Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * pSeries NUMA support
   4 *
   5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   6 */
   7#define pr_fmt(fmt) "numa: " fmt
   8
   9#include <linux/threads.h>
  10#include <linux/memblock.h>
  11#include <linux/init.h>
  12#include <linux/mm.h>
  13#include <linux/mmzone.h>
  14#include <linux/export.h>
  15#include <linux/nodemask.h>
  16#include <linux/cpu.h>
  17#include <linux/notifier.h>
  18#include <linux/of.h>
  19#include <linux/pfn.h>
  20#include <linux/cpuset.h>
  21#include <linux/node.h>
  22#include <linux/stop_machine.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <asm/cputhreads.h>
  28#include <asm/sparsemem.h>
 
  29#include <asm/smp.h>
  30#include <asm/topology.h>
  31#include <asm/firmware.h>
  32#include <asm/paca.h>
  33#include <asm/hvcall.h>
  34#include <asm/setup.h>
  35#include <asm/vdso.h>
  36#include <asm/drmem.h>
  37
  38static int numa_enabled = 1;
  39
  40static char *cmdline __initdata;
  41
 
 
 
  42int numa_cpu_lookup_table[NR_CPUS];
  43cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  44struct pglist_data *node_data[MAX_NUMNODES];
  45
  46EXPORT_SYMBOL(numa_cpu_lookup_table);
  47EXPORT_SYMBOL(node_to_cpumask_map);
  48EXPORT_SYMBOL(node_data);
  49
  50static int primary_domain_index;
  51static int n_mem_addr_cells, n_mem_size_cells;
  52
  53#define FORM0_AFFINITY 0
  54#define FORM1_AFFINITY 1
  55#define FORM2_AFFINITY 2
  56static int affinity_form;
  57
  58#define MAX_DISTANCE_REF_POINTS 4
  59static int distance_ref_points_depth;
  60static const __be32 *distance_ref_points;
  61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  62static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
  63	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
  64};
  65static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
  66
  67/*
  68 * Allocate node_to_cpumask_map based on number of available nodes
  69 * Requires node_possible_map to be valid.
  70 *
  71 * Note: cpumask_of_node() is not valid until after this is done.
  72 */
  73static void __init setup_node_to_cpumask_map(void)
  74{
  75	unsigned int node;
  76
  77	/* setup nr_node_ids if not done yet */
  78	if (nr_node_ids == MAX_NUMNODES)
  79		setup_nr_node_ids();
  80
  81	/* allocate the map */
  82	for_each_node(node)
  83		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  84
  85	/* cpumask_of_node() will now work */
  86	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
  87}
  88
  89static int __init fake_numa_create_new_node(unsigned long end_pfn,
  90						unsigned int *nid)
  91{
  92	unsigned long long mem;
  93	char *p = cmdline;
  94	static unsigned int fake_nid;
  95	static unsigned long long curr_boundary;
  96
  97	/*
  98	 * Modify node id, iff we started creating NUMA nodes
  99	 * We want to continue from where we left of the last time
 100	 */
 101	if (fake_nid)
 102		*nid = fake_nid;
 103	/*
 104	 * In case there are no more arguments to parse, the
 105	 * node_id should be the same as the last fake node id
 106	 * (we've handled this above).
 107	 */
 108	if (!p)
 109		return 0;
 110
 111	mem = memparse(p, &p);
 112	if (!mem)
 113		return 0;
 114
 115	if (mem < curr_boundary)
 116		return 0;
 117
 118	curr_boundary = mem;
 119
 120	if ((end_pfn << PAGE_SHIFT) > mem) {
 121		/*
 122		 * Skip commas and spaces
 123		 */
 124		while (*p == ',' || *p == ' ' || *p == '\t')
 125			p++;
 126
 127		cmdline = p;
 128		fake_nid++;
 129		*nid = fake_nid;
 130		pr_debug("created new fake_node with id %d\n", fake_nid);
 131		return 1;
 132	}
 133	return 0;
 134}
 135
 136static void __init reset_numa_cpu_lookup_table(void)
 137{
 138	unsigned int cpu;
 139
 140	for_each_possible_cpu(cpu)
 141		numa_cpu_lookup_table[cpu] = -1;
 142}
 143
 144void map_cpu_to_node(int cpu, int node)
 145{
 146	update_numa_cpu_lookup_table(cpu, node);
 147
 148	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
 149		pr_debug("adding cpu %d to node %d\n", cpu, node);
 
 150		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 151	}
 152}
 153
 154#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 155void unmap_cpu_from_node(unsigned long cpu)
 156{
 157	int node = numa_cpu_lookup_table[cpu];
 158
 
 
 159	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 160		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 161		pr_debug("removing cpu %lu from node %d\n", cpu, node);
 162	} else {
 163		pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
 
 164	}
 165}
 166#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 167
 168static int __associativity_to_nid(const __be32 *associativity,
 169				  int max_array_sz)
 170{
 171	int nid;
 172	/*
 173	 * primary_domain_index is 1 based array index.
 174	 */
 175	int index = primary_domain_index  - 1;
 176
 177	if (!numa_enabled || index >= max_array_sz)
 178		return NUMA_NO_NODE;
 179
 180	nid = of_read_number(&associativity[index], 1);
 181
 182	/* POWER4 LPAR uses 0xffff as invalid node */
 183	if (nid == 0xffff || nid >= nr_node_ids)
 184		nid = NUMA_NO_NODE;
 185	return nid;
 186}
 187/*
 188 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
 189 * info is found.
 190 */
 191static int associativity_to_nid(const __be32 *associativity)
 192{
 193	int array_sz = of_read_number(associativity, 1);
 194
 195	/* Skip the first element in the associativity array */
 196	return __associativity_to_nid((associativity + 1), array_sz);
 197}
 198
 199static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 200{
 201	int dist;
 202	int node1, node2;
 203
 204	node1 = associativity_to_nid(cpu1_assoc);
 205	node2 = associativity_to_nid(cpu2_assoc);
 206
 207	dist = numa_distance_table[node1][node2];
 208	if (dist <= LOCAL_DISTANCE)
 209		return 0;
 210	else if (dist <= REMOTE_DISTANCE)
 211		return 1;
 212	else
 213		return 2;
 214}
 215
 216static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 217{
 218	int dist = 0;
 219
 220	int i, index;
 221
 222	for (i = 0; i < distance_ref_points_depth; i++) {
 223		index = be32_to_cpu(distance_ref_points[i]);
 224		if (cpu1_assoc[index] == cpu2_assoc[index])
 225			break;
 226		dist++;
 227	}
 228
 229	return dist;
 230}
 231
 232int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 233{
 234	/* We should not get called with FORM0 */
 235	VM_WARN_ON(affinity_form == FORM0_AFFINITY);
 236	if (affinity_form == FORM1_AFFINITY)
 237		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
 238	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
 239}
 240
 241/* must hold reference to node during call */
 242static const __be32 *of_get_associativity(struct device_node *dev)
 243{
 244	return of_get_property(dev, "ibm,associativity", NULL);
 245}
 246
 247int __node_distance(int a, int b)
 248{
 249	int i;
 250	int distance = LOCAL_DISTANCE;
 251
 252	if (affinity_form == FORM2_AFFINITY)
 253		return numa_distance_table[a][b];
 254	else if (affinity_form == FORM0_AFFINITY)
 255		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 256
 257	for (i = 0; i < distance_ref_points_depth; i++) {
 258		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 259			break;
 260
 261		/* Double the distance for each NUMA level */
 262		distance *= 2;
 263	}
 264
 265	return distance;
 266}
 267EXPORT_SYMBOL(__node_distance);
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269/* Returns the nid associated with the given device tree node,
 270 * or -1 if not found.
 271 */
 272static int of_node_to_nid_single(struct device_node *device)
 273{
 274	int nid = NUMA_NO_NODE;
 275	const __be32 *tmp;
 276
 277	tmp = of_get_associativity(device);
 278	if (tmp)
 279		nid = associativity_to_nid(tmp);
 280	return nid;
 281}
 282
 283/* Walk the device tree upwards, looking for an associativity id */
 284int of_node_to_nid(struct device_node *device)
 285{
 286	int nid = NUMA_NO_NODE;
 287
 288	of_node_get(device);
 289	while (device) {
 290		nid = of_node_to_nid_single(device);
 291		if (nid != -1)
 292			break;
 293
 294		device = of_get_next_parent(device);
 295	}
 296	of_node_put(device);
 297
 298	return nid;
 299}
 300EXPORT_SYMBOL(of_node_to_nid);
 301
 302static void __initialize_form1_numa_distance(const __be32 *associativity,
 303					     int max_array_sz)
 304{
 305	int i, nid;
 306
 307	if (affinity_form != FORM1_AFFINITY)
 308		return;
 309
 310	nid = __associativity_to_nid(associativity, max_array_sz);
 311	if (nid != NUMA_NO_NODE) {
 312		for (i = 0; i < distance_ref_points_depth; i++) {
 313			const __be32 *entry;
 314			int index = be32_to_cpu(distance_ref_points[i]) - 1;
 315
 316			/*
 317			 * broken hierarchy, return with broken distance table
 318			 */
 319			if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
 320				return;
 321
 322			entry = &associativity[index];
 323			distance_lookup_table[nid][i] = of_read_number(entry, 1);
 324		}
 325	}
 326}
 327
 328static void initialize_form1_numa_distance(const __be32 *associativity)
 329{
 330	int array_sz;
 331
 332	array_sz = of_read_number(associativity, 1);
 333	/* Skip the first element in the associativity array */
 334	__initialize_form1_numa_distance(associativity + 1, array_sz);
 335}
 336
 337/*
 338 * Used to update distance information w.r.t newly added node.
 339 */
 340void update_numa_distance(struct device_node *node)
 341{
 342	int nid;
 343
 344	if (affinity_form == FORM0_AFFINITY)
 345		return;
 346	else if (affinity_form == FORM1_AFFINITY) {
 347		const __be32 *associativity;
 348
 349		associativity = of_get_associativity(node);
 350		if (!associativity)
 351			return;
 352
 353		initialize_form1_numa_distance(associativity);
 354		return;
 355	}
 356
 357	/* FORM2 affinity  */
 358	nid = of_node_to_nid_single(node);
 359	if (nid == NUMA_NO_NODE)
 360		return;
 361
 362	/*
 363	 * With FORM2 we expect NUMA distance of all possible NUMA
 364	 * nodes to be provided during boot.
 365	 */
 366	WARN(numa_distance_table[nid][nid] == -1,
 367	     "NUMA distance details for node %d not provided\n", nid);
 368}
 369
 370/*
 371 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
 372 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
 373 */
 374static void __init initialize_form2_numa_distance_lookup_table(void)
 375{
 376	int i, j;
 377	struct device_node *root;
 378	const __u8 *form2_distances;
 379	const __be32 *numa_lookup_index;
 380	int form2_distances_length;
 381	int max_numa_index, distance_index;
 382
 383	if (firmware_has_feature(FW_FEATURE_OPAL))
 384		root = of_find_node_by_path("/ibm,opal");
 385	else
 386		root = of_find_node_by_path("/rtas");
 387	if (!root)
 388		root = of_find_node_by_path("/");
 389
 390	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
 391	max_numa_index = of_read_number(&numa_lookup_index[0], 1);
 392
 393	/* first element of the array is the size and is encode-int */
 394	form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
 395	form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
 396	/* Skip the size which is encoded int */
 397	form2_distances += sizeof(__be32);
 398
 399	pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
 400		 form2_distances_length, max_numa_index);
 401
 402	for (i = 0; i < max_numa_index; i++)
 403		/* +1 skip the max_numa_index in the property */
 404		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
 405
 406
 407	if (form2_distances_length != max_numa_index * max_numa_index) {
 408		WARN(1, "Wrong NUMA distance information\n");
 409		form2_distances = NULL; // don't use it
 410	}
 411	distance_index = 0;
 412	for (i = 0;  i < max_numa_index; i++) {
 413		for (j = 0; j < max_numa_index; j++) {
 414			int nodeA = numa_id_index_table[i];
 415			int nodeB = numa_id_index_table[j];
 416			int dist;
 417
 418			if (form2_distances)
 419				dist = form2_distances[distance_index++];
 420			else if (nodeA == nodeB)
 421				dist = LOCAL_DISTANCE;
 422			else
 423				dist = REMOTE_DISTANCE;
 424			numa_distance_table[nodeA][nodeB] = dist;
 425			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
 426		}
 427	}
 428
 429	of_node_put(root);
 430}
 431
 432static int __init find_primary_domain_index(void)
 433{
 434	int index;
 435	struct device_node *root;
 436
 437	/*
 438	 * Check for which form of affinity.
 439	 */
 440	if (firmware_has_feature(FW_FEATURE_OPAL)) {
 441		affinity_form = FORM1_AFFINITY;
 442	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
 443		pr_debug("Using form 2 affinity\n");
 444		affinity_form = FORM2_AFFINITY;
 445	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
 446		pr_debug("Using form 1 affinity\n");
 447		affinity_form = FORM1_AFFINITY;
 448	} else
 449		affinity_form = FORM0_AFFINITY;
 450
 451	if (firmware_has_feature(FW_FEATURE_OPAL))
 452		root = of_find_node_by_path("/ibm,opal");
 453	else
 454		root = of_find_node_by_path("/rtas");
 455	if (!root)
 456		root = of_find_node_by_path("/");
 457
 458	/*
 459	 * This property is a set of 32-bit integers, each representing
 460	 * an index into the ibm,associativity nodes.
 461	 *
 462	 * With form 0 affinity the first integer is for an SMP configuration
 463	 * (should be all 0's) and the second is for a normal NUMA
 464	 * configuration. We have only one level of NUMA.
 465	 *
 466	 * With form 1 affinity the first integer is the most significant
 467	 * NUMA boundary and the following are progressively less significant
 468	 * boundaries. There can be more than one level of NUMA.
 469	 */
 470	distance_ref_points = of_get_property(root,
 471					"ibm,associativity-reference-points",
 472					&distance_ref_points_depth);
 473
 474	if (!distance_ref_points) {
 475		pr_debug("ibm,associativity-reference-points not found.\n");
 476		goto err;
 477	}
 478
 479	distance_ref_points_depth /= sizeof(int);
 480	if (affinity_form == FORM0_AFFINITY) {
 
