Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7#define pr_fmt(fmt) "numa: " fmt
8
9#include <linux/threads.h>
10#include <linux/memblock.h>
11#include <linux/init.h>
12#include <linux/mm.h>
13#include <linux/mmzone.h>
14#include <linux/export.h>
15#include <linux/nodemask.h>
16#include <linux/cpu.h>
17#include <linux/notifier.h>
18#include <linux/of.h>
19#include <linux/pfn.h>
20#include <linux/cpuset.h>
21#include <linux/node.h>
22#include <linux/stop_machine.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/uaccess.h>
26#include <linux/slab.h>
27#include <asm/cputhreads.h>
28#include <asm/sparsemem.h>
29#include <asm/smp.h>
30#include <asm/topology.h>
31#include <asm/firmware.h>
32#include <asm/paca.h>
33#include <asm/hvcall.h>
34#include <asm/setup.h>
35#include <asm/vdso.h>
36#include <asm/drmem.h>
37
38static int numa_enabled = 1;
39
40static char *cmdline __initdata;
41
42int numa_cpu_lookup_table[NR_CPUS];
43cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
44struct pglist_data *node_data[MAX_NUMNODES];
45
46EXPORT_SYMBOL(numa_cpu_lookup_table);
47EXPORT_SYMBOL(node_to_cpumask_map);
48EXPORT_SYMBOL(node_data);
49
50static int primary_domain_index;
51static int n_mem_addr_cells, n_mem_size_cells;
52
53#define FORM0_AFFINITY 0
54#define FORM1_AFFINITY 1
55#define FORM2_AFFINITY 2
56static int affinity_form;
57
58#define MAX_DISTANCE_REF_POINTS 4
59static int distance_ref_points_depth;
60static const __be32 *distance_ref_points;
61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
63 [0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
64};
65static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
66
67/*
68 * Allocate node_to_cpumask_map based on number of available nodes
69 * Requires node_possible_map to be valid.
70 *
71 * Note: cpumask_of_node() is not valid until after this is done.
72 */
73static void __init setup_node_to_cpumask_map(void)
74{
75 unsigned int node;
76
77 /* setup nr_node_ids if not done yet */
78 if (nr_node_ids == MAX_NUMNODES)
79 setup_nr_node_ids();
80
81 /* allocate the map */
82 for_each_node(node)
83 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
84
85 /* cpumask_of_node() will now work */
86 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
87}
88
89static int __init fake_numa_create_new_node(unsigned long end_pfn,
90 unsigned int *nid)
91{
92 unsigned long long mem;
93 char *p = cmdline;
94 static unsigned int fake_nid;
95 static unsigned long long curr_boundary;
96
97 /*
98 * Modify node id, iff we started creating NUMA nodes
99 * We want to continue from where we left of the last time
100 */
101 if (fake_nid)
102 *nid = fake_nid;
103 /*
104 * In case there are no more arguments to parse, the
105 * node_id should be the same as the last fake node id
106 * (we've handled this above).
107 */
108 if (!p)
109 return 0;
110
111 mem = memparse(p, &p);
112 if (!mem)
113 return 0;
114
115 if (mem < curr_boundary)
116 return 0;
117
118 curr_boundary = mem;
119
120 if ((end_pfn << PAGE_SHIFT) > mem) {
121 /*
122 * Skip commas and spaces
123 */
124 while (*p == ',' || *p == ' ' || *p == '\t')
125 p++;
126
127 cmdline = p;
128 fake_nid++;
129 *nid = fake_nid;
130 pr_debug("created new fake_node with id %d\n", fake_nid);
131 return 1;
132 }
133 return 0;
134}
135
136static void __init reset_numa_cpu_lookup_table(void)
137{
138 unsigned int cpu;
139
140 for_each_possible_cpu(cpu)
141 numa_cpu_lookup_table[cpu] = -1;
142}
143
144void map_cpu_to_node(int cpu, int node)
145{
146 update_numa_cpu_lookup_table(cpu, node);
147
148 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
149 pr_debug("adding cpu %d to node %d\n", cpu, node);
150 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
151 }
152}
153
154#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
155void unmap_cpu_from_node(unsigned long cpu)
156{
157 int node = numa_cpu_lookup_table[cpu];
158
159 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
160 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
161 pr_debug("removing cpu %lu from node %d\n", cpu, node);
162 } else {
163 pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
164 }
165}
166#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
167
168static int __associativity_to_nid(const __be32 *associativity,
169 int max_array_sz)
170{
171 int nid;
172 /*
173 * primary_domain_index is 1 based array index.
174 */
175 int index = primary_domain_index - 1;
176
177 if (!numa_enabled || index >= max_array_sz)
178 return NUMA_NO_NODE;
179
180 nid = of_read_number(&associativity[index], 1);
181
182 /* POWER4 LPAR uses 0xffff as invalid node */
183 if (nid == 0xffff || nid >= nr_node_ids)
184 nid = NUMA_NO_NODE;
185 return nid;
186}
187/*
188 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
189 * info is found.
190 */
191static int associativity_to_nid(const __be32 *associativity)
192{
193 int array_sz = of_read_number(associativity, 1);
194
195 /* Skip the first element in the associativity array */
196 return __associativity_to_nid((associativity + 1), array_sz);
197}
198
199static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
200{
201 int dist;
202 int node1, node2;
203
204 node1 = associativity_to_nid(cpu1_assoc);
205 node2 = associativity_to_nid(cpu2_assoc);
206
207 dist = numa_distance_table[node1][node2];
208 if (dist <= LOCAL_DISTANCE)
209 return 0;
210 else if (dist <= REMOTE_DISTANCE)
211 return 1;
212 else
213 return 2;
214}
215
216static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
217{
218 int dist = 0;
219
220 int i, index;
221
222 for (i = 0; i < distance_ref_points_depth; i++) {
223 index = be32_to_cpu(distance_ref_points[i]);
224 if (cpu1_assoc[index] == cpu2_assoc[index])
225 break;
226 dist++;
227 }
228
229 return dist;
230}
231
232int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
233{
234 /* We should not get called with FORM0 */
235 VM_WARN_ON(affinity_form == FORM0_AFFINITY);
236 if (affinity_form == FORM1_AFFINITY)
237 return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
238 return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
239}
240
241/* must hold reference to node during call */
242static const __be32 *of_get_associativity(struct device_node *dev)
243{
244 return of_get_property(dev, "ibm,associativity", NULL);
245}
246
247int __node_distance(int a, int b)
248{
249 int i;
250 int distance = LOCAL_DISTANCE;
251
252 if (affinity_form == FORM2_AFFINITY)
253 return numa_distance_table[a][b];
254 else if (affinity_form == FORM0_AFFINITY)
255 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
256
257 for (i = 0; i < distance_ref_points_depth; i++) {
258 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
259 break;
260
261 /* Double the distance for each NUMA level */
262 distance *= 2;
263 }
264
265 return distance;
266}
267EXPORT_SYMBOL(__node_distance);
268
269/* Returns the nid associated with the given device tree node,
270 * or -1 if not found.
271 */
272static int of_node_to_nid_single(struct device_node *device)
273{
274 int nid = NUMA_NO_NODE;
275 const __be32 *tmp;
276
277 tmp = of_get_associativity(device);
278 if (tmp)
279 nid = associativity_to_nid(tmp);
280 return nid;
281}
282
283/* Walk the device tree upwards, looking for an associativity id */
284int of_node_to_nid(struct device_node *device)
285{
286 int nid = NUMA_NO_NODE;
287
288 of_node_get(device);
289 while (device) {
290 nid = of_node_to_nid_single(device);
291 if (nid != -1)
292 break;
293
294 device = of_get_next_parent(device);
295 }
296 of_node_put(device);
297
298 return nid;
299}
300EXPORT_SYMBOL(of_node_to_nid);
301
302static void __initialize_form1_numa_distance(const __be32 *associativity,
303 int max_array_sz)
304{
305 int i, nid;
306
307 if (affinity_form != FORM1_AFFINITY)
308 return;
309
310 nid = __associativity_to_nid(associativity, max_array_sz);
311 if (nid != NUMA_NO_NODE) {
312 for (i = 0; i < distance_ref_points_depth; i++) {
313 const __be32 *entry;
314 int index = be32_to_cpu(distance_ref_points[i]) - 1;
315
316 /*
317 * broken hierarchy, return with broken distance table
318 */
319 if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
320 return;
321
322 entry = &associativity[index];
323 distance_lookup_table[nid][i] = of_read_number(entry, 1);
324 }
325 }
326}
327
328static void initialize_form1_numa_distance(const __be32 *associativity)
329{
330 int array_sz;
331
332 array_sz = of_read_number(associativity, 1);
333 /* Skip the first element in the associativity array */
334 __initialize_form1_numa_distance(associativity + 1, array_sz);
335}
336
337/*
338 * Used to update distance information w.r.t newly added node.
339 */
340void update_numa_distance(struct device_node *node)
341{
342 int nid;
343
344 if (affinity_form == FORM0_AFFINITY)
345 return;
346 else if (affinity_form == FORM1_AFFINITY) {
347 const __be32 *associativity;
348
349 associativity = of_get_associativity(node);
350 if (!associativity)
351 return;
352
353 initialize_form1_numa_distance(associativity);
354 return;
355 }
356
357 /* FORM2 affinity */
358 nid = of_node_to_nid_single(node);
359 if (nid == NUMA_NO_NODE)
360 return;
361
362 /*
363 * With FORM2 we expect NUMA distance of all possible NUMA
364 * nodes to be provided during boot.
365 */
366 WARN(numa_distance_table[nid][nid] == -1,
367 "NUMA distance details for node %d not provided\n", nid);
368}
369
370/*
371 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
372 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
373 */
374static void __init initialize_form2_numa_distance_lookup_table(void)
375{
376 int i, j;
377 struct device_node *root;
378 const __u8 *form2_distances;
379 const __be32 *numa_lookup_index;
380 int form2_distances_length;
381 int max_numa_index, distance_index;
382
383 if (firmware_has_feature(FW_FEATURE_OPAL))
384 root = of_find_node_by_path("/ibm,opal");
385 else
386 root = of_find_node_by_path("/rtas");
387 if (!root)
388 root = of_find_node_by_path("/");
389
390 numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
391 max_numa_index = of_read_number(&numa_lookup_index[0], 1);
392
393 /* first element of the array is the size and is encode-int */
394 form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
395 form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
396 /* Skip the size which is encoded int */
397 form2_distances += sizeof(__be32);
398
399 pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
400 form2_distances_length, max_numa_index);
401
402 for (i = 0; i < max_numa_index; i++)
403 /* +1 skip the max_numa_index in the property */
404 numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
405
406
407 if (form2_distances_length != max_numa_index * max_numa_index) {
408 WARN(1, "Wrong NUMA distance information\n");
409 form2_distances = NULL; // don't use it
410 }
411 distance_index = 0;
412 for (i = 0; i < max_numa_index; i++) {
413 for (j = 0; j < max_numa_index; j++) {
414 int nodeA = numa_id_index_table[i];
415 int nodeB = numa_id_index_table[j];
416 int dist;
417
418 if (form2_distances)
419 dist = form2_distances[distance_index++];
420 else if (nodeA == nodeB)
421 dist = LOCAL_DISTANCE;
422 else
423 dist = REMOTE_DISTANCE;
424 numa_distance_table[nodeA][nodeB] = dist;
425 pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
426 }
427 }
428
429 of_node_put(root);
430}
431
432static int __init find_primary_domain_index(void)
433{
434 int index;
435 struct device_node *root;
436
437 /*
438 * Check for which form of affinity.
