Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * OMAP2 McSPI controller driver
4 *
5 * Copyright (C) 2005, 2006 Nokia Corporation
6 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
7 * Juha Yrjola <juha.yrjola@nokia.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/platform_device.h>
19#include <linux/err.h>
20#include <linux/clk.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/pm_runtime.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/gcd.h>
27
28#include <linux/spi/spi.h>
29
30#include <linux/platform_data/spi-omap2-mcspi.h>
31
32#define OMAP2_MCSPI_MAX_FREQ 48000000
33#define OMAP2_MCSPI_MAX_DIVIDER 4096
34#define OMAP2_MCSPI_MAX_FIFODEPTH 64
35#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
36#define SPI_AUTOSUSPEND_TIMEOUT 2000
37
38#define OMAP2_MCSPI_REVISION 0x00
39#define OMAP2_MCSPI_SYSSTATUS 0x14
40#define OMAP2_MCSPI_IRQSTATUS 0x18
41#define OMAP2_MCSPI_IRQENABLE 0x1c
42#define OMAP2_MCSPI_WAKEUPENABLE 0x20
43#define OMAP2_MCSPI_SYST 0x24
44#define OMAP2_MCSPI_MODULCTRL 0x28
45#define OMAP2_MCSPI_XFERLEVEL 0x7c
46
47/* per-channel banks, 0x14 bytes each, first is: */
48#define OMAP2_MCSPI_CHCONF0 0x2c
49#define OMAP2_MCSPI_CHSTAT0 0x30
50#define OMAP2_MCSPI_CHCTRL0 0x34
51#define OMAP2_MCSPI_TX0 0x38
52#define OMAP2_MCSPI_RX0 0x3c
53
54/* per-register bitmasks: */
55#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
56
57#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
58#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
59#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
60
61#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
62#define OMAP2_MCSPI_CHCONF_POL BIT(1)
63#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
64#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
65#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
66#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
67#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
68#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
69#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
70#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
71#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
72#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
73#define OMAP2_MCSPI_CHCONF_IS BIT(18)
74#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
75#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
76#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
77#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
78#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
79
80#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
81#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
82#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
83#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
84
85#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
86#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
87
88#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
89
90/* We have 2 DMA channels per CS, one for RX and one for TX */
91struct omap2_mcspi_dma {
92 struct dma_chan *dma_tx;
93 struct dma_chan *dma_rx;
94
95 struct completion dma_tx_completion;
96 struct completion dma_rx_completion;
97
98 char dma_rx_ch_name[14];
99 char dma_tx_ch_name[14];
100};
101
102/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
103 * cache operations; better heuristics consider wordsize and bitrate.
104 */
105#define DMA_MIN_BYTES 160
106
107
108/*
109 * Used for context save and restore, structure members to be updated whenever
110 * corresponding registers are modified.
111 */
112struct omap2_mcspi_regs {
113 u32 modulctrl;
114 u32 wakeupenable;
115 struct list_head cs;
116};
117
118struct omap2_mcspi {
119 struct completion txdone;
120 struct spi_master *master;
121 /* Virtual base address of the controller */
122 void __iomem *base;
123 unsigned long phys;
124 /* SPI1 has 4 channels, while SPI2 has 2 */
125 struct omap2_mcspi_dma *dma_channels;
126 struct device *dev;
127 struct omap2_mcspi_regs ctx;
128 int fifo_depth;
129 bool slave_aborted;
130 unsigned int pin_dir:1;
131 size_t max_xfer_len;
132};
133
134struct omap2_mcspi_cs {
135 void __iomem *base;
136 unsigned long phys;
137 int word_len;
138 u16 mode;
139 struct list_head node;
140 /* Context save and restore shadow register */
141 u32 chconf0, chctrl0;
142};
143
144static inline void mcspi_write_reg(struct spi_master *master,
145 int idx, u32 val)
146{
147 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
148
149 writel_relaxed(val, mcspi->base + idx);
150}
151
152static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
153{
154 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
155
156 return readl_relaxed(mcspi->base + idx);
157}
158
159static inline void mcspi_write_cs_reg(const struct spi_device *spi,
160 int idx, u32 val)
161{
162 struct omap2_mcspi_cs *cs = spi->controller_state;
163
164 writel_relaxed(val, cs->base + idx);
165}
166
167static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
168{
169 struct omap2_mcspi_cs *cs = spi->controller_state;
170
171 return readl_relaxed(cs->base + idx);
172}
173
174static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
175{
176 struct omap2_mcspi_cs *cs = spi->controller_state;
177
178 return cs->chconf0;
179}
180
181static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
182{
183 struct omap2_mcspi_cs *cs = spi->controller_state;
184
185 cs->chconf0 = val;
186 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
187 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
188}
189
190static inline int mcspi_bytes_per_word(int word_len)
191{
192 if (word_len <= 8)
193 return 1;
194 else if (word_len <= 16)
195 return 2;
196 else /* word_len <= 32 */
197 return 4;
198}
199
200static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
201 int is_read, int enable)
202{
203 u32 l, rw;
204
205 l = mcspi_cached_chconf0(spi);
206
207 if (is_read) /* 1 is read, 0 write */
208 rw = OMAP2_MCSPI_CHCONF_DMAR;
209 else
210 rw = OMAP2_MCSPI_CHCONF_DMAW;
211
212 if (enable)
213 l |= rw;
214 else
215 l &= ~rw;
216
217 mcspi_write_chconf0(spi, l);
218}
219
220static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
221{
222 struct omap2_mcspi_cs *cs = spi->controller_state;
223 u32 l;
224
225 l = cs->chctrl0;
226 if (enable)
227 l |= OMAP2_MCSPI_CHCTRL_EN;
228 else
229 l &= ~OMAP2_MCSPI_CHCTRL_EN;
230 cs->chctrl0 = l;
231 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
232 /* Flash post-writes */
233 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
234}
235
236static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
237{
238 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
239 u32 l;
240
241 /* The controller handles the inverted chip selects
242 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
243 * the inversion from the core spi_set_cs function.
244 */
245 if (spi->mode & SPI_CS_HIGH)
246 enable = !enable;
247
248 if (spi->controller_state) {
249 int err = pm_runtime_resume_and_get(mcspi->dev);
250 if (err < 0) {
251 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
252 return;
253 }
254
255 l = mcspi_cached_chconf0(spi);
256
257 if (enable)
258 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
259 else
260 l |= OMAP2_MCSPI_CHCONF_FORCE;
261
262 mcspi_write_chconf0(spi, l);
263
264 pm_runtime_mark_last_busy(mcspi->dev);
265 pm_runtime_put_autosuspend(mcspi->dev);
266 }
267}
268
269static void omap2_mcspi_set_mode(struct spi_master *master)
270{
271 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
272 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
273 u32 l;
274
275 /*
276 * Choose master or slave mode
277 */
278 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
279 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
280 if (spi_controller_is_slave(master)) {
281 l |= (OMAP2_MCSPI_MODULCTRL_MS);
282 } else {
283 l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
284 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
285 }
286 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
287
288 ctx->modulctrl = l;
289}
290
291static void omap2_mcspi_set_fifo(const struct spi_device *spi,
292 struct spi_transfer *t, int enable)
293{
294 struct spi_master *master = spi->master;
295 struct omap2_mcspi_cs *cs = spi->controller_state;
296 struct omap2_mcspi *mcspi;
297 unsigned int wcnt;
298 int max_fifo_depth, bytes_per_word;
299 u32 chconf, xferlevel;
300
301 mcspi = spi_master_get_devdata(master);
302
303 chconf = mcspi_cached_chconf0(spi);
304 if (enable) {
305 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
306 if (t->len % bytes_per_word != 0)
307 goto disable_fifo;
308
309 if (t->rx_buf != NULL && t->tx_buf != NULL)
310 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
311 else
312 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
313
314 wcnt = t->len / bytes_per_word;
315 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
316 goto disable_fifo;
317
318 xferlevel = wcnt << 16;
319 if (t->rx_buf != NULL) {
320 chconf |= OMAP2_MCSPI_CHCONF_FFER;
321 xferlevel |= (bytes_per_word - 1) << 8;
322 }
323
324 if (t->tx_buf != NULL) {
325 chconf |= OMAP2_MCSPI_CHCONF_FFET;
326 xferlevel |= bytes_per_word - 1;
327 }
328
329 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
330 mcspi_write_chconf0(spi, chconf);
331 mcspi->fifo_depth = max_fifo_depth;
332
333 return;
334 }
335
336disable_fifo:
337 if (t->rx_buf != NULL)
338 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
339
340 if (t->tx_buf != NULL)
341 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
342
343 mcspi_write_chconf0(spi, chconf);
344 mcspi->fifo_depth = 0;
345}
346
347static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
348{
349 unsigned long timeout;
350
351 timeout = jiffies + msecs_to_jiffies(1000);
352 while (!(readl_relaxed(reg) & bit)) {
353 if (time_after(jiffies, timeout)) {
354 if (!(readl_relaxed(reg) & bit))
355 return -ETIMEDOUT;
356 else
357 return 0;
358 }
359 cpu_relax();
360 }
361 return 0;
362}
363
364static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi,
365 struct completion *x)
366{
367 if (spi_controller_is_slave(mcspi->master)) {
368 if (wait_for_completion_interruptible(x) ||
369 mcspi->slave_aborted)
370 return -EINTR;
371 } else {
372 wait_for_completion(x);
373 }
374
375 return 0;
376}
377
378static void omap2_mcspi_rx_callback(void *data)
379{
380 struct spi_device *spi = data;
381 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
382 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
383
384 /* We must disable the DMA RX request */
385 omap2_mcspi_set_dma_req(spi, 1, 0);
386
387 complete(&mcspi_dma->dma_rx_completion);
388}
389
390static void omap2_mcspi_tx_callback(void *data)
391{
392 struct spi_device *spi = data;
393 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
394 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
395
396 /* We must disable the DMA TX request */
397 omap2_mcspi_set_dma_req(spi, 0, 0);
398
399 complete(&mcspi_dma->dma_tx_completion);
400}
401
402static void omap2_mcspi_tx_dma(struct spi_device *spi,
403 struct spi_transfer *xfer,
404 struct dma_slave_config cfg)
405{
406 struct omap2_mcspi *mcspi;
407 struct omap2_mcspi_dma *mcspi_dma;
408 struct dma_async_tx_descriptor *tx;
409
410 mcspi = spi_master_get_devdata(spi->master);
411 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
412
413 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
414
415 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
416 xfer->tx_sg.nents,
417 DMA_MEM_TO_DEV,
418 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
419 if (tx) {
420 tx->callback = omap2_mcspi_tx_callback;
421 tx->callback_param = spi;
422 dmaengine_submit(tx);
423 } else {
424 /* FIXME: fall back to PIO? */
425 }
426 dma_async_issue_pending(mcspi_dma->dma_tx);
427 omap2_mcspi_set_dma_req(spi, 0, 1);
428}
429
430static unsigned
431omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
432 struct dma_slave_config cfg,
433 unsigned es)
434{
435 struct omap2_mcspi *mcspi;
436 struct omap2_mcspi_dma *mcspi_dma;
437 unsigned int count, transfer_reduction = 0;
438 struct scatterlist *sg_out[2];
439 int nb_sizes = 0, out_mapped_nents[2], ret, x;
440 size_t sizes[2];
441 u32 l;
442 int elements = 0;
443 int word_len, element_count;
444 struct omap2_mcspi_cs *cs = spi->controller_state;
445 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
446 struct dma_async_tx_descriptor *tx;
447
448 mcspi = spi_master_get_devdata(spi->master);
449 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
450 count = xfer->len;
451
452 /*
453 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
454 * it mentions reducing DMA transfer length by one element in master
455 * normal mode.