 
 
 
 
 
 
 
 
 481		if (distance_ref_points_depth < 2) {
 482			pr_warn("short ibm,associativity-reference-points\n");
 
 483			goto err;
 484		}
 485
 486		index = of_read_number(&distance_ref_points[1], 1);
 487	} else {
 488		/*
 489		 * Both FORM1 and FORM2 affinity find the primary domain details
 490		 * at the same offset.
 491		 */
 492		index = of_read_number(distance_ref_points, 1);
 493	}
 
 494	/*
 495	 * Warn and cap if the hardware supports more than
 496	 * MAX_DISTANCE_REF_POINTS domains.
 497	 */
 498	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 499		pr_warn("distance array capped at %d entries\n",
 500			MAX_DISTANCE_REF_POINTS);
 501		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 502	}
 503
 504	of_node_put(root);
 505	return index;
 506
 507err:
 508	of_node_put(root);
 509	return -1;
 510}
 511
 512static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 513{
 514	struct device_node *memory = NULL;
 515
 516	memory = of_find_node_by_type(memory, "memory");
 517	if (!memory)
 518		panic("numa.c: No memory nodes found!");
 519
 520	*n_addr_cells = of_n_addr_cells(memory);
 521	*n_size_cells = of_n_size_cells(memory);
 522	of_node_put(memory);
 523}
 524
 525static unsigned long read_n_cells(int n, const __be32 **buf)
 526{
 527	unsigned long result = 0;
 528
 529	while (n--) {
 530		result = (result << 32) | of_read_number(*buf, 1);
 531		(*buf)++;
 532	}
 533	return result;
 534}
 535
 536struct assoc_arrays {
 537	u32	n_arrays;
 538	u32	array_sz;
 539	const __be32 *arrays;
 540};
 541
 542/*
 543 * Retrieve and validate the list of associativity arrays for drconf
 544 * memory from the ibm,associativity-lookup-arrays property of the
 545 * device tree..
 546 *
 547 * The layout of the ibm,associativity-lookup-arrays property is a number N
 548 * indicating the number of associativity arrays, followed by a number M
 549 * indicating the size of each associativity array, followed by a list
 550 * of N associativity arrays.
 551 */
 552static int of_get_assoc_arrays(struct assoc_arrays *aa)
 553{
 554	struct device_node *memory;
 555	const __be32 *prop;
 556	u32 len;
 557
 558	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 559	if (!memory)
 560		return -1;
 561
 562	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 563	if (!prop || len < 2 * sizeof(unsigned int)) {
 564		of_node_put(memory);
 565		return -1;
 566	}
 567
 568	aa->n_arrays = of_read_number(prop++, 1);
 569	aa->array_sz = of_read_number(prop++, 1);
 570
 571	of_node_put(memory);
 572
 573	/* Now that we know the number of arrays and size of each array,
 574	 * revalidate the size of the property read in.
 575	 */
 576	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 577		return -1;
 578
 579	aa->arrays = prop;
 580	return 0;
 581}
 582
 583static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
 584{
 585	struct assoc_arrays aa = { .arrays = NULL };
 586	int default_nid = NUMA_NO_NODE;
 587	int nid = default_nid;
 588	int rc, index;
 589
 590	if ((primary_domain_index < 0) || !numa_enabled)
 591		return default_nid;
 592
 593	rc = of_get_assoc_arrays(&aa);
 594	if (rc)
 595		return default_nid;
 596
 597	if (primary_domain_index <= aa.array_sz &&
 598	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 599		const __be32 *associativity;
 600
 601		index = lmb->aa_index * aa.array_sz;
 602		associativity = &aa.arrays[index];
 603		nid = __associativity_to_nid(associativity, aa.array_sz);
 604		if (nid > 0 && affinity_form == FORM1_AFFINITY) {
 605			/*
 606			 * lookup array associativity entries have
 607			 * no length of the array as the first element.
 608			 */
 609			__initialize_form1_numa_distance(associativity, aa.array_sz);
 610		}
 611	}
 612	return nid;
 613}
 614
 615/*
 616 * This is like of_node_to_nid_single() for memory represented in the
 617 * ibm,dynamic-reconfiguration-memory node.
 618 */
 619int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 620{
 621	struct assoc_arrays aa = { .arrays = NULL };
 622	int default_nid = NUMA_NO_NODE;
 623	int nid = default_nid;
 624	int rc, index;
 625
 626	if ((primary_domain_index < 0) || !numa_enabled)
 627		return default_nid;
 628
 629	rc = of_get_assoc_arrays(&aa);
 630	if (rc)
 631		return default_nid;
 632
 633	if (primary_domain_index <= aa.array_sz &&
 634	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 635		const __be32 *associativity;
 
 
 
 
 636
 637		index = lmb->aa_index * aa.array_sz;
 638		associativity = &aa.arrays[index];
 639		nid = __associativity_to_nid(associativity, aa.array_sz);
 
 
 640	}
 
 641	return nid;
 642}
 643
 644#ifdef CONFIG_PPC_SPLPAR
 645
 646static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 647{
 
