Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * OMAP2 McSPI controller driver
4 *
5 * Copyright (C) 2005, 2006 Nokia Corporation
6 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
7 * Juha Yrjola <juha.yrjola@nokia.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/platform_device.h>
19#include <linux/err.h>
20#include <linux/clk.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/pm_runtime.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/gcd.h>
27
28#include <linux/spi/spi.h>
29
30#include <linux/platform_data/spi-omap2-mcspi.h>
31
32#define OMAP2_MCSPI_MAX_FREQ 48000000
33#define OMAP2_MCSPI_MAX_DIVIDER 4096
34#define OMAP2_MCSPI_MAX_FIFODEPTH 64
35#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
36#define SPI_AUTOSUSPEND_TIMEOUT 2000
37
38#define OMAP2_MCSPI_REVISION 0x00
39#define OMAP2_MCSPI_SYSSTATUS 0x14
40#define OMAP2_MCSPI_IRQSTATUS 0x18
41#define OMAP2_MCSPI_IRQENABLE 0x1c
42#define OMAP2_MCSPI_WAKEUPENABLE 0x20
43#define OMAP2_MCSPI_SYST 0x24
44#define OMAP2_MCSPI_MODULCTRL 0x28
45#define OMAP2_MCSPI_XFERLEVEL 0x7c
46
47/* per-channel banks, 0x14 bytes each, first is: */
48#define OMAP2_MCSPI_CHCONF0 0x2c
49#define OMAP2_MCSPI_CHSTAT0 0x30
50#define OMAP2_MCSPI_CHCTRL0 0x34
51#define OMAP2_MCSPI_TX0 0x38
52#define OMAP2_MCSPI_RX0 0x3c
53
54/* per-register bitmasks: */
55#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
56
57#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
58#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
59#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
60
61#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
62#define OMAP2_MCSPI_CHCONF_POL BIT(1)
63#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
64#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
65#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
66#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
67#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
68#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
69#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
70#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
71#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
72#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
73#define OMAP2_MCSPI_CHCONF_IS BIT(18)
74#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
75#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
76#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
77#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
78#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
79
80#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
81#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
82#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
83#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
84
85#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
86#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
87
88#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
89
90/* We have 2 DMA channels per CS, one for RX and one for TX */
91struct omap2_mcspi_dma {
92 struct dma_chan *dma_tx;
93 struct dma_chan *dma_rx;
94
95 struct completion dma_tx_completion;
96 struct completion dma_rx_completion;
97
98 char dma_rx_ch_name[14];
99 char dma_tx_ch_name[14];
100};
101
102/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
103 * cache operations; better heuristics consider wordsize and bitrate.
104 */
105#define DMA_MIN_BYTES 160
106
107
108/*
109 * Used for context save and restore, structure members to be updated whenever
110 * corresponding registers are modified.
111 */
112struct omap2_mcspi_regs {
113 u32 modulctrl;
114 u32 wakeupenable;
115 struct list_head cs;
116};
117
118struct omap2_mcspi {
119 struct completion txdone;
120 struct spi_master *master;
121 /* Virtual base address of the controller */
122 void __iomem *base;
123 unsigned long phys;
124 /* SPI1 has 4 channels, while SPI2 has 2 */
125 struct omap2_mcspi_dma *dma_channels;
126 struct device *dev;
127 struct omap2_mcspi_regs ctx;
128 int fifo_depth;
129 bool slave_aborted;
130 unsigned int pin_dir:1;
131 size_t max_xfer_len;
132};
133
134struct omap2_mcspi_cs {
135 void __iomem *base;
136 unsigned long phys;
137 int word_len;
138 u16 mode;
139 struct list_head node;
140 /* Context save and restore shadow register */
141 u32 chconf0, chctrl0;
142};
143
144static inline void mcspi_write_reg(struct spi_master *master,
145 int idx, u32 val)
146{
147 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
148
149 writel_relaxed(val, mcspi->base + idx);
150}
151
152static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
153{
154 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
155
156 return readl_relaxed(mcspi->base + idx);
157}
158
159static inline void mcspi_write_cs_reg(const struct spi_device *spi,
160 int idx, u32 val)
161{
162 struct omap2_mcspi_cs *cs = spi->controller_state;
163
164 writel_relaxed(val, cs->base + idx);
165}
166
167static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
168{
169 struct omap2_mcspi_cs *cs = spi->controller_state;
170
171 return readl_relaxed(cs->base + idx);
172}
173
174static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
175{
176 struct omap2_mcspi_cs *cs = spi->controller_state;
177
178 return cs->chconf0;
179}
180
181static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
182{
183 struct omap2_mcspi_cs *cs = spi->controller_state;
184
185 cs->chconf0 = val;
186 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
187 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
188}
189
190static inline int mcspi_bytes_per_word(int word_len)
191{
192 if (word_len <= 8)
193 return 1;
194 else if (word_len <= 16)
195 return 2;
196 else /* word_len <= 32 */
197 return 4;
198}
199
200static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
201 int is_read, int enable)
202{
203 u32 l, rw;
204
205 l = mcspi_cached_chconf0(spi);
206
207 if (is_read) /* 1 is read, 0 write */
208 rw = OMAP2_MCSPI_CHCONF_DMAR;
209 else
210 rw = OMAP2_MCSPI_CHCONF_DMAW;
211
212 if (enable)
213 l |= rw;
214 else
215 l &= ~rw;
216
217 mcspi_write_chconf0(spi, l);
218}
219
220static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
221{
222 struct omap2_mcspi_cs *cs = spi->controller_state;
223 u32 l;
224
225 l = cs->chctrl0;
226 if (enable)
227 l |= OMAP2_MCSPI_CHCTRL_EN;
228 else
229 l &= ~OMAP2_MCSPI_CHCTRL_EN;
230 cs->chctrl0 = l;
231 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
232 /* Flash post-writes */
233 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
234}
235
236static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
237{
238 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
239 u32 l;
240
241 /* The controller handles the inverted chip selects
242 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
243 * the inversion from the core spi_set_cs function.
244 */
245 if (spi->mode & SPI_CS_HIGH)
246 enable = !enable;
247
248 if (spi->controller_state) {
249 int err = pm_runtime_resume_and_get(mcspi->dev);
250 if (err < 0) {
251 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
252 return;
253 }
254
255 l = mcspi_cached_chconf0(spi);
256
257 if (enable)
258 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
259 else
260 l |= OMAP2_MCSPI_CHCONF_FORCE;
261
262 mcspi_write_chconf0(spi, l);
263
264 pm_runtime_mark_last_busy(mcspi->dev);
265 pm_runtime_put_autosuspend(mcspi->dev);
266 }
267}
268
269static void omap2_mcspi_set_mode(struct spi_master *master)
270{
271 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
272 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
273 u32 l;
274
275 /*
276 * Choose master or slave mode
277 */
278 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
279 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
280 if (spi_controller_is_slave(master)) {
281 l |= (OMAP2_MCSPI_MODULCTRL_MS);
282 } else {
283 l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
284 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
285 }
286 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
287
288 ctx->modulctrl = l;
289}
290
291static void omap2_mcspi_set_fifo(const struct spi_device *spi,
292 struct spi_transfer *t, int enable)
293{
294 struct spi_master *master = spi->master;
295 struct omap2_mcspi_cs *cs = spi->controller_state;
296 struct omap2_mcspi *mcspi;
297 unsigned int wcnt;
298 int max_fifo_depth, bytes_per_word;
299 u32 chconf, xferlevel;
300
301 mcspi = spi_master_get_devdata(master);
302
303 chconf = mcspi_cached_chconf0(spi);
304 if (enable) {
305 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
306 if (t->len % bytes_per_word != 0)
307 goto disable_fifo;
308
309 if (t->rx_buf != NULL && t->tx_buf != NULL)
310 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
311 else
312 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
313
314 wcnt = t->len / bytes_per_word;
315 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
316 goto disable_fifo;
317
318 xferlevel = wcnt << 16;
319 if (t->rx_buf != NULL) {
320 chconf |= OMAP2_MCSPI_CHCONF_FFER;
321 xferlevel |= (bytes_per_word - 1) << 8;
322 }
323
324 if (t->tx_buf != NULL) {
325 chconf |= OMAP2_MCSPI_CHCONF_FFET;
326 xferlevel |= bytes_per_word - 1;
327 }
328
329 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
330 mcspi_write_chconf0(spi, chconf);
331 mcspi->fifo_depth = max_fifo_depth;
332
333 return;
334 }
335
336disable_fifo:
337 if (t->rx_buf != NULL)
338 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
339
340 if (t->tx_buf != NULL)
341 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
342
343 mcspi_write_chconf0(spi, chconf);
344 mcspi->fifo_depth = 0;
345}
346
347static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
348{
349 unsigned long timeout;
350
351 timeout = jiffies + msecs_to_jiffies(1000);
352 while (!(readl_relaxed(reg) & bit)) {
353 if (time_after(jiffies, timeout)) {
354 if (!(readl_relaxed(reg) & bit))
355 return -ETIMEDOUT;
356 else
357 return 0;
358 }
359 cpu_relax();
360 }
361 return 0;
362}
363
364static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi,
365 struct completion *x)
366{
367 if (spi_controller_is_slave(mcspi->master)) {
368 if (wait_for_completion_interruptible(x) ||
369 mcspi->slave_aborted)
370 return -EINTR;
371 } else {
372 wait_for_completion(x);
373 }
374
375 return 0;
376}
377
378static void omap2_mcspi_rx_callback(void *data)
379{
380 struct spi_device *spi = data;
381 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
382 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
383
384 /* We must disable the DMA RX request */
385 omap2_mcspi_set_dma_req(spi, 1, 0);
386
387 complete(&mcspi_dma->dma_rx_completion);
388}
389
390static void omap2_mcspi_tx_callback(void *data)
391{
392 struct spi_device *spi = data;
393 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
394 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
395
396 /* We must disable the DMA TX request */
397 omap2_mcspi_set_dma_req(spi, 0, 0);
398
399 complete(&mcspi_dma->dma_tx_completion);
400}
401
402static void omap2_mcspi_tx_dma(struct spi_device *spi,
403 struct spi_transfer *xfer,
404 struct dma_slave_config cfg)
405{
406 struct omap2_mcspi *mcspi;
407 struct omap2_mcspi_dma *mcspi_dma;
408 struct dma_async_tx_descriptor *tx;
409
410 mcspi = spi_master_get_devdata(spi->master);
411 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
412
413 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
414
415 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
416 xfer->tx_sg.nents,
417 DMA_MEM_TO_DEV,
418 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
419 if (tx) {
420 tx->callback = omap2_mcspi_tx_callback;
421 tx->callback_param = spi;
422 dmaengine_submit(tx);
423 } else {
424 /* FIXME: fall back to PIO? */
425 }
426 dma_async_issue_pending(mcspi_dma->dma_tx);
427 omap2_mcspi_set_dma_req(spi, 0, 1);
428}
429
430static unsigned
431omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
432 struct dma_slave_config cfg,
433 unsigned es)
434{
435 struct omap2_mcspi *mcspi;
436 struct omap2_mcspi_dma *mcspi_dma;
437 unsigned int count, transfer_reduction = 0;
438 struct scatterlist *sg_out[2];
439 int nb_sizes = 0, out_mapped_nents[2], ret, x;
440 size_t sizes[2];
441 u32 l;
442 int elements = 0;
443 int word_len, element_count;
444 struct omap2_mcspi_cs *cs = spi->controller_state;
445 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
446 struct dma_async_tx_descriptor *tx;
447
448 mcspi = spi_master_get_devdata(spi->master);
449 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
450 count = xfer->len;
451
452 /*
453 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
454 * it mentions reducing DMA transfer length by one element in master
455 * normal mode.
