Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * pSeries NUMA support
   4 *
   5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 
 
 
 
 
   6 */
   7#define pr_fmt(fmt) "numa: " fmt
   8
   9#include <linux/threads.h>
  10#include <linux/memblock.h>
  11#include <linux/init.h>
  12#include <linux/mm.h>
  13#include <linux/mmzone.h>
  14#include <linux/export.h>
  15#include <linux/nodemask.h>
  16#include <linux/cpu.h>
  17#include <linux/notifier.h>
 
  18#include <linux/of.h>
  19#include <linux/pfn.h>
  20#include <linux/cpuset.h>
  21#include <linux/node.h>
  22#include <linux/stop_machine.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <asm/cputhreads.h>
  28#include <asm/sparsemem.h>
 
 
  29#include <asm/smp.h>
  30#include <asm/topology.h>
  31#include <asm/firmware.h>
  32#include <asm/paca.h>
  33#include <asm/hvcall.h>
  34#include <asm/setup.h>
  35#include <asm/vdso.h>
  36#include <asm/drmem.h>
  37
  38static int numa_enabled = 1;
  39
  40static char *cmdline __initdata;
  41
 
 
 
  42int numa_cpu_lookup_table[NR_CPUS];
  43cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  44struct pglist_data *node_data[MAX_NUMNODES];
  45
  46EXPORT_SYMBOL(numa_cpu_lookup_table);
  47EXPORT_SYMBOL(node_to_cpumask_map);
  48EXPORT_SYMBOL(node_data);
  49
  50static int primary_domain_index;
  51static int n_mem_addr_cells, n_mem_size_cells;
  52
  53#define FORM0_AFFINITY 0
  54#define FORM1_AFFINITY 1
  55#define FORM2_AFFINITY 2
  56static int affinity_form;
  57
  58#define MAX_DISTANCE_REF_POINTS 4
  59static int distance_ref_points_depth;
  60static const __be32 *distance_ref_points;
  61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  62static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
  63	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
  64};
  65static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
  66
  67/*
  68 * Allocate node_to_cpumask_map based on number of available nodes
  69 * Requires node_possible_map to be valid.
  70 *
  71 * Note: cpumask_of_node() is not valid until after this is done.
  72 */
  73static void __init setup_node_to_cpumask_map(void)
  74{
  75	unsigned int node;
  76
  77	/* setup nr_node_ids if not done yet */
  78	if (nr_node_ids == MAX_NUMNODES)
  79		setup_nr_node_ids();
 
 
 
  80
  81	/* allocate the map */
  82	for_each_node(node)
  83		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  84
  85	/* cpumask_of_node() will now work */
  86	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
  87}
  88
  89static int __init fake_numa_create_new_node(unsigned long end_pfn,
  90						unsigned int *nid)
  91{
  92	unsigned long long mem;
  93	char *p = cmdline;
  94	static unsigned int fake_nid;
  95	static unsigned long long curr_boundary;
  96
  97	/*
  98	 * Modify node id, iff we started creating NUMA nodes
  99	 * We want to continue from where we left of the last time
 100	 */
 101	if (fake_nid)
 102		*nid = fake_nid;
 103	/*
 104	 * In case there are no more arguments to parse, the
 105	 * node_id should be the same as the last fake node id
 106	 * (we've handled this above).
 107	 */
 108	if (!p)
 109		return 0;
 110
 111	mem = memparse(p, &p);
 112	if (!mem)
 113		return 0;
 114
 115	if (mem < curr_boundary)
 116		return 0;
 117
 118	curr_boundary = mem;
 119
 120	if ((end_pfn << PAGE_SHIFT) > mem) {
 121		/*
 122		 * Skip commas and spaces
 123		 */
 124		while (*p == ',' || *p == ' ' || *p == '\t')
 125			p++;
 126
 127		cmdline = p;
 128		fake_nid++;
 129		*nid = fake_nid;
 130		pr_debug("created new fake_node with id %d\n", fake_nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131		return 1;
 132	}
 133	return 0;
 
 134}
 135
 136static void __init reset_numa_cpu_lookup_table(void)
 
 
 
 
 
 
 
 137{
 138	unsigned int cpu;
 139
 140	for_each_possible_cpu(cpu)
 141		numa_cpu_lookup_table[cpu] = -1;
 
 
 142}
 143
 144void map_cpu_to_node(int cpu, int node)
 145{
 146	update_numa_cpu_lookup_table(cpu, node);
 
 
 147
 148	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
 149		pr_debug("adding cpu %d to node %d\n", cpu, node);
 150		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 151	}
 152}
 153
 154#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 155void unmap_cpu_from_node(unsigned long cpu)
 156{
 157	int node = numa_cpu_lookup_table[cpu];
 158
 
 
 159	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 160		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 161		pr_debug("removing cpu %lu from node %d\n", cpu, node);
 162	} else {
 163		pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
 
 164	}
 165}
 166#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 167
 168static int __associativity_to_nid(const __be32 *associativity,
 169				  int max_array_sz)
 170{
 171	int nid;
 172	/*
 173	 * primary_domain_index is 1 based array index.
 174	 */
 175	int index = primary_domain_index  - 1;
 176
 177	if (!numa_enabled || index >= max_array_sz)
 178		return NUMA_NO_NODE;
 179
 180	nid = of_read_number(&associativity[index], 1);
 181
 182	/* POWER4 LPAR uses 0xffff as invalid node */
 183	if (nid == 0xffff || nid >= nr_node_ids)
 184		nid = NUMA_NO_NODE;
 185	return nid;
 186}
 
 187/*
 188 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
 189 * info is found.
 
 190 */
 191static int associativity_to_nid(const __be32 *associativity)
 192{
 193	int array_sz = of_read_number(associativity, 1);
 194
 195	/* Skip the first element in the associativity array */
 196	return __associativity_to_nid((associativity + 1), array_sz);
 197}
 198
 199static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 200{
 201	int dist;
 202	int node1, node2;
 203
 204	node1 = associativity_to_nid(cpu1_assoc);
 205	node2 = associativity_to_nid(cpu2_assoc);
 206
 207	dist = numa_distance_table[node1][node2];
 208	if (dist <= LOCAL_DISTANCE)
 209		return 0;
 210	else if (dist <= REMOTE_DISTANCE)
 211		return 1;
 212	else
 213		return 2;
 214}
 215
 216static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 217{
 218	int dist = 0;
 
 219
 220	int i, index;
 
 221
 222	for (i = 0; i < distance_ref_points_depth; i++) {
 223		index = be32_to_cpu(distance_ref_points[i]);
 224		if (cpu1_assoc[index] == cpu2_assoc[index])
 225			break;
 226		dist++;
 
 
 227	}
 228
 229	return dist;
 230}
 231
 232int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 
 233{
 234	/* We should not get called with FORM0 */
 235	VM_WARN_ON(affinity_form == FORM0_AFFINITY);
 236	if (affinity_form == FORM1_AFFINITY)
 237		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
 238	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
 239}
 240
 241/* must hold reference to node during call */
 242static const __be32 *of_get_associativity(struct device_node *dev)
 243{
 244	return of_get_property(dev, "ibm,associativity", NULL);
 
 
 
 245}
 246
 247int __node_distance(int a, int b)
 
 
 
 248{
 249	int i;
 250	int distance = LOCAL_DISTANCE;
 251
 252	if (affinity_form == FORM2_AFFINITY)
 253		return numa_distance_table[a][b];
 254	else if (affinity_form == FORM0_AFFINITY)
 255		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 256
 257	for (i = 0; i < distance_ref_points_depth; i++) {
 258		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 259			break;
 260
 261		/* Double the distance for each NUMA level */
 262		distance *= 2;
 263	}
 264
 265	return distance;
 
 
 
 
 266}
 267EXPORT_SYMBOL(__node_distance);
 268
 269/* Returns the nid associated with the given device tree node,
 270 * or -1 if not found.
 271 */
 272static int of_node_to_nid_single(struct device_node *device)
 273{
 274	int nid = NUMA_NO_NODE;
 275	const __be32 *tmp;
 276
 277	tmp = of_get_associativity(device);
 278	if (tmp)
 279		nid = associativity_to_nid(tmp);
 280	return nid;
 281}
 282
 283/* Walk the device tree upwards, looking for an associativity id */
 284int of_node_to_nid(struct device_node *device)
 285{
 286	int nid = NUMA_NO_NODE;
 
 287
 288	of_node_get(device);
 289	while (device) {
 290		nid = of_node_to_nid_single(device);
 291		if (nid != -1)
 292			break;
 293
 294		device = of_get_next_parent(device);
 
 
 295	}
 296	of_node_put(device);
 297
 298	return nid;
 299}
 300EXPORT_SYMBOL(of_node_to_nid);
 301
 302static void __initialize_form1_numa_distance(const __be32 *associativity,
 303					     int max_array_sz)
 304{
 305	int i, nid;
 306
 307	if (affinity_form != FORM1_AFFINITY)
 308		return;
 309
 310	nid = __associativity_to_nid(associativity, max_array_sz);
 311	if (nid != NUMA_NO_NODE) {
 312		for (i = 0; i < distance_ref_points_depth; i++) {
 313			const __be32 *entry;
 314			int index = be32_to_cpu(distance_ref_points[i]) - 1;
 315
 316			/*
 317			 * broken hierarchy, return with broken distance table
 318			 */
 319			if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
 320				return;
 321
 322			entry = &associativity[index];
 323			distance_lookup_table[nid][i] = of_read_number(entry, 1);
 324		}
 325	}
 326}
 327
 328static void initialize_form1_numa_distance(const __be32 *associativity)
 329{
 330	int array_sz;
 331
 332	array_sz = of_read_number(associativity, 1);
 333	/* Skip the first element in the associativity array */
 334	__initialize_form1_numa_distance(associativity + 1, array_sz);
 335}
 336
 337/*
 338 * Used to update distance information w.r.t newly added node.
 339 */
 340void update_numa_distance(struct device_node *node)
 341{
 342	int nid;
 343
 344	if (affinity_form == FORM0_AFFINITY)
 345		return;
 346	else if (affinity_form == FORM1_AFFINITY) {
 347		const __be32 *associativity;
 348
 349		associativity = of_get_associativity(node);
 350		if (!associativity)
 351			return;
 352
 353		initialize_form1_numa_distance(associativity);
 354		return;
 355	}
 356
 357	/* FORM2 affinity  */
 358	nid = of_node_to_nid_single(node);
 359	if (nid == NUMA_NO_NODE)
 360		return;
 361
 362	/*
 363	 * With FORM2 we expect NUMA distance of all possible NUMA
 364	 * nodes to be provided during boot.
 365	 */
 366	WARN(numa_distance_table[nid][nid] == -1,
 367	     "NUMA distance details for node %d not provided\n", nid);
 368}
 369
 370/*
 371 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
 372 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
 373 */
 374static void __init initialize_form2_numa_distance_lookup_table(void)
 375{
 376	int i, j;
 377	struct device_node *root;
 378	const __u8 *form2_distances;
 379	const __be32 *numa_lookup_index;
 380	int form2_distances_length;
 381	int max_numa_index, distance_index;
 382
 383	if (firmware_has_feature(FW_FEATURE_OPAL))
 384		root = of_find_node_by_path("/ibm,opal");
 385	else
 386		root = of_find_node_by_path("/rtas");
 387	if (!root)
 388		root = of_find_node_by_path("/");
 389
 390	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
 391	max_numa_index = of_read_number(&numa_lookup_index[0], 1);
 392
 393	/* first element of the array is the size and is encode-int */
 394	form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
 395	form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
 396	/* Skip the size which is encoded int */
 397	form2_distances += sizeof(__be32);
 398
 399	pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
 400		 form2_distances_length, max_numa_index);
 401
 402	for (i = 0; i < max_numa_index; i++)
 403		/* +1 skip the max_numa_index in the property */
 404		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
 405
 406
 407	if (form2_distances_length != max_numa_index * max_numa_index) {
 408		WARN(1, "Wrong NUMA distance information\n");
 409		form2_distances = NULL; // don't use it
 410	}
 411	distance_index = 0;
 412	for (i = 0;  i < max_numa_index; i++) {
 413		for (j = 0; j < max_numa_index; j++) {
 414			int nodeA = numa_id_index_table[i];
 415			int nodeB = numa_id_index_table[j];
 416			int dist;
 417
 418			if (form2_distances)
 419				dist = form2_distances[distance_index++];
 420			else if (nodeA == nodeB)
 421				dist = LOCAL_DISTANCE;
 422			else
 423				dist = REMOTE_DISTANCE;
 424			numa_distance_table[nodeA][nodeB] = dist;
 425			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
 426		}
 427	}
 428
 429	of_node_put(root);
 430}
 431
 432static int __init find_primary_domain_index(void)
 433{
 434	int index;
 