456 */
457 if (mcspi->fifo_depth == 0)
458 transfer_reduction = es;
459
460 word_len = cs->word_len;
461 l = mcspi_cached_chconf0(spi);
462
463 if (word_len <= 8)
464 element_count = count;
465 else if (word_len <= 16)
466 element_count = count >> 1;
467 else /* word_len <= 32 */
468 element_count = count >> 2;
469
470
471 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
472
473 /*
474 * Reduce DMA transfer length by one more if McSPI is
475 * configured in turbo mode.
476 */
477 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
478 transfer_reduction += es;
479
480 if (transfer_reduction) {
481 /* Split sgl into two. The second sgl won't be used. */
482 sizes[0] = count - transfer_reduction;
483 sizes[1] = transfer_reduction;
484 nb_sizes = 2;
485 } else {
486 /*
487 * Don't bother splitting the sgl. This essentially
488 * clones the original sgl.
489 */
490 sizes[0] = count;
491 nb_sizes = 1;
492 }
493
494 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
495 sizes, sg_out, out_mapped_nents, GFP_KERNEL);
496
497 if (ret < 0) {
498 dev_err(&spi->dev, "sg_split failed\n");
499 return 0;
500 }
501
502 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
503 out_mapped_nents[0], DMA_DEV_TO_MEM,
504 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
505 if (tx) {
506 tx->callback = omap2_mcspi_rx_callback;
507 tx->callback_param = spi;
508 dmaengine_submit(tx);
509 } else {
510 /* FIXME: fall back to PIO? */
511 }
512
513 dma_async_issue_pending(mcspi_dma->dma_rx);
514 omap2_mcspi_set_dma_req(spi, 1, 1);
515
516 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
517 if (ret || mcspi->slave_aborted) {
518 dmaengine_terminate_sync(mcspi_dma->dma_rx);
519 omap2_mcspi_set_dma_req(spi, 1, 0);
520 return 0;
521 }
522
523 for (x = 0; x < nb_sizes; x++)
524 kfree(sg_out[x]);
525
526 if (mcspi->fifo_depth > 0)
527 return count;
528
529 /*
530 * Due to the DMA transfer length reduction the missing bytes must
531 * be read manually to receive all of the expected data.
532 */
533 omap2_mcspi_set_enable(spi, 0);
534
535 elements = element_count - 1;
536
537 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
538 elements--;
539
540 if (!mcspi_wait_for_reg_bit(chstat_reg,
541 OMAP2_MCSPI_CHSTAT_RXS)) {
542 u32 w;
543
544 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
545 if (word_len <= 8)
546 ((u8 *)xfer->rx_buf)[elements++] = w;
547 else if (word_len <= 16)
548 ((u16 *)xfer->rx_buf)[elements++] = w;
549 else /* word_len <= 32 */
550 ((u32 *)xfer->rx_buf)[elements++] = w;
551 } else {
552 int bytes_per_word = mcspi_bytes_per_word(word_len);
553 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
554 count -= (bytes_per_word << 1);
555 omap2_mcspi_set_enable(spi, 1);
556 return count;
557 }
558 }
559 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
560 u32 w;
561
562 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
563 if (word_len <= 8)
564 ((u8 *)xfer->rx_buf)[elements] = w;
565 else if (word_len <= 16)
566 ((u16 *)xfer->rx_buf)[elements] = w;
567 else /* word_len <= 32 */
568 ((u32 *)xfer->rx_buf)[elements] = w;
569 } else {
570 dev_err(&spi->dev, "DMA RX last word empty\n");
571 count -= mcspi_bytes_per_word(word_len);
572 }
573 omap2_mcspi_set_enable(spi, 1);
574 return count;
575}
576
577static unsigned
578omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
579{
580 struct omap2_mcspi *mcspi;
581 struct omap2_mcspi_cs *cs = spi->controller_state;
582 struct omap2_mcspi_dma *mcspi_dma;
583 unsigned int count;
584 u8 *rx;
585 const u8 *tx;
586 struct dma_slave_config cfg;
587 enum dma_slave_buswidth width;
588 unsigned es;
589 void __iomem *chstat_reg;
590 void __iomem *irqstat_reg;
591 int wait_res;
592
593 mcspi = spi_master_get_devdata(spi->master);
594 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
595
596 if (cs->word_len <= 8) {
597 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
598 es = 1;
599 } else if (cs->word_len <= 16) {
600 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
601 es = 2;
602 } else {
603 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
604 es = 4;
605 }
606
607 count = xfer->len;
608
609 memset(&cfg, 0, sizeof(cfg));
610 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
611 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
612 cfg.src_addr_width = width;
613 cfg.dst_addr_width = width;
614 cfg.src_maxburst = 1;
615 cfg.dst_maxburst = 1;
616
617 rx = xfer->rx_buf;
618 tx = xfer->tx_buf;
619
620 mcspi->slave_aborted = false;
621 reinit_completion(&mcspi_dma->dma_tx_completion);
622 reinit_completion(&mcspi_dma->dma_rx_completion);
623 reinit_completion(&mcspi->txdone);
624 if (tx) {
625 /* Enable EOW IRQ to know end of tx in slave mode */
626 if (spi_controller_is_slave(spi->master))
627 mcspi_write_reg(spi->master,
628 OMAP2_MCSPI_IRQENABLE,
629 OMAP2_MCSPI_IRQSTATUS_EOW);
630 omap2_mcspi_tx_dma(spi, xfer, cfg);
631 }
632
633 if (rx != NULL)
634 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
635
636 if (tx != NULL) {
637 int ret;
638
639 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
640 if (ret || mcspi->slave_aborted) {
641 dmaengine_terminate_sync(mcspi_dma->dma_tx);
642 omap2_mcspi_set_dma_req(spi, 0, 0);
643 return 0;
644 }
645
646 if (spi_controller_is_slave(mcspi->master)) {
647 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
648 if (ret || mcspi->slave_aborted)
649 return 0;
650 }
651
652 if (mcspi->fifo_depth > 0) {
653 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
654
655 if (mcspi_wait_for_reg_bit(irqstat_reg,
656 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
657 dev_err(&spi->dev, "EOW timed out\n");
658
659 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
660 OMAP2_MCSPI_IRQSTATUS_EOW);
661 }
662
663 /* for TX_ONLY mode, be sure all words have shifted out */
664 if (rx == NULL) {
665 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
666 if (mcspi->fifo_depth > 0) {
667 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
668 OMAP2_MCSPI_CHSTAT_TXFFE);
669 if (wait_res < 0)
670 dev_err(&spi->dev, "TXFFE timed out\n");
671 } else {
672 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
673 OMAP2_MCSPI_CHSTAT_TXS);
674 if (wait_res < 0)
675 dev_err(&spi->dev, "TXS timed out\n");
676 }
677 if (wait_res >= 0 &&
678 (mcspi_wait_for_reg_bit(chstat_reg,
679 OMAP2_MCSPI_CHSTAT_EOT) < 0))
680 dev_err(&spi->dev, "EOT timed out\n");
681 }
682 }
683 return count;
684}
685
686static unsigned
687omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
688{
689 struct omap2_mcspi_cs *cs = spi->controller_state;
690 unsigned int count, c;
691 u32 l;
692 void __iomem *base = cs->base;
693 void __iomem *tx_reg;
694 void __iomem *rx_reg;
695 void __iomem *chstat_reg;
696 int word_len;
697
698 count = xfer->len;
699 c = count;
700 word_len = cs->word_len;
701
702 l = mcspi_cached_chconf0(spi);
703
704 /* We store the pre-calculated register addresses on stack to speed
705 * up the transfer loop. */
706 tx_reg = base + OMAP2_MCSPI_TX0;
707 rx_reg = base + OMAP2_MCSPI_RX0;
708 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
709
710 if (c < (word_len>>3))
711 return 0;
712
713 if (word_len <= 8) {
714 u8 *rx;
715 const u8 *tx;
716
717 rx = xfer->rx_buf;
718 tx = xfer->tx_buf;
719
720 do {
721 c -= 1;
722 if (tx != NULL) {
723 if (mcspi_wait_for_reg_bit(chstat_reg,
724 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
725 dev_err(&spi->dev, "TXS timed out\n");
726 goto out;
727 }
728 dev_vdbg(&spi->dev, "write-%d %02x\n",
729 word_len, *tx);
730 writel_relaxed(*tx++, tx_reg);
731 }
732 if (rx != NULL) {
733 if (mcspi_wait_for_reg_bit(chstat_reg,
734 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
735 dev_err(&spi->dev, "RXS timed out\n");
736 goto out;
737 }
738
739 if (c == 1 && tx == NULL &&
740 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
741 omap2_mcspi_set_enable(spi, 0);
742 *rx++ = readl_relaxed(rx_reg);
743 dev_vdbg(&spi->dev, "read-%d %02x\n",
744 word_len, *(rx - 1));
745 if (mcspi_wait_for_reg_bit(chstat_reg,
746 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
747 dev_err(&spi->dev,
748 "RXS timed out\n");
749 goto out;
750 }
751 c = 0;
752 } else if (c == 0 && tx == NULL) {
753 omap2_mcspi_set_enable(spi, 0);
754 }
755
756 *rx++ = readl_relaxed(rx_reg);
757 dev_vdbg(&spi->dev, "read-%d %02x\n",
758 word_len, *(rx - 1));
759 }
760 /* Add word delay between each word */
761 spi_delay_exec(&xfer->word_delay, xfer);
762 } while (c);
763 } else if (word_len <= 16) {
764 u16 *rx;
765 const u16 *tx;
766
767 rx = xfer->rx_buf;
768 tx = xfer->tx_buf;
769 do {
770 c -= 2;
771 if (tx != NULL) {
772 if (mcspi_wait_for_reg_bit(chstat_reg,
773 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
774 dev_err(&spi->dev, "TXS timed out\n");
775 goto out;
776 }
777 dev_vdbg(&spi->dev, "write-%d %04x\n",
778 word_len, *tx);
779 writel_relaxed(*tx++, tx_reg);
780 }
781 if (rx != NULL) {
782 if (mcspi_wait_for_reg_bit(chstat_reg,
783 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
784 dev_err(&spi->dev, "RXS timed out\n");
785 goto out;
786 }
787
788 if (c == 2 && tx == NULL &&
789 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
790 omap2_mcspi_set_enable(spi, 0);
791 *rx++ = readl_relaxed(rx_reg);
792 dev_vdbg(&spi->dev, "read-%d %04x\n",
793 word_len, *(rx - 1));
794 if (mcspi_wait_for_reg_bit(chstat_reg,
795 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
796 dev_err(&spi->dev,
797 "RXS timed out\n");
798 goto out;
799 }
800 c = 0;
801 } else if (c == 0 && tx == NULL) {
802 omap2_mcspi_set_enable(spi, 0);
803 }
804
805 *rx++ = readl_relaxed(rx_reg);
806 dev_vdbg(&spi->dev, "read-%d %04x\n",
807 word_len, *(rx - 1));
808 }
809 /* Add word delay between each word */
810 spi_delay_exec(&xfer->word_delay, xfer);
811 } while (c >= 2);
812 } else if (word_len <= 32) {
813 u32 *rx;
814 const u32 *tx;
815
816 rx = xfer->rx_buf;
817 tx = xfer->tx_buf;
818 do {
819 c -= 4;
820 if (tx != NULL) {
821 if (mcspi_wait_for_reg_bit(chstat_reg,
822 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
823 dev_err(&spi->dev, "TXS timed out\n");
824 goto out;
825 }
826 dev_vdbg(&spi->dev, "write-%d %08x\n",
827 word_len, *tx);
828 writel_relaxed(*tx++, tx_reg);
829 }
830 if (rx != NULL) {
831 if (mcspi_wait_for_reg_bit(chstat_reg,
832 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
833 dev_err(&spi->dev, "RXS timed out\n");
834 goto out;
835 }
836
837 if (c == 4 && tx == NULL &&
838 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
839 omap2_mcspi_set_enable(spi, 0);
840 *rx++ = readl_relaxed(rx_reg);
841 dev_vdbg(&spi->dev, "read-%d %08x\n",
842 word_len, *(rx - 1));
843 if (mcspi_wait_for_reg_bit(chstat_reg,
844 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
845 dev_err(&spi->dev,
846 "RXS timed out\n");
847 goto out;
848 }
849 c = 0;
850 } else if (c == 0 && tx == NULL) {
851 omap2_mcspi_set_enable(spi, 0);
852 }
853
854 *rx++ = readl_relaxed(rx_reg);
855 dev_vdbg(&spi->dev, "read-%d %08x\n",
856 word_len, *(rx - 1));
857 }
858 /* Add word delay between each word */
859 spi_delay_exec(&xfer->word_delay, xfer);
860 } while (c >= 4);
861 }
862
863 /* for TX_ONLY mode, be sure all words have shifted out */
864 if (xfer->rx_buf == NULL) {
865 if (mcspi_wait_for_reg_bit(chstat_reg,
866 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
867 dev_err(&spi->dev, "TXS timed out\n");
868 } else if (mcspi_wait_for_reg_bit(chstat_reg,
869 OMAP2_MCSPI_CHSTAT_EOT) < 0)
870 dev_err(&spi->dev, "EOT timed out\n");
871
872 /* disable chan to purge rx datas received in TX_ONLY transfer,
873 * otherwise these rx datas will affect the direct following
874 * RX_ONLY transfer.