456 */
457 if (mcspi->fifo_depth == 0)
458 transfer_reduction = es;
459
460 word_len = cs->word_len;
461 l = mcspi_cached_chconf0(spi);
462
463 if (word_len <= 8)
464 element_count = count;
465 else if (word_len <= 16)
466 element_count = count >> 1;
467 else /* word_len <= 32 */
468 element_count = count >> 2;
469
470
471 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
472
473 /*
474 * Reduce DMA transfer length by one more if McSPI is
475 * configured in turbo mode.
476 */
477 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
478 transfer_reduction += es;
479
480 if (transfer_reduction) {
481 /* Split sgl into two. The second sgl won't be used. */
482 sizes[0] = count - transfer_reduction;
483 sizes[1] = transfer_reduction;
484 nb_sizes = 2;
485 } else {
486 /*
487 * Don't bother splitting the sgl. This essentially
488 * clones the original sgl.
489 */
490 sizes[0] = count;
491 nb_sizes = 1;
492 }
493
494 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
495 sizes, sg_out, out_mapped_nents, GFP_KERNEL);
496
497 if (ret < 0) {
498 dev_err(&spi->dev, "sg_split failed\n");
499 return 0;
500 }
501
502 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
503 out_mapped_nents[0], DMA_DEV_TO_MEM,
504 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
505 if (tx) {
506 tx->callback = omap2_mcspi_rx_callback;
507 tx->callback_param = spi;
508 dmaengine_submit(tx);
509 } else {
510 /* FIXME: fall back to PIO? */
511 }
512
513 dma_async_issue_pending(mcspi_dma->dma_rx);
514 omap2_mcspi_set_dma_req(spi, 1, 1);
515
516 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
517 if (ret || mcspi->slave_aborted) {
518 dmaengine_terminate_sync(mcspi_dma->dma_rx);
519 omap2_mcspi_set_dma_req(spi, 1, 0);
520 return 0;
521 }
522
523 for (x = 0; x < nb_sizes; x++)
524 kfree(sg_out[x]);
525
526 if (mcspi->fifo_depth > 0)
527 return count;
528
529 /*
530 * Due to the DMA transfer length reduction the missing bytes must
531 * be read manually to receive all of the expected data.
532 */
533 omap2_mcspi_set_enable(spi, 0);
534
535 elements = element_count - 1;
536
537 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
538 elements--;
539
540 if (!mcspi_wait_for_reg_bit(chstat_reg,
541 OMAP2_MCSPI_CHSTAT_RXS)) {
542 u32 w;
543
544 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
545 if (word_len <= 8)
546 ((u8 *)xfer->rx_buf)[elements++] = w;
547 else if (word_len <= 16)
548 ((u16 *)xfer->rx_buf)[elements++] = w;
549 else /* word_len <= 32 */
550 ((u32 *)xfer->rx_buf)[elements++] = w;
551 } else {
552 int bytes_per_word = mcspi_bytes_per_word(word_len);
553 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
554 count -= (bytes_per_word << 1);
555 omap2_mcspi_set_enable(spi, 1);
556 return count;
557 }
558 }
559 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
560 u32 w;
561
562 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
563 if (word_len <= 8)
564 ((u8 *)xfer->rx_buf)[elements] = w;
565 else if (word_len <= 16)
566 ((u16 *)xfer->rx_buf)[elements] = w;
567 else /* word_len <= 32 */
568 ((u32 *)xfer->rx_buf)[elements] = w;
569 } else {
570 dev_err(&spi->dev, "DMA RX last word empty\n");
571 count -= mcspi_bytes_per_word(word_len);
572 }
573 omap2_mcspi_set_enable(spi, 1);
574 return count;
575}
576
577static unsigned
578omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
579{
580 struct omap2_mcspi *mcspi;
581 struct omap2_mcspi_cs *cs = spi->controller_state;
582 struct omap2_mcspi_dma *mcspi_dma;
583 unsigned int count;
584 u8 *rx;
585 const u8 *tx;
586 struct dma_slave_config cfg;
587 enum dma_slave_buswidth width;
588 unsigned es;
589 void __iomem *chstat_reg;
590 void __iomem *irqstat_reg;
591 int wait_res;
592
593 mcspi = spi_master_get_devdata(spi->master);
594 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
595
596 if (cs->word_len <= 8) {
597 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
598 es = 1;
599 } else if (cs->word_len <= 16) {
600 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
601 es = 2;
602 } else {
603 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
604 es = 4;
605 }
606
607 count = xfer->len;
608
609 memset(&cfg, 0, sizeof(cfg));
610 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
611 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
612 cfg.src_addr_width = width;
613 cfg.dst_addr_width = width;
614 cfg.src_maxburst = 1;
615 cfg.dst_maxburst = 1;
616
617 rx = xfer->rx_buf;
618 tx = xfer->tx_buf;
619
620 mcspi->slave_aborted = false;
621 reinit_completion(&mcspi_dma->dma_tx_completion);
622 reinit_completion(&mcspi_dma->dma_rx_completion);
623 reinit_completion(&mcspi->txdone);
624 if (tx) {
625 /* Enable EOW IRQ to know end of tx in slave mode */
626 if (spi_controller_is_slave(spi->master))
627 mcspi_write_reg(spi->master,
628 OMAP2_MCSPI_IRQENABLE,
629 OMAP2_MCSPI_IRQSTATUS_EOW);
630 omap2_mcspi_tx_dma(spi, xfer, cfg);
631 }
632
633 if (rx != NULL)
634 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
635
636 if (tx != NULL) {
637 int ret;
638
639 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
640 if (ret || mcspi->slave_aborted) {
641 dmaengine_terminate_sync(mcspi_dma->dma_tx);
642 omap2_mcspi_set_dma_req(spi, 0, 0);
643 return 0;
644 }
645
646 if (spi_controller_is_slave(mcspi->master)) {
647 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
648 if (ret || mcspi->slave_aborted)
649 return 0;
650 }
651
652 if (mcspi->fifo_depth > 0) {
653 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
654
655 if (mcspi_wait_for_reg_bit(irqstat_reg,
656 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
657 dev_err(&spi->dev, "EOW timed out\n");
658
659 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
660 OMAP2_MCSPI_IRQSTATUS_EOW);
661 }
662
663 /* for TX_ONLY mode, be sure all words have shifted out */
664 if (rx == NULL) {
665 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
666 if (mcspi->fifo_depth > 0) {
667 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
668 OMAP2_MCSPI_CHSTAT_TXFFE);
669 if (wait_res < 0)
670 dev_err(&spi->dev, "TXFFE timed out\n");
671 } else {
672 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
673 OMAP2_MCSPI_CHSTAT_TXS);
674 if (wait_res < 0)
675 dev_err(&spi->dev, "TXS timed out\n");
676 }
677 if (wait_res >= 0 &&
678 (mcspi_wait_for_reg_bit(chstat_reg,
679 OMAP2_MCSPI_CHSTAT_EOT) < 0))
680 dev_err(&spi->dev, "EOT timed out\n");
681 }
682 }
683 return count;
684}
685
686static unsigned
687omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
688{
689 struct omap2_mcspi_cs *cs = spi->controller_state;
690 unsigned int count, c;
691 u32 l;
692 void __iomem *base = cs->base;
693 void __iomem *tx_reg;
694 void __iomem *rx_reg;
695 void __iomem *chstat_reg;
696 int word_len;
697
698 count = xfer->len;
699 c = count;
700 word_len = cs->word_len;
701
702 l = mcspi_cached_chconf0(spi);
703
704 /* We store the pre-calculated register addresses on stack to speed
705 * up the transfer loop. */
706 tx_reg = base + OMAP2_MCSPI_TX0;
707 rx_reg = base + OMAP2_MCSPI_RX0;
708 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
709
710 if (c < (word_len>>3))
711 return 0;
712
713 if (word_len <= 8) {
714 u8 *rx;
715 const u8 *tx;
716
717 rx = xfer->rx_buf;
718 tx = xfer->tx_buf;
719
720 do {
721 c -= 1;
722 if (tx != NULL) {
723 if (mcspi_wait_for_reg_bit(chstat_reg,
724 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
725 dev_err(&spi->dev, "TXS timed out\n");
726 goto out;
727 }
728 dev_vdbg(&spi->dev, "write-%d %02x\n",
729 word_len, *tx);
730 writel_relaxed(*tx++, tx_reg);
731 }
732 if (rx != NULL) {
733 if (mcspi_wait_for_reg_bit(chstat_reg,
734 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
735 dev_err(&spi->dev, "RXS timed out\n");
736 goto out;
737 }
738
739 if (c == 1 && tx == NULL &&
740 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
741 omap2_mcspi_set_enable(spi, 0);
742 *rx++ = readl_relaxed(rx_reg);
743 dev_vdbg(&spi->dev, "read-%d %02x\n",
744 word_len, *(rx - 1));
745 if (mcspi_wait_for_reg_bit(chstat_reg,
746 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
747 dev_err(&spi->dev,
748 "RXS timed out\n");
749 goto out;
750 }
751 c = 0;
752 } else if (c == 0 && tx == NULL) {
753 omap2_mcspi_set_enable(spi, 0);
754 }
755
756 *rx++ = readl_relaxed(rx_reg);
757 dev_vdbg(&spi->dev, "read-%d %02x\n",
758 word_len, *(rx - 1));
759 }
760 /* Add word delay between each word */
761 spi_delay_exec(&xfer->word_delay, xfer);
762 } while (c);
763 } else if (word_len <= 16) {
764 u16 *rx;
765 const u16 *tx;
766
767 rx = xfer->rx_buf;
768 tx = xfer->tx_buf;
769 do {
770 c -= 2;
771 if (tx != NULL) {
772 if (mcspi_wait_for_reg_bit(chstat_reg,
773 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
774 dev_err(&spi->dev, "TXS timed out\n");
775 goto out;
776 }
777 dev_vdbg(&spi->dev, "write-%d %04x\n",
778 word_len, *tx);
779 writel_relaxed(*tx++, tx_reg);
780 }
781 if (rx != NULL) {
782 if (mcspi_wait_for_reg_bit(chstat_reg,
783 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
784 dev_err(&spi->dev, "RXS timed out\n");
785 goto out;
786 }
787
788 if (c == 2 && tx == NULL &&
789 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
790 omap2_mcspi_set_enable(spi, 0);
791 *rx++ = readl_relaxed(rx_reg);
792 dev_vdbg(&spi->dev, "read-%d %04x\n",
793 word_len, *(rx - 1));
794 if (mcspi_wait_for_reg_bit(chstat_reg,
795 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
796 dev_err(&spi->dev,
797 "RXS timed out\n");
798 goto out;
799 }
800 c = 0;
801 } else if (c == 0 && tx == NULL) {
802 omap2_mcspi_set_enable(spi, 0);
803 }
804
805 *rx++ = readl_relaxed(rx_reg);
806 dev_vdbg(&spi->dev, "read-%d %04x\n",
807 word_len, *(rx - 1));
808 }
809 /* Add word delay between each word */
810 spi_delay_exec(&xfer->word_delay, xfer);
811 } while (c >= 2);
812 } else if (word_len <= 32) {
813 u32 *rx;
814 const u32 *tx;
815
816 rx = xfer->rx_buf;
817 tx = xfer->tx_buf;
818 do {
819 c -= 4;
820 if (tx != NULL) {
821 if (mcspi_wait_for_reg_bit(chstat_reg,
822 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
823 dev_err(&spi->dev, "TXS timed out\n");
824 goto out;
825 }
826 dev_vdbg(&spi->dev, "write-%d %08x\n",
827 word_len, *tx);
828 writel_relaxed(*tx++, tx_reg);
829 }
830 if (rx != NULL) {
831 if (mcspi_wait_for_reg_bit(chstat_reg,
832 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
833 dev_err(&spi->dev, "RXS timed out\n");
834 goto out;
835 }
836
837 if (c == 4 && tx == NULL &&
838 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
839 omap2_mcspi_set_enable(spi, 0);
840 *rx++ = readl_relaxed(rx_reg);
841 dev_vdbg(&spi->dev, "read-%d %08x\n",
842 word_len, *(rx - 1));
843 if (mcspi_wait_for_reg_bit(chstat_reg,
844 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
845 dev_err(&spi->dev,
846 "RXS timed out\n");
847 goto out;
848 }
849 c = 0;
850 } else if (c == 0 && tx == NULL) {
851 omap2_mcspi_set_enable(spi, 0);
852 }
853
854 *rx++ = readl_relaxed(rx_reg);
855 dev_vdbg(&spi->dev, "read-%d %08x\n",
856 word_len, *(rx - 1));
857 }
858 /* Add word delay between each word */
859 spi_delay_exec(&xfer->word_delay, xfer);
860 } while (c >= 4);
861 }
862
863 /* for TX_ONLY mode, be sure all words have shifted out */
864 if (xfer->rx_buf == NULL) {
865 if (mcspi_wait_for_reg_bit(chstat_reg,
866 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
867 dev_err(&spi->dev, "TXS timed out\n");
868 } else if (mcspi_wait_for_reg_bit(chstat_reg,
869 OMAP2_MCSPI_CHSTAT_EOT) < 0)
870 dev_err(&spi->dev, "EOT timed out\n");
871
872 /* disable chan to purge rx datas received in TX_ONLY transfer,
873 * otherwise these rx datas will affect the direct following
874 * RX_ONLY transfer.