 435	struct device_node *root;
 
 436
 437	/*
 438	 * Check for which form of affinity.
 439	 */
 440	if (firmware_has_feature(FW_FEATURE_OPAL)) {
 441		affinity_form = FORM1_AFFINITY;
 442	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
 443		pr_debug("Using form 2 affinity\n");
 444		affinity_form = FORM2_AFFINITY;
 445	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
 446		pr_debug("Using form 1 affinity\n");
 447		affinity_form = FORM1_AFFINITY;
 448	} else
 449		affinity_form = FORM0_AFFINITY;
 450
 451	if (firmware_has_feature(FW_FEATURE_OPAL))
 452		root = of_find_node_by_path("/ibm,opal");
 453	else
 454		root = of_find_node_by_path("/rtas");
 455	if (!root)
 456		root = of_find_node_by_path("/");
 457
 458	/*
 459	 * This property is a set of 32-bit integers, each representing
 460	 * an index into the ibm,associativity nodes.
 461	 *
 462	 * With form 0 affinity the first integer is for an SMP configuration
 463	 * (should be all 0's) and the second is for a normal NUMA
 464	 * configuration. We have only one level of NUMA.
 465	 *
 466	 * With form 1 affinity the first integer is the most significant
 467	 * NUMA boundary and the following are progressively less significant
 468	 * boundaries. There can be more than one level of NUMA.
 469	 */
 470	distance_ref_points = of_get_property(root,
 471					"ibm,associativity-reference-points",
 472					&distance_ref_points_depth);
 473
 474	if (!distance_ref_points) {
 475		pr_debug("ibm,associativity-reference-points not found.\n");
 476		goto err;
 477	}
 478
 479	distance_ref_points_depth /= sizeof(int);
 480	if (affinity_form == FORM0_AFFINITY) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481		if (distance_ref_points_depth < 2) {
 482			pr_warn("short ibm,associativity-reference-points\n");
 
 483			goto err;
 484		}
 485
 486		index = of_read_number(&distance_ref_points[1], 1);
 487	} else {
 488		/*
 489		 * Both FORM1 and FORM2 affinity find the primary domain details
 490		 * at the same offset.
 491		 */
 492		index = of_read_number(distance_ref_points, 1);
 493	}
 
 494	/*
 495	 * Warn and cap if the hardware supports more than
 496	 * MAX_DISTANCE_REF_POINTS domains.
 497	 */
 498	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 499		pr_warn("distance array capped at %d entries\n",
 500			MAX_DISTANCE_REF_POINTS);
 501		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 502	}
 503
 504	of_node_put(root);
 505	return index;
 506
 507err:
 508	of_node_put(root);
 509	return -1;
 510}
 511
 512static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 513{
 514	struct device_node *memory = NULL;
 515
 516	memory = of_find_node_by_type(memory, "memory");
 517	if (!memory)
 518		panic("numa.c: No memory nodes found!");
 519
 520	*n_addr_cells = of_n_addr_cells(memory);
 521	*n_size_cells = of_n_size_cells(memory);
 522	of_node_put(memory);
 523}
 524
 525static unsigned long read_n_cells(int n, const __be32 **buf)
 526{
 527	unsigned long result = 0;
 528
 529	while (n--) {
 530		result = (result << 32) | of_read_number(*buf, 1);
 531		(*buf)++;
 532	}
 533	return result;
 534}
 535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536struct assoc_arrays {
 537	u32	n_arrays;
 538	u32	array_sz;
 539	const __be32 *arrays;
 540};
 541
 542/*
 543 * Retrieve and validate the list of associativity arrays for drconf
 544 * memory from the ibm,associativity-lookup-arrays property of the
 545 * device tree..
 546 *
 547 * The layout of the ibm,associativity-lookup-arrays property is a number N
 548 * indicating the number of associativity arrays, followed by a number M
 549 * indicating the size of each associativity array, followed by a list
 550 * of N associativity arrays.
 551 */
 552static int of_get_assoc_arrays(struct assoc_arrays *aa)
 
 553{
 554	struct device_node *memory;
 555	const __be32 *prop;
 556	u32 len;
 557
 558	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 559	if (!memory)
 560		return -1;
 561
 562	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 563	if (!prop || len < 2 * sizeof(unsigned int)) {
 564		of_node_put(memory);
 565		return -1;
 566	}
 567
 568	aa->n_arrays = of_read_number(prop++, 1);
 569	aa->array_sz = of_read_number(prop++, 1);
 570
 571	of_node_put(memory);
 
 572
 573	/* Now that we know the number of arrays and size of each array,
 574	 * revalidate the size of the property read in.
 575	 */
 576	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 577		return -1;
 578
 579	aa->arrays = prop;
 580	return 0;
 581}
 582
 583static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
 584{
 585	struct assoc_arrays aa = { .arrays = NULL };
 586	int default_nid = NUMA_NO_NODE;
 587	int nid = default_nid;
 588	int rc, index;
 589
 590	if ((primary_domain_index < 0) || !numa_enabled)
 591		return default_nid;
 592
 593	rc = of_get_assoc_arrays(&aa);
 594	if (rc)
 595		return default_nid;
 596
 597	if (primary_domain_index <= aa.array_sz &&
 598	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 599		const __be32 *associativity;
 600
 601		index = lmb->aa_index * aa.array_sz;
 602		associativity = &aa.arrays[index];
 603		nid = __associativity_to_nid(associativity, aa.array_sz);
 604		if (nid > 0 && affinity_form == FORM1_AFFINITY) {
 605			/*
 606			 * lookup array associativity entries have
 607			 * no length of the array as the first element.
 608			 */
 609			__initialize_form1_numa_distance(associativity, aa.array_sz);
 610		}
 611	}
 612	return nid;
 613}
 614
 615/*
 616 * This is like of_node_to_nid_single() for memory represented in the
 617 * ibm,dynamic-reconfiguration-memory node.
 618 */
 619int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 
 620{
 621	struct assoc_arrays aa = { .arrays = NULL };
 622	int default_nid = NUMA_NO_NODE;
 623	int nid = default_nid;
 624	int rc, index;
 625
 626	if ((primary_domain_index < 0) || !numa_enabled)
 627		return default_nid;
 628
 629	rc = of_get_assoc_arrays(&aa);
 630	if (rc)
 631		return default_nid;
 632
 633	if (primary_domain_index <= aa.array_sz &&
 634	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 635		const __be32 *associativity;
 636
 637		index = lmb->aa_index * aa.array_sz;
 638		associativity = &aa.arrays[index];
 639		nid = __associativity_to_nid(associativity, aa.array_sz);
 640	}
 641	return nid;
 642}
 643
 644#ifdef CONFIG_PPC_SPLPAR
 645
 646static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 647{
 648	long rc, hwid;
 
 
 649
 650	/*
 651	 * On a shared lpar, device tree will not have node associativity.
 652	 * At this time lppaca, or its __old_status field may not be
 653	 * updated. Hence kernel cannot detect if its on a shared lpar. So
 654	 * request an explicit associativity irrespective of whether the
 655	 * lpar is shared or dedicated. Use the device tree property as a
 656	 * fallback. cpu_to_phys_id is only valid between
 657	 * smp_setup_cpu_maps() and smp_setup_pacas().
 658	 */
 659	if (firmware_has_feature(FW_FEATURE_VPHN)) {
 660		if (cpu_to_phys_id)
 661			hwid = cpu_to_phys_id[lcpu];
 662		else
 663			hwid = get_hard_smp_processor_id(lcpu);
 664
 665		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
 666		if (rc == H_SUCCESS)
 667			return 0;
 668	}
 669
 670	return -1;
 671}
 672
 673static int vphn_get_nid(long lcpu)
 674{
 675	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
 676
 677
 678	if (!__vphn_get_associativity(lcpu, associativity))
 679		return associativity_to_nid(associativity);
 680
 681	return NUMA_NO_NODE;
 682
 683}
 684#else
 685
 686static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 687{
 688	return -1;
 689}
 690
 691static int vphn_get_nid(long unused)
 692{
 693	return NUMA_NO_NODE;
 694}
 695#endif  /* CONFIG_PPC_SPLPAR */
 696
 697/*
 698 * Figure out to which domain a cpu belongs and stick it there.
 699 * Return the id of the domain used.
 700 */
 701static int numa_setup_cpu(unsigned long lcpu)
 702{
 703	struct device_node *cpu;
 704	int fcpu = cpu_first_thread_sibling(lcpu);
 705	int nid = NUMA_NO_NODE;
 706
 707	if (!cpu_present(lcpu)) {
 708		set_cpu_numa_node(lcpu, first_online_node);
 709		return first_online_node;
 710	}
 711
 712	/*
 713	 * If a valid cpu-to-node mapping is already available, use it
 714	 * directly instead of querying the firmware, since it represents
 715	 * the most recent mapping notified to us by the platform (eg: VPHN).
 716	 * Since cpu_to_node binding remains the same for all threads in the
 717	 * core. If a valid cpu-to-node mapping is already available, for
 718	 * the first thread in the core, use it.
 719	 */
 720	nid = numa_cpu_lookup_table[fcpu];
 721	if (nid >= 0) {
 722		map_cpu_to_node(lcpu, nid);
 723		return nid;
 724	}
 725
 726	nid = vphn_get_nid(lcpu);
 727	if (nid != NUMA_NO_NODE)
 728		goto out_present;
 729
 730	cpu = of_get_cpu_node(lcpu, NULL);
 731
 732	if (!cpu) {
 733		WARN_ON(1);
 734		if (cpu_present(lcpu))
 735			goto out_present;
 736		else
 737			goto out;
 738	}
 739
 740	nid = of_node_to_nid_single(cpu);
 741	of_node_put(cpu);
 742
 743out_present:
 744	if (nid < 0 || !node_possible(nid))
 745		nid = first_online_node;
 