439 */
440 if (firmware_has_feature(FW_FEATURE_OPAL)) {
441 affinity_form = FORM1_AFFINITY;
442 } else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
443 pr_debug("Using form 2 affinity\n");
444 affinity_form = FORM2_AFFINITY;
445 } else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
446 pr_debug("Using form 1 affinity\n");
447 affinity_form = FORM1_AFFINITY;
448 } else
449 affinity_form = FORM0_AFFINITY;
450
451 if (firmware_has_feature(FW_FEATURE_OPAL))
452 root = of_find_node_by_path("/ibm,opal");
453 else
454 root = of_find_node_by_path("/rtas");
455 if (!root)
456 root = of_find_node_by_path("/");
457
458 /*
459 * This property is a set of 32-bit integers, each representing
460 * an index into the ibm,associativity nodes.
461 *
462 * With form 0 affinity the first integer is for an SMP configuration
463 * (should be all 0's) and the second is for a normal NUMA
464 * configuration. We have only one level of NUMA.
465 *
466 * With form 1 affinity the first integer is the most significant
467 * NUMA boundary and the following are progressively less significant
468 * boundaries. There can be more than one level of NUMA.
469 */
470 distance_ref_points = of_get_property(root,
471 "ibm,associativity-reference-points",
472 &distance_ref_points_depth);
473
474 if (!distance_ref_points) {
475 pr_debug("ibm,associativity-reference-points not found.\n");
476 goto err;
477 }
478
479 distance_ref_points_depth /= sizeof(int);
480 if (affinity_form == FORM0_AFFINITY) {
481 if (distance_ref_points_depth < 2) {
482 pr_warn("short ibm,associativity-reference-points\n");
483 goto err;
484 }
485
486 index = of_read_number(&distance_ref_points[1], 1);
487 } else {
488 /*
489 * Both FORM1 and FORM2 affinity find the primary domain details
490 * at the same offset.
491 */
492 index = of_read_number(distance_ref_points, 1);
493 }
494 /*
495 * Warn and cap if the hardware supports more than
496 * MAX_DISTANCE_REF_POINTS domains.
497 */
498 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
499 pr_warn("distance array capped at %d entries\n",
500 MAX_DISTANCE_REF_POINTS);
501 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
502 }
503
504 of_node_put(root);
505 return index;
506
507err:
508 of_node_put(root);
509 return -1;
510}
511
512static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
513{
514 struct device_node *memory = NULL;
515
516 memory = of_find_node_by_type(memory, "memory");
517 if (!memory)
518 panic("numa.c: No memory nodes found!");
519
520 *n_addr_cells = of_n_addr_cells(memory);
521 *n_size_cells = of_n_size_cells(memory);
522 of_node_put(memory);
523}
524
525static unsigned long read_n_cells(int n, const __be32 **buf)
526{
527 unsigned long result = 0;
528
529 while (n--) {
530 result = (result << 32) | of_read_number(*buf, 1);
531 (*buf)++;
532 }
533 return result;
534}
535
536struct assoc_arrays {
537 u32 n_arrays;
538 u32 array_sz;
539 const __be32 *arrays;
540};
541
542/*
543 * Retrieve and validate the list of associativity arrays for drconf
544 * memory from the ibm,associativity-lookup-arrays property of the
545 * device tree..
546 *
547 * The layout of the ibm,associativity-lookup-arrays property is a number N
548 * indicating the number of associativity arrays, followed by a number M
549 * indicating the size of each associativity array, followed by a list
550 * of N associativity arrays.
551 */
552static int of_get_assoc_arrays(struct assoc_arrays *aa)
553{
554 struct device_node *memory;
555 const __be32 *prop;
556 u32 len;
557
558 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
559 if (!memory)
560 return -1;
561
562 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
563 if (!prop || len < 2 * sizeof(unsigned int)) {
564 of_node_put(memory);
565 return -1;
566 }
567
568 aa->n_arrays = of_read_number(prop++, 1);
569 aa->array_sz = of_read_number(prop++, 1);
570
571 of_node_put(memory);
572
573 /* Now that we know the number of arrays and size of each array,
574 * revalidate the size of the property read in.
575 */
576 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
577 return -1;
578
579 aa->arrays = prop;
580 return 0;
581}
582
583static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
584{
585 struct assoc_arrays aa = { .arrays = NULL };
586 int default_nid = NUMA_NO_NODE;
587 int nid = default_nid;
588 int rc, index;
589
590 if ((primary_domain_index < 0) || !numa_enabled)
591 return default_nid;
592
593 rc = of_get_assoc_arrays(&aa);
594 if (rc)
595 return default_nid;
596
597 if (primary_domain_index <= aa.array_sz &&
598 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
599 const __be32 *associativity;
600
601 index = lmb->aa_index * aa.array_sz;
602 associativity = &aa.arrays[index];
603 nid = __associativity_to_nid(associativity, aa.array_sz);
604 if (nid > 0 && affinity_form == FORM1_AFFINITY) {
605 /*
606 * lookup array associativity entries have
607 * no length of the array as the first element.
608 */
609 __initialize_form1_numa_distance(associativity, aa.array_sz);
610 }
611 }
612 return nid;
613}
614
615/*
616 * This is like of_node_to_nid_single() for memory represented in the
617 * ibm,dynamic-reconfiguration-memory node.
618 */
619int of_drconf_to_nid_single(struct drmem_lmb *lmb)
620{
621 struct assoc_arrays aa = { .arrays = NULL };
622 int default_nid = NUMA_NO_NODE;
623 int nid = default_nid;
624 int rc, index;
625
626 if ((primary_domain_index < 0) || !numa_enabled)
627 return default_nid;
628
629 rc = of_get_assoc_arrays(&aa);
630 if (rc)
631 return default_nid;
632
633 if (primary_domain_index <= aa.array_sz &&
634 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
635 const __be32 *associativity;
636
637 index = lmb->aa_index * aa.array_sz;
638 associativity = &aa.arrays[index];
639 nid = __associativity_to_nid(associativity, aa.array_sz);
640 }
641 return nid;
642}
643
644#ifdef CONFIG_PPC_SPLPAR
645
646static int __vphn_get_associativity(long lcpu, __be32 *associativity)
647{
648 long rc, hwid;
649
650 /*
651 * On a shared lpar, device tree will not have node associativity.
652 * At this time lppaca, or its __old_status field may not be
653 * updated. Hence kernel cannot detect if its on a shared lpar. So
654 * request an explicit associativity irrespective of whether the
655 * lpar is shared or dedicated. Use the device tree property as a
656 * fallback. cpu_to_phys_id is only valid between
657 * smp_setup_cpu_maps() and smp_setup_pacas().
658 */
659 if (firmware_has_feature(FW_FEATURE_VPHN)) {
660 if (cpu_to_phys_id)
661 hwid = cpu_to_phys_id[lcpu];
662 else
663 hwid = get_hard_smp_processor_id(lcpu);
664
665 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
666 if (rc == H_SUCCESS)
667 return 0;
668 }
669
670 return -1;
671}
672
673static int vphn_get_nid(long lcpu)
674{
675 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
676
677
678 if (!__vphn_get_associativity(lcpu, associativity))
679 return associativity_to_nid(associativity);
680
681 return NUMA_NO_NODE;
682
683}
684#else
685
686static int __vphn_get_associativity(long lcpu, __be32 *associativity)
687{
688 return -1;
689}
690
691static int vphn_get_nid(long unused)
692{
693 return NUMA_NO_NODE;
694}
695#endif /* CONFIG_PPC_SPLPAR */
696
697/*
698 * Figure out to which domain a cpu belongs and stick it there.
699 * Return the id of the domain used.
700 */
701static int numa_setup_cpu(unsigned long lcpu)
702{
703 struct device_node *cpu;
704 int fcpu = cpu_first_thread_sibling(lcpu);
705 int nid = NUMA_NO_NODE;
706
707 if (!cpu_present(lcpu)) {
708 set_cpu_numa_node(lcpu, first_online_node);
709 return first_online_node;
710 }
711
712 /*
713 * If a valid cpu-to-node mapping is already available, use it
714 * directly instead of querying the firmware, since it represents
715 * the most recent mapping notified to us by the platform (eg: VPHN).
716 * Since cpu_to_node binding remains the same for all threads in the
717 * core. If a valid cpu-to-node mapping is already available, for
718 * the first thread in the core, use it.
719 */
720 nid = numa_cpu_lookup_table[fcpu];
721 if (nid >= 0) {
722 map_cpu_to_node(lcpu, nid);
723 return nid;
724 }
725
726 nid = vphn_get_nid(lcpu);
727 if (nid != NUMA_NO_NODE)
728 goto out_present;
729
730 cpu = of_get_cpu_node(lcpu, NULL);
731
732 if (!cpu) {
733 WARN_ON(1);
734 if (cpu_present(lcpu))
735 goto out_present;
736 else
737 goto out;
738 }
739
740 nid = of_node_to_nid_single(cpu);
741 of_node_put(cpu);
742
743out_present:
744 if (nid < 0 || !node_possible(nid))
745 nid = first_online_node;
746
747 /*
748 * Update for the first thread of the core. All threads of a core
749 * have to be part of the same node. This not only avoids querying
750 * for every other thread in the core, but always avoids a case
751 * where virtual node associativity change causes subsequent threads
752 * of a core to be associated with different nid. However if first
753 * thread is already online, expect it to have a valid mapping.