875 */
876 omap2_mcspi_set_enable(spi, 0);
877 }
878out:
879 omap2_mcspi_set_enable(spi, 1);
880 return count - c;
881}
882
883static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
884{
885 u32 div;
886
887 for (div = 0; div < 15; div++)
888 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
889 return div;
890
891 return 15;
892}
893
894/* called only when no transfer is active to this device */
895static int omap2_mcspi_setup_transfer(struct spi_device *spi,
896 struct spi_transfer *t)
897{
898 struct omap2_mcspi_cs *cs = spi->controller_state;
899 struct omap2_mcspi *mcspi;
900 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
901 u8 word_len = spi->bits_per_word;
902 u32 speed_hz = spi->max_speed_hz;
903
904 mcspi = spi_master_get_devdata(spi->master);
905
906 if (t != NULL && t->bits_per_word)
907 word_len = t->bits_per_word;
908
909 cs->word_len = word_len;
910
911 if (t && t->speed_hz)
912 speed_hz = t->speed_hz;
913
914 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
915 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
916 clkd = omap2_mcspi_calc_divisor(speed_hz);
917 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
918 clkg = 0;
919 } else {
920 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
921 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
922 clkd = (div - 1) & 0xf;
923 extclk = (div - 1) >> 4;
924 clkg = OMAP2_MCSPI_CHCONF_CLKG;
925 }
926
927 l = mcspi_cached_chconf0(spi);
928
929 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
930 * REVISIT: this controller could support SPI_3WIRE mode.
931 */
932 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
933 l &= ~OMAP2_MCSPI_CHCONF_IS;
934 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
935 l |= OMAP2_MCSPI_CHCONF_DPE0;
936 } else {
937 l |= OMAP2_MCSPI_CHCONF_IS;
938 l |= OMAP2_MCSPI_CHCONF_DPE1;
939 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
940 }
941
942 /* wordlength */
943 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
944 l |= (word_len - 1) << 7;
945
946 /* set chipselect polarity; manage with FORCE */
947 if (!(spi->mode & SPI_CS_HIGH))
948 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
949 else
950 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
951
952 /* set clock divisor */
953 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
954 l |= clkd << 2;
955
956 /* set clock granularity */
957 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
958 l |= clkg;
959 if (clkg) {
960 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
961 cs->chctrl0 |= extclk << 8;
962 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
963 }
964
965 /* set SPI mode 0..3 */
966 if (spi->mode & SPI_CPOL)
967 l |= OMAP2_MCSPI_CHCONF_POL;
968 else
969 l &= ~OMAP2_MCSPI_CHCONF_POL;
970 if (spi->mode & SPI_CPHA)
971 l |= OMAP2_MCSPI_CHCONF_PHA;
972 else
973 l &= ~OMAP2_MCSPI_CHCONF_PHA;
974
975 mcspi_write_chconf0(spi, l);
976
977 cs->mode = spi->mode;
978
979 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
980 speed_hz,
981 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
982 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
983
984 return 0;
985}
986
987/*
988 * Note that we currently allow DMA only if we get a channel
989 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
990 */
991static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
992 struct omap2_mcspi_dma *mcspi_dma)
993{
994 int ret = 0;
995
996 mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
997 mcspi_dma->dma_rx_ch_name);
998 if (IS_ERR(mcspi_dma->dma_rx)) {
999 ret = PTR_ERR(mcspi_dma->dma_rx);
1000 mcspi_dma->dma_rx = NULL;
1001 goto no_dma;
1002 }
1003
1004 mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1005 mcspi_dma->dma_tx_ch_name);
1006 if (IS_ERR(mcspi_dma->dma_tx)) {
1007 ret = PTR_ERR(mcspi_dma->dma_tx);
1008 mcspi_dma->dma_tx = NULL;
1009 dma_release_channel(mcspi_dma->dma_rx);
1010 mcspi_dma->dma_rx = NULL;
1011 }
1012
1013 init_completion(&mcspi_dma->dma_rx_completion);
1014 init_completion(&mcspi_dma->dma_tx_completion);
1015
1016no_dma:
1017 return ret;
1018}
1019
1020static void omap2_mcspi_release_dma(struct spi_master *master)
1021{
1022 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1023 struct omap2_mcspi_dma *mcspi_dma;
1024 int i;
1025
1026 for (i = 0; i < master->num_chipselect; i++) {
1027 mcspi_dma = &mcspi->dma_channels[i];
1028
1029 if (mcspi_dma->dma_rx) {
1030 dma_release_channel(mcspi_dma->dma_rx);
1031 mcspi_dma->dma_rx = NULL;
1032 }
1033 if (mcspi_dma->dma_tx) {
1034 dma_release_channel(mcspi_dma->dma_tx);
1035 mcspi_dma->dma_tx = NULL;
1036 }
1037 }
1038}
1039
1040static void omap2_mcspi_cleanup(struct spi_device *spi)
1041{
1042 struct omap2_mcspi_cs *cs;
1043
1044 if (spi->controller_state) {
1045 /* Unlink controller state from context save list */
1046 cs = spi->controller_state;
1047 list_del(&cs->node);
1048
1049 kfree(cs);
1050 }
1051}
1052
1053static int omap2_mcspi_setup(struct spi_device *spi)
1054{
1055 bool initial_setup = false;
1056 int ret;
1057 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1058 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1059 struct omap2_mcspi_cs *cs = spi->controller_state;
1060
1061 if (!cs) {
1062 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1063 if (!cs)
1064 return -ENOMEM;
1065 cs->base = mcspi->base + spi->chip_select * 0x14;
1066 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1067 cs->mode = 0;
1068 cs->chconf0 = 0;
1069 cs->chctrl0 = 0;
1070 spi->controller_state = cs;
1071 /* Link this to context save list */
1072 list_add_tail(&cs->node, &ctx->cs);
1073 initial_setup = true;
1074 }
1075
1076 ret = pm_runtime_resume_and_get(mcspi->dev);
1077 if (ret < 0) {
1078 if (initial_setup)
1079 omap2_mcspi_cleanup(spi);
1080
1081 return ret;
1082 }
1083
1084 ret = omap2_mcspi_setup_transfer(spi, NULL);
1085 if (ret && initial_setup)
1086 omap2_mcspi_cleanup(spi);
1087
1088 pm_runtime_mark_last_busy(mcspi->dev);
1089 pm_runtime_put_autosuspend(mcspi->dev);
1090
1091 return ret;
1092}
1093
1094static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1095{
1096 struct omap2_mcspi *mcspi = data;
1097 u32 irqstat;
1098
1099 irqstat = mcspi_read_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS);
1100 if (!irqstat)
1101 return IRQ_NONE;
1102
1103 /* Disable IRQ and wakeup slave xfer task */
1104 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQENABLE, 0);
1105 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1106 complete(&mcspi->txdone);
1107
1108 return IRQ_HANDLED;
1109}
1110
1111static int omap2_mcspi_slave_abort(struct spi_master *master)
1112{
1113 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1114 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1115
1116 mcspi->slave_aborted = true;
1117 complete(&mcspi_dma->dma_rx_completion);
1118 complete(&mcspi_dma->dma_tx_completion);
1119 complete(&mcspi->txdone);
1120
1121 return 0;
1122}
1123
1124static int omap2_mcspi_transfer_one(struct spi_master *master,
1125 struct spi_device *spi,
1126 struct spi_transfer *t)
1127{
1128
1129 /* We only enable one channel at a time -- the one whose message is
1130 * -- although this controller would gladly
1131 * arbitrate among multiple channels. This corresponds to "single
1132 * channel" master mode. As a side effect, we need to manage the
1133 * chipselect with the FORCE bit ... CS != channel enable.
1134 */
1135
1136 struct omap2_mcspi *mcspi;
1137 struct omap2_mcspi_dma *mcspi_dma;
1138 struct omap2_mcspi_cs *cs;
1139 struct omap2_mcspi_device_config *cd;
1140 int par_override = 0;
1141 int status = 0;
1142 u32 chconf;
1143
1144 mcspi = spi_master_get_devdata(master);
1145 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1146 cs = spi->controller_state;
1147 cd = spi->controller_data;
1148
1149 /*
1150 * The slave driver could have changed spi->mode in which case
1151 * it will be different from cs->mode (the current hardware setup).
1152 * If so, set par_override (even though its not a parity issue) so
1153 * omap2_mcspi_setup_transfer will be called to configure the hardware
1154 * with the correct mode on the first iteration of the loop below.
1155 */
1156 if (spi->mode != cs->mode)
1157 par_override = 1;
1158
1159 omap2_mcspi_set_enable(spi, 0);
1160
1161 if (spi->cs_gpiod)
1162 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1163
1164 if (par_override ||
1165 (t->speed_hz != spi->max_speed_hz) ||
1166 (t->bits_per_word != spi->bits_per_word)) {
1167 par_override = 1;
1168 status = omap2_mcspi_setup_transfer(spi, t);
1169 if (status < 0)
1170 goto out;
1171 if (t->speed_hz == spi->max_speed_hz &&
1172 t->bits_per_word == spi->bits_per_word)
1173 par_override = 0;
1174 }
1175 if (cd && cd->cs_per_word) {
1176 chconf = mcspi->ctx.modulctrl;
1177 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1178 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1179 mcspi->ctx.modulctrl =
1180 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1181 }
1182
1183 chconf = mcspi_cached_chconf0(spi);
1184 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1185 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1186
1187 if (t->tx_buf == NULL)
1188 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1189 else if (t->rx_buf == NULL)
1190 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1191
1192 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1193 /* Turbo mode is for more than one word */
1194 if (t->len > ((cs->word_len + 7) >> 3))
1195 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1196 }
1197
1198 mcspi_write_chconf0(spi, chconf);
1199
1200 if (t->len) {
1201 unsigned count;
1202
1203 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1204 master->cur_msg_mapped &&
1205 master->can_dma(master, spi, t))
1206 omap2_mcspi_set_fifo(spi, t, 1);
1207
1208 omap2_mcspi_set_enable(spi, 1);
1209
1210 /* RX_ONLY mode needs dummy data in TX reg */
1211 if (t->tx_buf == NULL)
1212 writel_relaxed(0, cs->base
1213 + OMAP2_MCSPI_TX0);
1214
1215 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1216 master->cur_msg_mapped &&
1217 master->can_dma(master, spi, t))
1218 count = omap2_mcspi_txrx_dma(spi, t);
1219 else
1220 count = omap2_mcspi_txrx_pio(spi, t);
1221
1222 if (count != t->len) {
1223 status = -EIO;
1224 goto out;
1225 }
1226 }
1227
1228 omap2_mcspi_set_enable(spi, 0);
1229
1230 if (mcspi->fifo_depth > 0)
1231 omap2_mcspi_set_fifo(spi, t, 0);
1232
1233out:
1234 /* Restore defaults if they were overriden */
1235 if (par_override) {
1236 par_override = 0;
1237 status = omap2_mcspi_setup_transfer(spi, NULL);
1238 }
1239
1240 if (cd && cd->cs_per_word) {
1241 chconf = mcspi->ctx.modulctrl;
1242 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1243 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1244 mcspi->ctx.modulctrl =
1245 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1246 }
1247
1248 omap2_mcspi_set_enable(spi, 0);
1249
1250 if (spi->cs_gpiod)
1251 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1252
1253 if (mcspi->fifo_depth > 0 && t)
1254 omap2_mcspi_set_fifo(spi, t, 0);
1255
1256 return status;
1257}
1258
1259static int omap2_mcspi_prepare_message(struct spi_master *master,
1260 struct spi_message *msg)
1261{
1262 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1263 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1264 struct omap2_mcspi_cs *cs;
1265
1266 /* Only a single channel can have the FORCE bit enabled
1267 * in its chconf0 register.
