/*
3694	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3695	 * are set at the same time.
3696	 */
3697	if ((hweight_long(spi->mode &
3698		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3699	    (hweight_long(spi->mode &
3700		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3701		dev_err(&spi->dev,
3702		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3703		return -EINVAL;
3704	}
3705	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
 
3706	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3707		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3708		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3709		return -EINVAL;
3710	/*
3711	 * Help drivers fail *cleanly* when they need options
3712	 * that aren't supported with their current controller.
3713	 * SPI_CS_WORD has a fallback software implementation,
3714	 * so it is ignored here.
3715	 */
3716	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3717				 SPI_NO_TX | SPI_NO_RX);
3718	ugly_bits = bad_bits &
3719		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3720		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3721	if (ugly_bits) {
3722		dev_warn(&spi->dev,
3723			 "setup: ignoring unsupported mode bits %x\n",
3724			 ugly_bits);
3725		spi->mode &= ~ugly_bits;
3726		bad_bits &= ~ugly_bits;
3727	}
3728	if (bad_bits) {
3729		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3730			bad_bits);
3731		return -EINVAL;
3732	}
3733
3734	if (!spi->bits_per_word) {
3735		spi->bits_per_word = 8;
3736	} else {
3737		/*
3738		 * Some controllers may not support the default 8 bits-per-word
3739		 * so only perform the check when this is explicitly provided.
3740		 */
3741		status = __spi_validate_bits_per_word(spi->controller,
3742						      spi->bits_per_word);
3743		if (status)
3744			return status;
3745	}
3746
3747	if (spi->controller->max_speed_hz &&
3748	    (!spi->max_speed_hz ||
3749	     spi->max_speed_hz > spi->controller->max_speed_hz))
3750		spi->max_speed_hz = spi->controller->max_speed_hz;
3751
3752	mutex_lock(&spi->controller->io_mutex);
 
3753
3754	if (spi->controller->setup) {
3755		status = spi->controller->setup(spi);
3756		if (status) {
3757			mutex_unlock(&spi->controller->io_mutex);
3758			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3759				status);
3760			return status;
3761		}
3762	}
3763
3764	status = spi_set_cs_timing(spi);
3765	if (status) {
3766		mutex_unlock(&spi->controller->io_mutex);
3767		return status;
3768	}
3769
3770	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3771		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3772		if (status < 0) {
3773			mutex_unlock(&spi->controller->io_mutex);
3774			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3775				status);
3776			return status;
3777		}
3778
3779		/*
3780		 * We do not want to return positive value from pm_runtime_get,
3781		 * there are many instances of devices calling spi_setup() and
3782		 * checking for a non-zero return value instead of a negative
3783		 * return value.
3784		 */
3785		status = 0;
3786
3787		spi_set_cs(spi, false, true);
3788		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3789		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3790	} else {
3791		spi_set_cs(spi, false, true);
3792	}
3793
3794	mutex_unlock(&spi->controller->io_mutex);
3795
3796	if (spi->rt && !spi->controller->rt) {
3797		spi->controller->rt = true;
3798		spi_set_thread_rt(spi->controller);
3799	}
3800
3801	trace_spi_setup(spi, status);
3802
3803	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3804			spi->mode & SPI_MODE_X_MASK,
3805			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3806			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3807			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3808			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3809			spi->bits_per_word, spi->max_speed_hz,
3810			status);
3811
3812	return status;
3813}
3814EXPORT_SYMBOL_GPL(spi_setup);
3815
3816static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3817				       struct spi_device *spi)
3818{
3819	int delay1, delay2;
3820
3821	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3822	if (delay1 < 0)
3823		return delay1;
3824
3825	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3826	if (delay2 < 0)
3827		return delay2;
3828
3829	if (delay1 < delay2)
3830		memcpy(&xfer->word_delay, &spi->word_delay,
3831		       sizeof(xfer->word_delay));
3832
3833	return 0;
3834}
3835
3836static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3837{
3838	struct spi_controller *ctlr = spi->controller;
3839	struct spi_transfer *xfer;
3840	int w_size;
3841
3842	if (list_empty(&message->transfers))
3843		return -EINVAL;
3844
3845	/*
3846	 * If an SPI controller does not support toggling the CS line on each
3847	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3848	 * for the CS line, we can emulate the CS-per-word hardware function by
3849	 * splitting transfers into one-word transfers and ensuring that
3850	 * cs_change is set for each transfer.
3851	 */
3852	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3853					  spi->cs_gpiod)) {
3854		size_t maxsize;
3855		int ret;
3856
3857		maxsize = (spi->bits_per_word + 7) / 8;
3858
3859		/* spi_split_transfers_maxsize() requires message->spi */
3860		message->spi = spi;
3861
3862		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3863						  GFP_KERNEL);
3864		if (ret)
3865			return ret;
3866
3867		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3868			/* Don't change cs_change on the last entry in the list */
3869			if (list_is_last(&xfer->transfer_list, &message->transfers))
3870				break;
3871			xfer->cs_change = 1;
3872		}
3873	}
3874
3875	/*
3876	 * Half-duplex links include original MicroWire, and ones with
3877	 * only one data pin like SPI_3WIRE (switches direction) or where
3878	 * either MOSI or MISO is missing.  They can also be caused by
3879	 * software limitations.
3880	 */
3881	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3882	    (spi->mode & SPI_3WIRE)) {
3883		unsigned flags = ctlr->flags;
3884
3885		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3886			if (xfer->rx_buf && xfer->tx_buf)
3887				return -EINVAL;
3888			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3889				return -EINVAL;
3890			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3891				return -EINVAL;
3892		}
3893	}
3894
3895	/*
3896	 * Set transfer bits_per_word and max speed as spi device default if
3897	 * it is not set for this transfer.
3898	 * Set transfer tx_nbits and rx_nbits as single transfer default
3899	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3900	 * Ensure transfer word_delay is at least as long as that required by
3901	 * device itself.
3902	 */
3903	message->frame_length = 0;
3904	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3905		xfer->effective_speed_hz = 0;
3906		message->frame_length += xfer->len;
3907		if (!xfer->bits_per_word)
3908			xfer->bits_per_word = spi->bits_per_word;
3909
3910		if (!xfer->speed_hz)
3911			xfer->speed_hz = spi->max_speed_hz;
3912
3913		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3914			xfer->speed_hz = ctlr->max_speed_hz;
3915
3916		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3917			return -EINVAL;
 
 
 
 
 
 
 
3918
3919		/*
3920		 * SPI transfer length should be multiple of SPI word size
3921		 * where SPI word size should be power-of-two multiple.
3922		 */
3923		if (xfer->bits_per_word <= 8)
3924			w_size = 1;
3925		else if (xfer->bits_per_word <= 16)
3926			w_size = 2;
3927		else
3928			w_size = 4;
3929
3930		/* No partial transfers accepted */
3931		if (xfer->len % w_size)
3932			return -EINVAL;
3933
3934		if (xfer->speed_hz && ctlr->min_speed_hz &&
3935		    xfer->speed_hz < ctlr->min_speed_hz)
3936			return -EINVAL;
3937
3938		if (xfer->tx_buf && !xfer->tx_nbits)
3939			xfer->tx_nbits = SPI_NBITS_SINGLE;
3940		if (xfer->rx_buf && !xfer->rx_nbits)
3941			xfer->rx_nbits = SPI_NBITS_SINGLE;
3942		/*
3943		 * Check transfer tx/rx_nbits:
3944		 * 1. check the value matches one of single, dual and quad
3945		 * 2. check tx/rx_nbits match the mode in spi_device
3946		 */
3947		if (xfer->tx_buf) {
3948			if (spi->mode & SPI_NO_TX)
3949				return -EINVAL;
3950			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3951				xfer->tx_nbits != SPI_NBITS_DUAL &&
3952				xfer->tx_nbits != SPI_NBITS_QUAD)
3953				return -EINVAL;
3954			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3955				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3956				return -EINVAL;
3957			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3958				!(spi->mode & SPI_TX_QUAD))
3959				return -EINVAL;
3960		}
3961		/* Check transfer rx_nbits */
3962		if (xfer->rx_buf) {
3963			if (spi->mode & SPI_NO_RX)
3964				return -EINVAL;
3965			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3966				xfer->rx_nbits != SPI_NBITS_DUAL &&
3967				xfer->rx_nbits != SPI_NBITS_QUAD)
3968				return -EINVAL;
3969			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3970				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3971				return -EINVAL;
3972			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3973				!(spi->mode & SPI_RX_QUAD))
3974				return -EINVAL;
3975		}
3976
3977		if (_spi_xfer_word_delay_update(xfer, spi))
3978			return -EINVAL;
3979	}
3980
3981	message->status = -EINPROGRESS;
3982
3983	return 0;
3984}
3985
3986static int __spi_async(struct spi_device *spi, struct spi_message *message)
3987{
3988	struct spi_controller *ctlr = spi->controller;
3989	struct spi_transfer *xfer;
3990
3991	/*
3992	 * Some controllers do not support doing regular SPI transfers. Return
3993	 * ENOTSUPP when this is the case.
3994	 */
3995	if (!ctlr->transfer)
3996		return -ENOTSUPP;
3997
3998	message->spi = spi;
3999
4000	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4001	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4002
4003	trace_spi_message_submit(message);
4004
4005	if (!ctlr->ptp_sts_supported) {
4006		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4007			xfer->ptp_sts_word_pre = 0;
4008			ptp_read_system_prets(xfer->ptp_sts);
4009		}
4010	}
4011
4012	return ctlr->transfer(spi, message);
4013}
4014
4015/**
4016 * spi_async - asynchronous SPI transfer
4017 * @spi: device with which data will be exchanged
4018 * @message: describes the data transfers, including completion callback
4019 * Context: any (irqs may be blocked, etc)
4020 *
4021 * This call may be used in_irq and other contexts which can't sleep,
4022 * as well as from task contexts which can sleep.
4023 *
4024 * The completion callback is invoked in a context which can't sleep.
4025 * Before that invocation, the value of message->status is undefined.
4026 * When the callback is issued, message->status holds either zero (to
4027 * indicate complete success) or a negative error code.  After that
4028 * callback returns, the driver which issued the transfer request may
4029 * deallocate the associated memory; it's no longer in use by any SPI
4030 * core or controller driver code.
4031 *
4032 * Note that although all messages to a spi_device are handled in
4033 * FIFO order, messages may go to different devices in other orders.
4034 * Some device might be higher priority, or have various "hard" access
4035 * time requirements, for example.
4036 *
4037 * On detection of any fault during the transfer, processing of
4038 * the entire message is aborted, and the device is deselected.
4039 * Until returning from the associated message completion callback,
4040 * no other spi_message queued to that device will be processed.
4041 * (This rule applies equally to all the synchronous transfer calls,
4042 * which are wrappers around this core asynchronous primitive.)
4043 *
4044 * Return: zero on success, else a negative error code.
4045 */
4046int spi_async(struct spi_device *spi, struct spi_message *message)
4047{
4048	struct spi_controller *ctlr = spi->controller;
4049	int ret;
4050	unsigned long flags;
4051
4052	ret = __spi_validate(spi, message);
4053	if (ret != 0)
4054		return ret;
4055
4056	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4057
4058	if (ctlr->bus_lock_flag)
4059		ret = -EBUSY;
4060	else
4061		ret = __spi_async(spi, message);
4062
4063	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4064
4065	return ret;
4066}
4067EXPORT_SYMBOL_GPL(spi_async);
4068
4069/**
4070 * spi_async_locked - version of spi_async with exclusive bus usage
4071 * @spi: device with which data will be exchanged
4072 * @message: describes the data transfers, including completion callback
4073 * Context: any (irqs may be blocked, etc)
4074 *
4075 * This call may be used in_irq and other contexts which can't sleep,
4076 * as well as from task contexts which can sleep.
4077 *
4078 * The completion callback is invoked in a context which can't sleep.
4079 * Before that invocation, the value of message->status is undefined.
4080 * When the callback is issued, message->status holds either zero (to
4081 * indicate complete success) or a negative error code.  After that
4082 * callback returns, the driver which issued the transfer request may
4083 * deallocate the associated memory; it's no longer in use by any SPI
4084 * core or controller driver code.
4085 *
4086 * Note that although all messages to a spi_device are handled in
4087 * FIFO order, messages may go to different devices in other orders.
4088 * Some device might be higher priority, or have various "hard" access
4089 * time requirements, for example.
4090 *
4091 * On detection of any fault during the transfer, processing of
4092 * the entire message is aborted, and the device is deselected.
4093 * Until returning from the associated message completion callback,
4094 * no other spi_message queued to that device will be processed.
4095 * (This rule applies equally to all the synchronous transfer calls,
4096 * which are wrappers around this core asynchronous primitive.)
4097 *
4098 * Return: zero on success, else a negative error code.
4099 */
4100static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4101{
4102	struct spi_controller *ctlr = spi->controller;
4103	int ret;
4104	unsigned long flags;
4105
4106	ret = __spi_validate(spi, message);
4107	if (ret != 0)
4108		return ret;
4109
4110	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4111
4112	ret = __spi_async(spi, message);
4113
4114	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4115
4116	return ret;
4117
4118}
 