754 */
755 if (fcpu != lcpu) {
756 WARN_ON(cpu_online(fcpu));
757 map_cpu_to_node(fcpu, nid);
758 }
759
760 map_cpu_to_node(lcpu, nid);
761out:
762 return nid;
763}
764
765static void verify_cpu_node_mapping(int cpu, int node)
766{
767 int base, sibling, i;
768
769 /* Verify that all the threads in the core belong to the same node */
770 base = cpu_first_thread_sibling(cpu);
771
772 for (i = 0; i < threads_per_core; i++) {
773 sibling = base + i;
774
775 if (sibling == cpu || cpu_is_offline(sibling))
776 continue;
777
778 if (cpu_to_node(sibling) != node) {
779 WARN(1, "CPU thread siblings %d and %d don't belong"
780 " to the same node!\n", cpu, sibling);
781 break;
782 }
783 }
784}
785
786/* Must run before sched domains notifier. */
787static int ppc_numa_cpu_prepare(unsigned int cpu)
788{
789 int nid;
790
791 nid = numa_setup_cpu(cpu);
792 verify_cpu_node_mapping(cpu, nid);
793 return 0;
794}
795
796static int ppc_numa_cpu_dead(unsigned int cpu)
797{
798 return 0;
799}
800
801/*
802 * Check and possibly modify a memory region to enforce the memory limit.
803 *
804 * Returns the size the region should have to enforce the memory limit.
805 * This will either be the original value of size, a truncated value,
806 * or zero. If the returned value of size is 0 the region should be
807 * discarded as it lies wholly above the memory limit.
808 */
809static unsigned long __init numa_enforce_memory_limit(unsigned long start,
810 unsigned long size)
811{
812 /*
813 * We use memblock_end_of_DRAM() in here instead of memory_limit because
814 * we've already adjusted it for the limit and it takes care of
815 * having memory holes below the limit. Also, in the case of
816 * iommu_is_off, memory_limit is not set but is implicitly enforced.
817 */
818
819 if (start + size <= memblock_end_of_DRAM())
820 return size;
821
822 if (start >= memblock_end_of_DRAM())
823 return 0;
824
825 return memblock_end_of_DRAM() - start;
826}
827
828/*
829 * Reads the counter for a given entry in
830 * linux,drconf-usable-memory property
831 */
832static inline int __init read_usm_ranges(const __be32 **usm)
833{
834 /*
835 * For each lmb in ibm,dynamic-memory a corresponding
836 * entry in linux,drconf-usable-memory property contains
837 * a counter followed by that many (base, size) duple.
838 * read the counter from linux,drconf-usable-memory
839 */
840 return read_n_cells(n_mem_size_cells, usm);
841}
842
843/*
844 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
845 * node. This assumes n_mem_{addr,size}_cells have been set.
846 */
847static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
848 const __be32 **usm,
849 void *data)
850{
851 unsigned int ranges, is_kexec_kdump = 0;
852 unsigned long base, size, sz;
853 int nid;
854
855 /*
856 * Skip this block if the reserved bit is set in flags (0x80)
857 * or if the block is not assigned to this partition (0x8)
858 */
859 if ((lmb->flags & DRCONF_MEM_RESERVED)
860 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
861 return 0;
862
863 if (*usm)
864 is_kexec_kdump = 1;
865
866 base = lmb->base_addr;
867 size = drmem_lmb_size();
868 ranges = 1;
869
870 if (is_kexec_kdump) {
871 ranges = read_usm_ranges(usm);
872 if (!ranges) /* there are no (base, size) duple */
873 return 0;
874 }
875
876 do {
877 if (is_kexec_kdump) {
878 base = read_n_cells(n_mem_addr_cells, usm);
879 size = read_n_cells(n_mem_size_cells, usm);
880 }
881
882 nid = get_nid_and_numa_distance(lmb);
883 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
884 &nid);
885 node_set_online(nid);
886 sz = numa_enforce_memory_limit(base, size);
887 if (sz)
888 memblock_set_node(base, sz, &memblock.memory, nid);
889 } while (--ranges);
890
891 return 0;
892}
893
894static int __init parse_numa_properties(void)
895{
896 struct device_node *memory;
897 int default_nid = 0;
898 unsigned long i;
899 const __be32 *associativity;
900
901 if (numa_enabled == 0) {
902 pr_warn("disabled by user\n");
903 return -1;
904 }
905
906 primary_domain_index = find_primary_domain_index();
907
908 if (primary_domain_index < 0) {
909 /*
910 * if we fail to parse primary_domain_index from device tree
911 * mark the numa disabled, boot with numa disabled.
912 */
913 numa_enabled = false;
914 return primary_domain_index;
915 }
916
917 pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
918
919 /*
920 * If it is FORM2 initialize the distance table here.
921 */
922 if (affinity_form == FORM2_AFFINITY)
923 initialize_form2_numa_distance_lookup_table();
924
925 /*
926 * Even though we connect cpus to numa domains later in SMP
927 * init, we need to know the node ids now. This is because
928 * each node to be onlined must have NODE_DATA etc backing it.
929 */
930 for_each_present_cpu(i) {
931 __be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
932 struct device_node *cpu;
933 int nid = NUMA_NO_NODE;
934
935 memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
936
937 if (__vphn_get_associativity(i, vphn_assoc) == 0) {
938 nid = associativity_to_nid(vphn_assoc);
939 initialize_form1_numa_distance(vphn_assoc);
940 } else {
941
942 /*
943 * Don't fall back to default_nid yet -- we will plug
944 * cpus into nodes once the memory scan has discovered
945 * the topology.
946 */
947 cpu = of_get_cpu_node(i, NULL);
948 BUG_ON(!cpu);
949
950 associativity = of_get_associativity(cpu);
951 if (associativity) {
952 nid = associativity_to_nid(associativity);
953 initialize_form1_numa_distance(associativity);
954 }
955 of_node_put(cpu);
956 }
957
958 /* node_set_online() is an UB if 'nid' is negative */
959 if (likely(nid >= 0))
960 node_set_online(nid);
961 }
962
963 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
964
965 for_each_node_by_type(memory, "memory") {
966 unsigned long start;
967 unsigned long size;
968 int nid;
969 int ranges;
970 const __be32 *memcell_buf;
971 unsigned int len;
972
973 memcell_buf = of_get_property(memory,
974 "linux,usable-memory", &len);
975 if (!memcell_buf || len <= 0)
976 memcell_buf = of_get_property(memory, "reg", &len);
977 if (!memcell_buf || len <= 0)
978 continue;
979
980 /* ranges in cell */
981 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
982new_range:
983 /* these are order-sensitive, and modify the buffer pointer */
984 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
985 size = read_n_cells(n_mem_size_cells, &memcell_buf);
986
987 /*
988 * Assumption: either all memory nodes or none will
989 * have associativity properties. If none, then
990 * everything goes to default_nid.
991 */
992 associativity = of_get_associativity(memory);
993 if (associativity) {
994 nid = associativity_to_nid(associativity);
995 initialize_form1_numa_distance(associativity);
996 } else
997 nid = default_nid;
998
999 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1000 node_set_online(nid);
1001
1002 size = numa_enforce_memory_limit(start, size);
1003 if (size)
1004 memblock_set_node(start, size, &memblock.memory, nid);
1005
1006 if (--ranges)
1007 goto new_range;
1008 }
1009
1010 /*
1011 * Now do the same thing for each MEMBLOCK listed in the
1012 * ibm,dynamic-memory property in the
1013 * ibm,dynamic-reconfiguration-memory node.
1014 */
1015 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1016 if (memory) {
1017 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1018 of_node_put(memory);
1019 }
1020
1021 return 0;
1022}
1023
1024static void __init setup_nonnuma(void)
1025{
1026 unsigned long top_of_ram = memblock_end_of_DRAM();
1027 unsigned long total_ram = memblock_phys_mem_size();
1028 unsigned long start_pfn, end_pfn;
1029 unsigned int nid = 0;
1030 int i;
1031
1032 pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1033 pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1034
1035 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1036 fake_numa_create_new_node(end_pfn, &nid);
1037 memblock_set_node(PFN_PHYS(start_pfn),
1038 PFN_PHYS(end_pfn - start_pfn),
1039 &memblock.memory, nid);
1040 node_set_online(nid);
1041 }
1042}
1043
1044void __init dump_numa_cpu_topology(void)
1045{
1046 unsigned int node;
1047 unsigned int cpu, count;
1048
1049 if (!numa_enabled)
1050 return;
1051
1052 for_each_online_node(node) {
1053 pr_info("Node %d CPUs:", node);
1054
1055 count = 0;
1056 /*
1057 * If we used a CPU iterator here we would miss printing
1058 * the holes in the cpumap.
1059 */
1060 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1061 if (cpumask_test_cpu(cpu,
1062 node_to_cpumask_map[node])) {
1063 if (count == 0)
1064 pr_cont(" %u", cpu);
1065 ++count;
1066 } else {
1067 if (count > 1)
1068 pr_cont("-%u", cpu - 1);
1069 count = 0;
1070 }
1071 }
1072
1073 if (count > 1)
1074 pr_cont("-%u", nr_cpu_ids - 1);
1075 pr_cont("\n");
1076 }
1077}
1078
1079/* Initialize NODE_DATA for a node on the local memory */
1080static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1081{
1082 u64 spanned_pages = end_pfn - start_pfn;
1083 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1084 u64 nd_pa;
1085 void *nd;
1086 int tnid;
1087
1088 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1089 if (!nd_pa)
1090 panic("Cannot allocate %zu bytes for node %d data\n",
1091 nd_size, nid);
1092
1093 nd = __va(nd_pa);
1094
1095 /* report and initialize */
1096 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
1097 nd_pa, nd_pa + nd_size - 1);
1098 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1099 if (tnid != nid)
1100 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
1101
1102 node_data[nid] = nd;
1103 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1104 NODE_DATA(nid)->node_id = nid;
1105 NODE_DATA(nid)->node_start_pfn = start_pfn;
1106 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1107}
1108
1109static void __init find_possible_nodes(void)
1110{
1111 struct device_node *rtas;
1112 const __be32 *domains = NULL;
1113 int prop_length, max_nodes;
1114 u32 i;
1115
1116 if (!numa_enabled)
1117 return;
1118
1119 rtas = of_find_node_by_path("/rtas");
1120 if (!rtas)
1121 return;
1122
1123 /*
1124 * ibm,current-associativity-domains is a fairly recent property. If
1125 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1126 * Current denotes what the platform can support compared to max
1127 * which denotes what the Hypervisor can support.
1128 *
1129 * If the LPAR is migratable, new nodes might be activated after a LPM,
1130 * so we should consider the max number in that case.
1131 */
1132 if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1133 domains = of_get_property(rtas,
1134 "ibm,current-associativity-domains",
1135 &prop_length);
1136 if (!domains) {
1137 domains = of_get_property(rtas, "ibm,max-associativity-domains",
1138 &prop_length);
1139 if (!domains)
1140 goto out;
1141 }
1142
1143 max_nodes = of_read_number(&domains[primary_domain_index], 1);
1144 pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1145
1146 for (i = 0; i < max_nodes; i++) {
1147 if (!node_possible(i))
1148 node_set(i, node_possible_map);
1149 }
1150
1151 prop_length /= sizeof(int);
1152 if (prop_length > primary_domain_index + 2)
1153 coregroup_enabled = 1;
1154
1155out:
1156 of_node_put(rtas);
1157}
1158
1159void __init mem_topology_setup(void)
1160{
1161 int cpu;
1162
1163 max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1164 min_low_pfn = MEMORY_START >> PAGE_SHIFT;
1165
1166 /*
1167 * Linux/mm assumes node 0 to be online at boot. However this is not
1168 * true on PowerPC, where node 0 is similar to any other node, it
1169 * could be cpuless, memoryless node. So force node 0 to be offline
1170 * for now. This will prevent cpuless, memoryless node 0 showing up
1171 * unnecessarily as online. If a node has cpus or memory that need
1172 * to be online, then node will anyway be marked online.