 648	long rc, hwid;
 649
 650	/*
 651	 * On a shared lpar, device tree will not have node associativity.
 652	 * At this time lppaca, or its __old_status field may not be
 653	 * updated. Hence kernel cannot detect if its on a shared lpar. So
 654	 * request an explicit associativity irrespective of whether the
 655	 * lpar is shared or dedicated. Use the device tree property as a
 656	 * fallback. cpu_to_phys_id is only valid between
 657	 * smp_setup_cpu_maps() and smp_setup_pacas().
 658	 */
 659	if (firmware_has_feature(FW_FEATURE_VPHN)) {
 660		if (cpu_to_phys_id)
 661			hwid = cpu_to_phys_id[lcpu];
 662		else
 663			hwid = get_hard_smp_processor_id(lcpu);
 664
 665		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
 666		if (rc == H_SUCCESS)
 667			return 0;
 668	}
 669
 670	return -1;
 671}
 672
 673static int vphn_get_nid(long lcpu)
 674{
 675	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
 676
 677
 678	if (!__vphn_get_associativity(lcpu, associativity))
 679		return associativity_to_nid(associativity);
 680
 681	return NUMA_NO_NODE;
 682
 683}
 684#else
 685
 686static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 687{
 688	return -1;
 689}
 690
 691static int vphn_get_nid(long unused)
 692{
 693	return NUMA_NO_NODE;
 694}
 695#endif  /* CONFIG_PPC_SPLPAR */
 696
 697/*
 698 * Figure out to which domain a cpu belongs and stick it there.
 699 * Return the id of the domain used.
 700 */
 701static int numa_setup_cpu(unsigned long lcpu)
 702{
 703	struct device_node *cpu;
 704	int fcpu = cpu_first_thread_sibling(lcpu);
 705	int nid = NUMA_NO_NODE;
 706
 707	if (!cpu_present(lcpu)) {
 708		set_cpu_numa_node(lcpu, first_online_node);
 709		return first_online_node;
 710	}
 711
 712	/*
 713	 * If a valid cpu-to-node mapping is already available, use it
 714	 * directly instead of querying the firmware, since it represents
 715	 * the most recent mapping notified to us by the platform (eg: VPHN).
 716	 * Since cpu_to_node binding remains the same for all threads in the
 717	 * core. If a valid cpu-to-node mapping is already available, for
 718	 * the first thread in the core, use it.
 719	 */
 720	nid = numa_cpu_lookup_table[fcpu];
 721	if (nid >= 0) {
 722		map_cpu_to_node(lcpu, nid);
 723		return nid;
 724	}
 725
 726	nid = vphn_get_nid(lcpu);
 727	if (nid != NUMA_NO_NODE)
 728		goto out_present;
 729
 730	cpu = of_get_cpu_node(lcpu, NULL);
 731
 732	if (!cpu) {
 733		WARN_ON(1);
 734		if (cpu_present(lcpu))
 735			goto out_present;
 736		else
 737			goto out;
 738	}
 739
 740	nid = of_node_to_nid_single(cpu);
 741	of_node_put(cpu);
 742
 743out_present:
 744	if (nid < 0 || !node_possible(nid))
 745		nid = first_online_node;
 746
 747	/*
 748	 * Update for the first thread of the core. All threads of a core
 749	 * have to be part of the same node. This not only avoids querying
 750	 * for every other thread in the core, but always avoids a case
 751	 * where virtual node associativity change causes subsequent threads
 752	 * of a core to be associated with different nid. However if first
 753	 * thread is already online, expect it to have a valid mapping.
 754	 */
 755	if (fcpu != lcpu) {
 756		WARN_ON(cpu_online(fcpu));
 757		map_cpu_to_node(fcpu, nid);
 758	}
 759
 760	map_cpu_to_node(lcpu, nid);
 761out:
 762	return nid;
 763}
 764
 765static void verify_cpu_node_mapping(int cpu, int node)
 766{
 767	int base, sibling, i;
 768
 769	/* Verify that all the threads in the core belong to the same node */
 770	base = cpu_first_thread_sibling(cpu);
 771
 772	for (i = 0; i < threads_per_core; i++) {
 773		sibling = base + i;
 774
 775		if (sibling == cpu || cpu_is_offline(sibling))
 776			continue;
 777
 778		if (cpu_to_node(sibling) != node) {
 779			WARN(1, "CPU thread siblings %d and %d don't belong"
 780				" to the same node!\n", cpu, sibling);
 781			break;
 782		}
 783	}
 784}
 785
 786/* Must run before sched domains notifier. */
 787static int ppc_numa_cpu_prepare(unsigned int cpu)
 788{
 789	int nid;
 790
 791	nid = numa_setup_cpu(cpu);
 792	verify_cpu_node_mapping(cpu, nid);
 793	return 0;
 794}
 795
 796static int ppc_numa_cpu_dead(unsigned int cpu)
 797{
 
 
 
 798	return 0;
 799}
 800
 801/*
 802 * Check and possibly modify a memory region to enforce the memory limit.
 803 *
 804 * Returns the size the region should have to enforce the memory limit.
 805 * This will either be the original value of size, a truncated value,
 806 * or zero. If the returned value of size is 0 the region should be
 807 * discarded as it lies wholly above the memory limit.
 808 */
 809static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 810						      unsigned long size)
 811{
 812	/*
 813	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 814	 * we've already adjusted it for the limit and it takes care of
 815	 * having memory holes below the limit.  Also, in the case of
 816	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 817	 */
 818
 819	if (start + size <= memblock_end_of_DRAM())
 820		return size;
 821
 822	if (start >= memblock_end_of_DRAM())
 823		return 0;
 824
 825	return memblock_end_of_DRAM() - start;
 826}
 827
 828/*
 829 * Reads the counter for a given entry in
 830 * linux,drconf-usable-memory property
 831 */
 832static inline int __init read_usm_ranges(const __be32 **usm)
 833{
 834	/*
 835	 * For each lmb in ibm,dynamic-memory a corresponding
 836	 * entry in linux,drconf-usable-memory property contains
 837	 * a counter followed by that many (base, size) duple.
 838	 * read the counter from linux,drconf-usable-memory
 839	 */
 840	return read_n_cells(n_mem_size_cells, usm);
 841}
 842
 843/*
 844 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 845 * node.  This assumes n_mem_{addr,size}_cells have been set.
 846 */
 847static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 848					const __be32 **usm,
 849					void *data)
 850{
 851	unsigned int ranges, is_kexec_kdump = 0;
 852	unsigned long base, size, sz;
 853	int nid;
 854
 855	/*
 856	 * Skip this block if the reserved bit is set in flags (0x80)
 857	 * or if the block is not assigned to this partition (0x8)
 858	 */
 859	if ((lmb->flags & DRCONF_MEM_RESERVED)
 860	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 861		return 0;
 862
 863	if (*usm)
 864		is_kexec_kdump = 1;
 865
 866	base = lmb->base_addr;
 867	size = drmem_lmb_size();
 868	ranges = 1;
 869
 870	if (is_kexec_kdump) {
 871		ranges = read_usm_ranges(usm);
 872		if (!ranges) /* there are no (base, size) duple */
 873			return 0;
 874	}
 875
 876	do {
 877		if (is_kexec_kdump) {
 878			base = read_n_cells(n_mem_addr_cells, usm);
 879			size = read_n_cells(n_mem_size_cells, usm);
 880		}
 881
 882		nid = get_nid_and_numa_distance(lmb);
 883		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 884					  &nid);
 885		node_set_online(nid);
 886		sz = numa_enforce_memory_limit(base, size);
 887		if (sz)
 888			memblock_set_node(base, sz, &memblock.memory, nid);
 889	} while (--ranges);
 890
 891	return 0;
 892}
 893
 894static int __init parse_numa_properties(void)
 895{
 896	struct device_node *memory;
 897	int default_nid = 0;
 898	unsigned long i;
 899	const __be32 *associativity;
 900
 901	if (numa_enabled == 0) {
 902		pr_warn("disabled by user\n");
 903		return -1;
 904	}
 905
 906	primary_domain_index = find_primary_domain_index();
 907
 908	if (primary_domain_index < 0) {
 909		/*
 910		 * if we fail to parse primary_domain_index from device tree
 911		 * mark the numa disabled, boot with numa disabled.
 912		 */
 913		numa_enabled = false;
 914		return primary_domain_index;
 915	}
 916
 917	pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
 918
 919	/*
 920	 * If it is FORM2 initialize the distance table here.
 921	 */
 922	if (affinity_form == FORM2_AFFINITY)
 923		initialize_form2_numa_distance_lookup_table();
 924
 925	/*
 926	 * Even though we connect cpus to numa domains later in SMP
 927	 * init, we need to know the node ids now. This is because
 928	 * each node to be onlined must have NODE_DATA etc backing it.
 929	 */
 930	for_each_present_cpu(i) {
 931		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
 932		struct device_node *cpu;
 933		int nid = NUMA_NO_NODE;
 934
 935		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
 
 
 