4119
4120static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4121{
4122	bool was_busy;
4123	int ret;
4124
4125	mutex_lock(&ctlr->io_mutex);
4126
4127	was_busy = ctlr->busy;
4128
4129	ctlr->cur_msg = msg;
4130	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4131	if (ret)
4132		goto out;
4133
4134	ctlr->cur_msg = NULL;
4135	ctlr->fallback = false;
4136
4137	if (!was_busy) {
4138		kfree(ctlr->dummy_rx);
4139		ctlr->dummy_rx = NULL;
4140		kfree(ctlr->dummy_tx);
4141		ctlr->dummy_tx = NULL;
4142		if (ctlr->unprepare_transfer_hardware &&
4143		    ctlr->unprepare_transfer_hardware(ctlr))
4144			dev_err(&ctlr->dev,
4145				"failed to unprepare transfer hardware\n");
4146		spi_idle_runtime_pm(ctlr);
4147	}
4148
4149out:
4150	mutex_unlock(&ctlr->io_mutex);
4151}
4152
4153/*-------------------------------------------------------------------------*/
4154
4155/*
4156 * Utility methods for SPI protocol drivers, layered on
4157 * top of the core.  Some other utility methods are defined as
4158 * inline functions.
4159 */
4160
4161static void spi_complete(void *arg)
4162{
4163	complete(arg);
4164}
4165
4166static int __spi_sync(struct spi_device *spi, struct spi_message *message)
 
4167{
4168	DECLARE_COMPLETION_ONSTACK(done);
4169	int status;
4170	struct spi_controller *ctlr = spi->controller;
4171
4172	status = __spi_validate(spi, message);
4173	if (status != 0)
4174		return status;
4175
4176	message->spi = spi;
4177
4178	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4179	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4180
4181	/*
4182	 * Checking queue_empty here only guarantees async/sync message
4183	 * ordering when coming from the same context. It does not need to
4184	 * guard against reentrancy from a different context. The io_mutex
4185	 * will catch those cases.
4186	 */
4187	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4188		message->actual_length = 0;
4189		message->status = -EINPROGRESS;
4190
4191		trace_spi_message_submit(message);
 
4192
4193		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4194		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4195
4196		__spi_transfer_message_noqueue(ctlr, message);
4197
4198		return message->status;
4199	}
4200
4201	/*
4202	 * There are messages in the async queue that could have originated
4203	 * from the same context, so we need to preserve ordering.
4204	 * Therefor we send the message to the async queue and wait until they
4205	 * are completed.
4206	 */
4207	message->complete = spi_complete;
4208	message->context = &done;
4209	status = spi_async_locked(spi, message);
4210	if (status == 0) {
4211		wait_for_completion(&done);
4212		status = message->status;
4213	}
4214	message->context = NULL;
4215
4216	return status;
4217}
4218
4219/**
4220 * spi_sync - blocking/synchronous SPI data transfers
4221 * @spi: device with which data will be exchanged
4222 * @message: describes the data transfers
4223 * Context: can sleep
4224 *
4225 * This call may only be used from a context that may sleep.  The sleep
4226 * is non-interruptible, and has no timeout.  Low-overhead controller
4227 * drivers may DMA directly into and out of the message buffers.
4228 *
4229 * Note that the SPI device's chip select is active during the message,
4230 * and then is normally disabled between messages.  Drivers for some
4231 * frequently-used devices may want to minimize costs of selecting a chip,
4232 * by leaving it selected in anticipation that the next message will go
4233 * to the same chip.  (That may increase power usage.)
4234 *
4235 * Also, the caller is guaranteeing that the memory associated with the
4236 * message will not be freed before this call returns.
4237 *
4238 * Return: zero on success, else a negative error code.
4239 */
4240int spi_sync(struct spi_device *spi, struct spi_message *message)
4241{
4242	int ret;
4243
4244	mutex_lock(&spi->controller->bus_lock_mutex);
4245	ret = __spi_sync(spi, message);
4246	mutex_unlock(&spi->controller->bus_lock_mutex);
4247
4248	return ret;
4249}
4250EXPORT_SYMBOL_GPL(spi_sync);
4251
4252/**
4253 * spi_sync_locked - version of spi_sync with exclusive bus usage
4254 * @spi: device with which data will be exchanged
4255 * @message: describes the data transfers
4256 * Context: can sleep
4257 *
4258 * This call may only be used from a context that may sleep.  The sleep
4259 * is non-interruptible, and has no timeout.  Low-overhead controller
4260 * drivers may DMA directly into and out of the message buffers.
4261 *
4262 * This call should be used by drivers that require exclusive access to the
4263 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4264 * be released by a spi_bus_unlock call when the exclusive access is over.
4265 *
4266 * Return: zero on success, else a negative error code.
4267 */
4268int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4269{
4270	return __spi_sync(spi, message);
4271}
4272EXPORT_SYMBOL_GPL(spi_sync_locked);
4273
4274/**
4275 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4276 * @ctlr: SPI bus master that should be locked for exclusive bus access
4277 * Context: can sleep
4278 *
4279 * This call may only be used from a context that may sleep.  The sleep
4280 * is non-interruptible, and has no timeout.
4281 *
4282 * This call should be used by drivers that require exclusive access to the
4283 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4284 * exclusive access is over. Data transfer must be done by spi_sync_locked
4285 * and spi_async_locked calls when the SPI bus lock is held.
4286 *
4287 * Return: always zero.
4288 */
4289int spi_bus_lock(struct spi_controller *ctlr)
4290{
4291	unsigned long flags;
4292
4293	mutex_lock(&ctlr->bus_lock_mutex);
4294
4295	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4296	ctlr->bus_lock_flag = 1;
4297	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4298
4299	/* Mutex remains locked until spi_bus_unlock() is called */
4300
4301	return 0;
4302}
4303EXPORT_SYMBOL_GPL(spi_bus_lock);
4304
4305/**
4306 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4307 * @ctlr: SPI bus master that was locked for exclusive bus access
4308 * Context: can sleep
4309 *
4310 * This call may only be used from a context that may sleep.  The sleep
4311 * is non-interruptible, and has no timeout.
4312 *
4313 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4314 * call.
4315 *
4316 * Return: always zero.
4317 */
4318int spi_bus_unlock(struct spi_controller *ctlr)
4319{
4320	ctlr->bus_lock_flag = 0;
4321
4322	mutex_unlock(&ctlr->bus_lock_mutex);
4323
4324	return 0;
4325}
4326EXPORT_SYMBOL_GPL(spi_bus_unlock);
4327
4328/* Portable code must never pass more than 32 bytes */
4329#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4330
4331static u8	*buf;
4332
4333/**
4334 * spi_write_then_read - SPI synchronous write followed by read
4335 * @spi: device with which data will be exchanged
4336 * @txbuf: data to be written (need not be dma-safe)
4337 * @n_tx: size of txbuf, in bytes
4338 * @rxbuf: buffer into which data will be read (need not be dma-safe)
4339 * @n_rx: size of rxbuf, in bytes
4340 * Context: can sleep
4341 *
4342 * This performs a half duplex MicroWire style transaction with the
4343 * device, sending txbuf and then reading rxbuf.  The return value
4344 * is zero for success, else a negative errno status code.
4345 * This call may only be used from a context that may sleep.
4346 *
4347 * Parameters to this routine are always copied using a small buffer.
 
4348 * Performance-sensitive or bulk transfer code should instead use
4349 * spi_{async,sync}() calls with dma-safe buffers.
4350 *
4351 * Return: zero on success, else a negative error code.
4352 */
4353int spi_write_then_read(struct spi_device *spi,
4354		const void *txbuf, unsigned n_tx,
4355		void *rxbuf, unsigned n_rx)
4356{
4357	static DEFINE_MUTEX(lock);
4358
4359	int			status;
4360	struct spi_message	message;
4361	struct spi_transfer	x[2];
4362	u8			*local_buf;
4363
4364	/*
4365	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4366	 * copying here, (as a pure convenience thing), but we can
4367	 * keep heap costs out of the hot path unless someone else is
4368	 * using the pre-allocated buffer or the transfer is too large.
4369	 */
4370	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4371		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4372				    GFP_KERNEL | GFP_DMA);
4373		if (!local_buf)
4374			return -ENOMEM;
4375	} else {
4376		local_buf = buf;
4377	}
4378
4379	spi_message_init(&message);
4380	memset(x, 0, sizeof(x));
4381	if (n_tx) {
4382		x[0].len = n_tx;
4383		spi_message_add_tail(&x[0], &message);
4384	}
4385	if (n_rx) {
4386		x[1].len = n_rx;
4387		spi_message_add_tail(&x[1], &message);
4388	}
4389
4390	memcpy(local_buf, txbuf, n_tx);
4391	x[0].tx_buf = local_buf;
4392	x[1].rx_buf = local_buf + n_tx;
4393
4394	/* Do the i/o */
4395	status = spi_sync(spi, &message);
4396	if (status == 0)
4397		memcpy(rxbuf, x[1].rx_buf, n_rx);
4398
4399	if (x[0].tx_buf == buf)
4400		mutex_unlock(&lock);
4401	else
4402		kfree(local_buf);
4403
4404	return status;
4405}
4406EXPORT_SYMBOL_GPL(spi_write_then_read);
4407
4408/*-------------------------------------------------------------------------*/
4409
4410#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4411/* Must call put_device() when done with returned spi_device device */
4412static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4413{
4414	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4415
4416	return dev ? to_spi_device(dev) : NULL;
4417}
4418
4419/* The spi controllers are not using spi_bus, so we find it with another way */
4420static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4421{
4422	struct device *dev;
4423
4424	dev = class_find_device_by_of_node(&spi_master_class, node);
4425	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4426		dev = class_find_device_by_of_node(&spi_slave_class, node);
4427	if (!dev)
4428		return NULL;
4429
4430	/* Reference got in class_find_device */
4431	return container_of(dev, struct spi_controller, dev);
4432}
4433
4434static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4435			 void *arg)
4436{
4437	struct of_reconfig_data *rd = arg;
4438	struct spi_controller *ctlr;
4439	struct spi_device *spi;
4440
4441	switch (of_reconfig_get_state_change(action, arg)) {
4442	case OF_RECONFIG_CHANGE_ADD:
4443		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4444		if (ctlr == NULL)
4445			return NOTIFY_OK;	/* Not for us */
4446
4447		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4448			put_device(&ctlr->dev);
4449			return NOTIFY_OK;
4450		}
4451
4452		spi = of_register_spi_device(ctlr, rd->dn);
4453		put_device(&ctlr->dev);
4454
4455		if (IS_ERR(spi)) {
4456			pr_err("%s: failed to create for '%pOF'\n",
4457					__func__, rd->dn);
4458			of_node_clear_flag(rd->dn, OF_POPULATED);
4459			return notifier_from_errno(PTR_ERR(spi));
4460		}
4461		break;
4462
4463	case OF_RECONFIG_CHANGE_REMOVE:
4464		/* Already depopulated? */
4465		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4466			return NOTIFY_OK;
4467
4468		/* Find our device by node */
4469		spi = of_find_spi_device_by_node(rd->dn);
4470		if (spi == NULL)
4471			return NOTIFY_OK;	/* No? not meant for us */
4472
4473		/* Unregister takes one ref away */
4474		spi_unregister_device(spi);
4475
4476		/* And put the reference of the find */
4477		put_device(&spi->dev);
4478		break;
4479	}
4480
4481	return NOTIFY_OK;
4482}
4483
4484static struct notifier_block spi_of_notifier = {
4485	.notifier_call = of_spi_notify,
4486};
4487#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4488extern struct notifier_block spi_of_notifier;
4489#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4490
4491#if IS_ENABLED(CONFIG_ACPI)
4492static int spi_acpi_controller_match(struct device *dev, const void *data)
4493{
4494	return ACPI_COMPANION(dev->parent) == data;
4495}
4496
4497static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4498{
4499	struct device *dev;
4500
4501	dev = class_find_device(&spi_master_class, NULL, adev,
4502				spi_acpi_controller_match);
4503	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4504		dev = class_find_device(&spi_slave_class, NULL, adev,
4505					spi_acpi_controller_match);
4506	if (!dev)
4507		return NULL;
4508
4509	return container_of(dev, struct spi_controller, dev);
4510}
4511
4512static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4513{
4514	struct device *dev;
4515
4516	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4517	return to_spi_device(dev);
4518}
4519
4520static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4521			   void *arg)
4522{
4523	struct acpi_device *adev = arg;
4524	struct spi_controller *ctlr;
4525	struct spi_device *spi;
4526
4527	switch (value) {
4528	case ACPI_RECONFIG_DEVICE_ADD:
4529		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4530		if (!ctlr)
4531			break;
4532
4533		acpi_register_spi_device(ctlr, adev);
4534		put_device(&ctlr->dev);
4535		break;
4536	case ACPI_RECONFIG_DEVICE_REMOVE:
4537		if (!acpi_device_enumerated(adev))
4538			break;
4539
4540		spi = acpi_spi_find_device_by_adev(adev);
4541		if (!spi)
4542			break;
4543
4544		spi_unregister_device(spi);
4545		put_device(&spi->dev);
4546		break;
4547	}
4548
4549	return NOTIFY_OK;
4550}
4551
4552static struct notifier_block spi_acpi_notifier = {
4553	.notifier_call = acpi_spi_notify,
4554};
4555#else
4556extern struct notifier_block spi_acpi_notifier;
4557#endif
4558
4559static int __init spi_init(void)
4560{
4561	int	status;
4562
4563	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4564	if (!buf) {
4565		status = -ENOMEM;
4566		goto err0;
4567	}
4568
4569	status = bus_register(&spi_bus_type);
4570	if (status < 0)
4571		goto err1;
4572
4573	status = class_register(&spi_master_class);
4574	if (status < 0)
4575		goto err2;
4576
4577	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4578		status = class_register(&spi_slave_class);
4579		if (status < 0)
4580			goto err3;
4581	}
4582
4583	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4584		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4585	if (IS_ENABLED(CONFIG_ACPI))
4586		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4587
4588	return 0;
4589
4590err3:
4591	class_unregister(&spi_master_class);
4592err2:
4593	bus_unregister(&spi_bus_type);
4594err1:
4595	kfree(buf);
4596	buf = NULL;
4597err0:
4598	return status;
4599}
4600
4601/*
4602 * A board_info is normally registered in arch_initcall(),
4603 * but even essential drivers wait till later.
4604 *
4605 * REVISIT only boardinfo really needs static linking. The rest (device and
4606 * driver registration) _could_ be dynamically linked (modular) ... Costs
4607 * include needing to have boardinfo data structures be much more public.
4608 */
4609postcore_initcall(spi_init);
v3.15
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/kmod.h>
  24#include <linux/device.h>
  25#include <linux/init.h>
  26#include <linux/cache.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/dmaengine.h>
  29#include <linux/mutex.h>
  30#include <linux/of_device.h>
  31#include <linux/of_irq.h>
 