1173 */
1174 node_set_offline(0);
1175
1176 if (parse_numa_properties())
1177 setup_nonnuma();
1178
1179 /*
1180 * Modify the set of possible NUMA nodes to reflect information
1181 * available about the set of online nodes, and the set of nodes
1182 * that we expect to make use of for this platform's affinity
1183 * calculations.
1184 */
1185 nodes_and(node_possible_map, node_possible_map, node_online_map);
1186
1187 find_possible_nodes();
1188
1189 setup_node_to_cpumask_map();
1190
1191 reset_numa_cpu_lookup_table();
1192
1193 for_each_possible_cpu(cpu) {
1194 /*
1195 * Powerpc with CONFIG_NUMA always used to have a node 0,
1196 * even if it was memoryless or cpuless. For all cpus that
1197 * are possible but not present, cpu_to_node() would point
1198 * to node 0. To remove a cpuless, memoryless dummy node,
1199 * powerpc need to make sure all possible but not present
1200 * cpu_to_node are set to a proper node.
1201 */
1202 numa_setup_cpu(cpu);
1203 }
1204}
1205
1206void __init initmem_init(void)
1207{
1208 int nid;
1209
1210 memblock_dump_all();
1211
1212 for_each_online_node(nid) {
1213 unsigned long start_pfn, end_pfn;
1214
1215 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1216 setup_node_data(nid, start_pfn, end_pfn);
1217 }
1218
1219 sparse_init();
1220
1221 /*
1222 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1223 * even before we online them, so that we can use cpu_to_{node,mem}
1224 * early in boot, cf. smp_prepare_cpus().
1225 * _nocalls() + manual invocation is used because cpuhp is not yet
1226 * initialized for the boot CPU.
1227 */
1228 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1229 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1230}
1231
1232static int __init early_numa(char *p)
1233{
1234 if (!p)
1235 return 0;
1236
1237 if (strstr(p, "off"))
1238 numa_enabled = 0;
1239
1240 p = strstr(p, "fake=");
1241 if (p)
1242 cmdline = p + strlen("fake=");
1243
1244 return 0;
1245}
1246early_param("numa", early_numa);
1247
1248#ifdef CONFIG_MEMORY_HOTPLUG
1249/*
1250 * Find the node associated with a hot added memory section for
1251 * memory represented in the device tree by the property
1252 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1253 */
1254static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1255{
1256 struct drmem_lmb *lmb;
1257 unsigned long lmb_size;
1258 int nid = NUMA_NO_NODE;
1259
1260 lmb_size = drmem_lmb_size();
1261
1262 for_each_drmem_lmb(lmb) {
1263 /* skip this block if it is reserved or not assigned to
1264 * this partition */
1265 if ((lmb->flags & DRCONF_MEM_RESERVED)
1266 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1267 continue;
1268
1269 if ((scn_addr < lmb->base_addr)
1270 || (scn_addr >= (lmb->base_addr + lmb_size)))
1271 continue;
1272
1273 nid = of_drconf_to_nid_single(lmb);
1274 break;
1275 }
1276
1277 return nid;
1278}
1279
1280/*
1281 * Find the node associated with a hot added memory section for memory
1282 * represented in the device tree as a node (i.e. memory@XXXX) for
1283 * each memblock.
1284 */
1285static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1286{
1287 struct device_node *memory;
1288 int nid = NUMA_NO_NODE;
1289
1290 for_each_node_by_type(memory, "memory") {
1291 unsigned long start, size;
1292 int ranges;
1293 const __be32 *memcell_buf;
1294 unsigned int len;
1295
1296 memcell_buf = of_get_property(memory, "reg", &len);
1297 if (!memcell_buf || len <= 0)
1298 continue;
1299
1300 /* ranges in cell */
1301 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1302
1303 while (ranges--) {
1304 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1305 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1306
1307 if ((scn_addr < start) || (scn_addr >= (start + size)))
1308 continue;
1309
1310 nid = of_node_to_nid_single(memory);
1311 break;
1312 }
1313
1314 if (nid >= 0)
1315 break;
1316 }
1317
1318 of_node_put(memory);
1319
1320 return nid;
1321}
1322
1323/*
1324 * Find the node associated with a hot added memory section. Section
1325 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1326 * sections are fully contained within a single MEMBLOCK.
1327 */
1328int hot_add_scn_to_nid(unsigned long scn_addr)
1329{
1330 struct device_node *memory = NULL;
1331 int nid;
1332
1333 if (!numa_enabled)
1334 return first_online_node;
1335
1336 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1337 if (memory) {
1338 nid = hot_add_drconf_scn_to_nid(scn_addr);
1339 of_node_put(memory);
1340 } else {
1341 nid = hot_add_node_scn_to_nid(scn_addr);
1342 }
1343
1344 if (nid < 0 || !node_possible(nid))
1345 nid = first_online_node;
1346
1347 return nid;
1348}
1349
1350static u64 hot_add_drconf_memory_max(void)
1351{
1352 struct device_node *memory = NULL;
1353 struct device_node *dn = NULL;
1354 const __be64 *lrdr = NULL;
1355
1356 dn = of_find_node_by_path("/rtas");
1357 if (dn) {
1358 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1359 of_node_put(dn);
1360 if (lrdr)
1361 return be64_to_cpup(lrdr);
1362 }
1363
1364 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1365 if (memory) {
1366 of_node_put(memory);
1367 return drmem_lmb_memory_max();
1368 }
1369 return 0;
1370}
1371
1372/*
1373 * memory_hotplug_max - return max address of memory that may be added
1374 *
1375 * This is currently only used on systems that support drconfig memory
1376 * hotplug.
1377 */
1378u64 memory_hotplug_max(void)
1379{
1380 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1381}
1382#endif /* CONFIG_MEMORY_HOTPLUG */
1383
1384/* Virtual Processor Home Node (VPHN) support */
1385#ifdef CONFIG_PPC_SPLPAR
1386static int topology_inited;
1387
1388/*
1389 * Retrieve the new associativity information for a virtual processor's
1390 * home node.
1391 */
1392static long vphn_get_associativity(unsigned long cpu,
1393 __be32 *associativity)
1394{
1395 long rc;
1396
1397 rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1398 VPHN_FLAG_VCPU, associativity);
1399
1400 switch (rc) {
1401 case H_SUCCESS:
1402 pr_debug("VPHN hcall succeeded. Reset polling...\n");
1403 goto out;
1404
1405 case H_FUNCTION:
1406 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1407 break;
1408 case H_HARDWARE:
1409 pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1410 "preventing VPHN. Disabling polling...\n");
1411 break;
1412 case H_PARAMETER:
1413 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1414 "Disabling polling...\n");
1415 break;
1416 default:
1417 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1418 , rc);
1419 break;
1420 }
1421out:
1422 return rc;
1423}
1424
1425void find_and_update_cpu_nid(int cpu)
1426{
1427 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1428 int new_nid;
1429
1430 /* Use associativity from first thread for all siblings */
1431 if (vphn_get_associativity(cpu, associativity))
1432 return;
1433
1434 /* Do not have previous associativity, so find it now. */
1435 new_nid = associativity_to_nid(associativity);
1436
1437 if (new_nid < 0 || !node_possible(new_nid))
1438 new_nid = first_online_node;
1439 else
1440 // Associate node <-> cpu, so cpu_up() calls
1441 // try_online_node() on the right node.
1442 set_cpu_numa_node(cpu, new_nid);
1443
1444 pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
1445}
1446
1447int cpu_to_coregroup_id(int cpu)
1448{
1449 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1450 int index;
1451
1452 if (cpu < 0 || cpu > nr_cpu_ids)
1453 return -1;
1454
1455 if (!coregroup_enabled)
1456 goto out;
1457
1458 if (!firmware_has_feature(FW_FEATURE_VPHN))
1459 goto out;
1460
1461 if (vphn_get_associativity(cpu, associativity))
1462 goto out;
1463
1464 index = of_read_number(associativity, 1);
1465 if (index > primary_domain_index + 1)
1466 return of_read_number(&associativity[index - 1], 1);
1467
1468out:
1469 return cpu_to_core_id(cpu);
1470}
1471
1472static int topology_update_init(void)
1473{
1474 topology_inited = 1;
1475 return 0;
1476}
1477device_initcall(topology_update_init);
1478#endif /* CONFIG_PPC_SPLPAR */
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#define pr_fmt(fmt) "numa: " fmt
12
13#include <linux/threads.h>
14#include <linux/bootmem.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/mmzone.h>
18#include <linux/export.h>
19#include <linux/nodemask.h>
20#include <linux/cpu.h>
21#include <linux/notifier.h>
22#include <linux/memblock.h>
23#include <linux/of.h>
24#include <linux/pfn.h>
25#include <linux/cpuset.h>
26#include <linux/node.h>
27#include <linux/stop_machine.h>
28#include <linux/proc_fs.h>
29#include <linux/seq_file.h>
30#include <linux/uaccess.h>
31#include <linux/slab.h>
32#include <asm/cputhreads.h>
33#include <asm/sparsemem.h>
34#include <asm/prom.h>
35#include <asm/smp.h>
36#include <asm/cputhreads.h>
37#include <asm/topology.h>
38#include <asm/firmware.h>
39#include <asm/paca.h>
40#include <asm/hvcall.h>
41#include <asm/setup.h>
42#include <asm/vdso.h>
43
44static int numa_enabled = 1;
45
46static char *cmdline __initdata;
47
48static int numa_debug;
49#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50
51int numa_cpu_lookup_table[NR_CPUS];
52cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53struct pglist_data *node_data[MAX_NUMNODES];
54
55EXPORT_SYMBOL(numa_cpu_lookup_table);
56EXPORT_SYMBOL(node_to_cpumask_map);
57EXPORT_SYMBOL(node_data);
58
59static int min_common_depth;
60static int n_mem_addr_cells, n_mem_size_cells;
61static int form1_affinity;
62
63#define MAX_DISTANCE_REF_POINTS 4
64static int distance_ref_points_depth;
65static const __be32 *distance_ref_points;
66static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67
68/*
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
71 *
72 * Note: cpumask_of_node() is not valid until after this is done.