1268 * Scan all channels and disable them except the current one.
1269 * A FORCE can remain from a last transfer having cs_change enabled
1270 */
1271 list_for_each_entry(cs, &ctx->cs, node) {
1272 if (msg->spi->controller_state == cs)
1273 continue;
1274
1275 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1276 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1277 writel_relaxed(cs->chconf0,
1278 cs->base + OMAP2_MCSPI_CHCONF0);
1279 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1280 }
1281 }
1282
1283 return 0;
1284}
1285
1286static bool omap2_mcspi_can_dma(struct spi_master *master,
1287 struct spi_device *spi,
1288 struct spi_transfer *xfer)
1289{
1290 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1291 struct omap2_mcspi_dma *mcspi_dma =
1292 &mcspi->dma_channels[spi->chip_select];
1293
1294 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1295 return false;
1296
1297 if (spi_controller_is_slave(master))
1298 return true;
1299
1300 master->dma_rx = mcspi_dma->dma_rx;
1301 master->dma_tx = mcspi_dma->dma_tx;
1302
1303 return (xfer->len >= DMA_MIN_BYTES);
1304}
1305
1306static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1307{
1308 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1309 struct omap2_mcspi_dma *mcspi_dma =
1310 &mcspi->dma_channels[spi->chip_select];
1311
1312 if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1313 return mcspi->max_xfer_len;
1314
1315 return SIZE_MAX;
1316}
1317
1318static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1319{
1320 struct spi_master *master = mcspi->master;
1321 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1322 int ret = 0;
1323
1324 ret = pm_runtime_resume_and_get(mcspi->dev);
1325 if (ret < 0)
1326 return ret;
1327
1328 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1329 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1330 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1331
1332 omap2_mcspi_set_mode(master);
1333 pm_runtime_mark_last_busy(mcspi->dev);
1334 pm_runtime_put_autosuspend(mcspi->dev);
1335 return 0;
1336}
1337
1338static int omap_mcspi_runtime_suspend(struct device *dev)
1339{
1340 int error;
1341
1342 error = pinctrl_pm_select_idle_state(dev);
1343 if (error)
1344 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1345
1346 return 0;
1347}
1348
1349/*
1350 * When SPI wake up from off-mode, CS is in activate state. If it was in
1351 * inactive state when driver was suspend, then force it to inactive state at
1352 * wake up.
1353 */
1354static int omap_mcspi_runtime_resume(struct device *dev)
1355{
1356 struct spi_master *master = dev_get_drvdata(dev);
1357 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1358 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1359 struct omap2_mcspi_cs *cs;
1360 int error;
1361
1362 error = pinctrl_pm_select_default_state(dev);
1363 if (error)
1364 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1365
1366 /* McSPI: context restore */
1367 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1368 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1369
1370 list_for_each_entry(cs, &ctx->cs, node) {
1371 /*
1372 * We need to toggle CS state for OMAP take this
1373 * change in account.
1374 */
1375 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1376 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1377 writel_relaxed(cs->chconf0,
1378 cs->base + OMAP2_MCSPI_CHCONF0);
1379 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1380 writel_relaxed(cs->chconf0,
1381 cs->base + OMAP2_MCSPI_CHCONF0);
1382 } else {
1383 writel_relaxed(cs->chconf0,
1384 cs->base + OMAP2_MCSPI_CHCONF0);
1385 }
1386 }
1387
1388 return 0;
1389}
1390
1391static struct omap2_mcspi_platform_config omap2_pdata = {
1392 .regs_offset = 0,
1393};
1394
1395static struct omap2_mcspi_platform_config omap4_pdata = {
1396 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1397};
1398
1399static struct omap2_mcspi_platform_config am654_pdata = {
1400 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1401 .max_xfer_len = SZ_4K - 1,
1402};
1403
1404static const struct of_device_id omap_mcspi_of_match[] = {
1405 {
1406 .compatible = "ti,omap2-mcspi",
1407 .data = &omap2_pdata,
1408 },
1409 {
1410 .compatible = "ti,omap4-mcspi",
1411 .data = &omap4_pdata,
1412 },
1413 {
1414 .compatible = "ti,am654-mcspi",
1415 .data = &am654_pdata,
1416 },
1417 { },
1418};
1419MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1420
1421static int omap2_mcspi_probe(struct platform_device *pdev)
1422{
1423 struct spi_master *master;
1424 const struct omap2_mcspi_platform_config *pdata;
1425 struct omap2_mcspi *mcspi;
1426 struct resource *r;
1427 int status = 0, i;
1428 u32 regs_offset = 0;
1429 struct device_node *node = pdev->dev.of_node;
1430 const struct of_device_id *match;
1431
1432 if (of_property_read_bool(node, "spi-slave"))
1433 master = spi_alloc_slave(&pdev->dev, sizeof(*mcspi));
1434 else
1435 master = spi_alloc_master(&pdev->dev, sizeof(*mcspi));
1436 if (!master)
1437 return -ENOMEM;
1438
1439 /* the spi->mode bits understood by this driver: */
1440 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1441 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1442 master->setup = omap2_mcspi_setup;
1443 master->auto_runtime_pm = true;
1444 master->prepare_message = omap2_mcspi_prepare_message;
1445 master->can_dma = omap2_mcspi_can_dma;
1446 master->transfer_one = omap2_mcspi_transfer_one;
1447 master->set_cs = omap2_mcspi_set_cs;
1448 master->cleanup = omap2_mcspi_cleanup;
1449 master->slave_abort = omap2_mcspi_slave_abort;
1450 master->dev.of_node = node;
1451 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1452 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1453 master->use_gpio_descriptors = true;
1454
1455 platform_set_drvdata(pdev, master);
1456
1457 mcspi = spi_master_get_devdata(master);
1458 mcspi->master = master;
1459
1460 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1461 if (match) {
1462 u32 num_cs = 1; /* default number of chipselect */
1463 pdata = match->data;
1464
1465 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1466 master->num_chipselect = num_cs;
1467 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1468 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1469 } else {
1470 pdata = dev_get_platdata(&pdev->dev);
1471 master->num_chipselect = pdata->num_cs;
1472 mcspi->pin_dir = pdata->pin_dir;
1473 }
1474 regs_offset = pdata->regs_offset;
1475 if (pdata->max_xfer_len) {
1476 mcspi->max_xfer_len = pdata->max_xfer_len;
1477 master->max_transfer_size = omap2_mcspi_max_xfer_size;
1478 }
1479
1480 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1481 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1482 if (IS_ERR(mcspi->base)) {
1483 status = PTR_ERR(mcspi->base);
1484 goto free_master;
1485 }
1486 mcspi->phys = r->start + regs_offset;
1487 mcspi->base += regs_offset;
1488
1489 mcspi->dev = &pdev->dev;
1490
1491 INIT_LIST_HEAD(&mcspi->ctx.cs);
1492
1493 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1494 sizeof(struct omap2_mcspi_dma),
1495 GFP_KERNEL);
1496 if (mcspi->dma_channels == NULL) {
1497 status = -ENOMEM;
1498 goto free_master;
1499 }
1500
1501 for (i = 0; i < master->num_chipselect; i++) {
1502 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1503 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1504
1505 status = omap2_mcspi_request_dma(mcspi,
1506 &mcspi->dma_channels[i]);
1507 if (status == -EPROBE_DEFER)
1508 goto free_master;
1509 }
1510
1511 status = platform_get_irq(pdev, 0);
1512 if (status < 0) {
1513 dev_err_probe(&pdev->dev, status, "no irq resource found\n");
1514 goto free_master;
1515 }
1516 init_completion(&mcspi->txdone);
1517 status = devm_request_irq(&pdev->dev, status,
1518 omap2_mcspi_irq_handler, 0, pdev->name,
1519 mcspi);
1520 if (status) {
1521 dev_err(&pdev->dev, "Cannot request IRQ");
1522 goto free_master;
1523 }
1524
1525 pm_runtime_use_autosuspend(&pdev->dev);
1526 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1527 pm_runtime_enable(&pdev->dev);
1528
1529 status = omap2_mcspi_controller_setup(mcspi);
1530 if (status < 0)
1531 goto disable_pm;
1532
1533 status = devm_spi_register_controller(&pdev->dev, master);
1534 if (status < 0)
1535 goto disable_pm;
1536
1537 return status;
1538
1539disable_pm:
1540 pm_runtime_dont_use_autosuspend(&pdev->dev);
1541 pm_runtime_put_sync(&pdev->dev);
1542 pm_runtime_disable(&pdev->dev);
1543free_master:
1544 omap2_mcspi_release_dma(master);
1545 spi_master_put(master);
1546 return status;
1547}
1548
1549static int omap2_mcspi_remove(struct platform_device *pdev)
1550{
1551 struct spi_master *master = platform_get_drvdata(pdev);
1552 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1553
1554 omap2_mcspi_release_dma(master);
1555
1556 pm_runtime_dont_use_autosuspend(mcspi->dev);
1557 pm_runtime_put_sync(mcspi->dev);
1558 pm_runtime_disable(&pdev->dev);
1559
1560 return 0;
1561}
1562
1563/* work with hotplug and coldplug */
1564MODULE_ALIAS("platform:omap2_mcspi");
1565
1566static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1567{
1568 struct spi_master *master = dev_get_drvdata(dev);
1569 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1570 int error;
1571
1572 error = pinctrl_pm_select_sleep_state(dev);
1573 if (error)
1574 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1575 __func__, error);
1576
1577 error = spi_master_suspend(master);
1578 if (error)
1579 dev_warn(mcspi->dev, "%s: master suspend failed: %i\n",
1580 __func__, error);
1581
1582 return pm_runtime_force_suspend(dev);
1583}
1584
1585static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1586{
1587 struct spi_master *master = dev_get_drvdata(dev);
1588 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1589 int error;
1590
1591 error = spi_master_resume(master);
1592 if (error)
1593 dev_warn(mcspi->dev, "%s: master resume failed: %i\n",
1594 __func__, error);
1595
1596 return pm_runtime_force_resume(dev);
1597}
1598
1599static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1600 SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1601 omap2_mcspi_resume)
1602 .runtime_suspend = omap_mcspi_runtime_suspend,
1603 .runtime_resume = omap_mcspi_runtime_resume,
1604};
1605
1606static struct platform_driver omap2_mcspi_driver = {
1607 .driver = {
1608 .name = "omap2_mcspi",
1609 .pm = &omap2_mcspi_pm_ops,
1610 .of_match_table = omap_mcspi_of_match,
1611 },
1612 .probe = omap2_mcspi_probe,
1613 .remove = omap2_mcspi_remove,
1614};
1615
1616module_platform_driver(omap2_mcspi_driver);
1617MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * OMAP2 McSPI controller driver
4 *
5 * Copyright (C) 2005, 2006 Nokia Corporation
6 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
7 * Juha Yrj�l� <juha.yrjola@nokia.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/platform_device.h>
19#include <linux/err.h>
20#include <linux/clk.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/pm_runtime.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/gcd.h>
27#include <linux/iopoll.h>
28
29#include <linux/spi/spi.h>
30
31#include <linux/platform_data/spi-omap2-mcspi.h>
32
33#define OMAP2_MCSPI_MAX_FREQ 48000000
34#define OMAP2_MCSPI_MAX_DIVIDER 4096
35#define OMAP2_MCSPI_MAX_FIFODEPTH 64
36#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
37#define SPI_AUTOSUSPEND_TIMEOUT 2000
38
39#define OMAP2_MCSPI_REVISION 0x00
40#define OMAP2_MCSPI_SYSSTATUS 0x14
41#define OMAP2_MCSPI_IRQSTATUS 0x18
42#define OMAP2_MCSPI_IRQENABLE 0x1c
43#define OMAP2_MCSPI_WAKEUPENABLE 0x20
44#define OMAP2_MCSPI_SYST 0x24
45#define OMAP2_MCSPI_MODULCTRL 0x28
46#define OMAP2_MCSPI_XFERLEVEL 0x7c
47
48/* per-channel banks, 0x14 bytes each, first is: */
49#define OMAP2_MCSPI_CHCONF0 0x2c
50#define OMAP2_MCSPI_CHSTAT0 0x30
51#define OMAP2_MCSPI_CHCTRL0 0x34
52#define OMAP2_MCSPI_TX0 0x38
53#define OMAP2_MCSPI_RX0 0x3c
54
55/* per-register bitmasks: */
56#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
57
58#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
59#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
60#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
61
62#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
63#define OMAP2_MCSPI_CHCONF_POL BIT(1)
64#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
65#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
66#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
67#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
68#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
69#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
70#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
71#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
72#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
73#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
74#define OMAP2_MCSPI_CHCONF_IS BIT(18)
75#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
76#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
77#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
78#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
79#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
80
81#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
82#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
83#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
84#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
85
86#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
87#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
88
89#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
90
91/* We have 2 DMA channels per CS, one for RX and one for TX */
92struct omap2_mcspi_dma {
93 struct dma_chan *dma_tx;
94 struct dma_chan *dma_rx;
95
96 struct completion dma_tx_completion;
97 struct completion dma_rx_completion;
98
99 char dma_rx_ch_name[14];
100 char dma_tx_ch_name[14];
101};
102
103/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
104 * cache operations; better heuristics consider wordsize and bitrate.