875 */
876 omap2_mcspi_set_enable(spi, 0);
877 }
878out:
879 omap2_mcspi_set_enable(spi, 1);
880 return count - c;
881}
882
883static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
884{
885 u32 div;
886
887 for (div = 0; div < 15; div++)
888 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
889 return div;
890
891 return 15;
892}
893
894/* called only when no transfer is active to this device */
895static int omap2_mcspi_setup_transfer(struct spi_device *spi,
896 struct spi_transfer *t)
897{
898 struct omap2_mcspi_cs *cs = spi->controller_state;
899 struct omap2_mcspi *mcspi;
900 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
901 u8 word_len = spi->bits_per_word;
902 u32 speed_hz = spi->max_speed_hz;
903
904 mcspi = spi_master_get_devdata(spi->master);
905
906 if (t != NULL && t->bits_per_word)
907 word_len = t->bits_per_word;
908
909 cs->word_len = word_len;
910
911 if (t && t->speed_hz)
912 speed_hz = t->speed_hz;
913
914 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
915 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
916 clkd = omap2_mcspi_calc_divisor(speed_hz);
917 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
918 clkg = 0;
919 } else {
920 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
921 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
922 clkd = (div - 1) & 0xf;
923 extclk = (div - 1) >> 4;
924 clkg = OMAP2_MCSPI_CHCONF_CLKG;
925 }
926
927 l = mcspi_cached_chconf0(spi);
928
929 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
930 * REVISIT: this controller could support SPI_3WIRE mode.
931 */
932 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
933 l &= ~OMAP2_MCSPI_CHCONF_IS;
934 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
935 l |= OMAP2_MCSPI_CHCONF_DPE0;
936 } else {
937 l |= OMAP2_MCSPI_CHCONF_IS;
938 l |= OMAP2_MCSPI_CHCONF_DPE1;
939 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
940 }
941
942 /* wordlength */
943 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
944 l |= (word_len - 1) << 7;
945
946 /* set chipselect polarity; manage with FORCE */
947 if (!(spi->mode & SPI_CS_HIGH))
948 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
949 else
950 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
951
952 /* set clock divisor */
953 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
954 l |= clkd << 2;
955
956 /* set clock granularity */
957 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
958 l |= clkg;
959 if (clkg) {
960 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
961 cs->chctrl0 |= extclk << 8;
962 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
963 }
964
965 /* set SPI mode 0..3 */
966 if (spi->mode & SPI_CPOL)
967 l |= OMAP2_MCSPI_CHCONF_POL;
968 else
969 l &= ~OMAP2_MCSPI_CHCONF_POL;
970 if (spi->mode & SPI_CPHA)
971 l |= OMAP2_MCSPI_CHCONF_PHA;
972 else
973 l &= ~OMAP2_MCSPI_CHCONF_PHA;
974
975 mcspi_write_chconf0(spi, l);
976
977 cs->mode = spi->mode;
978
979 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
980 speed_hz,
981 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
982 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
983
984 return 0;
985}
986
987/*
988 * Note that we currently allow DMA only if we get a channel
989 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
990 */
991static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
992 struct omap2_mcspi_dma *mcspi_dma)
993{
994 int ret = 0;
995
996 mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
997 mcspi_dma->dma_rx_ch_name);
998 if (IS_ERR(mcspi_dma->dma_rx)) {
999 ret = PTR_ERR(mcspi_dma->dma_rx);
1000 mcspi_dma->dma_rx = NULL;
1001 goto no_dma;
1002 }
1003
1004 mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1005 mcspi_dma->dma_tx_ch_name);
1006 if (IS_ERR(mcspi_dma->dma_tx)) {
1007 ret = PTR_ERR(mcspi_dma->dma_tx);
1008 mcspi_dma->dma_tx = NULL;
1009 dma_release_channel(mcspi_dma->dma_rx);
1010 mcspi_dma->dma_rx = NULL;
1011 }
1012
1013 init_completion(&mcspi_dma->dma_rx_completion);
1014 init_completion(&mcspi_dma->dma_tx_completion);
1015
1016no_dma:
1017 return ret;
1018}
1019
1020static void omap2_mcspi_release_dma(struct spi_master *master)
1021{
1022 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1023 struct omap2_mcspi_dma *mcspi_dma;
1024 int i;
1025
1026 for (i = 0; i < master->num_chipselect; i++) {
1027 mcspi_dma = &mcspi->dma_channels[i];
1028
1029 if (mcspi_dma->dma_rx) {
1030 dma_release_channel(mcspi_dma->dma_rx);
1031 mcspi_dma->dma_rx = NULL;
1032 }
1033 if (mcspi_dma->dma_tx) {
1034 dma_release_channel(mcspi_dma->dma_tx);
1035 mcspi_dma->dma_tx = NULL;
1036 }
1037 }
1038}
1039
1040static void omap2_mcspi_cleanup(struct spi_device *spi)
1041{
1042 struct omap2_mcspi_cs *cs;
1043
1044 if (spi->controller_state) {
1045 /* Unlink controller state from context save list */
1046 cs = spi->controller_state;
1047 list_del(&cs->node);
1048
1049 kfree(cs);
1050 }
1051}
1052
1053static int omap2_mcspi_setup(struct spi_device *spi)
1054{
1055 bool initial_setup = false;
1056 int ret;
1057 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1058 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1059 struct omap2_mcspi_cs *cs = spi->controller_state;
1060
1061 if (!cs) {
1062 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1063 if (!cs)
1064 return -ENOMEM;
1065 cs->base = mcspi->base + spi->chip_select * 0x14;
1066 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1067 cs->mode = 0;
1068 cs->chconf0 = 0;
1069 cs->chctrl0 = 0;
1070 spi->controller_state = cs;
1071 /* Link this to context save list */
1072 list_add_tail(&cs->node, &ctx->cs);
1073 initial_setup = true;
1074 }
1075
1076 ret = pm_runtime_resume_and_get(mcspi->dev);
1077 if (ret < 0) {
1078 if (initial_setup)
1079 omap2_mcspi_cleanup(spi);
1080
1081 return ret;
1082 }
1083
1084 ret = omap2_mcspi_setup_transfer(spi, NULL);
1085 if (ret && initial_setup)
1086 omap2_mcspi_cleanup(spi);
1087
1088 pm_runtime_mark_last_busy(mcspi->dev);
1089 pm_runtime_put_autosuspend(mcspi->dev);
1090
1091 return ret;
1092}
1093
1094static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1095{
1096 struct omap2_mcspi *mcspi = data;
1097 u32 irqstat;
1098
1099 irqstat = mcspi_read_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS);
1100 if (!irqstat)
1101 return IRQ_NONE;
1102
1103 /* Disable IRQ and wakeup slave xfer task */
1104 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQENABLE, 0);
1105 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1106 complete(&mcspi->txdone);
1107
1108 return IRQ_HANDLED;
1109}
1110
1111static int omap2_mcspi_slave_abort(struct spi_master *master)
1112{
1113 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1114 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1115
1116 mcspi->slave_aborted = true;
1117 complete(&mcspi_dma->dma_rx_completion);
1118 complete(&mcspi_dma->dma_tx_completion);
1119 complete(&mcspi->txdone);
1120
1121 return 0;
1122}
1123
1124static int omap2_mcspi_transfer_one(struct spi_master *master,
1125 struct spi_device *spi,
1126 struct spi_transfer *t)
1127{
1128
1129 /* We only enable one channel at a time -- the one whose message is
1130 * -- although this controller would gladly
1131 * arbitrate among multiple channels. This corresponds to "single
1132 * channel" master mode. As a side effect, we need to manage the
1133 * chipselect with the FORCE bit ... CS != channel enable.
1134 */
1135
1136 struct omap2_mcspi *mcspi;
1137 struct omap2_mcspi_dma *mcspi_dma;
1138 struct omap2_mcspi_cs *cs;
1139 struct omap2_mcspi_device_config *cd;
1140 int par_override = 0;
1141 int status = 0;
1142 u32 chconf;
1143
1144 mcspi = spi_master_get_devdata(master);
1145 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1146 cs = spi->controller_state;
1147 cd = spi->controller_data;
1148
1149 /*
1150 * The slave driver could have changed spi->mode in which case
1151 * it will be different from cs->mode (the current hardware setup).
1152 * If so, set par_override (even though its not a parity issue) so
1153 * omap2_mcspi_setup_transfer will be called to configure the hardware
1154 * with the correct mode on the first iteration of the loop below.