 
 746
 747	/*
 748	 * Update for the first thread of the core. All threads of a core
 749	 * have to be part of the same node. This not only avoids querying
 750	 * for every other thread in the core, but always avoids a case
 751	 * where virtual node associativity change causes subsequent threads
 752	 * of a core to be associated with different nid. However if first
 753	 * thread is already online, expect it to have a valid mapping.
 754	 */
 755	if (fcpu != lcpu) {
 756		WARN_ON(cpu_online(fcpu));
 757		map_cpu_to_node(fcpu, nid);
 758	}
 759
 760	map_cpu_to_node(lcpu, nid);
 761out:
 762	return nid;
 763}
 764
 765static void verify_cpu_node_mapping(int cpu, int node)
 766{
 767	int base, sibling, i;
 768
 769	/* Verify that all the threads in the core belong to the same node */
 770	base = cpu_first_thread_sibling(cpu);
 771
 772	for (i = 0; i < threads_per_core; i++) {
 773		sibling = base + i;
 774
 775		if (sibling == cpu || cpu_is_offline(sibling))
 776			continue;
 777
 778		if (cpu_to_node(sibling) != node) {
 779			WARN(1, "CPU thread siblings %d and %d don't belong"
 780				" to the same node!\n", cpu, sibling);
 781			break;
 782		}
 
 
 
 
 783	}
 784}
 785
 786/* Must run before sched domains notifier. */
 787static int ppc_numa_cpu_prepare(unsigned int cpu)
 788{
 789	int nid;
 790
 791	nid = numa_setup_cpu(cpu);
 792	verify_cpu_node_mapping(cpu, nid);
 793	return 0;
 794}
 795
 796static int ppc_numa_cpu_dead(unsigned int cpu)
 797{
 798	return 0;
 799}
 800
 801/*
 802 * Check and possibly modify a memory region to enforce the memory limit.
 803 *
 804 * Returns the size the region should have to enforce the memory limit.
 805 * This will either be the original value of size, a truncated value,
 806 * or zero. If the returned value of size is 0 the region should be
 807 * discarded as it lies wholly above the memory limit.
 808 */
 809static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 810						      unsigned long size)
 811{
 812	/*
 813	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 814	 * we've already adjusted it for the limit and it takes care of
 815	 * having memory holes below the limit.  Also, in the case of
 816	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 817	 */
 818
 819	if (start + size <= memblock_end_of_DRAM())
 820		return size;
 821
 822	if (start >= memblock_end_of_DRAM())
 823		return 0;
 824
 825	return memblock_end_of_DRAM() - start;
 826}
 827
 828/*
 829 * Reads the counter for a given entry in
 830 * linux,drconf-usable-memory property
 831 */
 832static inline int __init read_usm_ranges(const __be32 **usm)
 833{
 834	/*
 835	 * For each lmb in ibm,dynamic-memory a corresponding
 836	 * entry in linux,drconf-usable-memory property contains
 837	 * a counter followed by that many (base, size) duple.
 838	 * read the counter from linux,drconf-usable-memory
 839	 */
 840	return read_n_cells(n_mem_size_cells, usm);
 841}
 842
 843/*
 844 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 845 * node.  This assumes n_mem_{addr,size}_cells have been set.
 846 */
 847static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 848					const __be32 **usm,
 849					void *data)
 850{
 851	unsigned int ranges, is_kexec_kdump = 0;
 852	unsigned long base, size, sz;
 
 853	int nid;
 
 854
 855	/*
 856	 * Skip this block if the reserved bit is set in flags (0x80)
 857	 * or if the block is not assigned to this partition (0x8)
 858	 */
 859	if ((lmb->flags & DRCONF_MEM_RESERVED)
 860	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 861		return 0;
 
 
 
 
 862
 863	if (*usm)
 
 
 864		is_kexec_kdump = 1;
 865
 866	base = lmb->base_addr;
 867	size = drmem_lmb_size();
 868	ranges = 1;
 869
 870	if (is_kexec_kdump) {
 871		ranges = read_usm_ranges(usm);
 872		if (!ranges) /* there are no (base, size) duple */
 873			return 0;
 874	}
 875
 876	do {
 877		if (is_kexec_kdump) {
 878			base = read_n_cells(n_mem_addr_cells, usm);
 879			size = read_n_cells(n_mem_size_cells, usm);
 880		}
 881
 882		nid = get_nid_and_numa_distance(lmb);
 883		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 884					  &nid);
 885		node_set_online(nid);
 886		sz = numa_enforce_memory_limit(base, size);
 887		if (sz)
 888			memblock_set_node(base, sz, &memblock.memory, nid);
 889	} while (--ranges);
 890
 891	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892}
 893
 894static int __init parse_numa_properties(void)
 895{
 896	struct device_node *memory;
 
 897	int default_nid = 0;
 898	unsigned long i;
 899	const __be32 *associativity;
 900
 901	if (numa_enabled == 0) {
 902		pr_warn("disabled by user\n");
 903		return -1;
 904	}
 905
 906	primary_domain_index = find_primary_domain_index();
 907
 908	if (primary_domain_index < 0) {
 909		/*
 910		 * if we fail to parse primary_domain_index from device tree
 911		 * mark the numa disabled, boot with numa disabled.
 912		 */
 913		numa_enabled = false;
 914		return primary_domain_index;
 915	}
 916
 917	pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
 
 918
 919	/*
 920	 * If it is FORM2 initialize the distance table here.
 921	 */
 922	if (affinity_form == FORM2_AFFINITY)
 923		initialize_form2_numa_distance_lookup_table();
 924
 925	/*
 926	 * Even though we connect cpus to numa domains later in SMP
 927	 * init, we need to know the node ids now. This is because
 928	 * each node to be onlined must have NODE_DATA etc backing it.
 929	 */
 930	for_each_present_cpu(i) {
 931		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
 932		struct device_node *cpu;
 933		int nid = NUMA_NO_NODE;
 934
 935		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
 936
 937		if (__vphn_get_associativity(i, vphn_assoc) == 0) {
 938			nid = associativity_to_nid(vphn_assoc);
 939			initialize_form1_numa_distance(vphn_assoc);
 940		} else {
 941
 942			/*
 943			 * Don't fall back to default_nid yet -- we will plug
 944			 * cpus into nodes once the memory scan has discovered
 945			 * the topology.
 946			 */
 947			cpu = of_get_cpu_node(i, NULL);
 948			BUG_ON(!cpu);
 949
 950			associativity = of_get_associativity(cpu);
 951			if (associativity) {
 952				nid = associativity_to_nid(associativity);
 953				initialize_form1_numa_distance(associativity);
 954			}
 955			of_node_put(cpu);
 956		}
 957
 958		/* node_set_online() is an UB if 'nid' is negative */
 959		if (likely(nid >= 0))
 960			node_set_online(nid);
 
 
 
 
 
 961	}
 962
 963	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 964
 965	for_each_node_by_type(memory, "memory") {
 966		unsigned long start;
 967		unsigned long size;
 968		int nid;
 969		int ranges;
 970		const __be32 *memcell_buf;
 971		unsigned int len;
 972
 973		memcell_buf = of_get_property(memory,
 974			"linux,usable-memory", &len);
 975		if (!memcell_buf || len <= 0)
 976			memcell_buf = of_get_property(memory, "reg", &len);
 977		if (!memcell_buf || len <= 0)
 978			continue;
 979
 980		/* ranges in cell */
 981		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 982new_range:
 983		/* these are order-sensitive, and modify the buffer pointer */
 984		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 985		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 986
 987		/*
 988		 * Assumption: either all memory nodes or none will
 989		 * have associativity properties.  If none, then
 990		 * everything goes to default_nid.
 991		 */
 992		associativity = of_get_associativity(memory);
 993		if (associativity) {
 994			nid = associativity_to_nid(associativity);
 995			initialize_form1_numa_distance(associativity);
 996		} else
 997			nid = default_nid;
 998
 999		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1000		node_set_online(nid);
1001
1002		size = numa_enforce_memory_limit(start, size);
1003		if (size)
1004			memblock_set_node(start, size, &memblock.memory, nid);
 
 
 
 
 
 
1005
1006		if (--ranges)
1007			goto new_range;
1008	}
1009
1010	/*
1011	 * Now do the same thing for each MEMBLOCK listed in the
1012	 * ibm,dynamic-memory property in the
1013	 * ibm,dynamic-reconfiguration-memory node.
1014	 */
1015	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1016	if (memory) {
1017		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1018		of_node_put(memory);
1019	}
1020
1021	return 0;
1022}
1023
1024static void __init setup_nonnuma(void)
1025{
1026	unsigned long top_of_ram = memblock_end_of_DRAM();
1027	unsigned long total_ram = memblock_phys_mem_size();
1028	unsigned long start_pfn, end_pfn;
1029	unsigned int nid = 0;
1030	int i;
1031
1032	pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1033	pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
 
 
 
 
 
 
1034
1035	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1036		fake_numa_create_new_node(end_pfn, &nid);
1037		memblock_set_node(PFN_PHYS(start_pfn),
1038				  PFN_PHYS(end_pfn - start_pfn),
1039				  &memblock.memory, nid);
1040		node_set_online(nid);
1041	}
1042}
1043
1044void __init dump_numa_cpu_topology(void)
1045{
1046	unsigned int node;
1047	unsigned int cpu, count;
1048
1049	if (!numa_enabled)
1050		return;
1051
1052	for_each_online_node(node) {
1053		pr_info("Node %d CPUs:", node);
1054
1055		count = 0;
1056		/*
1057		 * If we used a CPU iterator here we would miss printing
1058		 * the holes in the cpumap.
1059		 */
1060		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1061			if (cpumask_test_cpu(cpu,
1062					node_to_cpumask_map[node])) {
1063				if (count == 0)
1064					pr_cont(" %u", cpu);
1065				++count;
1066			} else {
1067				if (count > 1)
1068					pr_cont("-%u", cpu - 1);
1069				count = 0;
1070			}
1071		}
1072
1073		if (count > 1)
1074			pr_cont("-%u", nr_cpu_ids - 1);
1075		pr_cont("\n");
1076	}
1077}
1078
1079/* Initialize NODE_DATA for a node on the local memory */
1080static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1081{
1082	u64 spanned_pages = end_pfn - start_pfn;
1083	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1084	u64 nd_pa;
1085	void *nd;
1086	int tnid;
 
 
 
1087
1088	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1089	if (!nd_pa)
1090		panic("Cannot allocate %zu bytes for node %d data\n",
1091		      nd_size, nid);
1092
1093	nd = __va(nd_pa);
1094
1095	/* report and initialize */
1096	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
1097		nd_pa, nd_pa + nd_size - 1);
1098	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1099	if (tnid != nid)
1100		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
 
 
 
 
 
 
1101
1102	node_data[nid] = nd;
1103	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1104	NODE_DATA(nid)->node_id = nid;
1105	NODE_DATA(nid)->node_start_pfn = start_pfn;
1106	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1107}
1108
1109static void __init find_possible_nodes(void)
 
 
 
 
 
 
 
 
 