 936
 937		if (__vphn_get_associativity(i, vphn_assoc) == 0) {
 938			nid = associativity_to_nid(vphn_assoc);
 939			initialize_form1_numa_distance(vphn_assoc);
 940		} else {
 941
 942			/*
 943			 * Don't fall back to default_nid yet -- we will plug
 944			 * cpus into nodes once the memory scan has discovered
 945			 * the topology.
 946			 */
 947			cpu = of_get_cpu_node(i, NULL);
 948			BUG_ON(!cpu);
 949
 950			associativity = of_get_associativity(cpu);
 951			if (associativity) {
 952				nid = associativity_to_nid(associativity);
 953				initialize_form1_numa_distance(associativity);
 954			}
 955			of_node_put(cpu);
 956		}
 957
 958		/* node_set_online() is an UB if 'nid' is negative */
 959		if (likely(nid >= 0))
 960			node_set_online(nid);
 961	}
 962
 963	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 964
 965	for_each_node_by_type(memory, "memory") {
 966		unsigned long start;
 967		unsigned long size;
 968		int nid;
 969		int ranges;
 970		const __be32 *memcell_buf;
 971		unsigned int len;
 972
 973		memcell_buf = of_get_property(memory,
 974			"linux,usable-memory", &len);
 975		if (!memcell_buf || len <= 0)
 976			memcell_buf = of_get_property(memory, "reg", &len);
 977		if (!memcell_buf || len <= 0)
 978			continue;
 979
 980		/* ranges in cell */
 981		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 982new_range:
 983		/* these are order-sensitive, and modify the buffer pointer */
 984		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 985		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 986
 987		/*
 988		 * Assumption: either all memory nodes or none will
 989		 * have associativity properties.  If none, then
 990		 * everything goes to default_nid.
 991		 */
 992		associativity = of_get_associativity(memory);
 993		if (associativity) {
 994			nid = associativity_to_nid(associativity);
 995			initialize_form1_numa_distance(associativity);
 996		} else
 997			nid = default_nid;
 998
 999		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1000		node_set_online(nid);
1001
1002		size = numa_enforce_memory_limit(start, size);
1003		if (size)
1004			memblock_set_node(start, size, &memblock.memory, nid);
1005
1006		if (--ranges)
1007			goto new_range;
1008	}
1009
1010	/*
1011	 * Now do the same thing for each MEMBLOCK listed in the
1012	 * ibm,dynamic-memory property in the
1013	 * ibm,dynamic-reconfiguration-memory node.
1014	 */
1015	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1016	if (memory) {
1017		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1018		of_node_put(memory);
1019	}
1020
1021	return 0;
1022}
1023
1024static void __init setup_nonnuma(void)
1025{
1026	unsigned long top_of_ram = memblock_end_of_DRAM();
1027	unsigned long total_ram = memblock_phys_mem_size();
1028	unsigned long start_pfn, end_pfn;
1029	unsigned int nid = 0;
1030	int i;
1031
1032	pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1033	pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
 
 
 
 
 
 
1034
1035	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1036		fake_numa_create_new_node(end_pfn, &nid);
1037		memblock_set_node(PFN_PHYS(start_pfn),
1038				  PFN_PHYS(end_pfn - start_pfn),
1039				  &memblock.memory, nid);
1040		node_set_online(nid);
1041	}
1042}
1043
1044void __init dump_numa_cpu_topology(void)
1045{
1046	unsigned int node;
1047	unsigned int cpu, count;
1048
1049	if (!numa_enabled)
1050		return;
1051
1052	for_each_online_node(node) {
1053		pr_info("Node %d CPUs:", node);
1054
1055		count = 0;
1056		/*
1057		 * If we used a CPU iterator here we would miss printing
1058		 * the holes in the cpumap.
1059		 */
1060		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1061			if (cpumask_test_cpu(cpu,
1062					node_to_cpumask_map[node])) {
1063				if (count == 0)
1064					pr_cont(" %u", cpu);
1065				++count;
1066			} else {
1067				if (count > 1)
1068					pr_cont("-%u", cpu - 1);
1069				count = 0;
1070			}
1071		}
1072
1073		if (count > 1)
1074			pr_cont("-%u", nr_cpu_ids - 1);
1075		pr_cont("\n");
1076	}
1077}
1078
1079/* Initialize NODE_DATA for a node on the local memory */
1080static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1081{
1082	u64 spanned_pages = end_pfn - start_pfn;
1083	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1084	u64 nd_pa;
1085	void *nd;
1086	int tnid;
1087
1088	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1089	if (!nd_pa)
1090		panic("Cannot allocate %zu bytes for node %d data\n",
1091		      nd_size, nid);
1092
1093	nd = __va(nd_pa);
1094
1095	/* report and initialize */
1096	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
1097		nd_pa, nd_pa + nd_size - 1);
1098	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1099	if (tnid != nid)
1100		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
1101
1102	node_data[nid] = nd;
1103	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1104	NODE_DATA(nid)->node_id = nid;
1105	NODE_DATA(nid)->node_start_pfn = start_pfn;
1106	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1107}
1108
1109static void __init find_possible_nodes(void)
1110{
1111	struct device_node *rtas;
1112	const __be32 *domains = NULL;
1113	int prop_length, max_nodes;
1114	u32 i;
1115
1116	if (!numa_enabled)
1117		return;
1118
1119	rtas = of_find_node_by_path("/rtas");
1120	if (!rtas)
1121		return;
1122
1123	/*
1124	 * ibm,current-associativity-domains is a fairly recent property. If
1125	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1126	 * Current denotes what the platform can support compared to max
1127	 * which denotes what the Hypervisor can support.
1128	 *
1129	 * If the LPAR is migratable, new nodes might be activated after a LPM,
1130	 * so we should consider the max number in that case.
1131	 */
1132	if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1133		domains = of_get_property(rtas,
1134					  "ibm,current-associativity-domains",
1135					  &prop_length);
1136	if (!domains) {
1137		domains = of_get_property(rtas, "ibm,max-associativity-domains",
1138					&prop_length);
1139		if (!domains)
1140			goto out;
1141	}
1142
1143	max_nodes = of_read_number(&domains[primary_domain_index], 1);
1144	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1145
1146	for (i = 0; i < max_nodes; i++) {
1147		if (!node_possible(i))
1148			node_set(i, node_possible_map);
1149	}
1150
1151	prop_length /= sizeof(int);
1152	if (prop_length > primary_domain_index + 2)
1153		coregroup_enabled = 1;
1154
1155out:
1156	of_node_put(rtas);
1157}
1158
1159void __init mem_topology_setup(void)
1160{
1161	int cpu;
1162
1163	max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1164	min_low_pfn = MEMORY_START >> PAGE_SHIFT;
1165
1166	/*
1167	 * Linux/mm assumes node 0 to be online at boot. However this is not
1168	 * true on PowerPC, where node 0 is similar to any other node, it
1169	 * could be cpuless, memoryless node. So force node 0 to be offline
1170	 * for now. This will prevent cpuless, memoryless node 0 showing up
1171	 * unnecessarily as online. If a node has cpus or memory that need
1172	 * to be online, then node will anyway be marked online.
1173	 */
1174	node_set_offline(0);
1175
1176	if (parse_numa_properties())
1177		setup_nonnuma();
1178
1179	/*
1180	 * Modify the set of possible NUMA nodes to reflect information
1181	 * available about the set of online nodes, and the set of nodes
1182	 * that we expect to make use of for this platform's affinity
1183	 * calculations.
1184	 */
1185	nodes_and(node_possible_map, node_possible_map, node_online_map);
1186
1187	find_possible_nodes();
1188
1189	setup_node_to_cpumask_map();
1190
1191	reset_numa_cpu_lookup_table();
1192
1193	for_each_possible_cpu(cpu) {
1194		/*
1195		 * Powerpc with CONFIG_NUMA always used to have a node 0,
1196		 * even if it was memoryless or cpuless. For all cpus that
1197		 * are possible but not present, cpu_to_node() would point
1198		 * to node 0. To remove a cpuless, memoryless dummy node,
1199		 * powerpc need to make sure all possible but not present
1200		 * cpu_to_node are set to a proper node.
1201		 */
1202		numa_setup_cpu(cpu);
1203	}
1204}
1205
1206void __init initmem_init(void)
1207{
1208	int nid;
1209
 
 
 
1210	memblock_dump_all();
1211
1212	for_each_online_node(nid) {
1213		unsigned long start_pfn, end_pfn;
1214
1215		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1216		setup_node_data(nid, start_pfn, end_pfn);
1217	}
1218
1219	sparse_init();
1220
1221	/*
1222	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1223	 * even before we online them, so that we can use cpu_to_{node,mem}
1224	 * early in boot, cf. smp_prepare_cpus().
1225	 * _nocalls() + manual invocation is used because cpuhp is not yet
1226	 * initialized for the boot CPU.
1227	 */
1228	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1229				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1230}
1231
1232static int __init early_numa(char *p)
1233{
1234	if (!p)
1235		return 0;
1236
1237	if (strstr(p, "off"))
1238		numa_enabled = 0;
1239
 
 
 