1155 */
1156 if (spi->mode != cs->mode)
1157 par_override = 1;
1158
1159 omap2_mcspi_set_enable(spi, 0);
1160
1161 if (spi->cs_gpiod)
1162 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1163
1164 if (par_override ||
1165 (t->speed_hz != spi->max_speed_hz) ||
1166 (t->bits_per_word != spi->bits_per_word)) {
1167 par_override = 1;
1168 status = omap2_mcspi_setup_transfer(spi, t);
1169 if (status < 0)
1170 goto out;
1171 if (t->speed_hz == spi->max_speed_hz &&
1172 t->bits_per_word == spi->bits_per_word)
1173 par_override = 0;
1174 }
1175 if (cd && cd->cs_per_word) {
1176 chconf = mcspi->ctx.modulctrl;
1177 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1178 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1179 mcspi->ctx.modulctrl =
1180 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1181 }
1182
1183 chconf = mcspi_cached_chconf0(spi);
1184 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1185 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1186
1187 if (t->tx_buf == NULL)
1188 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1189 else if (t->rx_buf == NULL)
1190 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1191
1192 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1193 /* Turbo mode is for more than one word */
1194 if (t->len > ((cs->word_len + 7) >> 3))
1195 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1196 }
1197
1198 mcspi_write_chconf0(spi, chconf);
1199
1200 if (t->len) {
1201 unsigned count;
1202
1203 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1204 master->cur_msg_mapped &&
1205 master->can_dma(master, spi, t))
1206 omap2_mcspi_set_fifo(spi, t, 1);
1207
1208 omap2_mcspi_set_enable(spi, 1);
1209
1210 /* RX_ONLY mode needs dummy data in TX reg */
1211 if (t->tx_buf == NULL)
1212 writel_relaxed(0, cs->base
1213 + OMAP2_MCSPI_TX0);
1214
1215 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1216 master->cur_msg_mapped &&
1217 master->can_dma(master, spi, t))
1218 count = omap2_mcspi_txrx_dma(spi, t);
1219 else
1220 count = omap2_mcspi_txrx_pio(spi, t);
1221
1222 if (count != t->len) {
1223 status = -EIO;
1224 goto out;
1225 }
1226 }
1227
1228 omap2_mcspi_set_enable(spi, 0);
1229
1230 if (mcspi->fifo_depth > 0)
1231 omap2_mcspi_set_fifo(spi, t, 0);
1232
1233out:
1234 /* Restore defaults if they were overriden */
1235 if (par_override) {
1236 par_override = 0;
1237 status = omap2_mcspi_setup_transfer(spi, NULL);
1238 }
1239
1240 if (cd && cd->cs_per_word) {
1241 chconf = mcspi->ctx.modulctrl;
1242 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1243 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1244 mcspi->ctx.modulctrl =
1245 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1246 }
1247
1248 omap2_mcspi_set_enable(spi, 0);
1249
1250 if (spi->cs_gpiod)
1251 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1252
1253 if (mcspi->fifo_depth > 0 && t)
1254 omap2_mcspi_set_fifo(spi, t, 0);
1255
1256 return status;
1257}
1258
1259static int omap2_mcspi_prepare_message(struct spi_master *master,
1260 struct spi_message *msg)
1261{
1262 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1263 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1264 struct omap2_mcspi_cs *cs;
1265
1266 /* Only a single channel can have the FORCE bit enabled
1267 * in its chconf0 register.
1268 * Scan all channels and disable them except the current one.
1269 * A FORCE can remain from a last transfer having cs_change enabled
1270 */
1271 list_for_each_entry(cs, &ctx->cs, node) {
1272 if (msg->spi->controller_state == cs)
1273 continue;
1274
1275 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1276 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1277 writel_relaxed(cs->chconf0,
1278 cs->base + OMAP2_MCSPI_CHCONF0);
1279 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1280 }
1281 }
1282
1283 return 0;
1284}
1285
1286static bool omap2_mcspi_can_dma(struct spi_master *master,
1287 struct spi_device *spi,
1288 struct spi_transfer *xfer)
1289{
1290 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1291 struct omap2_mcspi_dma *mcspi_dma =
1292 &mcspi->dma_channels[spi->chip_select];
1293
1294 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1295 return false;
1296
1297 if (spi_controller_is_slave(master))
1298 return true;
1299
1300 master->dma_rx = mcspi_dma->dma_rx;
1301 master->dma_tx = mcspi_dma->dma_tx;
1302
1303 return (xfer->len >= DMA_MIN_BYTES);
1304}
1305
1306static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1307{
1308 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1309 struct omap2_mcspi_dma *mcspi_dma =
1310 &mcspi->dma_channels[spi->chip_select];
1311
1312 if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1313 return mcspi->max_xfer_len;
1314
1315 return SIZE_MAX;
1316}
1317
1318static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1319{
1320 struct spi_master *master = mcspi->master;
1321 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1322 int ret = 0;
1323
1324 ret = pm_runtime_resume_and_get(mcspi->dev);
1325 if (ret < 0)
1326 return ret;
1327
1328 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1329 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1330 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1331
1332 omap2_mcspi_set_mode(master);
1333 pm_runtime_mark_last_busy(mcspi->dev);
1334 pm_runtime_put_autosuspend(mcspi->dev);
1335 return 0;
1336}
1337
1338static int omap_mcspi_runtime_suspend(struct device *dev)
1339{
1340 int error;
1341
1342 error = pinctrl_pm_select_idle_state(dev);
1343 if (error)
1344 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1345
1346 return 0;
1347}
1348
1349/*
1350 * When SPI wake up from off-mode, CS is in activate state. If it was in
1351 * inactive state when driver was suspend, then force it to inactive state at
1352 * wake up.
1353 */
1354static int omap_mcspi_runtime_resume(struct device *dev)
1355{
1356 struct spi_master *master = dev_get_drvdata(dev);
1357 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1358 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1359 struct omap2_mcspi_cs *cs;
1360 int error;
1361
1362 error = pinctrl_pm_select_default_state(dev);
1363 if (error)
1364 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1365
1366 /* McSPI: context restore */
1367 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1368 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1369
1370 list_for_each_entry(cs, &ctx->cs, node) {
1371 /*
1372 * We need to toggle CS state for OMAP take this
1373 * change in account.
1374 */
1375 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1376 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1377 writel_relaxed(cs->chconf0,
1378 cs->base + OMAP2_MCSPI_CHCONF0);
1379 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1380 writel_relaxed(cs->chconf0,
1381 cs->base + OMAP2_MCSPI_CHCONF0);
1382 } else {
1383 writel_relaxed(cs->chconf0,
1384 cs->base + OMAP2_MCSPI_CHCONF0);
1385 }
1386 }
1387
1388 return 0;
1389}
1390
1391static struct omap2_mcspi_platform_config omap2_pdata = {
1392 .regs_offset = 0,
1393};
1394
1395static struct omap2_mcspi_platform_config omap4_pdata = {
1396 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1397};
1398
1399static struct omap2_mcspi_platform_config am654_pdata = {
1400 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1401 .max_xfer_len = SZ_4K - 1,
1402};
1403
1404static const struct of_device_id omap_mcspi_of_match[] = {
1405 {
1406 .compatible = "ti,omap2-mcspi",
1407 .data = &omap2_pdata,
1408 },
1409 {
1410 .compatible = "ti,omap4-mcspi",
1411 .data = &omap4_pdata,
1412 },
1413 {
1414 .compatible = "ti,am654-mcspi",
1415 .data = &am654_pdata,
1416 },
1417 { },
1418};
1419MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1420
1421static int omap2_mcspi_probe(struct platform_device *pdev)
1422{
1423 struct spi_master *master;
1424 const struct omap2_mcspi_platform_config *pdata;
1425 struct omap2_mcspi *mcspi;
1426 struct resource *r;
1427 int status = 0, i;
1428 u32 regs_offset = 0;
1429 struct device_node *node = pdev->dev.of_node;
1430 const struct of_device_id *match;
1431
1432 if (of_property_read_bool(node, "spi-slave"))
1433 master = spi_alloc_slave(&pdev->dev, sizeof(*mcspi));
1434 else
1435 master = spi_alloc_master(&pdev->dev, sizeof(*mcspi));
1436 if (!master)
1437 return -ENOMEM;
1438
1439 /* the spi->mode bits understood by this driver: */
1440 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1441 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1442 master->setup = omap2_mcspi_setup;
1443 master->auto_runtime_pm = true;
1444 master->prepare_message = omap2_mcspi_prepare_message;
1445 master->can_dma = omap2_mcspi_can_dma;
1446 master->transfer_one = omap2_mcspi_transfer_one;
1447 master->set_cs = omap2_mcspi_set_cs;
1448 master->cleanup = omap2_mcspi_cleanup;
1449 master->slave_abort = omap2_mcspi_slave_abort;
1450 master->dev.of_node = node;
1451 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1452 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1453 master->use_gpio_descriptors = true;
1454
1455 platform_set_drvdata(pdev, master);
1456
1457 mcspi = spi_master_get_devdata(master);
1458 mcspi->master = master;
1459
1460 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1461 if (match) {
1462 u32 num_cs = 1; /* default number of chipselect */
1463 pdata = match->data;
1464
1465 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1466 master->num_chipselect = num_cs;
1467 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1468 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1469 } else {
1470 pdata = dev_get_platdata(&pdev->dev);
1471 master->num_chipselect = pdata->num_cs;
1472 mcspi->pin_dir = pdata->pin_dir;
1473 }
1474 regs_offset = pdata->regs_offset;
1475 if (pdata->max_xfer_len) {
1476 mcspi->max_xfer_len = pdata->max_xfer_len;
1477 master->max_transfer_size = omap2_mcspi_max_xfer_size;
1478 }
1479
1480 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1481 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1482 if (IS_ERR(mcspi->base)) {
1483 status = PTR_ERR(mcspi->base);
1484 goto free_master;
1485 }
1486 mcspi->phys = r->start + regs_offset;
1487 mcspi->base += regs_offset;
1488
1489 mcspi->dev = &pdev->dev;
1490
1491 INIT_LIST_HEAD(&mcspi->ctx.cs);
1492
1493 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1494 sizeof(struct omap2_mcspi_dma),
1495 GFP_KERNEL);
1496 if (mcspi->dma_channels == NULL) {
1497 status = -ENOMEM;
1498 goto free_master;
1499 }
1500
1501 for (i = 0; i < master->num_chipselect; i++) {
1502 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1503 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1504
1505 status = omap2_mcspi_request_dma(mcspi,
1506 &mcspi->dma_channels[i]);
1507 if (status == -EPROBE_DEFER)
1508 goto free_master;
1509 }
1510
1511 status = platform_get_irq(pdev, 0);
1512 if (status < 0) {
1513 dev_err_probe(&pdev->dev, status, "no irq resource found\n");
1514 goto free_master;
1515 }
1516 init_completion(&mcspi->txdone);
1517 status = devm_request_irq(&pdev->dev, status,
1518 omap2_mcspi_irq_handler, 0, pdev->name,
1519 mcspi);
1520 if (status) {
1521 dev_err(&pdev->dev, "Cannot request IRQ");
1522 goto free_master;
1523 }
1524
1525 pm_runtime_use_autosuspend(&pdev->dev);
1526 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1527 pm_runtime_enable(&pdev->dev);
1528
1529 status = omap2_mcspi_controller_setup(mcspi);
1530 if (status < 0)
1531 goto disable_pm;
1532
1533 status = devm_spi_register_controller(&pdev->dev, master);
1534 if (status < 0)
1535 goto disable_pm;
1536
1537 return status;
1538
1539disable_pm:
1540 pm_runtime_dont_use_autosuspend(&pdev->dev);
1541 pm_runtime_put_sync(&pdev->dev);
1542 pm_runtime_disable(&pdev->dev);
1543free_master:
1544 omap2_mcspi_release_dma(master);
1545 spi_master_put(master);
1546 return status;
1547}
1548
1549static int omap2_mcspi_remove(struct platform_device *pdev)
1550{
1551 struct spi_master *master = platform_get_drvdata(pdev);
1552 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1553
1554 omap2_mcspi_release_dma(master);
1555
1556 pm_runtime_dont_use_autosuspend(mcspi->dev);
1557 pm_runtime_put_sync(mcspi->dev);