105 */
106#define DMA_MIN_BYTES 160
107
108
109/*
110 * Used for context save and restore, structure members to be updated whenever
111 * corresponding registers are modified.
112 */
113struct omap2_mcspi_regs {
114 u32 modulctrl;
115 u32 wakeupenable;
116 struct list_head cs;
117};
118
119struct omap2_mcspi {
120 struct completion txdone;
121 struct spi_master *master;
122 /* Virtual base address of the controller */
123 void __iomem *base;
124 unsigned long phys;
125 /* SPI1 has 4 channels, while SPI2 has 2 */
126 struct omap2_mcspi_dma *dma_channels;
127 struct device *dev;
128 struct omap2_mcspi_regs ctx;
129 int fifo_depth;
130 bool slave_aborted;
131 unsigned int pin_dir:1;
132 size_t max_xfer_len;
133};
134
135struct omap2_mcspi_cs {
136 void __iomem *base;
137 unsigned long phys;
138 int word_len;
139 u16 mode;
140 struct list_head node;
141 /* Context save and restore shadow register */
142 u32 chconf0, chctrl0;
143};
144
145static inline void mcspi_write_reg(struct spi_master *master,
146 int idx, u32 val)
147{
148 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
149
150 writel_relaxed(val, mcspi->base + idx);
151}
152
153static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
154{
155 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
156
157 return readl_relaxed(mcspi->base + idx);
158}
159
160static inline void mcspi_write_cs_reg(const struct spi_device *spi,
161 int idx, u32 val)
162{
163 struct omap2_mcspi_cs *cs = spi->controller_state;
164
165 writel_relaxed(val, cs->base + idx);
166}
167
168static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
169{
170 struct omap2_mcspi_cs *cs = spi->controller_state;
171
172 return readl_relaxed(cs->base + idx);
173}
174
175static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
176{
177 struct omap2_mcspi_cs *cs = spi->controller_state;
178
179 return cs->chconf0;
180}
181
182static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
183{
184 struct omap2_mcspi_cs *cs = spi->controller_state;
185
186 cs->chconf0 = val;
187 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
188 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
189}
190
191static inline int mcspi_bytes_per_word(int word_len)
192{
193 if (word_len <= 8)
194 return 1;
195 else if (word_len <= 16)
196 return 2;
197 else /* word_len <= 32 */
198 return 4;
199}
200
201static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
202 int is_read, int enable)
203{
204 u32 l, rw;
205
206 l = mcspi_cached_chconf0(spi);
207
208 if (is_read) /* 1 is read, 0 write */
209 rw = OMAP2_MCSPI_CHCONF_DMAR;
210 else
211 rw = OMAP2_MCSPI_CHCONF_DMAW;
212
213 if (enable)
214 l |= rw;
215 else
216 l &= ~rw;
217
218 mcspi_write_chconf0(spi, l);
219}
220
221static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
222{
223 struct omap2_mcspi_cs *cs = spi->controller_state;
224 u32 l;
225
226 l = cs->chctrl0;
227 if (enable)
228 l |= OMAP2_MCSPI_CHCTRL_EN;
229 else
230 l &= ~OMAP2_MCSPI_CHCTRL_EN;
231 cs->chctrl0 = l;
232 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
233 /* Flash post-writes */
234 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
235}
236
237static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
238{
239 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
240 u32 l;
241
242 /* The controller handles the inverted chip selects
243 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
244 * the inversion from the core spi_set_cs function.
245 */
246 if (spi->mode & SPI_CS_HIGH)
247 enable = !enable;
248
249 if (spi->controller_state) {
250 int err = pm_runtime_get_sync(mcspi->dev);
251 if (err < 0) {
252 pm_runtime_put_noidle(mcspi->dev);
253 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
254 return;
255 }
256
257 l = mcspi_cached_chconf0(spi);
258
259 if (enable)
260 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
261 else
262 l |= OMAP2_MCSPI_CHCONF_FORCE;
263
264 mcspi_write_chconf0(spi, l);
265
266 pm_runtime_mark_last_busy(mcspi->dev);
267 pm_runtime_put_autosuspend(mcspi->dev);
268 }
269}
270
271static void omap2_mcspi_set_mode(struct spi_master *master)
272{
273 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
274 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
275 u32 l;
276
277 /*
278 * Choose master or slave mode
279 */
280 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
281 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
282 if (spi_controller_is_slave(master)) {
283 l |= (OMAP2_MCSPI_MODULCTRL_MS);
284 } else {
285 l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
286 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
287 }
288 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
289
290 ctx->modulctrl = l;
291}
292
293static void omap2_mcspi_set_fifo(const struct spi_device *spi,
294 struct spi_transfer *t, int enable)
295{
296 struct spi_master *master = spi->master;
297 struct omap2_mcspi_cs *cs = spi->controller_state;
298 struct omap2_mcspi *mcspi;
299 unsigned int wcnt;
300 int max_fifo_depth, bytes_per_word;
301 u32 chconf, xferlevel;
302
303 mcspi = spi_master_get_devdata(master);
304
305 chconf = mcspi_cached_chconf0(spi);
306 if (enable) {
307 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
308 if (t->len % bytes_per_word != 0)
309 goto disable_fifo;
310
311 if (t->rx_buf != NULL && t->tx_buf != NULL)
312 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
313 else
314 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
315
316 wcnt = t->len / bytes_per_word;
317 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
318 goto disable_fifo;
319
320 xferlevel = wcnt << 16;
321 if (t->rx_buf != NULL) {
322 chconf |= OMAP2_MCSPI_CHCONF_FFER;
323 xferlevel |= (bytes_per_word - 1) << 8;
324 }
325
326 if (t->tx_buf != NULL) {
327 chconf |= OMAP2_MCSPI_CHCONF_FFET;
328 xferlevel |= bytes_per_word - 1;
329 }
330
331 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
332 mcspi_write_chconf0(spi, chconf);
333 mcspi->fifo_depth = max_fifo_depth;
334
335 return;
336 }
337
338disable_fifo:
339 if (t->rx_buf != NULL)
340 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
341
342 if (t->tx_buf != NULL)
343 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
344
345 mcspi_write_chconf0(spi, chconf);
346 mcspi->fifo_depth = 0;
347}
348
349static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
350{
351 u32 val;
352
353 return readl_poll_timeout(reg, val, val & bit, 1, MSEC_PER_SEC);
354}
355
356static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi,
357 struct completion *x)
358{
359 if (spi_controller_is_slave(mcspi->master)) {
360 if (wait_for_completion_interruptible(x) ||
361 mcspi->slave_aborted)
362 return -EINTR;
363 } else {
364 wait_for_completion(x);
365 }
366
367 return 0;
368}
369
370static void omap2_mcspi_rx_callback(void *data)
371{
372 struct spi_device *spi = data;
373 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
374 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
375
376 /* We must disable the DMA RX request */
377 omap2_mcspi_set_dma_req(spi, 1, 0);
378
379 complete(&mcspi_dma->dma_rx_completion);
380}
381
382static void omap2_mcspi_tx_callback(void *data)
383{
384 struct spi_device *spi = data;
385 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
386 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
387
388 /* We must disable the DMA TX request */
389 omap2_mcspi_set_dma_req(spi, 0, 0);
390
391 complete(&mcspi_dma->dma_tx_completion);
392}
393
394static void omap2_mcspi_tx_dma(struct spi_device *spi,
395 struct spi_transfer *xfer,
396 struct dma_slave_config cfg)
397{
398 struct omap2_mcspi *mcspi;
399 struct omap2_mcspi_dma *mcspi_dma;
400 struct dma_async_tx_descriptor *tx;
401
402 mcspi = spi_master_get_devdata(spi->master);
403 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
404
405 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
406
407 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
408 xfer->tx_sg.nents,
409 DMA_MEM_TO_DEV,
410 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
411 if (tx) {
412 tx->callback = omap2_mcspi_tx_callback;
413 tx->callback_param = spi;
414 dmaengine_submit(tx);
415 } else {
416 /* FIXME: fall back to PIO? */
417 }
418 dma_async_issue_pending(mcspi_dma->dma_tx);
419 omap2_mcspi_set_dma_req(spi, 0, 1);
420}
421
422static unsigned
423omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
424 struct dma_slave_config cfg,
425 unsigned es)
426{
427 struct omap2_mcspi *mcspi;
428 struct omap2_mcspi_dma *mcspi_dma;
429 unsigned int count, transfer_reduction = 0;
430 struct scatterlist *sg_out[2];
431 int nb_sizes = 0, out_mapped_nents[2], ret, x;
432 size_t sizes[2];
433 u32 l;
434 int elements = 0;
435 int word_len, element_count;
436 struct omap2_mcspi_cs *cs = spi->controller_state;
437 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
438 struct dma_async_tx_descriptor *tx;
439
440 mcspi = spi_master_get_devdata(spi->master);
441 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
442 count = xfer->len;
443
444 /*
445 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
446 * it mentions reducing DMA transfer length by one element in master
447 * normal mode.