  32#include <linux/slab.h>
  33#include <linux/mod_devicetable.h>
  34#include <linux/spi/spi.h>
  35#include <linux/of_gpio.h>
 
  36#include <linux/pm_runtime.h>
 
 
  37#include <linux/export.h>
  38#include <linux/sched/rt.h>
 
  39#include <linux/delay.h>
  40#include <linux/kthread.h>
  41#include <linux/ioport.h>
  42#include <linux/acpi.h>
 
 
 
 
 
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/spi.h>
 
 
 
 
 
 
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	/* spi masters may cleanup for released devices */
  52	if (spi->master->cleanup)
  53		spi->master->cleanup(spi);
  54
  55	spi_master_put(spi->master);
  56	kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62	const struct spi_device	*spi = to_spi_device(dev);
  63	int len;
  64
  65	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66	if (len != -ENODEV)
  67		return len;
  68
  69	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73static struct attribute *spi_dev_attrs[] = {
  74	&dev_attr_modalias.attr,
 
  75	NULL,
  76};
  77ATTRIBUTE_GROUPS(spi_dev);
  78
  79/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80 * and the sysfs version makes coldplug work too.
  81 */
  82
  83static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  84						const struct spi_device *sdev)
  85{
  86	while (id->name[0]) {
  87		if (!strcmp(sdev->modalias, id->name))
  88			return id;
  89		id++;
  90	}
  91	return NULL;
  92}
  93
  94const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  95{
  96	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  97
  98	return spi_match_id(sdrv->id_table, sdev);
  99}
 100EXPORT_SYMBOL_GPL(spi_get_device_id);
 101
 
 
 
 
 
 
 
 
 
 
 
 
 102static int spi_match_device(struct device *dev, struct device_driver *drv)
 103{
 104	const struct spi_device	*spi = to_spi_device(dev);
 105	const struct spi_driver	*sdrv = to_spi_driver(drv);
 106
 
 
 
 
 107	/* Attempt an OF style match */
 108	if (of_driver_match_device(dev, drv))
 109		return 1;
 110
 111	/* Then try ACPI */
 112	if (acpi_driver_match_device(dev, drv))
 113		return 1;
 114
 115	if (sdrv->id_table)
 116		return !!spi_match_id(sdrv->id_table, spi);
 117
 118	return strcmp(spi->modalias, drv->name) == 0;
 119}
 120
 121static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 122{
 123	const struct spi_device		*spi = to_spi_device(dev);
 124	int rc;
 125
 126	rc = acpi_device_uevent_modalias(dev, env);
 127	if (rc != -ENODEV)
 128		return rc;
 129
 130	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 131	return 0;
 132}
 133
 134#ifdef CONFIG_PM_SLEEP
 135static int spi_legacy_suspend(struct device *dev, pm_message_t message)
 136{
 137	int			value = 0;
 138	struct spi_driver	*drv = to_spi_driver(dev->driver);
 
 
 
 
 
 139
 140	/* suspend will stop irqs and dma; no more i/o */
 141	if (drv) {
 142		if (drv->suspend)
 143			value = drv->suspend(to_spi_device(dev), message);
 144		else
 145			dev_dbg(dev, "... can't suspend\n");
 146	}
 147	return value;
 148}
 149
 150static int spi_legacy_resume(struct device *dev)
 151{
 152	int			value = 0;
 153	struct spi_driver	*drv = to_spi_driver(dev->driver);
 154
 155	/* resume may restart the i/o queue */
 156	if (drv) {
 157		if (drv->resume)
 158			value = drv->resume(to_spi_device(dev));
 159		else
 160			dev_dbg(dev, "... can't resume\n");
 161	}
 162	return value;
 163}
 164
 165static int spi_pm_suspend(struct device *dev)
 166{
 167	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 168
 169	if (pm)
 170		return pm_generic_suspend(dev);
 171	else
 172		return spi_legacy_suspend(dev, PMSG_SUSPEND);
 173}
 174
 175static int spi_pm_resume(struct device *dev)
 176{
 177	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 178
 179	if (pm)
 180		return pm_generic_resume(dev);
 181	else
 182		return spi_legacy_resume(dev);
 183}
 184
 185static int spi_pm_freeze(struct device *dev)
 186{
 187	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 188
 189	if (pm)
 190		return pm_generic_freeze(dev);
 191	else
 192		return spi_legacy_suspend(dev, PMSG_FREEZE);
 193}
 194
 195static int spi_pm_thaw(struct device *dev)
 196{
 197	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 
 198
 199	if (pm)
 200		return pm_generic_thaw(dev);
 201	else
 202		return spi_legacy_resume(dev);
 203}
 204
 205static int spi_pm_poweroff(struct device *dev)
 206{
 207	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 208
 209	if (pm)
 210		return pm_generic_poweroff(dev);
 211	else
 212		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
 213}
 214
 215static int spi_pm_restore(struct device *dev)
 216{
 217	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 218
 219	if (pm)
 220		return pm_generic_restore(dev);
 221	else
 222		return spi_legacy_resume(dev);
 223}
 224#else
 225#define spi_pm_suspend	NULL
 226#define spi_pm_resume	NULL
 227#define spi_pm_freeze	NULL
 228#define spi_pm_thaw	NULL
 229#define spi_pm_poweroff	NULL
 230#define spi_pm_restore	NULL
 231#endif
 232
 233static const struct dev_pm_ops spi_pm = {
 234	.suspend = spi_pm_suspend,
 235	.resume = spi_pm_resume,
 236	.freeze = spi_pm_freeze,
 237	.thaw = spi_pm_thaw,
 238	.poweroff = spi_pm_poweroff,
 239	.restore = spi_pm_restore,
 240	SET_RUNTIME_PM_OPS(
 241		pm_generic_runtime_suspend,
 242		pm_generic_runtime_resume,
 243		NULL
 244	)
 245};
 246
 247struct bus_type spi_bus_type = {
 248	.name		= "spi",
 249	.dev_groups	= spi_dev_groups,
 250	.match		= spi_match_device,
 251	.uevent		= spi_uevent,
 252	.pm		= &spi_pm,
 
 
 253};
 254EXPORT_SYMBOL_GPL(spi_bus_type);
 255
 256
 257static int spi_drv_probe(struct device *dev)
 258{
 259	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 260	int ret;
 261
 262	acpi_dev_pm_attach(dev, true);
 263	ret = sdrv->probe(to_spi_device(dev));
 264	if (ret)
 265		acpi_dev_pm_detach(dev, true);
 266
 267	return ret;
 268}
 269
 270static int spi_drv_remove(struct device *dev)
 271{
 272	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 273	int ret;
 274
 275	ret = sdrv->remove(to_spi_device(dev));
 276	acpi_dev_pm_detach(dev, true);
 277
 278	return ret;
 279}
 280
 281static void spi_drv_shutdown(struct device *dev)
 282{
 283	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 284
 285	sdrv->shutdown(to_spi_device(dev));
 286}
 287
 288/**
 289 * spi_register_driver - register a SPI driver
 
 290 * @sdrv: the driver to register
 291 * Context: can sleep
 
 
 292 */
 293int spi_register_driver(struct spi_driver *sdrv)
 294{
 
 295	sdrv->driver.bus = &spi_bus_type;
 296	if (sdrv->probe)
 297		sdrv->driver.probe = spi_drv_probe;
 298	if (sdrv->remove)
 299		sdrv->driver.remove = spi_drv_remove;
 300	if (sdrv->shutdown)
 301		sdrv->driver.shutdown = spi_drv_shutdown;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302	return driver_register(&sdrv->driver);
 303}
 304EXPORT_SYMBOL_GPL(spi_register_driver);
 305
 306/*-------------------------------------------------------------------------*/
 307
 308/* SPI devices should normally not be created by SPI device drivers; that
 309 * would make them board-specific.  Similarly with SPI master drivers.
 
 310 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 311 * with other readonly (flashable) information about mainboard devices.
 312 */
 313
 314struct boardinfo {
 315	struct list_head	list;
 316	struct spi_board_info	board_info;
 317};
 318
 319static LIST_HEAD(board_list);
 320static LIST_HEAD(spi_master_list);
 321
 322/*
 323 * Used to protect add/del opertion for board_info list and
 324 * spi_master list, and their matching process
 
 325 */
 326static DEFINE_MUTEX(board_lock);
 327
 328/**
 329 * spi_alloc_device - Allocate a new SPI device
 330 * @master: Controller to which device is connected
 331 * Context: can sleep
 332 *
 333 * Allows a driver to allocate and initialize a spi_device without
 334 * registering it immediately.  This allows a driver to directly
 335 * fill the spi_device with device parameters before calling
 336 * spi_add_device() on it.
 337 *
 338 * Caller is responsible to call spi_add_device() on the returned
 339 * spi_device structure to add it to the SPI master.  If the caller
 340 * needs to discard the spi_device without adding it, then it should
 341 * call spi_dev_put() on it.
 342 *
 343 * Returns a pointer to the new device, or NULL.
 344 */
 345struct spi_device *spi_alloc_device(struct spi_master *master)
 346{
 347	struct spi_device	*spi;
 348	struct device		*dev = master->dev.parent;
 349
 350	if (!spi_master_get(master))
 351		return NULL;
 352
 353	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 354	if (!spi) {
 355		dev_err(dev, "cannot alloc spi_device\n");
 356		spi_master_put(master);
 357		return NULL;
 358	}
 359
 360	spi->master = master;
 361	spi->dev.parent = &master->dev;
 
 
 
 
 
 
 
 362	spi->dev.bus = &spi_bus_type;
 363	spi->dev.release = spidev_release;
 364	spi->cs_gpio = -ENOENT;
 