1558 pm_runtime_disable(&pdev->dev);
1559
1560 return 0;
1561}
1562
1563/* work with hotplug and coldplug */
1564MODULE_ALIAS("platform:omap2_mcspi");
1565
1566static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1567{
1568 struct spi_master *master = dev_get_drvdata(dev);
1569 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1570 int error;
1571
1572 error = pinctrl_pm_select_sleep_state(dev);
1573 if (error)
1574 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1575 __func__, error);
1576
1577 error = spi_master_suspend(master);
1578 if (error)
1579 dev_warn(mcspi->dev, "%s: master suspend failed: %i\n",
1580 __func__, error);
1581
1582 return pm_runtime_force_suspend(dev);
1583}
1584
1585static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1586{
1587 struct spi_master *master = dev_get_drvdata(dev);
1588 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1589 int error;
1590
1591 error = spi_master_resume(master);
1592 if (error)
1593 dev_warn(mcspi->dev, "%s: master resume failed: %i\n",
1594 __func__, error);
1595
1596 return pm_runtime_force_resume(dev);
1597}
1598
1599static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1600 SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1601 omap2_mcspi_resume)
1602 .runtime_suspend = omap_mcspi_runtime_suspend,
1603 .runtime_resume = omap_mcspi_runtime_resume,
1604};
1605
1606static struct platform_driver omap2_mcspi_driver = {
1607 .driver = {
1608 .name = "omap2_mcspi",
1609 .pm = &omap2_mcspi_pm_ops,
1610 .of_match_table = omap_mcspi_of_match,
1611 },
1612 .probe = omap2_mcspi_probe,
1613 .remove = omap2_mcspi_remove,
1614};
1615
1616module_platform_driver(omap2_mcspi_driver);
1617MODULE_LICENSE("GPL");
1/*
2 * OMAP2 McSPI controller driver
3 *
4 * Copyright (C) 2005, 2006 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
6 * Juha Yrj�l� <juha.yrjola@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24#include <linux/kernel.h>
25#include <linux/interrupt.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/delay.h>
29#include <linux/dma-mapping.h>
30#include <linux/dmaengine.h>
31#include <linux/omap-dma.h>
32#include <linux/platform_device.h>
33#include <linux/err.h>
34#include <linux/clk.h>
35#include <linux/io.h>
36#include <linux/slab.h>
37#include <linux/pm_runtime.h>
38#include <linux/of.h>
39#include <linux/of_device.h>
40#include <linux/gcd.h>
41
42#include <linux/spi/spi.h>
43
44#include <linux/platform_data/spi-omap2-mcspi.h>
45
46#define OMAP2_MCSPI_MAX_FREQ 48000000
47#define OMAP2_MCSPI_MAX_DIVIDER 4096
48#define OMAP2_MCSPI_MAX_FIFODEPTH 64
49#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
50#define SPI_AUTOSUSPEND_TIMEOUT 2000
51
52#define OMAP2_MCSPI_REVISION 0x00
53#define OMAP2_MCSPI_SYSSTATUS 0x14
54#define OMAP2_MCSPI_IRQSTATUS 0x18
55#define OMAP2_MCSPI_IRQENABLE 0x1c
56#define OMAP2_MCSPI_WAKEUPENABLE 0x20
57#define OMAP2_MCSPI_SYST 0x24
58#define OMAP2_MCSPI_MODULCTRL 0x28
59#define OMAP2_MCSPI_XFERLEVEL 0x7c
60
61/* per-channel banks, 0x14 bytes each, first is: */
62#define OMAP2_MCSPI_CHCONF0 0x2c
63#define OMAP2_MCSPI_CHSTAT0 0x30
64#define OMAP2_MCSPI_CHCTRL0 0x34
65#define OMAP2_MCSPI_TX0 0x38
66#define OMAP2_MCSPI_RX0 0x3c
67
68/* per-register bitmasks: */
69#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
70
71#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
72#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
73#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
74
75#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
76#define OMAP2_MCSPI_CHCONF_POL BIT(1)
77#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
78#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
79#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
80#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
81#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
82#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
83#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
84#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
85#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
86#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
87#define OMAP2_MCSPI_CHCONF_IS BIT(18)
88#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
89#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
90#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
91#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
92#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
93
94#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
95#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
96#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
97#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
98
99#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
100#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
101
102#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
103
104/* We have 2 DMA channels per CS, one for RX and one for TX */
105struct omap2_mcspi_dma {
106 struct dma_chan *dma_tx;
107 struct dma_chan *dma_rx;
108
109 int dma_tx_sync_dev;
110 int dma_rx_sync_dev;
111
112 struct completion dma_tx_completion;
113 struct completion dma_rx_completion;
114
115 char dma_rx_ch_name[14];
116 char dma_tx_ch_name[14];
117};
118
119/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
120 * cache operations; better heuristics consider wordsize and bitrate.
121 */
122#define DMA_MIN_BYTES 160
123
124
125/*
126 * Used for context save and restore, structure members to be updated whenever
127 * corresponding registers are modified.
128 */
129struct omap2_mcspi_regs {
130 u32 modulctrl;
131 u32 wakeupenable;
132 struct list_head cs;
133};
134
135struct omap2_mcspi {
136 struct spi_master *master;
137 /* Virtual base address of the controller */
138 void __iomem *base;
139 unsigned long phys;
140 /* SPI1 has 4 channels, while SPI2 has 2 */
141 struct omap2_mcspi_dma *dma_channels;
142 struct device *dev;
143 struct omap2_mcspi_regs ctx;
144 int fifo_depth;
145 unsigned int pin_dir:1;
146};
147
148struct omap2_mcspi_cs {
149 void __iomem *base;
150 unsigned long phys;
151 int word_len;
152 struct list_head node;
153 /* Context save and restore shadow register */
154 u32 chconf0, chctrl0;
155};
156
157static inline void mcspi_write_reg(struct spi_master *master,
158 int idx, u32 val)
159{
160 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
161
162 writel_relaxed(val, mcspi->base + idx);
163}
164
165static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
166{
167 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
168
169 return readl_relaxed(mcspi->base + idx);
170}
171
172static inline void mcspi_write_cs_reg(const struct spi_device *spi,
173 int idx, u32 val)
174{
175 struct omap2_mcspi_cs *cs = spi->controller_state;
176
177 writel_relaxed(val, cs->base + idx);
178}
179
180static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
181{
182 struct omap2_mcspi_cs *cs = spi->controller_state;
183
184 return readl_relaxed(cs->base + idx);
185}
186
187static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
188{
189 struct omap2_mcspi_cs *cs = spi->controller_state;
190
191 return cs->chconf0;
192}
193
194static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
195{
196 struct omap2_mcspi_cs *cs = spi->controller_state;
197
198 cs->chconf0 = val;
199 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
200 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
201}
202
203static inline int mcspi_bytes_per_word(int word_len)
204{
205 if (word_len <= 8)
206 return 1;
207 else if (word_len <= 16)
208 return 2;
209 else /* word_len <= 32 */
210 return 4;
211}
212
213static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
214 int is_read, int enable)
215{
216 u32 l, rw;
217
218 l = mcspi_cached_chconf0(spi);
219
220 if (is_read) /* 1 is read, 0 write */
221 rw = OMAP2_MCSPI_CHCONF_DMAR;
222 else
223 rw = OMAP2_MCSPI_CHCONF_DMAW;
224
225 if (enable)
226 l |= rw;
227 else
228 l &= ~rw;
229
230 mcspi_write_chconf0(spi, l);
231}
232
233static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
234{
235 struct omap2_mcspi_cs *cs = spi->controller_state;
236 u32 l;
237
238 l = cs->chctrl0;
239 if (enable)
240 l |= OMAP2_MCSPI_CHCTRL_EN;
241 else
242 l &= ~OMAP2_MCSPI_CHCTRL_EN;
243 cs->chctrl0 = l;
244 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
245 /* Flash post-writes */
246 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
247}
248
249static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active)
250{
251 u32 l;
252
253 l = mcspi_cached_chconf0(spi);
254 if (cs_active)
255 l |= OMAP2_MCSPI_CHCONF_FORCE;
256 else
257 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
258
259 mcspi_write_chconf0(spi, l);
260}
261
262static void omap2_mcspi_set_master_mode(struct spi_master *master)
263{
264 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
265 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
266 u32 l;
267
268 /*
269 * Setup when switching from (reset default) slave mode
270 * to single-channel master mode
271 */
272 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
273 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
274 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
275 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
276
277 ctx->modulctrl = l;
278}
279
280static void omap2_mcspi_set_fifo(const struct spi_device *spi,
281 struct spi_transfer *t, int enable)
282{
283 struct spi_master *master = spi->master;
284 struct omap2_mcspi_cs *cs = spi->controller_state;
285 struct omap2_mcspi *mcspi;
286 unsigned int wcnt;
287 int max_fifo_depth, fifo_depth, bytes_per_word;
288 u32 chconf, xferlevel;
289
290 mcspi = spi_master_get_devdata(master);
291
292 chconf = mcspi_cached_chconf0(spi);
293 if (enable) {
294 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
295 if (t->len % bytes_per_word != 0)
296 goto disable_fifo;
297
298 if (t->rx_buf != NULL && t->tx_buf != NULL)
299 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
300 else
301 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
302
303 fifo_depth = gcd(t->len, max_fifo_depth);
304 if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0)
305 goto disable_fifo;
306
307 wcnt = t->len / bytes_per_word;
308 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
309 goto disable_fifo;
310
311 xferlevel = wcnt << 16;
312 if (t->rx_buf != NULL) {
313 chconf |= OMAP2_MCSPI_CHCONF_FFER;
314 xferlevel |= (fifo_depth - 1) << 8;
315 }
316 if (t->tx_buf != NULL) {
317 chconf |= OMAP2_MCSPI_CHCONF_FFET;
318 xferlevel |= fifo_depth - 1;
319 }
320
321 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
322 mcspi_write_chconf0(spi, chconf);
323 mcspi->fifo_depth = fifo_depth;
324
325 return;
326 }
327
328disable_fifo:
329 if (t->rx_buf != NULL)
330 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
331 else
332 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
333
334 mcspi_write_chconf0(spi, chconf);
335 mcspi->fifo_depth = 0;
336}
337
338static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
339{
340 struct spi_master *spi_cntrl = mcspi->master;
341 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
342 struct omap2_mcspi_cs *cs;
343
344 /* McSPI: context restore */
345 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
346 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
347
348 list_for_each_entry(cs, &ctx->cs, node)
349 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
350}
351
352static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
353{
354 unsigned long timeout;
355
356 timeout = jiffies + msecs_to_jiffies(1000);
357 while (!(readl_relaxed(reg) & bit)) {
358 if (time_after(jiffies, timeout)) {
359 if (!(readl_relaxed(reg) & bit))
360 return -ETIMEDOUT;
361 else
362 return 0;
363 }
364 cpu_relax();
365 }
366 return 0;
367}
368
369static void omap2_mcspi_rx_callback(void *data)
370{
371 struct spi_device *spi = data;
372 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
373 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
374
375 /* We must disable the DMA RX request */
376 omap2_mcspi_set_dma_req(spi, 1, 0);
377
378 complete(&mcspi_dma->dma_rx_completion);
379}
380
381static void omap2_mcspi_tx_callback(void *data)