1110{
1111	struct device_node *rtas;
1112	const __be32 *domains = NULL;
1113	int prop_length, max_nodes;
1114	u32 i;
1115
1116	if (!numa_enabled)
1117		return;
1118
1119	rtas = of_find_node_by_path("/rtas");
1120	if (!rtas)
1121		return;
1122
1123	/*
1124	 * ibm,current-associativity-domains is a fairly recent property. If
1125	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1126	 * Current denotes what the platform can support compared to max
1127	 * which denotes what the Hypervisor can support.
1128	 *
1129	 * If the LPAR is migratable, new nodes might be activated after a LPM,
1130	 * so we should consider the max number in that case.
1131	 */
1132	if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1133		domains = of_get_property(rtas,
1134					  "ibm,current-associativity-domains",
1135					  &prop_length);
1136	if (!domains) {
1137		domains = of_get_property(rtas, "ibm,max-associativity-domains",
1138					&prop_length);
1139		if (!domains)
1140			goto out;
1141	}
1142
1143	max_nodes = of_read_number(&domains[primary_domain_index], 1);
1144	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1145
1146	for (i = 0; i < max_nodes; i++) {
1147		if (!node_possible(i))
1148			node_set(i, node_possible_map);
1149	}
1150
1151	prop_length /= sizeof(int);
1152	if (prop_length > primary_domain_index + 2)
1153		coregroup_enabled = 1;
1154
1155out:
1156	of_node_put(rtas);
1157}
1158
1159void __init mem_topology_setup(void)
1160{
1161	int cpu;
1162
1163	max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1164	min_low_pfn = MEMORY_START >> PAGE_SHIFT;
1165
1166	/*
1167	 * Linux/mm assumes node 0 to be online at boot. However this is not
1168	 * true on PowerPC, where node 0 is similar to any other node, it
1169	 * could be cpuless, memoryless node. So force node 0 to be offline
1170	 * for now. This will prevent cpuless, memoryless node 0 showing up
1171	 * unnecessarily as online. If a node has cpus or memory that need
1172	 * to be online, then node will anyway be marked online.
 
 
 
 
1173	 */
1174	node_set_offline(0);
 
 
 
1175
1176	if (parse_numa_properties())
1177		setup_nonnuma();
1178
1179	/*
1180	 * Modify the set of possible NUMA nodes to reflect information
1181	 * available about the set of online nodes, and the set of nodes
1182	 * that we expect to make use of for this platform's affinity
1183	 * calculations.
1184	 */
1185	nodes_and(node_possible_map, node_possible_map, node_online_map);
1186
1187	find_possible_nodes();
 
 
 
1188
1189	setup_node_to_cpumask_map();
 
 
 
1190
1191	reset_numa_cpu_lookup_table();
 
 
 
 
 
 
 
1192
1193	for_each_possible_cpu(cpu) {
1194		/*
1195		 * Powerpc with CONFIG_NUMA always used to have a node 0,
1196		 * even if it was memoryless or cpuless. For all cpus that
1197		 * are possible but not present, cpu_to_node() would point
1198		 * to node 0. To remove a cpuless, memoryless dummy node,
1199		 * powerpc need to make sure all possible but not present
1200		 * cpu_to_node are set to a proper node.
1201		 */
1202		numa_setup_cpu(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203	}
1204}
1205
1206void __init initmem_init(void)
 
1207{
1208	int nid;
1209
1210	memblock_dump_all();
 
 
 
 
 
 
 
1211
1212	for_each_online_node(nid) {
1213		unsigned long start_pfn, end_pfn;
 
 
1214
1215		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1216		setup_node_data(nid, start_pfn, end_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217	}
1218
1219	sparse_init();
1220
1221	/*
1222	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1223	 * even before we online them, so that we can use cpu_to_{node,mem}
1224	 * early in boot, cf. smp_prepare_cpus().
1225	 * _nocalls() + manual invocation is used because cpuhp is not yet
1226	 * initialized for the boot CPU.
1227	 */
1228	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1229				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
 
 
 
 
 
 
 
 
 
 
 
1230}
1231
1232static int __init early_numa(char *p)
1233{
1234	if (!p)
1235		return 0;
1236
1237	if (strstr(p, "off"))
1238		numa_enabled = 0;
1239
 
 
 
1240	p = strstr(p, "fake=");
1241	if (p)
1242		cmdline = p + strlen("fake=");
1243
1244	return 0;
1245}
1246early_param("numa", early_numa);
1247
1248#ifdef CONFIG_MEMORY_HOTPLUG
1249/*
1250 * Find the node associated with a hot added memory section for
1251 * memory represented in the device tree by the property
1252 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1253 */
1254static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
 
1255{
1256	struct drmem_lmb *lmb;
 
1257	unsigned long lmb_size;
1258	int nid = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259
1260	lmb_size = drmem_lmb_size();
1261
1262	for_each_drmem_lmb(lmb) {
1263		/* skip this block if it is reserved or not assigned to
1264		 * this partition */
1265		if ((lmb->flags & DRCONF_MEM_RESERVED)
1266		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1267			continue;
1268
1269		if ((scn_addr < lmb->base_addr)
1270		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1271			continue;
1272
1273		nid = of_drconf_to_nid_single(lmb);
1274		break;
1275	}
1276
1277	return nid;
1278}
1279
1280/*
1281 * Find the node associated with a hot added memory section for memory
1282 * represented in the device tree as a node (i.e. memory@XXXX) for
1283 * each memblock.
1284 */
1285static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1286{
1287	struct device_node *memory;
1288	int nid = NUMA_NO_NODE;
1289
1290	for_each_node_by_type(memory, "memory") {
1291		unsigned long start, size;
1292		int ranges;
1293		const __be32 *memcell_buf;
1294		unsigned int len;
1295
1296		memcell_buf = of_get_property(memory, "reg", &len);
1297		if (!memcell_buf || len <= 0)
1298			continue;
1299
1300		/* ranges in cell */
1301		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1302
1303		while (ranges--) {
1304			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1305			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1306
1307			if ((scn_addr < start) || (scn_addr >= (start + size)))
1308				continue;
1309
1310			nid = of_node_to_nid_single(memory);
1311			break;
1312		}
1313
 
1314		if (nid >= 0)
1315			break;
1316	}
1317
1318	of_node_put(memory);
1319
1320	return nid;
1321}
1322
1323/*
1324 * Find the node associated with a hot added memory section.  Section
1325 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1326 * sections are fully contained within a single MEMBLOCK.
1327 */
1328int hot_add_scn_to_nid(unsigned long scn_addr)
1329{
1330	struct device_node *memory = NULL;
1331	int nid;
1332
1333	if (!numa_enabled)
1334		return first_online_node;
1335
1336	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1337	if (memory) {
1338		nid = hot_add_drconf_scn_to_nid(scn_addr);
1339		of_node_put(memory);
1340	} else {
1341		nid = hot_add_node_scn_to_nid(scn_addr);
1342	}
1343
1344	if (nid < 0 || !node_possible(nid))
1345		nid = first_online_node;
1346
 
 
 
 
 
 
 
 
 
 
 
1347	return nid;
1348}
1349
1350static u64 hot_add_drconf_memory_max(void)
1351{
1352	struct device_node *memory = NULL;
1353	struct device_node *dn = NULL;
1354	const __be64 *lrdr = NULL;
1355
1356	dn = of_find_node_by_path("/rtas");
1357	if (dn) {
1358		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1359		of_node_put(dn);
1360		if (lrdr)
1361			return be64_to_cpup(lrdr);
1362	}
1363
1364	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1365	if (memory) {
1366		of_node_put(memory);
1367		return drmem_lmb_memory_max();
1368	}
1369	return 0;
1370}
1371
1372/*
1373 * memory_hotplug_max - return max address of memory that may be added
1374 *
1375 * This is currently only used on systems that support drconfig memory
1376 * hotplug.
1377 */
1378u64 memory_hotplug_max(void)
1379{
1380        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1381}
1382#endif /* CONFIG_MEMORY_HOTPLUG */
1383
1384/* Virtual Processor Home Node (VPHN) support */
1385#ifdef CONFIG_PPC_SPLPAR
1386static int topology_inited;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387
1388/*
1389 * Retrieve the new associativity information for a virtual processor's
1390 * home node.
1391 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1392static long vphn_get_associativity(unsigned long cpu,
1393					__be32 *associativity)
1394{
1395	long rc;
1396
1397	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1398				VPHN_FLAG_VCPU, associativity);
1399
1400	switch (rc) {
1401	case H_SUCCESS:
1402		pr_debug("VPHN hcall succeeded. Reset polling...\n");
1403		goto out;
1404
1405	case H_FUNCTION:
1406		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
 
 
1407		break;
1408	case H_HARDWARE:
1409		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
 
1410			"preventing VPHN. Disabling polling...\n");
1411		break;
1412	case H_PARAMETER:
1413		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1414			"Disabling polling...\n");
1415		break;
1416	default:
1417		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1418			, rc);
1419		break;
1420	}
1421out:
1422	return rc;
1423}
1424
1425void find_and_update_cpu_nid(int cpu)
 
 
 
 
1426{
1427	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1428	int new_nid;
 
1429
1430	/* Use associativity from first thread for all siblings */
1431	if (vphn_get_associativity(cpu, associativity))
1432		return;
1433
1434	/* Do not have previous associativity, so find it now. */
1435	new_nid = associativity_to_nid(associativity);
1436
1437	if (new_nid < 0 || !node_possible(new_nid))
1438		new_nid = first_online_node;
1439	else
1440		// Associate node <-> cpu, so cpu_up() calls
1441		// try_online_node() on the right node.
1442		set_cpu_numa_node(cpu, new_nid);
 
 
 
 
 
1443
1444	pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
 
 
 
 
 
1445}
1446
1447int cpu_to_coregroup_id(int cpu)
1448{
1449	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1450	int index;
1451
1452	if (cpu < 0 || cpu > nr_cpu_ids)
1453		return -1;
1454
1455	if (!coregroup_enabled)
1456		goto out;
 
 
1457
1458	if (!firmware_has_feature(FW_FEATURE_VPHN))
1459		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460
1461	if (vphn_get_associativity(cpu, associativity))
1462		goto out;
 
 
 
 
1463
1464	index = of_read_number(associativity, 1);
1465	if (index > primary_domain_index + 1)
1466		return of_read_number(&associativity[index - 1], 1);
 
 
 
 
 
 
1467
1468out:
1469	return cpu_to_core_id(cpu);
1470}
 
1471
1472static int topology_update_init(void)
 
 
 
1473{
1474	topology_inited = 1;
1475	return 0;
1476}
1477device_initcall(topology_update_init);
1478#endif /* CONFIG_PPC_SPLPAR */
v3.1
 
   1/*
   2 * pSeries NUMA support
   3 *
   4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
 
 
  11#include <linux/threads.h>
  12#include <linux/bootmem.h>
  13#include <linux/init.h>
  14#include <linux/mm.h>
  15#include <linux/mmzone.h>
  16#include <linux/module.h>
  17#include <linux/nodemask.h>
  18#include <linux/cpu.h>
  19#include <linux/notifier.h>
  20#include <linux/memblock.h>
  21#include <linux/of.h>
  22#include <linux/pfn.h>
  23#include <linux/cpuset.h>
  24#include <linux/node.h>
 
 
 
 
 