 365	device_initialize(&spi->dev);
 366	return spi;
 367}
 368EXPORT_SYMBOL_GPL(spi_alloc_device);
 369
 370static void spi_dev_set_name(struct spi_device *spi)
 371{
 372	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 373
 374	if (adev) {
 375		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 376		return;
 377	}
 378
 379	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 380		     spi->chip_select);
 381}
 382
 383static int spi_dev_check(struct device *dev, void *data)
 384{
 385	struct spi_device *spi = to_spi_device(dev);
 386	struct spi_device *new_spi = data;
 387
 388	if (spi->master == new_spi->master &&
 389	    spi->chip_select == new_spi->chip_select)
 390		return -EBUSY;
 391	return 0;
 392}
 393
 394/**
 395 * spi_add_device - Add spi_device allocated with spi_alloc_device
 396 * @spi: spi_device to register
 397 *
 398 * Companion function to spi_alloc_device.  Devices allocated with
 399 * spi_alloc_device can be added onto the spi bus with this function.
 400 *
 401 * Returns 0 on success; negative errno on failure
 402 */
 403int spi_add_device(struct spi_device *spi)
 404{
 405	static DEFINE_MUTEX(spi_add_lock);
 406	struct spi_master *master = spi->master;
 407	struct device *dev = master->dev.parent;
 408	int status;
 409
 410	/* Chipselects are numbered 0..max; validate. */
 411	if (spi->chip_select >= master->num_chipselect) {
 412		dev_err(dev, "cs%d >= max %d\n",
 413			spi->chip_select,
 414			master->num_chipselect);
 415		return -EINVAL;
 416	}
 417
 418	/* Set the bus ID string */
 419	spi_dev_set_name(spi);
 420
 421	/* We need to make sure there's no other device with this
 422	 * chipselect **BEFORE** we call setup(), else we'll trash
 423	 * its configuration.  Lock against concurrent add() calls.
 424	 */
 425	mutex_lock(&spi_add_lock);
 426
 427	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 428	if (status) {
 429		dev_err(dev, "chipselect %d already in use\n",
 430				spi->chip_select);
 431		goto done;
 432	}
 433
 434	if (master->cs_gpios)
 435		spi->cs_gpio = master->cs_gpios[spi->chip_select];
 
 
 
 
 
 
 436
 437	/* Drivers may modify this initial i/o setup, but will
 
 438	 * normally rely on the device being setup.  Devices
 439	 * using SPI_CS_HIGH can't coexist well otherwise...
 440	 */
 441	status = spi_setup(spi);
 442	if (status < 0) {
 443		dev_err(dev, "can't setup %s, status %d\n",
 444				dev_name(&spi->dev), status);
 445		goto done;
 446	}
 447
 448	/* Device may be bound to an active driver when this returns */
 449	status = device_add(&spi->dev);
 450	if (status < 0)
 451		dev_err(dev, "can't add %s, status %d\n",
 452				dev_name(&spi->dev), status);
 453	else
 
 454		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 
 455
 456done:
 457	mutex_unlock(&spi_add_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458	return status;
 459}
 460EXPORT_SYMBOL_GPL(spi_add_device);
 461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462/**
 463 * spi_new_device - instantiate one new SPI device
 464 * @master: Controller to which device is connected
 465 * @chip: Describes the SPI device
 466 * Context: can sleep
 467 *
 468 * On typical mainboards, this is purely internal; and it's not needed
 469 * after board init creates the hard-wired devices.  Some development
 470 * platforms may not be able to use spi_register_board_info though, and
 471 * this is exported so that for example a USB or parport based adapter
 472 * driver could add devices (which it would learn about out-of-band).
 473 *
 474 * Returns the new device, or NULL.
 475 */
 476struct spi_device *spi_new_device(struct spi_master *master,
 477				  struct spi_board_info *chip)
 478{
 479	struct spi_device	*proxy;
 480	int			status;
 481
 482	/* NOTE:  caller did any chip->bus_num checks necessary.
 
 483	 *
 484	 * Also, unless we change the return value convention to use
 485	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 486	 * suggests syslogged diagnostics are best here (ugh).
 487	 */
 488
 489	proxy = spi_alloc_device(master);
 490	if (!proxy)
 491		return NULL;
 492
 493	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 494
 495	proxy->chip_select = chip->chip_select;
 496	proxy->max_speed_hz = chip->max_speed_hz;
 497	proxy->mode = chip->mode;
 498	proxy->irq = chip->irq;
 499	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 500	proxy->dev.platform_data = (void *) chip->platform_data;
 501	proxy->controller_data = chip->controller_data;
 502	proxy->controller_state = NULL;
 503
 
 
 
 
 
 
 
 
 
 504	status = spi_add_device(proxy);
 505	if (status < 0) {
 506		spi_dev_put(proxy);
 507		return NULL;
 508	}
 509
 510	return proxy;
 
 
 
 
 
 511}
 512EXPORT_SYMBOL_GPL(spi_new_device);
 513
 514static void spi_match_master_to_boardinfo(struct spi_master *master,
 515				struct spi_board_info *bi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516{
 517	struct spi_device *dev;
 518
 519	if (master->bus_num != bi->bus_num)
 520		return;
 521
 522	dev = spi_new_device(master, bi);
 523	if (!dev)
 524		dev_err(master->dev.parent, "can't create new device for %s\n",
 525			bi->modalias);
 526}
 527
 528/**
 529 * spi_register_board_info - register SPI devices for a given board
 530 * @info: array of chip descriptors
 531 * @n: how many descriptors are provided
 532 * Context: can sleep
 533 *
 534 * Board-specific early init code calls this (probably during arch_initcall)
 535 * with segments of the SPI device table.  Any device nodes are created later,
 536 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 537 * this table of devices forever, so that reloading a controller driver will
 538 * not make Linux forget about these hard-wired devices.
 539 *
 540 * Other code can also call this, e.g. a particular add-on board might provide
 541 * SPI devices through its expansion connector, so code initializing that board
 542 * would naturally declare its SPI devices.
 543 *
 544 * The board info passed can safely be __initdata ... but be careful of
 545 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 
 546 */
 547int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 548{
 549	struct boardinfo *bi;
 550	int i;
 551
 552	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 
 
 
 553	if (!bi)
 554		return -ENOMEM;
 555
 556	for (i = 0; i < n; i++, bi++, info++) {
 557		struct spi_master *master;
 558
 559		memcpy(&bi->board_info, info, sizeof(*info));
 
 560		mutex_lock(&board_lock);
 561		list_add_tail(&bi->list, &board_list);
 562		list_for_each_entry(master, &spi_master_list, list)
 563			spi_match_master_to_boardinfo(master, &bi->board_info);
 
 564		mutex_unlock(&board_lock);
 565	}
 566
 567	return 0;
 568}
 569
 570/*-------------------------------------------------------------------------*/
 571
 572static void spi_set_cs(struct spi_device *spi, bool enable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574	if (spi->mode & SPI_CS_HIGH)
 575		enable = !enable;
 576
 577	if (spi->cs_gpio >= 0)
 578		gpio_set_value(spi->cs_gpio, !enable);
 579	else if (spi->master->set_cs)
 580		spi->master->set_cs(spi, !enable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581}
 582
 583#ifdef CONFIG_HAS_DMA
 584static int spi_map_buf(struct spi_master *master, struct device *dev,
 585		       struct sg_table *sgt, void *buf, size_t len,
 586		       enum dma_data_direction dir)
 587{
 588	const bool vmalloced_buf = is_vmalloc_addr(buf);
 589	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
 590	const int sgs = DIV_ROUND_UP(len, desc_len);
 
 
 
 
 
 
 
 
 591	struct page *vm_page;
 
 592	void *sg_buf;
 593	size_t min;
 594	int i, ret;
 595
 
 
 
 
 
 
 
 
 
 
 596	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 597	if (ret != 0)
 598		return ret;
 599
 
 600	for (i = 0; i < sgs; i++) {
 601		min = min_t(size_t, len, desc_len);
 602
 603		if (vmalloced_buf) {
 604			vm_page = vmalloc_to_page(buf);
 
 
 
 
 
 
 
 
 
 
 
 605			if (!vm_page) {
 606				sg_free_table(sgt);
 607				return -ENOMEM;
 608			}
 609			sg_buf = page_address(vm_page) +
 610				((size_t)buf & ~PAGE_MASK);
 611		} else {
 
 612			sg_buf = buf;
 
 613		}
 614
 615		sg_set_buf(&sgt->sgl[i], sg_buf, min);
 616
 617		buf += min;
 618		len -= min;
 
 619	}
 620
 621	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 622	if (ret < 0) {
 623		sg_free_table(sgt);
 624		return ret;
 625	}
 626
 627	sgt->nents = ret;
 
 628
 629	return 0;
 
 
 
 
 630}
 631
 632static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 633			  struct sg_table *sgt, enum dma_data_direction dir)
 
 
 634{
 635	if (sgt->orig_nents) {
 636		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 637		sg_free_table(sgt);
 
 
 638	}
 639}
 640
 641static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 
 
 
 
 
 
 642{
 643	struct device *tx_dev, *rx_dev;
 644	struct spi_transfer *xfer;
 645	int ret;
 646
 647	if (!master->can_dma)
 648		return 0;
 649
 650	tx_dev = &master->dma_tx->dev->device;
 651	rx_dev = &master->dma_rx->dev->device;
 
 
 
 
 
 
 
 
 
 
 
 652
 653	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 654		if (!master->can_dma(master, msg->spi, xfer))
 
 
 
 655			continue;
 656
 657		if (xfer->tx_buf != NULL) {
 658			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 659					  (void *)xfer->tx_buf, xfer->len,
 660					  DMA_TO_DEVICE);
 
 661			if (ret != 0)
 662				return ret;
 663		}
 664
 665		if (xfer->rx_buf != NULL) {
 666			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 667					  xfer->rx_buf, xfer->len,
 668					  DMA_FROM_DEVICE);
 669			if (ret != 0) {
 670				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 671					      DMA_TO_DEVICE);
 
 
 672				return ret;
 673			}
 674		}
 675	}
 676
 677	master->cur_msg_mapped = true;
 
 
 678
 679	return 0;
 680}
 681
 682static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 683{
 
 
 684	struct spi_transfer *xfer;
 685	struct device *tx_dev, *rx_dev;
 686
 687	if (!master->cur_msg_mapped || !master->can_dma)
 688		return 0;
 689
 690	tx_dev = &master->dma_tx->dev->device;
 691	rx_dev = &master->dma_rx->dev->device;
 
 692
 693	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 694		if (!master->can_dma(master, msg->spi, xfer))
 695			continue;
 696
 697		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 698		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 
 
 699	}
 700
 
 
 701	return 0;
 702}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703#else /* !CONFIG_HAS_DMA */
 704static inline int __spi_map_msg(struct spi_master *master,
 705				struct spi_message *msg)
 706{
 707	return 0;
 708}
 709
 710static inline int spi_unmap_msg(struct spi_master *master,
 711				struct spi_message *msg)
 712{
 713	return 0;
 714}
 
 
 
 
 
 
 
 
 
 
 715#endif /* !CONFIG_HAS_DMA */
 716
 717static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718{
 719	struct spi_transfer *xfer;
 720	void *tmp;
 721	unsigned int max_tx, max_rx;
 722
 723	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 
 724		max_tx = 0;
 725		max_rx = 0;
 726
 727		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 728			if ((master->flags & SPI_MASTER_MUST_TX) &&
 729			    !xfer->tx_buf)
 730				max_tx = max(xfer->len, max_tx);
 731			if ((master->flags & SPI_MASTER_MUST_RX) &&
 732			    !xfer->rx_buf)
 733				max_rx = max(xfer->len, max_rx);
 734		}
 735
 736		if (max_tx) {
 737			tmp = krealloc(master->dummy_tx, max_tx,
 738				       GFP_KERNEL | GFP_DMA);
 739			if (!tmp)
 740				return -ENOMEM;
 741			master->dummy_tx = tmp;
 742			memset(tmp, 0, max_tx);
 743		}
 744
 745		if (max_rx) {
 746			tmp = krealloc(master->dummy_rx, max_rx,
 747				       GFP_KERNEL | GFP_DMA);
 748			if (!tmp)
 749				return -ENOMEM;
 750			master->dummy_rx = tmp;
 751		}
 752
 753		if (max_tx || max_rx) {
 754			list_for_each_entry(xfer, &msg->transfers,
 755					    transfer_list) {
 