382{
383 struct spi_device *spi = data;
384 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
385 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
386
387 /* We must disable the DMA TX request */
388 omap2_mcspi_set_dma_req(spi, 0, 0);
389
390 complete(&mcspi_dma->dma_tx_completion);
391}
392
393static void omap2_mcspi_tx_dma(struct spi_device *spi,
394 struct spi_transfer *xfer,
395 struct dma_slave_config cfg)
396{
397 struct omap2_mcspi *mcspi;
398 struct omap2_mcspi_dma *mcspi_dma;
399 unsigned int count;
400
401 mcspi = spi_master_get_devdata(spi->master);
402 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
403 count = xfer->len;
404
405 if (mcspi_dma->dma_tx) {
406 struct dma_async_tx_descriptor *tx;
407 struct scatterlist sg;
408
409 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
410
411 sg_init_table(&sg, 1);
412 sg_dma_address(&sg) = xfer->tx_dma;
413 sg_dma_len(&sg) = xfer->len;
414
415 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
416 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
417 if (tx) {
418 tx->callback = omap2_mcspi_tx_callback;
419 tx->callback_param = spi;
420 dmaengine_submit(tx);
421 } else {
422 /* FIXME: fall back to PIO? */
423 }
424 }
425 dma_async_issue_pending(mcspi_dma->dma_tx);
426 omap2_mcspi_set_dma_req(spi, 0, 1);
427
428}
429
430static unsigned
431omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
432 struct dma_slave_config cfg,
433 unsigned es)
434{
435 struct omap2_mcspi *mcspi;
436 struct omap2_mcspi_dma *mcspi_dma;
437 unsigned int count, dma_count;
438 u32 l;
439 int elements = 0;
440 int word_len, element_count;
441 struct omap2_mcspi_cs *cs = spi->controller_state;
442 mcspi = spi_master_get_devdata(spi->master);
443 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
444 count = xfer->len;
445 dma_count = xfer->len;
446
447 if (mcspi->fifo_depth == 0)
448 dma_count -= es;
449
450 word_len = cs->word_len;
451 l = mcspi_cached_chconf0(spi);
452
453 if (word_len <= 8)
454 element_count = count;
455 else if (word_len <= 16)
456 element_count = count >> 1;
457 else /* word_len <= 32 */
458 element_count = count >> 2;
459
460 if (mcspi_dma->dma_rx) {
461 struct dma_async_tx_descriptor *tx;
462 struct scatterlist sg;
463
464 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
465
466 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
467 dma_count -= es;
468
469 sg_init_table(&sg, 1);
470 sg_dma_address(&sg) = xfer->rx_dma;
471 sg_dma_len(&sg) = dma_count;
472
473 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
474 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
475 DMA_CTRL_ACK);
476 if (tx) {
477 tx->callback = omap2_mcspi_rx_callback;
478 tx->callback_param = spi;
479 dmaengine_submit(tx);
480 } else {
481 /* FIXME: fall back to PIO? */
482 }
483 }
484
485 dma_async_issue_pending(mcspi_dma->dma_rx);
486 omap2_mcspi_set_dma_req(spi, 1, 1);
487
488 wait_for_completion(&mcspi_dma->dma_rx_completion);
489 dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
490 DMA_FROM_DEVICE);
491
492 if (mcspi->fifo_depth > 0)
493 return count;
494
495 omap2_mcspi_set_enable(spi, 0);
496
497 elements = element_count - 1;
498
499 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
500 elements--;
501
502 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
503 & OMAP2_MCSPI_CHSTAT_RXS)) {
504 u32 w;
505
506 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
507 if (word_len <= 8)
508 ((u8 *)xfer->rx_buf)[elements++] = w;
509 else if (word_len <= 16)
510 ((u16 *)xfer->rx_buf)[elements++] = w;
511 else /* word_len <= 32 */
512 ((u32 *)xfer->rx_buf)[elements++] = w;
513 } else {
514 int bytes_per_word = mcspi_bytes_per_word(word_len);
515 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
516 count -= (bytes_per_word << 1);
517 omap2_mcspi_set_enable(spi, 1);
518 return count;
519 }
520 }
521 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
522 & OMAP2_MCSPI_CHSTAT_RXS)) {
523 u32 w;
524
525 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
526 if (word_len <= 8)
527 ((u8 *)xfer->rx_buf)[elements] = w;
528 else if (word_len <= 16)
529 ((u16 *)xfer->rx_buf)[elements] = w;
530 else /* word_len <= 32 */
531 ((u32 *)xfer->rx_buf)[elements] = w;
532 } else {
533 dev_err(&spi->dev, "DMA RX last word empty\n");
534 count -= mcspi_bytes_per_word(word_len);
535 }
536 omap2_mcspi_set_enable(spi, 1);
537 return count;
538}
539
540static unsigned
541omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
542{
543 struct omap2_mcspi *mcspi;
544 struct omap2_mcspi_cs *cs = spi->controller_state;
545 struct omap2_mcspi_dma *mcspi_dma;
546 unsigned int count;
547 u32 l;
548 u8 *rx;
549 const u8 *tx;
550 struct dma_slave_config cfg;
551 enum dma_slave_buswidth width;
552 unsigned es;
553 u32 burst;
554 void __iomem *chstat_reg;
555 void __iomem *irqstat_reg;
556 int wait_res;
557
558 mcspi = spi_master_get_devdata(spi->master);
559 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
560 l = mcspi_cached_chconf0(spi);
561
562
563 if (cs->word_len <= 8) {
564 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
565 es = 1;
566 } else if (cs->word_len <= 16) {
567 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
568 es = 2;
569 } else {
570 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
571 es = 4;
572 }
573
574 count = xfer->len;
575 burst = 1;
576
577 if (mcspi->fifo_depth > 0) {
578 if (count > mcspi->fifo_depth)
579 burst = mcspi->fifo_depth / es;
580 else
581 burst = count / es;
582 }
583
584 memset(&cfg, 0, sizeof(cfg));
585 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
586 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
587 cfg.src_addr_width = width;
588 cfg.dst_addr_width = width;
589 cfg.src_maxburst = burst;
590 cfg.dst_maxburst = burst;
591
592 rx = xfer->rx_buf;
593 tx = xfer->tx_buf;
594
595 if (tx != NULL)
596 omap2_mcspi_tx_dma(spi, xfer, cfg);
597
598 if (rx != NULL)
599 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
600
601 if (tx != NULL) {
602 wait_for_completion(&mcspi_dma->dma_tx_completion);
603 dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
604 DMA_TO_DEVICE);
605
606 if (mcspi->fifo_depth > 0) {
607 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
608
609 if (mcspi_wait_for_reg_bit(irqstat_reg,
610 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
611 dev_err(&spi->dev, "EOW timed out\n");
612
613 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
614 OMAP2_MCSPI_IRQSTATUS_EOW);
615 }
616
617 /* for TX_ONLY mode, be sure all words have shifted out */
618 if (rx == NULL) {
619 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
620 if (mcspi->fifo_depth > 0) {
621 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
622 OMAP2_MCSPI_CHSTAT_TXFFE);
623 if (wait_res < 0)
624 dev_err(&spi->dev, "TXFFE timed out\n");
625 } else {
626 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
627 OMAP2_MCSPI_CHSTAT_TXS);
628 if (wait_res < 0)
629 dev_err(&spi->dev, "TXS timed out\n");
630 }
631 if (wait_res >= 0 &&
632 (mcspi_wait_for_reg_bit(chstat_reg,
633 OMAP2_MCSPI_CHSTAT_EOT) < 0))
634 dev_err(&spi->dev, "EOT timed out\n");
635 }
636 }
637 return count;
638}
639
640static unsigned
641omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
642{
643 struct omap2_mcspi *mcspi;
644 struct omap2_mcspi_cs *cs = spi->controller_state;
645 unsigned int count, c;
646 u32 l;
647 void __iomem *base = cs->base;
648 void __iomem *tx_reg;
649 void __iomem *rx_reg;
650 void __iomem *chstat_reg;
651 int word_len;
652
653 mcspi = spi_master_get_devdata(spi->master);
654 count = xfer->len;
655 c = count;
656 word_len = cs->word_len;
657
658 l = mcspi_cached_chconf0(spi);
659
660 /* We store the pre-calculated register addresses on stack to speed
661 * up the transfer loop. */
662 tx_reg = base + OMAP2_MCSPI_TX0;
663 rx_reg = base + OMAP2_MCSPI_RX0;
664 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
665
666 if (c < (word_len>>3))
667 return 0;
668
669 if (word_len <= 8) {
670 u8 *rx;
671 const u8 *tx;
672
673 rx = xfer->rx_buf;
674 tx = xfer->tx_buf;
675
676 do {
677 c -= 1;
678 if (tx != NULL) {
679 if (mcspi_wait_for_reg_bit(chstat_reg,
680 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
681 dev_err(&spi->dev, "TXS timed out\n");
682 goto out;
683 }
684 dev_vdbg(&spi->dev, "write-%d %02x\n",
685 word_len, *tx);
686 writel_relaxed(*tx++, tx_reg);
687 }
688 if (rx != NULL) {
689 if (mcspi_wait_for_reg_bit(chstat_reg,
690 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
691 dev_err(&spi->dev, "RXS timed out\n");
692 goto out;
693 }
694
695 if (c == 1 && tx == NULL &&
696 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
697 omap2_mcspi_set_enable(spi, 0);
698 *rx++ = readl_relaxed(rx_reg);
699 dev_vdbg(&spi->dev, "read-%d %02x\n",
700 word_len, *(rx - 1));
701 if (mcspi_wait_for_reg_bit(chstat_reg,
702 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
703 dev_err(&spi->dev,
704 "RXS timed out\n");
705 goto out;
706 }
707 c = 0;
708 } else if (c == 0 && tx == NULL) {
709 omap2_mcspi_set_enable(spi, 0);
710 }
711
712 *rx++ = readl_relaxed(rx_reg);
713 dev_vdbg(&spi->dev, "read-%d %02x\n",
714 word_len, *(rx - 1));
715 }
716 } while (c);
717 } else if (word_len <= 16) {
718 u16 *rx;
719 const u16 *tx;
720
721 rx = xfer->rx_buf;
722 tx = xfer->tx_buf;
723 do {
724 c -= 2;
725 if (tx != NULL) {
726 if (mcspi_wait_for_reg_bit(chstat_reg,
727 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
728 dev_err(&spi->dev, "TXS timed out\n");
729 goto out;
730 }
731 dev_vdbg(&spi->dev, "write-%d %04x\n",
732 word_len, *tx);
733 writel_relaxed(*tx++, tx_reg);
734 }
735 if (rx != NULL) {
736 if (mcspi_wait_for_reg_bit(chstat_reg,
737 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
738 dev_err(&spi->dev, "RXS timed out\n");
739 goto out;
740 }
741
742 if (c == 2 && tx == NULL &&
743 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
744 omap2_mcspi_set_enable(spi, 0);
745 *rx++ = readl_relaxed(rx_reg);
746 dev_vdbg(&spi->dev, "read-%d %04x\n",
747 word_len, *(rx - 1));
748 if (mcspi_wait_for_reg_bit(chstat_reg,
749 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
750 dev_err(&spi->dev,
751 "RXS timed out\n");
752 goto out;
753 }
754 c = 0;
755 } else if (c == 0 && tx == NULL) {
756 omap2_mcspi_set_enable(spi, 0);
757 }
758
759 *rx++ = readl_relaxed(rx_reg);
760 dev_vdbg(&spi->dev, "read-%d %04x\n",
761 word_len, *(rx - 1));
762 }
763 } while (c >= 2);
764 } else if (word_len <= 32) {
765 u32 *rx;
766 const u32 *tx;
767
768 rx = xfer->rx_buf;
769 tx = xfer->tx_buf;
770 do {
771 c -= 4;
772 if (tx != NULL) {
773 if (mcspi_wait_for_reg_bit(chstat_reg,
774 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
775 dev_err(&spi->dev, "TXS timed out\n");
776 goto out;
777 }
778 dev_vdbg(&spi->dev, "write-%d %08x\n",
779 word_len, *tx);
780 writel_relaxed(*tx++, tx_reg);
781 }
782 if (rx != NULL) {
783 if (mcspi_wait_for_reg_bit(chstat_reg,
784 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
785 dev_err(&spi->dev, "RXS timed out\n");
786 goto out;
787 }
788
789 if (c == 4 && tx == NULL &&
790 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
791 omap2_mcspi_set_enable(spi, 0);
792 *rx++ = readl_relaxed(rx_reg);
793 dev_vdbg(&spi->dev, "read-%d %08x\n",
794 word_len, *(rx - 1));
795 if (mcspi_wait_for_reg_bit(chstat_reg,
796 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
797 dev_err(&spi->dev,
798 "RXS timed out\n");
799 goto out;
800 }
801 c = 0;
802 } else if (c == 0 && tx == NULL) {
803 omap2_mcspi_set_enable(spi, 0);
804 }
805
806 *rx++ = readl_relaxed(rx_reg);
807 dev_vdbg(&spi->dev, "read-%d %08x\n",
808 word_len, *(rx - 1));
809 }
810 } while (c >= 4);
811 }
812
813 /* for TX_ONLY mode, be sure all words have shifted out */
814 if (xfer->rx_buf == NULL) {
815 if (mcspi_wait_for_reg_bit(chstat_reg,
816 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
817 dev_err(&spi->dev, "TXS timed out\n");
818 } else if (mcspi_wait_for_reg_bit(chstat_reg,
819 OMAP2_MCSPI_CHSTAT_EOT) < 0)
820 dev_err(&spi->dev, "EOT timed out\n");
821
822 /* disable chan to purge rx datas received in TX_ONLY transfer,
823 * otherwise these rx datas will affect the direct following
824 * RX_ONLY transfer.