1240	p = strstr(p, "fake=");
1241	if (p)
1242		cmdline = p + strlen("fake=");
1243
1244	return 0;
1245}
1246early_param("numa", early_numa);
1247
1248#ifdef CONFIG_MEMORY_HOTPLUG
1249/*
1250 * Find the node associated with a hot added memory section for
1251 * memory represented in the device tree by the property
1252 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1253 */
1254static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1255{
1256	struct drmem_lmb *lmb;
1257	unsigned long lmb_size;
1258	int nid = NUMA_NO_NODE;
1259
1260	lmb_size = drmem_lmb_size();
1261
1262	for_each_drmem_lmb(lmb) {
1263		/* skip this block if it is reserved or not assigned to
1264		 * this partition */
1265		if ((lmb->flags & DRCONF_MEM_RESERVED)
1266		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1267			continue;
1268
1269		if ((scn_addr < lmb->base_addr)
1270		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1271			continue;
1272
1273		nid = of_drconf_to_nid_single(lmb);
1274		break;
1275	}
1276
1277	return nid;
1278}
1279
1280/*
1281 * Find the node associated with a hot added memory section for memory
1282 * represented in the device tree as a node (i.e. memory@XXXX) for
1283 * each memblock.
1284 */
1285static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1286{
1287	struct device_node *memory;
1288	int nid = NUMA_NO_NODE;
1289
1290	for_each_node_by_type(memory, "memory") {
1291		unsigned long start, size;
1292		int ranges;
1293		const __be32 *memcell_buf;
1294		unsigned int len;
1295
1296		memcell_buf = of_get_property(memory, "reg", &len);
1297		if (!memcell_buf || len <= 0)
1298			continue;
1299
1300		/* ranges in cell */
1301		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1302
1303		while (ranges--) {
1304			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1305			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1306
1307			if ((scn_addr < start) || (scn_addr >= (start + size)))
1308				continue;
1309
1310			nid = of_node_to_nid_single(memory);
1311			break;
1312		}
1313
1314		if (nid >= 0)
1315			break;
1316	}
1317
1318	of_node_put(memory);
1319
1320	return nid;
1321}
1322
1323/*
1324 * Find the node associated with a hot added memory section.  Section
1325 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1326 * sections are fully contained within a single MEMBLOCK.
1327 */
1328int hot_add_scn_to_nid(unsigned long scn_addr)
1329{
1330	struct device_node *memory = NULL;
1331	int nid;
1332
1333	if (!numa_enabled)
1334		return first_online_node;
1335
1336	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1337	if (memory) {
1338		nid = hot_add_drconf_scn_to_nid(scn_addr);
1339		of_node_put(memory);
1340	} else {
1341		nid = hot_add_node_scn_to_nid(scn_addr);
1342	}
1343
1344	if (nid < 0 || !node_possible(nid))
1345		nid = first_online_node;
1346
1347	return nid;
1348}
1349
1350static u64 hot_add_drconf_memory_max(void)
1351{
1352	struct device_node *memory = NULL;
1353	struct device_node *dn = NULL;
1354	const __be64 *lrdr = NULL;
1355
1356	dn = of_find_node_by_path("/rtas");
1357	if (dn) {
1358		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1359		of_node_put(dn);
1360		if (lrdr)
1361			return be64_to_cpup(lrdr);
1362	}
1363
1364	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1365	if (memory) {
1366		of_node_put(memory);
1367		return drmem_lmb_memory_max();
1368	}
1369	return 0;
1370}
1371
1372/*
1373 * memory_hotplug_max - return max address of memory that may be added
1374 *
1375 * This is currently only used on systems that support drconfig memory
1376 * hotplug.
1377 */
1378u64 memory_hotplug_max(void)
1379{
1380        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1381}
1382#endif /* CONFIG_MEMORY_HOTPLUG */
1383
1384/* Virtual Processor Home Node (VPHN) support */
1385#ifdef CONFIG_PPC_SPLPAR
1386static int topology_inited;
1387
1388/*
1389 * Retrieve the new associativity information for a virtual processor's
1390 * home node.
1391 */
1392static long vphn_get_associativity(unsigned long cpu,
1393					__be32 *associativity)
1394{
1395	long rc;
1396
1397	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1398				VPHN_FLAG_VCPU, associativity);
1399
1400	switch (rc) {
1401	case H_SUCCESS:
1402		pr_debug("VPHN hcall succeeded. Reset polling...\n");
1403		goto out;
1404
1405	case H_FUNCTION:
1406		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1407		break;
1408	case H_HARDWARE:
1409		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1410			"preventing VPHN. Disabling polling...\n");
1411		break;
1412	case H_PARAMETER:
1413		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1414			"Disabling polling...\n");
1415		break;
1416	default:
1417		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1418			, rc);
1419		break;
1420	}
1421out:
1422	return rc;
1423}
1424
1425void find_and_update_cpu_nid(int cpu)
1426{
1427	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1428	int new_nid;
1429
1430	/* Use associativity from first thread for all siblings */
1431	if (vphn_get_associativity(cpu, associativity))
1432		return;
1433
1434	/* Do not have previous associativity, so find it now. */
1435	new_nid = associativity_to_nid(associativity);
1436
1437	if (new_nid < 0 || !node_possible(new_nid))
1438		new_nid = first_online_node;
1439	else
1440		// Associate node <-> cpu, so cpu_up() calls
1441		// try_online_node() on the right node.
1442		set_cpu_numa_node(cpu, new_nid);
1443
1444	pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
1445}
1446
1447int cpu_to_coregroup_id(int cpu)
1448{
1449	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1450	int index;
1451
1452	if (cpu < 0 || cpu > nr_cpu_ids)
1453		return -1;
1454
1455	if (!coregroup_enabled)
1456		goto out;
1457
1458	if (!firmware_has_feature(FW_FEATURE_VPHN))
1459		goto out;
1460
1461	if (vphn_get_associativity(cpu, associativity))
1462		goto out;
1463
1464	index = of_read_number(associativity, 1);
1465	if (index > primary_domain_index + 1)
1466		return of_read_number(&associativity[index - 1], 1);
 
 
 
 
 
 
 
 
 
 
 
1467
1468out:
1469	return cpu_to_core_id(cpu);
 
1470}
1471
1472static int topology_update_init(void)
1473{
1474	topology_inited = 1;
1475	return 0;
1476}
1477device_initcall(topology_update_init);
1478#endif /* CONFIG_PPC_SPLPAR */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * pSeries NUMA support
   4 *
   5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   6 */
   7#define pr_fmt(fmt) "numa: " fmt
   8
   9#include <linux/threads.h>
  10#include <linux/memblock.h>
  11#include <linux/init.h>
  12#include <linux/mm.h>
  13#include <linux/mmzone.h>
  14#include <linux/export.h>
  15#include <linux/nodemask.h>
  16#include <linux/cpu.h>
  17#include <linux/notifier.h>
  18#include <linux/of.h>
  19#include <linux/pfn.h>
  20#include <linux/cpuset.h>
  21#include <linux/node.h>
  22#include <linux/stop_machine.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <asm/cputhreads.h>
  28#include <asm/sparsemem.h>
  29#include <asm/prom.h>
  30#include <asm/smp.h>
  31#include <asm/topology.h>
  32#include <asm/firmware.h>
  33#include <asm/paca.h>
  34#include <asm/hvcall.h>
  35#include <asm/setup.h>
  36#include <asm/vdso.h>
  37#include <asm/drmem.h>
  38
  39static int numa_enabled = 1;
  40
  41static char *cmdline __initdata;
  42
  43static int numa_debug;
  44#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  45
  46int numa_cpu_lookup_table[NR_CPUS];
  47cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  48struct pglist_data *node_data[MAX_NUMNODES];
  49
  50EXPORT_SYMBOL(numa_cpu_lookup_table);
  51EXPORT_SYMBOL(node_to_cpumask_map);
  52EXPORT_SYMBOL(node_data);
  53
  54static int min_common_depth;
  55static int n_mem_addr_cells, n_mem_size_cells;
  56static int form1_affinity;
 
 
 
 
  57
  58#define MAX_DISTANCE_REF_POINTS 4
  59static int distance_ref_points_depth;
  60static const __be32 *distance_ref_points;
  61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
 
 
 
 
  62
  63/*
  64 * Allocate node_to_cpumask_map based on number of available nodes
  65 * Requires node_possible_map to be valid.
  66 *
  67 * Note: cpumask_of_node() is not valid until after this is done.
  68 */
  69static void __init setup_node_to_cpumask_map(void)
  70{
  71	unsigned int node;
  72
  73	/* setup nr_node_ids if not done yet */
  74	if (nr_node_ids == MAX_NUMNODES)
  75		setup_nr_node_ids();
  76
  77	/* allocate the map */
  78	for_each_node(node)
  79		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  80
  81	/* cpumask_of_node() will now work */
  82	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
  83}
  84
  85static int __init fake_numa_create_new_node(unsigned long end_pfn,
  86						unsigned int *nid)
  87{
  88	unsigned long long mem;
  89	char *p = cmdline;
  90	static unsigned int fake_nid;
  91	static unsigned long long curr_boundary;
  92
  93	/*
  94	 * Modify node id, iff we started creating NUMA nodes
  95	 * We want to continue from where we left of the last time
  96	 */
  97	if (fake_nid)
  98		*nid = fake_nid;
  99	/*
 100	 * In case there are no more arguments to parse, the
 101	 * node_id should be the same as the last fake node id
 102	 * (we've handled this above).
 103	 */
 104	if (!p)
 105		return 0;
 106
 107	mem = memparse(p, &p);
 108	if (!mem)
 109		return 0;
 110
 111	if (mem < curr_boundary)
 112		return 0;
 113
 114	curr_boundary = mem;
 115
 116	if ((end_pfn << PAGE_SHIFT) > mem) {
 117		/*
 118		 * Skip commas and spaces
 119		 */
 120		while (*p == ',' || *p == ' ' || *p == '\t')
 121			p++;
 122
 123		cmdline = p;
 124		fake_nid++;
 125		*nid = fake_nid;
 126		dbg("created new fake_node with id %d\n", fake_nid);
 127		return 1;
 128	}
 129	return 0;
 130}
 131
 132static void reset_numa_cpu_lookup_table(void)
 133{
 134	unsigned int cpu;
 135
 136	for_each_possible_cpu(cpu)
 137		numa_cpu_lookup_table[cpu] = -1;
 138}
 139
 140static void map_cpu_to_node(int cpu, int node)
 141{
 142	update_numa_cpu_lookup_table(cpu, node);
 143
 144	dbg("adding cpu %d to node %d\n", cpu, node);
 145
 146	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 147		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 
 148}
 149
 150#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 151static void unmap_cpu_from_node(unsigned long cpu)
 152{
 153	int node = numa_cpu_lookup_table[cpu];
 154
 155	dbg("removing cpu %lu from node %d\n", cpu, node);
 156
 157	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 158		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 
 159	} else {
 160		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 161		       cpu, node);
 162	}
 163}
 164#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 165
 166int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167{
 168	int dist = 0;
 169
 170	int i, index;
 171
 172	for (i = 0; i < distance_ref_points_depth; i++) {
 173		index = be32_to_cpu(distance_ref_points[i]);
 174		if (cpu1_assoc[index] == cpu2_assoc[index])
 175			break;
 176		dist++;
 177	}
 178
 179	return dist;
 180}
 181
 
 
 
 
 
 
 
 
 
 182/* must hold reference to node during call */
 183static const __be32 *of_get_associativity(struct device_node *dev)
 184{
 185	return of_get_property(dev, "ibm,associativity", NULL);
 186}
 187
 188int __node_distance(int a, int b)
 189{
 190	int i;
 191	int distance = LOCAL_DISTANCE;
 192
 193	if (!form1_affinity)
 