 
 756				if (!xfer->tx_buf)
 757					xfer->tx_buf = master->dummy_tx;
 758				if (!xfer->rx_buf)
 759					xfer->rx_buf = master->dummy_rx;
 760			}
 761		}
 762	}
 763
 764	return __spi_map_msg(master, msg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765}
 766
 767/*
 768 * spi_transfer_one_message - Default implementation of transfer_one_message()
 769 *
 770 * This is a standard implementation of transfer_one_message() for
 771 * drivers which impelment a transfer_one() operation.  It provides
 772 * standard handling of delays and chip select management.
 773 */
 774static int spi_transfer_one_message(struct spi_master *master,
 775				    struct spi_message *msg)
 776{
 777	struct spi_transfer *xfer;
 778	bool keep_cs = false;
 779	int ret = 0;
 780	int ms = 1;
 
 
 
 
 781
 782	spi_set_cs(msg->spi, true);
 
 783
 784	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 785		trace_spi_transfer_start(msg, xfer);
 786
 787		reinit_completion(&master->xfer_completion);
 
 788
 789		ret = master->transfer_one(master, msg->spi, xfer);
 790		if (ret < 0) {
 791			dev_err(&msg->spi->dev,
 792				"SPI transfer failed: %d\n", ret);
 793			goto out;
 794		}
 795
 796		if (ret > 0) {
 797			ret = 0;
 798			ms = xfer->len * 8 * 1000 / xfer->speed_hz;
 799			ms += 10; /* some tolerance */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800
 801			ms = wait_for_completion_timeout(&master->xfer_completion,
 802							 msecs_to_jiffies(ms));
 
 
 
 
 803		}
 804
 805		if (ms == 0) {
 806			dev_err(&msg->spi->dev, "SPI transfer timed out\n");
 807			msg->status = -ETIMEDOUT;
 808		}
 809
 810		trace_spi_transfer_stop(msg, xfer);
 811
 812		if (msg->status != -EINPROGRESS)
 813			goto out;
 814
 815		if (xfer->delay_usecs)
 816			udelay(xfer->delay_usecs);
 817
 818		if (xfer->cs_change) {
 819			if (list_is_last(&xfer->transfer_list,
 820					 &msg->transfers)) {
 821				keep_cs = true;
 822			} else {
 823				spi_set_cs(msg->spi, false);
 824				udelay(10);
 825				spi_set_cs(msg->spi, true);
 
 
 826			}
 
 
 
 827		}
 828
 829		msg->actual_length += xfer->len;
 830	}
 831
 832out:
 833	if (ret != 0 || !keep_cs)
 834		spi_set_cs(msg->spi, false);
 835
 836	if (msg->status == -EINPROGRESS)
 837		msg->status = ret;
 838
 839	spi_finalize_current_message(master);
 
 
 
 840
 841	return ret;
 842}
 843
 844/**
 845 * spi_finalize_current_transfer - report completion of a transfer
 
 846 *
 847 * Called by SPI drivers using the core transfer_one_message()
 848 * implementation to notify it that the current interrupt driven
 849 * transfer has finished and the next one may be scheduled.
 850 */
 851void spi_finalize_current_transfer(struct spi_master *master)
 852{
 853	complete(&master->xfer_completion);
 854}
 855EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
 856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857/**
 858 * spi_pump_messages - kthread work function which processes spi message queue
 859 * @work: pointer to kthread work struct contained in the master struct
 
 860 *
 861 * This function checks if there is any spi message in the queue that
 862 * needs processing and if so call out to the driver to initialize hardware
 863 * and transfer each message.
 864 *
 
 
 
 865 */
 866static void spi_pump_messages(struct kthread_work *work)
 867{
 868	struct spi_master *master =
 869		container_of(work, struct spi_master, pump_messages);
 870	unsigned long flags;
 871	bool was_busy = false;
 872	int ret;
 873
 874	/* Lock queue and check for queue work */
 875	spin_lock_irqsave(&master->queue_lock, flags);
 876	if (list_empty(&master->queue) || !master->running) {
 877		if (!master->busy) {
 878			spin_unlock_irqrestore(&master->queue_lock, flags);
 879			return;
 880		}
 881		master->busy = false;
 882		spin_unlock_irqrestore(&master->queue_lock, flags);
 883		kfree(master->dummy_rx);
 884		master->dummy_rx = NULL;
 885		kfree(master->dummy_tx);
 886		master->dummy_tx = NULL;
 887		if (master->unprepare_transfer_hardware &&
 888		    master->unprepare_transfer_hardware(master))
 889			dev_err(&master->dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890				"failed to unprepare transfer hardware\n");
 891		if (master->auto_runtime_pm) {
 892			pm_runtime_mark_last_busy(master->dev.parent);
 893			pm_runtime_put_autosuspend(master->dev.parent);
 894		}
 895		trace_spi_master_idle(master);
 896		return;
 897	}
 898
 899	/* Make sure we are not already running a message */
 900	if (master->cur_msg) {
 901		spin_unlock_irqrestore(&master->queue_lock, flags);
 902		return;
 903	}
 904	/* Extract head of queue */
 905	master->cur_msg =
 906		list_first_entry(&master->queue, struct spi_message, queue);
 907
 908	list_del_init(&master->cur_msg->queue);
 909	if (master->busy)
 910		was_busy = true;
 911	else
 912		master->busy = true;
 913	spin_unlock_irqrestore(&master->queue_lock, flags);
 914
 915	if (!was_busy && master->auto_runtime_pm) {
 916		ret = pm_runtime_get_sync(master->dev.parent);
 917		if (ret < 0) {
 918			dev_err(&master->dev, "Failed to power device: %d\n",
 919				ret);
 920			return;
 921		}
 922	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923
 924	if (!was_busy)
 925		trace_spi_master_busy(master);
 926
 927	if (!was_busy && master->prepare_transfer_hardware) {
 928		ret = master->prepare_transfer_hardware(master);
 929		if (ret) {
 930			dev_err(&master->dev,
 931				"failed to prepare transfer hardware\n");
 932
 933			if (master->auto_runtime_pm)
 934				pm_runtime_put(master->dev.parent);
 935			return;
 936		}
 937	}
 938
 939	trace_spi_message_start(master->cur_msg);
 
 
 940
 941	if (master->prepare_message) {
 942		ret = master->prepare_message(master, master->cur_msg);
 943		if (ret) {
 944			dev_err(&master->dev,
 945				"failed to prepare message: %d\n", ret);
 946			master->cur_msg->status = ret;
 947			spi_finalize_current_message(master);
 948			return;
 949		}
 950		master->cur_msg_prepared = true;
 951	}
 
 
 
 
 
 
 
 952
 953	ret = spi_map_msg(master, master->cur_msg);
 954	if (ret) {
 955		master->cur_msg->status = ret;
 956		spi_finalize_current_message(master);
 957		return;
 958	}
 959
 960	ret = master->transfer_one_message(master, master->cur_msg);
 961	if (ret) {
 962		dev_err(&master->dev,
 963			"failed to transfer one message from queue\n");
 964		return;
 
 
 
 
 
 
 965	}
 
 
 
 
 
 966}
 
 967
 968static int spi_init_queue(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969{
 970	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 
 
 
 971
 972	INIT_LIST_HEAD(&master->queue);
 973	spin_lock_init(&master->queue_lock);
 
 
 
 974
 975	master->running = false;
 976	master->busy = false;
 977
 978	init_kthread_worker(&master->kworker);
 979	master->kworker_task = kthread_run(kthread_worker_fn,
 980					   &master->kworker, "%s",
 981					   dev_name(&master->dev));
 982	if (IS_ERR(master->kworker_task)) {
 983		dev_err(&master->dev, "failed to create message pump task\n");
 984		return -ENOMEM;
 985	}
 986	init_kthread_work(&master->pump_messages, spi_pump_messages);
 
 987
 988	/*
 989	 * Master config will indicate if this controller should run the
 990	 * message pump with high (realtime) priority to reduce the transfer
 991	 * latency on the bus by minimising the delay between a transfer
 992	 * request and the scheduling of the message pump thread. Without this
 993	 * setting the message pump thread will remain at default priority.
 994	 */
 995	if (master->rt) {
 996		dev_info(&master->dev,
 997			"will run message pump with realtime priority\n");
 998		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
 999	}
1000
1001	return 0;
1002}
1003
1004/**
1005 * spi_get_next_queued_message() - called by driver to check for queued
1006 * messages
1007 * @master: the master to check for queued messages
1008 *
1009 * If there are more messages in the queue, the next message is returned from
1010 * this call.
 
 
1011 */
1012struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1013{
1014	struct spi_message *next;
1015	unsigned long flags;
1016
1017	/* get a pointer to the next message, if any */
1018	spin_lock_irqsave(&master->queue_lock, flags);
1019	next = list_first_entry_or_null(&master->queue, struct spi_message,
1020					queue);
1021	spin_unlock_irqrestore(&master->queue_lock, flags);
1022
1023	return next;
1024}
1025EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1026
1027/**
1028 * spi_finalize_current_message() - the current message is complete
1029 * @master: the master to return the message to
1030 *
1031 * Called by the driver to notify the core that the message in the front of the
1032 * queue is complete and can be removed from the queue.
1033 */
1034void spi_finalize_current_message(struct spi_master *master)
1035{
 
1036	struct spi_message *mesg;
1037	unsigned long flags;
1038	int ret;
1039
1040	spin_lock_irqsave(&master->queue_lock, flags);
1041	mesg = master->cur_msg;
1042	master->cur_msg = NULL;
1043
1044	queue_kthread_work(&master->kworker, &master->pump_messages);
1045	spin_unlock_irqrestore(&master->queue_lock, flags);
 
 
 
 
1046
1047	spi_unmap_msg(master, mesg);
 
 
 
 
 
 
 
 
 
 
 
 
 
1048
1049	if (master->cur_msg_prepared && master->unprepare_message) {
1050		ret = master->unprepare_message(master, mesg);
1051		if (ret) {
1052			dev_err(&master->dev,
1053				"failed to unprepare message: %d\n", ret);
1054		}
1055	}
1056	master->cur_msg_prepared = false;
 
 
 
 
 
 
 
 
1057
1058	mesg->state = NULL;
1059	if (mesg->complete)
1060		mesg->complete(mesg->context);
1061
1062	trace_spi_message_done(mesg);
1063}
1064EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1065
1066static int spi_start_queue(struct spi_master *master)
1067{
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&master->queue_lock, flags);
1071
1072	if (master->running || master->busy) {
1073		spin_unlock_irqrestore(&master->queue_lock, flags);
1074		return -EBUSY;
1075	}
1076
1077	master->running = true;
1078	master->cur_msg = NULL;
1079	spin_unlock_irqrestore(&master->queue_lock, flags);
1080
1081	queue_kthread_work(&master->kworker, &master->pump_messages);
1082
1083	return 0;
1084}
1085
1086static int spi_stop_queue(struct spi_master *master)
1087{
1088	unsigned long flags;
1089	unsigned limit = 500;
1090	int ret = 0;
1091
1092	spin_lock_irqsave(&master->queue_lock, flags);
1093
1094	/*
1095	 * This is a bit lame, but is optimized for the common execution path.
1096	 * A wait_queue on the master->busy could be used, but then the common
1097	 * execution path (pump_messages) would be required to call wake_up or
1098	 * friends on every SPI message. Do this instead.
1099	 */
1100	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1101		spin_unlock_irqrestore(&master->queue_lock, flags);
1102		usleep_range(10000, 11000);
1103		spin_lock_irqsave(&master->queue_lock, flags);
1104	}
1105
1106	if (!list_empty(&master->queue) || master->busy)
1107		ret = -EBUSY;
1108	else
1109		master->running = false;
1110
1111	spin_unlock_irqrestore(&master->queue_lock, flags);
1112
1113	if (ret) {
1114		dev_warn(&master->dev,
1115			 "could not stop message queue\n");
1116		return ret;
1117	}
1118	return ret;
1119}
1120
1121static int spi_destroy_queue(struct spi_master *master)
1122{
1123	int ret;
1124
1125	ret = spi_stop_queue(master);
1126
1127	/*
1128	 * flush_kthread_worker will block until all work is done.
1129	 * If the reason that stop_queue timed out is that the work will never
1130	 * finish, then it does no good to call flush/stop thread, so
1131	 * return anyway.
1132	 */
1133	if (ret) {
1134		dev_err(&master->dev, "problem destroying queue\n");
1135		return ret;
1136	}
1137
1138	flush_kthread_worker(&master->kworker);
1139	kthread_stop(master->kworker_task);
1140
1141	return 0;
1142}
1143
1144/**
1145 * spi_queued_transfer - transfer function for queued transfers
1146 * @spi: spi device which is requesting transfer
1147 * @msg: spi message which is to handled is queued to driver queue
1148 */
1149static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1150{
1151	struct spi_master *master = spi->master;
1152	unsigned long flags;
1153
1154	spin_lock_irqsave(&master->queue_lock, flags);
1155
1156	if (!master->running) {
1157		spin_unlock_irqrestore(&master->queue_lock, flags);
1158		return -ESHUTDOWN;
1159	}
1160	msg->actual_length = 0;
1161	msg->status = -EINPROGRESS;
1162
1163	list_add_tail(&msg->queue, &master->queue);
1164	if (!master->busy)
1165		queue_kthread_work(&master->kworker, &master->pump_messages);
 