 
  25#include <asm/sparsemem.h>
  26#include <asm/prom.h>
  27#include <asm/system.h>
  28#include <asm/smp.h>
 
  29#include <asm/firmware.h>
  30#include <asm/paca.h>
  31#include <asm/hvcall.h>
 
 
 
  32
  33static int numa_enabled = 1;
  34
  35static char *cmdline __initdata;
  36
  37static int numa_debug;
  38#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  39
  40int numa_cpu_lookup_table[NR_CPUS];
  41cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  42struct pglist_data *node_data[MAX_NUMNODES];
  43
  44EXPORT_SYMBOL(numa_cpu_lookup_table);
  45EXPORT_SYMBOL(node_to_cpumask_map);
  46EXPORT_SYMBOL(node_data);
  47
  48static int min_common_depth;
  49static int n_mem_addr_cells, n_mem_size_cells;
  50static int form1_affinity;
 
 
 
 
  51
  52#define MAX_DISTANCE_REF_POINTS 4
  53static int distance_ref_points_depth;
  54static const unsigned int *distance_ref_points;
  55static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
 
 
 
 
  56
  57/*
  58 * Allocate node_to_cpumask_map based on number of available nodes
  59 * Requires node_possible_map to be valid.
  60 *
  61 * Note: node_to_cpumask() is not valid until after this is done.
  62 */
  63static void __init setup_node_to_cpumask_map(void)
  64{
  65	unsigned int node, num = 0;
  66
  67	/* setup nr_node_ids if not done yet */
  68	if (nr_node_ids == MAX_NUMNODES) {
  69		for_each_node_mask(node, node_possible_map)
  70			num = node;
  71		nr_node_ids = num + 1;
  72	}
  73
  74	/* allocate the map */
  75	for (node = 0; node < nr_node_ids; node++)
  76		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  77
  78	/* cpumask_of_node() will now work */
  79	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
  80}
  81
  82static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
  83						unsigned int *nid)
  84{
  85	unsigned long long mem;
  86	char *p = cmdline;
  87	static unsigned int fake_nid;
  88	static unsigned long long curr_boundary;
  89
  90	/*
  91	 * Modify node id, iff we started creating NUMA nodes
  92	 * We want to continue from where we left of the last time
  93	 */
  94	if (fake_nid)
  95		*nid = fake_nid;
  96	/*
  97	 * In case there are no more arguments to parse, the
  98	 * node_id should be the same as the last fake node id
  99	 * (we've handled this above).
 100	 */
 101	if (!p)
 102		return 0;
 103
 104	mem = memparse(p, &p);
 105	if (!mem)
 106		return 0;
 107
 108	if (mem < curr_boundary)
 109		return 0;
 110
 111	curr_boundary = mem;
 112
 113	if ((end_pfn << PAGE_SHIFT) > mem) {
 114		/*
 115		 * Skip commas and spaces
 116		 */
 117		while (*p == ',' || *p == ' ' || *p == '\t')
 118			p++;
 119
 120		cmdline = p;
 121		fake_nid++;
 122		*nid = fake_nid;
 123		dbg("created new fake_node with id %d\n", fake_nid);
 124		return 1;
 125	}
 126	return 0;
 127}
 128
 129/*
 130 * get_active_region_work_fn - A helper function for get_node_active_region
 131 *	Returns datax set to the start_pfn and end_pfn if they contain
 132 *	the initial value of datax->start_pfn between them
 133 * @start_pfn: start page(inclusive) of region to check
 134 * @end_pfn: end page(exclusive) of region to check
 135 * @datax: comes in with ->start_pfn set to value to search for and
 136 *	goes out with active range if it contains it
 137 * Returns 1 if search value is in range else 0
 138 */
 139static int __init get_active_region_work_fn(unsigned long start_pfn,
 140					unsigned long end_pfn, void *datax)
 141{
 142	struct node_active_region *data;
 143	data = (struct node_active_region *)datax;
 144
 145	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
 146		data->start_pfn = start_pfn;
 147		data->end_pfn = end_pfn;
 148		return 1;
 149	}
 150	return 0;
 151
 152}
 153
 154/*
 155 * get_node_active_region - Return active region containing start_pfn
 156 * Active range returned is empty if none found.
 157 * @start_pfn: The page to return the region for.
 158 * @node_ar: Returned set to the active region containing start_pfn
 159 */
 160static void __init get_node_active_region(unsigned long start_pfn,
 161		       struct node_active_region *node_ar)
 162{
 163	int nid = early_pfn_to_nid(start_pfn);
 164
 165	node_ar->nid = nid;
 166	node_ar->start_pfn = start_pfn;
 167	node_ar->end_pfn = start_pfn;
 168	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
 169}
 170
 171static void map_cpu_to_node(int cpu, int node)
 172{
 173	numa_cpu_lookup_table[cpu] = node;
 174
 175	dbg("adding cpu %d to node %d\n", cpu, node);
 176
 177	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 
 178		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 
 179}
 180
 181#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 182static void unmap_cpu_from_node(unsigned long cpu)
 183{
 184	int node = numa_cpu_lookup_table[cpu];
 185
 186	dbg("removing cpu %lu from node %d\n", cpu, node);
 187
 188	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 189		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 
 190	} else {
 191		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 192		       cpu, node);
 193	}
 194}
 195#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 196
 197/* must hold reference to node during call */
 198static const int *of_get_associativity(struct device_node *dev)
 199{
 200	return of_get_property(dev, "ibm,associativity", NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201}
 202
 203/*
 204 * Returns the property linux,drconf-usable-memory if
 205 * it exists (the property exists only in kexec/kdump kernels,
 206 * added by kexec-tools)
 207 */
 208static const u32 *of_get_usable_memory(struct device_node *memory)
 
 
 
 
 
 
 
 
 209{
 210	const u32 *prop;
 211	u32 len;
 212	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
 213	if (!prop || len < sizeof(unsigned int))
 
 
 
 
 214		return 0;
 215	return prop;
 
 
 
 216}
 217
 218int __node_distance(int a, int b)
 219{
 220	int i;
 221	int distance = LOCAL_DISTANCE;
 222
 223	if (!form1_affinity)
 224		return distance;
 225
 226	for (i = 0; i < distance_ref_points_depth; i++) {
 227		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 
 228			break;
 229
 230		/* Double the distance for each NUMA level */
 231		distance *= 2;
 232	}
 233
 234	return distance;
 235}
 236
 237static void initialize_distance_lookup_table(int nid,
 238		const unsigned int *associativity)
 239{
 240	int i;
 
 
 
 
 
 241
 242	if (!form1_affinity)
 243		return;
 244
 245	for (i = 0; i < distance_ref_points_depth; i++) {
 246		distance_lookup_table[nid][i] =
 247			associativity[distance_ref_points[i]];
 248	}
 249}
 250
 251/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 252 * info is found.
 253 */
 254static int associativity_to_nid(const unsigned int *associativity)
 255{
 256	int nid = -1;
 
 257
 258	if (min_common_depth == -1)
 259		goto out;
 
 
 260
 261	if (associativity[0] >= min_common_depth)
 262		nid = associativity[min_common_depth];
 
 263
 264	/* POWER4 LPAR uses 0xffff as invalid node */
 265	if (nid == 0xffff || nid >= MAX_NUMNODES)
 266		nid = -1;
 267
 268	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
 269		initialize_distance_lookup_table(nid, associativity);
 270
 271out:
 272	return nid;
 273}
 
 274
 275/* Returns the nid associated with the given device tree node,
 276 * or -1 if not found.
 277 */
 278static int of_node_to_nid_single(struct device_node *device)
 279{
 280	int nid = -1;
 281	const unsigned int *tmp;
 282
 283	tmp = of_get_associativity(device);
 284	if (tmp)
 285		nid = associativity_to_nid(tmp);
 286	return nid;
 287}
 288
 289/* Walk the device tree upwards, looking for an associativity id */
 290int of_node_to_nid(struct device_node *device)
 291{
 292	struct device_node *tmp;
 293	int nid = -1;
 294
 295	of_node_get(device);
 296	while (device) {
 297		nid = of_node_to_nid_single(device);
 298		if (nid != -1)
 299			break;
 300
 301	        tmp = device;
 302		device = of_get_parent(tmp);
 303		of_node_put(tmp);
 304	}
 305	of_node_put(device);
 306
 307	return nid;
 308}
 309EXPORT_SYMBOL_GPL(of_node_to_nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310
 311static int __init find_min_common_depth(void)
 312{
 313	int depth;
 314	struct device_node *chosen;
 315	struct device_node *root;
 316	const char *vec5;
 317
 318	root = of_find_node_by_path("/rtas");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319	if (!root)
 320		root = of_find_node_by_path("/");
 321
 322	/*
 323	 * This property is a set of 32-bit integers, each representing
 324	 * an index into the ibm,associativity nodes.
 325	 *
 326	 * With form 0 affinity the first integer is for an SMP configuration
 327	 * (should be all 0's) and the second is for a normal NUMA
 328	 * configuration. We have only one level of NUMA.
 329	 *
 330	 * With form 1 affinity the first integer is the most significant
 331	 * NUMA boundary and the following are progressively less significant
 332	 * boundaries. There can be more than one level of NUMA.
 333	 */
 334	distance_ref_points = of_get_property(root,
 335					"ibm,associativity-reference-points",
 336					&distance_ref_points_depth);
 337
 338	if (!distance_ref_points) {
 339		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 340		goto err;
 341	}
 342
 343	distance_ref_points_depth /= sizeof(int);
 344
 345#define VEC5_AFFINITY_BYTE	5
 346#define VEC5_AFFINITY		0x80
 347	chosen = of_find_node_by_path("/chosen");
 348	if (chosen) {
 349		vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL);
 350		if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) {
 351			dbg("Using form 1 affinity\n");
 352			form1_affinity = 1;
 353		}
 354	}
 355
 356	if (form1_affinity) {
 357		depth = distance_ref_points[0];
 358	} else {
 359		if (distance_ref_points_depth < 2) {
 360			printk(KERN_WARNING "NUMA: "
 361				"short ibm,associativity-reference-points\n");
 362			goto err;
 363		}
 364
 365		depth = distance_ref_points[1];
 
 
 
 
 