 
 194		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 195
 196	for (i = 0; i < distance_ref_points_depth; i++) {
 197		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 198			break;
 199
 200		/* Double the distance for each NUMA level */
 201		distance *= 2;
 202	}
 203
 204	return distance;
 205}
 206EXPORT_SYMBOL(__node_distance);
 207
 208static void initialize_distance_lookup_table(int nid,
 209		const __be32 *associativity)
 210{
 211	int i;
 212
 213	if (!form1_affinity)
 214		return;
 215
 216	for (i = 0; i < distance_ref_points_depth; i++) {
 217		const __be32 *entry;
 218
 219		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
 220		distance_lookup_table[nid][i] = of_read_number(entry, 1);
 221	}
 222}
 223
 224/*
 225 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
 226 * info is found.
 227 */
 228static int associativity_to_nid(const __be32 *associativity)
 229{
 230	int nid = NUMA_NO_NODE;
 231
 232	if (!numa_enabled)
 233		goto out;
 234
 235	if (of_read_number(associativity, 1) >= min_common_depth)
 236		nid = of_read_number(&associativity[min_common_depth], 1);
 237
 238	/* POWER4 LPAR uses 0xffff as invalid node */
 239	if (nid == 0xffff || nid >= nr_node_ids)
 240		nid = NUMA_NO_NODE;
 241
 242	if (nid > 0 &&
 243		of_read_number(associativity, 1) >= distance_ref_points_depth) {
 244		/*
 245		 * Skip the length field and send start of associativity array
 246		 */
 247		initialize_distance_lookup_table(nid, associativity + 1);
 248	}
 249
 250out:
 251	return nid;
 252}
 253
 254/* Returns the nid associated with the given device tree node,
 255 * or -1 if not found.
 256 */
 257static int of_node_to_nid_single(struct device_node *device)
 258{
 259	int nid = NUMA_NO_NODE;
 260	const __be32 *tmp;
 261
 262	tmp = of_get_associativity(device);
 263	if (tmp)
 264		nid = associativity_to_nid(tmp);
 265	return nid;
 266}
 267
 268/* Walk the device tree upwards, looking for an associativity id */
 269int of_node_to_nid(struct device_node *device)
 270{
 271	int nid = NUMA_NO_NODE;
 272
 273	of_node_get(device);
 274	while (device) {
 275		nid = of_node_to_nid_single(device);
 276		if (nid != -1)
 277			break;
 278
 279		device = of_get_next_parent(device);
 280	}
 281	of_node_put(device);
 282
 283	return nid;
 284}
 285EXPORT_SYMBOL(of_node_to_nid);
 286
 287static int __init find_min_common_depth(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288{
 289	int depth;
 290	struct device_node *root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292	if (firmware_has_feature(FW_FEATURE_OPAL))
 293		root = of_find_node_by_path("/ibm,opal");
 294	else
 295		root = of_find_node_by_path("/rtas");
 296	if (!root)
 297		root = of_find_node_by_path("/");
 298
 299	/*
 300	 * This property is a set of 32-bit integers, each representing
 301	 * an index into the ibm,associativity nodes.
 302	 *
 303	 * With form 0 affinity the first integer is for an SMP configuration
 304	 * (should be all 0's) and the second is for a normal NUMA
 305	 * configuration. We have only one level of NUMA.
 306	 *
 307	 * With form 1 affinity the first integer is the most significant
 308	 * NUMA boundary and the following are progressively less significant
 309	 * boundaries. There can be more than one level of NUMA.
 310	 */
 311	distance_ref_points = of_get_property(root,
 312					"ibm,associativity-reference-points",
 313					&distance_ref_points_depth);
 314
 315	if (!distance_ref_points) {
 316		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 317		goto err;
 318	}
 319
 320	distance_ref_points_depth /= sizeof(int);
 321
 322	if (firmware_has_feature(FW_FEATURE_OPAL) ||
 323	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
 324		dbg("Using form 1 affinity\n");
 325		form1_affinity = 1;
 326	}
 327
 328	if (form1_affinity) {
 329		depth = of_read_number(distance_ref_points, 1);
 330	} else {
 331		if (distance_ref_points_depth < 2) {
 332			printk(KERN_WARNING "NUMA: "
 333				"short ibm,associativity-reference-points\n");
 334			goto err;
 335		}
 336
 337		depth = of_read_number(&distance_ref_points[1], 1);
 
 
 
 
 
 
 338	}
 339
 340	/*
 341	 * Warn and cap if the hardware supports more than
 342	 * MAX_DISTANCE_REF_POINTS domains.
 343	 */
 344	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 345		printk(KERN_WARNING "NUMA: distance array capped at "
 346			"%d entries\n", MAX_DISTANCE_REF_POINTS);
 347		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 348	}
 349
 350	of_node_put(root);
 351	return depth;
 352
 353err:
 354	of_node_put(root);
 355	return -1;
 356}
 357
 358static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 359{
 360	struct device_node *memory = NULL;
 361
 362	memory = of_find_node_by_type(memory, "memory");
 363	if (!memory)
 364		panic("numa.c: No memory nodes found!");
 365
 366	*n_addr_cells = of_n_addr_cells(memory);
 367	*n_size_cells = of_n_size_cells(memory);
 368	of_node_put(memory);
 369}
 370
 371static unsigned long read_n_cells(int n, const __be32 **buf)
 372{
 373	unsigned long result = 0;
 374
 375	while (n--) {
 376		result = (result << 32) | of_read_number(*buf, 1);
 377		(*buf)++;
 378	}
 379	return result;
 380}
 381
 382struct assoc_arrays {
 383	u32	n_arrays;
 384	u32	array_sz;
 385	const __be32 *arrays;
 386};
 387
 388/*
 389 * Retrieve and validate the list of associativity arrays for drconf
 390 * memory from the ibm,associativity-lookup-arrays property of the
 391 * device tree..
 392 *
 393 * The layout of the ibm,associativity-lookup-arrays property is a number N
 394 * indicating the number of associativity arrays, followed by a number M
 395 * indicating the size of each associativity array, followed by a list
 396 * of N associativity arrays.
 397 */
 398static int of_get_assoc_arrays(struct assoc_arrays *aa)
 399{
 400	struct device_node *memory;
 401	const __be32 *prop;
 402	u32 len;
 403
 404	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 405	if (!memory)
 406		return -1;
 407
 408	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 409	if (!prop || len < 2 * sizeof(unsigned int)) {
 410		of_node_put(memory);
 411		return -1;
 412	}
 413
 414	aa->n_arrays = of_read_number(prop++, 1);
 415	aa->array_sz = of_read_number(prop++, 1);
 416
 417	of_node_put(memory);
 418
 419	/* Now that we know the number of arrays and size of each array,
 420	 * revalidate the size of the property read in.
 421	 */
 422	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 423		return -1;
 424
 425	aa->arrays = prop;
 426	return 0;
 427}
 428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429/*
 430 * This is like of_node_to_nid_single() for memory represented in the
 431 * ibm,dynamic-reconfiguration-memory node.
 432 */
 433static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 434{
 435	struct assoc_arrays aa = { .arrays = NULL };
 436	int default_nid = NUMA_NO_NODE;
 437	int nid = default_nid;
 438	int rc, index;
 439
 440	if ((min_common_depth < 0) || !numa_enabled)
 441		return default_nid;
 442
 443	rc = of_get_assoc_arrays(&aa);
 444	if (rc)
 445		return default_nid;
 446
 447	if (min_common_depth <= aa.array_sz &&
 448	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 449		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
 450		nid = of_read_number(&aa.arrays[index], 1);
 451
 452		if (nid == 0xffff || nid >= nr_node_ids)
 453			nid = default_nid;
 454
 455		if (nid > 0) {
 456			index = lmb->aa_index * aa.array_sz;
 457			initialize_distance_lookup_table(nid,
 458							&aa.arrays[index]);
 459		}
 460	}
 461
 462	return nid;
 463}
 464
 465#ifdef CONFIG_PPC_SPLPAR
 466static int vphn_get_nid(long lcpu)
 
 467{
 468	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
 469	long rc, hwid;
 470
 471	/*
 472	 * On a shared lpar, device tree will not have node associativity.
 473	 * At this time lppaca, or its __old_status field may not be
 474	 * updated. Hence kernel cannot detect if its on a shared lpar. So
 475	 * request an explicit associativity irrespective of whether the
 476	 * lpar is shared or dedicated. Use the device tree property as a
 477	 * fallback. cpu_to_phys_id is only valid between
 478	 * smp_setup_cpu_maps() and smp_setup_pacas().
 479	 */
 480	if (firmware_has_feature(FW_FEATURE_VPHN)) {
 481		if (cpu_to_phys_id)
 482			hwid = cpu_to_phys_id[lcpu];
 483		else
 484			hwid = get_hard_smp_processor_id(lcpu);
 485
 486		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
 487		if (rc == H_SUCCESS)
 488			return associativity_to_nid(associativity);
 489	}
 490
 
 
 
 
 
 
 
 
 
 
 
 491	return NUMA_NO_NODE;
 
 492}
 493#else
 
 
 
 
 
 
 494static int vphn_get_nid(long unused)
 495{
 496	return NUMA_NO_NODE;
 497}
 498#endif  /* CONFIG_PPC_SPLPAR */
 499
 500/*
 501 * Figure out to which domain a cpu belongs and stick it there.
 502 * Return the id of the domain used.
 503 */
 504static int numa_setup_cpu(unsigned long lcpu)
 505{
 506	struct device_node *cpu;
 507	int fcpu = cpu_first_thread_sibling(lcpu);
 508	int nid = NUMA_NO_NODE;
 509
 
 
 
 
 