1166
1167	spin_unlock_irqrestore(&master->queue_lock, flags);
1168	return 0;
1169}
1170
1171static int spi_master_initialize_queue(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
1172{
1173	int ret;
1174
1175	master->transfer = spi_queued_transfer;
1176	if (!master->transfer_one_message)
1177		master->transfer_one_message = spi_transfer_one_message;
1178
1179	/* Initialize and start queue */
1180	ret = spi_init_queue(master);
1181	if (ret) {
1182		dev_err(&master->dev, "problem initializing queue\n");
1183		goto err_init_queue;
1184	}
1185	master->queued = true;
1186	ret = spi_start_queue(master);
1187	if (ret) {
1188		dev_err(&master->dev, "problem starting queue\n");
1189		goto err_start_queue;
1190	}
1191
1192	return 0;
1193
1194err_start_queue:
1195	spi_destroy_queue(master);
1196err_init_queue:
1197	return ret;
1198}
1199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200/*-------------------------------------------------------------------------*/
1201
1202#if defined(CONFIG_OF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203/**
1204 * of_register_spi_devices() - Register child devices onto the SPI bus
1205 * @master:	Pointer to spi_master device
1206 *
1207 * Registers an spi_device for each child node of master node which has a 'reg'
1208 * property.
1209 */
1210static void of_register_spi_devices(struct spi_master *master)
1211{
1212	struct spi_device *spi;
1213	struct device_node *nc;
1214	int rc;
1215	u32 value;
1216
1217	if (!master->dev.of_node)
1218		return;
1219
1220	for_each_available_child_of_node(master->dev.of_node, nc) {
1221		/* Alloc an spi_device */
1222		spi = spi_alloc_device(master);
1223		if (!spi) {
1224			dev_err(&master->dev, "spi_device alloc error for %s\n",
1225				nc->full_name);
1226			spi_dev_put(spi);
1227			continue;
 
 
 
 
 
1228		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229
1230		/* Select device driver */
1231		if (of_modalias_node(nc, spi->modalias,
1232				     sizeof(spi->modalias)) < 0) {
1233			dev_err(&master->dev, "cannot find modalias for %s\n",
1234				nc->full_name);
1235			spi_dev_put(spi);
1236			continue;
1237		}
1238
1239		/* Device address */
1240		rc = of_property_read_u32(nc, "reg", &value);
1241		if (rc) {
1242			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1243				nc->full_name, rc);
1244			spi_dev_put(spi);
1245			continue;
1246		}
1247		spi->chip_select = value;
1248
1249		/* Mode (clock phase/polarity/etc.) */
1250		if (of_find_property(nc, "spi-cpha", NULL))
1251			spi->mode |= SPI_CPHA;
1252		if (of_find_property(nc, "spi-cpol", NULL))
1253			spi->mode |= SPI_CPOL;
1254		if (of_find_property(nc, "spi-cs-high", NULL))
1255			spi->mode |= SPI_CS_HIGH;
1256		if (of_find_property(nc, "spi-3wire", NULL))
1257			spi->mode |= SPI_3WIRE;
1258
1259		/* Device DUAL/QUAD mode */
1260		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1261			switch (value) {
1262			case 1:
1263				break;
1264			case 2:
1265				spi->mode |= SPI_TX_DUAL;
1266				break;
1267			case 4:
1268				spi->mode |= SPI_TX_QUAD;
1269				break;
1270			default:
1271				dev_err(&master->dev,
1272					"spi-tx-bus-width %d not supported\n",
1273					value);
1274				spi_dev_put(spi);
1275				continue;
1276			}
1277		}
1278
1279		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1280			switch (value) {
1281			case 1:
1282				break;
1283			case 2:
1284				spi->mode |= SPI_RX_DUAL;
1285				break;
1286			case 4:
1287				spi->mode |= SPI_RX_QUAD;
1288				break;
1289			default:
1290				dev_err(&master->dev,
1291					"spi-rx-bus-width %d not supported\n",
1292					value);
1293				spi_dev_put(spi);
1294				continue;
1295			}
1296		}
1297
1298		/* Device speed */
1299		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1300		if (rc) {
1301			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1302				nc->full_name, rc);
1303			spi_dev_put(spi);
1304			continue;
1305		}
1306		spi->max_speed_hz = value;
1307
1308		/* IRQ */
1309		spi->irq = irq_of_parse_and_map(nc, 0);
 
1310
1311		/* Store a pointer to the node in the device structure */
1312		of_node_get(nc);
1313		spi->dev.of_node = nc;
1314
1315		/* Register the new device */
1316		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1317		rc = spi_add_device(spi);
1318		if (rc) {
1319			dev_err(&master->dev, "spi_device register error %s\n",
1320				nc->full_name);
1321			spi_dev_put(spi);
1322		}
1323
1324	}
 
 
1325}
1326#else
1327static void of_register_spi_devices(struct spi_master *master) { }
1328#endif
1329
1330#ifdef CONFIG_ACPI
 
1331static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1332{
1333	struct spi_device *spi = data;
 
1334
1335	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1336		struct acpi_resource_spi_serialbus *sb;
 
 
1337
1338		sb = &ares->data.spi_serial_bus;
1339		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1340			spi->chip_select = sb->device_selection;
1341			spi->max_speed_hz = sb->connection_speed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1344				spi->mode |= SPI_CPHA;
1345			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1346				spi->mode |= SPI_CPOL;
1347			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1348				spi->mode |= SPI_CS_HIGH;
1349		}
1350	} else if (spi->irq < 0) {
1351		struct resource r;
1352
1353		if (acpi_dev_resource_interrupt(ares, 0, &r))
1354			spi->irq = r.start;
1355	}
1356
1357	/* Always tell the ACPI core to skip this resource */
1358	return 1;
1359}
1360
1361static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1362				       void *data, void **return_value)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363{
1364	struct spi_master *master = data;
1365	struct list_head resource_list;
1366	struct acpi_device *adev;
1367	struct spi_device *spi;
1368	int ret;
1369
1370	if (acpi_bus_get_device(handle, &adev))
1371		return AE_OK;
1372	if (acpi_bus_get_status(adev) || !adev->status.present)
1373		return AE_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374
1375	spi = spi_alloc_device(master);
1376	if (!spi) {
1377		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1378			dev_name(&adev->dev));
1379		return AE_NO_MEMORY;
1380	}
1381
1382	ACPI_COMPANION_SET(&spi->dev, adev);
1383	spi->irq = -1;
 
 
 
 
1384
1385	INIT_LIST_HEAD(&resource_list);
1386	ret = acpi_dev_get_resources(adev, &resource_list,
1387				     acpi_spi_add_resource, spi);
1388	acpi_dev_free_resource_list(&resource_list);
 
 
 
 
1389
1390	if (ret < 0 || !spi->max_speed_hz) {
1391		spi_dev_put(spi);
1392		return AE_OK;
 
 
 
 
 
 
 
1393	}
1394
 
 
 
 
 
 
 
 
1395	adev->power.flags.ignore_parent = true;
1396	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1397	if (spi_add_device(spi)) {
1398		adev->power.flags.ignore_parent = false;
1399		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1400			dev_name(&adev->dev));
1401		spi_dev_put(spi);
1402	}
1403
1404	return AE_OK;
1405}
1406
1407static void acpi_register_spi_devices(struct spi_master *master)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408{
1409	acpi_status status;
1410	acpi_handle handle;
1411
1412	handle = ACPI_HANDLE(master->dev.parent);
1413	if (!handle)
1414		return;
1415
1416	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1417				     acpi_spi_add_device, NULL,
1418				     master, NULL);
1419	if (ACPI_FAILURE(status))
1420		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1421}
1422#else
1423static inline void acpi_register_spi_devices(struct spi_master *master) {}
1424#endif /* CONFIG_ACPI */
1425
1426static void spi_master_release(struct device *dev)
1427{
1428	struct spi_master *master;
1429
1430	master = container_of(dev, struct spi_master, dev);
1431	kfree(master);
1432}
1433
1434static struct class spi_master_class = {
1435	.name		= "spi_master",
1436	.owner		= THIS_MODULE,
1437	.dev_release	= spi_master_release,
 
1438};
1439
 
 
 
 
 
 
 
 
 
1440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441
1442/**
1443 * spi_alloc_master - allocate SPI master controller
1444 * @dev: the controller, possibly using the platform_bus
1445 * @size: how much zeroed driver-private data to allocate; the pointer to this
1446 *	memory is in the driver_data field of the returned device,
1447 *	accessible with spi_master_get_devdata().
 
 
 
 
1448 * Context: can sleep
1449 *
1450 * This call is used only by SPI master controller drivers, which are the
1451 * only ones directly touching chip registers.  It's how they allocate
1452 * an spi_master structure, prior to calling spi_register_master().
1453 *
1454 * This must be called from context that can sleep.  It returns the SPI
1455 * master structure on success, else NULL.
1456 *
1457 * The caller is responsible for assigning the bus number and initializing
1458 * the master's methods before calling spi_register_master(); and (after errors
1459 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1460 * leak.
 
 
1461 */
1462struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 
1463{
1464	struct spi_master	*master;
 
1465
1466	if (!dev)
1467		return NULL;
1468
1469	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1470	if (!master)
1471		return NULL;
1472
1473	device_initialize(&master->dev);
1474	master->bus_num = -1;
1475	master->num_chipselect = 1;
1476	master->dev.class = &spi_master_class;
1477	master->dev.parent = get_device(dev);
1478	spi_master_set_devdata(master, &master[1]);
 
 
 
 
 
 
 
 
 
 
 
1479
1480	return master;
1481}
1482EXPORT_SYMBOL_GPL(spi_alloc_master);
1483
1484#ifdef CONFIG_OF
1485static int of_spi_register_master(struct spi_master *master)
1486{
1487	int nb, i, *cs;
1488	struct device_node *np = master->dev.of_node;
1489
1490	if (!np)
1491		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492
1493	nb = of_gpio_named_count(np, "cs-gpios");
1494	master->num_chipselect = max_t(int, nb, master->num_chipselect);
 
1495
1496	/* Return error only for an incorrectly formed cs-gpios property */
1497	if (nb == 0 || nb == -ENOENT)
1498		return 0;
1499	else if (nb < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
1500		return nb;
 
1501
1502	cs = devm_kzalloc(&master->dev,
1503			  sizeof(int) * master->num_chipselect,
 
1504			  GFP_KERNEL);
1505	master->cs_gpios = cs;
 
 
1506
1507	if (!master->cs_gpios)
1508		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509
1510	for (i = 0; i < master->num_chipselect; i++)
1511		cs[i] = -ENOENT;
1512
1513	for (i = 0; i < nb; i++)
1514		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
 
 
 
1515
1516	return 0;
1517}
1518#else
1519static int of_spi_register_master(struct spi_master *master)
1520{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521	return 0;
1522}
1523#endif
1524
1525/**
1526 * spi_register_master - register SPI master controller
1527 * @master: initialized master, originally from spi_alloc_master()
 
1528 * Context: can sleep
1529 *
1530 * SPI master controllers connect to their drivers using some non-SPI bus,
1531 * such as the platform bus.  The final stage of probe() in that code
1532 * includes calling spi_register_master() to hook up to this SPI bus glue.
1533 *
1534 * SPI controllers use board specific (often SOC specific) bus numbers,
1535 * and board-specific addressing for SPI devices combines those numbers
1536 * with chip select numbers.  Since SPI does not directly support dynamic
1537 * device identification, boards need configuration tables telling which
1538 * chip is at which address.
1539 *
1540 * This must be called from context that can sleep.  It returns zero on
1541 * success, else a negative error code (dropping the master's refcount).
1542 * After a successful return, the caller is responsible for calling
1543 * spi_unregister_master().
 