 
 366	}
 367
 368	/*
 369	 * Warn and cap if the hardware supports more than
 370	 * MAX_DISTANCE_REF_POINTS domains.
 371	 */
 372	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 373		printk(KERN_WARNING "NUMA: distance array capped at "
 374			"%d entries\n", MAX_DISTANCE_REF_POINTS);
 375		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 376	}
 377
 378	of_node_put(root);
 379	return depth;
 380
 381err:
 382	of_node_put(root);
 383	return -1;
 384}
 385
 386static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 387{
 388	struct device_node *memory = NULL;
 389
 390	memory = of_find_node_by_type(memory, "memory");
 391	if (!memory)
 392		panic("numa.c: No memory nodes found!");
 393
 394	*n_addr_cells = of_n_addr_cells(memory);
 395	*n_size_cells = of_n_size_cells(memory);
 396	of_node_put(memory);
 397}
 398
 399static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
 400{
 401	unsigned long result = 0;
 402
 403	while (n--) {
 404		result = (result << 32) | **buf;
 405		(*buf)++;
 406	}
 407	return result;
 408}
 409
 410struct of_drconf_cell {
 411	u64	base_addr;
 412	u32	drc_index;
 413	u32	reserved;
 414	u32	aa_index;
 415	u32	flags;
 416};
 417
 418#define DRCONF_MEM_ASSIGNED	0x00000008
 419#define DRCONF_MEM_AI_INVALID	0x00000040
 420#define DRCONF_MEM_RESERVED	0x00000080
 421
 422/*
 423 * Read the next memblock list entry from the ibm,dynamic-memory property
 424 * and return the information in the provided of_drconf_cell structure.
 425 */
 426static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
 427{
 428	const u32 *cp;
 429
 430	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
 431
 432	cp = *cellp;
 433	drmem->drc_index = cp[0];
 434	drmem->reserved = cp[1];
 435	drmem->aa_index = cp[2];
 436	drmem->flags = cp[3];
 437
 438	*cellp = cp + 4;
 439}
 440
 441/*
 442 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
 443 *
 444 * The layout of the ibm,dynamic-memory property is a number N of memblock
 445 * list entries followed by N memblock list entries.  Each memblock list entry
 446 * contains information as laid out in the of_drconf_cell struct above.
 447 */
 448static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
 449{
 450	const u32 *prop;
 451	u32 len, entries;
 452
 453	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
 454	if (!prop || len < sizeof(unsigned int))
 455		return 0;
 456
 457	entries = *prop++;
 458
 459	/* Now that we know the number of entries, revalidate the size
 460	 * of the property read in to ensure we have everything
 461	 */
 462	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
 463		return 0;
 464
 465	*dm = prop;
 466	return entries;
 467}
 468
 469/*
 470 * Retrieve and validate the ibm,lmb-size property for drconf memory
 471 * from the device tree.
 472 */
 473static u64 of_get_lmb_size(struct device_node *memory)
 474{
 475	const u32 *prop;
 476	u32 len;
 477
 478	prop = of_get_property(memory, "ibm,lmb-size", &len);
 479	if (!prop || len < sizeof(unsigned int))
 480		return 0;
 481
 482	return read_n_cells(n_mem_size_cells, &prop);
 483}
 484
 485struct assoc_arrays {
 486	u32	n_arrays;
 487	u32	array_sz;
 488	const u32 *arrays;
 489};
 490
 491/*
 492 * Retrieve and validate the list of associativity arrays for drconf
 493 * memory from the ibm,associativity-lookup-arrays property of the
 494 * device tree..
 495 *
 496 * The layout of the ibm,associativity-lookup-arrays property is a number N
 497 * indicating the number of associativity arrays, followed by a number M
 498 * indicating the size of each associativity array, followed by a list
 499 * of N associativity arrays.
 500 */
 501static int of_get_assoc_arrays(struct device_node *memory,
 502			       struct assoc_arrays *aa)
 503{
 504	const u32 *prop;
 
 505	u32 len;
 506
 
 
 
 
 507	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 508	if (!prop || len < 2 * sizeof(unsigned int))
 
 509		return -1;
 
 
 
 
 510
 511	aa->n_arrays = *prop++;
 512	aa->array_sz = *prop++;
 513
 514	/* Now that we know the number of arrrays and size of each array,
 515	 * revalidate the size of the property read in.
 516	 */
 517	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 518		return -1;
 519
 520	aa->arrays = prop;
 521	return 0;
 522}
 523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524/*
 525 * This is like of_node_to_nid_single() for memory represented in the
 526 * ibm,dynamic-reconfiguration-memory node.
 527 */
 528static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
 529				   struct assoc_arrays *aa)
 530{
 531	int default_nid = 0;
 
 532	int nid = default_nid;
 533	int index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534
 535	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
 536	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
 537	    drmem->aa_index < aa->n_arrays) {
 538		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
 539		nid = aa->arrays[index];
 540
 541		if (nid == 0xffff || nid >= MAX_NUMNODES)
 542			nid = default_nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543	}
 544
 545	return nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546}
 
 547
 548/*
 549 * Figure out to which domain a cpu belongs and stick it there.
 550 * Return the id of the domain used.
 551 */
 552static int __cpuinit numa_setup_cpu(unsigned long lcpu)
 553{
 554	int nid = 0;
 555	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556
 557	if (!cpu) {
 558		WARN_ON(1);
 559		goto out;
 
 
 
 560	}
 561
 562	nid = of_node_to_nid_single(cpu);
 
 563
 564	if (nid < 0 || !node_online(nid))
 
 565		nid = first_online_node;
 566out:
 567	map_cpu_to_node(lcpu, nid);
 568
 569	of_node_put(cpu);
 
 
 
 
 
 
 
 
 
 
 
 570
 
 
 571	return nid;
 572}
 573
 574static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
 575			     unsigned long action,
 576			     void *hcpu)
 577{
 578	unsigned long lcpu = (unsigned long)hcpu;
 579	int ret = NOTIFY_DONE;
 580
 581	switch (action) {
 582	case CPU_UP_PREPARE:
 583	case CPU_UP_PREPARE_FROZEN:
 584		numa_setup_cpu(lcpu);
 585		ret = NOTIFY_OK;
 586		break;
 587#ifdef CONFIG_HOTPLUG_CPU
 588	case CPU_DEAD:
 589	case CPU_DEAD_FROZEN:
 590	case CPU_UP_CANCELED:
 591	case CPU_UP_CANCELED_FROZEN:
 592		unmap_cpu_from_node(lcpu);
 593		break;
 594		ret = NOTIFY_OK;
 595#endif
 596	}
 597	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598}
 599
 600/*
 601 * Check and possibly modify a memory region to enforce the memory limit.
 602 *
 603 * Returns the size the region should have to enforce the memory limit.
 604 * This will either be the original value of size, a truncated value,
 605 * or zero. If the returned value of size is 0 the region should be
 606 * discarded as it lies wholly above the memory limit.
 607 */
 608static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 609						      unsigned long size)
 610{
 611	/*
 612	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 613	 * we've already adjusted it for the limit and it takes care of
 614	 * having memory holes below the limit.  Also, in the case of
 615	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 616	 */
 617
 618	if (start + size <= memblock_end_of_DRAM())
 619		return size;
 620
 621	if (start >= memblock_end_of_DRAM())
 622		return 0;
 623
 624	return memblock_end_of_DRAM() - start;
 625}
 626
 627/*
 628 * Reads the counter for a given entry in
 629 * linux,drconf-usable-memory property
 630 */
 631static inline int __init read_usm_ranges(const u32 **usm)
 632{
 633	/*
 634	 * For each lmb in ibm,dynamic-memory a corresponding
 635	 * entry in linux,drconf-usable-memory property contains
 636	 * a counter followed by that many (base, size) duple.
 637	 * read the counter from linux,drconf-usable-memory
 638	 */
 639	return read_n_cells(n_mem_size_cells, usm);
 640}
 641
 642/*
 643 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 644 * node.  This assumes n_mem_{addr,size}_cells have been set.
 645 */
 646static void __init parse_drconf_memory(struct device_node *memory)
 
 
 647{
 648	const u32 *dm, *usm;
 649	unsigned int n, rc, ranges, is_kexec_kdump = 0;
 650	unsigned long lmb_size, base, size, sz;
 651	int nid;
 652	struct assoc_arrays aa;
 653
 654	n = of_get_drconf_memory(memory, &dm);
 655	if (!n)
 656		return;
 657
 658	lmb_size = of_get_lmb_size(memory);
 659	if (!lmb_size)
 660		return;
 661
 662	rc = of_get_assoc_arrays(memory, &aa);
 663	if (rc)
 664		return;
 665
 666	/* check if this is a kexec/kdump kernel */
 667	usm = of_get_usable_memory(memory);
 668	if (usm != NULL)
 669		is_kexec_kdump = 1;
 670
 671	for (; n != 0; --n) {
 672		struct of_drconf_cell drmem;
 
 673
 674		read_drconf_cell(&drmem, &dm);
 
 
 
 
 675
 676		/* skip this block if the reserved bit is set in flags (0x80)
 677		   or if the block is not assigned to this partition (0x8) */
 678		if ((drmem.flags & DRCONF_MEM_RESERVED)
 679		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 680			continue;
 681
 682		base = drmem.base_addr;
 683		size = lmb_size;
 684		ranges = 1;
 
 
 
 
 
 685
 686		if (is_kexec_kdump) {
 687			ranges = read_usm_ranges(&usm);
 688			if (!ranges) /* there are no (base, size) duple */
 689				continue;
 690		}
 691		do {
 692			if (is_kexec_kdump) {
 693				base = read_n_cells(n_mem_addr_cells, &usm);
 694				size = read_n_cells(n_mem_size_cells, &usm);
 695			}
 696			nid = of_drconf_to_nid_single(&drmem, &aa);
 697			fake_numa_create_new_node(
 698				((base + size) >> PAGE_SHIFT),
 699					   &nid);
 700			node_set_online(nid);
 701			sz = numa_enforce_memory_limit(base, size);
 702			if (sz)
 703				add_active_range(nid, base >> PAGE_SHIFT,
 704						 (base >> PAGE_SHIFT)
 705						 + (sz >> PAGE_SHIFT));
 706		} while (--ranges);
 707	}
 708}
 709
 710static int __init parse_numa_properties(void)
 711{
 712	struct device_node *cpu = NULL;
 713	struct device_node *memory = NULL;
 714	int default_nid = 0;
 715	unsigned long i;
 
 716
 717	if (numa_enabled == 0) {
 718		printk(KERN_WARNING "NUMA disabled by user\n");
 719		return -1;
 720	}
 721
 722	min_common_depth = find_min_common_depth();
 
 
 
 
 
 
 
 
 
 723
 724	if (min_common_depth < 0)
 725		return min_common_depth;
 726
 727	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 
 
 
 
 728
 729	/*
 730	 * Even though we connect cpus to numa domains later in SMP
 731	 * init, we need to know the node ids now. This is because
 732	 * each node to be onlined must have NODE_DATA etc backing it.
 733	 */
 734	for_each_present_cpu(i) {
 735		int nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736
 737		cpu = of_get_cpu_node(i, NULL);
 738		BUG_ON(!cpu);
 739		nid = of_node_to_nid_single(cpu);
 740		of_node_put(cpu);
 
 
 
 741
 742		/*
 743		 * Don't fall back to default_nid yet -- we will plug
 744		 * cpus into nodes once the memory scan has discovered
 745		 * the topology.
 746		 */
 747		if (nid < 0)
 748			continue;
 749		node_set_online(nid);
 750	}
 751
 752	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 753	memory = NULL;
 754	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
 755		unsigned long start;
 756		unsigned long size;
 757		int nid;
 758		int ranges;
 759		const unsigned int *memcell_buf;
 760		unsigned int len;
 761
 762		memcell_buf = of_get_property(memory,
 763			"linux,usable-memory", &len);
 764		if (!memcell_buf || len <= 0)
 765			memcell_buf = of_get_property(memory, "reg", &len);
 766		if (!memcell_buf || len <= 0)
 767			continue;
 768
 769		/* ranges in cell */
 770		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 771new_range:
 772		/* these are order-sensitive, and modify the buffer pointer */
 773		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 774		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 775
 776		/*
 777		 * Assumption: either all memory nodes or none will
 778		 * have associativity properties.  If none, then
 779		 * everything goes to default_nid.
 780		 */
 781		nid = of_node_to_nid_single(memory);
 782		if (nid < 0)
 
 
 
 783			nid = default_nid;
 784
 785		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 786		node_set_online(nid);
 787
 788		if (!(size = numa_enforce_memory_limit(start, size))) {
 789			if (--ranges)
 790				goto new_range;
 791			else
 792				continue;
 793		}
 794
 795		add_active_range(nid, start >> PAGE_SHIFT,
 796				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
 797
 798		if (--ranges)
 799			goto new_range;
 800	}
 801
 802	/*
 803	 * Now do the same thing for each MEMBLOCK listed in the ibm,dynamic-memory
 804	 * property in the ibm,dynamic-reconfiguration-memory node.
 