448 */
449 if (mcspi->fifo_depth == 0)
450 transfer_reduction = es;
451
452 word_len = cs->word_len;
453 l = mcspi_cached_chconf0(spi);
454
455 if (word_len <= 8)
456 element_count = count;
457 else if (word_len <= 16)
458 element_count = count >> 1;
459 else /* word_len <= 32 */
460 element_count = count >> 2;
461
462
463 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
464
465 /*
466 * Reduce DMA transfer length by one more if McSPI is
467 * configured in turbo mode.
468 */
469 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
470 transfer_reduction += es;
471
472 if (transfer_reduction) {
473 /* Split sgl into two. The second sgl won't be used. */
474 sizes[0] = count - transfer_reduction;
475 sizes[1] = transfer_reduction;
476 nb_sizes = 2;
477 } else {
478 /*
479 * Don't bother splitting the sgl. This essentially
480 * clones the original sgl.
481 */
482 sizes[0] = count;
483 nb_sizes = 1;
484 }
485
486 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
487 sizes, sg_out, out_mapped_nents, GFP_KERNEL);
488
489 if (ret < 0) {
490 dev_err(&spi->dev, "sg_split failed\n");
491 return 0;
492 }
493
494 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
495 out_mapped_nents[0], DMA_DEV_TO_MEM,
496 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
497 if (tx) {
498 tx->callback = omap2_mcspi_rx_callback;
499 tx->callback_param = spi;
500 dmaengine_submit(tx);
501 } else {
502 /* FIXME: fall back to PIO? */
503 }
504
505 dma_async_issue_pending(mcspi_dma->dma_rx);
506 omap2_mcspi_set_dma_req(spi, 1, 1);
507
508 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
509 if (ret || mcspi->slave_aborted) {
510 dmaengine_terminate_sync(mcspi_dma->dma_rx);
511 omap2_mcspi_set_dma_req(spi, 1, 0);
512 return 0;
513 }
514
515 for (x = 0; x < nb_sizes; x++)
516 kfree(sg_out[x]);
517
518 if (mcspi->fifo_depth > 0)
519 return count;
520
521 /*
522 * Due to the DMA transfer length reduction the missing bytes must
523 * be read manually to receive all of the expected data.
524 */
525 omap2_mcspi_set_enable(spi, 0);
526
527 elements = element_count - 1;
528
529 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
530 elements--;
531
532 if (!mcspi_wait_for_reg_bit(chstat_reg,
533 OMAP2_MCSPI_CHSTAT_RXS)) {
534 u32 w;
535
536 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
537 if (word_len <= 8)
538 ((u8 *)xfer->rx_buf)[elements++] = w;
539 else if (word_len <= 16)
540 ((u16 *)xfer->rx_buf)[elements++] = w;
541 else /* word_len <= 32 */
542 ((u32 *)xfer->rx_buf)[elements++] = w;
543 } else {
544 int bytes_per_word = mcspi_bytes_per_word(word_len);
545 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
546 count -= (bytes_per_word << 1);
547 omap2_mcspi_set_enable(spi, 1);
548 return count;
549 }
550 }
551 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
552 u32 w;
553
554 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
555 if (word_len <= 8)
556 ((u8 *)xfer->rx_buf)[elements] = w;
557 else if (word_len <= 16)
558 ((u16 *)xfer->rx_buf)[elements] = w;
559 else /* word_len <= 32 */
560 ((u32 *)xfer->rx_buf)[elements] = w;
561 } else {
562 dev_err(&spi->dev, "DMA RX last word empty\n");
563 count -= mcspi_bytes_per_word(word_len);
564 }
565 omap2_mcspi_set_enable(spi, 1);
566 return count;
567}
568
569static unsigned
570omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
571{
572 struct omap2_mcspi *mcspi;
573 struct omap2_mcspi_cs *cs = spi->controller_state;
574 struct omap2_mcspi_dma *mcspi_dma;
575 unsigned int count;
576 u8 *rx;
577 const u8 *tx;
578 struct dma_slave_config cfg;
579 enum dma_slave_buswidth width;
580 unsigned es;
581 void __iomem *chstat_reg;
582 void __iomem *irqstat_reg;
583 int wait_res;
584
585 mcspi = spi_master_get_devdata(spi->master);
586 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
587
588 if (cs->word_len <= 8) {
589 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
590 es = 1;
591 } else if (cs->word_len <= 16) {
592 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
593 es = 2;
594 } else {
595 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
596 es = 4;
597 }
598
599 count = xfer->len;
600
601 memset(&cfg, 0, sizeof(cfg));
602 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
603 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
604 cfg.src_addr_width = width;
605 cfg.dst_addr_width = width;
606 cfg.src_maxburst = 1;
607 cfg.dst_maxburst = 1;
608
609 rx = xfer->rx_buf;
610 tx = xfer->tx_buf;
611
612 mcspi->slave_aborted = false;
613 reinit_completion(&mcspi_dma->dma_tx_completion);
614 reinit_completion(&mcspi_dma->dma_rx_completion);
615 reinit_completion(&mcspi->txdone);
616 if (tx) {
617 /* Enable EOW IRQ to know end of tx in slave mode */
618 if (spi_controller_is_slave(spi->master))
619 mcspi_write_reg(spi->master,
620 OMAP2_MCSPI_IRQENABLE,
621 OMAP2_MCSPI_IRQSTATUS_EOW);
622 omap2_mcspi_tx_dma(spi, xfer, cfg);
623 }
624
625 if (rx != NULL)
626 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
627
628 if (tx != NULL) {
629 int ret;
630
631 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
632 if (ret || mcspi->slave_aborted) {
633 dmaengine_terminate_sync(mcspi_dma->dma_tx);
634 omap2_mcspi_set_dma_req(spi, 0, 0);
635 return 0;
636 }
637
638 if (spi_controller_is_slave(mcspi->master)) {
639 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
640 if (ret || mcspi->slave_aborted)
641 return 0;
642 }
643
644 if (mcspi->fifo_depth > 0) {
645 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
646
647 if (mcspi_wait_for_reg_bit(irqstat_reg,
648 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
649 dev_err(&spi->dev, "EOW timed out\n");
650
651 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
652 OMAP2_MCSPI_IRQSTATUS_EOW);
653 }
654
655 /* for TX_ONLY mode, be sure all words have shifted out */
656 if (rx == NULL) {
657 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
658 if (mcspi->fifo_depth > 0) {
659 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
660 OMAP2_MCSPI_CHSTAT_TXFFE);
661 if (wait_res < 0)
662 dev_err(&spi->dev, "TXFFE timed out\n");
663 } else {
664 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
665 OMAP2_MCSPI_CHSTAT_TXS);
666 if (wait_res < 0)
667 dev_err(&spi->dev, "TXS timed out\n");
668 }
669 if (wait_res >= 0 &&
670 (mcspi_wait_for_reg_bit(chstat_reg,
671 OMAP2_MCSPI_CHSTAT_EOT) < 0))
672 dev_err(&spi->dev, "EOT timed out\n");
673 }
674 }
675 return count;
676}
677
678static unsigned
679omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
680{
681 struct omap2_mcspi_cs *cs = spi->controller_state;
682 unsigned int count, c;
683 u32 l;
684 void __iomem *base = cs->base;
685 void __iomem *tx_reg;
686 void __iomem *rx_reg;
687 void __iomem *chstat_reg;
688 int word_len;
689
690 count = xfer->len;
691 c = count;
692 word_len = cs->word_len;
693
694 l = mcspi_cached_chconf0(spi);
695
696 /* We store the pre-calculated register addresses on stack to speed
697 * up the transfer loop. */
698 tx_reg = base + OMAP2_MCSPI_TX0;
699 rx_reg = base + OMAP2_MCSPI_RX0;
700 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
701
702 if (c < (word_len>>3))
703 return 0;
704
705 if (word_len <= 8) {
706 u8 *rx;
707 const u8 *tx;
708
709 rx = xfer->rx_buf;
710 tx = xfer->tx_buf;
711
712 do {
713 c -= 1;
714 if (tx != NULL) {
715 if (mcspi_wait_for_reg_bit(chstat_reg,
716 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
717 dev_err(&spi->dev, "TXS timed out\n");
718 goto out;
719 }
720 dev_vdbg(&spi->dev, "write-%d %02x\n",
721 word_len, *tx);
722 writel_relaxed(*tx++, tx_reg);
723 }
724 if (rx != NULL) {
725 if (mcspi_wait_for_reg_bit(chstat_reg,
726 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
727 dev_err(&spi->dev, "RXS timed out\n");
728 goto out;
729 }
730
731 if (c == 1 && tx == NULL &&
732 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
733 omap2_mcspi_set_enable(spi, 0);
734 *rx++ = readl_relaxed(rx_reg);
735 dev_vdbg(&spi->dev, "read-%d %02x\n",
736 word_len, *(rx - 1));
737 if (mcspi_wait_for_reg_bit(chstat_reg,
738 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
739 dev_err(&spi->dev,
740 "RXS timed out\n");
741 goto out;
742 }
743 c = 0;
744 } else if (c == 0 && tx == NULL) {
745 omap2_mcspi_set_enable(spi, 0);
746 }
747
748 *rx++ = readl_relaxed(rx_reg);
749 dev_vdbg(&spi->dev, "read-%d %02x\n",
750 word_len, *(rx - 1));
751 }
752 } while (c);
753 } else if (word_len <= 16) {
754 u16 *rx;
755 const u16 *tx;
756
757 rx = xfer->rx_buf;
758 tx = xfer->tx_buf;
759 do {
760 c -= 2;
761 if (tx != NULL) {
762 if (mcspi_wait_for_reg_bit(chstat_reg,
763 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
764 dev_err(&spi->dev, "TXS timed out\n");
765 goto out;
766 }
767 dev_vdbg(&spi->dev, "write-%d %04x\n",
768 word_len, *tx);
769 writel_relaxed(*tx++, tx_reg);
770 }
771 if (rx != NULL) {
772 if (mcspi_wait_for_reg_bit(chstat_reg,
773 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
774 dev_err(&spi->dev, "RXS timed out\n");
775 goto out;
776 }
777
778 if (c == 2 && tx == NULL &&
779 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
780 omap2_mcspi_set_enable(spi, 0);
781 *rx++ = readl_relaxed(rx_reg);
782 dev_vdbg(&spi->dev, "read-%d %04x\n",
783 word_len, *(rx - 1));
784 if (mcspi_wait_for_reg_bit(chstat_reg,
785 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
786 dev_err(&spi->dev,
787 "RXS timed out\n");
788 goto out;
789 }
790 c = 0;
791 } else if (c == 0 && tx == NULL) {
792 omap2_mcspi_set_enable(spi, 0);
793 }
794
795 *rx++ = readl_relaxed(rx_reg);
796 dev_vdbg(&spi->dev, "read-%d %04x\n",
797 word_len, *(rx - 1));
798 }
799 } while (c >= 2);
800 } else if (word_len <= 32) {
801 u32 *rx;
802 const u32 *tx;
803
804 rx = xfer->rx_buf;
805 tx = xfer->tx_buf;
806 do {
807 c -= 4;
808 if (tx != NULL) {
809 if (mcspi_wait_for_reg_bit(chstat_reg,
810 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
811 dev_err(&spi->dev, "TXS timed out\n");
812 goto out;
813 }
814 dev_vdbg(&spi->dev, "write-%d %08x\n",
815 word_len, *tx);
816 writel_relaxed(*tx++, tx_reg);
817 }
818 if (rx != NULL) {
819 if (mcspi_wait_for_reg_bit(chstat_reg,
820 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
821 dev_err(&spi->dev, "RXS timed out\n");
822 goto out;
823 }
824
825 if (c == 4 && tx == NULL &&
826 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
827 omap2_mcspi_set_enable(spi, 0);
828 *rx++ = readl_relaxed(rx_reg);
829 dev_vdbg(&spi->dev, "read-%d %08x\n",
830 word_len, *(rx - 1));
831 if (mcspi_wait_for_reg_bit(chstat_reg,
832 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
833 dev_err(&spi->dev,
834 "RXS timed out\n");
835 goto out;
836 }
837 c = 0;
838 } else if (c == 0 && tx == NULL) {
839 omap2_mcspi_set_enable(spi, 0);
840 }
841
842 *rx++ = readl_relaxed(rx_reg);
843 dev_vdbg(&spi->dev, "read-%d %08x\n",
844 word_len, *(rx - 1));
845 }
846 } while (c >= 4);
847 }
848
849 /* for TX_ONLY mode, be sure all words have shifted out */
850 if (xfer->rx_buf == NULL) {
851 if (mcspi_wait_for_reg_bit(chstat_reg,
852 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
853 dev_err(&spi->dev, "TXS timed out\n");
854 } else if (mcspi_wait_for_reg_bit(chstat_reg,
855 OMAP2_MCSPI_CHSTAT_EOT) < 0)
856 dev_err(&spi->dev, "EOT timed out\n");
857
858 /* disable chan to purge rx datas received in TX_ONLY transfer,
859 * otherwise these rx datas will affect the direct following
860 * RX_ONLY transfer.