73 */
74static void __init setup_node_to_cpumask_map(void)
75{
76 unsigned int node;
77
78 /* setup nr_node_ids if not done yet */
79 if (nr_node_ids == MAX_NUMNODES)
80 setup_nr_node_ids();
81
82 /* allocate the map */
83 for_each_node(node)
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86 /* cpumask_of_node() will now work */
87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88}
89
90static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 unsigned int *nid)
92{
93 unsigned long long mem;
94 char *p = cmdline;
95 static unsigned int fake_nid;
96 static unsigned long long curr_boundary;
97
98 /*
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
101 */
102 if (fake_nid)
103 *nid = fake_nid;
104 /*
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
108 */
109 if (!p)
110 return 0;
111
112 mem = memparse(p, &p);
113 if (!mem)
114 return 0;
115
116 if (mem < curr_boundary)
117 return 0;
118
119 curr_boundary = mem;
120
121 if ((end_pfn << PAGE_SHIFT) > mem) {
122 /*
123 * Skip commas and spaces
124 */
125 while (*p == ',' || *p == ' ' || *p == '\t')
126 p++;
127
128 cmdline = p;
129 fake_nid++;
130 *nid = fake_nid;
131 dbg("created new fake_node with id %d\n", fake_nid);
132 return 1;
133 }
134 return 0;
135}
136
137static void reset_numa_cpu_lookup_table(void)
138{
139 unsigned int cpu;
140
141 for_each_possible_cpu(cpu)
142 numa_cpu_lookup_table[cpu] = -1;
143}
144
145static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
146{
147 numa_cpu_lookup_table[cpu] = node;
148}
149
150static void map_cpu_to_node(int cpu, int node)
151{
152 update_numa_cpu_lookup_table(cpu, node);
153
154 dbg("adding cpu %d to node %d\n", cpu, node);
155
156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
158}
159
160#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
161static void unmap_cpu_from_node(unsigned long cpu)
162{
163 int node = numa_cpu_lookup_table[cpu];
164
165 dbg("removing cpu %lu from node %d\n", cpu, node);
166
167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
169 } else {
170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171 cpu, node);
172 }
173}
174#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
175
176/* must hold reference to node during call */
177static const __be32 *of_get_associativity(struct device_node *dev)
178{
179 return of_get_property(dev, "ibm,associativity", NULL);
180}
181
182/*
183 * Returns the property linux,drconf-usable-memory if
184 * it exists (the property exists only in kexec/kdump kernels,
185 * added by kexec-tools)
186 */
187static const __be32 *of_get_usable_memory(struct device_node *memory)
188{
189 const __be32 *prop;
190 u32 len;
191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192 if (!prop || len < sizeof(unsigned int))
193 return NULL;
194 return prop;
195}
196
197int __node_distance(int a, int b)
198{
199 int i;
200 int distance = LOCAL_DISTANCE;
201
202 if (!form1_affinity)
203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204
205 for (i = 0; i < distance_ref_points_depth; i++) {
206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207 break;
208
209 /* Double the distance for each NUMA level */
210 distance *= 2;
211 }
212
213 return distance;
214}
215EXPORT_SYMBOL(__node_distance);
216
217static void initialize_distance_lookup_table(int nid,
218 const __be32 *associativity)
219{
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 const __be32 *entry;
227
228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229 distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 }
231}
232
233/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234 * info is found.
235 */
236static int associativity_to_nid(const __be32 *associativity)
237{
238 int nid = -1;
239
240 if (min_common_depth == -1)
241 goto out;
242
243 if (of_read_number(associativity, 1) >= min_common_depth)
244 nid = of_read_number(&associativity[min_common_depth], 1);
245
246 /* POWER4 LPAR uses 0xffff as invalid node */
247 if (nid == 0xffff || nid >= MAX_NUMNODES)
248 nid = -1;
249
250 if (nid > 0 &&
251 of_read_number(associativity, 1) >= distance_ref_points_depth) {
252 /*
253 * Skip the length field and send start of associativity array
254 */
255 initialize_distance_lookup_table(nid, associativity + 1);
256 }
257
258out:
259 return nid;
260}
261
262/* Returns the nid associated with the given device tree node,
263 * or -1 if not found.
264 */
265static int of_node_to_nid_single(struct device_node *device)
266{
267 int nid = -1;
268 const __be32 *tmp;
269
270 tmp = of_get_associativity(device);
271 if (tmp)
272 nid = associativity_to_nid(tmp);
273 return nid;
274}
275
276/* Walk the device tree upwards, looking for an associativity id */
277int of_node_to_nid(struct device_node *device)
278{
279 int nid = -1;
280
281 of_node_get(device);
282 while (device) {
283 nid = of_node_to_nid_single(device);
284 if (nid != -1)
285 break;
286
287 device = of_get_next_parent(device);
288 }
289 of_node_put(device);
290
291 return nid;
292}
293EXPORT_SYMBOL_GPL(of_node_to_nid);
294
295static int __init find_min_common_depth(void)
296{
297 int depth;
298 struct device_node *root;
299
300 if (firmware_has_feature(FW_FEATURE_OPAL))
301 root = of_find_node_by_path("/ibm,opal");
302 else
303 root = of_find_node_by_path("/rtas");
304 if (!root)
305 root = of_find_node_by_path("/");
306
307 /*
308 * This property is a set of 32-bit integers, each representing
309 * an index into the ibm,associativity nodes.
310 *
311 * With form 0 affinity the first integer is for an SMP configuration
312 * (should be all 0's) and the second is for a normal NUMA
313 * configuration. We have only one level of NUMA.
314 *
315 * With form 1 affinity the first integer is the most significant
316 * NUMA boundary and the following are progressively less significant
317 * boundaries. There can be more than one level of NUMA.
318 */
319 distance_ref_points = of_get_property(root,
320 "ibm,associativity-reference-points",
321 &distance_ref_points_depth);
322
323 if (!distance_ref_points) {
324 dbg("NUMA: ibm,associativity-reference-points not found.\n");
325 goto err;
326 }
327
328 distance_ref_points_depth /= sizeof(int);
329
330 if (firmware_has_feature(FW_FEATURE_OPAL) ||
331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332 dbg("Using form 1 affinity\n");
333 form1_affinity = 1;
334 }
335
336 if (form1_affinity) {
337 depth = of_read_number(distance_ref_points, 1);
338 } else {
339 if (distance_ref_points_depth < 2) {
340 printk(KERN_WARNING "NUMA: "
341 "short ibm,associativity-reference-points\n");
342 goto err;
343 }
344
345 depth = of_read_number(&distance_ref_points[1], 1);
346 }
347
348 /*
349 * Warn and cap if the hardware supports more than
350 * MAX_DISTANCE_REF_POINTS domains.
351 */
352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353 printk(KERN_WARNING "NUMA: distance array capped at "
354 "%d entries\n", MAX_DISTANCE_REF_POINTS);
355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356 }
357
358 of_node_put(root);
359 return depth;
360
361err:
362 of_node_put(root);
363 return -1;
364}
365
366static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
367{
368 struct device_node *memory = NULL;
369
370 memory = of_find_node_by_type(memory, "memory");
371 if (!memory)
372 panic("numa.c: No memory nodes found!");
373
374 *n_addr_cells = of_n_addr_cells(memory);
375 *n_size_cells = of_n_size_cells(memory);
376 of_node_put(memory);
377}
378
379static unsigned long read_n_cells(int n, const __be32 **buf)
380{
381 unsigned long result = 0;
382
383 while (n--) {
384 result = (result << 32) | of_read_number(*buf, 1);
385 (*buf)++;
386 }
387 return result;
388}
389
390/*
391 * Read the next memblock list entry from the ibm,dynamic-memory property
392 * and return the information in the provided of_drconf_cell structure.
393 */
394static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
395{
396 const __be32 *cp;
397
398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399
400 cp = *cellp;
401 drmem->drc_index = of_read_number(cp, 1);
402 drmem->reserved = of_read_number(&cp[1], 1);
403 drmem->aa_index = of_read_number(&cp[2], 1);
404 drmem->flags = of_read_number(&cp[3], 1);
405
406 *cellp = cp + 4;
407}
408
409/*
410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411 *
412 * The layout of the ibm,dynamic-memory property is a number N of memblock
413 * list entries followed by N memblock list entries. Each memblock list entry
414 * contains information as laid out in the of_drconf_cell struct above.
415 */
416static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
417{
418 const __be32 *prop;
419 u32 len, entries;
420
421 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422 if (!prop || len < sizeof(unsigned int))
423 return 0;
424
425 entries = of_read_number(prop++, 1);
426
427 /* Now that we know the number of entries, revalidate the size
428 * of the property read in to ensure we have everything
429 */
430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431 return 0;
432
433 *dm = prop;
434 return entries;
435}
436
437/*
438 * Retrieve and validate the ibm,lmb-size property for drconf memory
439 * from the device tree.
440 */
441static u64 of_get_lmb_size(struct device_node *memory)
442{
443 const __be32 *prop;
444 u32 len;
445
446 prop = of_get_property(memory, "ibm,lmb-size", &len);
447 if (!prop || len < sizeof(unsigned int))
448 return 0;
449
450 return read_n_cells(n_mem_size_cells, &prop);
451}
452
453struct assoc_arrays {
454 u32 n_arrays;
455 u32 array_sz;
456 const __be32 *arrays;
457};
458
459/*
460 * Retrieve and validate the list of associativity arrays for drconf
461 * memory from the ibm,associativity-lookup-arrays property of the
462 * device tree..
463 *
464 * The layout of the ibm,associativity-lookup-arrays property is a number N
465 * indicating the number of associativity arrays, followed by a number M
466 * indicating the size of each associativity array, followed by a list
467 * of N associativity arrays.
468 */
469static int of_get_assoc_arrays(struct device_node *memory,
470 struct assoc_arrays *aa)
471{
472 const __be32 *prop;
473 u32 len;
474
475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476 if (!prop || len < 2 * sizeof(unsigned int))
477 return -1;
478
479 aa->n_arrays = of_read_number(prop++, 1);
480 aa->array_sz = of_read_number(prop++, 1);
481
482 /* Now that we know the number of arrays and size of each array,
483 * revalidate the size of the property read in.
484 */
485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486 return -1;
487
488 aa->arrays = prop;
489 return 0;
490}
491
492/*
493 * This is like of_node_to_nid_single() for memory represented in the
494 * ibm,dynamic-reconfiguration-memory node.
495 */
496static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497 struct assoc_arrays *aa)
498{
499 int default_nid = 0;
500 int nid = default_nid;
501 int index;
502
503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505 drmem->aa_index < aa->n_arrays) {
506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507 nid = of_read_number(&aa->arrays[index], 1);
508
509 if (nid == 0xffff || nid >= MAX_NUMNODES)
510 nid = default_nid;
511
512 if (nid > 0) {
513 index = drmem->aa_index * aa->array_sz;
514 initialize_distance_lookup_table(nid,
515 &aa->arrays[index]);
516 }
517 }
518
519 return nid;
520}
521
522/*
523 * Figure out to which domain a cpu belongs and stick it there.