825 */
826 omap2_mcspi_set_enable(spi, 0);
827 }
828out:
829 omap2_mcspi_set_enable(spi, 1);
830 return count - c;
831}
832
833static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
834{
835 u32 div;
836
837 for (div = 0; div < 15; div++)
838 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
839 return div;
840
841 return 15;
842}
843
844/* called only when no transfer is active to this device */
845static int omap2_mcspi_setup_transfer(struct spi_device *spi,
846 struct spi_transfer *t)
847{
848 struct omap2_mcspi_cs *cs = spi->controller_state;
849 struct omap2_mcspi *mcspi;
850 struct spi_master *spi_cntrl;
851 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
852 u8 word_len = spi->bits_per_word;
853 u32 speed_hz = spi->max_speed_hz;
854
855 mcspi = spi_master_get_devdata(spi->master);
856 spi_cntrl = mcspi->master;
857
858 if (t != NULL && t->bits_per_word)
859 word_len = t->bits_per_word;
860
861 cs->word_len = word_len;
862
863 if (t && t->speed_hz)
864 speed_hz = t->speed_hz;
865
866 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
867 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
868 clkd = omap2_mcspi_calc_divisor(speed_hz);
869 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
870 clkg = 0;
871 } else {
872 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
873 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
874 clkd = (div - 1) & 0xf;
875 extclk = (div - 1) >> 4;
876 clkg = OMAP2_MCSPI_CHCONF_CLKG;
877 }
878
879 l = mcspi_cached_chconf0(spi);
880
881 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
882 * REVISIT: this controller could support SPI_3WIRE mode.
883 */
884 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
885 l &= ~OMAP2_MCSPI_CHCONF_IS;
886 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
887 l |= OMAP2_MCSPI_CHCONF_DPE0;
888 } else {
889 l |= OMAP2_MCSPI_CHCONF_IS;
890 l |= OMAP2_MCSPI_CHCONF_DPE1;
891 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
892 }
893
894 /* wordlength */
895 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
896 l |= (word_len - 1) << 7;
897
898 /* set chipselect polarity; manage with FORCE */
899 if (!(spi->mode & SPI_CS_HIGH))
900 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
901 else
902 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
903
904 /* set clock divisor */
905 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
906 l |= clkd << 2;
907
908 /* set clock granularity */
909 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
910 l |= clkg;
911 if (clkg) {
912 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
913 cs->chctrl0 |= extclk << 8;
914 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
915 }
916
917 /* set SPI mode 0..3 */
918 if (spi->mode & SPI_CPOL)
919 l |= OMAP2_MCSPI_CHCONF_POL;
920 else
921 l &= ~OMAP2_MCSPI_CHCONF_POL;
922 if (spi->mode & SPI_CPHA)
923 l |= OMAP2_MCSPI_CHCONF_PHA;
924 else
925 l &= ~OMAP2_MCSPI_CHCONF_PHA;
926
927 mcspi_write_chconf0(spi, l);
928
929 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
930 speed_hz,
931 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
932 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
933
934 return 0;
935}
936
937/*
938 * Note that we currently allow DMA only if we get a channel
939 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
940 */
941static int omap2_mcspi_request_dma(struct spi_device *spi)
942{
943 struct spi_master *master = spi->master;
944 struct omap2_mcspi *mcspi;
945 struct omap2_mcspi_dma *mcspi_dma;
946 dma_cap_mask_t mask;
947 unsigned sig;
948
949 mcspi = spi_master_get_devdata(master);
950 mcspi_dma = mcspi->dma_channels + spi->chip_select;
951
952 init_completion(&mcspi_dma->dma_rx_completion);
953 init_completion(&mcspi_dma->dma_tx_completion);
954
955 dma_cap_zero(mask);
956 dma_cap_set(DMA_SLAVE, mask);
957 sig = mcspi_dma->dma_rx_sync_dev;
958
959 mcspi_dma->dma_rx =
960 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
961 &sig, &master->dev,
962 mcspi_dma->dma_rx_ch_name);
963 if (!mcspi_dma->dma_rx)
964 goto no_dma;
965
966 sig = mcspi_dma->dma_tx_sync_dev;
967 mcspi_dma->dma_tx =
968 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
969 &sig, &master->dev,
970 mcspi_dma->dma_tx_ch_name);
971
972 if (!mcspi_dma->dma_tx) {
973 dma_release_channel(mcspi_dma->dma_rx);
974 mcspi_dma->dma_rx = NULL;
975 goto no_dma;
976 }
977
978 return 0;
979
980no_dma:
981 dev_warn(&spi->dev, "not using DMA for McSPI\n");
982 return -EAGAIN;
983}
984
985static int omap2_mcspi_setup(struct spi_device *spi)
986{
987 int ret;
988 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
989 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
990 struct omap2_mcspi_dma *mcspi_dma;
991 struct omap2_mcspi_cs *cs = spi->controller_state;
992
993 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
994
995 if (!cs) {
996 cs = kzalloc(sizeof *cs, GFP_KERNEL);
997 if (!cs)
998 return -ENOMEM;
999 cs->base = mcspi->base + spi->chip_select * 0x14;
1000 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1001 cs->chconf0 = 0;
1002 cs->chctrl0 = 0;
1003 spi->controller_state = cs;
1004 /* Link this to context save list */
1005 list_add_tail(&cs->node, &ctx->cs);
1006 }
1007
1008 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
1009 ret = omap2_mcspi_request_dma(spi);
1010 if (ret < 0 && ret != -EAGAIN)
1011 return ret;
1012 }
1013
1014 ret = pm_runtime_get_sync(mcspi->dev);
1015 if (ret < 0)
1016 return ret;
1017
1018 ret = omap2_mcspi_setup_transfer(spi, NULL);
1019 pm_runtime_mark_last_busy(mcspi->dev);
1020 pm_runtime_put_autosuspend(mcspi->dev);
1021
1022 return ret;
1023}
1024
1025static void omap2_mcspi_cleanup(struct spi_device *spi)
1026{
1027 struct omap2_mcspi *mcspi;
1028 struct omap2_mcspi_dma *mcspi_dma;
1029 struct omap2_mcspi_cs *cs;
1030
1031 mcspi = spi_master_get_devdata(spi->master);
1032
1033 if (spi->controller_state) {
1034 /* Unlink controller state from context save list */
1035 cs = spi->controller_state;
1036 list_del(&cs->node);
1037
1038 kfree(cs);
1039 }
1040
1041 if (spi->chip_select < spi->master->num_chipselect) {
1042 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1043
1044 if (mcspi_dma->dma_rx) {
1045 dma_release_channel(mcspi_dma->dma_rx);
1046 mcspi_dma->dma_rx = NULL;
1047 }
1048 if (mcspi_dma->dma_tx) {
1049 dma_release_channel(mcspi_dma->dma_tx);
1050 mcspi_dma->dma_tx = NULL;
1051 }
1052 }
1053}
1054
1055static void omap2_mcspi_work(struct omap2_mcspi *mcspi, struct spi_message *m)
1056{
1057
1058 /* We only enable one channel at a time -- the one whose message is
1059 * -- although this controller would gladly
1060 * arbitrate among multiple channels. This corresponds to "single
1061 * channel" master mode. As a side effect, we need to manage the
1062 * chipselect with the FORCE bit ... CS != channel enable.