861 */
862 omap2_mcspi_set_enable(spi, 0);
863 }
864out:
865 omap2_mcspi_set_enable(spi, 1);
866 return count - c;
867}
868
869static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
870{
871 u32 div;
872
873 for (div = 0; div < 15; div++)
874 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
875 return div;
876
877 return 15;
878}
879
880/* called only when no transfer is active to this device */
881static int omap2_mcspi_setup_transfer(struct spi_device *spi,
882 struct spi_transfer *t)
883{
884 struct omap2_mcspi_cs *cs = spi->controller_state;
885 struct omap2_mcspi *mcspi;
886 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
887 u8 word_len = spi->bits_per_word;
888 u32 speed_hz = spi->max_speed_hz;
889
890 mcspi = spi_master_get_devdata(spi->master);
891
892 if (t != NULL && t->bits_per_word)
893 word_len = t->bits_per_word;
894
895 cs->word_len = word_len;
896
897 if (t && t->speed_hz)
898 speed_hz = t->speed_hz;
899
900 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
901 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
902 clkd = omap2_mcspi_calc_divisor(speed_hz);
903 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
904 clkg = 0;
905 } else {
906 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
907 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
908 clkd = (div - 1) & 0xf;
909 extclk = (div - 1) >> 4;
910 clkg = OMAP2_MCSPI_CHCONF_CLKG;
911 }
912
913 l = mcspi_cached_chconf0(spi);
914
915 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
916 * REVISIT: this controller could support SPI_3WIRE mode.
917 */
918 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
919 l &= ~OMAP2_MCSPI_CHCONF_IS;
920 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
921 l |= OMAP2_MCSPI_CHCONF_DPE0;
922 } else {
923 l |= OMAP2_MCSPI_CHCONF_IS;
924 l |= OMAP2_MCSPI_CHCONF_DPE1;
925 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
926 }
927
928 /* wordlength */
929 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
930 l |= (word_len - 1) << 7;
931
932 /* set chipselect polarity; manage with FORCE */
933 if (!(spi->mode & SPI_CS_HIGH))
934 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
935 else
936 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
937
938 /* set clock divisor */
939 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
940 l |= clkd << 2;
941
942 /* set clock granularity */
943 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
944 l |= clkg;
945 if (clkg) {
946 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
947 cs->chctrl0 |= extclk << 8;
948 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
949 }
950
951 /* set SPI mode 0..3 */
952 if (spi->mode & SPI_CPOL)
953 l |= OMAP2_MCSPI_CHCONF_POL;
954 else
955 l &= ~OMAP2_MCSPI_CHCONF_POL;
956 if (spi->mode & SPI_CPHA)
957 l |= OMAP2_MCSPI_CHCONF_PHA;
958 else
959 l &= ~OMAP2_MCSPI_CHCONF_PHA;
960
961 mcspi_write_chconf0(spi, l);
962
963 cs->mode = spi->mode;
964
965 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
966 speed_hz,
967 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
968 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
969
970 return 0;
971}
972
973/*
974 * Note that we currently allow DMA only if we get a channel
975 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
976 */
977static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
978 struct omap2_mcspi_dma *mcspi_dma)
979{
980 int ret = 0;
981
982 mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
983 mcspi_dma->dma_rx_ch_name);
984 if (IS_ERR(mcspi_dma->dma_rx)) {
985 ret = PTR_ERR(mcspi_dma->dma_rx);
986 mcspi_dma->dma_rx = NULL;
987 goto no_dma;
988 }
989
990 mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
991 mcspi_dma->dma_tx_ch_name);
992 if (IS_ERR(mcspi_dma->dma_tx)) {
993 ret = PTR_ERR(mcspi_dma->dma_tx);
994 mcspi_dma->dma_tx = NULL;
995 dma_release_channel(mcspi_dma->dma_rx);
996 mcspi_dma->dma_rx = NULL;
997 }
998
999 init_completion(&mcspi_dma->dma_rx_completion);
1000 init_completion(&mcspi_dma->dma_tx_completion);
1001
1002no_dma:
1003 return ret;
1004}
1005
1006static void omap2_mcspi_release_dma(struct spi_master *master)
1007{
1008 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1009 struct omap2_mcspi_dma *mcspi_dma;
1010 int i;
1011
1012 for (i = 0; i < master->num_chipselect; i++) {
1013 mcspi_dma = &mcspi->dma_channels[i];
1014
1015 if (mcspi_dma->dma_rx) {
1016 dma_release_channel(mcspi_dma->dma_rx);
1017 mcspi_dma->dma_rx = NULL;
1018 }
1019 if (mcspi_dma->dma_tx) {
1020 dma_release_channel(mcspi_dma->dma_tx);
1021 mcspi_dma->dma_tx = NULL;
1022 }
1023 }
1024}
1025
1026static int omap2_mcspi_setup(struct spi_device *spi)
1027{
1028 int ret;
1029 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1030 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1031 struct omap2_mcspi_cs *cs = spi->controller_state;
1032
1033 if (!cs) {
1034 cs = kzalloc(sizeof *cs, GFP_KERNEL);
1035 if (!cs)
1036 return -ENOMEM;
1037 cs->base = mcspi->base + spi->chip_select * 0x14;
1038 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1039 cs->mode = 0;
1040 cs->chconf0 = 0;
1041 cs->chctrl0 = 0;
1042 spi->controller_state = cs;
1043 /* Link this to context save list */
1044 list_add_tail(&cs->node, &ctx->cs);
1045 }
1046
1047 ret = pm_runtime_get_sync(mcspi->dev);
1048 if (ret < 0) {
1049 pm_runtime_put_noidle(mcspi->dev);
1050
1051 return ret;
1052 }
1053
1054 ret = omap2_mcspi_setup_transfer(spi, NULL);
1055 pm_runtime_mark_last_busy(mcspi->dev);
1056 pm_runtime_put_autosuspend(mcspi->dev);
1057
1058 return ret;
1059}
1060
1061static void omap2_mcspi_cleanup(struct spi_device *spi)
1062{
1063 struct omap2_mcspi_cs *cs;
1064
1065 if (spi->controller_state) {
1066 /* Unlink controller state from context save list */
1067 cs = spi->controller_state;
1068 list_del(&cs->node);
1069
1070 kfree(cs);
1071 }
1072}
1073
1074static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1075{
1076 struct omap2_mcspi *mcspi = data;
1077 u32 irqstat;
1078
1079 irqstat = mcspi_read_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS);
1080 if (!irqstat)
1081 return IRQ_NONE;
1082
1083 /* Disable IRQ and wakeup slave xfer task */
1084 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQENABLE, 0);
1085 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1086 complete(&mcspi->txdone);
1087
1088 return IRQ_HANDLED;
1089}
1090
1091static int omap2_mcspi_slave_abort(struct spi_master *master)
1092{
1093 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1094 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1095
1096 mcspi->slave_aborted = true;
1097 complete(&mcspi_dma->dma_rx_completion);
1098 complete(&mcspi_dma->dma_tx_completion);
1099 complete(&mcspi->txdone);
1100
1101 return 0;
1102}
1103
1104static int omap2_mcspi_transfer_one(struct spi_master *master,
1105 struct spi_device *spi,
1106 struct spi_transfer *t)
1107{
1108
1109 /* We only enable one channel at a time -- the one whose message is
1110 * -- although this controller would gladly
1111 * arbitrate among multiple channels. This corresponds to "single
1112 * channel" master mode. As a side effect, we need to manage the
1113 * chipselect with the FORCE bit ... CS != channel enable.
1114 */
1115
1116 struct omap2_mcspi *mcspi;
1117 struct omap2_mcspi_dma *mcspi_dma;
1118 struct omap2_mcspi_cs *cs;
1119 struct omap2_mcspi_device_config *cd;
1120 int par_override = 0;
1121 int status = 0;
1122 u32 chconf;
1123
1124 mcspi = spi_master_get_devdata(master);
1125 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1126 cs = spi->controller_state;
1127 cd = spi->controller_data;
1128
1129 /*
1130 * The slave driver could have changed spi->mode in which case
1131 * it will be different from cs->mode (the current hardware setup).
1132 * If so, set par_override (even though its not a parity issue) so
1133 * omap2_mcspi_setup_transfer will be called to configure the hardware
1134 * with the correct mode on the first iteration of the loop below.
1135 */
1136 if (spi->mode != cs->mode)
1137 par_override = 1;
1138
1139 omap2_mcspi_set_enable(spi, 0);
1140
1141 if (spi->cs_gpiod)
1142 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1143
1144 if (par_override ||
1145 (t->speed_hz != spi->max_speed_hz) ||
1146 (t->bits_per_word != spi->bits_per_word)) {
1147 par_override = 1;
1148 status = omap2_mcspi_setup_transfer(spi, t);
1149 if (status < 0)
1150 goto out;
1151 if (t->speed_hz == spi->max_speed_hz &&
1152 t->bits_per_word == spi->bits_per_word)
1153 par_override = 0;
1154 }
1155 if (cd && cd->cs_per_word) {
1156 chconf = mcspi->ctx.modulctrl;
1157 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1158 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1159 mcspi->ctx.modulctrl =
1160 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1161 }
1162
1163 chconf = mcspi_cached_chconf0(spi);
1164 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1165 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1166
1167 if (t->tx_buf == NULL)
1168 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1169 else if (t->rx_buf == NULL)
1170 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1171
1172 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1173 /* Turbo mode is for more than one word */
1174 if (t->len > ((cs->word_len + 7) >> 3))
1175 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1176 }
1177
1178 mcspi_write_chconf0(spi, chconf);
1179
1180 if (t->len) {
1181 unsigned count;
1182
1183 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1184 master->cur_msg_mapped &&
1185 master->can_dma(master, spi, t))
1186 omap2_mcspi_set_fifo(spi, t, 1);
1187
1188 omap2_mcspi_set_enable(spi, 1);
1189
1190 /* RX_ONLY mode needs dummy data in TX reg */
1191 if (t->tx_buf == NULL)
1192 writel_relaxed(0, cs->base
1193 + OMAP2_MCSPI_TX0);
1194
1195 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1196 master->cur_msg_mapped &&
1197 master->can_dma(master, spi, t))
1198 count = omap2_mcspi_txrx_dma(spi, t);
1199 else
1200 count = omap2_mcspi_txrx_pio(spi, t);
1201
1202 if (count != t->len) {
1203 status = -EIO;
1204 goto out;
1205 }
1206 }
1207
1208 omap2_mcspi_set_enable(spi, 0);
1209
1210 if (mcspi->fifo_depth > 0)
1211 omap2_mcspi_set_fifo(spi, t, 0);
1212
1213out:
1214 /* Restore defaults if they were overriden */
1215 if (par_override) {
1216 par_override = 0;
1217 status = omap2_mcspi_setup_transfer(spi, NULL);
1218 }
1219
1220 if (cd && cd->cs_per_word) {
1221 chconf = mcspi->ctx.modulctrl;
1222 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1223 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1224 mcspi->ctx.modulctrl =
1225 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1226 }
1227
1228 omap2_mcspi_set_enable(spi, 0);
1229
1230 if (spi->cs_gpiod)
1231 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1232
1233 if (mcspi->fifo_depth > 0 && t)
1234 omap2_mcspi_set_fifo(spi, t, 0);
1235
1236 return status;
1237}
1238
1239static int omap2_mcspi_prepare_message(struct spi_master *master,
1240 struct spi_message *msg)
1241{
1242 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1243 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1244 struct omap2_mcspi_cs *cs;
1245
1246 /* Only a single channel can have the FORCE bit enabled
1247 * in its chconf0 register.