 805	 */
 806	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 807	if (memory)
 808		parse_drconf_memory(memory);
 
 
 809
 810	return 0;
 811}
 812
 813static void __init setup_nonnuma(void)
 814{
 815	unsigned long top_of_ram = memblock_end_of_DRAM();
 816	unsigned long total_ram = memblock_phys_mem_size();
 817	unsigned long start_pfn, end_pfn;
 818	unsigned int nid = 0;
 819	struct memblock_region *reg;
 820
 821	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 822	       top_of_ram, total_ram);
 823	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 824	       (top_of_ram - total_ram) >> 20);
 825
 826	for_each_memblock(memory, reg) {
 827		start_pfn = memblock_region_memory_base_pfn(reg);
 828		end_pfn = memblock_region_memory_end_pfn(reg);
 829
 
 830		fake_numa_create_new_node(end_pfn, &nid);
 831		add_active_range(nid, start_pfn, end_pfn);
 
 
 832		node_set_online(nid);
 833	}
 834}
 835
 836void __init dump_numa_cpu_topology(void)
 837{
 838	unsigned int node;
 839	unsigned int cpu, count;
 840
 841	if (min_common_depth == -1 || !numa_enabled)
 842		return;
 843
 844	for_each_online_node(node) {
 845		printk(KERN_DEBUG "Node %d CPUs:", node);
 846
 847		count = 0;
 848		/*
 849		 * If we used a CPU iterator here we would miss printing
 850		 * the holes in the cpumap.
 851		 */
 852		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 853			if (cpumask_test_cpu(cpu,
 854					node_to_cpumask_map[node])) {
 855				if (count == 0)
 856					printk(" %u", cpu);
 857				++count;
 858			} else {
 859				if (count > 1)
 860					printk("-%u", cpu - 1);
 861				count = 0;
 862			}
 863		}
 864
 865		if (count > 1)
 866			printk("-%u", nr_cpu_ids - 1);
 867		printk("\n");
 868	}
 869}
 870
 871static void __init dump_numa_memory_topology(void)
 
 872{
 873	unsigned int node;
 874	unsigned int count;
 875
 876	if (min_common_depth == -1 || !numa_enabled)
 877		return;
 878
 879	for_each_online_node(node) {
 880		unsigned long i;
 881
 882		printk(KERN_DEBUG "Node %d Memory:", node);
 
 
 
 883
 884		count = 0;
 885
 886		for (i = 0; i < memblock_end_of_DRAM();
 887		     i += (1 << SECTION_SIZE_BITS)) {
 888			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
 889				if (count == 0)
 890					printk(" 0x%lx", i);
 891				++count;
 892			} else {
 893				if (count > 0)
 894					printk("-0x%lx", i);
 895				count = 0;
 896			}
 897		}
 898
 899		if (count > 0)
 900			printk("-0x%lx", i);
 901		printk("\n");
 902	}
 
 903}
 904
 905/*
 906 * Allocate some memory, satisfying the memblock or bootmem allocator where
 907 * required. nid is the preferred node and end is the physical address of
 908 * the highest address in the node.
 909 *
 910 * Returns the virtual address of the memory.
 911 */
 912static void __init *careful_zallocation(int nid, unsigned long size,
 913				       unsigned long align,
 914				       unsigned long end_pfn)
 915{
 916	void *ret;
 917	int new_nid;
 918	unsigned long ret_paddr;
 
 
 
 
 
 
 
 
 919
 920	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921
 922	/* retry over all memory */
 923	if (!ret_paddr)
 924		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
 925
 926	if (!ret_paddr)
 927		panic("numa.c: cannot allocate %lu bytes for node %d",
 928		      size, nid);
 929
 930	ret = __va(ret_paddr);
 
 931
 932	/*
 933	 * We initialize the nodes in numeric order: 0, 1, 2...
 934	 * and hand over control from the MEMBLOCK allocator to the
 935	 * bootmem allocator.  If this function is called for
 936	 * node 5, then we know that all nodes <5 are using the
 937	 * bootmem allocator instead of the MEMBLOCK allocator.
 938	 *
 939	 * So, check the nid from which this allocation came
 940	 * and double check to see if we need to use bootmem
 941	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
 942	 * since it would be useless.
 943	 */
 944	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
 945	if (new_nid < nid) {
 946		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
 947				size, align, 0);
 948
 949		dbg("alloc_bootmem %p %lx\n", ret, size);
 950	}
 951
 952	memset(ret, 0, size);
 953	return ret;
 954}
 
 
 
 
 955
 956static struct notifier_block __cpuinitdata ppc64_numa_nb = {
 957	.notifier_call = cpu_numa_callback,
 958	.priority = 1 /* Must run before sched domains notifier. */
 959};
 960
 961static void mark_reserved_regions_for_nid(int nid)
 962{
 963	struct pglist_data *node = NODE_DATA(nid);
 964	struct memblock_region *reg;
 965
 966	for_each_memblock(reserved, reg) {
 967		unsigned long physbase = reg->base;
 968		unsigned long size = reg->size;
 969		unsigned long start_pfn = physbase >> PAGE_SHIFT;
 970		unsigned long end_pfn = PFN_UP(physbase + size);
 971		struct node_active_region node_ar;
 972		unsigned long node_end_pfn = node->node_start_pfn +
 973					     node->node_spanned_pages;
 974
 
 975		/*
 976		 * Check to make sure that this memblock.reserved area is
 977		 * within the bounds of the node that we care about.
 978		 * Checking the nid of the start and end points is not
 979		 * sufficient because the reserved area could span the
 980		 * entire node.
 
 981		 */
 982		if (end_pfn <= node->node_start_pfn ||
 983		    start_pfn >= node_end_pfn)
 984			continue;
 985
 986		get_node_active_region(start_pfn, &node_ar);
 987		while (start_pfn < end_pfn &&
 988			node_ar.start_pfn < node_ar.end_pfn) {
 989			unsigned long reserve_size = size;
 990			/*
 991			 * if reserved region extends past active region
 992			 * then trim size to active region
 993			 */
 994			if (end_pfn > node_ar.end_pfn)
 995				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
 996					- physbase;
 997			/*
 998			 * Only worry about *this* node, others may not
 999			 * yet have valid NODE_DATA().
1000			 */
1001			if (node_ar.nid == nid) {
1002				dbg("reserve_bootmem %lx %lx nid=%d\n",
1003					physbase, reserve_size, node_ar.nid);
1004				reserve_bootmem_node(NODE_DATA(node_ar.nid),
1005						physbase, reserve_size,
1006						BOOTMEM_DEFAULT);
1007			}
1008			/*
1009			 * if reserved region is contained in the active region
1010			 * then done.
1011			 */
1012			if (end_pfn <= node_ar.end_pfn)
1013				break;
1014
1015			/*
1016			 * reserved region extends past the active region
1017			 *   get next active region that contains this
1018			 *   reserved region
1019			 */
1020			start_pfn = node_ar.end_pfn;
1021			physbase = start_pfn << PAGE_SHIFT;
1022			size = size - reserve_size;
1023			get_node_active_region(start_pfn, &node_ar);
1024		}
1025	}
1026}
1027
1028
1029void __init do_init_bootmem(void)
1030{
1031	int nid;
1032
1033	min_low_pfn = 0;
1034	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1035	max_pfn = max_low_pfn;
1036
1037	if (parse_numa_properties())
1038		setup_nonnuma();
1039	else
1040		dump_numa_memory_topology();
1041
1042	for_each_online_node(nid) {
1043		unsigned long start_pfn, end_pfn;
1044		void *bootmem_vaddr;
1045		unsigned long bootmap_pages;
1046
1047		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1048
1049		/*
1050		 * Allocate the node structure node local if possible
1051		 *
1052		 * Be careful moving this around, as it relies on all
1053		 * previous nodes' bootmem to be initialized and have
1054		 * all reserved areas marked.
1055		 */
1056		NODE_DATA(nid) = careful_zallocation(nid,
1057					sizeof(struct pglist_data),
1058					SMP_CACHE_BYTES, end_pfn);
1059
1060  		dbg("node %d\n", nid);
1061		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1062
1063		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1064		NODE_DATA(nid)->node_start_pfn = start_pfn;
1065		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1066
1067		if (NODE_DATA(nid)->node_spanned_pages == 0)
1068  			continue;
1069
1070  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1071  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1072
1073		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1074		bootmem_vaddr = careful_zallocation(nid,
1075					bootmap_pages << PAGE_SHIFT,
1076					PAGE_SIZE, end_pfn);
1077
1078		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1079
1080		init_bootmem_node(NODE_DATA(nid),
1081				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1082				  start_pfn, end_pfn);
1083
1084		free_bootmem_with_active_regions(nid, end_pfn);
1085		/*
1086		 * Be very careful about moving this around.  Future
1087		 * calls to careful_zallocation() depend on this getting
1088		 * done correctly.
1089		 */
1090		mark_reserved_regions_for_nid(nid);
1091		sparse_memory_present_with_active_regions(nid);
1092	}
1093
1094	init_bootmem_done = 1;
1095
1096	/*
1097	 * Now bootmem is initialised we can create the node to cpumask
1098	 * lookup tables and setup the cpu callback to populate them.
 