524 * Return the id of the domain used.
525 */
526static int numa_setup_cpu(unsigned long lcpu)
527{
528 int nid = -1;
529 struct device_node *cpu;
530
531 /*
532 * If a valid cpu-to-node mapping is already available, use it
533 * directly instead of querying the firmware, since it represents
534 * the most recent mapping notified to us by the platform (eg: VPHN).
535 */
536 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
537 map_cpu_to_node(lcpu, nid);
538 return nid;
539 }
540
541 cpu = of_get_cpu_node(lcpu, NULL);
542
543 if (!cpu) {
544 WARN_ON(1);
545 if (cpu_present(lcpu))
546 goto out_present;
547 else
548 goto out;
549 }
550
551 nid = of_node_to_nid_single(cpu);
552
553out_present:
554 if (nid < 0 || !node_online(nid))
555 nid = first_online_node;
556
557 map_cpu_to_node(lcpu, nid);
558 of_node_put(cpu);
559out:
560 return nid;
561}
562
563static void verify_cpu_node_mapping(int cpu, int node)
564{
565 int base, sibling, i;
566
567 /* Verify that all the threads in the core belong to the same node */
568 base = cpu_first_thread_sibling(cpu);
569
570 for (i = 0; i < threads_per_core; i++) {
571 sibling = base + i;
572
573 if (sibling == cpu || cpu_is_offline(sibling))
574 continue;
575
576 if (cpu_to_node(sibling) != node) {
577 WARN(1, "CPU thread siblings %d and %d don't belong"
578 " to the same node!\n", cpu, sibling);
579 break;
580 }
581 }
582}
583
584static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
585 void *hcpu)
586{
587 unsigned long lcpu = (unsigned long)hcpu;
588 int ret = NOTIFY_DONE, nid;
589
590 switch (action) {
591 case CPU_UP_PREPARE:
592 case CPU_UP_PREPARE_FROZEN:
593 nid = numa_setup_cpu(lcpu);
594 verify_cpu_node_mapping((int)lcpu, nid);
595 ret = NOTIFY_OK;
596 break;
597#ifdef CONFIG_HOTPLUG_CPU
598 case CPU_DEAD:
599 case CPU_DEAD_FROZEN:
600 case CPU_UP_CANCELED:
601 case CPU_UP_CANCELED_FROZEN:
602 unmap_cpu_from_node(lcpu);
603 ret = NOTIFY_OK;
604 break;
605#endif
606 }
607 return ret;
608}
609
610/*
611 * Check and possibly modify a memory region to enforce the memory limit.
612 *
613 * Returns the size the region should have to enforce the memory limit.
614 * This will either be the original value of size, a truncated value,
615 * or zero. If the returned value of size is 0 the region should be
616 * discarded as it lies wholly above the memory limit.
617 */
618static unsigned long __init numa_enforce_memory_limit(unsigned long start,
619 unsigned long size)
620{
621 /*
622 * We use memblock_end_of_DRAM() in here instead of memory_limit because
623 * we've already adjusted it for the limit and it takes care of
624 * having memory holes below the limit. Also, in the case of
625 * iommu_is_off, memory_limit is not set but is implicitly enforced.
626 */
627
628 if (start + size <= memblock_end_of_DRAM())
629 return size;
630
631 if (start >= memblock_end_of_DRAM())
632 return 0;
633
634 return memblock_end_of_DRAM() - start;
635}
636
637/*
638 * Reads the counter for a given entry in
639 * linux,drconf-usable-memory property
640 */
641static inline int __init read_usm_ranges(const __be32 **usm)
642{
643 /*
644 * For each lmb in ibm,dynamic-memory a corresponding
645 * entry in linux,drconf-usable-memory property contains
646 * a counter followed by that many (base, size) duple.
647 * read the counter from linux,drconf-usable-memory
648 */
649 return read_n_cells(n_mem_size_cells, usm);
650}
651
652/*
653 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
654 * node. This assumes n_mem_{addr,size}_cells have been set.
655 */
656static void __init parse_drconf_memory(struct device_node *memory)
657{
658 const __be32 *uninitialized_var(dm), *usm;
659 unsigned int n, rc, ranges, is_kexec_kdump = 0;
660 unsigned long lmb_size, base, size, sz;
661 int nid;
662 struct assoc_arrays aa = { .arrays = NULL };
663
664 n = of_get_drconf_memory(memory, &dm);
665 if (!n)
666 return;
667
668 lmb_size = of_get_lmb_size(memory);
669 if (!lmb_size)
670 return;
671
672 rc = of_get_assoc_arrays(memory, &aa);
673 if (rc)
674 return;
675
676 /* check if this is a kexec/kdump kernel */
677 usm = of_get_usable_memory(memory);
678 if (usm != NULL)
679 is_kexec_kdump = 1;
680
681 for (; n != 0; --n) {
682 struct of_drconf_cell drmem;
683
684 read_drconf_cell(&drmem, &dm);
685
686 /* skip this block if the reserved bit is set in flags (0x80)
687 or if the block is not assigned to this partition (0x8) */
688 if ((drmem.flags & DRCONF_MEM_RESERVED)
689 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
690 continue;
691
692 base = drmem.base_addr;
693 size = lmb_size;
694 ranges = 1;
695
696 if (is_kexec_kdump) {
697 ranges = read_usm_ranges(&usm);
698 if (!ranges) /* there are no (base, size) duple */
699 continue;
700 }
701 do {
702 if (is_kexec_kdump) {
703 base = read_n_cells(n_mem_addr_cells, &usm);
704 size = read_n_cells(n_mem_size_cells, &usm);
705 }
706 nid = of_drconf_to_nid_single(&drmem, &aa);
707 fake_numa_create_new_node(
708 ((base + size) >> PAGE_SHIFT),
709 &nid);
710 node_set_online(nid);
711 sz = numa_enforce_memory_limit(base, size);
712 if (sz)
713 memblock_set_node(base, sz,
714 &memblock.memory, nid);
715 } while (--ranges);
716 }
717}
718
719static int __init parse_numa_properties(void)
720{
721 struct device_node *memory;
722 int default_nid = 0;
723 unsigned long i;
724
725 if (numa_enabled == 0) {
726 printk(KERN_WARNING "NUMA disabled by user\n");
727 return -1;
728 }
729
730 min_common_depth = find_min_common_depth();
731
732 if (min_common_depth < 0)
733 return min_common_depth;
734
735 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
736
737 /*
738 * Even though we connect cpus to numa domains later in SMP
739 * init, we need to know the node ids now. This is because
740 * each node to be onlined must have NODE_DATA etc backing it.
741 */
742 for_each_present_cpu(i) {
743 struct device_node *cpu;
744 int nid;
745
746 cpu = of_get_cpu_node(i, NULL);
747 BUG_ON(!cpu);
748 nid = of_node_to_nid_single(cpu);
749 of_node_put(cpu);
750
751 /*
752 * Don't fall back to default_nid yet -- we will plug
753 * cpus into nodes once the memory scan has discovered
754 * the topology.
755 */
756 if (nid < 0)
757 continue;
758 node_set_online(nid);
759 }
760
761 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
762
763 for_each_node_by_type(memory, "memory") {
764 unsigned long start;
765 unsigned long size;
766 int nid;
767 int ranges;
768 const __be32 *memcell_buf;
769 unsigned int len;
770
771 memcell_buf = of_get_property(memory,
772 "linux,usable-memory", &len);
773 if (!memcell_buf || len <= 0)
774 memcell_buf = of_get_property(memory, "reg", &len);
775 if (!memcell_buf || len <= 0)
776 continue;
777
778 /* ranges in cell */
779 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
780new_range:
781 /* these are order-sensitive, and modify the buffer pointer */
782 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
783 size = read_n_cells(n_mem_size_cells, &memcell_buf);
784
785 /*
786 * Assumption: either all memory nodes or none will
787 * have associativity properties. If none, then
788 * everything goes to default_nid.
789 */
790 nid = of_node_to_nid_single(memory);
791 if (nid < 0)
792 nid = default_nid;
793
794 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
795 node_set_online(nid);
796
797 if (!(size = numa_enforce_memory_limit(start, size))) {
798 if (--ranges)
799 goto new_range;
800 else
801 continue;
802 }
803
804 memblock_set_node(start, size, &memblock.memory, nid);
805
806 if (--ranges)
807 goto new_range;
808 }
809
810 /*
811 * Now do the same thing for each MEMBLOCK listed in the
812 * ibm,dynamic-memory property in the
813 * ibm,dynamic-reconfiguration-memory node.
814 */
815 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
816 if (memory)
817 parse_drconf_memory(memory);
818
819 return 0;
820}
821
822static void __init setup_nonnuma(void)
823{
824 unsigned long top_of_ram = memblock_end_of_DRAM();
825 unsigned long total_ram = memblock_phys_mem_size();
826 unsigned long start_pfn, end_pfn;
827 unsigned int nid = 0;
828 struct memblock_region *reg;
829
830 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
831 top_of_ram, total_ram);
832 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
833 (top_of_ram - total_ram) >> 20);
834
835 for_each_memblock(memory, reg) {
836 start_pfn = memblock_region_memory_base_pfn(reg);
837 end_pfn = memblock_region_memory_end_pfn(reg);
838
839 fake_numa_create_new_node(end_pfn, &nid);
840 memblock_set_node(PFN_PHYS(start_pfn),
841 PFN_PHYS(end_pfn - start_pfn),
842 &memblock.memory, nid);
843 node_set_online(nid);
844 }
845}
846
847void __init dump_numa_cpu_topology(void)
848{
849 unsigned int node;
850 unsigned int cpu, count;
851
852 if (min_common_depth == -1 || !numa_enabled)
853 return;
854
855 for_each_online_node(node) {
856 printk(KERN_DEBUG "Node %d CPUs:", node);
857
858 count = 0;
859 /*
860 * If we used a CPU iterator here we would miss printing
861 * the holes in the cpumap.