1063 */
1064
1065 struct spi_device *spi;
1066 struct spi_transfer *t = NULL;
1067 struct spi_master *master;
1068 struct omap2_mcspi_dma *mcspi_dma;
1069 int cs_active = 0;
1070 struct omap2_mcspi_cs *cs;
1071 struct omap2_mcspi_device_config *cd;
1072 int par_override = 0;
1073 int status = 0;
1074 u32 chconf;
1075
1076 spi = m->spi;
1077 master = spi->master;
1078 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1079 cs = spi->controller_state;
1080 cd = spi->controller_data;
1081
1082 omap2_mcspi_set_enable(spi, 0);
1083 list_for_each_entry(t, &m->transfers, transfer_list) {
1084 if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) {
1085 status = -EINVAL;
1086 break;
1087 }
1088 if (par_override ||
1089 (t->speed_hz != spi->max_speed_hz) ||
1090 (t->bits_per_word != spi->bits_per_word)) {
1091 par_override = 1;
1092 status = omap2_mcspi_setup_transfer(spi, t);
1093 if (status < 0)
1094 break;
1095 if (t->speed_hz == spi->max_speed_hz &&
1096 t->bits_per_word == spi->bits_per_word)
1097 par_override = 0;
1098 }
1099 if (cd && cd->cs_per_word) {
1100 chconf = mcspi->ctx.modulctrl;
1101 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1102 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1103 mcspi->ctx.modulctrl =
1104 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1105 }
1106
1107
1108 if (!cs_active) {
1109 omap2_mcspi_force_cs(spi, 1);
1110 cs_active = 1;
1111 }
1112
1113 chconf = mcspi_cached_chconf0(spi);
1114 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1115 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1116
1117 if (t->tx_buf == NULL)
1118 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1119 else if (t->rx_buf == NULL)
1120 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1121
1122 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1123 /* Turbo mode is for more than one word */
1124 if (t->len > ((cs->word_len + 7) >> 3))
1125 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1126 }
1127
1128 mcspi_write_chconf0(spi, chconf);
1129
1130 if (t->len) {
1131 unsigned count;
1132
1133 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1134 (m->is_dma_mapped || t->len >= DMA_MIN_BYTES))
1135 omap2_mcspi_set_fifo(spi, t, 1);
1136
1137 omap2_mcspi_set_enable(spi, 1);
1138
1139 /* RX_ONLY mode needs dummy data in TX reg */
1140 if (t->tx_buf == NULL)
1141 writel_relaxed(0, cs->base
1142 + OMAP2_MCSPI_TX0);
1143
1144 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1145 (m->is_dma_mapped || t->len >= DMA_MIN_BYTES))
1146 count = omap2_mcspi_txrx_dma(spi, t);
1147 else
1148 count = omap2_mcspi_txrx_pio(spi, t);
1149 m->actual_length += count;
1150
1151 if (count != t->len) {
1152 status = -EIO;
1153 break;
1154 }
1155 }
1156
1157 if (t->delay_usecs)
1158 udelay(t->delay_usecs);
1159
1160 /* ignore the "leave it on after last xfer" hint */
1161 if (t->cs_change) {
1162 omap2_mcspi_force_cs(spi, 0);
1163 cs_active = 0;
1164 }
1165
1166 omap2_mcspi_set_enable(spi, 0);
1167
1168 if (mcspi->fifo_depth > 0)
1169 omap2_mcspi_set_fifo(spi, t, 0);
1170 }
1171 /* Restore defaults if they were overriden */
1172 if (par_override) {
1173 par_override = 0;
1174 status = omap2_mcspi_setup_transfer(spi, NULL);
1175 }
1176
1177 if (cs_active)
1178 omap2_mcspi_force_cs(spi, 0);
1179
1180 if (cd && cd->cs_per_word) {
1181 chconf = mcspi->ctx.modulctrl;
1182 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1183 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1184 mcspi->ctx.modulctrl =
1185 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1186 }
1187
1188 omap2_mcspi_set_enable(spi, 0);
1189
1190 if (mcspi->fifo_depth > 0 && t)
1191 omap2_mcspi_set_fifo(spi, t, 0);
1192
1193 m->status = status;
1194}
1195
1196static int omap2_mcspi_transfer_one_message(struct spi_master *master,
1197 struct spi_message *m)
1198{
1199 struct spi_device *spi;
1200 struct omap2_mcspi *mcspi;
1201 struct omap2_mcspi_dma *mcspi_dma;
1202 struct spi_transfer *t;
1203
1204 spi = m->spi;
1205 mcspi = spi_master_get_devdata(master);
1206 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1207 m->actual_length = 0;
1208 m->status = 0;
1209
1210 list_for_each_entry(t, &m->transfers, transfer_list) {
1211 const void *tx_buf = t->tx_buf;
1212 void *rx_buf = t->rx_buf;
1213 unsigned len = t->len;
1214
1215 if ((len && !(rx_buf || tx_buf))) {
1216 dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1217 t->speed_hz,
1218 len,
1219 tx_buf ? "tx" : "",
1220 rx_buf ? "rx" : "",
1221 t->bits_per_word);
1222 return -EINVAL;
1223 }
1224
1225 if (m->is_dma_mapped || len < DMA_MIN_BYTES)
1226 continue;
1227
1228 if (mcspi_dma->dma_tx && tx_buf != NULL) {
1229 t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
1230 len, DMA_TO_DEVICE);
1231 if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
1232 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1233 'T', len);
1234 return -EINVAL;
1235 }
1236 }
1237 if (mcspi_dma->dma_rx && rx_buf != NULL) {
1238 t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
1239 DMA_FROM_DEVICE);
1240 if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
1241 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1242 'R', len);
1243 if (tx_buf != NULL)
1244 dma_unmap_single(mcspi->dev, t->tx_dma,
1245 len, DMA_TO_DEVICE);
1246 return -EINVAL;
1247 }
1248 }
1249 }
1250
1251 omap2_mcspi_work(mcspi, m);
1252 spi_finalize_current_message(master);
1253 return 0;
1254}
1255
1256static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1257{
1258 struct spi_master *master = mcspi->master;
1259 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1260 int ret = 0;
1261
1262 ret = pm_runtime_get_sync(mcspi->dev);
1263 if (ret < 0)
1264 return ret;
1265
1266 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1267 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1268 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1269
1270 omap2_mcspi_set_master_mode(master);
1271 pm_runtime_mark_last_busy(mcspi->dev);
1272 pm_runtime_put_autosuspend(mcspi->dev);
1273 return 0;
1274}
1275
1276static int omap_mcspi_runtime_resume(struct device *dev)
1277{
1278 struct omap2_mcspi *mcspi;
1279 struct spi_master *master;
1280
1281 master = dev_get_drvdata(dev);
1282 mcspi = spi_master_get_devdata(master);
1283 omap2_mcspi_restore_ctx(mcspi);
1284
1285 return 0;
1286}
1287
1288static struct omap2_mcspi_platform_config omap2_pdata = {
1289 .regs_offset = 0,
1290};
1291
1292static struct omap2_mcspi_platform_config omap4_pdata = {
1293 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1294};
1295
1296static const struct of_device_id omap_mcspi_of_match[] = {
1297 {
1298 .compatible = "ti,omap2-mcspi",
1299 .data = &omap2_pdata,
1300 },
1301 {
1302 .compatible = "ti,omap4-mcspi",
1303 .data = &omap4_pdata,
1304 },
1305 { },
1306};
1307MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1308
1309static int omap2_mcspi_probe(struct platform_device *pdev)
1310{
1311 struct spi_master *master;
1312 const struct omap2_mcspi_platform_config *pdata;
1313 struct omap2_mcspi *mcspi;
1314 struct resource *r;
1315 int status = 0, i;
1316 u32 regs_offset = 0;
1317 static int bus_num = 1;
1318 struct device_node *node = pdev->dev.of_node;
1319 const struct of_device_id *match;
1320
1321 master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1322 if (master == NULL) {
1323 dev_dbg(&pdev->dev, "master allocation failed\n");
1324 return -ENOMEM;
1325 }
1326
1327 /* the spi->mode bits understood by this driver: */
1328 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1329 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1330 master->setup = omap2_mcspi_setup;
1331 master->auto_runtime_pm = true;
1332 master->transfer_one_message = omap2_mcspi_transfer_one_message;
1333 master->cleanup = omap2_mcspi_cleanup;
1334 master->dev.of_node = node;
1335 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1336 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1337
1338 platform_set_drvdata(pdev, master);
1339
1340 mcspi = spi_master_get_devdata(master);
1341 mcspi->master = master;
1342
1343 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1344 if (match) {
1345 u32 num_cs = 1; /* default number of chipselect */
1346 pdata = match->data;
1347
1348 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1349 master->num_chipselect = num_cs;
1350 master->bus_num = bus_num++;
1351 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1352 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1353 } else {
1354 pdata = dev_get_platdata(&pdev->dev);
1355 master->num_chipselect = pdata->num_cs;
1356 if (pdev->id != -1)
1357 master->bus_num = pdev->id;
1358 mcspi->pin_dir = pdata->pin_dir;
1359 }
1360 regs_offset = pdata->regs_offset;
1361
1362 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1363 if (r == NULL) {
1364 status = -ENODEV;
1365 goto free_master;
1366 }
1367
1368 r->start += regs_offset;
1369 r->end += regs_offset;
1370 mcspi->phys = r->start;
1371
1372 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1373 if (IS_ERR(mcspi->base)) {
1374 status = PTR_ERR(mcspi->base);
1375 goto free_master;
1376 }
1377
1378 mcspi->dev = &pdev->dev;
1379
1380 INIT_LIST_HEAD(&mcspi->ctx.cs);
1381
1382 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1383 sizeof(struct omap2_mcspi_dma),
1384 GFP_KERNEL);
1385 if (mcspi->dma_channels == NULL) {
1386 status = -ENOMEM;
1387 goto free_master;
1388 }
1389
1390 for (i = 0; i < master->num_chipselect; i++) {
1391 char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name;
1392 char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name;
1393 struct resource *dma_res;
1394
1395 sprintf(dma_rx_ch_name, "rx%d", i);
1396 if (!pdev->dev.of_node) {
1397 dma_res =
1398 platform_get_resource_byname(pdev,
1399 IORESOURCE_DMA,
1400 dma_rx_ch_name);
1401 if (!dma_res) {
1402 dev_dbg(&pdev->dev,
1403 "cannot get DMA RX channel\n");
1404 status = -ENODEV;
1405 break;
1406 }
1407
1408 mcspi->dma_channels[i].dma_rx_sync_dev =
1409 dma_res->start;
1410 }
1411 sprintf(dma_tx_ch_name, "tx%d", i);
1412 if (!pdev->dev.of_node) {
1413 dma_res =
1414 platform_get_resource_byname(pdev,
1415 IORESOURCE_DMA,
1416 dma_tx_ch_name);
1417 if (!dma_res) {
1418 dev_dbg(&pdev->dev,
1419 "cannot get DMA TX channel\n");
1420 status = -ENODEV;
1421 break;
1422 }
1423
1424 mcspi->dma_channels[i].dma_tx_sync_dev =
1425 dma_res->start;
1426 }
1427 }
1428
1429 if (status < 0)
1430 goto free_master;
1431
1432 pm_runtime_use_autosuspend(&pdev->dev);
1433 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1434 pm_runtime_enable(&pdev->dev);
1435
1436 status = omap2_mcspi_master_setup(mcspi);
1437 if (status < 0)
1438 goto disable_pm;
1439
1440 status = devm_spi_register_master(&pdev->dev, master);
1441 if (status < 0)
1442 goto disable_pm;
1443
1444 return status;
1445
1446disable_pm:
1447 pm_runtime_disable(&pdev->dev);
1448free_master:
1449 spi_master_put(master);
1450 return status;
1451}
1452
1453static int omap2_mcspi_remove(struct platform_device *pdev)
1454{
1455 struct spi_master *master = platform_get_drvdata(pdev);
1456 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1457
1458 pm_runtime_put_sync(mcspi->dev);
1459 pm_runtime_disable(&pdev->dev);
1460
1461 return 0;
1462}
1463
1464/* work with hotplug and coldplug */
1465MODULE_ALIAS("platform:omap2_mcspi");
1466
1467#ifdef CONFIG_SUSPEND
1468/*
1469 * When SPI wake up from off-mode, CS is in activate state. If it was in
1470 * unactive state when driver was suspend, then force it to unactive state at
1471 * wake up.
1472 */
1473static int omap2_mcspi_resume(struct device *dev)
1474{
1475 struct spi_master *master = dev_get_drvdata(dev);
1476 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1477 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1478 struct omap2_mcspi_cs *cs;
1479
1480 pm_runtime_get_sync(mcspi->dev);
1481 list_for_each_entry(cs, &ctx->cs, node) {
1482 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1483 /*
1484 * We need to toggle CS state for OMAP take this
1485 * change in account.
1486 */
1487 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1488 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1489 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1490 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1491 }
1492 }
1493 pm_runtime_mark_last_busy(mcspi->dev);
1494 pm_runtime_put_autosuspend(mcspi->dev);
1495 return 0;
1496}
1497#else
1498#define omap2_mcspi_resume NULL
1499#endif
1500
1501static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1502 .resume = omap2_mcspi_resume,
1503 .runtime_resume = omap_mcspi_runtime_resume,
1504};
1505
1506static struct platform_driver omap2_mcspi_driver = {
1507 .driver = {
1508 .name = "omap2_mcspi",
1509 .owner = THIS_MODULE,
1510 .pm = &omap2_mcspi_pm_ops,
1511 .of_match_table = omap_mcspi_of_match,
1512 },
1513 .probe = omap2_mcspi_probe,
1514 .remove = omap2_mcspi_remove,
1515};
1516
1517module_platform_driver(omap2_mcspi_driver);
1518MODULE_LICENSE("GPL");