 
 
1099	 */
1100	setup_node_to_cpumask_map();
1101
1102	register_cpu_notifier(&ppc64_numa_nb);
1103	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1104			  (void *)(unsigned long)boot_cpuid);
1105}
1106
1107void __init paging_init(void)
1108{
1109	unsigned long max_zone_pfns[MAX_NR_ZONES];
1110	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1111	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1112	free_area_init_nodes(max_zone_pfns);
1113}
1114
1115static int __init early_numa(char *p)
1116{
1117	if (!p)
1118		return 0;
1119
1120	if (strstr(p, "off"))
1121		numa_enabled = 0;
1122
1123	if (strstr(p, "debug"))
1124		numa_debug = 1;
1125
1126	p = strstr(p, "fake=");
1127	if (p)
1128		cmdline = p + strlen("fake=");
1129
1130	return 0;
1131}
1132early_param("numa", early_numa);
1133
1134#ifdef CONFIG_MEMORY_HOTPLUG
1135/*
1136 * Find the node associated with a hot added memory section for
1137 * memory represented in the device tree by the property
1138 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1139 */
1140static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1141				     unsigned long scn_addr)
1142{
1143	const u32 *dm;
1144	unsigned int drconf_cell_cnt, rc;
1145	unsigned long lmb_size;
1146	struct assoc_arrays aa;
1147	int nid = -1;
1148
1149	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1150	if (!drconf_cell_cnt)
1151		return -1;
1152
1153	lmb_size = of_get_lmb_size(memory);
1154	if (!lmb_size)
1155		return -1;
1156
1157	rc = of_get_assoc_arrays(memory, &aa);
1158	if (rc)
1159		return -1;
1160
1161	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1162		struct of_drconf_cell drmem;
1163
1164		read_drconf_cell(&drmem, &dm);
1165
 
1166		/* skip this block if it is reserved or not assigned to
1167		 * this partition */
1168		if ((drmem.flags & DRCONF_MEM_RESERVED)
1169		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1170			continue;
1171
1172		if ((scn_addr < drmem.base_addr)
1173		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1174			continue;
1175
1176		nid = of_drconf_to_nid_single(&drmem, &aa);
1177		break;
1178	}
1179
1180	return nid;
1181}
1182
1183/*
1184 * Find the node associated with a hot added memory section for memory
1185 * represented in the device tree as a node (i.e. memory@XXXX) for
1186 * each memblock.
1187 */
1188int hot_add_node_scn_to_nid(unsigned long scn_addr)
1189{
1190	struct device_node *memory = NULL;
1191	int nid = -1;
1192
1193	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1194		unsigned long start, size;
1195		int ranges;
1196		const unsigned int *memcell_buf;
1197		unsigned int len;
1198
1199		memcell_buf = of_get_property(memory, "reg", &len);
1200		if (!memcell_buf || len <= 0)
1201			continue;
1202
1203		/* ranges in cell */
1204		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1205
1206		while (ranges--) {
1207			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1208			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1209
1210			if ((scn_addr < start) || (scn_addr >= (start + size)))
1211				continue;
1212
1213			nid = of_node_to_nid_single(memory);
1214			break;
1215		}
1216
1217		of_node_put(memory);
1218		if (nid >= 0)
1219			break;
1220	}
1221
 
 
1222	return nid;
1223}
1224
1225/*
1226 * Find the node associated with a hot added memory section.  Section
1227 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1228 * sections are fully contained within a single MEMBLOCK.
1229 */
1230int hot_add_scn_to_nid(unsigned long scn_addr)
1231{
1232	struct device_node *memory = NULL;
1233	int nid, found = 0;
1234
1235	if (!numa_enabled || (min_common_depth < 0))
1236		return first_online_node;
1237
1238	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1239	if (memory) {
1240		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1241		of_node_put(memory);
1242	} else {
1243		nid = hot_add_node_scn_to_nid(scn_addr);
1244	}
1245
1246	if (nid < 0 || !node_online(nid))
1247		nid = first_online_node;
1248
1249	if (NODE_DATA(nid)->node_spanned_pages)
1250		return nid;
1251
1252	for_each_online_node(nid) {
1253		if (NODE_DATA(nid)->node_spanned_pages) {
1254			found = 1;
1255			break;
1256		}
1257	}
1258
1259	BUG_ON(!found);
1260	return nid;
1261}
1262
1263static u64 hot_add_drconf_memory_max(void)
1264{
1265        struct device_node *memory = NULL;
1266        unsigned int drconf_cell_cnt = 0;
1267        u64 lmb_size = 0;
1268        const u32 *dm = 0;
1269
1270        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1271        if (memory) {
1272                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1273                lmb_size = of_get_lmb_size(memory);
1274                of_node_put(memory);
1275        }
1276        return lmb_size * drconf_cell_cnt;
 
 
 
 
 
 
1277}
1278
1279/*
1280 * memory_hotplug_max - return max address of memory that may be added
1281 *
1282 * This is currently only used on systems that support drconfig memory
1283 * hotplug.
1284 */
1285u64 memory_hotplug_max(void)
1286{
1287        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1288}
1289#endif /* CONFIG_MEMORY_HOTPLUG */
1290
1291/* Virtual Processor Home Node (VPHN) support */
1292#ifdef CONFIG_PPC_SPLPAR
1293static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1294static cpumask_t cpu_associativity_changes_mask;
1295static int vphn_enabled;
1296static void set_topology_timer(void);
1297
1298/*
1299 * Store the current values of the associativity change counters in the
1300 * hypervisor.
1301 */
1302static void setup_cpu_associativity_change_counters(void)
1303{
1304	int cpu;
1305
1306	/* The VPHN feature supports a maximum of 8 reference points */
1307	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1308
1309	for_each_possible_cpu(cpu) {
1310		int i;
1311		u8 *counts = vphn_cpu_change_counts[cpu];
1312		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1313
1314		for (i = 0; i < distance_ref_points_depth; i++)
1315			counts[i] = hypervisor_counts[i];
1316	}
1317}
1318
1319/*
1320 * The hypervisor maintains a set of 8 associativity change counters in
1321 * the VPA of each cpu that correspond to the associativity levels in the
1322 * ibm,associativity-reference-points property. When an associativity
1323 * level changes, the corresponding counter is incremented.
1324 *
1325 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1326 * node associativity levels have changed.
1327 *
1328 * Returns the number of cpus with unhandled associativity changes.
1329 */
1330static int update_cpu_associativity_changes_mask(void)
1331{
1332	int cpu, nr_cpus = 0;
1333	cpumask_t *changes = &cpu_associativity_changes_mask;
1334
1335	cpumask_clear(changes);
1336
1337	for_each_possible_cpu(cpu) {
1338		int i, changed = 0;
1339		u8 *counts = vphn_cpu_change_counts[cpu];
1340		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1341
1342		for (i = 0; i < distance_ref_points_depth; i++) {
1343			if (hypervisor_counts[i] != counts[i]) {
1344				counts[i] = hypervisor_counts[i];
1345				changed = 1;
1346			}
1347		}
1348		if (changed) {
1349			cpumask_set_cpu(cpu, changes);
1350			nr_cpus++;
1351		}
1352	}
1353
1354	return nr_cpus;
1355}
1356
1357/*
1358 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1359 * the complete property we have to add the length in the first cell.
1360 */
1361#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1362
1363/*
1364 * Convert the associativity domain numbers returned from the hypervisor
1365 * to the sequence they would appear in the ibm,associativity property.
1366 */
1367static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1368{
1369	int i, nr_assoc_doms = 0;
1370	const u16 *field = (const u16*) packed;
1371
1372#define VPHN_FIELD_UNUSED	(0xffff)
1373#define VPHN_FIELD_MSB		(0x8000)
1374#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)
1375
1376	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1377		if (*field == VPHN_FIELD_UNUSED) {
1378			/* All significant fields processed, and remaining
1379			 * fields contain the reserved value of all 1's.
1380			 * Just store them.
1381			 */
1382			unpacked[i] = *((u32*)field);
1383			field += 2;
1384		} else if (*field & VPHN_FIELD_MSB) {
1385			/* Data is in the lower 15 bits of this field */
1386			unpacked[i] = *field & VPHN_FIELD_MASK;
1387			field++;
1388			nr_assoc_doms++;
1389		} else {
1390			/* Data is in the lower 15 bits of this field
1391			 * concatenated with the next 16 bit field
1392			 */
1393			unpacked[i] = *((u32*)field);
1394			field += 2;
1395			nr_assoc_doms++;
1396		}
1397	}
1398
1399	/* The first cell contains the length of the property */
1400	unpacked[0] = nr_assoc_doms;
1401
1402	return nr_assoc_doms;
1403}
1404
1405/*
1406 * Retrieve the new associativity information for a virtual processor's
1407 * home node.
1408 */
1409static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1410{
1411	long rc;
1412	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1413	u64 flags = 1;
1414	int hwcpu = get_hard_smp_processor_id(cpu);
1415
1416	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1417	vphn_unpack_associativity(retbuf, associativity);
1418
1419	return rc;
1420}
1421
1422static long vphn_get_associativity(unsigned long cpu,
1423					unsigned int *associativity)
1424{
1425	long rc;
1426
1427	rc = hcall_vphn(cpu, associativity);
 
1428
1429	switch (rc) {
 
 
 
 
1430	case H_FUNCTION:
1431		printk(KERN_INFO
1432			"VPHN is not supported. Disabling polling...\n");
1433		stop_topology_update();
1434		break;
1435	case H_HARDWARE:
1436		printk(KERN_ERR
1437			"hcall_vphn() experienced a hardware fault "
1438			"preventing VPHN. Disabling polling...\n");
1439		stop_topology_update();
 
 
 
 
 
 
 
 
1440	}
1441
1442	return rc;
1443}
1444
1445/*
1446 * Update the node maps and sysfs entries for each cpu whose home node
1447 * has changed.
1448 */
1449int arch_update_cpu_topology(void)
1450{
1451	int cpu, nid, old_nid;
1452	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1453	struct sys_device *sysdev;
1454
1455	for_each_cpu(cpu,&cpu_associativity_changes_mask) {
1456		vphn_get_associativity(cpu, associativity);
1457		nid = associativity_to_nid(associativity);
1458
1459		if (nid < 0 || !node_online(nid))
1460			nid = first_online_node;
1461
1462		old_nid = numa_cpu_lookup_table[cpu];
1463
1464		/* Disable hotplug while we update the cpu
1465		 * masks and sysfs.
1466		 */
1467		get_online_cpus();
1468		unregister_cpu_under_node(cpu, old_nid);
1469		unmap_cpu_from_node(cpu);
1470		map_cpu_to_node(cpu, nid);
1471		register_cpu_under_node(cpu, nid);
1472		put_online_cpus();
1473
1474		sysdev = get_cpu_sysdev(cpu);
1475		if (sysdev)
1476			kobject_uevent(&sysdev->kobj, KOBJ_CHANGE);
1477	}
1478
1479	return 1;
1480}
1481
1482static void topology_work_fn(struct work_struct *work)
1483{
1484	rebuild_sched_domains();
1485}
1486static DECLARE_WORK(topology_work, topology_work_fn);
 
 
1487
1488void topology_schedule_update(void)
1489{
1490	schedule_work(&topology_work);
1491}
1492
1493static void topology_timer_fn(unsigned long ignored)
1494{
1495	if (!vphn_enabled)
1496		return;
1497	if (update_cpu_associativity_changes_mask() > 0)
1498		topology_schedule_update();
1499	set_topology_timer();
1500}
1501static struct timer_list topology_timer =
1502	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1503
1504static void set_topology_timer(void)
1505{
1506	topology_timer.data = 0;
1507	topology_timer.expires = jiffies + 60 * HZ;
1508	add_timer(&topology_timer);
1509}
1510
1511/*
1512 * Start polling for VPHN associativity changes.
1513 */
1514int start_topology_update(void)
1515{
1516	int rc = 0;
1517
1518	/* Disabled until races with load balancing are fixed */
1519	if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
1520	    get_lppaca()->shared_proc) {
1521		vphn_enabled = 1;
1522		setup_cpu_associativity_change_counters();
1523		init_timer_deferrable(&topology_timer);
1524		set_topology_timer();
1525		rc = 1;
1526	}
1527
1528	return rc;
 
1529}
1530__initcall(start_topology_update);
1531
1532/*
1533 * Disable polling for VPHN associativity changes.
1534 */
1535int stop_topology_update(void)
1536{
1537	vphn_enabled = 0;
1538	return del_timer_sync(&topology_timer);
1539}
 
1540#endif /* CONFIG_PPC_SPLPAR */