1248 * Scan all channels and disable them except the current one.
1249 * A FORCE can remain from a last transfer having cs_change enabled
1250 */
1251 list_for_each_entry(cs, &ctx->cs, node) {
1252 if (msg->spi->controller_state == cs)
1253 continue;
1254
1255 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1256 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1257 writel_relaxed(cs->chconf0,
1258 cs->base + OMAP2_MCSPI_CHCONF0);
1259 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1260 }
1261 }
1262
1263 return 0;
1264}
1265
1266static bool omap2_mcspi_can_dma(struct spi_master *master,
1267 struct spi_device *spi,
1268 struct spi_transfer *xfer)
1269{
1270 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1271 struct omap2_mcspi_dma *mcspi_dma =
1272 &mcspi->dma_channels[spi->chip_select];
1273
1274 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1275 return false;
1276
1277 if (spi_controller_is_slave(master))
1278 return true;
1279
1280 master->dma_rx = mcspi_dma->dma_rx;
1281 master->dma_tx = mcspi_dma->dma_tx;
1282
1283 return (xfer->len >= DMA_MIN_BYTES);
1284}
1285
1286static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1287{
1288 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1289 struct omap2_mcspi_dma *mcspi_dma =
1290 &mcspi->dma_channels[spi->chip_select];
1291
1292 if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1293 return mcspi->max_xfer_len;
1294
1295 return SIZE_MAX;
1296}
1297
1298static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1299{
1300 struct spi_master *master = mcspi->master;
1301 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1302 int ret = 0;
1303
1304 ret = pm_runtime_get_sync(mcspi->dev);
1305 if (ret < 0) {
1306 pm_runtime_put_noidle(mcspi->dev);
1307
1308 return ret;
1309 }
1310
1311 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1312 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1313 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1314
1315 omap2_mcspi_set_mode(master);
1316 pm_runtime_mark_last_busy(mcspi->dev);
1317 pm_runtime_put_autosuspend(mcspi->dev);
1318 return 0;
1319}
1320
1321/*
1322 * When SPI wake up from off-mode, CS is in activate state. If it was in
1323 * inactive state when driver was suspend, then force it to inactive state at
1324 * wake up.
1325 */
1326static int omap_mcspi_runtime_resume(struct device *dev)
1327{
1328 struct spi_master *master = dev_get_drvdata(dev);
1329 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1330 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1331 struct omap2_mcspi_cs *cs;
1332
1333 /* McSPI: context restore */
1334 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1335 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1336
1337 list_for_each_entry(cs, &ctx->cs, node) {
1338 /*
1339 * We need to toggle CS state for OMAP take this
1340 * change in account.
1341 */
1342 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1343 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1344 writel_relaxed(cs->chconf0,
1345 cs->base + OMAP2_MCSPI_CHCONF0);
1346 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1347 writel_relaxed(cs->chconf0,
1348 cs->base + OMAP2_MCSPI_CHCONF0);
1349 } else {
1350 writel_relaxed(cs->chconf0,
1351 cs->base + OMAP2_MCSPI_CHCONF0);
1352 }
1353 }
1354
1355 return 0;
1356}
1357
1358static struct omap2_mcspi_platform_config omap2_pdata = {
1359 .regs_offset = 0,
1360};
1361
1362static struct omap2_mcspi_platform_config omap4_pdata = {
1363 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1364};
1365
1366static struct omap2_mcspi_platform_config am654_pdata = {
1367 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1368 .max_xfer_len = SZ_4K - 1,
1369};
1370
1371static const struct of_device_id omap_mcspi_of_match[] = {
1372 {
1373 .compatible = "ti,omap2-mcspi",
1374 .data = &omap2_pdata,
1375 },
1376 {
1377 .compatible = "ti,omap4-mcspi",
1378 .data = &omap4_pdata,
1379 },
1380 {
1381 .compatible = "ti,am654-mcspi",
1382 .data = &am654_pdata,
1383 },
1384 { },
1385};
1386MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1387
1388static int omap2_mcspi_probe(struct platform_device *pdev)
1389{
1390 struct spi_master *master;
1391 const struct omap2_mcspi_platform_config *pdata;
1392 struct omap2_mcspi *mcspi;
1393 struct resource *r;
1394 int status = 0, i;
1395 u32 regs_offset = 0;
1396 struct device_node *node = pdev->dev.of_node;
1397 const struct of_device_id *match;
1398
1399 if (of_property_read_bool(node, "spi-slave"))
1400 master = spi_alloc_slave(&pdev->dev, sizeof(*mcspi));
1401 else
1402 master = spi_alloc_master(&pdev->dev, sizeof(*mcspi));
1403 if (!master)
1404 return -ENOMEM;
1405
1406 /* the spi->mode bits understood by this driver: */
1407 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1408 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1409 master->setup = omap2_mcspi_setup;
1410 master->auto_runtime_pm = true;
1411 master->prepare_message = omap2_mcspi_prepare_message;
1412 master->can_dma = omap2_mcspi_can_dma;
1413 master->transfer_one = omap2_mcspi_transfer_one;
1414 master->set_cs = omap2_mcspi_set_cs;
1415 master->cleanup = omap2_mcspi_cleanup;
1416 master->slave_abort = omap2_mcspi_slave_abort;
1417 master->dev.of_node = node;
1418 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1419 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1420 master->use_gpio_descriptors = true;
1421
1422 platform_set_drvdata(pdev, master);
1423
1424 mcspi = spi_master_get_devdata(master);
1425 mcspi->master = master;
1426
1427 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1428 if (match) {
1429 u32 num_cs = 1; /* default number of chipselect */
1430 pdata = match->data;
1431
1432 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1433 master->num_chipselect = num_cs;
1434 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1435 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1436 } else {
1437 pdata = dev_get_platdata(&pdev->dev);
1438 master->num_chipselect = pdata->num_cs;
1439 mcspi->pin_dir = pdata->pin_dir;
1440 }
1441 regs_offset = pdata->regs_offset;
1442 if (pdata->max_xfer_len) {
1443 mcspi->max_xfer_len = pdata->max_xfer_len;
1444 master->max_transfer_size = omap2_mcspi_max_xfer_size;
1445 }
1446
1447 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1448 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1449 if (IS_ERR(mcspi->base)) {
1450 status = PTR_ERR(mcspi->base);
1451 goto free_master;
1452 }
1453 mcspi->phys = r->start + regs_offset;
1454 mcspi->base += regs_offset;
1455
1456 mcspi->dev = &pdev->dev;
1457
1458 INIT_LIST_HEAD(&mcspi->ctx.cs);
1459
1460 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1461 sizeof(struct omap2_mcspi_dma),
1462 GFP_KERNEL);
1463 if (mcspi->dma_channels == NULL) {
1464 status = -ENOMEM;
1465 goto free_master;
1466 }
1467
1468 for (i = 0; i < master->num_chipselect; i++) {
1469 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1470 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1471
1472 status = omap2_mcspi_request_dma(mcspi,
1473 &mcspi->dma_channels[i]);
1474 if (status == -EPROBE_DEFER)
1475 goto free_master;
1476 }
1477
1478 status = platform_get_irq(pdev, 0);
1479 if (status == -EPROBE_DEFER)
1480 goto free_master;
1481 if (status < 0) {
1482 dev_err(&pdev->dev, "no irq resource found\n");
1483 goto free_master;
1484 }
1485 init_completion(&mcspi->txdone);
1486 status = devm_request_irq(&pdev->dev, status,
1487 omap2_mcspi_irq_handler, 0, pdev->name,
1488 mcspi);
1489 if (status) {
1490 dev_err(&pdev->dev, "Cannot request IRQ");
1491 goto free_master;
1492 }
1493
1494 pm_runtime_use_autosuspend(&pdev->dev);
1495 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1496 pm_runtime_enable(&pdev->dev);
1497
1498 status = omap2_mcspi_controller_setup(mcspi);
1499 if (status < 0)
1500 goto disable_pm;
1501
1502 status = devm_spi_register_controller(&pdev->dev, master);
1503 if (status < 0)
1504 goto disable_pm;
1505
1506 return status;
1507
1508disable_pm:
1509 pm_runtime_dont_use_autosuspend(&pdev->dev);
1510 pm_runtime_put_sync(&pdev->dev);
1511 pm_runtime_disable(&pdev->dev);
1512free_master:
1513 omap2_mcspi_release_dma(master);
1514 spi_master_put(master);
1515 return status;
1516}
1517
1518static int omap2_mcspi_remove(struct platform_device *pdev)
1519{
1520 struct spi_master *master = platform_get_drvdata(pdev);
1521 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1522
1523 omap2_mcspi_release_dma(master);
1524
1525 pm_runtime_dont_use_autosuspend(mcspi->dev);
1526 pm_runtime_put_sync(mcspi->dev);
1527 pm_runtime_disable(&pdev->dev);
1528
1529 return 0;
1530}
1531
1532/* work with hotplug and coldplug */
1533MODULE_ALIAS("platform:omap2_mcspi");
1534
1535static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1536{
1537 struct spi_master *master = dev_get_drvdata(dev);
1538 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1539 int error;
1540
1541 error = pinctrl_pm_select_sleep_state(dev);
1542 if (error)
1543 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1544 __func__, error);
1545
1546 error = spi_master_suspend(master);
1547 if (error)
1548 dev_warn(mcspi->dev, "%s: master suspend failed: %i\n",
1549 __func__, error);
1550
1551 return pm_runtime_force_suspend(dev);
1552}
1553
1554static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1555{
1556 struct spi_master *master = dev_get_drvdata(dev);
1557 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1558 int error;
1559
1560 error = pinctrl_pm_select_default_state(dev);
1561 if (error)
1562 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1563 __func__, error);
1564
1565 error = spi_master_resume(master);
1566 if (error)
1567 dev_warn(mcspi->dev, "%s: master resume failed: %i\n",
1568 __func__, error);
1569
1570 return pm_runtime_force_resume(dev);
1571}
1572
1573static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1574 SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1575 omap2_mcspi_resume)
1576 .runtime_resume = omap_mcspi_runtime_resume,
1577};
1578
1579static struct platform_driver omap2_mcspi_driver = {
1580 .driver = {
1581 .name = "omap2_mcspi",
1582 .pm = &omap2_mcspi_pm_ops,
1583 .of_match_table = omap_mcspi_of_match,
1584 },
1585 .probe = omap2_mcspi_probe,
1586 .remove = omap2_mcspi_remove,
1587};
1588
1589module_platform_driver(omap2_mcspi_driver);
1590MODULE_LICENSE("GPL");