862 */
863 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
864 if (cpumask_test_cpu(cpu,
865 node_to_cpumask_map[node])) {
866 if (count == 0)
867 printk(" %u", cpu);
868 ++count;
869 } else {
870 if (count > 1)
871 printk("-%u", cpu - 1);
872 count = 0;
873 }
874 }
875
876 if (count > 1)
877 printk("-%u", nr_cpu_ids - 1);
878 printk("\n");
879 }
880}
881
882static void __init dump_numa_memory_topology(void)
883{
884 unsigned int node;
885 unsigned int count;
886
887 if (min_common_depth == -1 || !numa_enabled)
888 return;
889
890 for_each_online_node(node) {
891 unsigned long i;
892
893 printk(KERN_DEBUG "Node %d Memory:", node);
894
895 count = 0;
896
897 for (i = 0; i < memblock_end_of_DRAM();
898 i += (1 << SECTION_SIZE_BITS)) {
899 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
900 if (count == 0)
901 printk(" 0x%lx", i);
902 ++count;
903 } else {
904 if (count > 0)
905 printk("-0x%lx", i);
906 count = 0;
907 }
908 }
909
910 if (count > 0)
911 printk("-0x%lx", i);
912 printk("\n");
913 }
914}
915
916static struct notifier_block ppc64_numa_nb = {
917 .notifier_call = cpu_numa_callback,
918 .priority = 1 /* Must run before sched domains notifier. */
919};
920
921/* Initialize NODE_DATA for a node on the local memory */
922static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
923{
924 u64 spanned_pages = end_pfn - start_pfn;
925 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
926 u64 nd_pa;
927 void *nd;
928 int tnid;
929
930 if (spanned_pages)
931 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
932 nid, start_pfn << PAGE_SHIFT,
933 (end_pfn << PAGE_SHIFT) - 1);
934 else
935 pr_info("Initmem setup node %d\n", nid);
936
937 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
938 nd = __va(nd_pa);
939
940 /* report and initialize */
941 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
942 nd_pa, nd_pa + nd_size - 1);
943 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
944 if (tnid != nid)
945 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
946
947 node_data[nid] = nd;
948 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
949 NODE_DATA(nid)->node_id = nid;
950 NODE_DATA(nid)->node_start_pfn = start_pfn;
951 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
952}
953
954void __init initmem_init(void)
955{
956 int nid, cpu;
957
958 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
959 max_pfn = max_low_pfn;
960
961 if (parse_numa_properties())
962 setup_nonnuma();
963 else
964 dump_numa_memory_topology();
965
966 memblock_dump_all();
967
968 /*
969 * Reduce the possible NUMA nodes to the online NUMA nodes,
970 * since we do not support node hotplug. This ensures that we
971 * lower the maximum NUMA node ID to what is actually present.
972 */
973 nodes_and(node_possible_map, node_possible_map, node_online_map);
974
975 for_each_online_node(nid) {
976 unsigned long start_pfn, end_pfn;
977
978 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
979 setup_node_data(nid, start_pfn, end_pfn);
980 sparse_memory_present_with_active_regions(nid);
981 }
982
983 sparse_init();
984
985 setup_node_to_cpumask_map();
986
987 reset_numa_cpu_lookup_table();
988 register_cpu_notifier(&ppc64_numa_nb);
989 /*
990 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
991 * even before we online them, so that we can use cpu_to_{node,mem}
992 * early in boot, cf. smp_prepare_cpus().
993 */
994 for_each_present_cpu(cpu) {
995 numa_setup_cpu((unsigned long)cpu);
996 }
997}
998
999static int __init early_numa(char *p)
1000{
1001 if (!p)
1002 return 0;
1003
1004 if (strstr(p, "off"))
1005 numa_enabled = 0;
1006
1007 if (strstr(p, "debug"))
1008 numa_debug = 1;
1009
1010 p = strstr(p, "fake=");
1011 if (p)
1012 cmdline = p + strlen("fake=");
1013
1014 return 0;
1015}
1016early_param("numa", early_numa);
1017
1018static bool topology_updates_enabled = true;
1019
1020static int __init early_topology_updates(char *p)
1021{
1022 if (!p)
1023 return 0;
1024
1025 if (!strcmp(p, "off")) {
1026 pr_info("Disabling topology updates\n");
1027 topology_updates_enabled = false;
1028 }
1029
1030 return 0;
1031}
1032early_param("topology_updates", early_topology_updates);
1033
1034#ifdef CONFIG_MEMORY_HOTPLUG
1035/*
1036 * Find the node associated with a hot added memory section for
1037 * memory represented in the device tree by the property
1038 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1039 */
1040static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1041 unsigned long scn_addr)
1042{
1043 const __be32 *dm;
1044 unsigned int drconf_cell_cnt, rc;
1045 unsigned long lmb_size;
1046 struct assoc_arrays aa;
1047 int nid = -1;
1048
1049 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1050 if (!drconf_cell_cnt)
1051 return -1;
1052
1053 lmb_size = of_get_lmb_size(memory);
1054 if (!lmb_size)
1055 return -1;
1056
1057 rc = of_get_assoc_arrays(memory, &aa);
1058 if (rc)
1059 return -1;
1060
1061 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1062 struct of_drconf_cell drmem;
1063
1064 read_drconf_cell(&drmem, &dm);
1065
1066 /* skip this block if it is reserved or not assigned to
1067 * this partition */
1068 if ((drmem.flags & DRCONF_MEM_RESERVED)
1069 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1070 continue;
1071
1072 if ((scn_addr < drmem.base_addr)
1073 || (scn_addr >= (drmem.base_addr + lmb_size)))
1074 continue;
1075
1076 nid = of_drconf_to_nid_single(&drmem, &aa);
1077 break;
1078 }
1079
1080 return nid;
1081}
1082
1083/*
1084 * Find the node associated with a hot added memory section for memory
1085 * represented in the device tree as a node (i.e. memory@XXXX) for
1086 * each memblock.
1087 */
1088static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1089{
1090 struct device_node *memory;
1091 int nid = -1;
1092
1093 for_each_node_by_type(memory, "memory") {
1094 unsigned long start, size;
1095 int ranges;
1096 const __be32 *memcell_buf;
1097 unsigned int len;
1098
1099 memcell_buf = of_get_property(memory, "reg", &len);
1100 if (!memcell_buf || len <= 0)
1101 continue;
1102
1103 /* ranges in cell */
1104 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1105
1106 while (ranges--) {
1107 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1108 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1109
1110 if ((scn_addr < start) || (scn_addr >= (start + size)))
1111 continue;
1112
1113 nid = of_node_to_nid_single(memory);
1114 break;
1115 }
1116
1117 if (nid >= 0)
1118 break;
1119 }
1120
1121 of_node_put(memory);
1122
1123 return nid;
1124}
1125
1126/*
1127 * Find the node associated with a hot added memory section. Section
1128 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1129 * sections are fully contained within a single MEMBLOCK.
1130 */
1131int hot_add_scn_to_nid(unsigned long scn_addr)
1132{
1133 struct device_node *memory = NULL;
1134 int nid, found = 0;
1135
1136 if (!numa_enabled || (min_common_depth < 0))
1137 return first_online_node;
1138
1139 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1140 if (memory) {
1141 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1142 of_node_put(memory);
1143 } else {
1144 nid = hot_add_node_scn_to_nid(scn_addr);
1145 }
1146
1147 if (nid < 0 || !node_online(nid))
1148 nid = first_online_node;
1149
1150 if (NODE_DATA(nid)->node_spanned_pages)
1151 return nid;
1152
1153 for_each_online_node(nid) {
1154 if (NODE_DATA(nid)->node_spanned_pages) {
1155 found = 1;
1156 break;
1157 }
1158 }
1159
1160 BUG_ON(!found);
1161 return nid;
1162}
1163
1164static u64 hot_add_drconf_memory_max(void)
1165{
1166 struct device_node *memory = NULL;
1167 unsigned int drconf_cell_cnt = 0;
1168 u64 lmb_size = 0;
1169 const __be32 *dm = NULL;
1170
1171 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1172 if (memory) {
1173 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1174 lmb_size = of_get_lmb_size(memory);
1175 of_node_put(memory);
1176 }
1177 return lmb_size * drconf_cell_cnt;
1178}
1179
1180/*
1181 * memory_hotplug_max - return max address of memory that may be added
1182 *
1183 * This is currently only used on systems that support drconfig memory
1184 * hotplug.
1185 */
1186u64 memory_hotplug_max(void)
1187{
1188 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1189}
1190#endif /* CONFIG_MEMORY_HOTPLUG */
1191
1192/* Virtual Processor Home Node (VPHN) support */
1193#ifdef CONFIG_PPC_SPLPAR
1194
1195#include "vphn.h"
1196
1197struct topology_update_data {
1198 struct topology_update_data *next;
1199 unsigned int cpu;
1200 int old_nid;
1201 int new_nid;
1202};
1203
1204static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1205static cpumask_t cpu_associativity_changes_mask;
1206static int vphn_enabled;
1207static int prrn_enabled;
1208static void reset_topology_timer(void);
1209
1210/*
1211 * Store the current values of the associativity change counters in the
1212 * hypervisor.
1213 */
1214static void setup_cpu_associativity_change_counters(void)
1215{
1216 int cpu;
1217
1218 /* The VPHN feature supports a maximum of 8 reference points */
1219 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1220
1221 for_each_possible_cpu(cpu) {
1222 int i;
1223 u8 *counts = vphn_cpu_change_counts[cpu];
1224 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1225
1226 for (i = 0; i < distance_ref_points_depth; i++)
1227 counts[i] = hypervisor_counts[i];
1228 }
1229}
1230
1231/*
1232 * The hypervisor maintains a set of 8 associativity change counters in
1233 * the VPA of each cpu that correspond to the associativity levels in the
1234 * ibm,associativity-reference-points property. When an associativity
1235 * level changes, the corresponding counter is incremented.
1236 *
1237 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1238 * node associativity levels have changed.
1239 *
1240 * Returns the number of cpus with unhandled associativity changes.
1241 */
1242static int update_cpu_associativity_changes_mask(void)
1243{
1244 int cpu;
1245 cpumask_t *changes = &cpu_associativity_changes_mask;
1246
1247 for_each_possible_cpu(cpu) {
1248 int i, changed = 0;
1249 u8 *counts = vphn_cpu_change_counts[cpu];
1250 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1251
1252 for (i = 0; i < distance_ref_points_depth; i++) {
1253 if (hypervisor_counts[i] != counts[i]) {
1254 counts[i] = hypervisor_counts[i];
1255 changed = 1;
1256 }
1257 }
1258 if (changed) {
1259 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1260 cpu = cpu_last_thread_sibling(cpu);
1261 }
1262 }
1263
1264 return cpumask_weight(changes);
1265}
1266
1267/*
1268 * Retrieve the new associativity information for a virtual processor's
1269 * home node.
1270 */
1271static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1272{
1273 long rc;
1274 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1275 u64 flags = 1;
1276 int hwcpu = get_hard_smp_processor_id(cpu);
1277
1278 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1279 vphn_unpack_associativity(retbuf, associativity);
1280
1281 return rc;
1282}
1283
1284static long vphn_get_associativity(unsigned long cpu,
1285 __be32 *associativity)
1286{
1287 long rc;
1288
1289 rc = hcall_vphn(cpu, associativity);
1290
1291 switch (rc) {
1292 case H_FUNCTION:
1293 printk(KERN_INFO
1294 "VPHN is not supported. Disabling polling...\n");
1295 stop_topology_update();
1296 break;
1297 case H_HARDWARE:
1298 printk(KERN_ERR
1299 "hcall_vphn() experienced a hardware fault "
1300 "preventing VPHN. Disabling polling...\n");
1301 stop_topology_update();
1302 }
1303
1304 return rc;
1305}
1306
1307/*
1308 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1309 * characteristics change. This function doesn't perform any locking and is
1310 * only safe to call from stop_machine().