 
1544 */
1545int spi_register_master(struct spi_master *master)
1546{
1547	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1548	struct device		*dev = master->dev.parent;
1549	struct boardinfo	*bi;
1550	int			status = -ENODEV;
1551	int			dynamic = 0;
1552
1553	if (!dev)
1554		return -ENODEV;
1555
1556	status = of_spi_register_master(master);
 
 
 
 
1557	if (status)
1558		return status;
1559
1560	/* even if it's just one always-selected device, there must
1561	 * be at least one chipselect
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562	 */
1563	if (master->num_chipselect == 0)
1564		return -EINVAL;
1565
1566	if ((master->bus_num < 0) && master->dev.of_node)
1567		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
 
 
 
 
 
 
 
 
1568
1569	/* convention:  dynamically assigned bus IDs count down from the max */
1570	if (master->bus_num < 0) {
1571		/* FIXME switch to an IDR based scheme, something like
1572		 * I2C now uses, so we can't run out of "dynamic" IDs
1573		 */
1574		master->bus_num = atomic_dec_return(&dyn_bus_id);
1575		dynamic = 1;
1576	}
1577
1578	spin_lock_init(&master->bus_lock_spinlock);
1579	mutex_init(&master->bus_lock_mutex);
1580	master->bus_lock_flag = 0;
1581	init_completion(&master->xfer_completion);
1582	if (!master->max_dma_len)
1583		master->max_dma_len = INT_MAX;
1584
1585	/* register the device, then userspace will see it.
1586	 * registration fails if the bus ID is in use.
 
 
 
 
 
 
 
 
 
1587	 */
1588	dev_set_name(&master->dev, "spi%u", master->bus_num);
1589	status = device_add(&master->dev);
1590	if (status < 0)
1591		goto done;
1592	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1593			dynamic ? " (dynamic)" : "");
1594
1595	/* If we're using a queued driver, start the queue */
1596	if (master->transfer)
1597		dev_info(dev, "master is unqueued, this is deprecated\n");
1598	else {
1599		status = spi_master_initialize_queue(master);
1600		if (status) {
1601			device_del(&master->dev);
1602			goto done;
1603		}
1604	}
 
 
 
 
 
 
 
1605
1606	mutex_lock(&board_lock);
1607	list_add_tail(&master->list, &spi_master_list);
1608	list_for_each_entry(bi, &board_list, list)
1609		spi_match_master_to_boardinfo(master, &bi->board_info);
1610	mutex_unlock(&board_lock);
1611
1612	/* Register devices from the device tree and ACPI */
1613	of_register_spi_devices(master);
1614	acpi_register_spi_devices(master);
1615done:
 
 
 
 
 
 
 
1616	return status;
1617}
1618EXPORT_SYMBOL_GPL(spi_register_master);
1619
1620static void devm_spi_unregister(struct device *dev, void *res)
1621{
1622	spi_unregister_master(*(struct spi_master **)res);
1623}
1624
1625/**
1626 * dev_spi_register_master - register managed SPI master controller
1627 * @dev:    device managing SPI master
1628 * @master: initialized master, originally from spi_alloc_master()
 
 
1629 * Context: can sleep
1630 *
1631 * Register a SPI device as with spi_register_master() which will
1632 * automatically be unregister
 
 
1633 */
1634int devm_spi_register_master(struct device *dev, struct spi_master *master)
 
1635{
1636	struct spi_master **ptr;
1637	int ret;
1638
1639	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1640	if (!ptr)
1641		return -ENOMEM;
1642
1643	ret = spi_register_master(master);
1644	if (!ret) {
1645		*ptr = master;
1646		devres_add(dev, ptr);
1647	} else {
1648		devres_free(ptr);
1649	}
1650
1651	return ret;
1652}
1653EXPORT_SYMBOL_GPL(devm_spi_register_master);
1654
1655static int __unregister(struct device *dev, void *null)
1656{
1657	spi_unregister_device(to_spi_device(dev));
1658	return 0;
1659}
1660
1661/**
1662 * spi_unregister_master - unregister SPI master controller
1663 * @master: the master being unregistered
1664 * Context: can sleep
1665 *
1666 * This call is used only by SPI master controller drivers, which are the
1667 * only ones directly touching chip registers.
1668 *
1669 * This must be called from context that can sleep.
 
 
1670 */
1671void spi_unregister_master(struct spi_master *master)
1672{
1673	int dummy;
 
1674
1675	if (master->queued) {
1676		if (spi_destroy_queue(master))
1677			dev_err(&master->dev, "queue remove failed\n");
 
 
 
 
 
 
 
 
 
 
1678	}
 
 
 
 
 
1679
 
1680	mutex_lock(&board_lock);
1681	list_del(&master->list);
 
1682	mutex_unlock(&board_lock);
1683
1684	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1685	device_unregister(&master->dev);
 
 
 
 
 
 
1686}
1687EXPORT_SYMBOL_GPL(spi_unregister_master);
1688
1689int spi_master_suspend(struct spi_master *master)
1690{
1691	int ret;
1692
1693	/* Basically no-ops for non-queued masters */
1694	if (!master->queued)
1695		return 0;
1696
1697	ret = spi_stop_queue(master);
1698	if (ret)
1699		dev_err(&master->dev, "queue stop failed\n");
1700
1701	return ret;
1702}
1703EXPORT_SYMBOL_GPL(spi_master_suspend);
1704
1705int spi_master_resume(struct spi_master *master)
1706{
1707	int ret;
1708
1709	if (!master->queued)
1710		return 0;
1711
1712	ret = spi_start_queue(master);
1713	if (ret)
1714		dev_err(&master->dev, "queue restart failed\n");
1715
1716	return ret;
1717}
1718EXPORT_SYMBOL_GPL(spi_master_resume);
1719
1720static int __spi_master_match(struct device *dev, const void *data)
 
 
 
 
 
 
1721{
1722	struct spi_master *m;
1723	const u16 *bus_num = data;
 
 
 
 
1724
1725	m = container_of(dev, struct spi_master, dev);
1726	return m->bus_num == *bus_num;
 
 
 
 
1727}
1728
1729/**
1730 * spi_busnum_to_master - look up master associated with bus_num
1731 * @bus_num: the master's bus number
1732 * Context: can sleep
 
 
 
 
 
 
 
1733 *
1734 * This call may be used with devices that are registered after
1735 * arch init time.  It returns a refcounted pointer to the relevant
1736 * spi_master (which the caller must release), or NULL if there is
1737 * no such master registered.
1738 */
1739struct spi_master *spi_busnum_to_master(u16 bus_num)
 
 
 
 
 
 
 
1740{
1741	struct device		*dev;
1742	struct spi_master	*master = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743
1744	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1745				__spi_master_match);
1746	if (dev)
1747		master = container_of(dev, struct spi_master, dev);
1748	/* reference got in class_find_device */
1749	return master;
 
 
 
 
 
 
 
 
 
 
 
1750}
1751EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753
1754/*-------------------------------------------------------------------------*/
1755
1756/* Core methods for SPI master protocol drivers.  Some of the
1757 * other core methods are currently defined as inline functions.
1758 */
1759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760/**
1761 * spi_setup - setup SPI mode and clock rate
1762 * @spi: the device whose settings are being modified
1763 * Context: can sleep, and no requests are queued to the device
1764 *
1765 * SPI protocol drivers may need to update the transfer mode if the
1766 * device doesn't work with its default.  They may likewise need
1767 * to update clock rates or word sizes from initial values.  This function
1768 * changes those settings, and must be called from a context that can sleep.
1769 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1770 * effect the next time the device is selected and data is transferred to
1771 * or from it.  When this function returns, the spi device is deselected.
1772 *
1773 * Note that this call will fail if the protocol driver specifies an option
1774 * that the underlying controller or its driver does not support.  For
1775 * example, not all hardware supports wire transfers using nine bit words,
1776 * LSB-first wire encoding, or active-high chipselects.
 
 
1777 */
1778int spi_setup(struct spi_device *spi)
1779{
1780	unsigned	bad_bits, ugly_bits;
1781	int		status = 0;
1782
1783	/* check mode to prevent that DUAL and QUAD set at the same time
 
 
1784	 */
1785	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1786		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
 
 
1787		dev_err(&spi->dev,
1788		"setup: can not select dual and quad at the same time\n");
1789		return -EINVAL;
1790	}
1791	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1792	 */
1793	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1794		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
 
1795		return -EINVAL;
1796	/* help drivers fail *cleanly* when they need options
1797	 * that aren't supported with their current master
 
 
 
1798	 */
1799	bad_bits = spi->mode & ~spi->master->mode_bits;
 
1800	ugly_bits = bad_bits &
1801		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
 
1802	if (ugly_bits) {
1803		dev_warn(&spi->dev,
1804			 "setup: ignoring unsupported mode bits %x\n",
1805			 ugly_bits);
1806		spi->mode &= ~ugly_bits;
1807		bad_bits &= ~ugly_bits;
1808	}
1809	if (bad_bits) {
1810		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1811			bad_bits);
1812		return -EINVAL;
1813	}
1814
1815	if (!spi->bits_per_word)
1816		spi->bits_per_word = 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1817
1818	if (!spi->max_speed_hz)
1819		spi->max_speed_hz = spi->master->max_speed_hz;
1820
1821	if (spi->master->setup)
1822		status = spi->master->setup(spi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823
1824	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1825			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 
 
 
 
 
 
 
 
 
1826			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1827			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1828			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1829			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1830			spi->bits_per_word, spi->max_speed_hz,
1831			status);
1832
1833	return status;
1834}
1835EXPORT_SYMBOL_GPL(spi_setup);
1836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1838{
1839	struct spi_master *master = spi->master;
1840	struct spi_transfer *xfer;
1841	int w_size;
1842
1843	if (list_empty(&message->transfers))
1844		return -EINVAL;
1845
1846	/* Half-duplex links include original MicroWire, and ones with
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847	 * only one data pin like SPI_3WIRE (switches direction) or where
1848	 * either MOSI or MISO is missing.  They can also be caused by
1849	 * software limitations.
1850	 */
1851	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1852			|| (spi->mode & SPI_3WIRE)) {
1853		unsigned flags = master->flags;
1854
1855		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1856			if (xfer->rx_buf && xfer->tx_buf)
1857				return -EINVAL;
1858			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1859				return -EINVAL;
1860			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1861				return -EINVAL;
1862		}
1863	}
1864
1865	/**
1866	 * Set transfer bits_per_word and max speed as spi device default if
1867	 * it is not set for this transfer.
1868	 * Set transfer tx_nbits and rx_nbits as single transfer default
1869	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
 
 
1870	 */
 
1871	list_for_each_entry(xfer, &message->transfers, transfer_list) {
 
1872		message->frame_length += xfer->len;
1873		if (!xfer->bits_per_word)
1874			xfer->bits_per_word = spi->bits_per_word;
1875
1876		if (!xfer->speed_hz)
1877			xfer->speed_hz = spi->max_speed_hz;
1878
1879		if (master->max_speed_hz &&
1880		    xfer->speed_hz > master->max_speed_hz)
1881			xfer->speed_hz = master->max_speed_hz;
1882
1883		if (master->bits_per_word_mask) {
1884			/* Only 32 bits fit in the mask */
1885			if (xfer->bits_per_word > 32)
1886				return -EINVAL;
1887			if (!(master->bits_per_word_mask &
1888					BIT(xfer->bits_per_word - 1)))
1889				return -EINVAL;
1890		}
1891
1892		/*
1893		 * SPI transfer length should be multiple of SPI word size
1894		 * where SPI word size should be power-of-two multiple
1895		 */
1896		if (xfer->bits_per_word <= 8)
1897			w_size = 1;
1898		else if (xfer->bits_per_word <= 16)
1899			w_size = 2;
1900		else
1901			w_size = 4;
1902
1903		/* No partial transfers accepted */
1904		if (xfer->len % w_size)
1905			return -EINVAL;
1906
1907		if (xfer->speed_hz && master->min_speed_hz &&
1908		    xfer->speed_hz < master->min_speed_hz)
1909			return -EINVAL;
1910
1911		if (xfer->tx_buf && !xfer->tx_nbits)
1912			xfer->tx_nbits = SPI_NBITS_SINGLE;
1913		if (xfer->rx_buf && !xfer->rx_nbits)
1914			xfer->rx_nbits = SPI_NBITS_SINGLE;
1915		/* check transfer tx/rx_nbits:
 
1916		 * 1. check the value matches one of single, dual and quad
1917		 * 2. check tx/rx_nbits match the mode in spi_device
1918		 */
1919		if (xfer->tx_buf) {
 
 
1920			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1921				xfer->tx_nbits != SPI_NBITS_DUAL &&
1922				xfer->tx_nbits != SPI_NBITS_QUAD)
1923				return -EINVAL;
1924			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1925				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1926				return -EINVAL;
1927			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1928				!(spi->mode & SPI_TX_QUAD))
1929				return -EINVAL;
1930		}
1931		/* check transfer rx_nbits */
1932		if (xfer->rx_buf) {
 