 510	/*
 511	 * If a valid cpu-to-node mapping is already available, use it
 512	 * directly instead of querying the firmware, since it represents
 513	 * the most recent mapping notified to us by the platform (eg: VPHN).
 514	 * Since cpu_to_node binding remains the same for all threads in the
 515	 * core. If a valid cpu-to-node mapping is already available, for
 516	 * the first thread in the core, use it.
 517	 */
 518	nid = numa_cpu_lookup_table[fcpu];
 519	if (nid >= 0) {
 520		map_cpu_to_node(lcpu, nid);
 521		return nid;
 522	}
 523
 524	nid = vphn_get_nid(lcpu);
 525	if (nid != NUMA_NO_NODE)
 526		goto out_present;
 527
 528	cpu = of_get_cpu_node(lcpu, NULL);
 529
 530	if (!cpu) {
 531		WARN_ON(1);
 532		if (cpu_present(lcpu))
 533			goto out_present;
 534		else
 535			goto out;
 536	}
 537
 538	nid = of_node_to_nid_single(cpu);
 539	of_node_put(cpu);
 540
 541out_present:
 542	if (nid < 0 || !node_possible(nid))
 543		nid = first_online_node;
 544
 545	/*
 546	 * Update for the first thread of the core. All threads of a core
 547	 * have to be part of the same node. This not only avoids querying
 548	 * for every other thread in the core, but always avoids a case
 549	 * where virtual node associativity change causes subsequent threads
 550	 * of a core to be associated with different nid. However if first
 551	 * thread is already online, expect it to have a valid mapping.
 552	 */
 553	if (fcpu != lcpu) {
 554		WARN_ON(cpu_online(fcpu));
 555		map_cpu_to_node(fcpu, nid);
 556	}
 557
 558	map_cpu_to_node(lcpu, nid);
 559out:
 560	return nid;
 561}
 562
 563static void verify_cpu_node_mapping(int cpu, int node)
 564{
 565	int base, sibling, i;
 566
 567	/* Verify that all the threads in the core belong to the same node */
 568	base = cpu_first_thread_sibling(cpu);
 569
 570	for (i = 0; i < threads_per_core; i++) {
 571		sibling = base + i;
 572
 573		if (sibling == cpu || cpu_is_offline(sibling))
 574			continue;
 575
 576		if (cpu_to_node(sibling) != node) {
 577			WARN(1, "CPU thread siblings %d and %d don't belong"
 578				" to the same node!\n", cpu, sibling);
 579			break;
 580		}
 581	}
 582}
 583
 584/* Must run before sched domains notifier. */
 585static int ppc_numa_cpu_prepare(unsigned int cpu)
 586{
 587	int nid;
 588
 589	nid = numa_setup_cpu(cpu);
 590	verify_cpu_node_mapping(cpu, nid);
 591	return 0;
 592}
 593
 594static int ppc_numa_cpu_dead(unsigned int cpu)
 595{
 596#ifdef CONFIG_HOTPLUG_CPU
 597	unmap_cpu_from_node(cpu);
 598#endif
 599	return 0;
 600}
 601
 602/*
 603 * Check and possibly modify a memory region to enforce the memory limit.
 604 *
 605 * Returns the size the region should have to enforce the memory limit.
 606 * This will either be the original value of size, a truncated value,
 607 * or zero. If the returned value of size is 0 the region should be
 608 * discarded as it lies wholly above the memory limit.
 609 */
 610static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 611						      unsigned long size)
 612{
 613	/*
 614	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 615	 * we've already adjusted it for the limit and it takes care of
 616	 * having memory holes below the limit.  Also, in the case of
 617	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 618	 */
 619
 620	if (start + size <= memblock_end_of_DRAM())
 621		return size;
 622
 623	if (start >= memblock_end_of_DRAM())
 624		return 0;
 625
 626	return memblock_end_of_DRAM() - start;
 627}
 628
 629/*
 630 * Reads the counter for a given entry in
 631 * linux,drconf-usable-memory property
 632 */
 633static inline int __init read_usm_ranges(const __be32 **usm)
 634{
 635	/*
 636	 * For each lmb in ibm,dynamic-memory a corresponding
 637	 * entry in linux,drconf-usable-memory property contains
 638	 * a counter followed by that many (base, size) duple.
 639	 * read the counter from linux,drconf-usable-memory
 640	 */
 641	return read_n_cells(n_mem_size_cells, usm);
 642}
 643
 644/*
 645 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 646 * node.  This assumes n_mem_{addr,size}_cells have been set.
 647 */
 648static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 649					const __be32 **usm,
 650					void *data)
 651{
 652	unsigned int ranges, is_kexec_kdump = 0;
 653	unsigned long base, size, sz;
 654	int nid;
 655
 656	/*
 657	 * Skip this block if the reserved bit is set in flags (0x80)
 658	 * or if the block is not assigned to this partition (0x8)
 659	 */
 660	if ((lmb->flags & DRCONF_MEM_RESERVED)
 661	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 662		return 0;
 663
 664	if (*usm)
 665		is_kexec_kdump = 1;
 666
 667	base = lmb->base_addr;
 668	size = drmem_lmb_size();
 669	ranges = 1;
 670
 671	if (is_kexec_kdump) {
 672		ranges = read_usm_ranges(usm);
 673		if (!ranges) /* there are no (base, size) duple */
 674			return 0;
 675	}
 676
 677	do {
 678		if (is_kexec_kdump) {
 679			base = read_n_cells(n_mem_addr_cells, usm);
 680			size = read_n_cells(n_mem_size_cells, usm);
 681		}
 682
 683		nid = of_drconf_to_nid_single(lmb);
 684		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 685					  &nid);
 686		node_set_online(nid);
 687		sz = numa_enforce_memory_limit(base, size);
 688		if (sz)
 689			memblock_set_node(base, sz, &memblock.memory, nid);
 690	} while (--ranges);
 691
 692	return 0;
 693}
 694
 695static int __init parse_numa_properties(void)
 696{
 697	struct device_node *memory;
 698	int default_nid = 0;
 699	unsigned long i;
 
 700
 701	if (numa_enabled == 0) {
 702		printk(KERN_WARNING "NUMA disabled by user\n");
 703		return -1;
 704	}
 705
 706	min_common_depth = find_min_common_depth();
 707
 708	if (min_common_depth < 0) {
 709		/*
 710		 * if we fail to parse min_common_depth from device tree
 711		 * mark the numa disabled, boot with numa disabled.
 712		 */
 713		numa_enabled = false;
 714		return min_common_depth;
 715	}
 716
 717	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 
 
 
 
 
 
 718
 719	/*
 720	 * Even though we connect cpus to numa domains later in SMP
 721	 * init, we need to know the node ids now. This is because
 722	 * each node to be onlined must have NODE_DATA etc backing it.
 723	 */
 724	for_each_present_cpu(i) {
 
 725		struct device_node *cpu;
 726		int nid;
 727
 728		cpu = of_get_cpu_node(i, NULL);
 729		BUG_ON(!cpu);
 730		nid = of_node_to_nid_single(cpu);
 731		of_node_put(cpu);
 732
 733		/*
 734		 * Don't fall back to default_nid yet -- we will plug
 735		 * cpus into nodes once the memory scan has discovered
 736		 * the topology.
 737		 */
 738		if (nid < 0)
 739			continue;
 740		node_set_online(nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741	}
 742
 743	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 744
 745	for_each_node_by_type(memory, "memory") {
 746		unsigned long start;
 747		unsigned long size;
 748		int nid;
 749		int ranges;
 750		const __be32 *memcell_buf;
 751		unsigned int len;
 752
 753		memcell_buf = of_get_property(memory,
 754			"linux,usable-memory", &len);
 755		if (!memcell_buf || len <= 0)
 756			memcell_buf = of_get_property(memory, "reg", &len);
 757		if (!memcell_buf || len <= 0)
 758			continue;
 759
 760		/* ranges in cell */
 761		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 762new_range:
 763		/* these are order-sensitive, and modify the buffer pointer */
 764		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 765		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 766
 767		/*
 768		 * Assumption: either all memory nodes or none will
 769		 * have associativity properties.  If none, then
 770		 * everything goes to default_nid.
 771		 */
 772		nid = of_node_to_nid_single(memory);
 773		if (nid < 0)
 
 
 
 774			nid = default_nid;
 775
 776		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 777		node_set_online(nid);
 778
 779		size = numa_enforce_memory_limit(start, size);
 780		if (size)
 781			memblock_set_node(start, size, &memblock.memory, nid);
 782
 783		if (--ranges)
 784			goto new_range;
 785	}
 786
 787	/*
 788	 * Now do the same thing for each MEMBLOCK listed in the
 789	 * ibm,dynamic-memory property in the
 790	 * ibm,dynamic-reconfiguration-memory node.
 791	 */
 792	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 793	if (memory) {
 794		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
 795		of_node_put(memory);
 796	}
 797
 798	return 0;
 799}
 800
 801static void __init setup_nonnuma(void)
 802{
 803	unsigned long top_of_ram = memblock_end_of_DRAM();
 804	unsigned long total_ram = memblock_phys_mem_size();
 805	unsigned long start_pfn, end_pfn;
 806	unsigned int nid = 0;
 807	struct memblock_region *reg;
 808
 809	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 810	       top_of_ram, total_ram);
 811	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 812	       (top_of_ram - total_ram) >> 20);
 813
 814	for_each_memblock(memory, reg) {
 815		start_pfn = memblock_region_memory_base_pfn(reg);
 816		end_pfn = memblock_region_memory_end_pfn(reg);
 817
 