1311 */
1312static int update_cpu_topology(void *data)
1313{
1314 struct topology_update_data *update;
1315 unsigned long cpu;
1316
1317 if (!data)
1318 return -EINVAL;
1319
1320 cpu = smp_processor_id();
1321
1322 for (update = data; update; update = update->next) {
1323 int new_nid = update->new_nid;
1324 if (cpu != update->cpu)
1325 continue;
1326
1327 unmap_cpu_from_node(cpu);
1328 map_cpu_to_node(cpu, new_nid);
1329 set_cpu_numa_node(cpu, new_nid);
1330 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1331 vdso_getcpu_init();
1332 }
1333
1334 return 0;
1335}
1336
1337static int update_lookup_table(void *data)
1338{
1339 struct topology_update_data *update;
1340
1341 if (!data)
1342 return -EINVAL;
1343
1344 /*
1345 * Upon topology update, the numa-cpu lookup table needs to be updated
1346 * for all threads in the core, including offline CPUs, to ensure that
1347 * future hotplug operations respect the cpu-to-node associativity
1348 * properly.
1349 */
1350 for (update = data; update; update = update->next) {
1351 int nid, base, j;
1352
1353 nid = update->new_nid;
1354 base = cpu_first_thread_sibling(update->cpu);
1355
1356 for (j = 0; j < threads_per_core; j++) {
1357 update_numa_cpu_lookup_table(base + j, nid);
1358 }
1359 }
1360
1361 return 0;
1362}
1363
1364/*
1365 * Update the node maps and sysfs entries for each cpu whose home node
1366 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1367 */
1368int arch_update_cpu_topology(void)
1369{
1370 unsigned int cpu, sibling, changed = 0;
1371 struct topology_update_data *updates, *ud;
1372 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1373 cpumask_t updated_cpus;
1374 struct device *dev;
1375 int weight, new_nid, i = 0;
1376
1377 if (!prrn_enabled && !vphn_enabled)
1378 return 0;
1379
1380 weight = cpumask_weight(&cpu_associativity_changes_mask);
1381 if (!weight)
1382 return 0;
1383
1384 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1385 if (!updates)
1386 return 0;
1387
1388 cpumask_clear(&updated_cpus);
1389
1390 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1391 /*
1392 * If siblings aren't flagged for changes, updates list
1393 * will be too short. Skip on this update and set for next
1394 * update.
1395 */
1396 if (!cpumask_subset(cpu_sibling_mask(cpu),
1397 &cpu_associativity_changes_mask)) {
1398 pr_info("Sibling bits not set for associativity "
1399 "change, cpu%d\n", cpu);
1400 cpumask_or(&cpu_associativity_changes_mask,
1401 &cpu_associativity_changes_mask,
1402 cpu_sibling_mask(cpu));
1403 cpu = cpu_last_thread_sibling(cpu);
1404 continue;
1405 }
1406
1407 /* Use associativity from first thread for all siblings */
1408 vphn_get_associativity(cpu, associativity);
1409 new_nid = associativity_to_nid(associativity);
1410 if (new_nid < 0 || !node_online(new_nid))
1411 new_nid = first_online_node;
1412
1413 if (new_nid == numa_cpu_lookup_table[cpu]) {
1414 cpumask_andnot(&cpu_associativity_changes_mask,
1415 &cpu_associativity_changes_mask,
1416 cpu_sibling_mask(cpu));
1417 cpu = cpu_last_thread_sibling(cpu);
1418 continue;
1419 }
1420
1421 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1422 ud = &updates[i++];
1423 ud->cpu = sibling;
1424 ud->new_nid = new_nid;
1425 ud->old_nid = numa_cpu_lookup_table[sibling];
1426 cpumask_set_cpu(sibling, &updated_cpus);
1427 if (i < weight)
1428 ud->next = &updates[i];
1429 }
1430 cpu = cpu_last_thread_sibling(cpu);
1431 }
1432
1433 pr_debug("Topology update for the following CPUs:\n");
1434 if (cpumask_weight(&updated_cpus)) {
1435 for (ud = &updates[0]; ud; ud = ud->next) {
1436 pr_debug("cpu %d moving from node %d "
1437 "to %d\n", ud->cpu,
1438 ud->old_nid, ud->new_nid);
1439 }
1440 }
1441
1442 /*
1443 * In cases where we have nothing to update (because the updates list
1444 * is too short or because the new topology is same as the old one),
1445 * skip invoking update_cpu_topology() via stop-machine(). This is
1446 * necessary (and not just a fast-path optimization) since stop-machine
1447 * can end up electing a random CPU to run update_cpu_topology(), and
1448 * thus trick us into setting up incorrect cpu-node mappings (since
1449 * 'updates' is kzalloc()'ed).
1450 *
1451 * And for the similar reason, we will skip all the following updating.
1452 */
1453 if (!cpumask_weight(&updated_cpus))
1454 goto out;
1455
1456 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1457
1458 /*
1459 * Update the numa-cpu lookup table with the new mappings, even for
1460 * offline CPUs. It is best to perform this update from the stop-
1461 * machine context.
1462 */
1463 stop_machine(update_lookup_table, &updates[0],
1464 cpumask_of(raw_smp_processor_id()));
1465
1466 for (ud = &updates[0]; ud; ud = ud->next) {
1467 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1468 register_cpu_under_node(ud->cpu, ud->new_nid);
1469
1470 dev = get_cpu_device(ud->cpu);
1471 if (dev)
1472 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1473 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1474 changed = 1;
1475 }
1476
1477out:
1478 kfree(updates);
1479 return changed;
1480}
1481
1482static void topology_work_fn(struct work_struct *work)
1483{
1484 rebuild_sched_domains();
1485}
1486static DECLARE_WORK(topology_work, topology_work_fn);
1487
1488static void topology_schedule_update(void)
1489{
1490 schedule_work(&topology_work);
1491}
1492
1493static void topology_timer_fn(unsigned long ignored)
1494{
1495 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1496 topology_schedule_update();
1497 else if (vphn_enabled) {
1498 if (update_cpu_associativity_changes_mask() > 0)
1499 topology_schedule_update();
1500 reset_topology_timer();
1501 }
1502}
1503static struct timer_list topology_timer =
1504 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1505
1506static void reset_topology_timer(void)
1507{
1508 topology_timer.data = 0;
1509 topology_timer.expires = jiffies + 60 * HZ;
1510 mod_timer(&topology_timer, topology_timer.expires);
1511}
1512
1513#ifdef CONFIG_SMP
1514
1515static void stage_topology_update(int core_id)
1516{
1517 cpumask_or(&cpu_associativity_changes_mask,
1518 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1519 reset_topology_timer();
1520}
1521
1522static int dt_update_callback(struct notifier_block *nb,
1523 unsigned long action, void *data)
1524{
1525 struct of_reconfig_data *update = data;
1526 int rc = NOTIFY_DONE;
1527
1528 switch (action) {
1529 case OF_RECONFIG_UPDATE_PROPERTY:
1530 if (!of_prop_cmp(update->dn->type, "cpu") &&
1531 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1532 u32 core_id;
1533 of_property_read_u32(update->dn, "reg", &core_id);
1534 stage_topology_update(core_id);
1535 rc = NOTIFY_OK;
1536 }
1537 break;
1538 }
1539
1540 return rc;
1541}
1542
1543static struct notifier_block dt_update_nb = {
1544 .notifier_call = dt_update_callback,
1545};
1546
1547#endif
1548
1549/*
1550 * Start polling for associativity changes.
1551 */
1552int start_topology_update(void)
1553{
1554 int rc = 0;
1555
1556 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1557 if (!prrn_enabled) {
1558 prrn_enabled = 1;
1559 vphn_enabled = 0;
1560#ifdef CONFIG_SMP
1561 rc = of_reconfig_notifier_register(&dt_update_nb);
1562#endif
1563 }
1564 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1565 lppaca_shared_proc(get_lppaca())) {
1566 if (!vphn_enabled) {
1567 prrn_enabled = 0;
1568 vphn_enabled = 1;
1569 setup_cpu_associativity_change_counters();
1570 init_timer_deferrable(&topology_timer);
1571 reset_topology_timer();
1572 }
1573 }
1574
1575 return rc;
1576}
1577
1578/*
1579 * Disable polling for VPHN associativity changes.
1580 */
1581int stop_topology_update(void)
1582{
1583 int rc = 0;
1584
1585 if (prrn_enabled) {
1586 prrn_enabled = 0;
1587#ifdef CONFIG_SMP
1588 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1589#endif
1590 } else if (vphn_enabled) {
1591 vphn_enabled = 0;
1592 rc = del_timer_sync(&topology_timer);
1593 }
1594
1595 return rc;
1596}
1597
1598int prrn_is_enabled(void)
1599{
1600 return prrn_enabled;
1601}
1602
1603static int topology_read(struct seq_file *file, void *v)
1604{
1605 if (vphn_enabled || prrn_enabled)
1606 seq_puts(file, "on\n");
1607 else
1608 seq_puts(file, "off\n");
1609
1610 return 0;
1611}
1612
1613static int topology_open(struct inode *inode, struct file *file)
1614{
1615 return single_open(file, topology_read, NULL);
1616}
1617
1618static ssize_t topology_write(struct file *file, const char __user *buf,
1619 size_t count, loff_t *off)
1620{
1621 char kbuf[4]; /* "on" or "off" plus null. */
1622 int read_len;
1623
1624 read_len = count < 3 ? count : 3;
1625 if (copy_from_user(kbuf, buf, read_len))
1626 return -EINVAL;
1627
1628 kbuf[read_len] = '\0';
1629
1630 if (!strncmp(kbuf, "on", 2))
1631 start_topology_update();
1632 else if (!strncmp(kbuf, "off", 3))
1633 stop_topology_update();
1634 else
1635 return -EINVAL;
1636
1637 return count;
1638}
1639
1640static const struct file_operations topology_ops = {
1641 .read = seq_read,
1642 .write = topology_write,
1643 .open = topology_open,
1644 .release = single_release
1645};
1646
1647static int topology_update_init(void)
1648{
1649 /* Do not poll for changes if disabled at boot */
1650 if (topology_updates_enabled)
1651 start_topology_update();
1652
1653 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1654 return -ENOMEM;
1655
1656 return 0;
1657}
1658device_initcall(topology_update_init);
1659#endif /* CONFIG_PPC_SPLPAR */