 
1933			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1934				xfer->rx_nbits != SPI_NBITS_DUAL &&
1935				xfer->rx_nbits != SPI_NBITS_QUAD)
1936				return -EINVAL;
1937			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1938				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1939				return -EINVAL;
1940			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1941				!(spi->mode & SPI_RX_QUAD))
1942				return -EINVAL;
1943		}
 
 
 
1944	}
1945
1946	message->status = -EINPROGRESS;
1947
1948	return 0;
1949}
1950
1951static int __spi_async(struct spi_device *spi, struct spi_message *message)
1952{
1953	struct spi_master *master = spi->master;
 
 
 
 
 
 
 
 
1954
1955	message->spi = spi;
1956
 
 
 
1957	trace_spi_message_submit(message);
1958
1959	return master->transfer(spi, message);
 
 
 
 
 
 
 
1960}
1961
1962/**
1963 * spi_async - asynchronous SPI transfer
1964 * @spi: device with which data will be exchanged
1965 * @message: describes the data transfers, including completion callback
1966 * Context: any (irqs may be blocked, etc)
1967 *
1968 * This call may be used in_irq and other contexts which can't sleep,
1969 * as well as from task contexts which can sleep.
1970 *
1971 * The completion callback is invoked in a context which can't sleep.
1972 * Before that invocation, the value of message->status is undefined.
1973 * When the callback is issued, message->status holds either zero (to
1974 * indicate complete success) or a negative error code.  After that
1975 * callback returns, the driver which issued the transfer request may
1976 * deallocate the associated memory; it's no longer in use by any SPI
1977 * core or controller driver code.
1978 *
1979 * Note that although all messages to a spi_device are handled in
1980 * FIFO order, messages may go to different devices in other orders.
1981 * Some device might be higher priority, or have various "hard" access
1982 * time requirements, for example.
1983 *
1984 * On detection of any fault during the transfer, processing of
1985 * the entire message is aborted, and the device is deselected.
1986 * Until returning from the associated message completion callback,
1987 * no other spi_message queued to that device will be processed.
1988 * (This rule applies equally to all the synchronous transfer calls,
1989 * which are wrappers around this core asynchronous primitive.)
 
 
1990 */
1991int spi_async(struct spi_device *spi, struct spi_message *message)
1992{
1993	struct spi_master *master = spi->master;
1994	int ret;
1995	unsigned long flags;
1996
1997	ret = __spi_validate(spi, message);
1998	if (ret != 0)
1999		return ret;
2000
2001	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2002
2003	if (master->bus_lock_flag)
2004		ret = -EBUSY;
2005	else
2006		ret = __spi_async(spi, message);
2007
2008	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2009
2010	return ret;
2011}
2012EXPORT_SYMBOL_GPL(spi_async);
2013
2014/**
2015 * spi_async_locked - version of spi_async with exclusive bus usage
2016 * @spi: device with which data will be exchanged
2017 * @message: describes the data transfers, including completion callback
2018 * Context: any (irqs may be blocked, etc)
2019 *
2020 * This call may be used in_irq and other contexts which can't sleep,
2021 * as well as from task contexts which can sleep.
2022 *
2023 * The completion callback is invoked in a context which can't sleep.
2024 * Before that invocation, the value of message->status is undefined.
2025 * When the callback is issued, message->status holds either zero (to
2026 * indicate complete success) or a negative error code.  After that
2027 * callback returns, the driver which issued the transfer request may
2028 * deallocate the associated memory; it's no longer in use by any SPI
2029 * core or controller driver code.
2030 *
2031 * Note that although all messages to a spi_device are handled in
2032 * FIFO order, messages may go to different devices in other orders.
2033 * Some device might be higher priority, or have various "hard" access
2034 * time requirements, for example.
2035 *
2036 * On detection of any fault during the transfer, processing of
2037 * the entire message is aborted, and the device is deselected.
2038 * Until returning from the associated message completion callback,
2039 * no other spi_message queued to that device will be processed.
2040 * (This rule applies equally to all the synchronous transfer calls,
2041 * which are wrappers around this core asynchronous primitive.)
 
 
2042 */
2043int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2044{
2045	struct spi_master *master = spi->master;
2046	int ret;
2047	unsigned long flags;
2048
2049	ret = __spi_validate(spi, message);
2050	if (ret != 0)
2051		return ret;
2052
2053	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2054
2055	ret = __spi_async(spi, message);
2056
2057	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2058
2059	return ret;
2060
2061}
2062EXPORT_SYMBOL_GPL(spi_async_locked);
2063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064
2065/*-------------------------------------------------------------------------*/
2066
2067/* Utility methods for SPI master protocol drivers, layered on
 
2068 * top of the core.  Some other utility methods are defined as
2069 * inline functions.
2070 */
2071
2072static void spi_complete(void *arg)
2073{
2074	complete(arg);
2075}
2076
2077static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2078		      int bus_locked)
2079{
2080	DECLARE_COMPLETION_ONSTACK(done);
2081	int status;
2082	struct spi_master *master = spi->master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2083
2084	message->complete = spi_complete;
2085	message->context = &done;
2086
2087	if (!bus_locked)
2088		mutex_lock(&master->bus_lock_mutex);
2089
2090	status = spi_async_locked(spi, message);
2091
2092	if (!bus_locked)
2093		mutex_unlock(&master->bus_lock_mutex);
2094
 
 
 
 
 
 
 
 
 
2095	if (status == 0) {
2096		wait_for_completion(&done);
2097		status = message->status;
2098	}
2099	message->context = NULL;
 
2100	return status;
2101}
2102
2103/**
2104 * spi_sync - blocking/synchronous SPI data transfers
2105 * @spi: device with which data will be exchanged
2106 * @message: describes the data transfers
2107 * Context: can sleep
2108 *
2109 * This call may only be used from a context that may sleep.  The sleep
2110 * is non-interruptible, and has no timeout.  Low-overhead controller
2111 * drivers may DMA directly into and out of the message buffers.
2112 *
2113 * Note that the SPI device's chip select is active during the message,
2114 * and then is normally disabled between messages.  Drivers for some
2115 * frequently-used devices may want to minimize costs of selecting a chip,
2116 * by leaving it selected in anticipation that the next message will go
2117 * to the same chip.  (That may increase power usage.)
2118 *
2119 * Also, the caller is guaranteeing that the memory associated with the
2120 * message will not be freed before this call returns.
2121 *
2122 * It returns zero on success, else a negative error code.
2123 */
2124int spi_sync(struct spi_device *spi, struct spi_message *message)
2125{
2126	return __spi_sync(spi, message, 0);
 
 
 
 
 
 
2127}
2128EXPORT_SYMBOL_GPL(spi_sync);
2129
2130/**
2131 * spi_sync_locked - version of spi_sync with exclusive bus usage
2132 * @spi: device with which data will be exchanged
2133 * @message: describes the data transfers
2134 * Context: can sleep
2135 *
2136 * This call may only be used from a context that may sleep.  The sleep
2137 * is non-interruptible, and has no timeout.  Low-overhead controller
2138 * drivers may DMA directly into and out of the message buffers.
2139 *
2140 * This call should be used by drivers that require exclusive access to the
2141 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2142 * be released by a spi_bus_unlock call when the exclusive access is over.
2143 *
2144 * It returns zero on success, else a negative error code.
2145 */
2146int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2147{
2148	return __spi_sync(spi, message, 1);
2149}
2150EXPORT_SYMBOL_GPL(spi_sync_locked);
2151
2152/**
2153 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2154 * @master: SPI bus master that should be locked for exclusive bus access
2155 * Context: can sleep
2156 *
2157 * This call may only be used from a context that may sleep.  The sleep
2158 * is non-interruptible, and has no timeout.
2159 *
2160 * This call should be used by drivers that require exclusive access to the
2161 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2162 * exclusive access is over. Data transfer must be done by spi_sync_locked
2163 * and spi_async_locked calls when the SPI bus lock is held.
2164 *
2165 * It returns zero on success, else a negative error code.
2166 */
2167int spi_bus_lock(struct spi_master *master)
2168{
2169	unsigned long flags;
2170
2171	mutex_lock(&master->bus_lock_mutex);
2172
2173	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2174	master->bus_lock_flag = 1;
2175	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2176
2177	/* mutex remains locked until spi_bus_unlock is called */
2178
2179	return 0;
2180}
2181EXPORT_SYMBOL_GPL(spi_bus_lock);
2182
2183/**
2184 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2185 * @master: SPI bus master that was locked for exclusive bus access
2186 * Context: can sleep
2187 *
2188 * This call may only be used from a context that may sleep.  The sleep
2189 * is non-interruptible, and has no timeout.
2190 *
2191 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2192 * call.
2193 *
2194 * It returns zero on success, else a negative error code.
2195 */
2196int spi_bus_unlock(struct spi_master *master)
2197{
2198	master->bus_lock_flag = 0;
2199
2200	mutex_unlock(&master->bus_lock_mutex);
2201
2202	return 0;
2203}
2204EXPORT_SYMBOL_GPL(spi_bus_unlock);
2205
2206/* portable code must never pass more than 32 bytes */
2207#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2208
2209static u8	*buf;
2210
2211/**
2212 * spi_write_then_read - SPI synchronous write followed by read
2213 * @spi: device with which data will be exchanged
2214 * @txbuf: data to be written (need not be dma-safe)
2215 * @n_tx: size of txbuf, in bytes
2216 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2217 * @n_rx: size of rxbuf, in bytes
2218 * Context: can sleep
2219 *
2220 * This performs a half duplex MicroWire style transaction with the
2221 * device, sending txbuf and then reading rxbuf.  The return value
2222 * is zero for success, else a negative errno status code.
2223 * This call may only be used from a context that may sleep.
2224 *
2225 * Parameters to this routine are always copied using a small buffer;
2226 * portable code should never use this for more than 32 bytes.
2227 * Performance-sensitive or bulk transfer code should instead use
2228 * spi_{async,sync}() calls with dma-safe buffers.
 
 
2229 */
2230int spi_write_then_read(struct spi_device *spi,
2231		const void *txbuf, unsigned n_tx,
2232		void *rxbuf, unsigned n_rx)
2233{
2234	static DEFINE_MUTEX(lock);
2235
2236	int			status;
2237	struct spi_message	message;
2238	struct spi_transfer	x[2];
2239	u8			*local_buf;
2240
2241	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
 
2242	 * copying here, (as a pure convenience thing), but we can
2243	 * keep heap costs out of the hot path unless someone else is
2244	 * using the pre-allocated buffer or the transfer is too large.
2245	 */
2246	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2247		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2248				    GFP_KERNEL | GFP_DMA);
2249		if (!local_buf)
2250			return -ENOMEM;
2251	} else {
2252		local_buf = buf;
2253	}
2254
2255	spi_message_init(&message);
2256	memset(x, 0, sizeof(x));
2257	if (n_tx) {
2258		x[0].len = n_tx;
2259		spi_message_add_tail(&x[0], &message);
2260	}
2261	if (n_rx) {
2262		x[1].len = n_rx;
2263		spi_message_add_tail(&x[1], &message);
2264	}
2265
2266	memcpy(local_buf, txbuf, n_tx);
2267	x[0].tx_buf = local_buf;
2268	x[1].rx_buf = local_buf + n_tx;
2269
2270	/* do the i/o */
2271	status = spi_sync(spi, &message);
2272	if (status == 0)
2273		memcpy(rxbuf, x[1].rx_buf, n_rx);
2274
2275	if (x[0].tx_buf == buf)
2276		mutex_unlock(&lock);
2277	else
2278		kfree(local_buf);
2279
2280	return status;
2281}
2282EXPORT_SYMBOL_GPL(spi_write_then_read);
2283
2284/*-------------------------------------------------------------------------*/
2285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286static int __init spi_init(void)
2287{
2288	int	status;
2289
2290	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2291	if (!buf) {
2292		status = -ENOMEM;
2293		goto err0;
2294	}
2295
2296	status = bus_register(&spi_bus_type);
2297	if (status < 0)
2298		goto err1;
2299
2300	status = class_register(&spi_master_class);
2301	if (status < 0)
2302		goto err2;
 
 
 
 
 
 
 
 
 
 
 
 
2303	return 0;
2304
 
 
2305err2:
2306	bus_unregister(&spi_bus_type);
2307err1:
2308	kfree(buf);
2309	buf = NULL;
2310err0:
2311	return status;
2312}
2313
2314/* board_info is normally registered in arch_initcall(),
2315 * but even essential drivers wait till later
 
2316 *
2317 * REVISIT only boardinfo really needs static linking. the rest (device and
2318 * driver registration) _could_ be dynamically linked (modular) ... costs
2319 * include needing to have boardinfo data structures be much more public.
2320 */
2321postcore_initcall(spi_init);
2322