 818		fake_numa_create_new_node(end_pfn, &nid);
 819		memblock_set_node(PFN_PHYS(start_pfn),
 820				  PFN_PHYS(end_pfn - start_pfn),
 821				  &memblock.memory, nid);
 822		node_set_online(nid);
 823	}
 824}
 825
 826void __init dump_numa_cpu_topology(void)
 827{
 828	unsigned int node;
 829	unsigned int cpu, count;
 830
 831	if (!numa_enabled)
 832		return;
 833
 834	for_each_online_node(node) {
 835		pr_info("Node %d CPUs:", node);
 836
 837		count = 0;
 838		/*
 839		 * If we used a CPU iterator here we would miss printing
 840		 * the holes in the cpumap.
 841		 */
 842		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 843			if (cpumask_test_cpu(cpu,
 844					node_to_cpumask_map[node])) {
 845				if (count == 0)
 846					pr_cont(" %u", cpu);
 847				++count;
 848			} else {
 849				if (count > 1)
 850					pr_cont("-%u", cpu - 1);
 851				count = 0;
 852			}
 853		}
 854
 855		if (count > 1)
 856			pr_cont("-%u", nr_cpu_ids - 1);
 857		pr_cont("\n");
 858	}
 859}
 860
 861/* Initialize NODE_DATA for a node on the local memory */
 862static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
 863{
 864	u64 spanned_pages = end_pfn - start_pfn;
 865	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
 866	u64 nd_pa;
 867	void *nd;
 868	int tnid;
 869
 870	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
 871	if (!nd_pa)
 872		panic("Cannot allocate %zu bytes for node %d data\n",
 873		      nd_size, nid);
 874
 875	nd = __va(nd_pa);
 876
 877	/* report and initialize */
 878	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
 879		nd_pa, nd_pa + nd_size - 1);
 880	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
 881	if (tnid != nid)
 882		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
 883
 884	node_data[nid] = nd;
 885	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
 886	NODE_DATA(nid)->node_id = nid;
 887	NODE_DATA(nid)->node_start_pfn = start_pfn;
 888	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
 889}
 890
 891static void __init find_possible_nodes(void)
 892{
 893	struct device_node *rtas;
 894	u32 numnodes, i;
 
 
 895
 896	if (!numa_enabled)
 897		return;
 898
 899	rtas = of_find_node_by_path("/rtas");
 900	if (!rtas)
 901		return;
 902
 903	if (of_property_read_u32_index(rtas,
 904				"ibm,max-associativity-domains",
 905				min_common_depth, &numnodes))
 906		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907
 908	for (i = 0; i < numnodes; i++) {
 909		if (!node_possible(i))
 910			node_set(i, node_possible_map);
 911	}
 912
 
 
 
 
 913out:
 914	of_node_put(rtas);
 915}
 916
 917void __init mem_topology_setup(void)
 918{
 919	int cpu;
 920
 
 
 
 
 
 
 
 
 
 
 
 
 
 921	if (parse_numa_properties())
 922		setup_nonnuma();
 923
 924	/*
 925	 * Modify the set of possible NUMA nodes to reflect information
 926	 * available about the set of online nodes, and the set of nodes
 927	 * that we expect to make use of for this platform's affinity
 928	 * calculations.
 929	 */
 930	nodes_and(node_possible_map, node_possible_map, node_online_map);
 931
 932	find_possible_nodes();
 933
 934	setup_node_to_cpumask_map();
 935
 936	reset_numa_cpu_lookup_table();
 937
 938	for_each_present_cpu(cpu)
 
 
 
 
 
 
 
 
 939		numa_setup_cpu(cpu);
 
 940}
 941
 942void __init initmem_init(void)
 943{
 944	int nid;
 945
 946	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
 947	max_pfn = max_low_pfn;
 948
 949	memblock_dump_all();
 950
 951	for_each_online_node(nid) {
 952		unsigned long start_pfn, end_pfn;
 953
 954		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 955		setup_node_data(nid, start_pfn, end_pfn);
 956	}
 957
 958	sparse_init();
 959
 960	/*
 961	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
 962	 * even before we online them, so that we can use cpu_to_{node,mem}
 963	 * early in boot, cf. smp_prepare_cpus().
 964	 * _nocalls() + manual invocation is used because cpuhp is not yet
 965	 * initialized for the boot CPU.
 966	 */
 967	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
 968				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
 969}
 970
 971static int __init early_numa(char *p)
 972{
 973	if (!p)
 974		return 0;
 975
 976	if (strstr(p, "off"))
 977		numa_enabled = 0;
 978
 979	if (strstr(p, "debug"))
 980		numa_debug = 1;
 981
 982	p = strstr(p, "fake=");
 983	if (p)
 984		cmdline = p + strlen("fake=");
 985
 986	return 0;
 987}
 988early_param("numa", early_numa);
 989
 990#ifdef CONFIG_MEMORY_HOTPLUG
 991/*
 992 * Find the node associated with a hot added memory section for
 993 * memory represented in the device tree by the property
 994 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
 995 */
 996static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
 997{
 998	struct drmem_lmb *lmb;
 999	unsigned long lmb_size;
1000	int nid = NUMA_NO_NODE;
1001
1002	lmb_size = drmem_lmb_size();
1003
1004	for_each_drmem_lmb(lmb) {
1005		/* skip this block if it is reserved or not assigned to
1006		 * this partition */
1007		if ((lmb->flags & DRCONF_MEM_RESERVED)
1008		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1009			continue;
1010
1011		if ((scn_addr < lmb->base_addr)
1012		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1013			continue;
1014
1015		nid = of_drconf_to_nid_single(lmb);
1016		break;
1017	}
1018
1019	return nid;
1020}
1021
1022/*
1023 * Find the node associated with a hot added memory section for memory
1024 * represented in the device tree as a node (i.e. memory@XXXX) for
1025 * each memblock.
1026 */
1027static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1028{
1029	struct device_node *memory;
1030	int nid = NUMA_NO_NODE;
1031
1032	for_each_node_by_type(memory, "memory") {
1033		unsigned long start, size;
1034		int ranges;
1035		const __be32 *memcell_buf;
1036		unsigned int len;
1037
1038		memcell_buf = of_get_property(memory, "reg", &len);
1039		if (!memcell_buf || len <= 0)
1040			continue;
1041
1042		/* ranges in cell */
1043		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1044
1045		while (ranges--) {
1046			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1047			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1048
1049			if ((scn_addr < start) || (scn_addr >= (start + size)))
1050				continue;
1051
1052			nid = of_node_to_nid_single(memory);
1053			break;
1054		}
1055
1056		if (nid >= 0)
1057			break;
1058	}
1059
1060	of_node_put(memory);
1061
1062	return nid;
1063}
1064
1065/*
1066 * Find the node associated with a hot added memory section.  Section
1067 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1068 * sections are fully contained within a single MEMBLOCK.
1069 */
1070int hot_add_scn_to_nid(unsigned long scn_addr)
1071{
1072	struct device_node *memory = NULL;
1073	int nid;
1074
1075	if (!numa_enabled)
1076		return first_online_node;
1077
1078	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1079	if (memory) {
1080		nid = hot_add_drconf_scn_to_nid(scn_addr);
1081		of_node_put(memory);
1082	} else {
1083		nid = hot_add_node_scn_to_nid(scn_addr);
1084	}
1085
1086	if (nid < 0 || !node_possible(nid))
1087		nid = first_online_node;
1088
1089	return nid;
1090}
1091
1092static u64 hot_add_drconf_memory_max(void)
1093{
1094	struct device_node *memory = NULL;
1095	struct device_node *dn = NULL;
1096	const __be64 *lrdr = NULL;
1097
1098	dn = of_find_node_by_path("/rtas");
1099	if (dn) {
1100		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1101		of_node_put(dn);
1102		if (lrdr)
1103			return be64_to_cpup(lrdr);
1104	}
1105
1106	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1107	if (memory) {
1108		of_node_put(memory);
1109		return drmem_lmb_memory_max();
1110	}
1111	return 0;
1112}
1113
1114/*
1115 * memory_hotplug_max - return max address of memory that may be added
1116 *
1117 * This is currently only used on systems that support drconfig memory
1118 * hotplug.
1119 */
1120u64 memory_hotplug_max(void)
1121{
1122        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1123}
1124#endif /* CONFIG_MEMORY_HOTPLUG */
1125
1126/* Virtual Processor Home Node (VPHN) support */
1127#ifdef CONFIG_PPC_SPLPAR
1128static int topology_inited;
1129
1130/*
1131 * Retrieve the new associativity information for a virtual processor's
1132 * home node.
1133 */
1134static long vphn_get_associativity(unsigned long cpu,
1135					__be32 *associativity)
1136{
1137	long rc;
1138
1139	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1140				VPHN_FLAG_VCPU, associativity);
1141
1142	switch (rc) {
1143	case H_SUCCESS:
1144		dbg("VPHN hcall succeeded. Reset polling...\n");
1145		goto out;
1146
1147	case H_FUNCTION:
1148		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1149		break;
1150	case H_HARDWARE:
1151		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1152			"preventing VPHN. Disabling polling...\n");
1153		break;
1154	case H_PARAMETER:
1155		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1156			"Disabling polling...\n");
1157		break;
1158	default:
1159		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1160			, rc);
1161		break;
1162	}
1163out:
1164	return rc;
1165}
1166
1167int find_and_online_cpu_nid(int cpu)
1168{
1169	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1170	int new_nid;
1171
1172	/* Use associativity from first thread for all siblings */
1173	if (vphn_get_associativity(cpu, associativity))
1174		return cpu_to_node(cpu);
1175
 
1176	new_nid = associativity_to_nid(associativity);
 
1177	if (new_nid < 0 || !node_possible(new_nid))
1178		new_nid = first_online_node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179
1180	if (NODE_DATA(new_nid) == NULL) {
1181#ifdef CONFIG_MEMORY_HOTPLUG
1182		/*
1183		 * Need to ensure that NODE_DATA is initialized for a node from
1184		 * available memory (see memblock_alloc_try_nid). If unable to
1185		 * init the node, then default to nearest node that has memory
1186		 * installed. Skip onlining a node if the subsystems are not
1187		 * yet initialized.
1188		 */
1189		if (!topology_inited || try_online_node(new_nid))
1190			new_nid = first_online_node;
1191#else
1192		/*
1193		 * Default to using the nearest node that has memory installed.
1194		 * Otherwise, it would be necessary to patch the kernel MM code
1195		 * to deal with more memoryless-node error conditions.
1196		 */
1197		new_nid = first_online_node;
1198#endif
1199	}
1200
1201	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1202		cpu, new_nid);
1203	return new_nid;
1204}
1205
1206static int topology_update_init(void)
1207{
1208	topology_inited = 1;
1209	return 0;
1210}
1211device_initcall(topology_update_init);
1212#endif /* CONFIG_PPC_SPLPAR */